WorldWideScience

Sample records for cerevisiae yeast cytochrome

  1. Stationary phase in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Werner-Washburne, M; Braun, E.; Johnston, G C; Singer, R A

    1993-01-01

    Growth and proliferation of microorganisms such as the yeast Saccharomyces cerevisiae are controlled in part by the availability of nutrients. When proliferating yeast cells exhaust available nutrients, they enter a stationary phase characterized by cell cycle arrest and specific physiological, biochemical, and morphological changes. These changes include thickening of the cell wall, accumulation of reserve carbohydrates, and acquisition of thermotolerance. Recent characterization of mutant c...

  2. TOTAL ANTIOXIDANT ACTIVITY OF YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2013-02-01

    Full Text Available Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g. fats, lipids, proteins and DNA from the damage of reactive oxygen species (ROS. Sacchamomyces cerevisiae are know as organisms with very important antioxidative enzyme systems such as superoxide dismutase or catalase. The total antioxidant activity (mmol Trolox equivalent – TE.g-1 d.w. of Saccharomyces cerevisiae was measured by 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid during the yeast cultivation. It was found that the total antioxidant activity was the highest (1.08 mmol TE.g-1 d.w. in the strain Kolín after 32 hours of cultivation and the lowest (0.26 mmol TE.g-1 d.w. in the strain Gyöng after 12 hours of cultivation.

  3. Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase.

    Science.gov (United States)

    Levchenko, Maria; Wuttke, Jan-Moritz; Römpler, Katharina; Schmidt, Bernhard; Neifer, Klaus; Juris, Lisa; Wissel, Mirjam; Rehling, Peter; Deckers, Markus

    2016-07-01

    The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Cox1, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc1-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization. PMID:27083394

  4. Evaluation of cytochrome P-450 concentration in Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Míriam Cristina Sakuragui Matuo

    2010-09-01

    Full Text Available Saccharomyces cerevisiae has been widely used in mutagenicity tests due to the presence of a cytochrome P-450 system, capable of metabolizing promutagens to active mutagens. There are a large number of S. cerevisiae strains with varying abilities to produce cytochrome P-450. However, strain selection and ideal cultivation conditions are not well defined. We compared cytochrome P-450 levels in four different S. cerevisiae strains and evaluated the cultivation conditions necessary to obtain the highest levels. The amount of cytochrome P-450 produced by each strain varied, as did the incubation time needed to reach the maximum level. The highest cytochrome P-450 concentrations were found in media containing fermentable sugars. The NCYC 240 strain produced the highest level of cytochrome P-450 when grown in the presence of 20 % (w/v glucose. The addition of ethanol to the media also increased cytochrome P-450 synthesis in this strain. These results indicate cultivation conditions must be specific and well-established for the strain selected in order to assure high cytochrome P-450 levels and reliable mutagenicity results.Linhagens de Saccharomyces cerevisiae tem sido amplamente empregadas em testes de mutagenicidade devido à presença de um sistema citocromo P-450 capaz de metabolizar substâncias pró-mutagênicas à sua forma ativa. Devido à grande variedade de linhagens de S. cerevisiae com diferentes capacidades de produção de citocromo P-450, torna-se necessária a seleção de cepas, bem como a definição das condições ideais de cultivo. Neste trabalho, foram comparados os níveis de citocromo P-450 em quatro diferentes linhagens de S. cerevisiae e avaliadas as condições de cultivo necessárias para obtenção de altas concentrações deste sistema enzimático. O maior nível enzimático foi encontrado na linhagem NCYC 240 em presença de 20 % de glicose (p/v. A adição de etanol ao meio de cultura também produziu um aumento na s

  5. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    Science.gov (United States)

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  6. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria.

    Science.gov (United States)

    Roloff, Gabrielle A; Henry, Michael F

    2015-08-15

    Three mitochondrial DNA-encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1. PMID:26108620

  7. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhao, Fanglong; Bai, Peng; Liu, Ting; Li, Dashuai; Zhang, Xiangmei; Lu, Wenyu; Yuan, Yingjin

    2016-08-01

    Ginsenosides, the major bioactive components of Panax ginseng, are regarded as promising high-value pharmaceutical compounds. In ginseng, ginsenosides are produced from their precursor protopanaxadiol. Recently, an artificial biosynthetic pathway of protopanaxadiol was built in Saccharomyces cerevisiae by introducing a P. ginseng dammarenediol-II synthase, a P. ginseng cytochrome P450-type protopanaxadiol synthase (PPDS), and a Arabidopsis thaliana NADPH-cytochrome P450 reductase (ATR1). In this engineered yeast strain, however, the low metabolic flux through PPDS resulted in a low productivity of protopanaxadiol. Moreover, health of the yeast cells was significantly affected by reactive oxygen species released by the pool coupling between PPDS and ATR1. To overcome the obstacles in protopanaxadiol production, PPDS was modified through transmembrane domain truncation and self-sufficient PPDS-ATR1 fusion construction in this study. The fusion enzymes conferred approximately 4.5-fold increase in catalytic activity, and 71.1% increase in protopanaxadiol production compared with PPDS and ATR1 co-expression. Our in vivo experiment indicated that the engineered yeast carrying fusion protein effectively converted 96.8% of dammarenediol-II into protopanaxadiol. Protopanaxadiol production in a 5 L bioreactor in fed-batch fermentation reached 1436.6 mg/L. Our study not only improved protopanaxadiol production in yeast, but also provided a generic method to improve activities of plant cytochrome P450 monooxygenases. This method is promising to be applied to other P450 systems in yeast. Biotechnol. Bioeng. 2016;113: 1787-1795. © 2016 Wiley Periodicals, Inc. PMID:26757342

  8. Accumulation of gold using Baker's yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Authors have reported preconcentration of 152Eu, a long-lived fission product, by yeast cells, Saccharomyces cerevisiae. Gold being a precious metal is used in electroplating, hydrogenation catalyst, etc. Heterogeneous composition of samples and low concentration offers renewed interest in its selective extraction of gold using various extractants. Gold can be recovered from different solutions using various chemical reagents like amines, organophosphorus compounds, and extractants containing sulphur as donor atom, etc. In the present work, two different strains of baker's yeast, Saccharomyces cerevisiae have been used to study the preconcentration of gold at various experimental conditions

  9. Structure of Ynk1 from the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    The crystal structure of Ynk1, an NDPK from the yeast Saccharomyces cerevisiae, has been solved at 3.1 Å resolution. Nucleoside diphosphate kinase (NDPK) catalyzes the transfer of the γ-phosphate from nucleoside triphosphates to nucleoside diphosphates. In addition to biochemical studies, a number of crystal structures of NDPK from various organisms, including both native proteins and complexes with nucleotides or nucleotide analogues, have been determined. Here, the crystal structure of Ynk1, an NDPK from the yeast Saccharomyces cerevisiae, has been solved at 3.1 Å resolution. Structural analysis strongly supports the oligomerization state of this protein being hexameric rather than tetrameric

  10. TOTAL ANTIOXIDANT ACTIVITY OF YEAST SACCHAROMYCES CEREVISIAE

    OpenAIRE

    Blažena Lavová; Dana Urminská

    2013-01-01

    Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g. fats, lipids, proteins and DNA) from the damage of reactive oxygen species (ROS). Sacchamomyces cerevisiae are know as organisms with very important antioxidative enzyme systems such as superoxide dismutase or catalase. The total antioxidant activity (mmol Trolox equivalent – TE.g-1 d.w.) of Saccharomyces cerevisiae was measured by 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) during the yeas...

  11. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  12. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Science.gov (United States)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  13. Membrane Trafficking in the Yeast Saccharomyces cerevisiae Model

    Directory of Open Access Journals (Sweden)

    Serge Feyder

    2015-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is one of the best characterized eukaryotic models. The secretory pathway was the first trafficking pathway clearly understood mainly thanks to the work done in the laboratory of Randy Schekman in the 1980s. They have isolated yeast sec mutants unable to secrete an extracellular enzyme and these SEC genes were identified as encoding key effectors of the secretory machinery. For this work, the 2013 Nobel Prize in Physiology and Medicine has been awarded to Randy Schekman; the prize is shared with James Rothman and Thomas Südhof. Here, we present the different trafficking pathways of yeast S. cerevisiae. At the Golgi apparatus newly synthesized proteins are sorted between those transported to the plasma membrane (PM, or the external medium, via the exocytosis or secretory pathway (SEC, and those targeted to the vacuole either through endosomes (vacuolar protein sorting or VPS pathway or directly (alkaline phosphatase or ALP pathway. Plasma membrane proteins can be internalized by endocytosis (END and transported to endosomes where they are sorted between those targeted for vacuolar degradation and those redirected to the Golgi (recycling or RCY pathway. Studies in yeast S. cerevisiae allowed the identification of most of the known effectors, protein complexes, and trafficking pathways in eukaryotic cells, and most of them are conserved among eukaryotes.

  14. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.

    Science.gov (United States)

    Gallone, Brigida; Steensels, Jan; Prahl, Troels; Soriaga, Leah; Saels, Veerle; Herrera-Malaver, Beatriz; Merlevede, Adriaan; Roncoroni, Miguel; Voordeckers, Karin; Miraglia, Loren; Teiling, Clotilde; Steffy, Brian; Taylor, Maryann; Schwartz, Ariel; Richardson, Toby; White, Christopher; Baele, Guy; Maere, Steven; Verstrepen, Kevin J

    2016-09-01

    Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP. PMID:27610566

  15. Membrane Protein Production in the Yeast, S. cerevisiae.

    Science.gov (United States)

    Cartwright, Stephanie P; Mikaliunaite, Lina; Bill, Roslyn M

    2016-01-01

    The first crystal structures of recombinant mammalian membrane proteins were solved in 2005 using protein that had been produced in yeast cells. One of these, the rabbit Ca(2+)-ATPase SERCA1a, was synthesized in Saccharomyces cerevisiae. All host systems have their specific advantages and disadvantages, but yeast has remained a consistently popular choice in the eukaryotic membrane protein field because it is quick, easy and cheap to culture, whilst being able to post-translationally process eukaryotic membrane proteins. Very recent structures of recombinant membrane proteins produced in S. cerevisiae include those of the Arabidopsis thaliana NRT1.1 nitrate transporter and the fungal plant pathogen lipid scramblase, TMEM16. This chapter provides an overview of the methodological approaches underpinning these successes. PMID:27485327

  16. Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods

    OpenAIRE

    Tofalo, Rosanna; Perpetuini, Giorgia; Schirone, Maria; Fasoli, Giuseppe; Aguzzi, Irene; Corsetti, Aldo; Suzzi, Giovanna

    2013-01-01

    Biogeography is the descriptive and explanatory study of spatial patterns and processes involved in the distribution of biodiversity. Without biogeography, it would be difficult to study the diversity of microorganisms because there would be no way to visualize patterns in variation. Saccharomyces cerevisiae, “the wine yeast,” is the most important species involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle of “everything is everywhere.” Agricultural pract...

  17. Role of cytochrome B in the processing of the subunits of complex III in the yeast mitochondria

    International Nuclear Information System (INIS)

    The work described in this dissertation deals with the effect of cytochrome b on the biogenesis and assembly of the subunits of complex III in the mitochondrial membrane of the yeast Saccharomyces cerevisiae. The cytochrome b-mutants (Box mutants of S. cerevisiae form an excellent system to study such a role of cytochome B. The amounts of cytochrome c1 in the mitochrondria, as determined both spectroscopically and immunologically, were not affected by the absence of cytochrome b. Pulse labelling of the cells with (35S) methionine in the presence of CCCP showed the accumulation of the precursors to the core protein I and the iron-sulfur protein in similar amounts in the mutant Box 6-2 and the wild type cells. Synthesis of the iron sulfur protein and the cytochrome c1 by in vitro translation of mRNA isolated from wild type and mutant Box 6-2 in a rabbit reticulocyte lysate system, also confirmed that the synthesis of the nuclear encoded subunits was not affected in the mutants. Pulse labeling of the cells in the absence of CCCP and subsequent chase with cold methionine, however, showed much less of the mature subunits of core protein I and the iron-sulfur protein in the mitochrondria of the mutant cells relative to the wild type. These results indicate that cytochrome b is necessary for the proper processing of certain subunits of complex III

  18. Role of cytochrome B in the processing of the subunits of complex III in the yeast mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Sen, K.G.

    1986-01-01

    The work described in this dissertation deals with the effect of cytochrome b on the biogenesis and assembly of the subunits of complex III in the mitochondrial membrane of the yeast Saccharomyces cerevisiae. The cytochrome b-mutants (Box mutants of S. cerevisiae form an excellent system to study such a role of cytochome B. The amounts of cytochrome c/sub 1/ in the mitochrondria, as determined both spectroscopically and immunologically, were not affected by the absence of cytochrome b. Pulse labelling of the cells with (/sup 35/S) methionine in the presence of CCCP showed the accumulation of the precursors to the core protein I and the iron-sulfur protein in similar amounts in the mutant Box 6-2 and the wild type cells. Synthesis of the iron sulfur protein and the cytochrome c/sub 1/ by in vitro translation of mRNA isolated from wild type and mutant Box 6-2 in a rabbit reticulocyte lysate system, also confirmed that the synthesis of the nuclear encoded subunits was not affected in the mutants. Pulse labeling of the cells in the absence of CCCP and subsequent chase with cold methionine, however, showed much less of the mature subunits of core protein I and the iron-sulfur protein in the mitochrondria of the mutant cells relative to the wild type. These results indicate that cytochrome b is necessary for the proper processing of certain subunits of complex III.

  19. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol. PMID:25545362

  20. Effect of Yeast : Saccharomyces cerevisiae and Marine Yeast as probiotic supplement on performance of poultry

    Directory of Open Access Journals (Sweden)

    I Putu Kompiang

    2002-03-01

    Full Text Available An experiment had been conducted to evaluate the effect of marine yeast and Saccharomyces cerevisiae (Sc as probiotic supplement on poultry performance. Marine yeast isolated from rotten sea-weed and commercial Saccharomyces cerevisiae were used. Evaluation was conducted by comparing performance of broiler chicken supplemented with marine yeast or Sc, which were given through drinking water (5 ml/l to negative control (feed without antibiotic growth promotor/GPA, positive control (feed with GPA, and reference commercial probiotic. Forty DOC broiler birds were used for each treatment, divided into 4 replicates (10 birds/replicate and raised in wire cages for 5 weeks. Body weight and feed consumption were measured weekly and mortality was recorded during the trial. The results showed that there were no significant difference on the birds performance among marine yeast, Sc, positive control and probiotic reference control treatments. However their effects on bird performance were better (P<0.05 than treatment of negative control. It is concluded that marine yeast or Saccharomyces cerevisiae could replace the function of antibiotic as a growth promotant.

  1. Can yeast (S. cerevisiae) metabolic volatiles provide polymorphic signaling?

    Science.gov (United States)

    Arguello, J Roman; Sellanes, Carolina; Lou, Yann Ru; Raguso, Robert A

    2013-01-01

    Chemical signaling between organisms is a ubiquitous and evolutionarily dynamic process that helps to ensure mate recognition, location of nutrients, avoidance of toxins, and social cooperation. Evolutionary changes in chemical communication systems progress through natural variation within the organism generating the signal as well as the responding individuals. A promising yet poorly understood system with which to probe the importance of this variation exists between D. melanogaster and S. cerevisiae. D. melanogaster relies on yeast for nutrients, while also serving as a vector for yeast cell dispersal. Both are outstanding genetic and genomic models, with Drosophila also serving as a preeminent model for sensory neurobiology. To help develop these two genetic models as an ecological model, we have tested if - and to what extent - S. cerevisiae is capable of producing polymorphic signaling through variation in metabolic volatiles. We have carried out a chemical phenotyping experiment for 14 diverse accessions within a common garden random block design. Leveraging genomic sequences for 11 of the accessions, we ensured a genetically broad sample and tested for phylogenetic signal arising from phenotypic dataset. Our results demonstrate that significant quantitative differences for volatile blends do exist among S. cerevisiae accessions. Of particular ecological relevance, the compounds driving the blend differences (acetoin, 2-phenyl ethanol and 3-methyl-1-butanol) are known ligands for D. melanogasters chemosensory receptors, and are related to sensory behaviors. Though unable to correlate the genetic and volatile measurements, our data point clear ways forward for behavioral assays aimed at understanding the implications of this variation. PMID:23990899

  2. Requirement of copper for 1st-log growth of the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Como, S.A.; Valerio, V.; Nickless, S.; Connelly, J.L.

    1986-05-01

    Routine evaluation of the role of copper (Cu) in the growth of various mutants of the yeast Saccharomyces Cerevisiae disclosed an unexpected effect of Cu on the fermentative first-log growth. The authors subsequent studies are attempting to ascertain the nature and significance of this observation. Cells are grown on glucose in a supplemented minimal media at 29/sup 0/C for 48-72 hrs. using New Brunswick incubator shaking at 200 rpm. Cu concentration was varied by addition of Cu salts or bathocuproine disulfonate (BC), a highly specific Cu chelator. Samples were removed periodically from flasks and dry weights were determined. Growth curve plots of normal yeasts grown in the presence of 1mM to 38mM Cu showed little variation in the expected 1st log; diauxi; 2nd log; stationary phase picture. However, in the presence of BC growth rate in the 1st log was significantly slowed and as expected 2nd log growth was essentially stopped. The low 1st log growth rate could be titrated to normal (+Cu) levels by increments of added Cu but not by added iron. The effect was not seen when Rho-minus strains were used nor when growth was followed under anaerobic conditions. Results to date implicate a mitochondrial protein, oxygen and copper in the 1st log growth of S Cerevisiae. The character of the protein agent and the possible contribution of cytochrome oxidase activity to the lst log growth are being evaluated.

  3. Advanced biofuel production by the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Buijs, Nicolaas A; Siewers, Verena; Nielsen, Jens

    2013-06-01

    Replacement of conventional transportation fuels with biofuels will require production of compounds that can cover the complete fuel spectrum, ranging from gasoline to kerosene. Advanced biofuels are expected to play an important role in replacing fossil fuels because they have improved properties compared with ethanol and some of these may have the energy density required for use in heavy duty vehicles, ships, and aviation. Moreover, advanced biofuels can be used as drop-in fuels in existing internal combustion engines. The yeast cell factory Saccharomyces cerevisiae can be turned into a producer of higher alcohols (1-butanol and isobutanol), sesquiterpenes (farnesene and bisabolene), and fatty acid ethyl esters (biodiesel), and here we discusses progress in metabolic engineering of S. cerevisiae for production of these advanced biofuels. PMID:23628723

  4. Functional co-operation between the nuclei of Saccharomyces cerevisiae and mitochondria from other yeast species

    DEFF Research Database (Denmark)

    Spirek, M.; Horvath, A.; Piskur, Jure;

    2000-01-01

    We elaborated a simple method that allows the transfer of mitochondria from collection yeasts to Saccharomyces cerevisiae. Protoplasts prepared from different yeasts were fused to the protoplasts of the ade2-1, ura3-52, kar1-1, rho (0) strain of S. cerevisiae and were selected for respiring cybrids...

  5. Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Kron, S J; Styles, C. A.; Fink, G R

    1994-01-01

    Laboratory strains of Saccharomyces cerevisiae are dimorphic; in response to nitrogen starvation they switch from a yeast form (YF) to a filamentous pseudohyphal (PH) form. Time-lapse video microscopy of dividing cells reveals that YF and PH cells differ in their cell cycles and budding polarity. The YF cell cycle is controlled at the G1/S transition by the cell-size checkpoint Start. YF cells divide asymmetrically, producing small daughters from full-sized mothers. As a result, mothers and d...

  6. Use of bimolecular fluorescence complementation in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Skarp, Kari-Pekka; Zhao, Xueqiang; Weber, Marion; Jantti, Jussi

    2008-01-01

    Visualization of protein-protein interactions in vivo offers a powerful tool to resolve spatial and temporal aspects of cellular functions. Bimolecular fluorescence complementation (BiFC) makes use of nonfluorescent fragments of green fluorescent protein or its variants that are added as "tags" to target proteins under study. Only upon target protein interaction is a fluorescent protein complex assembled and the site of interaction can be monitored by microscopy. In this chapter, we describe the method and tools for use of BiFC in the yeast Saccharomyces cerevisiae. PMID:19066026

  7. Construction of Killer Industrial Yeast Saccharomyces Cerevisiae Hau-1 and its Fermentation Performance

    OpenAIRE

    Bajaj, Bijender K.; S Sharma

    2010-01-01

    Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccha...

  8. Construction of killer industrial yeast Saccharomyces cerevisiae HAU-1 and its fermentation performance

    OpenAIRE

    Bajaj, Bijender K.; S Sharma

    2010-01-01

    Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccha...

  9. Biogeographical characterisation of Saccharomyces cerevisiae wine yeast by molecular methods

    Directory of Open Access Journals (Sweden)

    RosannaTofalo

    2013-06-01

    Full Text Available Biogeography is the descriptive and explanatory study of spatial patterns and processes involved in the distribution of biodiversity. Without biogeography, it would be difficult to study the diversity of microorganisms because there would be no way to visualise patterns in variation. Saccharomyces cerevisiae, “the wine yeast”, is the most important species involved in alcoholic fermentation, and in vineyard ecosystems, it follows the principle of “everything is everywhere”. Agricultural practices such as farming (organic versus conventional and floor management systems have selected different populations within this species that are phylogenetically distinct. In fact, recent ecological and geographic studies highlighted that unique strains are associated with particular grape varieties in specific geographical locations. These studies also highlighted that significant diversity and regional character, or ‘terroir’, have been introduced into the winemaking process via this association. This diversity of wild strains preserves typicity, the high quality and the unique flavour of wines. Recently, different molecular methods were developed to study population dynamics of S. cerevisiae strains in both vineyards and wineries. In this review, we will provide an update on the current molecular methods used to reveal the geographical distribution of S. cerevisiae wine yeast.

  10. Early manifestations of replicative aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maksim I. Sorokin

    2014-01-01

    Full Text Available The yeast Saccharomyces cerevisiae is successfully used as a model organism to find genes responsible for lifespan control of higher organisms. As functional decline of higher eukaryotes can start as early as one quarter of the average lifespan, we asked whether S. cerevisiae can be used to model this manifestation of aging. While the average replicative lifespan of S. cerevisiae mother cells ranges between 15 and 30 division cycles, we found that resistances to certain stresses start to decrease much earlier. Looking into the mechanism, we found that knockouts of genes responsible for mitochondriato-nucleus (retrograde signaling, RTG1 or RTG3, significantly decrease the resistance of cells that generated more than four daughters, but not of the younger ones. We also found that even young mother cells frequently contain mitochondria with heterogeneous transmembrane potential and that the percentage of such cells correlates with replicative age. Together, these facts suggest that retrograde signaling starts to malfunction in relatively young cells, leading to accumulation of heterogeneous mitochondria within one cell. The latter may further contribute to a decline in stress resistances.

  11. Optimization of feeding strategy for the ergosterol production by yeasts saccharomyces cerevisiae

    OpenAIRE

    Mojmir Rychtera; Josef Cermak; Jaroslav Votruba; Jan Nahlik; Karel Melzoch; Christopher A. Kent; Estela Escalante, Waldir D.

    2010-01-01

    Objective of this study was to optimize ergosterol production by yeast strain Saccharomyces cerevisiae with the use of computer controlled feeding of cultivation medium. Baker´s yeasts strain of Saccharomyces cerevisiae originally modified and selected as mutant D7 was further applied in an industrial scale and also in this investigation. Composition of cultivation medium was optimized with the use of a modified Rosenbrock´s method with regard to following components: glucose, yeast extract, ...

  12. PHENOTYPES INVESTIGATION IN THE YEAST SACCHAROMYCES CEREVISIAE ISOLATED FROM DIFFERENT GRAPE CULTIVARS FOLLOWIG FERMENTATION

    OpenAIRE

    Bayraktar V. N.

    2012-01-01

    Micobiological investigation was carried out on Saccharomyces cerevisiae yeast cultures, which were isolated from different varieties of vintage grape harvested from the ―Koblevo‖ winery, Nikolaev region of Ukraine. It was determined that wild yeast cultures tend to be of one of three different phenotypes. For comparison and reference, investigation of test cultures was performed with previously known phenotypes and yeast cultures Saccharomyces cerevisiae used in wine industry. It was noted...

  13. Automated Yeast Mating Protocol Using Open Reading Frames from Saccharomyces cerevisiae Genome to Improve Yeast Strains for Cellulosic Ethanol Production

    Science.gov (United States)

    Engineering the industrial ethanologen Saccharomyces cerevisiae to utilize pentose sugars from lignocellulosic biomass is critical for commercializing cellulosic fuel ethanol production. Approaches to engineer pentose-fermenting yeasts have required expression of additional genes. We implemented a...

  14. The Snf1 Protein Kinase in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Usaite, Renata

    2008-01-01

    In yeast, Saccharomyces cerevisiae, the Snf1 protein kinase is primarily known as a key component of the glucose repression regulatory cascade. The Snf1 kinase is highly conserved among eukaryotes and its mammalian homolog AMPK is responsible for energy homeostasis in cells, organs and whole bodies....... Failure in the AMPK regulatory cascade leads to metabolic disorders, such as obesity or type 2 diabetes. The knowledge about the Snf1 protein kinase remains to be of much interest in studying yeast carbon metabolism and human biology. To investigate the effect of Snf1 kinase and its regulatory subunit Snf...... was the lack of reproducible sampling for proteins with low spectral counts. To reconstruct a regulatory map of the yeast Snf1 protein kinase, I used the abundances of 5716 mRNAs, 2388 proteins, and 44 metabolites measured for the wild-type, Δsnf1, Δsnf4, and Δsnf1Δsnf4 strains. By integrating these...

  15. Reactivation of UV-irradiated plasmid transforming DNA by cells of yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Bekker, M.L.; Kozhina, T.N.; Smolina, V.S. (AN SSSR, Leningrad. Inst. Yadernoj Fiziki)

    1983-01-01

    Data revealing that cells of yeast Sccharomyces cerevisiae can reactivate transforming plasmid DNA after UV-radiation are given, this phenomenon at least partially depends on the system of exision reparation of master cells. Dependence of yeast survival rate and yield of yeast transformants on the UV-radiation dose of transforming DNA plasmid is disclosed.

  16. ACTIVITY OF SUPEROXIDE DISMUTASE ENZYME IN YEAST SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Blažena Lavová

    2014-02-01

    Full Text Available Reactive oxygen species (ROS with reactive nitrogen species (RNS are known to play dual role in biological systems, they can be harmful or beneficial to living systems. ROS can be important mediators of damage to cell structures, including proteins, lipids and nucleic acids termed as oxidative stress. The antioxidant enzymes protect the organism against the oxidative damage caused by active oxygen forms. The role of superoxide dismutase (SOD is to accelerate the dismutation of the toxic superoxide radical, produced during oxidative energy processes, to hydrogen peroxide and molecular oxygen. In this study, SOD activity of three yeast strains Saccharomyces cerevisiae was determined. It was found that SOD activity was the highest (23.7 U.mg-1 protein in strain 612 after 28 hours of cultivation. The lowest SOD activity from all tested strains was found after 56 hours of cultivation of strain Gyöng (0.7 U.mg-1 protein.

  17. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Directory of Open Access Journals (Sweden)

    Jennifer R Bellon

    Full Text Available Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade, has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  18. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    OpenAIRE

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentatio...

  19. Construction of killer industrial yeast Saccharomyces cerevisiae HAU-1 and its fermentation performance

    Directory of Open Access Journals (Sweden)

    Bijender K. Bajaj

    2010-06-01

    Full Text Available Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling.

  20. Mimicking a SURF1 allele reveals uncoupling of cytochrome c oxidase assembly from translational regulation in yeast.

    Science.gov (United States)

    Reinhold, Robert; Bareth, Bettina; Balleininger, Martina; Wissel, Mirjam; Rehling, Peter; Mick, David U

    2011-06-15

    Defects in mitochondrial energy metabolism lead to severe human disorders, mainly affecting tissues especially dependent on oxidative phosphorylation, such as muscle and brain. Leigh Syndrome describes a severe encephalomyopathy in infancy, frequently caused by mutations in SURF1. SURF1, termed Shy1 in Saccharomyces cerevisiae, is a conserved assembly factor for the terminal enzyme of the respiratory chain, cytochrome c oxidase. Although the molecular function of SURF1/Shy1 is still enigmatic, loss of function leads to cytochrome c oxidase deficiency and reduced expression of the central subunit Cox1 in yeast. Here, we provide insights into the molecular mechanisms leading to disease through missense mutations in codons of the most conserved amino acids in SURF1. Mutations affecting G(124) do not compromise import of the SURF1 precursor protein but lead to fast turnover of the mature protein within the mitochondria. Interestingly, an Y(274)D exchange neither affects stability nor localization of the protein. Instead, SURF1(Y274D) accumulates in a 200 kDa cytochrome c oxidase assembly intermediate. Using yeast as a model, we demonstrate that the corresponding Shy1(Y344D) is able to overcome the stage where cytochrome c oxidase assembly links to the feedback regulation of mitochondrial Cox1 expression. However, Shy1(Y344D) impairs the assembly at later steps, most apparent at low temperature and exhibits a dominant-negative phenotype upon overexpression. Thus, exchanging the conserved tyrosine (Y(344)) with aspartate in yeast uncouples translational regulation of Cox1 from cytochrome c oxidase assembly and provides evidence for the dual functionality of Shy1. PMID:21470975

  1. L-Histidine Inhibits Biofilm Formation and FLO11-Associated Phenotypes in Saccharomyces cerevisiae Flor Yeasts

    OpenAIRE

    Marc Bou Zeidan; Giacomo Zara; Carlo Viti; Francesca Decorosi; Ilaria Mannazzu; Marilena Budroni; Luciana Giovannetti; Severino Zara

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of FLO11 which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling FLO11 alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce FLO11p. The flor strains generally metabolized amino acids and ...

  2. L-Histidine Inhibits Biofilm Formation and FLO11-Associated Phenotypes in Saccharomyces cerevisiae Flor Yeasts

    OpenAIRE

    Marc Bou Zeidan; Giacomo Zara; Carlo Viti; Francesca Decorosi; Ilaria Mannazzu; Marilena Budroni; Luciana Giovannetti; Severino Zara

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides...

  3. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation

    OpenAIRE

    Vanda Renata Reis; Ana Paula Guarnieri Bassi; Jessica Carolina Gomes da Silva; Sandra Regina Ceccato-Antonini

    2014-01-01

    Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Ch...

  4. The uptake of different iron salts by the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gaensly, Fernanda; Picheth, Geraldo; Brand, Debora; Bonfim, Tania M B

    2014-01-01

    Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended. PMID:25242932

  5. The uptake of different iron salts by the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fernanda Gaensly

    2014-06-01

    Full Text Available Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended.

  6. The uptake of different iron salts by the yeast Saccharomyces cerevisiae

    OpenAIRE

    Fernanda Gaensly; Geraldo Picheth; Debora Brand; Tania M. B. Bonfim

    2014-01-01

    Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended.

  7. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the...... development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  8. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    OpenAIRE

    Zhang Tingting; Sun Lin; Xin Ying; Ma Lixia; Zhang Youyou; Wang Xin; Xu Kun; Ren Chonghua; Zhang Cunfang; Chen Zhilong; Yang Hanjiang; Zhang Zhiying

    2012-01-01

    Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concern...

  9. Investigation of the effect of water exposed to nonequilibrium contact plasma onto saccharomyces cerevisiae yeast

    Directory of Open Access Journals (Sweden)

    S. Mykolenko

    2015-05-01

    Full Text Available Introduction. Additional treatment of water by nonequilibrium contact plasma allows improving consumer characteristics of bakery goods considerably. Determination of the effect of plasma-chemically activated water on morphological, cultural and physiological properties of Saccharomyces cerevisiae yeast is important from the technological point of view. Materials and Methods. Experimental investigations were carried out in the conditions of bacteriological laboratory by seeding the culture of yeasts of ТМ “Lvivski” and “Kryvorizki” on Sabouraud dense liquid nutrient media. The quantity of viable cells of microorganisms was determined by the method of Gould sector seeds. Morphology of the yeast was investigated by phase-contrast microscopy. Biotechnological properties of yeasts were determined on Giss media. Results. The paper establishes the effect of water exposed to nonequilibrium contact plasma on the sensitivity of Saccharomyces cerevisiae and shows absence of suppressive action of treated water with regard to cultural properties of microorganisms. The experiments prove that with the use of plasma-chemically activated water morphological characteristics and biochemical properties of bakery yeasts produced by Lviv and Kryvyi Rig yeast plants are preserved. Culturing of Saccharomyces cerevisiae yeast on the nutrient media prepared with the use of water exposed to nonequilibrium contact plasm resulted in 6,5–15 times’ increase in quantity of viable microorganisms compared with the control on the mains drinking water. Conclusions. Physiological properties of Saccharomyces cerevisiae yeast improved owing to use water exposed to nonequilibrium contact plasma. Results of investigations are recommended for using in yeast production and bread making.

  10. Saccharomyces cerevisiae, the Baker's Yeast, suppresses the growth of Ehrlich carcinoma-bearing mice.

    Science.gov (United States)

    Ghoneum, Mamdooh; Badr El-Din, Nariman K; Noaman, Eman; Tolentino, Lucilene

    2008-04-01

    This study was undertaken to evaluate the effectiveness and mechanisms of anti-tumor activity of Baker's yeast, Saccharomyces cerevisiae, in immunocompetent mice. Swiss albino mice were inoculated intramuscularly in the right thigh with Ehrlich Ascites Carcinoma (EAC) cells. At day 8, mice bearing Solid Ehrlich Carcinoma tumor (SEC) were intratumorally (IT) injected with killed S. cerevisiae (10 x 10(6) and 20 x 10(6) cells) for 35 days. Histopathology of yeast-treated mice showed extensive tumor degeneration, apoptosis, and ischemic (coagulative) and liquefactive necrosis. These changes are associated with a tumor growth curve that demonstrates a significant antitumor response that peaked at 35 days. Yeast treatment (20 x 10(6) cells) three times a week resulted in a significant decrease in tumor volume (TV) (67.1%, P Yeast administered three and two times per week induced significant decrease in TV as early as 9 and 25 days post-treatment, respectively. Administration of yeast significantly enhanced the recruitment of leukocytes, including macrophages, into the tumors and triggered apoptosis in SEC cells as determined by flow cytometry (78.6%, P yeast treatment elevated TNF-alpha and IFN-gamma plasma levels and lowered the elevated IL-10 levels. No adverse side effects from the yeast treatment were observed, including feeding/drinking cycle and life activity patterns. Indeed, yeast-treated mice showed significant final body weight gain (+21.5%, P yeast, which is known to be safe for human consumption. PMID:17891396

  11. Fractionation of Phenolic Compounds Extracted from Propolis and Their Activity in the Yeast Saccharomyces cerevisiae

    OpenAIRE

    Petelinc, Tanja; Polak, Tomaž; Demšar, Lea; Jamnik, Polona

    2013-01-01

    We have here investigated the activities of Slovenian propolis extracts in the yeast Saccharomyces cerevisiae, and identified the phenolic compounds that appear to contribute to these activities. We correlated changes in intracellular oxidation and cellular metabolic energy in these yeasts with the individual fractions of the propolis extracts obtained following solid-phase extraction. The most effective fraction was further investigated according to its phenolic compounds.

  12. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118

    OpenAIRE

    Novo, Maite; Bigey, Frederic; Beyne, Emmanuelle; Galeote, Virginie; Gavory, Frédérick; Mallet, Sandrine; Cambon, Brigitte; Legras, Jean Luc; Wincker, Patrick; Casaregola, Serge; Dequin, Sylvie

    2009-01-01

    Saccharomyces cerevisiae has been used for millennia in winemaking, but little is known about the selective forces acting on the wine yeast genome. We sequenced the complete genome of the diploid commercial wine yeast EC1118, resulting in an assembly of 31 scaffolds covering 97% of the S288c reference genome. The wine yeast differed strikingly from the other S. cerevisiae isolates in possessing 3 unique large regions, 2 of which were subtelomeric, the other being inserted within an EC1...

  13. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Novák, Jan; Strašák, Luděk; Fojt, Lukáš; Slaninová, I.; Vetterl, Vladimír

    2007-01-01

    Roč. 70, č. 1 (2007), s. 115-121. ISSN 1567-5394 R&D Projects: GA AV ČR(CZ) IAA4004404; GA AV ČR(CZ) IBS5004107 Institutional research plan: CEZ:AV0Z50040702 Keywords : low-frequency electromagnetic field * yeast * Saccharomyces cerevisiae Subject RIV: BO - Biophysics Impact factor: 2.992, year: 2007

  14. Investigation of the effect of water exposed to nonequilibrium contact plasma onto saccharomyces cerevisiae yeast

    OpenAIRE

    S. Mykolenko; D. Stepanskiy; Tishchenko, A; O. Pivovarov

    2015-01-01

    Introduction. Additional treatment of water by nonequilibrium contact plasma allows improving consumer characteristics of bakery goods considerably. Determination of the effect of plasma-chemically activated water on morphological, cultural and physiological properties of Saccharomyces cerevisiae yeast is important from the technological point of view. Materials and Methods. Experimental investigations were carried out in the condi...

  15. A comprehensive web resource on RNA helicases from the baker's yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Linder, P; Gasteiger, E; Bairoch, A

    2000-04-01

    Members of the RNA helicase protein family are defined by several motifs that have been widely conserved during evolution. They are found in all organisms-from bacteria to humans-and many viruses. The minimum number of RNA helicases present within a eukaryotic cell can be predicted from the complete sequence of the Saccharomyces cerevisiae genome. Recent progress in the functional analysis of various family members has confirmed the significance of RNA helicases for most cellular RNA metabolic processes. We have assembled a web resource that focuses on RNA helicases from the budding yeast Saccharomyces cerevisiae. It includes descriptions of RNA helicases and their functions, links to sequence- and yeast-specific databases, an extensive list of references, and links to non-yeast helicase web resources. PMID:10790687

  16. Utilization of waste products of dehydrated onion industry for production of fodder yeast by Saccharomyces cerevisiae.

    Science.gov (United States)

    Ghonaim, S A; Abou-Zeid, A A; Abd El-Fattah, A F; Farid, M A

    1980-01-01

    One strain of Saccharomyces cerevisiae was selected from different yeasts, isolated from black strap molasses. This microorganism was cultivated on seven fermentation media for the production of protein. Medium I exhibited the highest potentiality for formation of protein. Therefore strain 1 of S. cerevisiae and medium I were used for further studies in the formation of protein. Factors controlling production of protein were explored. The required incubation period for the fermentation process was 72 hrs, while the initial pH value of the medium was 6.0. Sucrose supported the microorganism for higher production of protein (40.96%), while the best concentration of sucrose was shown to be 10.0 g/l. The best inorganic and organic nitrogen sources for protein formation were (NH4)2HPO4, (NH4)3PO4 and yeast extract, respectively. The best concentrations of (NH4)2HPO4 and yeast extract, supporting protein formation, were 5.0 g/l and 10.0 g/l, respectively. Addition of MgSO4, ZnSO4, ferrous ammonium sulphate, copper sulphate, biotin, Ca-pantothenate, thiamine, pyridoxine, and inositol to the synthetic medium did not markedly influence high level of protein formation. Glutamic acid was the best amino acid, supporting protein formation by S. cerevisiae. Onion juice was found to be a good medium, after deletion of inhibitory volatile sulphur organic compounds, for the production of protein by S. cerevisiae. Addition of (NH4)2HPO4 to the best concentration of onion juice assisted the onion medium in production of fodder yeast, containing high level of protein. Addition of MgSO4 to onion juice and (NH4)2HPO4 did not increase the total nitrogen of the biomass. Fodder yeast, produced by onion juice medium, contained more valuable ingredients than fodder yeast, produced by synthetic medium. PMID:6990654

  17. Comparative Lipidomic Profiling of S. cerevisiae and Four Other Hemiascomycetous Yeasts

    Directory of Open Access Journals (Sweden)

    Eva-Maria Hein

    2012-03-01

    Full Text Available Glycerophospholipids (GP are the building blocks of cellular membranes and play essential roles in cell compartmentation, membrane fluidity or apoptosis. In addition, GPs are sources for multifunctional second messengers. Whereas the genome and proteome of the most intensively studied eukaryotic model organism, the baker’s yeast (Saccharomyces cerevisiae, are well characterized, the analysis of its lipid composition is still at the beginning. Moreover, different yeast species can be distinguished on the DNA, RNA and protein level, but it is currently unknown if they can also be differentiated by determination of their GP pattern. Therefore, the GP compositions of five different yeast strains, grown under identical environmental conditions, were elucidated using high performance liquid chromatography coupled to negative electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry in single and multistage mode. Using this approach, relative quantification of more than 100 molecular species belonging to nine GP classes was achieved. The comparative lipidomic profiling of Saccharomyces cerevisiae, Saccharomyces bayanus, Kluyveromyces thermotolerans, Pichia angusta, and Yarrowia lipolytica revealed characteristic GP profiles for each strain. However, genetically related yeast strains show similarities in their GP compositions, e.g., Saccharomyces cerevisiae and Saccharomyces bayanus.

  18. Transcriptional activators HAP/NF-Y rescue a cytochrome c oxidase defect in yeast and human cells.

    Science.gov (United States)

    Fontanesi, Flavia; Jin, Can; Tzagoloff, Alexander; Barrientos, Antoni

    2008-03-15

    Cell survival and energy production requires a functional mitochondrial respiratory chain. Biogenesis of cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a very complicated process and requires the assistance of a large number of accessory factors. Defects in COX assembly alter cellular respiration and produce severe human encephalomyopathies. Mutations in SURF1, a COX assembly factor of exact unknown function, produce Leigh's syndrome (LS), the most frequent cause of COX deficiency in infants. In the yeast Saccharomyces cerevisiae, deletion of the SURF1 homologue SHY1 results in a similar COX deficiency. In order to identify genetic modifiers of the shy1 mutant phenotype, we have explored for genetic interactions involving SHY1. Here we report that overexpression of Hap4p, the catalytic subunit of the CCAAT binding transcriptional activator Hap2/3/4/5p complex, suppresses the respiratory defect of yeast shy1 mutants by increasing the expression of nuclear-encoded COX subunits that interact with the mitochondrially encoded Cox1p. Analogously, overexpression of the Hap complex human homologue NF-YA/B/C transcription complex in SURF1-deficient fibroblasts from an LS patient efficiently rescues their COX deficiency. PMID:18045776

  19. Investigation of nutrient sensing in the yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine

    2006-01-01

    Gæren Saccharomyces cerevisiae har udviklet komplekse regulatoriske systemer til at kontrollere ekspression af de proteiner, der importerer næringsstoffer, således at disse kun bliver produceret, når der er brug for dem. Dette er tilfældet for hexose-transportører samt aminosyre-transportører (di......Gæren Saccharomyces cerevisiae har udviklet komplekse regulatoriske systemer til at kontrollere ekspression af de proteiner, der importerer næringsstoffer, således at disse kun bliver produceret, når der er brug for dem. Dette er tilfældet for hexose-transportører samt aminosyre...

  20. Killer toxin of Saccharomyces cerevisiae Y500-4L active against Fleischmann and Itaiquara commercial brands of yeast

    Directory of Open Access Journals (Sweden)

    Soares Giselle A.M.

    1999-01-01

    Full Text Available The strain Saccharomyces cerevisiae Y500-4L, previously selected from the must of alcohol producing plants and showing high fermentative and killer capacities, was characterized according to the interactions between the yeasts and examined for curing and detection of dsRNA plasmids, which code for the killer character. The killer yeast S. cerevisiae Y500-4L showed considerable killer activity against the Fleischmann and Itaiquara commercial brands of yeast and also against the standard killer yeasts K2 (S. diastaticus NCYC 713, K4 (Candida glabrata NCYC 388 and K11 (Torulopsis glabrata ATCC 15126. However S. cerevisiae Y500-4L showed sensitivity to the killer toxin produced by the standard killer yeasts K8 (Hansenula anomala NCYC 435, K9 (Hansenula mrakii NCYC 500, K10 (Kluyveromyces drosophilarum NCYC 575 and K11 (Torulopsis glabrata ATCC 15126. No M-dsRNA plasmid was detected in the S. cerevisiae Y500-4L strain and these results suggest that the genetic basis for toxin production is encoded by chromosomal DNA. The strain S. cerevisiae Y500-4L was more resistant to the loss of the phenotype killer with cycloheximide and incubation at elevated temperatures (40oC than the standard killer yeast S. cerevisiae K1.

  1. Global Proteome Turnover Analyses of the Yeasts S. cerevisiae and S. pombe

    Science.gov (United States)

    Christiano, Romain; Nagaraj, Nagarjuna; Fröhlich, Florian; Walther, Tobias C.

    2015-01-01

    How cells maintain specific levels of each protein and whether that control is evolutionarily conserved are key questions. Here, we report proteome-wide steady-state protein turnover rate measurements for the evolutionarily distant, but ecologically similar yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We find that the half-lives of most proteins is much longer than currently thought and determined to a large degree by proteins synthesis and dilution due to cell division. However, we detect a significant subset of proteins (~15%) in both yeasts that are turned over rapidly. In addition, the relative abundances of orthologous proteins between the two yeasts are highly conserved across the 400 million years of evolution. In contrast, their respective turnover rates differ considerably. Our data provide a high-confidence resource for studying protein degradation in common yeast model systems. PMID:25466257

  2. Global Proteome Turnover Analyses of the Yeasts S. cerevisiae and S. pombe

    Directory of Open Access Journals (Sweden)

    Romain Christiano

    2014-12-01

    Full Text Available How cells maintain specific levels of each protein and whether that control is evolutionarily conserved are key questions. Here, we report proteome-wide steady-state protein turnover rate measurements for the evolutionarily distant but ecologically similar yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We find that the half-life of most proteins is much longer than currently thought and determined to a large degree by protein synthesis and dilution due to cell division. However, we detect a significant subset of proteins (∼15% in both yeasts that are turned over rapidly. In addition, the relative abundances of orthologous proteins between the two yeasts are highly conserved across the 400 million years of evolution. In contrast, their respective turnover rates differ considerably. Our data provide a high-confidence resource for studying protein degradation in common yeast model systems.

  3. Effects of Dietary Yeast (Saccharomyces cerevisia Supplementation in Practical Diets of Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    José E. P. Cyrino

    2012-01-01

    Full Text Available A 51-day feeding trial was carried out to determine the effects of various dietary levels of brewer’s yeast, Saccharomyces cerevisiae, in the growth performance, body composition and nutrient utilization in Nile tilapia, Oreochromis niloticus, juveniles. Fish (7.6 ± 0.3 g were stocked into eighteen 1,000-L tanks (100 fish per tank; n = 3 and fed to apparent satiation six isonitrogenous (27% crude protein and isoenergetic (19 kJ/g diets, formulated to contain different dried yeast levels (0%, 10%, 15%, 20%, 30% or 40% diet in substitution to fishmeal. Body weight tripled at the end of the feeding trial for fish fed up to 20% dietary yeast incorporation. Daily growth coefficient (DGC, % body weight/day decreased with increasing dietary yeast level (P < 0.0001. Voluntary feed intake (VFI, %BW/day did not vary significantly with increasing yeast level. Fish fed 40% yeast showed significant reduction in protein efficiency rate, protein retention and nitrogen gain. Increasing levels of dietary yeast did not significantly affect protein or lipid digestibility. Dietary dried yeast was seemingly palatable to tilapia juveniles and was suitable up to 15% inclusion to promote growth and efficient diet utilization, without affecting body composition.

  4. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2016-02-01

    Butanol is an attractive alternative energy fuel owing to several advantages over ethanol. Among the microbial hosts for biobutanol production, yeast Saccharomyces cerevisiae has a great potential as a microbial host due to its powerful genetic tools, a history of successful industrial use, and its inherent tolerance to higher alcohols. Butanol production by S. cerevisiae was first attempted by transferring the 1-butanol-producing metabolic pathway from native microorganisms or using the endogenous Ehrlich pathway for isobutanol synthesis. Utilizing alternative enzymes with higher activity, eliminating competitive pathways, and maintaining cofactor balance achieved significant improvements in butanol production. Meeting future challenges, such as enhancing butanol tolerance and implementing a comprehensive strategy by high-throughput screening, would further elevate the biobutanol-producing ability of S. cerevisiae toward an ideal microbial cell factory exhibiting high productivity of biobutanol. PMID:26712533

  5. Translational control of catalase synthesis by hemin in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Hamilton, Barbara; Hofbauer, Reinhold; Ruis, Helmut

    1982-01-01

    mRNA-dependent cell-free protein synthesis systems were prepared from a heme-deficient ole3 mutant of the yeast Saccharomyces cerevisiae grown either in the absence or in the presence of the heme precursor δ-aminolevulinate. When supplemented with total yeast mRNA, the two systems—from heme-deficient and from heme-containing cells—translate most mRNAs with comparable efficiencies. mRNAs coding for the hemoproteins catalase T and catalase A, however, are translated at a low rate by the system ...

  6. A Cadmium-transporting P1B-type ATPase in Yeast Saccharomyces cerevisiae*

    OpenAIRE

    Adle, David J.; Sinani, Devis; Kim, Heejeong; Lee, Jaekwon

    2006-01-01

    Detoxification and homeostatic acquisition of metal ions are vital for all living organisms. We have identified PCA1 in yeast Saccharomyces cerevisiae as an overexpression suppressor of copper toxicity. PCA1 possesses signatures of a P1B-type heavy metal-transporting ATPase that is widely distributed from bacteria to humans. Copper resistance conferred by PCA1 is not dependent on catalytic activity, but it appears that a cysteine-rich region located in the N terminus sequesters copper. Unexpe...

  7. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae

    OpenAIRE

    Chennubhotla Chakra; Wu Chuang; Farkas Illés J; Bahar Ivet; Oltvai Zoltán N

    2006-01-01

    Abstract Background Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR) mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood. Results By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate l...

  8. Transcriptional regulation of an hsp70 heat shock gene in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Slater, M R; Craig, E A

    1987-01-01

    The yeast Saccharomyces cerevisiae contains three heat-inducible hsp70 genes. We have characterized the promoter region of the hsp70 heat shock gene YG100, that also displays a basal level of expression. Deletion of the distal region of the promoter resulted in an 80% drop in the basal level of expression without affecting expression after heat shock. Progressive-deletion analysis suggested that sequences necessary for heat-inducible expression are more proximal, within 233 base pairs of the ...

  9. Characterization of Saccharomyces cerevisiae CYP51 and a CYP51 fusion protein with NADPH cytochrome P-450 oxidoreductase expressed in Escherichia coli.

    OpenAIRE

    Venkateswarlu, K; Kelly, D. E.; Kelly, S. L.

    1997-01-01

    Saccharomyces cerevisiae CYP51, target of azole antifungal agents, and CYP51 fused with S. cerevisiae cytochrome P-450 oxidoreductase (FUS protein) were expressed in active forms in Escherichia coli by cloning into pET15b. The expression was monitored immunologically, catalytically, and by using reduced carbon monoxide difference and type II binding spectra. CYP51 and FUS enzymes were located in membranes and produced a Soret peak at 448 nm in the reduced CO difference spectrum. The cytochrom...

  10. Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Franken, Jaco; Burger, Anita; Swiegers, Jan H; Bauer, Florian F

    2015-08-01

    Industrial synthesis of L-carnitine is currently performed by whole-cell biotransformation of industrial waste products, mostly D-carnitine and cronobetaine, through specific bacterial species. No comparable system has been established using eukaryotic microorganisms, even though there is a significant and growing international demand for either the pure compound or carnitine-enriched consumables. In eukaryotes, including the fungus Neurospora crassa, L-carnitine is biosynthesized through a four-step metabolic conversion of trimethyllysine to L-carnitine. In contrast, the industrial yeast, Saccharomyces cerevisiae lacks the enzymes of the eukaryotic biosynthesis pathway and is unable to synthesize carnitine. This study describes the cloning of all four of the N. crassa carnitine biosynthesis genes and the reconstruction of the entire pathway in S. cerevisiae. The engineered yeast strains were able to catalyze the synthesis of L-carnitine, which was quantified using hydrophilic interaction liquid chromatography electrospray ionization mass spectrometry (HILIC-ESI-MS) analyses, from trimethyllysine. Furthermore, the yeast threonine aldolase Gly1p was shown to effectively catalyze the second step of the pathway, fulfilling the role of a serine hydroxymethyltransferase. The analyses also identified yeast enzymes that interact with the introduced pathway, including Can1p, which was identified as the yeast transporter for trimethyllysine, and the two yeast serine hydroxymethyltransferases, Shm1p and Shm2p. Together, this study opens the possibility of using an engineered, carnitine-producing yeast in various industrial applications while providing insight into possible future strategies aimed at tailoring the production capacity of such strains. PMID:25851717

  11. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    Science.gov (United States)

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. PMID:27587784

  12. The identification of histidine ligands to cytochrome a in cytochrome c oxidase

    OpenAIRE

    Martin, Craig T.; Scholes, Charles P.; Chan, Sunney I.

    1985-01-01

    A histidine auxotroph of Saccharomyces cerevisiae has been used to metabolically incorporate [1,3-15N2] histidine into yeast cytochrome c oxidase. Electron nuclear double resonance (ENDOR) spectroscopy of cytochrome a in the [15N]histidine-substituted enzyme reveals an ENDOR signal which can be assigned to hyperfine coupling of a histidine 15N with the low-spin heme, thereby unambiguously identifying histidine as an axial ligand to this cytochrome. Comparison of this result with similar ENDOR...

  13. Physical, functional and structural characterization of the cell wall fractions from baker's yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem; Paquot, Michel; Thonart, Philippe; Blecker, Christophe

    2016-03-01

    The yeast cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with many functional, nutritional and human health benefits. In the present study, the yeast cell wall fractionation process involving enzymatic treatments (savinase and lipolase enzymes) affected most of the physical and functional characteristics of extracted fractions. Thus, the fractionation process showed that β-d-glucan fraction F4 had significantly higher swelling power and fat binding capacity compared to other fractions (F1, F2 and F3). It also exhibited a viscosity of 652.12mPas and a high degree of brightness of extracted β-d-glucan fraction. Moreover, the fractionation process seemed to have an effect on structural and thermal properties of extracted fractions. Overall, results showed that yeast β-d-glucan had good potential for use as a prebiotic ingredient in food, as well as medicinal and pharmaceutical products. PMID:26471666

  14. Effects of mill stream flours technological quality on fermentative activity of baker's yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mirić Katarina V.

    2008-01-01

    Full Text Available This work in concerned with the interdependence between technological quality of mill stream flours and fermentative activity of baker's yeast Saccharomyces cerevisiae. Each mill stream flour has its own specific properties, determined by the particle size, technological phase of its formation and part of the wheat kernel it consists of. Biochemical complexity of dough during examination of fermentative activity of baker's yeast confirmed the influence of a number of physical and biochemical flour properties, such as ash content, wet gluten content, rheological flour properties, phytic acid content and amylograph peak viscosity. Abudance of significant flour characteristic, their interaction and different behavior in the presence of the yeast, showed diversity and variation of result within the same category of the mill stream flour.

  15. Molecular Basis of Fructose Utilization by the Wine Yeast Saccharomyces cerevisiae: a Mutated HXT3 Allele Enhances Fructose Fermentation▿

    OpenAIRE

    Guillaume, Carole; Delobel, Pierre; Sablayrolles, Jean-Marie; Blondin, Bruno

    2007-01-01

    Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allel...

  16. De Novo Biosynthesis of Vanillin in Fission Yeast (Schizosaccharomyces pombe) and Baker's Yeast (Saccharomyces cerevisiae) ▿

    OpenAIRE

    Hansen, Esben H.; Møller, Birger Lindberg; Kock, Gertrud R.; Bünner, Camilla M.; Kristensen, Charlotte; Jensen, Ole R.; Okkels, Finn T.; Olsen, Carl E.; Motawia, Mohammed S.; Hansen, Jørgen

    2009-01-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast...

  17. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Heavner Benjamin D

    2012-06-01

    Full Text Available Abstract Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Additional file 1 Function testYeastModel.m.m. Click here for file Additional file 2 Function model

  18. Analysis of the structure and stability of omega loop A replacements in yeast iso-1-cytochrome c.

    OpenAIRE

    Fetrow, J. S.; Horner, S. R.; Oehrl, W.; Schaak, D. L.; Boose, T. L.; Burton, R. E.

    1997-01-01

    Omega (omega)-loop A, residues 18-32 in wild-type yeast iso-1-cytochrome c, has been deleted and replaced with loop sequences from three other cytochromes c and one from esterase. Yeast expressing a partial loop deletion do not contain perceptible amounts of holoprotein as measured by low-temperature spectroscopy and cannot grow on nonfermentable media. Strains expressing loop replacement mutations accumulate holoprotein in vivo, but the protein function varies depending on the sequence and l...

  19. Time-dependent study of single-molecule SERS signal from yeast cytochrome c

    Science.gov (United States)

    Delfino, Ines; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2006-08-01

    A study of cytochrome c from Saccharomyces cerevisiae adsorbed on silver colloids at very low concentration is carried out by surface-enhanced Raman scattering. Spectra acquired at different times exhibit dramatic fluctuations in both line frequency and intensity indicating that single molecule detection is approached. The intensity fluctuations are investigated by means of a second order time correlation analysis. Such an approach has allowed us to put into evidence the presence of two distinct dynamical phenomena. The results are discussed in connection with diffusion processes to which the protein undergoes with respect to the surface of the Ag nanoclusters and with a modulation of the enhancement of the Raman signal.

  20. Thioredoxins function as deglutathionylase enzymes in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Perrone Gabriel G

    2010-01-01

    Full Text Available Abstract Background Protein-SH groups are amongst the most easily oxidized residues in proteins, but irreversible oxidation can be prevented by protein glutathionylation, in which protein-SH groups form mixed disulphides with glutathione. Glutaredoxins and thioredoxins are key oxidoreductases which have been implicated in regulating glutathionylation/deglutathionylation in diverse organisms. Glutaredoxins have been proposed to be the predominant deglutathionylase enzymes in many plant and mammalian species, whereas, thioredoxins have generally been thought to be relatively inefficient in deglutathionylation. Results We show here that the levels of glutathionylated proteins in yeast are regulated in parallel with the growth cycle, and are maximal during stationary phase growth. This increase in glutathionylation is not a response to increased reactive oxygen species generated from the shift to respiratory metabolism, but appears to be a general response to starvation conditions. Our data indicate that glutathionylation levels are constitutively high in all growth phases in thioredoxin mutants and are unaffected in glutaredoxin mutants. We have confirmed that thioredoxins, but not glutaredoxins, catalyse deglutathionylation of model glutathionylated substrates using purified thioredoxin and glutaredoxin proteins. Furthermore, we show that the deglutathionylase activity of thioredoxins is required to reduce the high levels of glutathionylation in stationary phase cells, which occurs as cells exit stationary phase and resume vegetative growth. Conclusions There is increasing evidence that the thioredoxin and glutathione redox systems have overlapping functions and these present data indicate that the thioredoxin system plays a key role in regulating the modification of proteins by the glutathione system.

  1. Investigation of Arsenic-Stressed Yeast (Saccharomyces cerevisiae as a Bioassay in Homeopathic Basic Research

    Directory of Open Access Journals (Sweden)

    Tim Jäger

    2011-01-01

    Full Text Available This study investigated the response of arsenic-stressed yeast (Saccharomyces cerevisiae towards homeopathically potentized Arsenicum album, a duckweed nosode, and gibberellic acid. The three test substances were applied in five potency levels (17x, 18x, 24x, 28x, 30x and compared to controls (unsuccussed and succussed water with respect to influencing specific growth parameters. Five independent experiments were evaluated for each test substance. Additionally, five water control experiments were analyzed to investigate the stability of the experimental setup (systematic negative control experiments. All experiments were randomized and blinded. Yeast grew in microplates over a period of 38 h in either potentized substances or water controls with 250 mg/l arsenic(V added over the entire cultivation period. Yeast's growth kinetics (slope, Et50, and yield were measured photometrically. The test system exhibited a low coefficient of variation (slope 1.2%, Et50 0.3%, yield 2.7%. Succussed water did not induce any significant differences compared to unsuccussed water. Data from the control and treatment groups were both pooled to increase statistical power. In this study with yeast, no significant effects were found for any outcome parameter or any homeopathic treatment. Since in parallel experiments arsenic-stressed duckweed showed highly significant effects after application of potentized Arsenicum album and duckweed nosode preparations from the same batch as used in the present study, some specific properties of this experimental setup with yeast must be responsible for the lacking response.

  2. Evaluation of Yeast (Saccharomyces Cerevisiae in Weight Gain of Crossbred Sheep

    Directory of Open Access Journals (Sweden)

    Oscar Daniel Cifuentes Ruiz

    2013-05-01

    Full Text Available Probiotics has been used to substitute antibiotic treatments used as growth promoters and to improve productive performance. The term probiotic is used to namelive micro-organisms such as microbes and bacteria with beneficial effects to livestock farms when consumed as dietary supplements. This review investigates the evidence for the use of probiotics in sheep’s final body weight gain combined with livestock grazing management system with yeast (Saccharomyces cerevisiae. Twenty one native sheep were chosen randomly for this study, with an average weight of 14.71 kg ± 1.9 under continuous grazing; the meadows are used as sheep pastures where Kikuyo grass grows (Pennisetum clandestinum and water ad libitum. Sheep were classified in three different treatments: T1, control treatment, without adding yeast; T2, added with 5 g/day of yeast; and T3, supplemented with 15 g/day of yeast. Throughout this study was possible to find a beneficial effect on final weight and average daily gain. The results were compared by ANOVA with a significance level of 95%. A significant difference was observed on final body weight of sheep for T3 (p ≤ 0.05. In addition, it was found that daily weight gain was 100 g, 120 g and 220 g for T1, T2 and T3 respectively. This research leads us to conclude that the addition of 15 g of yeast improves daily bodyweight gain and final weight of grazing native sheep.

  3. Effect of live yeast culture Saccharomyces cerevisiae on milk production and some blood parameters

    Directory of Open Access Journals (Sweden)

    Judit Peter Szucs

    2013-05-01

    Full Text Available The aim of this study was to investigate the effect of live yeast culture (Saccharomyces cerevisiae Sc 47 on milk yield, milk composition and some blood parameters of dairy cows during their early lactation on farm conditions. The live yeast culture was given in the diet of heifers and cows (5 g day-1 solid Actisaf for 14 days before calving and exclusively for the treated cows 12 g day-1 dissolved in 500 ml of water, during 14 days after calving. The experiment took until 100th day of lactation on farm conditions. Yeast culture supplementation was the most effective for the performance of primiparous cows: It was advantageous for blod plasma parameters: decreased the beta-hydroxy butyrate (BHB content and free fatty acids (FFA which indicated the protection of the animals against ketosis or other metabolic disorders. Increased the daily milk production and the lactose /glucose content of the milk. The live yeast culture increased the lactose content of the milk and decreased the somatic cell count of multiparous cows. The listed parameters were not significant (P<0.05 compare to the results of positive control groups. The applied live yeast culture supplementation did not significant affect for other performance of the cows.

  4. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat Dawid; Weber Christian; Lorenzen Wolfram; Bode Helge B; Boles Eckhard

    2012-01-01

    Abstract Background The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobut...

  5. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae

    OpenAIRE

    Brat, Dawid; Weber, Christian; Lorenzen, Wolfram; Bode, Helge Björn; Boles, Eckhard

    2012-01-01

    Background: The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. ...

  6. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific.

    Science.gov (United States)

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2016-01-01

    The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae. PMID:27148191

  7. Optimization of feeding strategy for the ergosterol production by yeasts Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mojmir Rychtera

    2010-08-01

    Full Text Available Objective of this study was to optimize ergosterol production by yeast strain Saccharomyces cerevisiae with the use of computer controlled feeding of cultivation medium. Baker´s yeasts strain of Saccharomyces cerevisiae originally modified and selected as mutant D7 was further applied in an industrial scale and also in this investigation. Composition of cultivation medium was optimized with the use of a modified Rosenbrock´s method with regard to following components: glucose, yeast extract, ammonium sulphate, potassium dihydrogen phosphate, magnesium sulphate and calcium chloride. Cultivation of yeast culture was performed in 7 L laboratory bioreactor with a working volume of 5 L equipped with a control unit and linked to a computer, with dissolved oxygen tension measurement, oxygen and carbon dioxide analyzers. BIOGENES prototype software was created from the commercial control system Genesis for Windows 3.0 (GFW, from Iconics and CLIPS 6.04 for the PC-Windows platform. From various factors affecting sterol biosynthesis a specific growth rate was chosen. Feed rate was controlled according to mathematical model. In this case it dealt with a design of optimal profile of specific growth rate with consequent calculation of carbon dioxide profile. Sterol concentration in the dry biomass increased from 1.0 % up to 3 %. Key words: Saccharomyces cerevisiae yeasts, ergosterol, fed-batch cultivation control, effect of the specific growth rate. Resumen: El objetivo de este estudio fue optimizar la producción de ergosterol por una cepa de levadura Saccharomyces cerevisiae, controlando la alimentación de medio de cultivo por computadora. La cepa de levadura panadera Saccharomyces cerevisiae originalmente modificada y seleccionada como mutante D7 fue posteriormente utilizada a escala industrial y también para esta investigación. La composición del medio de cultivo fue optimizada usando el método modificado de Rosenbrock respecto a los siguientes

  8. [Cloning and expression of bacteriophage FMV lysocyme gene in cells of yeasts Saccharomyces cerevisiae and Pichia pastoris].

    Science.gov (United States)

    Kozlov, D G; Cheperigin, S E; Chestkov, A V; Krylov, V N; Tsygankov, Iu D

    2010-03-01

    Cloning, sequencing, and expression of the gene for soluble lysozyme of bacteriophage FMV from Gram-negative Pseudomonas aeruginosa bacteria were conducted in yeast cells. Comparable efficiency of two lysozyme expression variants (as intracellular or secreted proteins) was estimated in cells of Saccharomyces cerevisiae and Pichia pastoris. Under laboratory conditions, yeast S. cerevisiae proved to be more effective producer of phage lysozyme than P. pastoris, the yield of the enzyme in the secreted form being significantly higher than that produced in the intracellular form. PMID:20391778

  9. Structure of the Schizosaccharomyces pombe cytochrome c gene.

    OpenAIRE

    Russell, P R; Hall, B. D.

    1982-01-01

    The cytochrome c gene of the fission yeast Schizosaccharomyces pombe has been cloned by using the Saccharomyces cerevisiae iso-1-cytochrome c gene as a molecular hybridization probe. The DNA sequence and the 5' termini of the mRNA transcripts of the gene have been determined. The DNA sequence has confirmed, with two exceptions, the previously determined protein sequence. The nonrandom distribution of silent third base differences which was observed between the two cytochrome c genes of S. cer...

  10. Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Cherlys Infante J.

    2014-06-01

    Full Text Available Objective. In this study the biomass of the yeast Saccharomyces cerevisiae was used to remove lead, mercury and nickel in the form of ions dissolved in water. Materials and methods. Synthetic solutions were prepared containing the three heavy metals, which were put in contact with viable microorganisms at different conditions of pH, temperature, aeration and agitation. Results. Both individual variables and the interaction effects influenced the biosorption process. Throughout the experimental framework it was observed that the biomass of Saccharomyces cerevisiae removed a higher percentage of lead (86.4% as compared to mercury and nickel (69.7 and 47.8% respectively. When the pH was set at a value of 5 the effect was positive for all three metals. Conclusions. pH was the variable that had a greater influence on the biosorption of lead on the biomass of Saccharomyces cerevisiae. The affinity of the heavy metals for the biomass followed the order Pb>Hg>Ni.

  11. Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bojsen, Rasmus K; Andersen, Kaj Scherz; Regenberg, Birgitte

    2012-01-01

    Microbial biofilms can be defined as multi-cellular aggregates adhering to a surface and embedded in an extracellular matrix (ECM). The nonpathogenic yeast, Saccharomyces cerevisiae, follows the common traits of microbial biofilms with cell-cell and cell-surface adhesion. S. cerevisiae is shown t...... cues, cell-to-cell variation and niches in S. cerevisiae biofilm. Being closely related to Candida species, S. cerevisiae is a model to investigate biofilms of pathogenic yeast....

  12. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    International Nuclear Information System (INIS)

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O2-). This behavior limits the amount of H2O2 produced at high [O2-]; its desirability can be explained by the multiple roles of H2O2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O2-], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn3+ species in yeast Mn3+SODs, including the well-characterized 5-coordinate Mn3+ species and a 6-coordinate L-Mn3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O2-].

  13. Horizontally acquired oligopeptide transporters favour adaptation of Saccharomyces cerevisiae wine yeast to oenological environment.

    Science.gov (United States)

    Marsit, Souhir; Sanchez, Isabelle; Galeote, Virginie; Dequin, Sylvie

    2016-04-01

    In the past decade, horizontal gene transfer (HGT) has emerged as a major evolutionary process that has shaped the genome of Saccharomyces cerevisiae wine yeasts. We recently showed that a large Torulaspora microellipsoides genomic island carrying two oligopeptide transporters encoded by FOT genes increases the fitness of wine yeast during fermentation of grape must. However, the impact of these genes on the metabolic network of S. cerevisiae remained uncharacterized. Here we show that Fot-mediated peptide uptake substantially affects the glutamate node and the NADPH/NADP(+) balance, resulting in the delayed uptake of free amino acids and altered profiles of metabolites and volatile compounds. Transcriptome analysis revealed that cells using a higher amount of oligopeptides from grape must are less stressed and display substantial variation in the expression of genes in the central pathways of carbon and nitrogen metabolism, amino acid and protein biosynthesis, and the oxidative stress response. These regulations shed light on the molecular and metabolic mechanisms involved in the higher performance and fitness conferred by the HGT-acquired FOT genes, pinpointing metabolic effects that can positively affect the organoleptic balance of wines. PMID:26549518

  14. Redox State of Cytochromes in Frozen Yeast Cells Probed by Resonance Raman Spectroscopy.

    Science.gov (United States)

    Okotrub, Konstantin A; Surovtsev, Nikolay V

    2015-12-01

    Cryopreservation is a well-established technique used for the long-term storage of biological materials whose biological activity is effectively stopped under low temperatures (suspended animation). Since most biological methods do not work in a low-temperature frozen environment, the mechanism and details of the depression of cellular activity in the frozen state remain largely uncharacterized. In this work, we propose, to our knowledge, a new approach to study the downregulation of the redox activity of cytochromes b and c in freezing yeast cells in a contactless, label-free manner. Our approach is based on cytochrome photobleaching effects observed in the resonance Raman spectra of live cells. Photoinduced and native redox reactions that contributed to the photobleaching rate were studied over a wide temperature range (from -173 to +25 °C). We found that ice formation influences both the rate of cytochrome redox reactions and the balance between the reduced and oxidized cytochromes. We demonstrate that the temperature dependence of native redox reaction rates can be well described by the thermal activation law with an apparent energy of 32.5 kJ/mol, showing that the redox reaction rate is ∼10(15) times slower at liquid nitrogen temperature than at room temperature. PMID:26636934

  15. Metabolite Profiling during Fermentation of Makgeolli by the Wild Yeast Strain Saccharomyces cerevisiae Y98-5

    OpenAIRE

    Kim, Hye Ryun; Kim, Jae-Ho; Ahn, Byung Hak; Bai, Dong-Hoon

    2014-01-01

    Makgeolli is a traditional Korean alcoholic beverage. The flavor of makgeolli is primarily determined by metabolic products such as free sugars, amino acids, organic acids, and aromatic compounds, which are produced during the fermentation of raw materials by molds and yeasts present in nuruk, a Korean fermentation starter. In this study, makgeolli was brewed using the wild yeast strain Saccharomyces cerevisiae Y98-5, and temporal changes in the metabolites during fermentation were analyzed b...

  16. Corrigendum - Effect of live yeast culture Saccharomyces cerevisiae on milk production and some blood parameters

    Directory of Open Access Journals (Sweden)

    Judit Peter Szucs

    2014-05-01

    Full Text Available In the article Effect of live yeast culture Saccharomyces cerevisiae on milk production and some blood parameters, first published in 2013 in Scientific Papers: Animal Science and Biotechnologies, 46 (1, the first author neglected to ask any prior agreement and permission of Lesaffre Feed Additive firm the sponsor of the experiment and Bernhard Feix GmbH the leader of the experiment, for publishing the results, doing so she committed serious mistakes: Ethically: The first author published data for which she had no permission, and she did not indicate the name of the owners, neither did she refere to them. On the scientific basis: She was not able to evaluate properly the real effect of Saccharomices cerevisiae containing Actisaf additive since the introduced experiment was a basic large farm size /scale research work that could not be measured precisely without the planned and ongoing further experiments.   Acknowledgement The first author highly appreciates Lesaffre Feed Additive and Bernhard Feix GmbH firms for the possibility of taking part in the research work together with her students. She is most grateful for the generous promise of the leaders of both Lesaffre Feed Additive and Bernhard Feix GmbH for disregarding to take any legal steps. She gives thanks especially to the leader of the experiment Zoltan Pachinger for his wise and helpful contribution to this consensus. The first author apologises for this oversight.     This article corrects: Effect of live yeast culture Saccharomyces cerevisiae on milk production and some blood parameters, Vol. 46, Issue 1, p. 40-44. Article first published online: 30 May 2013

  17. Effects of the supplementation with yeast (saccharomyces cerevisiae) on milk yield, and milk components of water buffalo cows from northeast of Colombia

    OpenAIRE

    T. Cifuentes; García, N.; Medina, S.; J. F. Ramírez

    2010-01-01

    The objective of this study was to evaluate the effects of supplementation of the diet with a commercial yeast (Saccharomyces cerevisiae) on yield and milk composition in water buffalo dairy herd located in northeast of Colombia. Multiparous water buffalo cows (n = 24) in second third of lactation were assigned into two treatments: 1) experimental group (n=12) fed with 100 g/day of commercial yeast cultures (Saccharomyces cerevisiae) and 2) Control group (n=12) without yeast, during two month...

  18. Studies of Saccharomyces cerevisiae and Non-Saccharomyces Yeasts during Alcoholic Fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri

    The early death of non-Saccharomyces yeasts during mixed culture spontaneous wine fermentation has traditionally been attributed to the lower capacity of these yeast species to withstand high levels of ethanol, low pH, and other media properties that are a part of progressing fermentation. However...... and ethanol production) of Saccharomyces cerevisiae, Lacchancea thermotolerans, Metschnikowia pulcherrima, Hanseniaspora uvarum and Torulaspora delbrueckii. Given the ability of these non- Saccharomyces yeasts to enhance the wine flavour profile, improvement of culture conditions is of great potential......, other yeast-yeast interactions, such as cell-cell contact mediated growth arrest and/or toxininduced death may also be a significant factor in the relative fragility of these non-Saccharomyces yeasts in mixed culture fermentation. In the present work we evaluate the combined roles of cell-cell contact...

  19. Effects of Yeast (Saccharomyces Cerevisiae Feed Supplement on Milk Production and its Composition in Tunisian Holstein Friesian Cows

    Directory of Open Access Journals (Sweden)

    Maamouri O.

    2014-09-01

    Full Text Available A 105-day feed trial was conducted to evaluate the effect of probiotic feed supplement containing Saccharomyces cerevisiae on milk yield and its composition in Holstein Friesian cows. The trial was conducted in the region of Sidi Bouzid in the west of Tunisia. Effects of Saccharomyces cerevisiae have been investigated on eight Holstein Friesian cows randomly divided into two groups of four animals on the basis of age, body weight, average milk yield, and lactation number. The first group was supplemented with 2.5 g/cow/day of probiotic yeast Saccharomyces cerevisiae (2.5 1010 CFU/day and the second group (control was without the yeast. The study showed that supplementation with 2.5 g of yeast Saccharomyces cerevisiae per cow per day or 2.5 1010 CFU/day tended (P < 0.06 to increase milk production by 1.1 kg/cow. By cons, there was a significant increase of fat (P < 0.01; 52.8 and 46.9 g/cow/day and protein (P < 0.05; 41.7 and 38.7 g/cow/day content both for treated and control group, respectively. It is concluded that supplementation of Saccharomyces cerevisiae at 2.5 1010 CFU/day in the diet of dairy cows may have positive influence on milk fat and protei n yield (g/cow/day.

  20. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Vanda Renata Reis

    2013-12-01

    Full Text Available Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies. The effects of acid treatment at different pH values on the growth of two strains ("52" -rough and "PE-02" smooth as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.

  1. The Fission Yeast Ortholog of eIF3a Subunit Is Not Functional in Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Malcová-Janatová, Ivana; Koubek, Zdeněk; Malínská, Kateřina; Raková, Radka; Hašek, Jiří

    2007-01-01

    Roč. 51, č. 6 (2007), s. 555-564. ISSN 0015-5632 R&D Projects: GA ČR GA204/02/1424; GA ČR GA204/05/0838 Institutional research plan: CEZ:AV0Z50200510 Keywords : saccharomyces cerevisiae * yeast * protein Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  2. Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass

    Indian Academy of Sciences (India)

    Vlatka Gulan Zetic; Vesna Stehlik-Tomas; Slobodan Grba; Lavoslav Lutilsky; Damir Kozlek

    2001-06-01

    Fermentations with yeast Saccharomyces cerevisiae in semiaerobic and in static conditions with the addition of chromic chloride into the used molasses medium were analysed. It was proved that the addition of optimal amounts of CrCl3 into the basal medium enhanced the kinetics of alcohol fermentations. The addition of 200 mg/l CrCl3 into the medium stimulated both the yeast growth and the ethanol production in all experimental conditions. On the other hand, the results showed that Cr3+ ions were incorporated into yeast cells during fermentation. Under these conditions the accumulation of Cr3+ ions was performed by yeast cells during the exponential growth phase, and with enriched amounts of 30–45 g/gd.m. of cells. Yeast biomass enriched with chromium ions was extracted with 0.1 mol/l NH4OH assuming that the extracts had the glucose tolerance factor (GTF). Then the extracts were passed through a gel-filtration column in order to isolate and purify the GTF. The presence of GTF in the purified fractions was determined by measuring the absorbance at 260 nm. It is evident from the obtained results that the added purified fractions enhanced the rates of CO2 production as well as the glucose utilization during alcoholic fermentation. As expected, the enhancement of both rates depended on the amounts of extracts added to the fermentation substrate. Thus, it is evident that purified extracts contained the GTF compound, and that Cr3+ ions were bonded to the protein molecule.

  3. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-04-01

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions.

  4. Effect of a hypoxic radiosensitizer, AK 2123 (Sanazole), on Yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yeast Saccharomyces cerevisiae can exist in two physiological states, namely anaerobic and aerobic. They differ in their response to gamma- radiation and radiomodification. We report hereon our results concerning radiosensitization by Sanazole (AK-2123), a well-known hypoxic radio sensitizer, whose mechanism of action has been studied extensively. The results have revealed that Sanazole (1 mM) when present during irradiation could specifically sensitize wild-type anaerobic yeast cells with a DMF of 2.4. In a radiation-sensitive mutant which lacks a DNA repair pathway specific for the recovery from gamma-radiation induced DNA damage, the extent of sensitization was considerably lower and the DMF was only 1.3. Studies on the liquid holding recovery of cells of both wild-type and rad52 yeast cells exposed to radiation in presence of Sanazole revealed that sensitization by Sanazole is due to a preferential increase in the DNA damage, and not by impairing DNA repair. This system thus holds promise for screening potential hypoxic chemical radiosensitizers. (author)

  5. K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Orentaite, Irma; Poranen, Minna M; Oksanen, Hanna M; Daugelavicius, Rimantas; Bamford, Dennis H

    2016-03-01

    Saccharomyces cerevisiae cells produce killer toxins, such as K1, K2 and K28, that can modulate the growth of other yeasts giving advantage for the killer strains. Here we focused on the physiological changes induced by K2 toxin on a non-toxin-producing yeast strain as well as K1, K2 and K28 killer strains. Potentiometric measurements were adjusted to observe that K2 toxin immediately acts on the sensitive cells leading to membrane permeability. This correlated with reduced respiration activity, lowered intracellular ATP content and decrease in cell viability. However, we did not detect any significant ATP leakage from the cells treated by killer toxin K2. Strains producing heterologous toxins K1 and K28 were less sensitive to K2 than the non-toxin producing one suggesting partial cross-protection between the different killer systems. This phenomenon may be connected to the observed differences in respiratory activities of the killer strains and the non-toxin-producing strain at low pH. This might also have practical consequences in wine industry; both as beneficial ones in controlling contaminating yeasts and non-beneficial ones causing sluggish fermentation. PMID:26818855

  6. Effects of the supplementation with yeast (saccharomyces cerevisiae) on weight gain and development of water buffalo calves

    OpenAIRE

    García, N.; Medina, S.; J. F. Ramírez

    2010-01-01

    The objective of this study was to evaluate the effects of a commercial yeast culture (Saccharomyces cerevisiae) on weight gain and development of buffalo calves from water buffalo herd in north of Colombia. The buffalo calves (age: 71,12 +/- 22 days old) were randomly assigned to one of two treatments, during 45 days. One group (n=13) received 50 gr/day of commercial product of yeast and the other group (n = 13) don’t received yeast. The buffalo calves grazed in same pastures under sam...

  7. Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Chennubhotla Chakra

    2006-10-01

    Full Text Available Abstract Background Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood. Results By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate layer of transcription factors naturally segregates into distinct subnetworks. In these topological units transcription factors are densely interlinked in a largely hierarchical manner and respond to external signals by utilizing a fraction of these subnets. Conclusion As transcriptional regulation represents the 'slow' component of overall information processing, the identified topology suggests a model in which successive waves of transcriptional regulation originating from distinct fractions of the TR network control robust integrated responses to complex stimuli.

  8. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast ( Saccharomyces cerevisiae) extract

    Science.gov (United States)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-11-01

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical route is quiet common but biological synthesis procedures are gaining momentum due to their simplicity, cost-effectivity and eco-friendliness. Here, we report green synthesis of silver nanoparticles from aqueous solution of silver salts using yeast ( Saccharomyces cerevisiae) extract. The nanoparticles formation was gradually investigated by UV-Vis spectrometer. X-ray diffraction analysis was done to identify different phases of biosynthesized Ag nanoparticles. Transmission electron microscopy was performed to study the particle size and morphology of silver nanoparticles. Fourier transform infrared spectroscopy of the nanoparticles was performed to study the role of biomolecules capped on the surface of Ag nanoparticles during interaction. Photocatalytic activity of these biosynthesized nanoparticles was studied using an organic dye, methylene blue under solar irradiation and these nanoparticles showed efficacy in degrading the dye within a few hours of exposure.

  9. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe...... computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways.......Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...

  10. The number and transmission of [PSI] prion seeds (Propagons in the yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Lee J Byrne

    Full Text Available BACKGROUND: Yeast (Saccharomyces cerevisiae prions are efficiently propagated and the on-going generation and transmission of prion seeds (propagons to daughter cells during cell division ensures a high degree of mitotic stability. The reversible inhibition of the molecular chaperone Hsp104p by guanidine hydrochloride (GdnHCl results in cell division-dependent elimination of yeast prions due to a block in propagon generation and the subsequent dilution out of propagons by cell division. PRINCIPAL FINDINGS: Analysing the kinetics of the GdnHCl-induced elimination of the yeast [PSI+] prion has allowed us to develop novel statistical models that aid our understanding of prion propagation in yeast cells. Here we describe the application of a new stochastic model that allows us to estimate more accurately the mean number of propagons in a [PSI+] cell. To achieve this accuracy we also experimentally determine key cell reproduction parameters and show that the presence of the [PSI+] prion has no impact on these key processes. Additionally, we experimentally determine the proportion of propagons transmitted to a daughter cell and show this reflects the relative cell volume of mother and daughter cells at cell division. CONCLUSIONS: While propagon generation is an ATP-driven process, the partition of propagons to daughter cells occurs by passive transfer via the distribution of cytoplasm. Furthermore, our new estimates of n(0, the number of propagons per cell (500-1000, are some five times higher than our previous estimates and this has important implications for our understanding of the inheritance of the [PSI+] and the spontaneous formation of prion-free cells.

  11. Expression of a bacterial ice nucleation gene in a yeast Saccharomyces cerevisiae and its possible application in food freezing processes.

    Science.gov (United States)

    Hwang, W Z; Coetzer, C; Tumer, N E; Lee, T C

    2001-10-01

    A 3.6 kb ice nucleation gene (ina) isolated from Erwinia herbicola was placed under control of the galactose-inducible promoter (GAL1) and introduced into Saccharomyces cerevisiae. Yeast transformants showed increased ice nucleation activity over untransformed controls. The freezing temperature of a small volume of water droplets containing yeast cells was increased from approximately -13 degrees C in the untransformed controls to -6 degrees C in ina-expressing (Ina(+)) transformants. Lower temperature growth of Ina(+) yeast at temperatures below 25 degrees C was required for the expression of ice nucleation activity. Shift of temperature to 5-20 degrees C could induce the ice nucleation activity of Ina(+) yeast when grown at 25 degrees C, and maximum ice nucleation activity was achieved after induction at 5 degrees C for approximately 12 h. The effects of Ina(+) yeast on freezing and texturization of several food materials was also demonstrated. PMID:11600004

  12. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  13. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Franken, Jaco; Brandt, Bianca A; Tai, Siew L; Bauer, Florian F

    2013-01-01

    Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast. PMID:24147008

  14. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jaco Franken

    Full Text Available Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2 null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy from potato or the spinach sucrose transporter (SUT. The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast.

  15. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Y.; Cabelli D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-12-28

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O{sub 2}{sup -}). This behavior limits the amount of H{sub 2}O{sub 2} produced at high [O{sub 2}{sup -}]; its desirability can be explained by the multiple roles of H{sub 2}O{sub 2} in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O{sub 2}{sup -}], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn{sup 3+} species in yeast Mn{sup 3+}SODs, including the well-characterized 5-coordinate Mn{sup 3+} species and a 6-coordinate L-Mn{sup 3+} species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O{sub 2}{sup -}].

  16. Genes regulation encoding ADP/ATP carrier in yeasts Saccharomyces cerevisiae and Candida parapsilosis

    International Nuclear Information System (INIS)

    Genes encoding a mitochondrial ADP/ATP carrier (AAC) in yeast Saccharomyces cerevisiae and Candida parapsilosis were investigated. AAC2 is coding for the major AAC isoform in S. cerevisiae. We suggest that AAC2 is a member of a syn-expression group of genes encoding oxidative phosphorylation proteins. Within our previous studies on the regulation of the AAC2 transcription an UAS (-393/-268) was identified that is essential for the expression of this gene. Two functional regulatory cis-elements are located within this UAS -binding sites for an ABFl factor and for HAP2/3/4/5 heteromeric complex. We examined relative contributions and mutual interactions of the ABFl and HAP2/3/4/5 factors in the activation of transcription from the UAS of the AAC2 gene. The whole UAS was dissected into smaller sub-fragments and tested for (i) the ability to form DNA-protein complexes with cellular proteins in vitro, (ii) the ability to confer heterologous expression using AAC3 gene lacking its own promoter, and (iii) the expression of AAC3-lacZ fusion instead of intact AAC3 gene. The obtained results demonstrated that: a) The whole UAS as well as sub-fragment containing only ABF1-binding site are able to form DNA-protein complexes with cellular proteins in oxygen- and heme- dependent manner. The experiments with antibody against the ABF1 showed that the ABF1 factor is one of the proteins binding to AAC2 promoter. We have been unsuccessful to prove the binding of cellular proteins to the HAP2/3/4/5-binding site. However, the presence of HAP2/3/4/5-binding site is necessary to drive a binding of cellular proteins to the ABF1-binding site in carbon source-dependent manner. b) The presence of both ABF1- and HAP2/3/4/5-binding sites and original spacing between them is necessary to confer the growth of Aaac2 mutant strain on non- fermentable carbon source when put in front of AAC3 gene introduced on centromeric vector to Aaac2 mutant strain. c) For the activation of AAC3-lacZ expression on

  17. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    Science.gov (United States)

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  18. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Germann, Susanne M; Baallal Jacobsen, Simo A; Schneider, Konstantin; Harrison, Scott J; Jensen, Niels B; Chen, Xiao; Stahlhut, Steen G; Borodina, Irina; Luo, Hao; Zhu, Jiangfeng; Maury, Jérôme; Forster, Jochen

    2016-05-01

    Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis. In this study, we demonstrate microbial production of melatonin and related compounds, such as serotonin and N-acetylserotonin. We generated Saccharomyces cerevisiae strains that comprise heterologous genes encoding one or more variants of an L-tryptophan hydroxylase, a 5-hydroxy-L-tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O-methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L(-1) in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our study lays the basis for further developing a yeast cell factory for biological production of melatonin. PMID:26710256

  19. Effect of source-separated urine storage on estrogenic activity detected using bioluminescent yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Jaatinen, Sanna; Kivistö, Anniina; Palmroth, Marja R T; Karp, Matti

    2016-09-01

    The objective was to demonstrate that a microbial whole cell biosensor, bioluminescent yeast, Saccharomyces cerevisiae (BMAEREluc/ERα) can be applied to detect overall estrogenic activity from fresh and stored human urine. The use of source-separated urine in agriculture removes a human originated estrogen source from wastewater influents, subsequently enabling nutrient recycling. Estrogenic activity in urine should be diminished prior to urine usage in agriculture in order to prevent its migration to soil. A storage period of 6 months is required for hygienic reasons; therefore, estrogenic activity monitoring is of interest. The method measured cumulative female hormone-like activity. Calibration curves were prepared for estrone, 17β-estradiol, 17α- ethinylestradiol and estriol. Estrogen concentrations of 0.29-29,640 μg L(-1) were detectable while limit of detection corresponded to 0.28-35 μg L(-1) of estrogens. The yeast sensor responded well to fresh and stored urine and gave high signals corresponding to 0.38-3,804 μg L(-1) of estrogens in different urine samples. Estrogenic activity decreased during storage, but was still higher than in fresh urine implying insufficient storage length. The biosensor was suitable for monitoring hormonal activity in urine and can be used in screening anthropogenic estrogen-like compounds interacting with the receptor. PMID:26804108

  20. Physicochemical characterization of pomegranate wines fermented with three different Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Berenguer, María; Vegara, Salud; Barrajón, Enrique; Saura, Domingo; Valero, Manuel; Martí, Nuria

    2016-01-01

    Three commercial Saccharomyces cerevisiae yeast strains: Viniferm Revelación, Viniferm SV and Viniferm PDM were evaluated for the production of pomegranate wine from a juice coupage of the two well-known varieties Mollar and Wonderfull. Further malolactic fermentation was carried out spontaneously. The same fermentation patterns were observed for pH, titratable acidity, density, sugar consumption, and ethanol and glycerol production. Glucose was exhausted while fructose residues remained at the end of alcoholic fermentation. A high ethanol concentration (10.91 ± 0.27% v/v) in combination with 1.49 g/L glycerol was achieved. Citric acid concentration increased rapidly a 31.7%, malic acid disappeared as result of malolactic fermentation and the lactic acid levels reached values between 0.40 and 0.96 g/L. The analysis of CIEa parameter and total anthocyanin content highlights a lower degradation of monomeric anthocyanins during winemaking with Viniferm PDM yeast. The resulting wine retains a 34.5% of total anthocyanin content of pomegranate juice blend. PMID:26213048

  1. L-Histidine inhibits biofilm formation and FLO11- associated phenotypes in Saccharomyces cerevisiae flor yeasts

    OpenAIRE

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria Maria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of FLO11 which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling FLO11 alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce FLO11p. The flor strains generally metabolized amino acids and dipeptides a...

  2. Influence the oxidant action of selenium in radiosensitivity induction and cell death in yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ionizing radiations are from both natural sources such as from anthropogenic sources. Recently, radiotherapy has emerged as one of the most common therapies against cancer. Co-60 irradiators (cobalt-60 linear accelerators) are used to treat of malignant tumors routinely in hospitals around the world. Exposure to ionizing radiation can induce changes in cellular macromolecules and affect its functions, because they cause radiolysis of the water molecule generating reactive oxygen species, which can cause damage to virtually all organelles and cell components known as oxidative damage that can culminate in oxidative stress. Oxidative stress is a situation in which the balance between oxidants and antioxidants is broken resulting in excessive production of reactive species, it is not accompanied by the increase in antioxidant capacity, making it impossible to neutralize them. Selenium is a micronutrient considered as antioxidant, antiinflammatory, which could prevent cancer. Selenium in biological system exists as seleno proteins. Nowadays, 25 human seleno proteins have been identified, including glutathione peroxidase, an antioxidant enzyme. Yeasts have the ability to incorporate various metals such as iron, cadmium, zinc and selenium, as well as all biological organisms. The yeast Saccharomyces cerevisiae, unlike mammalian cells is devoid of seleno proteins, being considered as a practical model for studies on the toxicity of selenium, without any interference from the metabolism of seleno proteins. Moreover, yeast cells proliferate through the fermentation, the microbial equivalent of aerobic glycolysis in mammals and the process is also used by tumors. Several reports show that the pro-oxidante effects and induced toxic selenium compounds occur at lower doses and in malignant cells compared with benign cells. Therefore selenium giving a great therapeutic potential in cancer treatment .Our objective was to determine whether selenium is capable to sensitize yeasts

  3. Automated Yeast Transformation Protocol to Engineer S. cerevisiae Strains for Cellulosic Ethanol Production with Open Reading Frames that Express Proteins Binding to Xylose Isomerase Identified using Robotic Two-hybrid Screen

    Science.gov (United States)

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. Since S. cerevisiae naturally metabolizes xylulose, one approach involves introducing xylose isomerase (XI...

  4. Electro-stimulation of Saccharomyces cerevisiae wine yeasts by Pulsed Electric Field and its effect on fermentation performance

    OpenAIRE

    Mattar, J.; Turk, M.; Nonus, M.; Lebovka, N. I.; Zakhem, H. El; Vorobiev, E.

    2013-01-01

    The batch fermentation process, inoculated by pulsed electric field (PEF) treated wine yeasts (S. cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions (0.12 % wt.) at the electric field strengths of E=100 and 6000 V/cm using the same pulse protocol (number of pulses of n=1000, pulse duration of ti=100 mks, and pulse repetition time of dt=100 ms). Electro-stimulation was confirmed by the observed growth of electrical conductivity of suspensions. Th...

  5. COMPARATIVE ASSESSMENT OF THE LABORATORY SELECTED AND ACTIVE DRIED SACCHAROMYCES CEREVISIAE YEAST CULTURE IN BIOTECHNOLOGY OF THE BRANDY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bayraktar V.N.

    2015-04-01

    C and low temperature (+6°C, growth at low pH 2.6–3.0 (acid resistance, growth in the presence of 5, 10, and 15% ethanol (ethanol resistance, and growth in the presence of high concentration potassium bisulfite (bisulfite resistance. Hydrosulfide synthesis (H2S gassing production was studied in addition. Parameters of cellular metabolism in yeast suspension, such as concentration of nitrogen, protein, triglicerides, enzymatic activity and total sugar (which include glucose, fructose, and galactose were determined. Macro- and micro-element concentrations in fermented grape must, which contained pure yeast culture was determined and included: potassium, sodium, calcium, phosphorus, magnesium, iron, chlorides. In addition to identifying parameters of macro- and micro- element concentration in grape must during and following fermentation based on a principle of photometric analysis, carried out using a biochemical analyser Respons-920 (DiaSys Diagnostic Systems GmbH, Germany. Laboratory selected Saccharomyces cerevisiae wine yeast showed high enzymatic activity with short lag phase. Since of fermentation started on third day concentration of Triglicerides, Protein (total, Potassium and Sodium increased and then level of Protein (total on the 5th day of fermentation twice decreased. Trigliceride concentration on the 5th day of fermentation continued to increase. Concentration of Iron on the 5th day of fermentation increase in geometrical progression, concentration increase in 4-5 times. Contrary Chloride concentration on the 5th day of fermentation decreased in 3-4 times. Enzymatic activity on 3rd day of fermentation maximal for Lactate Dehydrogenase, Alanine aminotransferase, Aspartate aminotransferase, Phosphatase. Since of 5th day of fermentation Enzymatic activity for Lactate Dehydrogenase, Alanine aminotransferase, Aspartate aminotransferase 3-4 times. Especially level of Phosphatase activity very decreased in 6-7 times. Comparative assessment between our Laboratory

  6. Saccharomyces cerevisiae and non-Saccharomyces yeasts in grape varieties of the São Francisco Valley

    Directory of Open Access Journals (Sweden)

    Camila M.P.B.S. de Ponzzes-Gomes

    2014-06-01

    Full Text Available The aims of this work was to characterise indigenous Saccharomyces cerevisiae strains in the naturally fermented juice of grape varieties Cabernet Sauvignon, Grenache, Tempranillo, Sauvignon Blanc and Verdejo used in the São Francisco River Valley, northeastern Brazil. In this study, 155 S. cerevisiae and 60 non-Saccharomyces yeasts were isolated and identified using physiological tests and sequencing of the D1/D2 domains of the large subunit of the rRNA gene. Among the non-Saccharomyces species, Rhodotorula mucilaginosa was the most common species, followed by Pichia kudriavzevii, Candida parapsilosis, Meyerozyma guilliermondii, Wickerhamomyces anomalus, Kloeckera apis, P. manshurica, C. orthopsilosis and C. zemplinina. The population counts of these yeasts ranged among 1.0 to 19 x 10(5 cfu/mL. A total of 155 isolates of S. cerevisiae were compared by mitochondrial DNA restriction analysis, and five molecular mitochondrial DNA restriction profiles were detected. Indigenous strains of S. cerevisiae isolated from grapes of the São Francisco Valley can be further tested as potential starters for wine production.

  7. The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth.

    OpenAIRE

    Yoko-o, T; Matsui, Y; Yagisawa, H; Nojima, H; Uno, I; Toh-E, A

    1993-01-01

    Using the polymerase chain reaction technique, we have isolated a gene that encodes a putative phosphoinositide-specific phospholipase C (PLC) in the yeast Saccharomyces cerevisiae. The nucleotide sequence indicates that the gene encodes a polypeptide of 869 amino acid residues with a calculated molecular mass of 101 kDa. This polypeptide has both the X and Y regions conserved among mammalian PLC-beta, -gamma, and -delta, and the structure is most similar to that of mammalian PLC-delta. This ...

  8. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae

    OpenAIRE

    Guo, Yakun; Dong, Junkai; Zhou, Tong; Auxillos, Jamie; Li, Tianyi; Zhang, Weimin; Wang, LiHui; Shen, Yue; Luo, Yisha; Zheng, Yijing; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Cai, Yizhi; Dai, Junbiao

    2015-01-01

    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genet...

  9. Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance

    OpenAIRE

    Snoek, Tim; Picca Nicolino, Martina; Van den Bremt, Stefanie; Mertens, Stijn; Saels, Veerle; Verplaetse, Alex; Steensels, Jan; Verstrepen, Kevin J.

    2015-01-01

    Background During the final phases of bioethanol fermentation, yeast cells face high ethanol concentrations. This stress results in slower or arrested fermentations and limits ethanol production. Novel Saccharomyces cerevisiae strains with superior ethanol tolerance may therefore allow increased yield and efficiency. Genome shuffling has emerged as a powerful approach to rapidly enhance complex traits including ethanol tolerance, yet previous efforts have mostly relied on a mutagenized pool o...

  10. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources

    OpenAIRE

    Pavezzi, Fabiana Carina; Gomes, Eleni; da Silva, Roberto

    2008-01-01

    Glucoamylase is widely used in the food industry to produce high glucose syrup, and also in fermentation processes for production beer and ethanol. In this work the productivity of the glucoamylase of Aspergillus awamori expressed by the yeast Saccharomyces cerevisiae, produced in submerged fermentation using different starches, was evaluated and characterized physico-chemically. The enzyme presented high specific activity, 13.8 U/mgprotein or 2.9 U/mgbiomass, after 48 h of fermentation using...

  11. Self-organization of magnetite nanoparticles in providing Saccharomyces cerevisiae Yeasts with magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gorobets, S.V., E-mail: pitbm@ukr.net [National Technical University of Ukraine Kiev Polytechnic Institute 03056, Peremogy st., 37, Kiev (Ukraine); Yu, Gorobets O. [National Technical University of Ukraine Kiev Polytechnic Institute 03056, Peremogy st., 37, Kiev (Ukraine); Demianenko, I.V., E-mail: ira-d@yandex.ru [National Technical University of Ukraine Kiev Polytechnic Institute 03056, Peremogy st., 37, Kiev (Ukraine); Nikolaenko, R.N., E-mail: roma.nikolaenko@gmail.com [University of Missouri, School of Biological Sciences 5000 Rockhill Rd, Kansas City, MO 64110 (United States)

    2013-07-15

    The compared analyze of four methods of the magnetic nanoparticles clusters parameters estimation were developed and performed, such as, method, which takes into account two magneto-force scans of surface for calculation, geometry distance measurement between two centers of clusters in chains using the functions of NOVA-program, which is the standard computer equipment for scanning probe microscopy SOLVER PRO-M and the model, which takes into account the table meaning of magnetite magnetization and atomic-force microscopy. The magnetically-controllable biosorbent based on the culture of Saccharomyces cerevisiae was used as a model object for adequacy analyze of these models. As the result of the work we get the information about the depth of clusters penetration inside biomembrane, the typical sizes of clusters and the dispersion of magnetic clusters sizes. This analyze shows that all four methods can be used for single magnetic clusters, but for clusters, which lay in chains with small distance between their centers, the mode, which takes into account the table meaning of magnetite magnetization, cannot be used, because this model does not take into account the nearest neighbors contribution of interaction of magnetic fields dipole with magnetic probe. - Highlights: ► We have developed a mathematical model to determine the localization of magnetic phase in the vicinity of the membrane. ► We tried out this model on magnetically-based biosorbent yeast S. cerevisiae. ► We used magnetic force microscopy for the detection of magnetic phase in the biosorbent. ► As a result, it was shown that the magnetic phase is located on the membrane surface, which in turn allows us to estimate its size.

  12. Self-organization of magnetite nanoparticles in providing Saccharomyces cerevisiae Yeasts with magnetic properties

    International Nuclear Information System (INIS)

    The compared analyze of four methods of the magnetic nanoparticles clusters parameters estimation were developed and performed, such as, method, which takes into account two magneto-force scans of surface for calculation, geometry distance measurement between two centers of clusters in chains using the functions of NOVA-program, which is the standard computer equipment for scanning probe microscopy SOLVER PRO-M and the model, which takes into account the table meaning of magnetite magnetization and atomic-force microscopy. The magnetically-controllable biosorbent based on the culture of Saccharomyces cerevisiae was used as a model object for adequacy analyze of these models. As the result of the work we get the information about the depth of clusters penetration inside biomembrane, the typical sizes of clusters and the dispersion of magnetic clusters sizes. This analyze shows that all four methods can be used for single magnetic clusters, but for clusters, which lay in chains with small distance between their centers, the mode, which takes into account the table meaning of magnetite magnetization, cannot be used, because this model does not take into account the nearest neighbors contribution of interaction of magnetic fields dipole with magnetic probe. - Highlights: ► We have developed a mathematical model to determine the localization of magnetic phase in the vicinity of the membrane. ► We tried out this model on magnetically-based biosorbent yeast S. cerevisiae. ► We used magnetic force microscopy for the detection of magnetic phase in the biosorbent. ► As a result, it was shown that the magnetic phase is located on the membrane surface, which in turn allows us to estimate its size

  13. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  14. Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Motohiro; Kuge, Osamu

    2012-12-01

    Sphingolipids play critical roles in many physiologically important events in the yeast Saccharomyces cerevisiae. In this study, we found that csg2Δ mutant cells defective in the synthesis of mannosylinositol phosphorylceramide exhibited abnormal intracellular accumulation of an exocytic v-SNARE, Snc1, under phosphatidylserine synthase gene (PSS1)-repressive conditions, although in wild-type cells, Snc1 was known to cycle between plasma membranes and the late Golgi via post-Golgi endosomes. The mislocalized Snc1 was co-localized with an endocytic marker dye, FM4-64, upon labelling for a short time. The abnormal distribution of Snc1 was suppressed by deletion of GYP2 encoding a GTPase-activating protein that negatively regulates endosomal vesicular trafficking, or expression of GTP-restricted form of Ypt32 GTPase. Furthermore, an endocytosis-deficient mutant of Snc1 was localized to plasma membranes in PSS1-repressed csg2Δ mutant cells as well as wild-type cells. Thus, the PSS1-repressed csg2Δ mutant cells were indicated to be defective in the trafficking of Snc1 from post-Golgi endosomes to the late Golgi. In contrast, the vesicular trafficking pathways via pre-vacuolar endosomes in the PSS1-repressed csg2Δ mutant cells seemed to be normal. These results suggested that specific complex sphingolipids and phosphatidylserine are co-ordinately involved in specific vesicular trafficking pathway. PMID:23062277

  15. A Genetics Laboratory Module Involving Selection and Identification of Lysine Synthesis Mutants in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Jill B. Keeney

    2009-12-01

    Full Text Available We have developed a laboratory exercise, currently being used with college sophomores, which uses the yeast Saccharomyces cerevisiae to convey the concepts of amino acid biosynthesis, mutation, and gene complementation. In brief, selective medium is used to isolate yeast cells carrying a mutation in the lysine biosynthesis pathway. A spontaneous mutation in any one of three separate genetic loci will allow for growth on selective media; however, the frequency of mutations isolated from each locus differs. Following isolation of a mutated strain, students use complementation analysis to identify which gene contains the mutation. Since the yeast genome has been mapped and sequenced, students with access to the Internet can then research and develop hypotheses to explain the differences in frequencies of mutant genes obtained.

  16. Genomic, genetic and physiological effects of bio-electrospraying on live cells of the model yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    The ability to directly engineer living cells is rapidly becoming a hot field of research for a wide range of applications within the life sciences. 'Bio-electrospraying' cells, a recently developed technique, has great potential in this area. In this paper, we quantify genetic, genomic and physiological effects of bio-electrospraying cells of a model eukaryote, the yeast Saccharomyces cerevisiae. Our results demonstrate that yeast cells bio-electrosprayed at 30 kV have not incurred any detectable damage at a genomic or genetic level, and that the detectable physiological stress of the procedure is negligible. These results support our proposal to use yeast as a model system to develop bio-electrospray devices and protocols

  17. Size and position of intervening sequences are critical for the splicing efficiency of pre-mRNA in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Klinz, F. J.; Gallwitz, D

    1985-01-01

    The size of the 309 bp actin gene intron of the yeast Saccharomyces cerevisiae was enlarged by inserting DNA fragments of different lengths and sequence. Enlarging the intron above 551 bp, the largest known yeast intron, led to a decrease in splicing efficiency. The effect on transcript splicing was dependent on the length of the inserted fragments rather than their sequence. It was also observed that insertion of the actin gene intron into different regions of the normally unsplit yeast YP2 ...

  18. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria.

    Science.gov (United States)

    Kathiresan, Meena; Martins, Dorival; English, Ann M

    2014-12-01

    In exponentially growing yeast, the heme enzyme, cytochrome c peroxidase (Ccp1) is targeted to the mitochondrial intermembrane space. When the fermentable source (glucose) is depleted, cells switch to respiration and mitochondrial H2O2 levels rise. It has long been assumed that CCP activity detoxifies mitochondrial H2O2 because of the efficiency of this activity in vitro. However, we find that a large pool of Ccp1 exits the mitochondria of respiring cells. We detect no extramitochondrial CCP activity because Ccp1 crosses the outer mitochondrial membrane as the heme-free protein. In parallel with apoCcp1 export, cells exhibit increased activity of catalase A (Cta1), the mitochondrial and peroxisomal catalase isoform in yeast. This identifies Cta1 as a likely recipient of Ccp1 heme, which is supported by low Cta1 activity in ccp1Δ cells and the accumulation of holoCcp1 in cta1Δ mitochondria. We hypothesized that Ccp1's heme is labilized by hyperoxidation of the protein during the burst in H2O2 production as cells begin to respire. To test this hypothesis, recombinant Ccp1 was hyperoxidized with excess H2O2 in vitro, which accelerated heme transfer to apomyoglobin added as a surrogate heme acceptor. Furthermore, the proximal heme Fe ligand, His175, was found to be ∼ 85% oxidized to oxo-histidine in extramitochondrial Ccp1 isolated from 7-d cells, indicating that heme labilization results from oxidation of this ligand. We conclude that Ccp1 responds to respiration-derived H2O2 via a previously unidentified mechanism involving H2O2-activated heme transfer to apoCta1. Subsequently, the catalase activity of Cta1, not CCP activity, contributes to mitochondrial H2O2 detoxification. PMID:25422453

  19. Molecular Characterization and Functional Analysis of Cytochrome b5 Reductase (CBR) Encoding Genes from the Carotenogenic Yeast Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Gutiérrez, María Soledad; Rojas, María Cecilia; Sepúlveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2015-01-01

    The eukaryotic microsomal cytochrome P450 systems consist of a cytochrome P450 enzyme (P450) and a cytochrome P450 redox partner, which generally is a cytochrome P450 reductase (CPR) that supplies electrons from NADPH. However, alternative electron donors may exist such as cytochrome b5 reductase and cytochrome b5 (CBR and CYB5, respectively) via, which is NADH-dependent and are also anchored to the endoplasmic reticulum. In the carotenogenic yeast Xanthophyllomyces dendrorhous, three P450-encoding genes have been described: crtS is involved in carotenogenesis and the CYP51 and CYP61 genes are both implicated in ergosterol biosynthesis. This yeast has a single CPR (encoded by the crtR gene), and a crtR- mutant does not produce astaxanthin. Considering that this mutant is viable, the existence of alternative cytochrome P450 electron donors like CBR and CYB5 could operate in this yeast. The aim of this work was to characterize the X. dendrorhous CBR encoding gene and to study its involvement in P450 reactions in ergosterol and carotenoid biosynthesis. Two CBRs genes were identified (CBR.1 and CBR.2), and deletion mutants were constructed. The two mutants and the wild-type strain showed similar sterol production, with ergosterol being the main sterol produced. The crtR- mutant strain produced a lower proportion of ergosterol than did the parental strain. These results indicate that even though one of the two CBR genes could be involved in ergosterol biosynthesis, crtR complements their absence in the cbr- mutant strains, at least for ergosterol production. The higher NADH-dependent cytochrome c reductase activity together with the higher transcript levels of CBR.1 and CYB5 in the crtR- mutant as well as the lower NADH-dependent activity in CBS-cbr.1- strongly suggest that CBR.1-CYB5 via participates as an alternative electron donor pathway for P450 enzymes involved in ergosterol biosynthesis in X. dendrorhous. PMID:26466337

  20. Molecular Characterization and Functional Analysis of Cytochrome b5 Reductase (CBR Encoding Genes from the Carotenogenic Yeast Xanthophyllomyces dendrorhous.

    Directory of Open Access Journals (Sweden)

    María Soledad Gutiérrez

    Full Text Available The eukaryotic microsomal cytochrome P450 systems consist of a cytochrome P450 enzyme (P450 and a cytochrome P450 redox partner, which generally is a cytochrome P450 reductase (CPR that supplies electrons from NADPH. However, alternative electron donors may exist such as cytochrome b5 reductase and cytochrome b5 (CBR and CYB5, respectively via, which is NADH-dependent and are also anchored to the endoplasmic reticulum. In the carotenogenic yeast Xanthophyllomyces dendrorhous, three P450-encoding genes have been described: crtS is involved in carotenogenesis and the CYP51 and CYP61 genes are both implicated in ergosterol biosynthesis. This yeast has a single CPR (encoded by the crtR gene, and a crtR- mutant does not produce astaxanthin. Considering that this mutant is viable, the existence of alternative cytochrome P450 electron donors like CBR and CYB5 could operate in this yeast. The aim of this work was to characterize the X. dendrorhous CBR encoding gene and to study its involvement in P450 reactions in ergosterol and carotenoid biosynthesis. Two CBRs genes were identified (CBR.1 and CBR.2, and deletion mutants were constructed. The two mutants and the wild-type strain showed similar sterol production, with ergosterol being the main sterol produced. The crtR- mutant strain produced a lower proportion of ergosterol than did the parental strain. These results indicate that even though one of the two CBR genes could be involved in ergosterol biosynthesis, crtR complements their absence in the cbr- mutant strains, at least for ergosterol production. The higher NADH-dependent cytochrome c reductase activity together with the higher transcript levels of CBR.1 and CYB5 in the crtR- mutant as well as the lower NADH-dependent activity in CBS-cbr.1- strongly suggest that CBR.1-CYB5 via participates as an alternative electron donor pathway for P450 enzymes involved in ergosterol biosynthesis in X. dendrorhous.

  1. Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vanwetswinkel, Sophie; Nuland, Nico A. J. van; Volkov, Alexander N., E-mail: ovolkov@vub.ac.be [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)

    2013-09-15

    Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems.

  2. Impact of xylose and mannose on central metabolism of yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.P.

    2005-07-01

    In this study, understanding of the central metabolism was improved by quantification of metabolite concentrations, enzyme activities, protein abundances, and gene transcript concentrations. Intracellular fluxes were estimated by applying stoichiometric models of metabolism. The methods were applied in the study of yeast Saccharomyces cerevisiae in two separate projects. A xylose project aimed at improved utilization of D- xylose as a substrate for, e.g., producing biomaterial- based fuel ethanol. A mannose project studied the production of GDP-mannose from D-mannose in a strain lacking the gene for phosphomannose isomerase (PMI40 deletion). Hexose, D-glucose is the only sugar more abundant than pentose D-xylose. D-xylose is common in hardwoods (e.g. birch) and crop residues (ca. 25% of dry weight). However, S. cerevisiae is unable to utilize D- xylose without a recombinant pathway where D-xylose is converted to Dxylulose. In this study D-xylose was converted in two steps via xylitol: by D-xylose reductase and xylitol dehydrogenase encoded by XYL1 and XYL2 from Pichia stipitis, respectively. Additionally, endogenous xylulokinase (XKS1) was overexpressed in order to increase the consumption of D-xylose by enhancing the phosphorylation of D-xylulose. Despite of the functional recombinant pathway the utilization rates of D xylose still remained low. This study proposes a set of limitations that are responsible for the low utilization rates of D-xylose under microaerobic conditions. Cells compensated for the cofactor imbalance, caused by the conversion of D-xylose to D- xylulose, by increasing the flux through the oxidative pentose phosphate pathway and by shuttling NADH redox potential to mitochondrion to be oxidized in oxidative phosphorylation. However, mitochondrial NADH inhibits citrate synthase in citric acid cycle, and consequently lower flux through citric acid cycle limits oxidative phosphorylation. Further, limitations in the uptake of D- xylose, in the

  3. Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation

    Science.gov (United States)

    Rodríguez-Escudero, María; Cid, Víctor J.; Molina, María; Schulze-Luehrmann, Jan; Lührmann, Anja; Rodríguez-Escudero, Isabel

    2016-01-01

    Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors

  4. Adsorption and interfacial electron transfer of Saccharomyces cerevisiae yeast cytochrome c monolayers on Au(111) electrodes

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Boisen, Anja; Nielsen, Jens Ulrik;

    2003-01-01

    voltammetric data display a thiol reductive desorption signal corresponding to close to monolayer coverage. Reductive desorption is also reflected in a capacitance peak. Voltammetric signals from the heme group in both native and partially denatured states could also be detected. XPS shows clear Au-S bond...... formation, but this observation is not conclusive for aqueous buffer conditions, as the protein is extensively unfolded under ultrahigh vacuum conditions needed for XPS. In situ STM discloses clear sub-monolayer coverage to molecular resolution. Imaging is robust in a 0.2 V electrochemical potential range...

  5. An investigation into the proteins responsible for the translational inhibition seen in the yeast Saccharomyces cerevisiae following fusel alcohol exposure

    OpenAIRE

    Keenan, Jemma

    2013-01-01

    Fusel alcohols signal nitrogen scarcity to elicit a range of responses in the yeast Saccharomyces cerevisiae. These alcohols activate pseudohyphal growth and cause rapid inhibition of translation initiation. Previous work from our lab has highlighted that the translation initiation factor eIF2B is a target for this regulation. eIF2B is the guanine nucleotide exchange factor required for recycling eIF2•GDP to eIF2•GTP. The GTP bound form of eIF2 can interact with the Methionyl initiator tRNA ...

  6. In vivo 31P nuclear magnetic resonance saturation transfer measurements of phosphate exchange reactions in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    31P saturation transfer techniques have been used to measure phosphate kinetics in the yeast Saccharomyces cerevisiae. The phosphate comsumption rate observed in acetate grown mid-log cells was combined with measurements of O2 consumption to yield P/O ratios of 2.2 and 2.9, for cells respiring on glucose and ethanol, respectively. However, no phosphate consumption activity was observed in saturation transfer experiments on anaerobic glucose fed cells. The phosphate consumption rates measured by saturation transfer in cells respiring on glucose and ethanol was attributed to the unidirectional rates of mitochondrial ATP synthesis. (Auth.)

  7. Production of bioethanol from heart and pineapple shell using the yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    The performance of bioethanol production was evaluated from heart and pineapple shell, using the yeast Saccharomyces Cerevisiae, in which has been obtained a maximum output of 1,6% v/v. The research was divided into a phase of characterization and five experimental phases. The heart and pineapple shell were used as substrate for the study. The contents of glucose, reducing sugars and total, moisture, ash, crude fiber and soluble solids content were determined of the heart and golden pineapple shell (MD2). The shell has had a higher content of soluble solids, fiber content, ash and lower moisture content and reducing sugars. In the first experimental phase was made a fermentation of commercial sucrose, with the objective to corroborate the method of measurement of CO2 and the pH was measured of the water that is collected the gas. Great variation between samples has not been observed, comparing the method to estimate the losses of gas, so it is reproducible and the losses of CO2 has been at least of 22%. In the second experimental stage to compare measurement methods of ethanol, for collection of CO2 and gas chromatography, it has been found that for concentrations from 0 to 0,79% v/v, the results have shown a quadratic behavior (second-degree polynomial with 0,83173x2 +0,0024 x, R2=0,9984), while that for higher concentrations to 0,79% the relation has been linear (0,6372 x -0,099, R2=0,9424), in which x is the %v/v of ethanol, of the chromatographic method. In the third experimental stage were compared the effects of the filtration. The significant differences of this effect were not found for either of the two substrates used: hearts and shells. The adjustment parameters of the modified Gompertz equation for mixtures of 53% heart and 47% shell, and concentration of 280 g/L have been: Pm 0,72 %v/v; λ 0,3 h, Rm 0,047 (%v/v)/h; for a concentration of 400 g/L, have been Pm 1,3 %v/v λ 1,8 h and Rm 0,068 (%v/v)/h and for 523 g/L, using extract of yeast have been Pm 1

  8. Cytochrome C oxidase Ⅲ interacts with hepatitis B virus X protein in vivo by yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    Dan Li; Xiao-Zhong Wang; Jie-Ping Yu; Zhi-Xin Chen; Yue-Hong Huang; Qi-Min Tao

    2004-01-01

    AIM: To screen and identify the proteins which interact with hepatitis B virus (HBV) X protein in hepatocytes by yeast two-hybrid system and to explore the effects of X protein in the development of hepatocellular carcinoma (HCC).METHODS: With HBV X gene amplified by polymerase chain reaction (PCR), HBV X bait plasmid, named pAS2-1-X, was constructed by yeast-two hybridization system3 and verified by auto-sequencing assay. pAS2-1-X was transformed into the yeast AH109, and X-BD fusion protein expressed in the yeast cells was detected by Western blotting. The yeast cells cotransformed with pAS2-1-X and normal human liver cDNA library were grown in selective SC/-trp-leu-his-ade medium. The second screen was performed with β-gal activity detection, and false positive clones were eliminated by segregation analysis, true positive clones were amplified,sequenced and analyzed with bioinformatics. Mating experiment was peformed to confirm the binding of putative proteins to X protein in the yeast cells.RESULTS: Bait plasmid pAS2-1-X was successfully constructed and pAS2-1-X correctly expressed BD-X fusion protein in yeast AH109. One hundred and three clones grew in the selective SC/-trp-leu-his-ade medium, and only one clone passed through β-gal activity detection and segregation analysis. The inserted cDNA fragment showed high homology with Homo sapiens cytochrome C oxidase Ⅲ(COXIII). Furthermore, mating experiment identified that the binding of COXIII to X protein was specific.CONCLUSION: COXIII protein is a novel protein that can interact with X protein in vivo by yeast two-hybrid system,and may contribute to the development of HCC through the interaction with X protein.

  9. TORC1 activity is partially reduced under nitrogen starvation conditions in sake yeast Kyokai no. 7, Saccharomyces cerevisiae.

    Science.gov (United States)

    Nakazawa, Nobushige; Sato, Aya; Hosaka, Masahiro

    2016-03-01

    Industrial yeasts are generally unable to sporulate but treatment with the immunosuppressive drug rapamycin restores this ability in a sake yeast strain Kyokai no. 7 (K7), Saccharomyces cerevisiae. This finding suggests that TORC1 is active under sporulation conditions. Here, using a reporter gene assay, Northern and Western blots, we tried to gain insight into how TORC1 function under nitrogen starvation conditions in K7 cells. Similarly to a laboratory strain, RPS26A transcription was repressed and Npr1 was dephosphorylated in K7 cells, indicative of the expected loss of TORC1 function under nitrogen starvation. The expression of nitrogen catabolite repression-sensitive genes, however, was not induced, the level of Cln3 remained constant, and autophagy was more slowly induced than in a laboratory strain, all suggestive of active TORC1. We conclude that TORC1 activity is partially reduced under nitrogen starvation conditions in K7 cells. PMID:26272416

  10. Perfomance Productiva y Calidad de la canal en Broilers que recibieron Levadura de Cerveza (S. cerevisiae (Productive Perfomance and Carcass quality in Broilers fed yeast (S. cerevisiae

    Directory of Open Access Journals (Sweden)

    Raúl D. Miazzo

    2005-12-01

    Full Text Available La Levadura de Cerveza puede ser utilizada como aditivo natural en dietas de aves. El objetivo fue determinar su efecto sobre los parámetros productivos y la calidad de la canal de aves que recibieron dietas donde se les reemplazó parte del núcleo vitamínico mineral por S. cerevisiae. Doscientos pollos machos Ross fueron distribuidos en 20 corrales, de 10 aves cada uno, y 5 por ración. Desde el 32° hasta el 56° día de vida recibieron las siguientes dietas: 1. Control, sin Levadura 2. Control con un 1/3 del núcleo vit-mineral, sin Levadura. 3. Dieta 2 con 0,15 % de Levadura y 4. Dieta 2 con 0,30 % de Levadura. Se midieron Consumo Medio Diario (CMD, Ganancia Media Diaria (GMD e Indice de Conversión (IC y finalizada la experiencia, previo pesado de las aves (PV, se sacrificaron y se hizo el despiece para determinar el rendimiento de la canal (RC, peso de la pechuga (PP, de los muslos (PM y de la grasa abdominal (PGA. Las aves que recibieron el mayor % de Levadura (Dieta 4 consumieron menos; ganaron significativamente más y convirtieron mejor (p£ 0,01. Además, obtuvieron significativamente mayores (p£ 0,01 peso de pechuga y muslos. Mientras que para PGA las diferencias fueron significativamente menores (p£ 0,01 tanto para las aves de las Dietas 4 como la 3. Se concluye que el agregado de Levadura, en reemplazo de parte del núcleo vitamínico mineral, mejoró los parámetros productivos y la calidad de la canal Yeast might be used like natural additive in broiler diets. The purpose was determinate productive parameters and carcass quality in broilers fed diets with replacement part of mineral vitamin premix with Saccharomyces cerevisiae. Two hundred male chickens Ross were distributed in 20 pens, with 10 birds per pen and five for ration. Since 32° till 56° days old the bird received the following diets: 1. Control, without Yeast; 2. Control with 2/3 of premix, without Yeast, 3. Diet 2 with 0.15% Yeast and 4. Diet 2 with 0

  11. Effects of the supplementation with yeast (saccharomyces cerevisiae on weight gain and development of water buffalo calves

    Directory of Open Access Journals (Sweden)

    N. García

    2010-02-01

    Full Text Available The objective of this study was to evaluate the effects of a commercial yeast culture (Saccharomyces cerevisiae on weight gain and development of buffalo calves from water buffalo herd in north of Colombia. The buffalo calves (age: 71,12 +/- 22 days old were randomly assigned to one of two treatments, during 45 days. One group (n=13 received 50 gr/day of commercial product of yeast and the other group (n = 13 don’t received yeast. The buffalo calves grazed in same pastures under same milking system. All animals were weighed and measured weekly. During the test the animals gain 11,38 +/- 5,2 Kgr y 13.92 +/- 5,0 Kgr by treated and non treated calves, respectively. The increase of the corporal measures during the test was (cm: Toraxic Circumference 7,0 +/- 5,58 Vs 9,23 +/- 4,02, Height 5,77 +/- 6,81 Vs 5,92 +/- 4,5 and Length 2,92 +/- 8,17 Vrs 0,54 +/- 4,86 by treated and no treated calves, respectively. No statistic difference was found between groups. In conclusion, the feeding with yeast culture didn’t increase significantly the weight gain and development in water buffalo calves.

  12. The steady-state level and stability of TLS polymerase eta are cell cycle dependent in the yeast S. cerevisiae.

    Science.gov (United States)

    Plachta, Michal; Halas, Agnieszka; McIntyre, Justyna; Sledziewska-Gojska, Ewa

    2015-05-01

    Polymerase eta (Pol eta) is a ubiquitous translesion DNA polymerase that is capable of bypassing UV-induced pyrimidine dimers in an error-free manner. However, this specialized polymerase is error prone when synthesizing through an undamaged DNA template. In Saccharomyces cerevisiae, both depletion and overproduction of Pol eta result in mutator phenotypes. Therefore, regulation of the cellular abundance of this enzyme is of particular interest. However, based on the investigation of variously tagged forms of Pol eta, mutually contradictory conclusions have been reached regarding the stability of this polymerase in yeast. Here, we optimized a protocol for the detection of untagged yeast Pol eta and established that the half-life of the native enzyme is 80 ± 14 min in asynchronously growing cultures. Experiments with synchronized cells indicated that the cellular abundance of this translesion polymerase changes throughout the cell cycle. Accordingly, we show that the stability of Pol eta, but not its mRNA level, is cell cycle stage dependent. The half-life of the polymerase is more than fourfold shorter in G1-arrested cells than in those at G2/M. Our results, in concert with previous data for Rev1, indicate that cell cycle regulation is a general property of Y family TLS polymerases in S. cerevisiae. PMID:25766643

  13. Indigenous Saccharomyces cerevisiae yeasts as a source of biodiversity for the selection of starters for specific fermentations

    Directory of Open Access Journals (Sweden)

    Capece Angela

    2014-01-01

    Full Text Available The long-time studies on wine yeasts have determined a wide diffusion of inoculated fermentations by commercial starters, mainly of Saccharomyces. Although the use of starter cultures has improved the reproducibility of wine quality, the main drawback to this practice is the lack of the typical traits of wines produced by spontaneous fermentation. These findings have stimulated wine-researchers and wine-makers towards the selection of autochthonous strains as starter cultures. The objective of this study was to investigate the biodiversity of 167 S. cerevisiae yeasts, isolated from spontaneous fermentation of grapes. The genetic variability of isolates was evaluated by PCR amplification of inter-δ region with primer pair δ2/δ12. The same isolates were investigated for characteristics of oenological interest, such as resistance to sulphur dioxide, ethanol and copper and hydrogen sulphide production. On the basis of technological and molecular results, 20 strains were chosen and tested into inoculated fermentations at laboratory scale. The experimental wines were analyzed for the content of some by-products correlated to wine aroma, such as higher alcohols, acetaldehyde, ethyl acetate and acetic acid. One selected strain was used as starter culture to perform fermentation at cellar level. The selection program followed during this research project represents an optimal combination between two different trends in modern winemaking: the use of S. cerevisiae as starter cultures and the starter culture selection for specific fermentations.

  14. Crystallization and preliminary X-ray crystallographic analysis of full-length yeast tropomyosin 2 from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Crystals of full-length yeast tropomyosin 2 from S. cerevisiae have been obtained. Tropomyosin is a highly conserved actin-binding protein that is found in most eukaryotic cells. It is critical for actin-filament stabilization and for cooperative regulation of many actin functions. Detailed structural information on tropomyosin is very important in order to understand the mechanisms of its action. Whereas structures of isolated tropomyosin fragments have been obtained at high resolution, the atomic structure of the entire tropomyosin molecule is still unknown. Here, the crystallization and preliminary crystallographic analysis of full-length yeast tropomyosin 2 (yTm2) from Saccharomyces cerevisiae are reported. Recombinant yTm2 expressed in Escherichia coli was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 154.8, b = 49.9, c = 104.0 Å, α = γ = 90.0, β = 124.0° and two molecules in the asymmetric unit. A complete native X-ray diffraction data set was collected to 3.5 Å resolution using synchrotron radiation

  15. Directed Evolution of Xylose Isomerase for Improved Xylose Catabolism and Fermentation in the Yeast Saccharomyces cerevisiae

    OpenAIRE

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S.

    2012-01-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often r...

  16. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria

    OpenAIRE

    Schägger, Hermann; Pfeiffer, Kathy

    2000-01-01

    Around 30–40 years after the first isolation of the five complexes of oxidative phosphorylation from mammalian mitochondria, we present data that fundamentally change the paradigm of how the yeast and mammalian system of oxidative phosphorylation is organized. The complexes are not randomly distributed within the inner mitochondrial membrane, but assemble into supramolecular structures. We show that all cytochrome c oxidase (complex IV) of Saccharomyces cerevisiae is bound to cytochrome c red...

  17. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Brat Dawid

    2012-09-01

    Full Text Available Abstract Background The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. Results Isobutanol production could be improved by re-locating the valine biosynthesis enzymes Ilv2, Ilv5 and Ilv3 from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway. Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol titer was 0.63 g/L at a yield of nearly 15 mg per g glucose. Conclusion A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial valine pathway and by omitting valine from the fermentation medium. Additional deletion of

  18. The rhp6+ gene of Schizosaccharomyces pombe: a structural and functional homolog of the RAD6 gene from the distantly related yeast Saccharomyces cerevisiae.

    NARCIS (Netherlands)

    P. Reynolds (Paul); M.H.M. Koken (Marcel); J.H.J. Hoeijmakers (Jan); S. Prakash; L. Prakash

    1990-01-01

    textabstractThe RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin conjugating enzyme and is required for DNA repair, DNA-damage-induced mutagenesis and sporulation. Here, we show that RAD6 and the rhp6+ gene from the distantly related yeast Schizosaccharomyces pombe share a high degree of st

  19. Genome and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae

    Science.gov (United States)

    The industrial ethanologenic yeast Saccharomyces cerevisiae is a promising biocatalyst for next-generation advanced biofuels applications including lignocellulose-to-ethanol conversion. Here we present the first insight into the genomic background of NRRL Y-12632, a type strain from a worldwide coll...

  20. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: Wet oxidation and fermentation by yeast

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Olsson, Lisbeth; Thomsen, A.B.;

    2003-01-01

    concentrations of 50-100 times the concentration found in the hydrolysate for their effect on fermentation by yeast. At these high concentrations (10 mM), 4-hydroxy-benzaldehyde, vanillin, 4-hydroxyacetophenone and acetovanillone caused a 53-67% decrease in the volumetric ethanol productivity in S. cerevisiae...

  1. Imaging single mRNAs to study dynamics of mRNA export in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bensidoun, Pierre; Raymond, Pascal; Oeffinger, Marlene; Zenklusen, Daniel

    2016-04-01

    Regulation of mRNA and protein expression occurs at many levels, initiated at transcription and followed by mRNA processing, export, localization, translation and mRNA degradation. The ability to study mRNAs in living cells has become a critical tool to study and analyze how the various steps of the gene expression pathway are carried out. Here we describe a detailed protocol for real time fluorescent RNA imaging using the PP7 bacteriophage coat protein, which allows mRNA detection with high spatial and temporal resolution in the yeast Saccharomyces cerevisiae, and can be applied to study various stages of mRNA metabolism. We describe the different parameters required for quantitative single molecule imaging in yeast, including strategies for genomic integration, expression of a PP7 coat protein GFP fusion protein, microscope setup and analysis strategies. We illustrate the method's use by analyzing the behavior of nuclear mRNA in yeast and the role of the nuclear basket in mRNA export. PMID:26784711

  2. Ascorbate and thiol antioxidants abolish sensitivity of yeast Saccharomyces cerevisiae to disulfiram

    OpenAIRE

    Kwolek-Mirek, Magdalena; Zadrag-Tecza, Renata; Bartosz, Grzegorz

    2011-01-01

    Sensitivity of baker’s yeast to disulfiram (DSF) and hypersensitivity of a mutant devoid of Cu, Zn-superoxide dismutase to this compound is reported, demonstrating that yeast may be a simple convenient eukaryotic model to study the mechanism of DSF toxicity. DSF was found to induce oxidative stress in yeast cells demonstrated by increased superoxide production and decrease of cellular glutathione content. Anoxic atmosphere and hydrophilic antioxidants (ascorbate, glutathione, dithiothreitol, ...

  3. Heterologous Expression of Membrane and Soluble Proteins Derepresses GCN4 mRNA Translation in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Steffensen, L.; Pedersen, P. A.

    2006-01-01

    -located endogenous H-ATPase also induced GCN4 translation. Derepression of GCN4 translation required phosphorylation of eIF-2 , the tRNA binding domain of Gcn2p, and the ribosome-associated proteins Gcn1p and Gcn20p. The increase in Gcn4p density in response to heterologous expression did not induce transcription...... from the HIS4 promoter, a traditional Gcn4p target.......This paper describes the first physiological response at the translational level towards heterologous protein production in Saccharomyces cerevisiae. In yeast, the phosphorylation of eukaryotic initiation factor 2 (eIF-2 ) by Gcn2p protein kinase mediates derepression of GCN4 mRNA translation. Gcn4...

  4. Produksi Bioetanol dari Bahan Baku Singkong, Jagung dan Iles-iles :Pengaruh Suhu Fermentasi dan Berat Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    K. Kusmiyati

    2014-12-01

    Full Text Available Kebutuhan bahan bakar di masa sekarang semakin bertambah besar sehingga berdampak pada menipisnya sumber bahan bakar dan meningkatnya polusi udara di lingkungan. Penggunaan bahan bakar alternatif dari sumber non fosil merupakan pilihan terbaik sebagai pengganti bahan bakar fosil. Bioetanol merupakan salah satu energi alternatif yang tepat digunakan baik di masa sekarang ataupun di masa yang akan datang. Bahan baku etanol yang digunakan pada penelitian ini adalah singkong, dan iles-iles.Variabel penelitian yang diamati temperatur fermentasi (30°C; 40°C;­­ 50°C dan komposisi Saccharomyces cerevisiae (2,5 g; 5 g; 10 g; 15 g Proses pembuatan bioetanol terdiri dari hidrolisis enzim yaitun likuifikasi menggunakan a-amylase1,6% v/w (t = 1 jam; T = 95-100°C; pH 6 dan sakarifikasi menggunakan b-amylase 3,2% v/w (t = 4 jam; T = 60°C; pH 5 serta proses fermentasi menggunakan Saccharomyces cerevisiae ( t = 120 jam; pH 4,5; yeast 5 g. Kadar etanol tertinggi dihasilkan pada temperatur fermentasi 30°C untuk semua bahan baku dengan kadar etanol masing-masing 83,43 g/L untuk singkong,80,77 g/L untuk jagung,dan 79,94 g/L untuk iles-iles. Normal 0 false false false EN-US X-NONE X-NONE

  5. Analysis of cellular responses to aflatoxin B{sub 1} in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yingying [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Breeden, Linda L. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Fan, Wenhong [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zhao Lueping [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Eaton, David L. [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zarbl, Helmut [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States) and Fred Hutchinson Cancer Research Center, Seattle, WA (United States)]. E-mail: hzarbl@fhcrc.org

    2006-01-29

    Aflatoxin B1 (AFB{sub 1}) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB{sub 1} is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N{sup 7}-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB{sub 1}, a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB{sub 1} that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB{sub 1} treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB{sub 1}-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific

  6. Analysis of cellular responses to aflatoxin B1 in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    International Nuclear Information System (INIS)

    Aflatoxin B1 (AFB1) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB1 is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N7-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB1, a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB1 that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB1 treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB1-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific transcripts cannot be explained by cell cycle

  7. Uranium uptake by baker's yeast (Saccharomyces cerevisiae) - development of a biological ion exchanger

    International Nuclear Information System (INIS)

    The use of micro-organisms for decontamination of, and heavy metal recovery from industrial waste water is a modern, low-cost, and environmentally friendly alternative to the conventional chemical and physical methods. The uptake of uranium by baker's yeast is investigated under the aspect of application in biotechnology. A novel, regenerable biological ion exchanger was produced by immobilisation of the yeast in agar gel. (orig.)

  8. Evaluation of growth and survival rate of Artemia parthenogenetica feed with micro algae (Isochrysis galbana and Chlorella vulgaris and bakery yeast (Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghan

    2011-10-01

    Full Text Available This study was done to evaluate growth and survival rate of Maharloo lake artemia (ArtemiaParthenogenetica (Bowen & Sterling, 1978 which feed with two species of microalgae (IsochrysisGalbana and Chlorella vulgaris and bakery yeast (Saccharomyces cerevisiae with different nutritiousingredients for 15 days. We evaluated them in 3rd, 7th, 11th and 15thdays of cultivation period for 4 times. This experiment was done in completely randomized design with 4 treatments (3 treatments and 1 control and each treatment has 3 replicates. Artemia parthenogenetica nauplii were feed with three different types of food that includes Isochrysis galbana microalgae (T1, Chlorella vulgaris (T2 and Saccharomyces cerevisiae yeast (T4. Control had feed with blend of these three matters. After 15 days the highest survival rate was observed in control (84.00 and the lowest one was related to the T4 (59.58 which feed with Saccharomyces cerevisiae yeast (p<0.05. The highest growth rate was observed in T4, T3, followed by T1 and T2 respectively. Achievement results showed significantdifferences between control and other treatments (p<0.05. This study proved that treatments whichfeed with blend of two micro algae's species and bakery yeast have higher survival ability than theother treatments.

  9. Interactions of checkpoint-genes RAD9, RAD17, RAD24 and RAD53 determining radioresistance of Yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    The mechanisms of genetic control of progress through the division cell cycle (checkpoint-control) in yeast Saccharomyces cerevisiae have been studied intensively. To investigate the role of checkpoint-genes RAD9, RAD17, RAD24, RAD53 in cell radioresistance we have investigated cell sensitivity of double mutants to γ-ray. Double mutants involving various combinations with rad9Δ show epistatic interactions, i.e. the sensitivity of the double mutants to γ-ray was no greater than that of more sensitive of the two single mutants. This suggests that all these genes govern the same pathway. This group of genes was named RAD9-epistasis group. It is interesting to note that the genes RAD9 and RAD53 have positive effect but RAD17 and RAD24 have negative effect on radiosensitivity of yeast cells. Interactions between mutations may differ depending on the agent γ-ray or UV-light, for example mutations rad9Δ and rad24Δ show additive effect for γ-ray and epistatic effect for UV-light

  10. Electro-stimulation of Saccharomyces cerevisiae wine yeasts by Pulsed Electric Field and its effect on fermentation performance

    CERN Document Server

    Mattar, J; Nonus, M; Lebovka, N I; Zakhem, H El; Vorobiev, E

    2013-01-01

    The batch fermentation process, inoculated by pulsed electric field (PEF) treated wine yeasts (S. cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions (0.12 % wt.) at the electric field strengths of E=100 and 6000 V/cm using the same pulse protocol (number of pulses of n=1000, pulse duration of ti=100 mks, and pulse repetition time of dt=100 ms). Electro-stimulation was confirmed by the observed growth of electrical conductivity of suspensions. The fermentation was running at 30{\\deg}C for 150 hours in an incubator with synchronic agitation. The obtained results clearly evidence the positive impact of PEF treatment on the batch fermentation process. Electro-stimulation resulted in improvement of such process characteristics as mass losses, consumption of soluble matter content ({\\deg}Brix) and synthesis of proteins. It also resulted in a noticeable acceleration of consumption of sugars at the initial stage of fermentation in the lag phase. At the end of the lag ph...

  11. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins

    OpenAIRE

    Bayliak, Maria M.; Burdyliuk, Nadia I.; Izers’ka, Lilia I.; Lushchak, Volodymyr I.

    2013-01-01

    Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. T...

  12. Old Yellow Enzymes Protect against Acrolein Toxicity in the Yeast Saccharomyces cerevisiae

    OpenAIRE

    Trotter, Eleanor W; Collinson, Emma J.; Dawes, Ian W.; Grant, Chris M.

    2006-01-01

    Acrolein is a ubiquitous reactive aldehyde which is formed as a product of lipid peroxidation in biological systems. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to acrolein to identify cell functions involved in resistance to reactive aldehydes. We identified 128 mutants whose gene products are localized throughout the cell. Acrolein-sensitive mutants were distributed among most major biological processes but parti...

  13. Pathological Mutations of the Mitochondrial Human Genome: the Instrumental Role of the Yeast S. cerevisiae

    Directory of Open Access Journals (Sweden)

    Monique Bolotin-Fukuhara

    2014-01-01

    Full Text Available Mitochondrial diseases, which altogether represent not so rare diseases, can be due to mutations either in the nuclear or mitochondrial genomes. Several model organisms or cell lines are usually employed to understand the mechanisms underlying diseases, yeast being one of them. However, in the case of mutations within the mitochondrial genome, yeast is a major model because it is a facultative aerobe and its mitochondrial genome can be genetically engineered and reintroduced in vivo. In this short review, I will describe how these properties can be exploited to mimic mitochondrial pathogenic mutations, as well as their limits. In particular; pathological mutations of tRNA, cytb, and ATPase genes have been successfully modeled. It is essential to stress that what has been discovered with yeast (molecular mechanisms underlying the diseases, nuclear correcting genes, import of tRNA into mitochondria or compounds from drug screening has been successfully transferred to human patient lines, paving the way for future therapies.

  14. Study on the Effect of Yeast (Saccharomyces cerevisiae SC47) Utilization on the Commercial Layer Hen`s Performance

    OpenAIRE

    S.A. Hosseini; H. Lotfollahian; A. Kamyab; Mahdavi, A.

    2006-01-01

    A trail was conducted to investigate the effect of yeast (Saccharomyces cerevisiae SC47) utilization on the commercial layer hen`s performance. The experiment consisted of 5 diets (0, 0.25, 0.5, 0.75 and 1 g Yeast per kg diet) with five replicates each containing 15 laying hen`s hy-Line W36 from 25 to 78 week of age. The randomized complete design was used for this experiment. During the experiment egg weight, egg production (%), Egg Mass, feed conversion and egg quality were measured daily a...

  15. THE EFFECT INDUCED BY MILLIMETER WAVES WITH THE FREQUENCY 53.33 GHZ ON SACCHAROMYCES CEREVISIAE CNMN-Y-18 YEAST STRAIN

    OpenAIRE

    Agafia Usatîi; Elena Molodoi; Nadejda Efromova; Ludmila Fulga

    2015-01-01

    The effect of extremely high frequency electromagnetic waves on the biosynthetic activity of Saccharomyces cerevisiae CNMN-Y-18 yeast strain in dependence on the duration of irradiation was studied. The maximum amount of biomass, protein, carbohydrates, mannoproteins and catalase has been showed to accumulate when the yeast cells were irradiated with a frequency f = 53.33 GHz for 10 minutes. High degree of dependence between the content of cellular components (a correlation coefficient betwee...

  16. L-carnosine enhanced reproductive potential of the Saccharomyces cerevisiae yeast growing on medium containing glucose as a source of carbon.

    Science.gov (United States)

    Kwolek-Mirek, Magdalena; Molon, Mateusz; Kaszycki, Pawel; Zadrag-Tecza, Renata

    2016-08-01

    Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine, which occurs in vertebrates, including humans. It has a number of favorable properties including buffering, chelating, antioxidant, anti-glycation and anti-aging activities. In our study we used the Saccharomyces cerevisiae yeast as a model organism to examine the impact of L-carnosine on the cell lifespan. We demonstrated that L-carnosine slowed down the growth and decreased the metabolic activity of cells as well as prolonged their generation time. On the other hand, it allowed for enhancement of the yeast reproductive potential and extended its reproductive lifespan. These changes may be a result of the reduced mitochondrial membrane potential and decreased ATP content in the yeast cells. However, due to reduction of the post-reproductive lifespan, L-carnosine did not have an influence on the total lifespan of yeast. In conclusion, L-carnosine does not extend the total lifespan of S. cerevisiae but rather it increases the yeast's reproductive capacity by increasing the number of daughter cells produced. PMID:27040824

  17. Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Williams, I; Richardson, J.; Starkey, A.; Stansfield, I

    2004-01-01

    In-frame stop codons normally signal termination during mRNA translation, but they can be read as ‘sense’ (readthrough) depending on their context, comprising the 6 nt preceding and following the stop codon. To identify novel contexts directing readthrough, under-represented 5′ and 3′ stop codon contexts from Saccharomyces cerevisiae were identified by genome-wide survey in silico. In contrast with the nucleotide bias 3′ of the stop codon, codon bias in the two codon positions 5′ of the termi...

  18. Mitotic chromosome loss in a radiation-sensitive strain of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Cells of Saccharomyces cerevisiae with mutations in the RAD52 gene have previously been shown to be defective in meiotic and mitotic recombination, in sporulation, and in repair of radiation-induced damage to DNA. In this study we show that diploid cells homozygous for rad52 lose chromosomes at high frequencies and that these frequencies of loss can be increased dramatically by exposure of these cells to x-rays. Genetic analyses of survivors of x-ray treatment demonstrate that chromosome loss events result in the conversion of diploid cells to cells with near haploid chromosome numbers

  19. A Simple Laboratory Exercise for Ethanol Production by Immobilized Bakery Yeasts ("Saccharomyces Cerevisiae")

    Science.gov (United States)

    Vullo, Diana L.; Wachsman, Monica B.

    2005-01-01

    This laboratory experiment was designed for Chemistry, Food Technology, Biology, and Chemical Engineering undergraduate students. This laboratory experience shows the advantages of immobilized bakery yeasts in ethanol production by alcoholic fermentation. The students were able to compare the ethanol production yields by free or calcium alginate…

  20. Analysis of Protein Localization and Secretory Pathway Function Using the Yeast "Saccharomyces Cerevisiae"

    Science.gov (United States)

    Vallen, Elizabeth

    2002-01-01

    The isolation and characterization of mutants has been crucial in understanding a number of processes in the field of cell biology. In this exercise, students examine the effects of mutations in the secretory pathway on protein localization. Yeast strains deficient for synthesis of histidinol dehydrogenase are transformed with a plasmid encoding a…

  1. Mechanisms of in situ detoxification of furfural and HMF by ethanologenic yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Furfural and 5-hydroxymethylfurfural (HMF) are major inhibitory compounds generated from biomass pretreatment using dilute acid hydrolysis. Remediation of inhibitors adds cost and generates extra waste products. Few yeast strains tolerant to inhibitors are available and the need for tolerant strai...

  2. Some Practical Aspects of Sugar Fermentation by Baker's Yeast (Saccharomyces cerevisiae)

    Science.gov (United States)

    Freeland, P. W.

    1973-01-01

    Describes simple quantitative determinations for ethanol and carbon dioxide, together with techniques for examining the effects of a number of environmental factors on their production. The experimental work centers around the growth of a cell population of yeast, and is suitable for senior high school students. (JR)

  3. Checkpoints Studies Using the Budding Yeast Saccharomyces cerevisiae: Analysis of changes in protein level and subcellular localization during cell cycle progression

    OpenAIRE

    Wu, Xiaorong; Liu, Lili; HUANG, Mingxia

    2011-01-01

    Methods are described here to monitor changes in protein level and subcellular localization during the cell cycle progression in the budding yeast S. cerevisiae. Cell synchronization is achieved by an α-factor mediated block-and-release protocol. Cells are collected at different time points for the first two cell cycles upon release. Cellular DNA contents are analyzed by flow cytometry. Trichloroacetic acid protein precipitates are prepared for monitoring levels of cell cycle regulated protei...

  4. Expression and secretion of Bacillus amyloliquefaciens alpha-amylase by using the yeast pheromone alpha-factor promoter and leader sequence in Saccharomyces cerevisiae.

    OpenAIRE

    Southgate, V J; Steyn, A J; Pretorius, I. S.; van Vuuren, H J

    1993-01-01

    Replacement of the regulatory and secretory signals of the alpha-amylase gene (AMY) from Bacillus amylolique-faciens with the complete yeast pheromone alpha-factor prepro region (MF alpha 1p) resulted in increased levels of extracellular alpha-amylase production in Saccharomyces cerevisiae. However, the removal of the (Glu-Ala)2 peptide from the MF alpha 1 spacer region (Lys-Arg-Glu-Ala-Glu-Ala) yielded decreased levels of extracellular alpha-amylase.

  5. Changes in metabolism of yeast Saccharomyces cerevisiae caused by deletion of the two Pdr transporter genes PDR5 and SNQ2

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Otakar; Váchová, Libuše; Palková, Z.

    Dorchester : Wiley, 2007, s. 2-2. [International Conference on Yeast Genetics and Molecular Biology /23./. Melbourne (AU), 01.07.2007-06.07.2007] R&D Projects: GA ČR GP204/05/P175; GA ČR GA525/05/0297; GA MŠk(CZ) LC531 Institutional research plan: CEZ:AV0Z50200510 Keywords : saccharomyces cerevisiae Subject RIV: EE - Microbiology, Virology

  6. Pinostrobin from Boesenbergia pandurata is an inhibitor of Ca2+-signal-mediated cell-cycle regulation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wangkangwan, Wachirasak; Boonkerd, Saipin; Chavasiri, Warinthorn; Sukapirom, Kasama; Pattanapanyasat, Kovit; Kongkathip, Ngampong; Miyakawa, Tokichi; Yompakdee, Chulee

    2009-07-01

    Upon searching plant extracts for inhibitors of the Ca(2+) signaling pathway using the zds1Delta-yeast proliferation based assay, a crude rhizome extract of Boesenbergia pandurata was found to be strongly positive, and from this extract pinostrobin, alpinetin, and pinocembrin chalcone were isolated as active components. Further biochemical experiments confirmed that pinostrobin possesses inhibitory activity on the Ca(2+) signals involved in the control of G2/M phase cell cycle progression in Saccharomyces cerevisiae. PMID:19584530

  7. Overexpression of ACC gene from oleaginous yeast Lipomyces starkeyi enhanced the lipid accumulation in Saccharomyces cerevisiae with increased levels of glycerol 3-phosphate substrates.

    Science.gov (United States)

    Wang, Jiancai; Xu, Ronghua; Wang, Ruling; Haque, Mohammad Enamul; Liu, Aizhong

    2016-06-01

    The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts. PMID:26865376

  8. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    A wide spectrum of DNA lesions are repaired by the nucleotide-excision repair (NER) pathway in both eukaryotic and prokaryotic cells. We have developed a cell-free system in Saccharomyces cerevisiae that supports NER. NER was monitored by measuring repair synthesis in DNA treated with cisplatin or with UV radiation. Repair synthesis in vitro was defective in extracts of rad1, rad2, and rad10 mutant cells, all of which have mutations in genes whose products are known to be required for NER in vivo. Additionally, repair synthesis was complemented by mixing different mutant extracts, or by adding purified Rad1 or Rad10 protein to rad1 or rad10 mutant extracts, respectively. The latter observation demonstrates that the Rad1 and Rad10 proteins directly participate in the biochemical pathway of NER. NER supported by nuclear extracts requires ATP and Mg2+ and is stimulated by polyethylene glycol and by small amounts of whole cell extract containing overexpressed Rad2 protein. The nuclear extracts also contain base-excision repair activity that is present at wild-type levels in rad mutant extracts. This cell-free system is expected to facilitate studies on the biochemical pathway of NER in S. cerevisiae

  9. Effects of cell entrapment in Ca-alginate on the metabolism of yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Saccharomyces cerevisiae cells grown in suspension have been immobilized in calcium-alginate beads. Fermentation rates and intracellular composition have been determined under nongrowing conditions in these Ca-alginate entrapped cells and for identical cells in suspension. Glucose uptake and ethanol and glycerol production are approximately two times faster in immobilized cells than in suspended cells. Intermediate metabolite levels such as fructose-1,6-diphosphate, glucose-6-phosphate and 3-phosphoglycerate have been determined by phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy under glucose fermenting conditions. Carbon-13 NMR shows an increase in polysaccharide production in immobilized cells. S. cerevisiae cells grown within a Ca-alginate matrix have a specific growth rate 40% lower than the growth rate of similar cells cultivated in suspension. Alginate-grown cells have been used to compare glucose fermentation under nongrowing conditions in suspended and Ca-entrapped cells. Fermentation rate is higher in immobilized cells than in suspended cells. The observed differences in intracellular components between suspended and immobilized cells are qualitatively similar to the differences observed for cells grown in suspension. Ethanol production rate is 2.7 times faster in immobilized alginate-grown cells than in suspended suspension-grown cells

  10. Development and utilization of protein enriched feed by yeast (Saccharomyces cerevisiae) fermentation in ruminants

    International Nuclear Information System (INIS)

    The two experiments have been carried out to investigate on the development and supplementation of yeast fermented cassava chip (YEFECAP) and yeast-fermented liquid (YEL) with coconut oil (CCO) in concentrate containing soybean meal or cassava hay in rumen ecology, digestibility, nitrogen balance and feed intakes in ruminants. This paper reports on the progress of the on-going work with in vivo digestion trials which are currently evaluating the protein value of the two sources and their effects on the rumen fermentation, microorganisms, fermentation end-products, blood metabolite, nitrogen balance nutrient digest abilities. Based on the preliminary data, the two proteins sources have potential protein and feeding values as protein sources and rumen enhancers for possible rumen fermentation and the subsequent ruminant productivity.

  11. Mitotic recombination induced by chemical and physical agents in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    The treatment of diploid cultures of yeast with ultraviolet light (uv), γ-rays, nitrous acid (na) and ethyl methane sulphonate (ems) results in increases in cell death, mitotic gene conversion and crossing-over. Acridine orange (ao) treatment, in contrast, was effective only in increasing the frequency of gene conversion. The individual mutagens were effective in the order uv>na>γ-rays>ao>ems. Prior treatment of yeast cultures in starvation medium produced a significant reduction in the yield of induced gene conversion. The results have been interpreted on the basis of a general model of mitotic gene conversion which involves the post-replication repair of induced lesions involving de novo DNA synthesis without genetic exchange. In contrast mitotic crossing-over appears to involve the action of a repair system independent from excision or post-replication repair which involves genetic exchange between homologous chromosomes

  12. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Daisuke Watanabe; Rie Kikushima; Miho Aitoku; Akira Nishimura; Iwao Ohtsu; Ryo Nasuno; Hiroshi Takag

    2014-01-01

    The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1, which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper...

  13. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography

    International Nuclear Information System (INIS)

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ∼3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. - Highlights: • High voltage TEM and STEM tomography were compared to visualize whole yeast cells. • 1-MeV STEM-BF tomography had significant improvements in image contrast and SNR. • 1-MeV STEM tomography showed less specimen shrinkage than the TEM tomography. • KMnO4 post-treatment permitted segmenting the major cellular components

  14. Effects of low power microwave radiation on biological activity of Collagenase enzyme and growth rate of S. Cerevisiae yeast

    Science.gov (United States)

    Alsuhaim, Hamad S.; Vojisavljevic, Vuk; Pirogova, E.

    2013-12-01

    Recently, microwave radiation, a type/subset of non-ionizing electromagnetic radiation (EMR) has been widely used in industry, medicine, as well as food technology and mobile communication. Use of mobile phones is rapidly growing. Four years from now, 5.1 billion people will be mobile phone users around the globe - almost 1 billion more mobile users than the 4.3 billion people worldwide using them now. Consequently, exposure to weak radiofrequency/microwave radiation generated by these devices is markedly increasing. Accordingly, public concern about potential hazards on human health is mounting [1]. Thermal effects of radiofrequency/microwave radiation are very well-known and extensively studied. Of particular interest are non-thermal effects of microwave exposures on biological systems. Nonthermal effects are described as changes in cellular metabolism caused by both resonance absorption and induced EMR and are often accompanied by a specific biological response. Non-thermal biological effects are measurable changes in biological systems that may or may not be associated with adverse health effects. In this study we studied non-thermal effects of low power microwave exposures on kinetics of L-lactate dehydrogenase enzyme and growth rate of yeast Saccharomyces Cerevisiae strains type II. The selected model systems were continuously exposed to microwave radiation at the frequency of 968MHz and power of 10dBm using the designed and constructed (custom made) Transverse Electro-Magnetic (TEM) cell [2]. The findings reveal that microwave radiation at 968MHz and power of 10dBm inhibits L-lactate dehydrogenase enzyme activity by 26% and increases significantly (15%) the proliferation rate of yeast cells.

  15. Adjustable under-expression of yeast mating pathway proteins in Saccharomyces cerevisiae using a programmed ribosomal frameshift.

    Science.gov (United States)

    Choi, Min-Yeon; Park, Sang-Hyun

    2016-06-01

    Experimental research in molecular biology frequently relies on the promotion or suppression of gene expression, an important tool in the study of its functions. Although yeast is among the most studied model systems with the ease of maintenance and manipulation, current experimental methods are mostly limited to gene deletion, suppression or overexpression of genes. Therefore, the ability to reduce protein expressions and then observing the effects would promote a better understanding of the exact functions and their interactions. Reducing protein expression is mainly limited by the difficulties associated with controlling the reduction level, and in some cases, the initial endogenous abundance is too low. For the under-expression to be useful as an experimental tool, repeatability and stability of reduced expression is important. We found that cis-elements in programmed -1 ribosomal frameshifting (-1RFS) of beet western yellow virus (BWYV) could be utilized to reduced protein expression in Saccharomyces cerevisiae. The two main advantages of using -1RFS are adjustable reduction rates and ease of use. To demonstrate the utility of this under-expression system, examples of reduced protein abundance were shown using yeast mating pathway components. The abundance of MAP kinase Fus3 was reduced to approximately 28-75 % of the wild-type value. Other MAP kinase mating pathway components, including Ste5, Ste11, and Ste7, were also under-expressed to verify that the -1RFS system works with different proteins. Furthermore, reduced Fus3 abundance altered the overall signal transduction outcome of the mating pathway, demonstrating the potential for further studies of signal transduction adjustment via under-expression. PMID:26837218

  16. Comparative proteome analysis of Saccharomyces cerevisiae: A global overview of in vivo targets of the yeast activator protein 1

    Directory of Open Access Journals (Sweden)

    Jun He

    2012-06-01

    Full Text Available Abstract Background The activity of the yeast activator protein 1 (Yap1p increases under stress conditions, which leads to enhanced transcription of a number of genes encoding protective enzymes or other proteins. To obtain a global overview of changes in expression of Yap1p-targeted proteins, we compared a Yap1p-overexpressing transformant with a control transformant by triplicate analysis of the proteome using two-dimensional gel electrophoresis (2-DE. Proteins of interest were identified using MALDI-MS or LC-MS/MS. Results The relative quantities of 55 proteins were elevated significantly upon overexpression of Yap1p, and most of these proteins were found to have a Yap1p-binding site upstream of their coding sequences. Interestingly, the main metabolic enzymes in the glycolysis and pyruvate-ethanol pathways showed a significant increase in the Yap1p-overexpressing transformant. Moreover, a comparison of our proteome data with transcriptome data from the literature suggested which proteins were regulated at the level of the proteome, and which proteins were regulated at the level of the transcriptome. Eight proteins involved in stress response, including seven heat-shock and chaperone proteins, were significantly more abundant in the Yap1p-overexpressing transformant. Conclusions We have investigated the general protein composition in Yap1p-overexpressing S. cerevisiae using proteomic techniques, and quantified the changes in the expression of the potential Yap1p-targeted proteins. Identification of the potential Yap1p targets and analysis of their role in cellular processes not only give a global overview of the ubiquitous cellular changes elicited by Yap1p, but also provide the framework for understanding the mechanisms behind Yap1p-regulated stress response in yeast.

  17. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Kazuyoshi, E-mail: kazum@nips.ac.jp [National Institute for Physiological Sciences, Okazaki, Aichi 444-8585 (Japan); Esaki, Masatoshi; Ogura, Teru [Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 (Japan); Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo [Ecotopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

    2014-11-15

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ∼3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. - Highlights: • High voltage TEM and STEM tomography were compared to visualize whole yeast cells. • 1-MeV STEM-BF tomography had significant improvements in image contrast and SNR. • 1-MeV STEM tomography showed less specimen shrinkage than the TEM tomography. • KMnO{sub 4} post-treatment permitted segmenting the major cellular components.

  18. Synthesis of hepatitis B virus surface protein derivates in yeast S. cerevisiae

    OpenAIRE

    Bulavaitė, Aistė; Sabaliauskaitė, Rasa; Staniulis, Juozas; Sasnauskas, Kęstutis

    2006-01-01

    HBV surface proteins PreS1[13–59]-S, PreS1[20–59]-S, PreS1[30–59]-S, PreS1[40–59]-S, PreS1[50–59]-S, PreS1[90–119]-S were produced in S.cerevisiae and purified. Electron microscopy suggested spherical virus-like particle formation for all the proteins except PreS1[90–119]-S. The PreS1[90–119] sequence was demonstrated to decrease protein solubility. Proteins are suitable for Tupaia primary hepatocyte binding investigations, diagnostic products and vaccine candidate development. Hepatito B ...

  19. Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Swain, M R; Kar, S; Sahoo, A K; Ray, R C

    2007-01-01

    There is a growing interest to find alternate bioresources for production of ethanol, apart from cane/sugar beet molasses and starchy crops like sweet sorghum, cassava and sweet potato. Mahula (Madhuca latifolia L.) is a forest tree abundantly available in the Indian subcontinent and its flowers are very rich in fermentable sugars (28.1-36.3 g 100 g(-1)). Batch fermentation of fresh and 12-month-stored flowers with free (whole cells) and immobilized cells of Saccharomyces cerevisiae (strain CTCRI) was carried out in 2-l Erlenmeyer flasks. The ethanol yields were 193 and 148 g kg(-1) (using free cells) and 205 and 152 g kg(-1) (using immobilized cells) from fresh and 12-month-stored mahula flowers, respectively. PMID:16580830

  20. Enological profile of Saccharomyces cerevisiae yeast isolated from fermenting plum mashes

    Directory of Open Access Journals (Sweden)

    Ewelina Tomczyk

    2010-03-01

    Full Text Available Background. Śliwowica Łącka is a strong plum brandy (slivovitz that is produced ina submontane region of Poland by means of spontaneous fermentation of Węgierka plums. The aim of this study was to evaluate enological profile of S. cerevisiae indigenous strains isolated from spontaneous plum mash fermentation. Material and methods. Fourteen strains obtained from three different stages of fermentation (initial, central and final and characterised by different killer profile were chosen for the analysis. Fermentation assays were performed on the basal synthetic medium with 10% glucose. The fermentation kinetics, basic enological parameters by OIV methods and selected volatile compounds concentration by GC-SPME were analysed. Results. Analysed strains exhibited different fermentation kinetics, as well as produced diversified amounts of studied volatile compounds. The highest ethanol synthesis (over  40 g·dm-3 and fermentation efficiency (over 80% was found in samples fermented with strains isolated from final stage of fermentation. Cultures from an initial stage were distinguished by higher production of acetaldehyde and acetic acid, and lower of isobutanol, ethanol and ethyl acetate, those originated from central stage showed increased synthesis of ethyl acetate and acetoine, whereas the strains isolated during final stage of fermentation formed more acetaldehyde, acetic acid and fusel alcohols and less esters. Strains that were present throughout the spontaneous fermentation were synthesized average amounts of compounds mentioned above. Conclusions. High diversity of enological profiles among isolated S. cerevisiae strains was determined. The composition of Sliwowica Łącka is strictly dependent on presence and amount of the individual profiles during spontaneous plums fermentation.

  1. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria

    OpenAIRE

    Kathiresan, Meena; Martins, Dorival; English, Ann M.

    2014-01-01

    We provide to our knowledge the first in vivo and in vitro evidence for H2O2-triggered heme transfer between proteins. Specifically, H2O2 binds to and labilizes cytochrome c peroxidase (Ccp1)’s heme by oxidizing the proximal Fe ligand (His175), which activates Ccp1 to transfer its heme to apoCta1, and apoCcp1 subsequently escapes from mitochondria. This sequence of H2O2-activated heme labilization, heme transfer between proteins, and protein relocalization defines a previously undefined mecha...

  2. Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru.

    Science.gov (United States)

    Vallejo, Juan Andrés; Miranda, Patricia; Flores-Félix, José David; Sánchez-Juanes, Fernando; Ageitos, José M; González-Buitrago, José Manuel; Velázquez, Encarna; Villa, Tomás G

    2013-12-01

    Chicha is a drink prepared in several Andean countries from Inca's times by maize fermentation. Currently this fermentation is carried out in familiar artesanal "chicherías" that make one of the most known types of chicha, the "chicha de jora". In this study we isolate and identify the yeasts mainly responsible of the fermentation process in this type of chicha in 10 traditional "chicherías" in Cusco region in Peru. We applied by first time MALDI-TOF MS analysis for the identification of yeast of non-clinic origin and the results showed that all of yeast strains isolated belong to the species Saccharomyces cerevisiae. These results agree with those obtained after the analysis of the D1/D2 and 5.8S-ITS regions. However the chicha strains have a phenotypic profile that differed in more than 40% as compared to that of current S. cerevisiae strains. To the best of our knowledge this is the first report concerning the yeasts involved in chicha fermentation. PMID:24120265

  3. Important role of catalase in the cellular response of the budding yeast Saccharomyces cerevisiae exposed to ionizing radiation.

    Science.gov (United States)

    Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2015-03-01

    Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation. PMID:25416226

  4. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe3O4/KCTS) as support. The magnetic Fe3O4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe3O4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe3O4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 oC and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  5. THE EFFECT INDUCED BY MILLIMETER WAVES WITH THE FREQUENCY 53.33 GHZ ON SACCHAROMYCES CEREVISIAE CNMN-Y-18 YEAST STRAIN

    Directory of Open Access Journals (Sweden)

    Agafia Usatîi

    2015-04-01

    Full Text Available The effect of extremely high frequency electromagnetic waves on the biosynthetic activity of Saccharomyces cerevisiae CNMN-Y-18 yeast strain in dependence on the duration of irradiation was studied. The maximum amount of biomass, protein, carbohydrates, mannoproteins and catalase has been showed to accumulate when the yeast cells were irradiated with a frequency f = 53.33 GHz for 10 minutes. High degree of dependence between the content of cellular components (a correlation coefficient between R2 = 0.875 and 0.926 it has been shown which demonstrates that biosynthetic processes were influenced by the same phenomenon - millimeter waves. A procedure for increasing of mannoprotein content in yeasts with the utilization of extremely high frequency waves has been proposed in this study.

  6. IMPACT OF PESTICIDES USED IN THE CULTURE OF THE VINE ON THE VIABILITY OF THE YEAST SACCHAROMYCES CEREVISIAE WINE IN CHRONOLOGICAL AGING

    Directory of Open Access Journals (Sweden)

    Alina Owsiak

    2015-02-01

    Full Text Available Pesticides, used in culture, may induce oxidative stress by stimulation of free radicals production, what may result in lipid peroxidation, proteome damage, changes in DNA and RNA structures and disturbance of total antioxidative capacity in organisms’ cells. In disturbances caused by increase synthesis ROS (reactive oxygen species or lack antioxidative defense that is in oxidative stress it is seen one of all causes of aging process. Chronological aging of baker’s and wine yeast Saccharomyces cerevisiae in liquid stationary culture is used as model of research on the aging process. As a result of aging changes take place in yeast cells which have physiological, genetic, metabolic and morphological character, what cause their death in consequence. Some scientists treat chronological yeast aging as analogy of fibroblasts aging of multicellular organisms, skeletal muscles or nerve cells. The aim of the experiment was to obtain the answer on question connected with toxicity effect two widely available pesticides in shape of trade preparation, used among other things in culture of grapevine Miedzian 50 WP (Cu 50WP and Siarkol Extra 80 WP (S 80WP on vitality of wine yeast in chronological aging. During research cells of wine yeast Tokay, which are used in production of white wines, and cells of Malaga strain, used in production of white and red wines, were applied. Yeast culture with pesticides supplementation in determined concentrations was conducted through seven days in YPG medium. At that time vitality of yeast cells was determined by the percentage of cells surviving, percentage of dead cells and culture density. Considerable influence on decreasing vitality of yeast cells in the process of aging showed S 80WP, what correlate with the increase of applied concentration in both example of Malaga and Tokay. Obtained results in application of Cu 50WP indicated lower toxicity in culture of both studied strains in comparison to the control. Our

  7. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  8. Effects of dietary changes and yeast culture (Saccharomyces cerevisiae) on rumen microbial fermentation of Holstein heifers.

    Science.gov (United States)

    Moya, D; Calsamiglia, S; Ferret, A; Blanch, M; Fandiño, J I; Castillejos, L; Yoon, I

    2009-09-01

    The effects of a dietary challenge to induce digestive upsets and supplementation with yeast culture on rumen microbial fermentation were studied using 12 Holstein heifers (277 +/- 28 kg of BW) fitted with a ruminal cannula, in a crossover design with 2 periods of 5 wk. In each period, after 3 wk of adaptation to a 100% forage diet, the dietary challenge consisted of increasing the amount of grain at a rate of 2.5 kg/d (as-fed basis) over a period of 4 d, until a 10:90 forage:concentrate diet was reached, and then it was maintained for 10 d. Between periods, animals were fed again the 100% forage diet without any treatment for 1 wk as a wash-out period. Treatments started the first day of each period, and they were a control diet (CL) or the same diet with addition of yeast culture (YC, Diamond V XPCLS). Digestive upsets were determined by visual observation of bloat or by a reduction in feed intake (as-fed basis) of 50% or more compared with intake on the previous day. Feed intake was determined daily at 24-h intervals during the adaptation period and daily at 2, 6, and 12 h postfeeding during the dietary challenge. Ruminal liquid samples were collected daily during the dietary challenge to determine ruminal pH at 0, 3, 6, and 12 h postfeeding, and total and individual VFA, lactic acid, ammonia-N, and rumen fluid viscosity at 0 and 6 h postfeeding. The 16s rRNA gene copies of Streptococcus bovis and Megasphaera elsdenii were determined by quantitative PCR. Foam height and strength of the rumen fluid were also determined the day after the digestive upset to evaluate potential foam production. A total of 20 cases (83.3%) of digestive upsets were recorded in both periods during the dietary challenge, all diagnosed due to a reduction in feed intake. Rumen fermentation profile at 0 h on the digestive upset day was characterized by low ruminal pH, which remained under 6.0 for 18 h, accompanied by elevated total VFA concentration and, in some cases, by elevated lactate

  9. Subproteomics: identification of plasma membrane proteins from the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Navarre, Catherine; Degand, Hervé; Bennett, Keiryn L; Crawford, Janne S; Mørtz, Ejvind; Boutry, Marc

    2002-12-01

    As a consequence of their poor solubility during isoelectric focusing, integral membrane proteins are generally absent from two-dimensional gel proteome maps. In order to analyze the yeast plasma membrane proteome, a plasma membrane purification protocol was optimized in order to reduce contaminating membranes and cytosolic proteins. Specifically, the new fractionation scheme largely depleted the plasma membrane fraction of cytosolic proteins by deoxycholate stripping and ribosomal proteins by sucrose gradient flotation. The plasma membrane complement was resolved by two-dimensional electrophoresis using the cationic detergent cetyl trimethyl ammonium bromide in the first, and sodium dodecyl sulfate in the second dimension, and fifty spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectometry. In spite of the presence of still contaminating ribosomal proteins, major proteins corresponded to known plasma membrane residents, the ABC transporters Pdr5p and Snq2p, the P-type H(+)-ATPase Pma1p, the glucose transporter Hxt7p, the seven transmembrane-span Mrh1p, the low affinity Fe(++) transporter Fet4p, the twelve-span Ptr2p, and the plasma membrane anchored casein kinase Yck2p. The four transmembrane-span proteins Sur7p and Nce102p were also present in the isolated plasma membranes, as well as the unknown protein Ygr266wp that probably contains a single transmembrane span. Thus, combining subcellular fractionation with adapted two-dimensional electrophoresis resulted in the identification of intrinsic plasma membrane proteins. PMID:12469340

  10. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7

    International Nuclear Information System (INIS)

    A process for producing ethanol from kitchen waste was developed in this study. The process consists of freshness preservation of the waste, saccharification of the sugars in the waste, continuous ethanol fermentation of the saccharified liquid, and anaerobic treatment of the saccharification residue and the stillage. Spraying lactic acid bacteria (LCB) on the kitchen waste kept the waste fresh for over 1 week. High glucose recovery (85.5%) from LCB-sprayed waste was achieved after saccharification using Nagase N-40 glucoamylase. The resulting saccharified liquid was used directly for ethanol fermentation, without the addition of any nutrients. High ethanol productivity (24.0 g l-1 h-1) was obtained when the flocculating yeast strain KF-7 was used in a continuous ethanol fermentation process at a dilution rate of 0.8 h-1. The saccharification residue was mixed with stillage and treated in a thermophilic anaerobic continuous stirred tank reactor (CSTR); a VTS loading rate of 6 g l-1 d-1 with 72% VTS digestion efficiency was achieved. Using this process, 30.9 g ethanol, and 65.2 l biogas with 50% methane, was produced from 1 kg of kitchen waste containing 118.0 g total sugar. Thus, energy in kitchen waste can be converted to ethanol and methane, which can then be used as fuels, while simultaneously treating kitchen waste

  11. Co-precipitation of Phosphate and Iron Limits Mitochondrial Phosphate Availability in Saccharomyces cerevisiae Lacking the Yeast Frataxin Homologue (YFH1)*

    OpenAIRE

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2010-01-01

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proport...

  12. A septin from the filamentous fungus A. nidulans induces atypical pseudohyphae in the budding yeast S. cerevisiae

    Science.gov (United States)

    Septins were first discovered in Saccharomyces cerevisiae where they form a scaffold that organizes the bud site and are a component of the morphogenesis checkpoint that coordinates budding with mitosis. Five of the seven S. cerevisiae septins (Cdc3, Cdc10, Cdc11, Cdc12 and Shs1) colocalize as a rin...

  13. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1

    Directory of Open Access Journals (Sweden)

    de Morais Marcos A

    2011-08-01

    Full Text Available Abstract Background Polyhexamethylene biguanide (PHMB is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.

  14. Effect of 905 MHz microwave radiation on colony growth of the yeast Saccharomyces cerevisiae strains FF18733, FF1481 and D7

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the effect of weak radiofrequency microwave (RF/MW) radiation emitted by mobile phones on colony growth of the yeast Saccharomyces cerevisiae. S. cerevisiae strains FF18733 (wild-type), FF1481 (rad1 mutant) and D7 (commonly used to detect reciprocal and nonreciprocal mitotic recombinations) were exposed to a 905 MHz electromagnetic field that closely matched the Global System for Mobile Communication (GSM) pulse modulation signals for mobile phones at a specific absorption rate (SAR) of 0.12 W/kg. Following 15-, 30- and 60-minutes exposure to RF/MW radiation, strain FF18733 did not show statistically significant changes in colony growth compared to the control sample. The irradiated strains FF1481 and D7 demonstrated statistically significant reduction of colony growth compared to non-irradiated strains after all exposure times. Furthermore, strain FF1481 was more sensitive to RF/MW radiation than strain D7. The findings indicate that pulsed RF/MW radiation at a low SAR level can affect the rate of colony growth of different S. cerevisiae strains

  15. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  16. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion

    OpenAIRE

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2007-01-01

    Abstract The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. In anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of saturated fatty acid (SFA) is observed that induces significant modification of phospholipid profile [1]. ...

  17. The Response of Ω-Loop D Dynamics to Truncation of Trimethyllysine 72 of Yeast Iso-1-cytochrome c Depends on the Nature of Loop Deformation

    Science.gov (United States)

    McClelland, Levi J.; Seagraves, Sean M.; Khan, Khurshid Alam; Cherney, Melisa M.; Bandi, Swati; Culbertson, Justin E.; Bowler, Bruce E.

    2015-01-01

    Trimethyllysine 72 (tmK72) has been suggested to play a role in sterically constraining the heme crevice dynamics of yeast iso-1-cytochrome c mediated by the Ω-loop D cooperative substructure (residues 70 to 85). A tmK72A mutation causes a gain in peroxidase activity, a function of cytochrome c that is important early in apoptosis. More than one higher energy state is accessible for the Ω-loop D substructure via tier 0 dynamics. Two of these are alkaline conformers mediated by Lys73 and Lys79. In the current work, the effect of the tmK72A mutation on the thermodynamic and kinetic properties of wild type iso-1-cytochrome c (yWT versus WT*) and on variants carrying a K73H mutation (yWT/K73H versus WT*/K73H) is studied. Whereas the tmK72A mutation confers increased peroxidase activity in wild type yeast iso-1-cytochrome c and increased dynamics for formation of a previously studied His79-heme alkaline conformer, the tmK72A mutation speeds return of the His73-heme alkaline conformer to the native state through destabilization of the His73-heme alkaline conformer relative to the native conformer. These opposing behaviors demonstrate that the response of the dynamics of a protein substructure to mutation depends on the nature of the perturbation to the substructure. For a protein substructure which mediates more than one function of a protein through multiple non-native structures, a mutation could change the partitioning between these functions. The current results suggest that the tier 0 dynamics of Ω-loop D that mediates peroxidase activity has similarities to the tier 0 dynamics required to form the His79-heme alkaline conformer. PMID:25948392

  18. Analysis of Leigh Syndrome Mutations in the Yeast SURF1 Homolog Reveals a New Member of the Cytochrome Oxidase Assembly Factor Family▿

    OpenAIRE

    Bestwick, Megan; Jeong, Mi-Young; Khalimonchuk, Oleh; Kim, Hyung; Winge, Dennis R

    2010-01-01

    Three missense SURF1 mutations identified in patients with Leigh syndrome (LS) were evaluated in the yeast homolog Shy1 protein. Introduction of two of the Leigh mutations, F249T and Y344D, in Shy1 failed to significantly attenuate the function of Shy1 in cytochrome c oxidase (CcO) biogenesis as seen with the human mutations. In contrast, a G137E substitution in Shy1 results in a nonfunctional protein conferring a CcO deficiency. The G137E Shy1 mutant phenocopied shy1Δ cells in impaired Cox1 ...

  19. Direct Cloning of Yeast Genes from an Ordered Set of Lambda Clones in Saccharomyces Cerevisiae by Recombination in Vivo

    OpenAIRE

    Erickson, J. R.; Johnston, M

    1993-01-01

    We describe a technique that facilitates the isolation of yeast genes that are difficult to clone. This technique utilizes a plasmid vector that rescues lambda clones as yeast centromere plasmids. The source of these lambda clones is a set of clones whose location in the yeast genome has been determined by L. Riles et al. in 1993. The Esherichia coli-yeast shuttle plasmid carries URA3, ARS4 and CEN6, and contains DNA fragments from the lambda vector that flank the cloned yeast insert. When ye...

  20. Identification of yeasts isolated from raffia wine (Raphia hookeri) produced in Côte d'Ivoire and genotyping of Saccharomyces cerevisiae strains by PCR inter-delta.

    Science.gov (United States)

    Tra Bi, Charles Y; N'guessan, Florent K; Kouakou, Clémentine A; Jacques, Noemie; Casaregola, Serge; Djè, Marcellin K

    2016-08-01

    Raffia wine is a traditional alcoholic beverage produced in several African countries where it plays a significant role in traditional customs and population diet. Alcoholic fermentation of this beverage is ensured by a complex natural yeast flora which plays a decisive role in the quality of the final product. This present study aims to evaluate the distribution and the diversity of the yeast strains isolated in raffia wine from four sampling areas (Abengourou, Alépé, Grand-Lahou and Adzopé) in Côte d'Ivoire. Based on the D1/D2 domain of the LSU rDNA sequence analysis, nine species belonging to six genera were distinguished. With a percentage of 69.5 % out of 171 yeast isolates, Saccharomyces cerevisiae was the predominant species in the raffia wine, followed by Kodamaea ohmeri (20.4 %). The other species isolated were Candida haemulonii (4.1 %), Candida phangngensis (1.8 %), Pichia kudriavzevii (1.2 %), Hanseniaspora jakobsenii (1.2 %), Candida silvae (0.6 %), Hanseniaspora guilliermondii (0.6 %) and Meyerozyma caribbica (0.6 %). The molecular characterization of S. cerevisiae isolates at the strain level using the PCR-interdelta method revealed the presence of 21 profiles (named I to XXI) within 115 isolates. Only four profiles (I, III, V and XI) were shared by the four areas under study. Phenotypic characterization of K. ohmeri strains showed two subgroups for sugar fermentation and no diversity for the nitrogen compound assimilations and the growth at different temperatures. PMID:27339306

  1. Analysis of the secondary compounds produced by Saccharomyces cerevisiae and wild yeast strains during the production of "cachaça" Análise dos componentes secundários produzidos por Saccharomyces cerevisiae e leveduras selvagens durante a produção de cachaça

    OpenAIRE

    Maria Cecília Fachine Dato; João Martins Pizauro Júnior; Márcia Justino Rossini Mutton

    2005-01-01

    The aim of this study is to compare the composition of "cachaças" produced in 10 fermentation cycles by Saccharomyces cerevisiae (Sc) and wild yeast strains [Pichia silvicola (Ps), Pichia anomala 1 (Pa1), Pichia anomala 2 (Pa2) and Dekkera bruxelensis (Db)], isolated from distilleries in Jaboticabal - SP, Brazil. The secondary components of the heart fraction were determined by gas chromatography. The levels of secondary components were influenced by the wine pH, which varied among yeast stra...

  2. Utilization of baker's yeast (Saccharomyces cerevisiae) for the production of yeast extract: effects of different enzymatic treatments on solid, protein and carbohydrate recovery

    OpenAIRE

    TATJANA VUKASINOVIC MILIC; MARICA RAKIN; SLAVICA SILER-MARINKOVIC

    2007-01-01

    Yeast extract (YE) was produced from commercial pressed baker's yeast (active and inactivated) using two enzymes: papain and lyticase. The effects of enzyme concentration and hydrolysis time on the recovery of solid, protein and carbohydrate were investigated. Autolysis, as a basic method for cell lysis was also used and the results compared. The optimal extraction conditions were investigated. The optimal concentrations of papain and lyticase were found to be 2.5 % and 0.025 %, respectively.

  3. Utilization of baker's yeast (Saccharomyces cerevisiae for the production of yeast extract: effects of different enzymatic treatments on solid, protein and carbohydrate recovery

    Directory of Open Access Journals (Sweden)

    TATJANA VUKASINOVIC MILIC

    2007-05-01

    Full Text Available Yeast extract (YE was produced from commercial pressed baker's yeast (active and inactivated using two enzymes: papain and lyticase. The effects of enzyme concentration and hydrolysis time on the recovery of solid, protein and carbohydrate were investigated. Autolysis, as a basic method for cell lysis was also used and the results compared. The optimal extraction conditions were investigated. The optimal concentrations of papain and lyticase were found to be 2.5 % and 0.025 %, respectively.

  4. Purification, crystallization and preliminary X-ray diffraction analysis of a soluble variant of the monoglyceride lipase Yju3p from the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    A soluble variant of the monoglyceride lipase Yju3p was successfully expressed, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. The protein Yju3p is the orthologue of monoglyceride lipases in the yeast Saccharomyces cerevisiae. A soluble variant of this lipase termed s-Yju3p (38.3 kDa) was generated and purified to homogeneity by affinity and size-exclusion chromatography. s-Yju3p was crystallized in a vapour-diffusion setup at 293 K and a complete data set was collected to 2.4 Å resolution. The crystal form was orthorhombic (space group P212121), with unit-cell parameters a = 77.2, b = 108.6, c = 167.7 Å. The asymmetric unit contained four molecules with a solvent content of 46.4%

  5. Purification, crystallization and preliminary X-ray diffraction analysis of a soluble variant of the monoglyceride lipase Yju3p from the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Rengachari, Srinivasan; Aschauer, Philipp; Sturm, Christian; Oberer, Monika, E-mail: m.oberer@uni-graz.at [University of Graz, Humboldtstrasse 50/3, 8010 Graz (Austria)

    2015-01-28

    A soluble variant of the monoglyceride lipase Yju3p was successfully expressed, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. The protein Yju3p is the orthologue of monoglyceride lipases in the yeast Saccharomyces cerevisiae. A soluble variant of this lipase termed s-Yju3p (38.3 kDa) was generated and purified to homogeneity by affinity and size-exclusion chromatography. s-Yju3p was crystallized in a vapour-diffusion setup at 293 K and a complete data set was collected to 2.4 Å resolution. The crystal form was orthorhombic (space group P2{sub 1}2{sub 1}2{sub 1}), with unit-cell parameters a = 77.2, b = 108.6, c = 167.7 Å. The asymmetric unit contained four molecules with a solvent content of 46.4%.

  6. Influence the oxidant action of selenium in radiosensitivity induction and cell death in yeast Saccharomyces cerevisiae; Influencia da acao oxidante do selenio na inducao da radiossensibilidade e morte celular na levedura Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Barbara Abranches de Araujo

    2012-07-01

    Ionizing radiations are from both natural sources such as from anthropogenic sources. Recently, radiotherapy has emerged as one of the most common therapies against cancer. Co-60 irradiators (cobalt-60 linear accelerators) are used to treat of malignant tumors routinely in hospitals around the world. Exposure to ionizing radiation can induce changes in cellular macromolecules and affect its functions, because they cause radiolysis of the water molecule generating reactive oxygen species, which can cause damage to virtually all organelles and cell components known as oxidative damage that can culminate in oxidative stress. Oxidative stress is a situation in which the balance between oxidants and antioxidants is broken resulting in excessive production of reactive species, it is not accompanied by the increase in antioxidant capacity, making it impossible to neutralize them. Selenium is a micronutrient considered as antioxidant, antiinflammatory, which could prevent cancer. Selenium in biological system exists as seleno proteins. Nowadays, 25 human seleno proteins have been identified, including glutathione peroxidase, an antioxidant enzyme. Yeasts have the ability to incorporate various metals such as iron, cadmium, zinc and selenium, as well as all biological organisms. The yeast Saccharomyces cerevisiae, unlike mammalian cells is devoid of seleno proteins, being considered as a practical model for studies on the toxicity of selenium, without any interference from the metabolism of seleno proteins. Moreover, yeast cells proliferate through the fermentation, the microbial equivalent of aerobic glycolysis in mammals and the process is also used by tumors. Several reports show that the pro-oxidante effects and induced toxic selenium compounds occur at lower doses and in malignant cells compared with benign cells. Therefore selenium giving a great therapeutic potential in cancer treatment .Our objective was to determine whether selenium is capable to sensitize yeasts

  7. Efecto de la Levadura de cerveza (S. cerevisiae asociada con vitamina E sobre las variables productivas y la calidad de la canal de pollos parrilleros Yeast (S. cerevisiae - E vitamin combination over productive variables and quality carcass in broilers

    Directory of Open Access Journals (Sweden)

    M.J Linares

    2009-06-01

    Full Text Available El objetivo fue verificar la acción de Levadura de Cerveza asociada o no a vitamina E sobre las variables productivas y la calidad de la canal. Ciento veinte pollos parrilleros recibieron dietas Control, Vitamina 1 (V1, 50 ppm. de vitamina E, Vitamina 2 (V2, 100 ppm. de vitamina E, Vitamina 3 (V3, 200 ppm. de vitamina E, y Levadura mas Vitamina (L+V, 0,3 % de Levadura + 200 ppm. de vitamina E; con cuatro repeticiones de seis aves cada una. De los 29 a los 52 días de vida se midieron Ganancia Media Diaria (GMD, Consumo Medio Diario (CMD e Índice de Conversión (IC, se determinaron % de Rendimiento de la canal (RC, Peso de Pechuga (% (PP, Peso de Muslos (% (PM y Peso de Grasa (% (PG. Se realizó un ANOVA con posterior test de Tukey, p≤ 0,05 fueron considerados significativos. Las aves que recibieron la asociación tuvieron significativamente mejor IC, mayor PM y menor PG, respecto a las otras. Se concluye que la combinación de la Levadura y la Vitamina E mejoró la performance productiva y la calidad de la canal al mejorar el IC, reducir el PG y aumentar el PM en las aves que la recibieron.The aim was to estimate the action of yeast (S. Cerevisiae-vitamin E combinated or not over the productive variables and quality carcass. One hundred and twenty male broilers Cobb received the following diets: Control, Vitamin 1 (V1, 50 ppm E vitamin, Vitamin 2 (V2, 100 ppm E vitamin, Vitamin 3 (V3, 200 ppm E vitamin and Yeast plus Vitamin (Y+V, 0,3 % yeast + 200 pp E vitamin with six chicken per pen and four pen for ration Since 29 till 52 days old the Average Daily Consumption (ADC, Average Daily Gain (ADG and Conversion Index (CI were measured. % carcass yield (CY, % breast weigh (BW, % leg muscles weigh (LMW and % fat weigh (FW were determinated. An ANOVA and a tukey test were made, significant differences were considered if p≤ 0,05. The broiler that received the combination of yeast and E vitamin had significantly best CI and hight LMW and lower FW

  8. Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica.

    Science.gov (United States)

    Shi, Shuobo; Ji, Haichuan; Siewers, Verena; Nielsen, Jens

    2016-02-01

    Biological production of fatty acid (FA)-derived products has gained increasing attention to replace petroleum-based fuels and chemicals. FA biosynthesis is highly regulated, and usually it is challenging to design rational engineering strategies. In addition, the conventional 'one sample at a time' method for lipid determination is time consuming and laborious, and it is difficult to screen large numbers of samples. Here, a method for detecting free FAs in viable cells using Nile red staining was developed for use in large-scale screening. Following optimization of the method, it was used for screening a cDNA library from the oleaginous yeast Yarrowia lipolytica for identification of genes/enzymes that were able to enhance free FA accumulation in Saccharomyces cerevisiae. Several novel enzymes resulting in increasing FA accumulation were discovered. These targets include a GPI anchor protein, malate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase, FA hydroxylase, farnesyltransferase, anoctamin, dihydrolipoamide dehydrogenase and phosphatidylethanolamine-binding protein. The best enzyme resulted in a 2.5-fold improvement in production of free FAs. Our findings not only provide a novel method for high-throughput evaluation of the content of free FAs, but also give new insight into how enzymes from Y. lipolytica may increase the production of fatty acids in S. cerevisiae. PMID:26658002

  9. Induction of energy metabolism related enzymes in yeast Saccharomyces cerevisiae exposed to ibogaine is adaptation to acute decrease in ATP energy pool.

    Science.gov (United States)

    Paskulin, Roman; Jamnik, Polona; Obermajer, Natasa; Slavić, Marija; Strukelj, Borut

    2010-02-10

    Ibogaine has been extensively studied in the last decades in relation to its anti-addictive properties that have been repeatedly reported as being addiction interruptive and craving eliminative. In our previous study we have already demonstrated induction of energy related enzymes in rat brains treated with ibogaine at a dose of 20mg/kg i.p. 24 and 72 h prior to proteomic analysis. In this study a model organism yeast Saccharomyces cerevisiae was cultivated with ibogaine in a concentration of 1mg/l. Energy metabolism cluster enzymes glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, enolase and alcohol dehydrogenase were induced after 5h of exposure. This is a compensation of demonstrated ATP pool decrease after ibogaine. Yeast in a stationary growth phase is an accepted model for studies of housekeeping metabolism of eukaryotes, including humans. Study showed that ibogaine's influence on metabolism is neither species nor tissue specific. Effect is not mediated by binding of ibogaine to receptors, as previously described in literature since they are lacking in this model. PMID:19853595

  10. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Vaibhavkumar N. [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India); Jha, Sanjay [Gujarat Agricultural Biotechnology Institute, Navsari Agricultural University, Surat, 395007 (India); Kailasa, Suresh Kumar, E-mail: sureshkumarchem@gmail.com [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India)

    2014-05-01

    We are reporting highly economical plant-based hydrothermal method for one-pot green synthesis of water-dispersible fluorescent carbon dots (CDs) by using Saccharum officinarum juice as precursor. The synthesized CDs were characterized by UV-visible, fluorescence, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), high-resolution transmission electron microscopic (HR-TEM), and laser scanning confocal microscopic techniques. The CDs are well dispersed in water with an average size of ∼ 3 nm and showed bright blue fluorescence under UV-light (λ{sub ex} = 365 nm). These CDs acted as excellent fluorescent probes in cellular imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). - Highlights: • One-pot green synthesis was used for fluorescent CDs. • FT-IR, DLS, and TEM were used for the characterization of CDs. • The CDs are well dispersed in water with an average size of ∼ 3 nm. • The CDs acted as fluorescent probes for imaging of bacteria and yeast cells.

  11. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells

    International Nuclear Information System (INIS)

    We are reporting highly economical plant-based hydrothermal method for one-pot green synthesis of water-dispersible fluorescent carbon dots (CDs) by using Saccharum officinarum juice as precursor. The synthesized CDs were characterized by UV-visible, fluorescence, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), high-resolution transmission electron microscopic (HR-TEM), and laser scanning confocal microscopic techniques. The CDs are well dispersed in water with an average size of ∼ 3 nm and showed bright blue fluorescence under UV-light (λex = 365 nm). These CDs acted as excellent fluorescent probes in cellular imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). - Highlights: • One-pot green synthesis was used for fluorescent CDs. • FT-IR, DLS, and TEM were used for the characterization of CDs. • The CDs are well dispersed in water with an average size of ∼ 3 nm. • The CDs acted as fluorescent probes for imaging of bacteria and yeast cells

  12. Yeast cytochrome c peroxidase: mutagenesis and expression in Escherichia coli show tryptophan-51 is not the radical site in compound I

    International Nuclear Information System (INIS)

    Using oligonucleotide-directed site-specific mutagenesis, they have constructed a system for the mutation and expression of yeast cytochrome c peroxidase (CCP, EC 1.11.1.5) in Escherichia coli and applied it to test the hypothesis that Trp-51 is the locus of the free radical observed in compound I of CCP. The system was created by substituting a CCP gene modified by site-directed mutagenesis, CCP(MI), for the fol gene in a vector previously used for mutagenesis and overexpression of dihydrofolate reductase. E. coli transformed with the resulting plasmid produced the CCP(MI) enzyme in large quantities, more than 15 mg/L of cell culture, of which 10% is holo- and 90% is apo-CCP(MI). The apoenzyme was easily converted to holoenzyme by the addition of bovine hemin. Purified CCP(MI) has the same catalytic activity and spectra as bakers' yeast CCP. A mutation has been made in CCP(MI), Trp-51 to Phe. The Phe-51 mutant protein CCP(MI,F51) is fully active, and the electron paramagnetic resonance (EPR) spectrum, at 89 K, of its oxidized intermediate, compound I, displays a strong sharp resonance at g = 2.004, which is very similar to the signal observed for compound I of both bakers' yeast CCP and CCP(MI). However, UV-visible and EPR spectroscopy revealed that the half-life of CCP(MI,F51) compound I at 23 0C is only 1.4% of that observed for the compound I forms of CCP(MI) or bakers' yeast CCP. Thus, Trp-51 is not necessary for the formation of the free radical observed in compound I but appears to exert a significant influence on its stability

  13. POTENCIALIDADES DE LINHAGENS DE LEVEDURA Saccharomyces cerevisiae PARA A FERMENTAÇÃO DO CALDO DE CANA POTENTIALITIES OF YEAST STRAINS OF Saccharomyces cerevisiae FOR SUGAR CANE JUICE FERMENTATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto França Ribeiro

    1999-01-01

    Full Text Available Três linhagens de levedura da espécie Saccharomyces cerevisiae, sendo duas floculantes, das quais uma não produtora de sulfeto de hidrogênio, foram avaliadas para se verificar seus desempenhos, sob parâmetros cinéticos, bem como a formação de compostos secundários na fermentação do caldo de cana-de-açúcar, destinado à produção de aguardente. O acompanhamento da cinética fermentativa mostrou melhores resultados de eficiência de fermentação, fator de conversão de substrato em etanol e velocidade específica de crescimento pela linhagem floculante IZ 987, que foram de 89,9%, 0,46 g.g-1 e 0,0996 h-1 respectivamente. Esta linhagem foi também responsável pela maior produção de álcoois superiores, 185 mg.L-1, inerente à sua característica de não produzir H2S. A melhor produtividade de fermentação, de 3,40 g.L-1.h-1, foi a obtida pela linhagem floculante LF. A linhagem FP, não floculante, isolada à partir do fermento prensado, proporcionou os menores valores dos parâmetros cinéticos estudados.Three yeast strains of Saccharomyces cerevisiae species, two flocculants, one of them non hydrogen sulfide producer, were evaluated for their behavior on kinetic parameters and production of volatile compounds, during sugar cane juice fermentation. The fermentation kinetics presented better performance in terms of fermentation efficiency, ethanol yield and specific growth rate, 89.9%; 0.46 g.g-1 and 0.0996 h-1, respectively, for the IZ 987 strain, that also produced larger amounts of higher alcohols, 185 mg.L-1, inherent to its H2S negative character. Higher ethanol productivity, about 3.40 g.L-1.h-1, was achieved by the flocculant strain. The strain isolated from baker's yeast promoted the poorest results.

  14. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    Science.gov (United States)

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability. PMID:21971607

  15. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    Science.gov (United States)

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  16. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Meijnen, Jean-Paul; Randazzo, Paola; Foulquié-Moreno, María R; van den Brink, Joost; Vandecruys, Paul; Stojiljkovic, Marija; Dumortier, Françoise; Zalar, Polona; Boekhout, Teun; Gunde-Cimerman, Nina; Kokošar, Janez; Štajdohar, Miha; Curk, Tomaž; Petrovič, Uroš; Thevelein, Johan M

    2016-01-01

    BACKGROUND: Acetic acid is one of the major inhibitors in lignocellulose hydrolysates used for the production of second-generation bioethanol. Although several genes have been identified in laboratory yeast strains that are required for tolerance to acetic acid, the genetic basis of the high acetic

  17. Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mitra Partha P

    2009-08-01

    Full Text Available Abstract Background Natural products are an important source of drugs and other commercially interesting compounds, however their isolation and production is often difficult. Metabolic engineering, mainly in bacteria and yeast, has sought to circumvent some of the associated problems but also this approach is impeded by technical limitations. Here we describe a novel strategy for production of diverse natural products, comprising the expression of an unprecedented large number of biosynthetic genes in a heterologous host. Results As an example, genes from different sources, representing enzymes of a seven step flavonoid pathway, were individually cloned into yeast expression cassettes, which were then randomly combined on Yeast Artificial Chromosomes and used, in a single transformation of yeast, to create a variety of flavonoid producing pathways. Randomly picked clones were analysed, and approximately half of them showed production of the flavanone naringenin, and a third of them produced the flavonol kaempferol in various amounts. This reflected the assembly of 5–7 step multi-species pathways converting the yeast metabolites phenylalanine and/or tyrosine into flavonoids, normally only produced by plants. Other flavonoids were also produced that were either direct intermediates or derivatives thereof. Feeding natural and unnatural, halogenated precursors to these recombinant clones demonstrated the potential to further diversify the type of molecules that can be produced with this technology. Conclusion The technology has many potential uses but is particularly suited for generating high numbers of structurally diverse compounds, some of which may not be amenable to chemical synthesis, thus greatly facilitating access to a huge chemical space in the search for new commercially interesting compounds

  18. Revertants of a Transcription Termination Mutant of Yeast Contain Diverse Genetic Alterations

    OpenAIRE

    Kotval, Jeroo; Zaret, Kenneth S.; Consaul, Sandra; Sherman, Fred

    1983-01-01

    Revertants of the cyc1-512 transcription termination mutant of the yeast Saccharomyces cerevisiae were isolated and subjected to a detailed genetic analysis. The cyc1-512 mutation previously was shown to be a 38-base pair deletion that causes only 10% of the normal steady-state levels of CYC1 mRNA and of the CYC1 gene product, iso-1-cytochrome c. Forty-one cyc1-512 revertants were classified by their content of iso-1-cytochrome c and by their genetic properties in meiotic crosses. Many of the...

  19. THE RESPIRATORY SUBSTRATE RHODOQUINOL INDUCES Q-CYCLE BYPASS REACTIONS IN THE YEAST CYTOCHROME bc1 COMPLEX - MECHANISTIC AND PHYSIOLOGICAL IMPLICATIONS

    International Nuclear Information System (INIS)

    The mitochondrial cytochrome bc1 complex catalyzes the transfer of electrons from ubiquinol to cyt c, while generating a proton motive force for ATP synthesis, via the ''Qcycle'' mechanism. Under certain conditions, electron flow through the Q-cycle is blocked at the level of a reactive intermediate in the quinol oxidase site of the enzyme, resulting in ''bypass reactions'', some of which lead to superoxide production. Using analogs of the respiratory substrates, ubiquinol-3 and rhodoquinol-3, we show that the relative rates of Q-cycle bypass reactions in the Saccharomyces cerevisiae cyt bc1 complex are highly dependent, by a factor of up to one hundred-fold, on the properties of the substrate quinol. Our results suggest that the rate of Q-cycle bypass reactions is dependent on the steady state concentration of reactive intermediates produced at the quinol oxidase site of the enzyme. We conclude that normal operation of the Q-cycle requires a fairly narrow window of redox potentials, with respect to the quinol substrate, to allow normal turnover of the complex while preventing potentially damaging bypass reactions

  20. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O;

    1992-01-01

    In fission yeast (Schizosaccharomyces pombe), the mat1-Pm gene, which is required for entry into meiosis, is expressed in response to a pheromone signal. Cells carrying a mutation in the ste8 gene are unable to induce transcription of mat1-Pm in response to pheromone, suggesting that the ste8 gene......, ste8 mutant cells will enter meiosis. This demonstrates that the meiotic defect of ste8 mutants is due to the absence of the mat1-Pm gene product....

  1. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources Produção e caracterização da glucoamilase do fungo Aspergillus awamori expressa em levedura Saccharomyces cerevisiae usando diferentes fontes de carbono

    OpenAIRE

    Fabiana Carina Pavezzi; Eleni Gomes; Roberto da Silva

    2008-01-01

    Glucoamylase is widely used in the food industry to produce high glucose syrup, and also in fermentation processes for production beer and ethanol. In this work the productivity of the glucoamylase of Aspergillus awamori expressed by the yeast Saccharomyces cerevisiae, produced in submerged fermentation using different starches, was evaluated and characterized physico-chemically. The enzyme presented high specific activity, 13.8 U/mgprotein or 2.9 U/mgbiomass, after 48 h of fermentation using...

  2. Effects of combined treatment of gamma irradiation and refrigeration on yeast growth (Saccharomyces cerevisiae Hansen) in orange juice

    International Nuclear Information System (INIS)

    Effect of gamma radiation and low temperatures was studied on yeast growth on orange juice. Concentrated orange juice (650 C Brix) was diluted at 10,50 C Brix and inoculated with comercial biological yeasts. The samples were irradiated with doses of 0.0 (control), 1.0, 1.5, 2.0, 2.5, 5.0 and 7.5 kGy (Cobalt-60), with 2.83 kGy/h of dose rate. All the samples were stored at 00 C, 05 and 250 C for periods of 1, 7, 14, 21, 30, 60 e 90 days of storage. Combined treatment of 1 kGy and refrigeration at 00 C was effective for orange juice conservation on 90 days of storage. The dose of 2.5 kGy, was enough to conserve the juice on 90 days of storage on 50 C. At 250 C only the two highest radiation doses (5.0 and 7.5 kGy) wereeffective to control yeast growth in orange juice. (author). 11 refs, 4 tabs

  3. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions.

    Science.gov (United States)

    Tilloy, Valentin; Ortiz-Julien, Anne; Dequin, Sylvie

    2014-04-01

    There is a strong demand from the wine industry for methodologies to reduce the alcohol content of wine without compromising wine's sensory characteristics. We assessed the potential of adaptive laboratory evolution strategies under hyperosmotic stress for generation of Saccharomyces cerevisiae wine yeast strains with enhanced glycerol and reduced ethanol yields. Experimental evolution on KCl resulted, after 200 generations, in strains that had higher glycerol and lower ethanol production than the ancestral strain. This major metabolic shift was accompanied by reduced fermentative capacities, suggesting a trade-off between high glycerol production and fermentation rate. Several evolved strains retaining good fermentation performance were selected. These strains produced more succinate and 2,3-butanediol than the ancestral strain and did not accumulate undesirable organoleptic compounds, such as acetate, acetaldehyde, or acetoin. They survived better under osmotic stress and glucose starvation conditions than the ancestral strain, suggesting that the forces that drove the redirection of carbon fluxes involved a combination of osmotic and salt stresses and carbon limitation. To further decrease the ethanol yield, a breeding strategy was used, generating intrastrain hybrids that produced more glycerol than the evolved strain. Pilot-scale fermentation on Syrah using evolved and hybrid strains produced wine with 0.6% (vol/vol) and 1.3% (vol/vol) less ethanol, more glycerol and 2,3-butanediol, and less acetate than the ancestral strain. This work demonstrates that the combination of adaptive evolution and breeding is a valuable alternative to rational design for remodeling the yeast metabolic network. PMID:24532067

  4. Sensitive determination of L-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells.

    Science.gov (United States)

    Akyilmaz, Erol; Erdoğan, Ali; Oztürk, Ramazan; Yaşa, Ihsan

    2007-01-15

    A new amperometric microbial biosensor based on Saccharomyces cerevisiae NRRL-12632 cells, which had been induced for lysine oxidase enzyme and immobilized in gelatin by a cross-linking agent was developed for the sensitive determination of L-lysine amino acid. To construct the microbial biosensor S. cerevisiae cells were activated and cultured in a suitable culture medium. By using gelatine (8.43 mg cm(-2)) and glutaraldehyde (0.25%), cells obtained in the logarithmic phase of the growth curve at the end of a 14 h period were immobilized and fixed on a pretreated oxygen sensitive Teflon membrane of a dissolved oxygen probe. The assay procedure of the microbial biosensor is based on the determination of the differences of the respiration activity of the cells on the oxygenmeter in the absence and the presence of L-lysine. According to the end point measurement technique used in the experiments it was determined that the microbial biosensor response depended linearly on L-lysine concentrations between 1.0 and 10.0 microM with a 1 min response time. In optimization studies of the microbial biosensor, the most suitable microorganism quantities were found to be 0.97x10(5)CFU cm(-2). In addition phosphate buffer (pH 7.5; 50 mM) and 30 degrees C were obtained as the optimum working conditions. In characterization studies of the microbial biosensor some parameters such as substrate specificity, interference effects of some substances on the microbial biosensor responses, reproducibility of the biosensor and operational and storage stability were investigated. PMID:16759846

  5. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast

    NARCIS (Netherlands)

    A.J. van Maris; J.M. Geertman; A. Vermeulen; M.K. Groothuizen; A.A. Winkler; M.D. Piper; J.P. van Dijken; J.T. Pronk

    2004-01-01

    textabstractThe absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc(-)) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc(-) S. cerevisiae strains have two growth defects:

  6. Engineering Cofactor Preference of Ketone Reducing Biocatalysts: A Mutagenesis Study on a γ-Diketone Reductase from the Yeast Saccharomyces cerevisiae Serving as an Example

    Directory of Open Access Journals (Sweden)

    Michael Katzberg

    2010-04-01

    Full Text Available The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the γ-diketone 2,5-hexanedione furnishing the diol (2S,5S-hexanediol and the γ-hydroxyketone (5S-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%. This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants.

  7. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets.

    Science.gov (United States)

    Bayat, A R; Kairenius, P; Stefański, T; Leskinen, H; Comtet-Marre, S; Forano, E; Chaucheyras-Durand, F; Shingfield, K J

    2015-05-01

    The potential of dietary supplements of 2 live yeast strains (Saccharomyces cerevisiae) or camelina oil to lower ruminal methane (CH4) and carbon dioxide (CO2) production and the associated effects on animal performance, rumen fermentation, rumen microbial populations, nutrient metabolism, and milk fatty acid (FA) composition of cows fed grass silage-based diets were examined. Four Finnish Ayrshire cows (53±7 d in milk) fitted with rumen cannula were used in a 4×4 Latin square with four 42-d periods. Cows received a basal total mixed ration (control treatment) with a 50:50 forage-to-concentrate ratio [on a dry matter (DM) basis] containing grass silage, the same basal total mixed ration supplemented with 1 of 2 live yeasts, A or B, administered directly in the rumen at 10(10) cfu/d (treatments A and B), or supplements of 60g of camelina oil/kg of diet DM that replaced concentrate ingredients in the basal total mixed ration (treatment CO). Relative to the control, treatments A and B had no effects on DM intake, rumen fermentation, ruminal gas production, or apparent total-tract nutrient digestibility. In contrast, treatment CO lowered DM intake and ruminal CH4 and CO2 production, responses associated with numerical nonsignificant decreases in total-tract organic matter digestibility, but no alterations in rumen fermentation characteristics or changes in the total numbers of rumen bacteria, methanogens, protozoa, and fungi. Compared with the control, treatment CO decreased the yields of milk, milk fat, lactose, and protein. Relative to treatment B, treatment CO improved nitrogen utilization due to a lower crude protein intake. Treatment A had no influence on milk FA composition, whereas treatment B increased cis-9 10:1 and decreased 11-cyclohexyl 11:0 and 24:0 concentrations. Treatment CO decreased milk fat 8:0 to 16:0 and total saturated FA, and increased 18:0, 18:1, 18:2, conjugated linoleic acid, 18:3n-3, and trans FA concentrations. Decreases in ruminal CH4

  8. Defining the Pathogenesis of the Human Atp12p W94R Mutation Using a Saccharomyces cerevisiae Yeast Model*

    OpenAIRE

    Meulemans, Ann; Seneca, Sara; Pribyl, Thomas; Smet, Joel; Alderweirldt, Valerie; Waeytens, Anouk; Lissens, Willy; Van Coster, Rudy; De Meirleir, Linda; di Rago, Jean-Paul; Gatti, Domenico L; Ackerman, Sharon H.

    2009-01-01

    Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F1) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120–124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the dea...

  9. Avaliação de compostos com atividade antioxidante em células da levedura Saccharomyces cerevisiae Evaluation of compounds with antioxidant activity in Saccharomyces cerevisiae yeast cells

    Directory of Open Access Journals (Sweden)

    Daniele Grazziotin Soares

    2005-03-01

    biological tests, the antioxidant capacity of L- ascorbic acid, vitamin E (alpha-tocoferol and the flavonoids hesperidin, naringin, naringenin, quercetin, rutin and sukuranetin. The study was carried out on eukaryotic cells of the yeast Saccharomyces cerevisiae treated with the above mentioned antioxidants in the presence of the stressing agent apomorphine. The results obtained showed that rutin, hesperidin, sakuranetin, quercetin and naringin were the most effective/potent antioxidant compounds followed by naringenin and a-tocopherol. Vitamin C and a mixture of vitamins C and E did not show antioxidant activity against apomorphine in the performed conditions of this work.

  10. Analysis of Leigh syndrome mutations in the yeast SURF1 homolog reveals a new member of the cytochrome oxidase assembly factor family.

    Science.gov (United States)

    Bestwick, Megan; Jeong, Mi-Young; Khalimonchuk, Oleh; Kim, Hyung; Winge, Dennis R

    2010-09-01

    Three missense SURF1 mutations identified in patients with Leigh syndrome (LS) were evaluated in the yeast homolog Shy1 protein. Introduction of two of the Leigh mutations, F(249)T and Y(344)D, in Shy1 failed to significantly attenuate the function of Shy1 in cytochrome c oxidase (CcO) biogenesis as seen with the human mutations. In contrast, a G(137)E substitution in Shy1 results in a nonfunctional protein conferring a CcO deficiency. The G(137)E Shy1 mutant phenocopied shy1Delta cells in impaired Cox1 hemylation and low mitochondrial copper. A genetic screen for allele-specific suppressors of the G(137)E Shy1 mutant revealed Coa2, Cox10, and a novel factor designated Coa4. Coa2 and Cox10 are previously characterized CcO assembly factors. Coa4 is a twin CX(9)C motif mitochondrial protein localized in the intermembrane space and associated with the inner membrane. Cells lacking Coa4 are depressed in CcO activity but show no impairment in Cox1 maturation or formation of the Shy1-stabilized Cox1 assembly intermediate. To glean insights into the functional role of Coa4 in CcO biogenesis, an unbiased suppressor screen of coa4Delta cells was conducted. Respiratory function of coa4Delta cells was restored by the overexpression of CYC1 encoding cytochrome c. Cyc1 is known to be important at an ill-defined step in the assembly and/or stability of CcO. This new link to Coa4 may begin to further elucidate the role of Cyc1 in CcO biogenesis. PMID:20624914

  11. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties.

    Science.gov (United States)

    Jayaram, Vinay B; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-05-15

    Succinic acid (SA) was recently shown to be the major pH determining metabolite produced by yeast during straight-dough fermentation (Jayaram et al., 2013), reaching levels as high as 1.6 mmol/100 g of flour. Here, the impact of such levels of SA (0.8, 1.6 and 2.4 mmol/100 g flour) on yeastless dough properties was investigated. SA decreased the development time and stability of dough significantly. Uniaxial extension tests showed a consistent decrease in dough extensibility upon increasing SA addition. Upon biaxial extension in the presence of 2.4 mmol SA/100 g flour, a dough extensibility decrease of 47-65% and a dough strength increase of 25-40% were seen. While the SA solvent retention capacity of flour increased with increasing SA concentration in the solvent, gluten agglomeration decreased with gluten yield reductions of over 50%. The results suggest that SA leads to swelling and unfolding of gluten proteins, thereby increasing their interaction potential and dough strength, but simultaneously increasing intermolecular electrostatic repulsive forces. These phenomena lead to the reported changes in dough properties. Together, our results establish SA as an important yeast metabolite for dough rheology. PMID:24423552

  12. Analysis of the secondary compounds produced by Saccharomyces cerevisiae and wild yeast strains during the production of "cachaça" Análise dos componentes secundários produzidos por Saccharomyces cerevisiae e leveduras selvagens durante a produção de cachaça

    Directory of Open Access Journals (Sweden)

    Maria Cecília Fachine Dato

    2005-03-01

    Full Text Available The aim of this study is to compare the composition of "cachaças" produced in 10 fermentation cycles by Saccharomyces cerevisiae (Sc and wild yeast strains [Pichia silvicola (Ps, Pichia anomala 1 (Pa1, Pichia anomala 2 (Pa2 and Dekkera bruxelensis (Db], isolated from distilleries in Jaboticabal - SP, Brazil. The secondary components of the heart fraction were determined by gas chromatography. The levels of secondary components were influenced by the wine pH, which varied among yeast strains. S. cerevisiae showed slightly more secondary components, whereas wild strains produced more higher alcohols. Wild yeast strains were shown to be adequate for the production of a high quality "cachaça".O presente trabalho visou estabelecer uma comparação entre composição de cachaças produzidas por Saccharomyces cerevisiae (Sc e estirpes de leveduras selvagens [Pichia silvicola (Ps, Pichia anomala 1 (Pa1, Pichia anomala 2 (Pa2 e Dekkera bruxelensis (Db], isoladas em destilarias da região de Jaboticabal-SP. Os componentes secundários da fração denominada coração foram determinados por cromatografia gasosa. Os níveis dos componentes secundários foram influenciados pelo pH dos respectivos vinhos, os quais dependem da estirpe de levedura empregada no processo fermentativo. A Saccharomyces cerevisiae apresentou valores ligeiramente superiores de componentes secundários, enquanto as estirpes selvagens produziram maiores teores de álcoois superiores. As estirpes selvagens de leveduras mostraram-se adequadas para obtenção de uma cachaça de boa qualidade.

  13. Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Germann, Susanne Manuela; Jacobsen, Simo Abdessamad; Schneider, Konstantin;

    2016-01-01

    Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly......, a 5-hydroxy-L-tryptophan decarboxylase, a serotonin acetyltransferase, an acetylserotonin O-methyltransferase, and means for providing the cofactor tetrahydrobiopterin via heterologous biosynthesis and recycling pathways. We thereby achieved de novo melatonin biosynthesis from glucose. We...... furthermore accomplished increased product titers by altering expression levels of selected pathway enzymes and boosting co-factor supply. The final yeast strain produced melatonin at a titer of 14.50 ± 0.57 mg L−1 in a 76h fermentation using simulated fed-batch medium with glucose as sole carbon source. Our...

  14. Use of Saccharomyces cerevisiae yeasts in the chemo selective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)-1,4-pentadien-3-one in biphasic system

    International Nuclear Information System (INIS)

    This work describes the chemoselective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)- 1,4-pentadien-3-one (1) mediated by baker’s yeast (BY, Saccharomyces cerevisiae cells) in an aqueous/organic solvent biphasic system. The biotransformation of this compound was chemoselective and formed only the corresponding saturated ketone 1,5-bis(4-methoxyphenyl)- 3-pentanone (2). The influence of various factors which may alter the bioreduction of 1, such as the type and percentage of co-solvents, use of six different S. cerevisiae yeast samples (four commercial and two industrial), variations in the substrate and yeast concentrations, temperature, pH and volume of aqueous and organic phases, was investigated. The best reaction conditions were 66.7 g L−1 of Fleischmann BY, 8.3 × 10−3 mol L−1 of substrate, pH 6.5 at 35 deg C in the presence of 2.5% (v/v) of N,N-dimethyl sulfoxide (DMSO) as an additive and a Vaq/Vorg ratio of 70/30. Under these conditions, the product 2 was recovered in conversions of 82% in 5 h reaction. (author)

  15. Use of Saccharomyces cerevisiae yeasts in the chemo selective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)-1,4-pentadien-3-one in biphasic system

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Cesar A.; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: maria.nascimento@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis-SC (Brazil); Stambuk, Boris U. [Departamento de Bioquimica, Universidade Federal de Santa Catarina, Florianopolis-SC (Brazil)

    2013-07-15

    This work describes the chemoselective bioreduction of (1E,4E)-1,5-bis(4-methoxyphenyl)- 1,4-pentadien-3-one (1) mediated by baker's yeast (BY, Saccharomyces cerevisiae cells) in an aqueous/organic solvent biphasic system. The biotransformation of this compound was chemoselective and formed only the corresponding saturated ketone 1,5-bis(4-methoxyphenyl)- 3-pentanone (2). The influence of various factors which may alter the bioreduction of 1, such as the type and percentage of co-solvents, use of six different S. cerevisiae yeast samples (four commercial and two industrial), variations in the substrate and yeast concentrations, temperature, pH and volume of aqueous and organic phases, was investigated. The best reaction conditions were 66.7 g L{sup -1} of Fleischmann BY, 8.3 Multiplication-Sign 10{sup -3} mol L{sup -1} of substrate, pH 6.5 at 35 deg C in the presence of 2.5% (v/v) of N,N-dimethyl sulfoxide (DMSO) as an additive and a V{sub aq}/V{sub org} ratio of 70/30. Under these conditions, the product 2 was recovered in conversions of 82% in 5 h reaction. (author)

  16. Antitumor and radiation protection effects of β-1,3-D-glucan extracted from yeast (saccharomyces cerevisiae)

    International Nuclear Information System (INIS)

    Various natural extracts are manufactured and on sale as health food products, which are raising popular consciousness of being fit, because they are considered effective or suppressible for cancer. In the current experiment, we measured the immunological activity, antitumor effects, and radioprotective effects of β-1,3-D-glucan (Macroglucan) extracted from bread yeast. Macroglucan of 0, 200, 400, and 800 mg/kg were administered intraperitoneally to C3H/HeJ mice, respectively. The antitumor effects of Macroglucan were examined by measuring natural killer (NK) and lymphokine activated killer (LAK) cell activity and tumor volume. Change in weight, survival, and microscopic manifestation of the intestine were evaluated in the C3H/HeJ mice received total body irradiation to measure radioprotective effect of Macroglucan. According to measurements of cellular cytotoxicity, levels of NK and LAK cell activity were significantly higher in the group administered Macroglucan than in the control group. Macroglucan's role in immunological activity was suggested by the observed suppression of tumor growth in the Macroglucan-administered group. That group also experienced suppression of weight loss after irradiation in the experiment for radioprotection, and a consequent increase in the survival rate compared with the control group. Protective effects appeared in photomicrographs of the intestinal cells. These results confirmed Macroglucan's radioprotective effects. These effects may be related to the suppression of infection accompanying immunological activation due to Macroglucan administration, antioxidant activity, and radical scavenging capacity. (author)

  17. Requirements of Slm proteins for proper eisosome organization, endocytic trafficking and recycling in the yeast Saccharomyces cerevisiae

    Indian Academy of Sciences (India)

    Chitra Kamble; Sandhya Jain; Erin Murphy; Kyoungtae Kim

    2011-03-01

    Eisosomes are large immobile assemblies at the cortex of a cell under the membrane compartment of Can1 (MCC) in yeast. Slm1 has recently been identified as an MCC component that acts downstream of Mss4 in a pathway that regulates actin cytoskeleton organization in response to stress. In this study, we showed that inactivation of Slm proteins disrupts proper localization of the primary eisosome marker Pil1, providing evidence that Slm proteins play a role in eisosome organization. Furthermore, we found that slmts mutant cells exhibit actin defects in both the ability to polarize cortical F-actin and the formation of cytoplasmic actin cables even at the permissive temperature (30°C). We further demonstrated that the actin defect accounts for the slow traffic of FM4-64-labelled endosome in the cytoplasm, supporting the notion that intact actin is essential for endosome trafficking. However, our real-time microscopic analysis of Abp1-RFP revealed that the actin defect in slmts cells was not accompanied by a noticeable defect in actin patch internalization during receptor-mediated endocytosis. In addition, we found that slmts cells displayed impaired membrane recycling and that recycling occurred in an actin-independent manner. Our data provide evidence for the requirement of Slm proteins in eisosome organization and endosome trafficking and recycling.

  18. Yeast Bax inhibitor, Bxi1p, is an ER-localized protein that links the unfolded protein response and programmed cell death in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Cebulski

    Full Text Available Bax inhibitor-1 (BI-1 is an anti-apoptotic gene whose expression is upregulated in a wide range of human cancers. Studies in both mammalian and plant cells suggest that the BI-1 protein resides in the endoplasmic reticulum and is involved in the unfolded protein response (UPR that is triggered by ER stress. It is thought to act via a mechanism involving altered calcium dynamics. In this paper, we provide evidence that the Saccharomyces cerevisiae protein encoded by the open reading frame, YNL305C, is a bona fide homolog for BI-1. First, we confirm that yeast cells from two different strain backgrounds lacking YNL305C, which we have renamed BXI1, are more sensitive to heat-shock induced cell death than wildtype controls even though they have indistinguishable growth rates at 30°C. They are also more susceptible both to ethanol-induced and to glucose-induced programmed cell death. Significantly, we show that Bxi1p-GFP colocalizes with the ER localized protein Sec63p-RFP. We have also discovered that Δbxi1 cells are not only more sensitive to drugs that induce ER stress, but also have a decreased unfolded protein response as measured with a UPRE-lacZ reporter. Finally, we have discovered that deleting BXI1 diminishes the calcium signaling response in response to the accumulation of unfolded proteins in the ER as measured by a calcineurin-dependent CDRE-lacZ reporter. In toto, our data suggests that the Bxi1p, like its metazoan homologs, is an ER-localized protein that links the unfolded protein response and programmed cell death.

  19. Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Shi, Shuobo; Ji, Haichuan; Siewers, Verena;

    2016-01-01

    Biological production of fatty acid (FA)-derived products has gained increasing attention to replace petroleum-based fuels and chemicals. FA biosynthesis is highly regulated, and usually it is challenging to design rational engineering strategies. In addition, the conventional 'one sample at a time...... screening a cDNA library from the oleaginous yeast Yarrowia lipolytica for identification of genes/enzymes that were able to enhance free FA accumulation in Saccharomyces cerevisiae. Several novel enzymes resulting in increasing FA accumulation were discovered. These targets include a GPI anchor protein...

  20. Cytochrome P450 enzyme systems in fungi

    NARCIS (Netherlands)

    Brink, H.M. van den; Gorcom, R.F.M. van; Hondel, C.A.M.J.J. van den; Punt, P.J.

    1998-01-01

    The involvement of cytochrome P450 enzymes in many complex fungal bioconversion processes has been characterized in recent years. Accordingly, there is now considerable scientific interest in fungal cytochrome P450 enzyme systems. In contrast to S. cerevisiae, where surprisingly few P450 genes have

  1. Identification of human ferritin, heavy polypeptide 1 (FTH1) and yeast RGI1 (YER067W) as pro-survival sequences that counteract the effects of Bax and copper in Saccharomyces cerevisiae.

    Science.gov (United States)

    Eid, Rawan; Boucher, Eric; Gharib, Nada; Khoury, Chamel; Arab, Nagla T T; Murray, Alistair; Young, Paul G; Mandato, Craig A; Greenwood, Michael T

    2016-03-01

    Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomyces cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress. PMID:26886577

  2. A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Muñoz Alberto

    2010-11-01

    Full Text Available Abstract Background The mechanism of action of antimicrobial peptides (AMP was initially correlated with peptide membrane permeation properties. However, recent evidences indicate that action of a number of AMP is more complex and involves specific interactions at cell envelopes or with intracellular targets. In this study, a genomic approach was undertaken on the model yeast Saccharomyces cerevisiae to characterize the antifungal effect of two unrelated AMP. Results Two differentiated peptides were used: the synthetic cell-penetrating PAF26 and the natural cytolytic melittin. Transcriptomic analyses demonstrated distinctive gene expression changes for each peptide. Quantitative RT-PCR confirmed differential expression of selected genes. Gene Ontology (GO annotation of differential gene lists showed that the unique significant terms shared by treatment with both peptides were related to the cell wall (CW. Assays with mutants lacking CW-related genes including those of MAPK signaling pathways revealed genes having influence on sensitivity to peptides. Fluorescence microscopy and flow cytometry demonstrated PAF26 interaction with cells and internalization that correlated with cell killing in sensitive CW-defective mutants such as Δecm33 or Δssd1. GO annotation also showed differential responses between peptides, which included ribosomal biogenesis, ARG genes from the metabolism of amino groups (specifically induced by PAF26, or the reaction to unfolded protein stress. Susceptibility of deletion mutants confirmed the involvement of these processes. Specifically, mutants lacking ARG genes from the metabolism of arginine pathway were markedly more resistant to PAF26 and had a functional CW. In the deletant in the arginosuccinate synthetase (ARG1 gene, PAF26 interaction occurred normally, thus uncoupling peptide interaction from cell killing. The previously described involvement of the glycosphingolipid gene IPT1 was extended to the peptides studied

  3. GMAX Yeast Background Strain Made from Industrial Tolerant Saccharomyces Cerevisiae Engineered to Convert Pretreated Lignocellulosic Starch and Cellulosic Sugars Universally to Ethanol Anaerobically

    Science.gov (United States)

    Tailored GMAX yeast background strain technology for universal ethanol production industrially: Production of the stable baseline glucose, mannose, arabinose, xylose-utilizing (GMAX) yeast will be evaluated by taking the genes identified in high-throughput screening for a plasmid-based yeast to util...

  4. The OXA1L gene that controls cytochrome oxidase assembly maps to the 14q11.2 region of the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Gomes, D.; Viegas-Pequignot, E. [INSERM, Paris (France); Bonnefoy, N.; Dujardin, G. [Universite Paris, Gif sur Yvette (France)] [and others

    1995-11-20

    Cytochrome-c oxidase, the terminal complex of the mitochondrial respiratory chain that transfers electrons from cytochrome c to oxygen, has a critical role in cellular energy metabolism. In eukaryotes, the cytochrome-c oxidase complex is composed of from 7 to 13 subunits (in mammals), and its assembly depends on several nuclear-encoded proteins. The 0XA1 gene, which was first isolated in Saccharomyces cerevisiae, encodes a protein essential for cytochrome-c oxidase assembly. The human OXA1-like (OXA1L, previously designated OXA1Hs) cDNA was isolated by functional complementation of an oxa1{sup -} mutation in yeast. The deduced sequences of the two Oxa1 and Oxa1L proteins share 33% identity. Oxygen consumption measurements and cytochrome absorption spectra show that replacement of the yeast protein with the human homolog leads to the correct assembly of cytochrome-c oxidase, suggesting that these proteins play essentially the same role in both organisms. In this report, we have used both somatic cell hybrid mapping and in situ hybridization to localize the OXA1L gene on the human genome. 7 refs., 2 figs.

  5. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    OpenAIRE

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic...

  6. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.

    Science.gov (United States)

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2008-01-01

    The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem. J. 378, 899-908]. In the present paper, we focus on the role of SFH2/CSR1, a hypoxic gene related to SEC14 and its involvement in lipid metabolism upon haem depletion in the absence of oleic acid supplementation. We observed that inactivation of SFH2 results in enhanced accumulation of SFA and phospholipid metabolism alterations. It results in premature growth arrest and leads to an exacerbated sensitivity to exogenous SFA. This phenotype is suppressed in the presence of exogenous oleic acid, or by a controlled expression of FAS1, one of the two genes encoding FAS. We present several lines of evidence to suggest that Sfh2p and oleic acid regulate SFA synthase in yeast at different levels: whereas oleic acid acts on FAS2 at the transcriptional level, we show that Sfh2p inhibits fatty acid synthase activity in response to haem depletion. PMID:17803462

  7. Utilização de diferentes níveis de levedura (Saccharomyces cerevisiae em dietas e seus efeitos no desempenho, rendimento da carcaça e gordura abdominal em frangos de cortes - DOI: 10.4025/actascianimsci.v25i2.2004 Use of different levels of yeast (Saccharomyces cerevisiae and its effects, on carcass and abdominal fat in broilers - DOI: 10.4025/actascianimsci.v25i2.2004

    Directory of Open Access Journals (Sweden)

    Alexandre Fernandes Galão

    2003-04-01

    Full Text Available O objetivo deste trabalho foi estudar o desempenho, o rendimento de carcaça, a gordura abdominal de frangos de corte alimentados com diferentes níveis de levedura (Saccharomyces cerevisiae. Utilizaram-se 288 pintos de um dia, distribuídos em delineamento de blocos casualizados, fatorial 3x2. (3 níveis levedura - 0%; 5% e 10% e dois sexos, 4 repetições, 12 aves por parcela. Não houve efeito significativo para o desempenho de frangos de corte com a inclusão de levedura na dieta até os 21 dias de idade, porém, na fase de engorda, no nível de 10% houve uma piora no ganho de peso e na conversão alimentar, concluindo-se que a inclusão de 10% de levedura (Saccharomyces cerevisiae às dietas de frango de corte afetou o desempenho, mas não foram afetados o rendimento da carcaça e a gordura abdominal.The objective of this work was to study performance, carcass yield and abdominal fat of cut chickens fed with different yeast levels (Saccharomyces cerevisiae. 288 one-year-old chickens were used, distributed in an outline of randomized blocks, factorial 3x2, (3 yeast levels - 0%; 5% and 10% and two sexes, four repetitions, 12 birds per portion. There was not any significant effect on the performance of cut chickens with the yeast inclusion in the diet until 21 days of age, however, in the fattening phase on the level of 10%, there was a worsening in weight earnings and in feeding conversion. At the end, the inclusion of 10% of yeast (Saccharomyces cerevisiae to in diets of cut chicken affected the performance. However, the carcass yield and the abdominal fat were not affected.

  8. Investigation of centers sensitive to S1-nuclease in the genoma of the yeast S. cerevisiae after in-vivo exposure to gamma radiation

    International Nuclear Information System (INIS)

    The structure, distribution and repair of basal damage in DNS after exposure to 60Co gamma radiation were investigated in S. cerevisiae cells. Small DNS regions with mispaired or unpaired bases of rather high stability were found whose rate of incidence and linear dose dependence appear to be similar to those of double strand breaks. In contrast to double strand breaks, they showed no statistical' distribution pattern across the genoma. Liquid holding experiments showed that centers sensitive to S1-nuclease will be repaired in S. cerevisiae by a combined process of recombination and postreplication repair; the gene products of the genes RAD50 and RAD18 are involved. (orig./AJ)

  9. Farinha de mandioca enriquecida com bioproteínas (Saccharomyces cerevisiae, em associação ao feijão e arroz, na dieta de ratos em crescimento Cassava flour enriched with yeast (Saccharomyces cerevisiae protein, in association with beans and rice, in the diet of growing rats

    Directory of Open Access Journals (Sweden)

    Anastácia Cavalcanti Metri

    2003-01-01

    Full Text Available Avaliou-se o efeito da mistura de feijão, arroz e farinha de mandioca enriquecida com bioproteína (Saccharomyces cerevisiae, em ratos wistar machos recém-desmamados (n=60, durante 28 dias. Foram utilizadas as seguintes dietas: experimentais (feijão, arroz e farinha de mandioca enriquecida com leveduras; feijão, arroz e farinha de mandioca comum; controle (farinha de mandioca enriquecida com levedura; e padrão (caseína. Determinaram-se os testes biológicos. Os orgãos foram removidos para análise de pesos úmido e seco (rim esquerdo, baço e amostras do fígado e cérebro, teor de proteína (fígado e cérebro e histopatologia (fígado, coração e rim direito. Foram ainda quantificados os lipídios totais da carcaça dos animais. Os dados foram estatisticamente avaliados pelo teste Não Paramétrico de Kruskal-Wallis e pelo teste de Comparações Múltiplas (pThe effect of a mixture of beans, rice and cassava flour enriched with yeast (Saccharomyces cerevisiae protein was assessed in weanling male Wistar rats (n=60, during 28 days. The following diets were used: experimental (beans, rice and manioc flour with yeast protein; beans, rice and cassava flour without yeast protein; control (cassava flour with yeast protein; and standard (casein. The biological test were determined. The organs were removed for evaluation of wet and dry weights (left kidney, spleen and liver and brain samples, protein levels (liver and brain, and histopathology (heart, right kidney and liver. Carcass total lipids were also recorded. Results were statistically analyzed by the Nonparametric Test of Kruskal-Wallis and the Test of Multiple Comparisons (p<0.05. The highest values for all investigated parameters were found in the casein-fed group, followed by the experimental groups. Data suggest that flour enriched with yeast protein can be recommended as a dietary supplement to eradicate the nutritional deficiency in the poor population.

  10. Enzyme contribution of non-Saccharomyces yeasts to wine production

    OpenAIRE

    Maicas i Prieto, Sergi; Mateo Tolosa, José Juan

    2015-01-01

    The fermentation of grape must to produce wine is a biologically complex process, carried on by yeasts and malolactic bacteria. The yeasts present in spontaneous fermentation may be divided into two groups, the Saccharomyces yeasts, particularly S. cerevisiae, and the non-Saccharomyces yeasts which include members of the genera Rhodotorula, Pichia, Candida, Debaryomyces, Metschtnikowia, Hansenula and Hanseniaspora. S. cerevisiae yeasts are able to convert sugar into ethanol and CO2 via fermen...

  11. [Fructose transporter in yeasts].

    Science.gov (United States)

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells. PMID:25033548

  12. Pexophagy in yeasts.

    Science.gov (United States)

    Oku, Masahide; Sakai, Yasuyoshi

    2016-05-01

    Pexophagy, selective degradation of peroxisomes via autophagy, is the main system for reducing organelle abundance. Elucidation of the molecular machinery of pexophagy has been pioneered in studies of the budding yeast Saccharomyces cerevisiae and the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha. Recent analyses using these yeasts have elucidated the molecular machineries of pexophagy, especially in terms of the interactions and modifications of the so-called adaptor proteins required for guiding autophagic membrane biogenesis on the organelle surface. Based on the recent findings, functional relevance of pexophagy and another autophagic pathway, mitophagy (selective autophagy of mitochondria), is discussed. We also discuss the physiological importance of pexophagy in these yeast systems. PMID:26409485

  13. Utilização de leveduras vivas (Saccharomyces cerevisiae visando à produção de cordeiros Ile de France superprecoces em sistema de creep-feeding Effect of utilization of yeast (Saccharomyces cerevisiae for feeding Ile de France lambs in creep-feeding system

    Directory of Open Access Journals (Sweden)

    Mikael Neumann

    2008-11-01

    Full Text Available O experimento foi conduzido no Núcleo de Produção Animal da Universidade Estadual do Centro Oeste do Paraná (UNICENTRO com o objetivo de avaliar o efeito do nível de suplementação de leveduras vivas secas (Saccharomyces cerevisiae sobre o consumo médio diário de concentrado e o ganho de peso médio diário de cordeiros, em sistema de creep-feeding. Foram testados os seguintes tratamentos: T1 - 0g animal-1 dia-1; T2 - 0,4g animal-1 dia-1; e T3 - 0,8g animal-1 dia-1. Foram utilizados 27 cordeiros Ile de France de partos simples (18 machos e nove fêmeas com peso vivo médio inicial de 19,5kg e idade média de 40 dias. O creep-feeding compreendeu três períodos de 21 dias, totalizando 63 dias de suplementação. Não houve interação significativa (PThe experiment was conducted at the Núcleo de Produção Animal of the Universidade Estadual do Centro Oeste do Paraná (UNICENTRO. The trial aimed to evaluate the effect of living yeast (Saccharomyces cerevisiae on dry matter intake of concentrate and performance of lambs kept in the creep-feeding system, submitted to the following treatments: T1 - 0g animal-1 day-1; T2 - 0.4g animal-1 day-1; e T3 - 0.8g animal-1 day-1. Twenty-seven lambs Ile de France of simple birth with an average age of 40 days and average live weight of 19.5kg were used. The whole supplementation period in creep-feeding was 63 days, divided in three periods of 21 days. No significative interaction was observed between supplementation of level of the yeast and evaluation period for average daily dry matter intake of concentrate, for average daily weight gain and feed conversion of the g of concentrate by 100g weight gain. No difference of supplementation of level of the yeast for average daily dry matter intake of concentrate (635.7g day-1 and average daily weight gain (418g day-1 for Ile de France lambs simple birth on creep-feeding system, according to supplementation of living yeast.

  14. Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression Saccharomyces cerevisiae strains: The comparison of two quantitative methods

    DEFF Research Database (Denmark)

    Usaite, Renata; Wohlschlegel, James; Venable, John D.;

    2008-01-01

    -type yeast and yeast strains lacking key components of the Snf1 kinase complex. Four different strains were grown under well-controlled chemostat conditions. Multidimensional protein identification technology followed by quantitation using either spectral counting or stable isotope labeling approaches was...... labeling strategy. The stable isotope labeling based quantitative approach was found to be highly reproducible among biological replicates when complex protein mixtures containing small expression changes were analyzed. Where poor correlation between stable isotope labeling and spectral counting was found...

  15. Glycerol Overproduction by Engineered Saccharomyces cerevisiae Wine Yeast Strains Leads to Substantial Changes in By-Product Formation and to a Stimulation of Fermentation Rate in Stationary Phase

    OpenAIRE

    Remize, F.; Roustan, J. L.; Sablayrolles, J. M.; P. Barre; Dequin, S.

    1999-01-01

    Six commercial wine yeast strains and three nonindustrial strains (two laboratory strains and one haploid strain derived from a wine yeast strain) were engineered to produce large amounts of glycerol with a lower ethanol yield. Overexpression of the GPD1 gene, encoding a glycerol-3-phosphate dehydrogenase, resulted in a 1.5- to 2.5-fold increase in glycerol production and a slight decrease in ethanol formation under conditions simulating wine fermentation. All the strains overexpressing GPD1 ...

  16. Differential Azole Antifungal Efficacies Contrasted Using a Saccharomyces cerevisiae Strain Humanized for Sterol 14α-Demethylase at the Homologous Locus▿

    OpenAIRE

    Parker, J. E.; Merkamm, M.; Manning, N J; Pompon, D; Kelly, S. L.; Kelly, D. E.

    2008-01-01

    Inhibition of sterol-14α-demethylase, a cytochrome P450 (CYP51, Erg11p), is the mode of action of azole antifungal drugs, and with high frequencies of fungal infections new agents are required. New drugs that target fungal CYP51 should not inhibit human CYP51, although selective inhibitors of the human target are also of interest as anticholesterol agents. A strain of Saccharomyces cerevisiae that was humanized with respect to the amino acids encoded at the CYP51 (ERG11) yeast locus (BY4741:h...

  17. Scientific Opinion on safety and efficacy of selenium in the form of organic compounds produced by the selenium-enriched yeast Saccharomyces cerevisiae NCYC R646 (Selemax 1000/2000 as feed additive for all species

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed

    2012-07-01

    Full Text Available

    The additive Selemax consists of selenium-containing inactivated yeast (Saccharomyces cerevisiae NCYC R646, enriched during the fermentation process with organic selenocompounds, and is intended to be used as a nutritional additive, providing a source of the essential trace element selenium for all animal species. Based on data from a tolerance study in chickens for fattening, the use of Selemax as a selenium source is considered to be safe for all animal species. The FEEDAP Panel reiterates its former conclusion that the use of any selenised yeast would result in similar selenium deposition in tissues and products. To ensure consumer safety from consumption of tissues and products of animals treated with Selemax, the FEEDAP Panel concludes that dietary selenium supplementation from Selemax, as for other selenised yeasts, should not exceed a maximum of 0.2 mg Se/kg complete feed. In the absence of specific data, the product is considered as a potential irritant to skin and eyes and sensitiser to skin. Owing to its proteinaceous nature, the additive is considered a potential respiratory sensitiser. The FEEDAP Panel considers that the use of Selemax in feed does not pose an additional risk to the environment, compared to other sources of selenium for which it will substitute, as long as the maximum authorised content in feedingstuffs is not exceeded. Based on the response of liver glutathione peroxidase activity and the liver/plasma concentration of selenium, the FEEDAP Panel considers Selemax an effective source of selenium for all species. Selemax does not modify the quality of meat as measured by physical parameters.

  18. Toxicity of chlorinated phenoxyacetic acid herbicides in the experimental eukaryotic model Saccharomyces cerevisiae: role of pH and of growth phase and size of the yeast cell population.

    Science.gov (United States)

    Cabral, M G; Viegas, C A; Teixeira, M C; Sá-Correia, I

    2003-04-01

    The inhibitory effect of the herbicides 2-methyl-4-chlorophenoxyacetic acid (MCPA) and 2,4-dichlorophenoxyacetic acid (2,4-D) in Saccharomyces cerevisiae growth is strongly dependent on medium pH (range 2.5-6.5). Consistent with the concept that the toxic form is the liposoluble undissociated form, at values close to their pK(a) (3.07 and 2.73, respectively) the toxicity is high, decreasing with the increase of external pH. In addition, the toxicity of identical concentrations of the undissociated acid form is pH independent, as observed with 2,4-dichlorophenol (2,4-DCP), an intermediate of 2,4-D degradation. Consequently, at pH values above 3.5 (approximately one unit higher than 2,4-D pK(a)), 2,4-DCP becomes more toxic than the original herbicide. A dose-dependent inhibition of growth kinetics and increased duration of growth latency is observed following sudden exposure of an unadapted yeast cell population to the presence of the herbicides. This contrasts with the effect of 2,4-DCP, which essentially affects growth kinetics. Experimental evidences suggest that the acid herbicides toxicity is not exclusively dependent on the liposolubility of the toxic form, as may essentially be the case of 2,4-DCP. An unadapted yeast cell population at the early stationary-phase of growth under nutrient limitation is significantly more resistant to short-term herbicide induced death than an exponential-phase population. Consequently, the duration of growth latency is reduced, as observed with the increase of the size of the herbicide stressed population. However, these physiological parameters have no significant effect either on growth kinetics, following growth resumption under herbicide stress, or on the growth curve of yeast cells previously adapted to the herbicides, indicating that their role is exerted at the level of cell adaptation. PMID:12586155

  19. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    Science.gov (United States)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  20. The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Berset, Catherine; TRACHSEL, HANS; Altmann, Michael

    1998-01-01

    Initiation factor eIF4G is an essential protein required for initiation of mRNA translation via the 5′ cap-dependent pathway. It interacts with eIF4E (the mRNA 5′ cap-binding protein) and serves as an anchor for the assembly of further initiation factors. With treatment of Saccharomyces cerevisiae with rapamycin or with entry of cells into the diauxic phase, eIF4G is rapidly degraded, whereas initiation factors eIF4E and eIF4A remain stable. We propose that nutritional deprivation or interrup...

  1. Multiway real-time PCR gene expression profiling in yeast. Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Elbing, K.; Andrade-Garda, J.M.; Sjögreen, B.; Forootan, A.; Kubista, Mikael

    2008-01-01

    Roč. 9, č. 170 (2008), s. 1-41. ISSN 1471-2164 Institutional research plan: CEZ:AV0Z50520701 Keywords : Expression Profiling * Real-time PCR * Yeast Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.926, year: 2008

  2. Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions

    Czech Academy of Sciences Publication Activity Database

    Navarrete, C.; Petrezsélyová, Silvia; Barreto, L.; Martínez, J. L.; Zahrádka, Jaromír; Ariňo, J.; Sychrová, Hana; Ramos, J.

    2010-01-01

    Roč. 10, č. 5 (2010), s. 508-517. ISSN 1567-1356 R&D Projects: GA MŠk(CZ) LC531; GA ČR(CZ) GA204/08/0354 Institutional research plan: CEZ:AV0Z50110509 Keywords : potassium homeostasis * yeast * Trk transporters Subject RIV: EE - Microbiology, Virology Impact factor: 2.279, year: 2010

  3. Overproduction of fission yeast eif3a subunit in saccharomyces cerevisiae results in aberrant cell morphology and g2/m delay

    Czech Academy of Sciences Publication Activity Database

    Janatová, Ivana; Koubek, Zdeněk; Malínská, Kateřina; Raková, Radka; Hašek, Jiří

    Cold Spring Harbor, New York, 2003, s. 23. [Meeting on Yeast Cell Biology /2003./. Cold Spring Harbor (US), 12.08.2003-17.08.2003] R&D Projects: GA ČR GA204/02/1424 Institutional research plan: CEZ:AV0Z5020903 Keywords : facs * rpg1p Subject RIV: EE - Microbiology, Virology

  4. Production of the Anaerobic GMAX-L Yeast Using High-Throughput Mating and Transformation of Saccharomyces cerevisiae With Identified Genes For Simultaneous Cellulosic Ethanol and Biodiesel Production

    Science.gov (United States)

    Tailored GMAX-L yeast engineering for strains capable of universal ethanol production industrially with coproduction of an expressed lipase catalyst for coproduction of ethyl esters from corn oil and ethanol from the modern dry grind ethanol facility: Production of the stable baseline glucose, mann...

  5. Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis.

    Science.gov (United States)

    Käosaar, Sandra; Kahru, Anne; Mantecca, Paride; Kasemets, Kaja

    2016-09-01

    The widespread use of nanosilver in various antibacterial, antifungal, and antiviral products warrants the studies of the toxicity pathways of nanosilver-enabled materials toward microbes and viruses. We profiled the toxicity mechanisms of uncoated, casein-coated, and polyvinylpyrrolidone-coated silver nanoparticles (AgNPs) using Saccharomyces cerevisiae wild-type (wt) and its 9 single-gene deletion mutants defective in oxidative stress (OS) defense, cell wall/membrane integrity, and endocytosis. The 48-h growth inhibition assay in organic-rich growth medium and 24-h cell viability assay in deionized (DI) water were applied whereas AgNO3, H2O2, and SDS served as positive controls. Both coated AgNPs (primary size 8-12nm) were significantly more toxic than the uncoated (~85nm) AgNPs. All studied AgNPs were ~30 times more toxic if exposed to yeast cells in DI water than in the rich growth medium: the IC50 based on nominal concentration of AgNPs in the growth inhibition test ranged from 77 to 576mg Ag/L and in the cell viability test from 2.7 to 18.7mg Ag/L, respectively. Confocal microscopy showed that wt but not endocytosis mutant (end3Δ) internalized AgNPs. Comparison of toxicity patterns of wt and mutant strains defective in OS defense and membrane integrity revealed that the toxicity of the studied AgNPs to S. cerevisiae was not caused by the OS or cell wall/membrane permeabilization. PMID:27260961

  6. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and...... gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression...... on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression....

  7. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  8. Functional analysis and localization studies of Phr1 and Gas1 proteins from the fungal pathogen Candida albicans and the budding yeast Saccharamyces cerevisiae

    OpenAIRE

    Calderón Blanco, Julia

    2009-01-01

    [ES] En esta tesis se estudia la caracterización funcional de dos proteínas contenientes glisosilfosfatidilinositol (GPI), Phr1p en el patógeno fúngico Candida albicans y su homólogo Gas1p en la levadura de gemación Saccharomyces cerevisiae. Mediante el uso de técnicas de fusión de proteínas fluorescentes se pretendía llevar a cabo un estudio de la localización de CaPhr1p y ScGas1p con el propósito de analizar la función de dichas proteínas de membrana en distintos procesos morfogenéticas. Ad...

  9. Histidine is the axial ligand to cytochrome alpha 3 in cytochrome c oxidase

    OpenAIRE

    Stevens, Tom H.; Chan, Sunney I.

    1981-01-01

    The nitric oxide-bound complexes of reduced yeast cytochrome c oxidase incorporated with [1,3-15N2]histidine have been investigated by EPR spectroscopy. The results of this study have allowed the unambiguous identification of histidine as the endogenous axial ligand to cytochrome alpha 3.

  10. Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae.

    OpenAIRE

    Seifert, H S; Chen, E Y; So, M; Heffron, F

    1986-01-01

    We have extended the method of transposon mutagenesis to the eukaryote, Saccharomyces cerevisiae. A bacterial transposon containing a selectable yeast gene can be transposed into a cloned fragment of yeast DNA in Escherichia coli, and the transposon insertion can be returned to the yeast genome by homologous recombination. Initially, the cloned yeast DNA fragment to be mutagenized was transformed into an E. coli strain containing an F factor derivative carrying the transposable element. The c...

  11. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.; Palsson, B.O.; Nielsen, Jens

    2003-01-01

    The metabolic network in the yeast Saccharomyces cerevisiae was reconstructed using currently available genomic, biochemical, and physiological information. The metabolic reactions were compartmentalized between the cytosol and the mitochondria, and transport steps between the compartments and the...... containing 1175 metabolic reactions and 584 metabolites. The number of gene functions included in the reconstructed network corresponds to similar to16% of all characterized ORFs in S. cerevisiae. Using the reconstructed network, the metabolic capabilities of S. cerevisiae were calculated and compared with...

  12. Kluyveromyces lactis maintains Saccharomyces cerevisiae intron-encoded splicing signals.

    OpenAIRE

    Deshler, J O; Larson, G P; Rossi, J J

    1989-01-01

    The actin (ACT) gene from the budding yeast Kluyveromyces lactis was cloned, and the nucleotide sequence was determined. The gene had a single intron 778 nucleotides in length which possessed the highly conserved splicing signals found in Saccharomyces cerevisiae introns. We demonstrated splicing of heterologous ACT transcripts in both K. lactis and S. cerevisiae.

  13. Quantitative characterization of pyrimidine dimer excision from UV-irradiated DNA (excision capacity) by cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Cell-free extracts from wild-type yeast (RAD+) and from rad mutants belonging to the RAD3 epistatic group (rad1-1, rad2-1, rad3-1, rad4-1) contain activities catalyzing the excision of pyrimidine dimers (PD) from purified ultraviolet-irradiated DNA which was not pre-treated with exogenous UV-endonuclease. The level of these activities in cell-free extracts from rad mutants did not differ from that in wild-type extract and was close to the in vivo excision capacity of the latter calculated from the LD37 (about 104 PD per haploid genome). (Auth.)

  14. High-frequency transformation of a methylotrophic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae.

    OpenAIRE

    Sakai, Y.; Goh, T K; Tani, Y

    1993-01-01

    We have developed a transformation system which uses autonomous replicating plasmids for a methylotrophic yeast, Candida boidinii. Two autonomous replication sequences, CARS1 and CARS2, were newly cloned from the genome of C. boidinii. Plasmids having both a CARS fragment and the C. boidinii URA3 gene transformed C. boidinii ura3 cells to Ura+ phenotype at frequencies of up to 10(4) CFU/micrograms of DNA. From Southern blot analysis, CARS plasmids seemed to exist in polymeric forms as well as...

  15. EXPLORING BIODIVERSITY POTENTIAL OF WINE ASSOCIATED YEASTS

    OpenAIRE

    Dashko, Sofia

    2015-01-01

    Human exploitation of yeast fermentation dates back to the Neolithic. S. cerevisiae has been the most important yeast used for numerous fermentations of biotechnological interest, including grape fermentation for wine production. Despite its abundant use, the molecular mechanisms controlling alcoholic fermentation are rather unclear and the choice of S. cerevisiae as an inoculum is often the consequence of a mere habit, rather than the result of rational analyses. In this work we focused o...

  16. Viruses and prions of Saccharomyces cerevisiae

    OpenAIRE

    Wickner, Reed B.; Fujimura, Tsutomu; Esteban, Rosa

    2013-01-01

    Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular compone...

  17. Multiple gene mediated aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae

    Science.gov (United States)

    Furfural and HMF (5-hydroxymethylfurfural) are representative inhibitors to ethanologenic yeast generated from biomass pretreatment using dilute acid hydrolysis. Few yeast strains tolerant to inhibitors are available. We have developed tolerant strains of Saccharomyces cerevisiae with enhanced bio...

  18. Flavour-active wine yeasts

    OpenAIRE

    Cordente, Antonio G.; Curtin, Christopher D.; Varela, Cristian; Pretorius, Isak S.

    2012-01-01

    The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can infl...

  19. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae

    OpenAIRE

    Katie E Hyma; Saerens, Sofie M; Verstrepen, Kevin J.; Justin C Fay

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea t...

  20. Oscillations in glycolysis in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kloster, Antonina; Olsen, Lars Folke

    Wehave investigated the glycolytic oscillations, measured as NADH autofluorescence, in the yeast Saccharomyces cerevisiae in a batch reactor. Specifically, we have tested the effect of cell density and a number of inhibitors or activators of ATPase activity on the amplitude of the oscillations. The...

  1. Tangential Ultrafiltration of Aqueous "Saccharomyces Cerevisiae" Suspensions

    Science.gov (United States)

    Silva, Carlos M.; Neves, Patricia S.; Da Silva, Francisco A.; Xavier, Ana M. R. B.; Eusebio, M. F. J.

    2008-01-01

    Experimental work on ultrafiltration is presented to illustrate the practical and theoretical principles of this separation technique. The laboratory exercise comprises experiments with pure water and with aqueous "Saccharomyces cerevisiae" (from commercial Baker's yeast) suspensions. With this work students detect the characteristic phenomena…

  2. Differential inactivation analysis of diploid yeast exposed to radiation of various LET. I. Computerized single-cell observation and preliminary application to x-ray-treated Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    This series of investigations was designed to observe growth and division of single, diploid yeast cells within the first four generations after irradiation with ionizing radiation. Evidence exists that cell reactions important for the final cell fate occur during this period, and therefore the analysis of cell kinetics and of stationary forms of inactivated cells can be performed. A large number of experiments is necessary to obtain statistically confirmed results of single-cell observation. An automatically steered microphotographic registration device has been developed to facilitate the collection of large numbers of observations. Optical data scanned by a TV camera and digitally stored in a computer are processed by pattern recognizing programs to achieve the correct correlation of newly built cells to existing ones and to deliver a pedigree over four generations of at least eight cells for every irradiated single cell. The pooled data of many pedigrees of this kind allow the analysis of the differential behavior of a total population. From the analysis of x-irradiated cells one can conclude that a single cell that produces at least a microcolony of five cells is eventually able to form a macrocolony and thus can be considered a survivor. That means the division probability of cells to go from generation zero to three corresponds to the survival curve of the colony-forming ability test. Therefore this method is suitable for the differential description of the important phenomenological cell reactions after irradiation

  3. Mutational analysis of STE5 in the yeast Saccharomyces cerevisiae: Application of a differential interaction trap assay for examining protein-protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, C.; Dhillon, N.; Durfee, T. [Univ. of California, Berkeley, CA (United States)] [and others

    1997-10-01

    Ste5 is essential for the yeast mating pheromone response pathway and is thought to function as a scaffold that organized the components of the mitogen-activated protein kinase (MAKP) cascade. A new method was developed to isolate missense mutations in Ste5 that differentially affect the ability of Ste5 to interact with either of two MAPK cascade constituents, the MEKK (Ste11) and the MEK (Ste7). Mutations that affect association with Ste7 or with Ste11 delineate discrete regions of Ste5 that are critical for each interaction. Co-immunoprecipitation analysis, examining the binding in vitro of Ste5 to Ste11, Ste7, Ste4 (G protein {beta} subunit), and Fus3 (MAPK), confirmed that each mutation specifically affects the interaction of Ste5 with only one protein. When expressed in a ste5{delta} cell, mutant Ste5 proteins that are defective in their ability to interact with either Ste11 or Ste7 result in a markedly reduced mating proficiency. One mutation that clearly weakened (but did not eliminate) interaction of Ste5 with Ste7 permitted mating at wild-type efficiency, indicating that an efficacious signal is generated even when Ste5 associates with only a small fraction of (or only transiently with) Ste7. Ste5 mutants defective in association with Ste11 or Ste7 showed strong interallelic complementation when co-expressed, suggesting that the functional form of Ste5 in vivo is an oligomer. 69 refs., 6 figs., 3 tabs.

  4. Reconstitution of an efficient thymidine salvage pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vernis, L.; Piskur, Jure; Diffley, J.F.X.

    2003-01-01

    The budding yeast Saccharomyces cerevisiae is unable to incorporate exogenous nucleosides into DNA. We have made a number of improvements to existing strategies to reconstitute an efficient thymidine salvage pathway in yeast. We have constructed strains that express both a nucleoside kinase as well...

  5. Phenotypical signs and chemical composition of Saccharomyces cerevisiae – mannoprotein producers

    Directory of Open Access Journals (Sweden)

    Agafia USATII

    2012-11-01

    Full Text Available Phenotypical signs and chemical composition of Saccharomyces cerevisiae CNMN-Y-18 and Saccharomyces cerevisiae CNMN-Y-19 yeast strains are described in this article. The presence of protein complexes with high content of irreplaceable amino acids and antioxidant enzymes, as well as polysaccharides with predominance of mannoproteins allow to recommend these yeast strains for the utilization in biotechnology. Results are of interest for the standard description of yeast strains offered as object for industrial appointment.

  6. Identification and Characterization of a Novel Biotin Biosynthesis Gene in Saccharomyces cerevisiae

    OpenAIRE

    Wu, Hong; Ito, Kiyoshi; Shimoi, Hitoshi

    2005-01-01

    Yeast Saccharomyces cerevisiae cells generally cannot synthesize biotin, a vitamin required for many carboxylation reactions. Although sake yeasts, which are used for Japanese sake brewing, are classified as S. cerevisiae, they do not require biotin for their growth. In this study, we identified a novel open reading frame (ORF) in the genome of one strain of sake yeast that we speculated to be involved in biotin synthesis. Homologs of this gene are widely distributed in the genomes of sake ye...

  7. Identification of a Saccharomyces cerevisiae Glucosidase That Hydrolyzes Flavonoid Glucosides▿ †

    OpenAIRE

    Schmidt, Sabine; Rainieri, Sandra; Witte, Simone; Matern, Ulrich; Martens, Stefan

    2011-01-01

    Baker's yeast (Saccharomyces cerevisiae) whole-cell bioconversions of naringenin 7-O-β-glucoside revealed considerable β-glucosidase activity, which impairs any strategy to generate or modify flavonoid glucosides in yeast transformants. Up to 10 putative glycoside hydrolases annotated in the S. cerevisiae genome database were overexpressed with His tags in yeast cells. Examination of these recombinant, partially purified polypeptides for hydrolytic activity with synthetic chromogenic α- or β-...

  8. Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica.

    Science.gov (United States)

    Iwama, Ryo; Kobayashi, Satoshi; Ishimaru, Chiaki; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2016-06-01

    Yarrowia lipolytica possesses twelve ALK genes, which encode cytochromes P450 in the CYP52 family. In this study, using a Y. lipolytica strain from which all twelve ALK genes had been deleted, strains individually expressing each of the ALK genes were constructed and their roles and substrate specificities were determined by observing their growth on n-alkanes and analyzing fatty acid metabolism. The results suggested that the twelve Alk proteins can be categorized into four groups based on their substrate specificity: Alk1p, Alk2p, Alk9p, and Alk10p, which have significant activities to hydroxylate n-alkanes; Alk4p, Alk5p, and Alk7p, which have significant activities to hydroxylate the ω-terminal end of dodecanoic acid; Alk3p and Alk6p, which have significant activities to hydroxylate both n-alkanes and dodecanoic acid; and Alk8p, Alk11p, and Alk12p, which showed faint or no activities to oxidize these substrates. The involvement of Alk proteins in the oxidation of fatty alcohols and fatty aldehydes was also analyzed by measuring viability of the mutant deleted for twelve ALK genes in medium containing dodecanol and by observing growth on dodecanal of a mutant strain, in which twelve ALK genes were deleted along with four fatty aldehyde dehydrogenase genes. It was suggested that ALK gene(s) is/are involved in the detoxification of dodecanol and the assimilation of dodecanal. These results imply that genes encoding CYP52-family P450s have undergone multiplication and diversification in Y. lipolytica for assimilation of various hydrophobic compounds. PMID:27039152

  9. DETERMINAÇÃO DA COMPOSIÇÃO EM AMINOÁCIDOS DAS PROTEÍNAS DA LEVEDURA DE ÁLCOOL (Saccharomyces cerevisiae SECA E DA FARINHA DE PEIXE COMO INGREDIENTES PARA RAÇÕES DE PEIXES DE ÁGUA DOCE DETERMINATION OF AMINO ACIDS COMPOSITION IN MOLASSES YEAST (Saccharomyces cerevisiae AND FISH MEAL PROTEIN AS INGREDIENTS FOR FRESHWATER FISH RATIONS

    Directory of Open Access Journals (Sweden)

    Dalton José Carneiro

    2007-09-01

    Full Text Available

    Determinaram-se a composição e a qualidade protéica da levedura seca de destilaria alcoólica (S. cerevisiae, comparando-a com a farinha de peixe (FP. Utilizaram-se o escore químico (EQ e o índice de aminoácidos essenciais (IAAE. Estes quocientes indicam, em relação à proteína do ovo, a ordem dos aminoácidos limitantes, estimando assim o valor biológico protéico. Observaram-se elevados índices de lisina (EQ = 120, treonina (EQ = 110 e triptofano (EQ = 100 na levedura, recomendando-se seu balanceamento com cereais deficientes nestes aminoácidos. A proteína da levedura superou a da FP nestes índices de qualidade e satisfez o padrão internacional de qualidade e as exigências em aminoácidos estimados para a carpa e o pacu. Posteriores ensaios acerca de desempenho produtivo, de digestibilidade e de efeitos metabólicos com peixes fornecerão importantes resultados para o balanceamento de rações, necessitando serem testados atrativos mais palatáveis e aglutinantes para o meio aquático, quando se incorpora levedura à ração.

    PALAVRAS-CHAVE: Levedura alcoólica; proteína; peixe; rações.

    The possible use of microbial biomass to replace part of the fishmeal in fish diets could be considered an innovate solution. A quantitative determination of the content of aminoacids was made in two protein sources: molasses yeast (S. cerevisiae and fish meal. The chemical score and essential aminoacid index were calculated as a parameter correlated to biological value. The high lysine, threonine and tryptophan content of the protein in the molasses yeast must be emphasized. It reaches an order of magnitude superior to that in fish meal. Further researches, especially in relation to protein digestibility and possible toxicity or antinutritional

  10. The ultimate ethanol: Technoeconomic evaluation of ethanol manufacture, comparing yeast vs Zymomonas bacterium fermentations. [Zymomonas mobilis:a5; Saccharomyces cerevisiae:a6

    Energy Technology Data Exchange (ETDEWEB)

    Busche, R.M. (Bio En-Gene-Er Associates, Inc., Wilmington, DE (United States)); Scott, C.D.; Davison, B.H. (Oak Ridge National Lab., TN (United States)); Lynd, L.R. (Dartmouth Coll., Hanover, NH (United States))

    1991-08-01

    If ethanol could be produced at a low enough price to serve as the precursor to ethylene and butadiene, it and its derivatives could account for 159 billion lb, or 50% of the US production of 316 billion lb of synthetic organic chemicals, presently valued at $113 billion. This use would consume 3.4 billion bu of corn, or {approximately}40% of the corn crop. This study evaluates advance process engineering and genetic engineering techniques that could generate savings and reduce production costs. The most rewarding development strategy appears to be to demonstrate at pilot scale the use of immobilized Zymomonas mobilis bacteria in a fluidized-bed bioreactor operating in a continuous mode over an extended period of time. Throughput should be adjusted to control product concentration at {approximately}100 g/L (i.e., as close to the threshold of inhibition as possible). There appears to be no inherent design limitation to effect the engineering improvements required in the advanced process operation. The above scenario assumes that the presently available, product-inhibited organisms would be used. In a longer-term, more difficult research effort, it might be possible to reduce or eliminate product inhibition. As a result, price would be reduced further to $1.75 for the Zymomonas system or $1.85 for the yeast fermentation. It is recommended that the engineering proveout of the advanced process be continued at a pilot scale and that a laboratory program aimed at reducing product inhibition and/or increasing specific productivity be initiated. 49 refs., 11 figs., 19 tabs.

  11. Production Of Extracellular Enzymes By Some Soil Yeasts

    OpenAIRE

    Falih, A. M. [عبد الله مساعد خلف الفالح

    1997-01-01

    This study investigated the ability of soil yeasts, Geotrichum candidum, Geotrichum capitatum and Williopsis californica to produce extracellular enzymes (amylase, cellulase and protease) in vitro compared with that of a laboratory strain of Saccharomyces cerevisiae. It appears that the soil yeasts studied here were less amylolytic yeasts except the yeast G. candidum, which was highly effective at extracellular amylase production. The soil yeast W. californica was an average producer of cellu...

  12. DETERMINATION OF KILLER CHARACTER OF WINE YEAST ISOLATED FROM ISTRA

    OpenAIRE

    Sandi ORLIC; POGAČIĆ, Martina; Ana JEROMEL; Marko KAROGLAN; Kozina, Bernard; IACUMIN, Lucilla; Redžepović, Sulejman

    2008-01-01

    Wild wine yeasts with killer phenotype are widespread in many wine regions of the world. The presence of killer yeasts may become particularly important in wine fermentations conducted by inoculation with selected strains of Saccharomyces cerevisiae. Wild killer yeasts may suppress selected sensitive yeasts inoculated into the must during the fermentation. The goal of this investigation was to identify killer yeast in Istra region using physiological and molecular methods. In total 50 S.cerev...

  13. Sociobiology of the budding yeast

    Indian Academy of Sciences (India)

    Dominika M Wloch-Salamon

    2014-04-01

    Social theory has provided a useful framework for research with microorganisms. Here I describe the advantages and possible risks of using a well-known model organism, the unicellular yeast Saccharomyces cerevisiae, for sociobiological research. I discuss the problems connected with clear classification of yeast behaviour based on the fitness-based Hamilton paradigm. Relevant traits include different types of communities, production of flocculins, invertase and toxins, and the presence of apoptosis.

  14. Mead production: selection and characterization assays of Saccharomyces cerevisiae

    OpenAIRE

    de Pereira, Ana Paula; Dias, Teresa; Andrade, João Verdial; Ramalhosa, Elsa; Mendes-Ferreira, Ana; Mendes-Faia, Arlete; Leticia M. Estevinho

    2009-01-01

    Mead is a traditional alcoholic drink which results from the fermentation of diluted honey. Yeasts used in mead production are, usually, wine Saccharomyces cerevisiae strains. Most of these yeasts are not adapted to the conditions of mead production namely, high sugar levels, low pH values and reduced nitrogen concentrations. The inability of yeast strains to respond and adapt to unfavorable stressful growth conditions, leads to several problems, such as lack of uniformity of the final ...

  15. ATP synthase of yeast mitochondria. Isolation of subunit j and disruption of the ATP18 gene.

    Science.gov (United States)

    Arnold, I; Pfeiffer, K; Neupert, W; Stuart, R A; Schägger, H

    1999-01-01

    The subunit composition of the mitochondrial ATP synthase from Saccharomyces cerevisiae was analyzed using blue native gel electrophoresis and high resolution SDS-polyacrylamide gel electrophoresis. We report here the identification of a novel subunit of molecular mass of 6,687 Da, termed subunit j (Su j). An open reading frame of 127 base pairs (ATP18), which encodes for Su j, was identified on chromosome XIII. Su j does not display sequence similarity to ATP synthase subunits from other organisms. Data base searches, however, identified a potential homolog from Schizosaccharomyces pombe with 51% identity to Su j of S. cerevisiae. Su j, a small protein of 59 amino acid residues, has the characteristics of an integral inner membrane protein with a single transmembrane segment. Deletion of the ATP18 gene encoding Su j led to a strain (Deltasu j) completely deficient in oligomycin-sensitive ATPase activity and unable to grow on nonfermentable carbon sources. The presence of Su j is required for the stable expression of subunits 6 and f of the F0 membrane sector. In the absence of Su j, spontaneously arising rho- cells were observed that lacked also ubiquinol-cytochrome c reductase and cytochrome c oxidase activities. We conclude that Su j is a novel and essential subunit of yeast ATP synthase. PMID:9867807

  16. Isolation and Identification of Yeasts from Tibet Kefir

    OpenAIRE

    Yun Li; Tongjie Liu; Guoqing He

    2015-01-01

    The occurrence and distribution of yeasts in Tibet kefir were investigated in this study. Five samples of Tibetan kefir from Tibet and surrounding areas were collected for yeast isolation. Based on physiological, biochemical characteristics and molecular identification results, eight species of yeast were isolated and identified from Tibet kefir, including Saccharomyces cerevisiae, Pichia fermentans, Debaryomyces hansenii, Rhodotorula mucilaginosa, Candida zeylanoide, Candida parapsilosis, Kl...

  17. Xylose utilizing recombinant Saccharomyces cerevisiae strains

    Energy Technology Data Exchange (ETDEWEB)

    Walfridsson, M.

    1996-04-01

    Through metabolic engineering, S. cerevisiae was provided with the necessary enzymes required for xylose utilisation during ethanolic fermentation of xylose-rich lignocellulose raw materials. For xylitol production, S. cerevisiae was provided with the Pichia stipitis XYL1 gene encoding xylose reductase (XR). The in-vivo reduction and the following excretion of xylitol, requires a co-substrate for maintenance and cofactor regeneration. Xylitol yields close to 100% were obtained with the XYL1 containing S. cerevisiae. Introducing P. stipitis XYL1 and XYL2 genes, encoding XR and xylitol dehydrogenase (XDH), respectively, enabled S. cerevisiae to convert xylose to xylulose, via xylitol. During the screening work of P. stipitis XDH gene, another gene encoding a polyol dehydrogenase was isolated and cloned in S. cerevisiae. The gene was identified as a D-arabinitol dehydrogenase gene. In P. stipitis it may function as a redox sink by reducing D-ribulose to D-arabinitol. The metabolism through the pentose phosphate pathway (PPP) was enhanced by over-expressing the native genes TKL1 and TAL1 encoding transketolase and transaldolase, respectively, resulting in improved xylose utilisation. The XR and XDH activities in recombinant S. cerevisiae were produced at different levels by constructing yeast vectors in which the PGK1 and ADHI promoters controlled XYL1 and XYL2. With higher XDH than XR activities, less by-products, in the form of xylitol and glycerol, were formed by the recombinant S. cerevisiae strains. The Thermus thermophilus xylA gene encoding a thermostable xylose isomerase was cloned and expressed in S. cerevisiae. The recombinant xylose isomerase was actively produced and a new functional metabolic pathway was established in S. cerevisiae resulting in ethanol production from xylose. 150 refs, 3 figs, 4 tabs

  18. NADPH Cytochrome P-450 Oxidoreductase and Susceptibility to Ketoconazole

    OpenAIRE

    Venkateswarlu, K; Kelly, Diane E.; Manning, Nigel J.; Kelly, Steven L.

    1998-01-01

    The phenotype of a strain of Saccharomyces cerevisiae containing a disruption of the gene encoding NADPH cytochrome P-450 oxidoreductase (CPR) was quantified biochemically and microbiologically, as were those of various transformants of this strain after expression of native CPR, cytochrome P-45051 (CYP51), and a fusion protein of CYP51-CPR (FUS). Only a 4-fold decrease in ergosterol biosynthesis was observed for the cpr strain, but ketoconazole sensitivity increased 200-fold, indicating hype...

  19. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources Produção e caracterização da glucoamilase do fungo Aspergillus awamori expressa em levedura Saccharomyces cerevisiae usando diferentes fontes de carbono

    Directory of Open Access Journals (Sweden)

    Fabiana Carina Pavezzi

    2008-03-01

    Full Text Available Glucoamylase is widely used in the food industry to produce high glucose syrup, and also in fermentation processes for production beer and ethanol. In this work the productivity of the glucoamylase of Aspergillus awamori expressed by the yeast Saccharomyces cerevisiae, produced in submerged fermentation using different starches, was evaluated and characterized physico-chemically. The enzyme presented high specific activity, 13.8 U/mgprotein or 2.9 U/mgbiomass, after 48 h of fermentation using soluble starch as substrate. Glucoamylase presented optimum activity at temperature of 55ºC, and, in the substratum absence, the thermostability was for 1h at 50ºC. The optimum pH of activity was pH 3.5 - 4.0 and the pH stability between 5.0 and 7.0. The half life at 65ºC was at 30.2 min, and the thermal energy of denaturation was 234.3 KJ mol-1. The hydrolysis of different substrate showed the enzyme's preference for the substrate with a larger polymerization degree. The gelatinized corn starch was the substratum most susceptible to the enzymatic action.A glucoamilase é amplamente utilizada na indústria de alimentos no processamento do amido para a produção de xarope com alto teor de glicose e também muito empregada nos processos de fermentação para produção de cerveja e etanol. Neste trabalho a glucoamilase de Aspergillus awamori expressa em Saccharomyces cerevisiae produzida sob fermentação líquida foi avaliada quanto à produtividade em diferentes amidos e caracterizada físico-quimicamente. A enzima apresentou alta atividade específica de 13,8 U/mg proteína e de 2,9 U/mg biomassa ao final de 48 h de fermentação em meio contendo amido solúvel. A glucoamilase apresentou temperatura ótima de atividade a 55ºC, e temperatura de desnaturação térmica na ausência de substrato por 1h a 50ºC. O pH ótimo de atividade foi na faixa de 3,5 - 4,0 e a estabilidade ao pH entre os valores 5,0 e 7,0. A meia vida a 65ºC foi 30,2 min., e a

  20. Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rødkaer, Steven V; Færgeman, Nils J.

    2014-01-01

    steps and by numerous different regulators. As numerous of these regulating proteins, biochemical mechanisms, and cellular pathways are evolutionary conserved, complex biochemical information relevant to humans can be obtained by studying simple organisms. Thus, the yeast Saccharomyces cerevisiae has...... been recognized as a powerful model system to study fundamental biochemical processes. In the present review, we highlight central signaling pathways and molecular circuits conferring nitrogen- and glucose sensing in S. cerevisiae....

  1. Recovery of Saccharomyces cerevisiae from ethanol-induced growth inhibition.

    OpenAIRE

    Walker-Caprioglio, H M; Rodriguez, R J; Parks, L. W.

    1985-01-01

    Ethanol caused altered mobility of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene in plasma membrane preparations of Saccharomyces cerevisiae. Because lipids had been shown to protect yeast cells against ethanol toxicity, sterols, fatty acids, proteins, and combinations of these were tested; however, protection from growth inhibition was not seen. Ethanol-induced, prolonged lag periods and diminished growth rates in S. cerevisiae were reduced by an autoconditioning of the medium by the in...

  2. Culture nutrition key to inhibitor-tolerant yeast performance

    Science.gov (United States)

    Inhibitory compounds generated during acid hydrolysis pretreatment of lignocellulosic biomass interfere with subsequent fermentation to ethanol. A tolerant yeast strain Saccharomyces cerevisiae Y-50049 has recently been developed by targeted evolution in the presence of 5-hydroxymethylfurfural and f...

  3. Newly identified prions in budding yeast, and their possible functions

    OpenAIRE

    Crow, Emily T.; Li, Liming

    2011-01-01

    Yeast prions are atypical genetic elements that are transmitted as heritable protein conformations. [PSI+], [URE3], and [PIN+] are three well-studied prions in the budding yeast, Saccharomyces cerevisiae. In the last three years, several additional prions have been reported in yeast, including [SWI+], [OCT+], [MCA], [GAR+], [MOT3+], [ISP+], and [NSI+]. The growing number of yeast prions suggests that protein-based inheritance might be a widespread biological phenomenon. In this review, we sum...

  4. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    van der Aa Kuhle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-01-01

    nontumorigenic porcine jejunal epithelial cell line (IPEC-J2) was investigated by incorporation of H-3-methionine into the yeast cells and use of liquid scintillation counting. Only few of the food-borne S. cerevisiae strains exhibited noteworthy adhesiveness with the strongest levels of adhesion (13...... effects hence indicating that food-borne strains of S. cerevisiae may possess probiotic properties in spite of low adhesiveness. © 2004 Elsevier B.V. All rights reserved....

  5. Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wall.

    Science.gov (United States)

    Liu, Hong-Zhi; Wang, Qiang; Liu, Xiao-Yong; Tan, Sze-Sze

    2008-12-01

    Freeze-dried samples of four Saccharomyces cerevisiae strains, namely, FL01, FL03, 2.0016, and 2.1424, were subjected to spaceflight. After the satellite's landing on Earth, the samples were recovered and changes in yeast cell wall were analyzed. Spaceflight strains of all S. cerevisiae strains showed significant changes in cell wall thickness (P growth curve analysis showed spaceflight S. cerevisiae 2.0016 had a faster growth rate, shorter lag phase periods, higher final biomass, and higher content of beta-glucan. Genetic stability analysis showed that prolonged subculturing of spaceflight strain S. cerevisiae 2.0016 did not lead to the appearance of variants, indicating that the genetic stability of S. cerevisiae 2.0016 mutant could be sufficient for its exploitation of beta-glucan production. PMID:18797865

  6. Understanding the 3-hydroxypropionic acid tolerance mechanism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Juncker, Agnieszka; Hallstrom, Bjorn; Jensen, Niels Bjerg; Maury, Jerome; Nielsen, Jen; Förster, Jochen; Borodina, Irina

    sustainable alternative for production of acrylic acid from renewable feedstocks. We are establishing Saccharomyces cerevisiae as an alternative host for 3HP production. However, 3HP also inhibits yeast grow th at level well below what is desired for commercial applications. Therefore, we are aiming to...... improve 3HP tolerance in S. cerevisiae by applying adaptive evolution approach. We have generated yeast strains with sign ificantly improved capacity for tolerating 3HP when compared to the wild-type. We will present physiolo gical characterization, genome re-sequencing, and transcriptome analysis of the...

  7. Genome-wide Fitness Profiles Reveal a Requirement for Autophagy During Yeast Fermentation

    OpenAIRE

    Piggott, Nina; Cook, Michael A.; Tyers, Mike; Measday, Vivien

    2011-01-01

    The ability of cells to respond to environmental changes and adapt their metabolism enables cell survival under stressful conditions. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) is particularly well adapted to the harsh conditions of anaerobic wine fermentation. However, S. cerevisiae gene function has not been previously systematically interrogated under conditions of industrial fermentation. We performed a genome-wide study of essential and nonessential S. cerevisiae gene req...

  8. Identification of coated vesicles in Saccharomyces cerevisiae

    OpenAIRE

    1984-01-01

    Clathrin-coated vesicles were found in yeast, Saccharomyces cerevisiae, and enriched from spheroplasts by a rapid procedure utilizing gel filtration on Sephacryl S-1000. The coated vesicles (62-nm diam) were visualized by negative stain electron microscopy and clathrin triskelions were observed by rotary shadowing. The contour length of a triskelion leg was 490 nm. Coated vesicle fractions contain a prominent band with molecular weight of approximately 185,000 when analyzed by SDS PAGE. The p...

  9. Cell Wall Assembly in Saccharomyces cerevisiae

    OpenAIRE

    Lesage, Guillaume; Bussey, Howard

    2006-01-01

    An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and it...

  10. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering

    DEFF Research Database (Denmark)

    Asadollahi, Mohammadali; Maury, Jerome; Patil, Kiran Raosaheb;

    2009-01-01

    A genome-scale metabolic model was used to identify new target genes for enhanced biosynthesis of sesquiterpenes in the yeast Saccharomyces cerevisiae. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene as the modeling framewo...

  11. Development Of An Efficient Glycerol Utilizing Saccharomyces Cerevisiae Strain Via Adaptive Laboratory Evolution

    DEFF Research Database (Denmark)

    Strucko, Tomas; Zirngibl, Katharina; Tharwat Tolba Mohamed, Elsayed;

    2015-01-01

    catabolism in yeast. The knowledge acquired in this study may be further applied for rational S. cerevisiae strain improvement for using glycerol as a carbon source in industrial biotechnology processes. This work is a part of the DeYeastLibrary consortium financed by ERA-IB DeYeastLibrary - Designer yeast...... fermentation processes. The most commonly known microbial cell factory, the yeast Saccharomyces cerevisiae, has been extensively applied for the production of a wide range of scientifically and industrially relevant products using saccharides (mainly glucose) as carbon source. However, it was shown...... strain library optimized for metabolic engineering applications http://www.era-ib.net/deyeast-library...

  12. Construction of Killer Wine Yeast Strain

    OpenAIRE

    Seki, Tetsuji; Choi, Eon-Ho; Ryu, Dewey

    1985-01-01

    A double-stranded RNA plasmid which confers the superkiller phenotype was transferred into a wine yeast (Montrachet strain 522) and its leucine-requiring derivative (strain 694) by cytoduction, using the protoplast fusion technique. The killer wine yeast constructed completely suppressed the growth of killer-sensitive strains of Saccharomyces cerevisiae in yeast extract-peptone-glucose medium at pH 4.5, whereas the killer effect was somewhat decreased at pH 3.5. The wine yeast harboring the k...

  13. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges

    OpenAIRE

    Masneuf-Pomarede, Isabelle; Bely, Marina; Marullo, Philippe; Albertin, Warren

    2016-01-01

    Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various s...

  14. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    OpenAIRE

    Strucko, Tomas; Eriksen, Carsten; Nielsen, J.; Mortensen, Uffe Hasbro

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of...

  15. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  16. Production of biopharmaceutical proteins by yeast

    OpenAIRE

    Nielsen, Jens

    2012-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used for production of several large volume products. Insulin and insulin analogs are by far the dominating biopharmaceuticals produced by yeast, and this will increase as the global insulin market is expected ...

  17. The wine and beer yeast Dekkera bruxellensis

    OpenAIRE

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P.; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beer...

  18. Fission yeast mating-type switching: programmed damage and repair

    DEFF Research Database (Denmark)

    Egel, Richard

    2005-01-01

    Mating-type switching in fission yeast follows similar rules as in budding yeast, but the underlying mechanisms are entirely different. Whilst the initiating double-strand cut in Saccharomyces cerevisiae requires recombinational repair for survival, the initial damage in Schizosaccharomyces pombe...

  19. Genetic Basis for Saccharomyces cerevisiae Biofilm in Liquid Medium

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz; Bojsen, Rasmus Kenneth; Gro Rejkjær Sørensen, Laura; Weiss Nielsen, Martin; Lisby, Michael; Folkesson, Sven Anders; Regenberg, Birgitte

    2014-01-01

    than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the S1278b background and found 71 genes that were essential for biofilm development. Quantitative...

  20. Improving biomass sugar utilization by engineered Saccharomyces cerevisiae

    Science.gov (United States)

    The efficient utilization of all available sugars in lignocellulosic biomass, which is more abundant than available commodity crops and starch, represents one of the most difficult technological challenges for the production of bioethanol. The well-studied yeast Saccharomyces cerevisiae has played a...

  1. Reducing the genetic complexity of glycolysis in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Solis Escalante, D.

    2015-01-01

    Glycolysis, a biochemical pathway that oxidizes glucose to pyruvate, is at the core of sugar metabolism in Saccharomyces cerevisiae (bakers’ yeast). Glycolysis is not only a catabolic route involved in energy conservation, but also provides building blocks for anabolism. From an applied perspective,

  2. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zheng

    Full Text Available The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.

  3. A novel, highly regulated, rapidly inducible system for the expression of chicken progesterone receptor, cPRA, in Saccharomyces cerevisiae.

    Science.gov (United States)

    Poletti, A; Weigel, N L; McDonnell, D P; Schrader, W T; O'Malley, B W; Conneely, O M

    1992-05-01

    A rapidly inducible and tightly regulated system for the expression of protein in yeast is based on a chimeric promoter constructed of two copies of a vitellogenin-estrogen-response element (ERE) which are inserted upstream from the promoter of the yeast gene encoding iso-1-cytochrome c. The chimeric promoter was inserted in a yeast expression plasmid upstream from the coding sequence of ubiquitin fused in frame to a cDNA encoding the full-length chicken progesterone receptor A (cPRA). The resultant plasmid (YEpA2) was co-transformed in Saccharomyces cerevisiae with a plasmid which encodes the human estrogen receptor. Estradiol (E2)-induced transactivation of the chimeric promoter results in transcription of the cPRA gene from YEpA2, and synthesis of cPRA. The fusion protein, ubiquitin-cPRA, is rapidly cleaved in vivo to produce cPRA. Analysis of samples by Western immunoblot shows that cPRA is almost undetectable in the absence of E2, and that treatment with 50 nM E2 results in a 500-1000-fold induction of cPRA (0.06-0.3% of the total protein) after 1 h. The plasmid-expressed soluble receptor is stable and demonstrates the correct affinity for its ligand. We have prepared yeast extracts using enzymatic digestion of the cell wall with oxalyticase followed by hypotonic shock. This has resulted in a dramatic increase in the % of receptor which binds hormone compared to previous studies which used mechanical disruption techniques. The cPRA is biologically active since it activates transcription of a co-transformed reporter gene containing its response element.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1316867

  4. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...

  5. Saccharomyces cerevisiae of palm wine-enhanced ethanol production by using mutagens

    International Nuclear Information System (INIS)

    The newly isolated Saccharomyces cerevisiae of palm wine produced enhanced amounts of ethanol when cells were UV-irradiated and treated with N-methyl-N-nitro-N-nitrosoguanidine. A further increase of ethanol was observed in yeast extract, peptone, dextrose medium fortified with yeast extract, skimmed milk and soya flour. (author). 9 refs

  6. Independent Evolution of Winner Traits without Whole Genome Duplication in Dekkera Yeasts

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Zheng, Jun-Juan; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Dekkera yeasts have often been considered as alternative sources of ethanol production that could compete with S. cerevisiae. The two lineages of yeasts independently evolved traits that include high glucose and ethanol tolerance, aerobic fermentation, and a rapid ethanol fermentation rate. The Saccharomyces yeasts attained these traits mainly through whole genome duplication approximately 100 million years ago (Mya). However, the Dekkera yeasts, which were separated from S. cerevisiae approximately 200 Mya, did not undergo whole genome duplication (WGD) but still occupy a niche similar to S. cerevisiae. Upon analysis of two Dekkera yeasts and five closely related non-WGD yeasts, we found that a massive loss of cis-regulatory elements occurred in an ancestor of the Dekkera yeasts, which led to improved mitochondrial functions similar to the S. cerevisiae yeasts. The evolutionary analysis indicated that genes involved in the transcription and translation process exhibited faster evolution in the Dekkera yeasts. We detected 90 positively selected genes, suggesting that the Dekkera yeasts evolved an efficient translation system to facilitate adaptive evolution. Moreover, we identified that 12 vacuolar H+-ATPase (V-ATPase) function genes that were under positive selection, which assists in developing tolerance to high alcohol and high sugar stress. We also revealed that the enzyme PGK1 is responsible for the increased rate of glycolysis in the Dekkera yeasts. These results provide important insights to understand the independent adaptive evolution of the Dekkera yeasts and provide tools for genetic modification promoting industrial usage. PMID:27152421

  7. Determination of the content of selenium in selenium yeast by NAA

    International Nuclear Information System (INIS)

    The auther succeeded in cultivating brewers yeast, saccharomyces cerevisia, containing various concentrations of sodium selenite in glucose-glycine-yeast (GGY) extract medium. The content of selenium in selenium yeast was determined by NAA. The results indicate that this method is accurate and needs less time than other methods

  8. Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway

    Czech Academy of Sciences Publication Activity Database

    Horák, Jaroslav; Regelmann, J.; Wolf, D. H.

    2002-01-01

    Roč. 277, č. 10 (2002), s. 8248-8254. ISSN 0021-9258 R&D Projects: GA ČR GA204/01/0272; GA ČR GA204/02/1240; GA AV ČR IAA5011005 Institutional research plan: CEZ:AV0Z5011922 Keywords : Saccharomyces cerevisiae * glucose * fructose -1,6-bisphosphates Subject RIV: CE - Biochemistry Impact factor: 6.696, year: 2002

  9. Methionine catabolism in Saccharomyces cerevisiae.

    Science.gov (United States)

    Perpète, Philippe; Duthoit, Olivier; De Maeyer, Simon; Imray, Louise; Lawton, Andrew I; Stavropoulos, Konstantinos E; Gitonga, Virginia W; Hewlins, Michael J E; Dickinson, J Richard

    2006-01-01

    The catabolism of methionine to methionol and methanethiol in Saccharomyces cerevisiae was studied using (13)C NMR spectroscopy, GC-MS, enzyme assays and a number of mutants. Methionine is first transaminated to alpha-keto-gamma-(methylthio)butyrate. Methionol is formed by a decarboxylation reaction, which yields methional, followed by reduction. The decarboxylation is effected specifically by Ydr380wp. Methanethiol is formed from both methionine and alpha-keto-gamma-(methylthio)butyrate by a demethiolase activity. In all except one strain examined, demethiolase was induced by the presence of methionine in the growth medium. This pathway results in the production of alpha-ketobutyrate, a carbon skeleton, which can be re-utilized. Hence, methionine catabolism is more complex and economical than the other amino acid catabolic pathways in yeast, which use the Ehrlich pathway and result solely in the formation of a fusel alcohol. PMID:16423070

  10. Existence and expression of photoreactivation repair genes in various yeast species

    International Nuclear Information System (INIS)

    Photoreactivation repair (Phr) activities in cell extracts of 13 different yeast species were measured by the Haemophilus influenzae transformation assay. Five species including Schizosaccharomyces pombe showed no or low enzymatic activity. In contrast to the other species, chromosomal DNAs of these 5 species did not show detectable hybridization using a DNA fragment of the photolyase PHRI gene of Saccharomyses cervisiae as a probe even at a low stringency condition. When the PHRI gene was attached to the 5'-flanking sequence of the iso-1-cytochrome c (CYC-1) gene of S. cerevisiae and introduced into S. pombe cells, the transformants acquired a high Phr activity, indicating that the PHR1 gene alone can provide a Phr-negative species with this repair activity and the light-absorbing cofactor(s) must be present in S. pombe. The results also demonstrated that the 5'-flanking sequence of the S. cervisiae and introduced into S. pombe cells, the transformants acquired a high Phr activity, indicating that the PHR gene alone can provide a Phr-negative species with this repair activity and the light-absorbing cofactor(s) must be present in S. pombe. The results also demonstrated that the 5'-flanking sequence of the S. cerevisiae CYC-1 gene works in S. pombe as a regulatory element. (author). 24 refs.; 4 figs.; 3 tabs

  11. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Song, Ji-Yoon; Park, Joon-Song; Kang, Chang Duk; Cho, Hwa-Young; Yang, Dongsik; Lee, Seunghyun; Cho, Kwang Myung

    2016-05-01

    Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL(-1)h(-1) under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast. PMID:26384570

  12. Mitochondrial copper metabolism and delivery to cytochrome c oxidase.

    Science.gov (United States)

    Horn, Darryl; Barrientos, Antoni

    2008-07-01

    Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the Cu(A) site, the primary acceptor of electrons from ferrocytochrome c. The third copper, Cu(B), is associated with the high-spin heme a(3) group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1) the source of the copper used for COX metallation; 2) the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the Cu(A) and Cu(B) sites, respectively; 3) the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4) the existence of at least four Cox17p homologues carrying a similar twin CX(9)C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5) the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX(9)C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis. PMID:18459161

  13. Radiation-sensitive mutants of yeast

    International Nuclear Information System (INIS)

    Nomenclature for various radiosensitive mutants of Saccharomyces cerevisiae is briefly discussed. Tables are presented to show results of allelism tests of most of the radiosensitive mutants isolated by various investigators together with a standardized rad locus designation and map positions of a number of rad loci in yeast

  14. Why, when, and how did yeast evolve alcoholic fermentation?

    OpenAIRE

    Dashko, Sofia; Zhou, Nerve; Compagno, Concetta; Piškur, Jure

    2014-01-01

    The origin of modern fruits brought to microbial communities an abundant source of rich food based on simple sugars. Yeasts, especially Saccharomyces cerevisiae, usually become the predominant group in these niches. One of the most prominent and unique features and likely a winning trait of these yeasts is their ability to rapidly convert sugars to ethanol at both anaerobic and aerobic conditions. Why, when, and how did yeasts remodel their carbon metabolism to be able to accumulate ethanol u...

  15. Measuring Replicative Life Span in the Budding Yeast

    OpenAIRE

    Steffen, Kristan K.; Kennedy, Brian K.; Kaeberlein, Matt

    2009-01-01

    Aging is a degenerative process characterized by a progressive deterioration of cellular components and organelles resulting in mortality. The budding yeast Saccharomyces cerevisiae has been used extensively to study the biology of aging, and several determinants of yeast longevity have been shown to be conserved in multicellular eukaryotes, including worms, flies, and mice 1. Due to the lack of easily quantified age-associated phenotypes, aging in yeast has been assayed almost exclusively by...

  16. Biodiversity of Yeasts During Plum Wegierka Zwykla Spontaneous Fermentation

    OpenAIRE

    Satora, Pawel; Tuszynski, Tadeusz

    2005-01-01

    The study comprises an analysis of the yeast microbiota that participated in the spontaneous fermentation of crushed Wegierka Zwykla plum fruit, which is the raw material for slivovitz production in the mountain region in the south of Poland. Saccharomyces cerevisiae yeast strains were differentiated by means of the killer sensitivity analysis related to a killer reference panel of 9 well-known killer yeast strains. The first phase of the fermentation was dominated by the representatives of K...

  17. Probiotic properties of yeasts occurring in fermented food and beverages

    DEFF Research Database (Denmark)

    Jespersen, Lene

    Besides being able to improve the quality and safety of many fermented food and beverages some yeasts offer a number of probiotic traits. Especially a group of yeast referred to as "Saccharomyces boulardii", though taxonomically belonging to Saccharomyces cerevisiae, has been claimed to have...... probiotic properties. Besides, yeasts naturally occurring globally in food and beverages will have traits that might have a positive impact on human health....

  18. Whole Genome Analysis of a Wine Yeast Strain

    OpenAIRE

    Hauser, Nicole C.; Kurt Fellenberg; Rosario Gil; Sonja Bastuck; Hoheisel, Jörg D; Pérez-Ortín, José E.

    2001-01-01

    Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 an...

  19. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  20. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging

    OpenAIRE

    Leonardo Petruzzi; Antonietta Baiano; Antonio De Gianni; Milena Sinigaglia; Maria Rosaria Corbo; Antonio Bevilacqua

    2015-01-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments w...

  1. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Strucko, Tomas; Eriksen, Carsten; Nielsen, J.;

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo...... biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of vanillin produced in this S. cerevisiae strain is insufficient for commercial production and improvements...... need to be done. We have introduced the genes necessary for vanillin production in an identical manner in two different yeast strains S288c and CEN.PK,where comprehensive – omics datasets are available, hence, allowing vanillin production in the two strain backgrounds to be evaluated and compared in a...

  2. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains

    OpenAIRE

    Boles Eckhard; Hahn-Hägerdal Bärbel; Wiedemann Beate; Karhumaa Kaisa; Gorwa-Grauslund Marie-F

    2006-01-01

    Abstract Background Fermentation of lignocellulosic biomass is an attractive alternative for the production of bioethanol. Traditionally, the yeast Saccharomyces cerevisiae is used in industrial ethanol fermentations. However, S. cerevisiae is naturally not able to ferment the pentose sugars D-xylose and L-arabinose, which are present in high amounts in lignocellulosic raw materials. Results We describe the engineering of laboratory and industrial S. cerevisiae strains to co-ferment the pento...

  3. Breaking phylogenetic barriers for fine and bulk chemical products in engineered Saccharomyces cerevisiae

    OpenAIRE

    Codazzi,

    2011-01-01

    Industrial biotechnologies allow today to obtain both fine and bulk chemicals and yeasts as cell factories can produce many products belonging to both field (Branduardi et al., 2008, Porro and Branduardi, 2009). Among yeasts, Saccharomyces cerevisiae still represents the microorganism of election to develop such cell factories. As regard bioethanol production, yeasts utilization is well established for its natural fermentation ability, but new generation biofuels require ...

  4. Robust Metabolic Responses to Varied Carbon Sources in Natural and Laboratory Strains of Saccharomyces cerevisiae

    OpenAIRE

    Van Voorhies, Wayne A.

    2012-01-01

    Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain i...

  5. INVOLVEMENT OF CATALASE IN SACCHAROMYCES CEREVISIAE HORMETIC RESPONSE TO HYDROGEN PEROXIDE

    Directory of Open Access Journals (Sweden)

    Ruslana Vasylkovska

    2015-05-01

    Full Text Available In this study, we investigated the relationship between catalase activity and H2O2-induced hormetic response in budding yeast S. cerevisiae. In general, our data suggest that: (i hydrogen peroxide induces hormesis in a concentration- and time-dependent manner; and (ii the effect of hydrogen peroxide on yeast colony growth positively correlates with the activity of catalase that suggests the enzyme involvement in overall H2O2-induced stress response and hormetic response in yeast.

  6. INVOLVEMENT OF CATALASE IN SACCHAROMYCES CEREVISIAE HORMETIC RESPONSE TO HYDROGEN PEROXIDE

    OpenAIRE

    Ruslana Vasylkovska; Nadia Burdylyuk; Halyna Semchyshyn

    2015-01-01

    In this study, we investigated the relationship between catalase activity and H2O2-induced hormetic response in budding yeast S. cerevisiae. In general, our data suggest that: (i) hydrogen peroxide induces hormesis in a concentration- and time-dependent manner; and (ii) the effect of hydrogen peroxide on yeast colony growth positively correlates with the activity of catalase that suggests the enzyme involvement in overall H2O2-induced stress response and hormetic response in yeast.

  7. Functional Characterization of Individual- and Mixed-Burgundian Saccharomyces cerevisiae Isolates for Fermentation of Pinot Noir

    OpenAIRE

    Emily Terrell; Margaret A. Cliff; van Vuuren, Hennie J. J.

    2015-01-01

    Pinot noir has traditionally been fermented by native flora of multiple yeasts producing a complex combination of aromas and flavors. With the use of industrial dry yeasts, winemakers gained enological reliability and consistency in their wines, but lost diversity and complexity. This research evaluated the use of co-culturing yeasts to fulfill this dual role. Fermentations of Burgundian Saccharomyces cerevisiae isolates and their mixtures were evaluated for their enological characteristics a...

  8. Identification and analysis of a Saccharomyces cerevisiae copper homeostasis gene encoding a homeodomain protein.

    OpenAIRE

    Knight, S A; Tamai, K T; Kosman, D J; Thiele, D J

    1994-01-01

    Yeast metallothionein, encoded by the CUP1 gene, and its copper-dependent transcriptional activator ACE1 play a key role in mediating copper resistance in Saccharomyces cerevisiae. Using an ethyl methanesulfonate mutant of a yeast strain in which CUP1 and ACE1 were deleted, we isolated a gene, designated CUP9, which permits yeast cells to grow at high concentrations of environmental copper, most notably when lactate is the sole carbon source. Disruption of CUP9, which is located on chromosome...

  9. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous

    NARCIS (Netherlands)

    Verwaal, R.; Wang, J.; Meijnen, J.P.; Visser, H.; Sandmann, G.; Berg, van den J.A.; Ooyen, van A.J.J.

    2007-01-01

    To determine whether Saccharomyces cerevisiae can serve as a host for efficient carotenoid and especially ß-carotene production, carotenogenic genes from the carotenoid-producing yeast Xanthophyllomyces dendrorhous were introduced and overexpressed in S. cerevisiae. Because overexpression of these g

  10. The transcriptional response of Saccharomyces cerevisiae to proapoptotic concentrations of Pichia membranifaciens killer toxin.

    Science.gov (United States)

    Santos, A; Marquina, D

    2011-10-01

    PMKT (Pichia membranifaciens killer toxin) reportedly has antimicrobial activity against yeasts and filamentous fungi. In previous research we posited that high PMKT concentrations pose a serious challenge for cell survival by disrupting plasma membrane electrochemical gradients, inducing a transcriptional response similar to that of certain stimuli such as hyperosmotic shock. This response was related to the HOG-pathway with Hog1p phosphorylation and a transitional increase in intracellular glycerol accumulation. Such a response was consistent with the notion that the effect induced by high PMKT concentrations lies in an alteration to the ionic homeostasis of the sensitive cell. By contrast, the evidence presented here shows that low PMKT doses lead to a cell death process in Saccharomyces cerevisiae accompanied by cytological and biochemical indicators of apoptotic programmed cell death, namely, the production of reactive oxygen species, DNA strand breaks, metacaspase activation and cytochrome c release. Furthermore, dying cells progressed from an apoptotic state to a secondary necrotic state, and the rate at which this change occurred was proportional to the intensity of the stimulus. We have explored the global gene expression response of S. cerevisiae during that stimulus. The results obtained from DNA microarrays indicate that genes related with an oxidative stress response were induced in response to proapoptotic concentrations of PMKT, showing that the coordinated transcriptional response is not coincident with that obtained when ionophoric concentrations of PMKT are used. By contrast, cwp2Δ mutants showed no signs of apoptosis, indicating that the initial steps of the killer mechanism coincide when proapoptotic (low) or ionophoric (high) PMKT concentrations are used. Additionally, low dosages of PMKT promoted Hog1p phosphorylation and glycerol accumulation. PMID:21801845

  11. Killer yeasts as biocontrol agents of spoilage yeasts and bacteria isolated from wine

    Directory of Open Access Journals (Sweden)

    Fernández de Ullivarri Miguel

    2014-01-01

    Full Text Available During the winemaking process Saccharomyces cerevisiae is the main yeast species but other yeasts called non-Saccharomyces as well as different species of lactic acid bacteria (LAB are also present. Then, one strategy to prevent or reduce microbial contamination during the winemaking process is the use of killer yeasts. The aim of this study was to evaluate the killer activity (KA of autochthonous yeasts from Northwest region of Argentine (S. cerevisiae Cf8 and Wickerhamomyces anomalus Cf20 on spoilage yeasts and in LAB of the wine. The KA was evaluated using cell-free supernatants obtained from pure and mixed cultures of strains Cf8-Cf20. S. cerevisiae Cf8 showed a growth reduction between 7 and 48% on D. anomala BDa15, P. membranifaciens BPm481 and Z. bailii Bzb317 while W. anomalus Cf20 exhibited KA of 20, 61, 91 and 92% against B. bruxellensis Ld1, D. anomala BDa15, P. membranifaciens BPm481 and P. guilliermondii Cd6, respectively. Killer mixed supernatants showed growth inhibition similar to strain Cf20. Screening against LAB showed that both killer toxins were able to inhibit the growth of L. hilgardii 5w as well as to reduce a 16–31% histamine production by this LAB strain. These results confirm the potential of autochthonous killer yeasts as biocontrol agents in winemaking process. The mixed culture S. cerevisiae Cf8-W. anomalus Cf20 presented a wide range of KA on spoilage yeasts as well as on L. hilgardii. Therefore, the use of killer yeasts as starter cultures would allow producing wines with controlled quality.

  12. The genetic manipulation of the yeast Saccharomyces cerevisiae with the aim of converting polysaccharide-rich agricultural crops and industrial waste to single-cell protein and fuel ethanol

    Directory of Open Access Journals (Sweden)

    I. S. Pretorius

    1994-07-01

    Full Text Available The world’s problem with overpopulation and environmental pollution has created an urgent demand for alternative protein and energy sources. One way of addressing these burning issues is to produce single-cell protein (for food and animal feed supplements and fuel ethanol from polysaccharide-rich agricultural crops and industrial waste by using baker’s yeast.

  13. The genetic manipulation of the yeast Saccharomyces cerevisiae with the aim of converting polysaccharide-rich agricultural crops and industrial waste to single-cell protein and fuel ethanol

    OpenAIRE

    Pretorius, I S

    1994-01-01

    The world’s problem with overpopulation and environmental pollution has created an urgent demand for alternative protein and energy sources. One way of addressing these burning issues is to produce single-cell protein (for food and animal feed supplements) and fuel ethanol from polysaccharide-rich agricultural crops and industrial waste by using baker’s yeast.

  14. ROAM mutations causing increased expression of yeast genes: their activation by signals directed toward conjugation functions and their formation by insertion of tyl repetitive elements

    Energy Technology Data Exchange (ETDEWEB)

    Errede, B.; Cardillo, T.S.; Wever, G.; Sherman, F.

    1980-01-01

    Mechanisms available to eukaryotic organisms for the coordinate regulation of gene expression are being examined by genetic and biochemical characterization of an unusual mutation, CYC7-H2, which causes overproduction of iso-2-cytochrome c in the yeast Saccharomyces cerevisiae. The CYC7-H2 mutation causes approximately a twenty fold overproduction of iso-2-cytochrome c in haploid strains but only a one to four fold overproduction in MATa/MAT..cap alpha.. diploid strains. This regulation of overproduction has been characterized as a response to signals controlling conjugation in yeast. The CYC7-H2 mutation is closely related to other regulatory mutations occurring at the cargA, cargB and DUR1,2 loci which are the structural genes for arginase, ornithine transaminase and urea amidolyase, respectively. Similar to the CYC7-H2 mutation, the mutations designated cargA/sup +/O/sup h/, cargB/sup +/O/sup h/ and durO/sup h/ cause constitutive production of their respective gene products at much lower levels in MATa/MAT..cap alpha.. diploid strains than in the corresponding haploid strains. Observations characterizing the regulation of overproduction in the CYC7-H2 mutant are presented with the additional and parallel observations for the O/sup h/ mutants.

  15. The Analysis on Immune Effects of People Vaccinated by Hepatitis B Vaccine Made by Recombinant Deoxyribonucleic Acid Techniques in Saccharomyces Cerevisiae Yeast for 1-12 Years%接种重组乙型肝炎疫苗(酿酒酵母)后1~12年免疫效果分析

    Institute of Scientific and Technical Information of China (English)

    徐莉立; 王学文; 李永盛; 沈立萍; 王峰; 赵金华; 杨维雄; 高玉清; 唐志坚

    2013-01-01

    目的 了解1997~2008年出生儿童接种重组乙型肝炎(乙肝)疫苗(酿酒酵母)(Hepatitis B Vaccine Made by Recombinant Deoxyribonucleic Acid Techniques in Saccharomyces Cerevisiae Yeast,HepB-SCY)后的抗体水平,评价HepB-SCY的免疫持久性及保护效果.方法 在西宁市城西区、大通县和海南藏族自治州同德县,选择1997~2008年出生、有明确HepB-SCY免疫史的特定人群,每个年龄段100人左右,采集静脉血5ml,分离血清,检测乙肝病毒(Hepatitis B Virus,HBV)表面抗原、抗乙肝病毒表面抗原抗体、抗乙肝病毒核心抗原抗体三项血清学指标.结果 接种HepB-SCY后l~12年抗体阳性率保持在较高水平,抗体几何平均浓度则呈现随免疫年限延长而逐渐下降趋势.免疫人群HBV感染率为4.82%,较实施免疫前明显下降.结论 HepB-SCY免疫后效果较持久,可有效预防接种人群HBV感染.%Objective To understand the long-term immune effects of hepatitis B vaccine made by recombinant deoxyribonucleic acid techniques in saccharomyces cerevisiae yeast (HepB-SCY).Method To select the children from Chengxi,Datong and Tongde county of Qinghai province,who had been vaccinated HepB-SCY who were born from 1997 to 2008.100 children were selected each year to check their hepatitis B vaccination history and test for Hepatitis B Virus (HBV)markers.Results The positive rate of anti-hepatitis B surface antibody maintained at higher level after vaccination for 12 years,however the geometric mean concentration of anti-hepatitis B surface antibody was decreased with years.The average HBV positive rate of the children was 4.82%.It revealed significant reduction compared with the teenagers before immunization.Conclusion The long-term immune effects of HepB-SCY was satisfied and it has good effects for preventing the infection of HBV.

  16. Comparison between two selected Saccharomyces cerevisiae strains as fermentation starters in the production of traditional cachaça

    Directory of Open Access Journals (Sweden)

    Fátima de Cássia Oliveira Gomes

    2009-04-01

    Full Text Available Two Saccharomyces cerevisiae strains were tested as the starter yeasts in a traditional cachaça distillery. The strains used were S. cerevisiae UFMG-A829, isolated from a cachaça fermentation process, and S. cerevisiae K1-V1116, obtained from the wine industry. The permanence of each strain in the fermentation must was determined by RAPD (Random Amplified Polymorphic DNA-PCR, with primer M13. Both yeast strains were prevalent in the vats for approximately 30 days. Indigenous non-Saccharomyces and indigenous S. cerevisiae strains were isolated in lower counts during the fermentation period. Indigenous S. cerevisiae strains were molecularly distinct when compared to the starter yeasts. The two yeasts appeared promising starter yeasts in the fermentation process to produce traditional cachaça.Duas linhagens de Saccharomyces cerevisiae foram testadas como iniciadoras em uma destilaria de cachaça. Foram utilizadas as linhagens de S. cerevisiae UFMG-A829, isolada de fermentação de cachaça, e S. cerevisiae K1-V1116, de origem vinícola. A permanência de cada linhagem durante a fermentação foi determinada por RAPD (Random Amplified Polymorphic DNA-PCR, utilizando o iniciador M13. As duas linhagens predominaram nas dornas de fermentação por aproximadamente 30 dias. Leveduras não-Saccharomyces e S. cerevisiae indígenas foram isoladas em menor proporção durante o experimento. As linhagens de S. cerevisiae indígenas apresentaram perfis moleculares distintos em relação às linhagens iniciadoras. As duas linhagens foram promissoras para serem utilizadas como iniciadoras do processo fermentativo para a produção da cachaça.

  17. Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfural tolerance for ethanologenic yeast

    Science.gov (United States)

    Composed of linear difference equations, a discrete dynamic system model was designed to reconstruct transcriptional regulations in gene regulatory networks in response to 5-hydroxymethylfurfural, a bioethanol conversion inhibitor for ethanologenic yeast Saccharomyces cerevisiae. The modeling aims ...

  18. Bioethanol production by reusable Saccharomyces cerevisiae immobilized in a macroporous monolithic hydrogel matrices.

    Science.gov (United States)

    Mulko, Lucinda; Rivarola, Claudia R; Barbero, Cesar A; Acevedo, Diego F

    2016-09-10

    Performance of yeasts on industrial processes can be dramatically improved by immobilization of the biocatalyst. The immobilization of Saccharomyces cerevisiae inside monolithic macroporous hydrogels were produced by in-situ polymerization of acrylamide around a live yeast suspension under cryogelation conditions. Preculture of the yeasts was not necessary and this innovative and simple procedure is amenable to scaling-up to industrial production. The yeasts were efficiently retained in monolithic hydrogels, presenting excellent mechanical properties and high cell viability. Macroporous hydrogels showed a fast mass transport allowing the hydrogel-yeast complexes achieved similar ethanol yield and productivity than free yeasts, which is larger than those reached with yeasts immobilized in compact hydrogels. Moreover, the same yeasts were able to maintain its activity by up to five reaction cycles with a cell single batch during fermentation reactions. PMID:27396938

  19. The NADP+-dependent glutamate dehydrogenase of the yeast Kluyveromyces marxianus responds to nitrogen repression similarly to Saccharomyces cerevisiae Glutamato desidrogenase dependente de NADP+ da levedura Kluyveromyces marxianus responde à repressão catabólica de maneira similar à Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Marcos Antonio de Morais-Júnior

    2003-12-01

    Full Text Available NADP+-dependent glutamate dehydrogenase (NADP+-Gdh is the first step in ammonia assimilation pathway in Saccharomyces cerevisiae and the knowledge of its regulation is the key for many biotechnological purposes such as single cell protein production. The regulation of NADP+-Gdh activity in Kluyveromyces marxianus cells was evaluated under different ammonia supply in batch cultivations. The results showed that K. marxianus NADP+-Gdh activity is induced over a narrow range of extracellular ammonia supply, being repressed by both high ammonia concentration and the glutamate formed. This activity is not growth-associated and may function mainly to trace low amounts of ammonia after growth cessation. The results demonstrated that NADP+-Gdh may not be the main enzyme for ammonia assimilation in K. marxianus, as it has been postulated for K. lactis, instead is subjected to the same regulatory mechanism described for S. cerevisiae.Glutamato desidrogenase dependente de NADP+ (NADP+-Gdh constitui o primeiro passo enzimático no mecanismo de assimilação de nitrogênio em Saccharomyces cerevisiae e o conhecimento de sua regulação é chave na iniciativa de vários propósitos biotecnológicos, tais como a produção de proteína microbiana. A regulação da atividade NADP+-Gdh em células de Kluyveromyces marxianus foi avaliada a partir de diferentes condições de suprimento de amonia em cultivo em batelada. Os resultados mostraram que a atividade NADP+-Gdh de K. marxianus foi induzida em uma estreita faixa de concentração de amonia no meio, sendo reprimida tanto por altas concentrações deste composto quanto pelo produto glutamato. Esta atividade não está associada ao crescimento celular e deve funcionar principalmente no rastreamento de pequenas quantidades de amonia após a parada do crescimento celular. Isto demonstra que NADP+-Gdh não deve ser a principal enzima de assimilação de amonia em K. marxianus, como tem sido postulado para K

  20. Studies on the yeast nucleus : III. Properties of a deoxyribonucleoprotein complex derived from yeast

    NARCIS (Netherlands)

    Vliet, P.C. van der; Tonino, G.J.M.; Rozijn, Th.H.

    1969-01-01

    1. A deoxyribonucleoprotein complex was isolated from Saccharomyces cerevisiae. It is composed of 36% DNA, 4% RNA and 60% protein. About 70% of the protein is acid-extractable. The complex sediments as a single band with a s°20,w of 27 S. 2. The yeast deoxyribonucleoprotein shows a biphasic melting

  1. Effects of combined treatment of gamma irradiation and refrigeration on yeast growth (Saccharomyces cerevisiae Hansen) in orange juice; Efeitos do tratamento combinado de irradiacao gama e refrigeracao no crescimento de levedura (Saccharomyces cerevisae Hansen) em suco de laranja

    Energy Technology Data Exchange (ETDEWEB)

    Domarco, R.E.; Spoto, M.H.F.; Walder, J.M.M.; Matria, C.; Blumer, L. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    1995-12-31

    Effect of gamma radiation and low temperatures was studied on yeast growth on orange juice. Concentrated orange juice (65{sup 0} C Brix) was diluted at 10,5{sup 0} C Brix and inoculated with comercial biological yeasts. The samples were irradiated with doses of 0.0 (control), 1.0, 1.5, 2.0, 2.5, 5.0 and 7.5 kGy (Cobalt-60), with 2.83 kGy/h of dose rate. All the samples were stored at 0{sup 0} C, 0{sup 5} and 25{sup 0} C for periods of 1, 7, 14, 21, 30, 60 e 90 days of storage. Combined treatment of 1 kGy and refrigeration at 0{sup 0} C was effective for orange juice conservation on 90 days of storage. The dose of 2.5 kGy, was enough to conserve the juice on 90 days of storage on 5{sup 0} C. At 25{sup 0} C only the two highest radiation doses (5.0 and 7.5 kGy) wereeffective to control yeast growth in orange juice. (author). 11 refs, 4 tabs.

  2. Designer Yeasts for the Fermentation Industry of the 21st Century

    OpenAIRE

    Pretorius, Isak S.; du Toit, Maret; van Rensburg, Pierre

    2003-01-01

    The budding yeast, Saccharomyces cerevisiae, has enjoyed a long and distinguished history in the fermention industry. Owing to its efficiency in producing alcohol, S. cerevisiae is, without doubt, the most important commercial microorganism with GRAS (Generally Regarded As Safe) status. By brewing beer and sparkling wine, mankind’s oldest domesticated organism made possible the world’s first biotechnological processes. With the emergence of modern molecular genetics, S. cerevisiae has again b...

  3. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    Directory of Open Access Journals (Sweden)

    Sergio eGiannattasio

    2013-02-01

    Full Text Available Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.

  4. Yeast Biocontrol of a Fungal Plant Disease: A Model for Studying Organism Interrelationships

    Science.gov (United States)

    Chanchaichaovivat, Arun; Panijpan, Bhinyo; Ruenwongsa, Pintip

    2008-01-01

    An experiment on the action of the yeast, "Saccharomyces cerevisiae", against a fungal plant disease is proposed for secondary students (Grade 11) to support their study of organism interrelationship. This biocontrol experiment serves as the basis for discussing relationships among three organisms (red chilli fruit, "Saccharomyces cerevisiae," and…

  5. Role of glutathione in natural and modified radioresistance of yeast cells

    International Nuclear Information System (INIS)

    A study was made of the dependence of different natural and modified radioresistance upon glutathione content of yeast cells (Saccharomyces cerevisiae and Pichia guillierondii). It was shown that glutathione was only involved in the formation of natural radioresistance in Saccharomyces cerevisiae cells. It was also shown that the increase in the radioresistance of yeast cells under the effect of 2-amino-2-thiasoline was accompanied by the increase in the level of total glutathione in them

  6. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains

    Science.gov (United States)

    Šuranská, Hana; Vránová, Dana; Omelková, Jiřina

    2016-01-01

    In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines. PMID:26887243

  7. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Šuranská, Hana; Vránová, Dana; Omelková, Jiřina

    2016-01-01

    In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines. PMID:26887243

  8. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hana Šuranská

    2016-03-01

    Full Text Available Abstract In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.

  9. Diversity and adaptive evolution of Saccharomyces wine yeast: a review.

    Science.gov (United States)

    Marsit, Souhir; Dequin, Sylvie

    2015-11-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  10. Proteomic characterization of a wild-type wine strain of Saccharomyces cerevisiae.

    Science.gov (United States)

    Trabalzini, Lorenza; Paffetti, Alessandro; Ferro, Elisa; Scaloni, Andrea; Talamo, Fabio; Millucci, Lia; Martelli, Paola; Santucci, Annalisa

    2003-12-01

    Saccharomyces cerevisiae is the optimal eukaryotic model system to study mammalian biological responses. At the same time Saccharomyces cerevisiae is also widely utilized as a biotechnological tool in the food industry. Enological Saccharomyces cerevisiae strains have been so far routinely analyzed for their microbiological aspects. Nevertheless, wine yeasts are gaining an increasing interest in the last years since they strongly affect both the vinification process and the organoleptic properties of the final product wine. The protein repertoire is responsible of such features and, consequently, 2D-PAGE can be an useful tool to evaluate and select optimal wine yeast strains. We present here the first proteomic map of a wild-type wine Saccharomyces cerevisiae strain selected for the guided fermentation of very high quality wines. PMID:15141481

  11. Interaction of human laminin receptor with Sup35, the [PSI⁺] prion-forming protein from S. cerevisiae: a yeast model for studies of LamR interactions with amyloidogenic proteins.

    Directory of Open Access Journals (Sweden)

    Christine Pampeno

    Full Text Available The laminin receptor (LamR is a cell surface receptor for extracellular matrix laminin, whereas the same protein within the cell interacts with ribosomes, nuclear proteins and cytoskeletal fibers. LamR has been shown to be a receptor for several bacteria and viruses. Furthermore, LamR interacts with both cellular and infectious forms of the prion protein, PrP(C and PrP(Sc. Indeed, LamR is a receptor for PrP(C. Whether LamR interacts with PrP(Sc exclusively in a capacity of the PrP receptor, or LamR specifically recognizes prion determinants of PrP(Sc, is unclear. In order to explore whether LamR has a propensity to interact with prions and amyloids, we examined LamR interaction with the yeast prion-forming protein, Sup35. Sup35 is a translation termination factor with no homology or functional relationship to PrP. Plasmids expressing LamR or LamR fused with the green fluorescent protein (GFP were transformed into yeast strain variants differing by the presence or absence of the prion conformation of Sup35, respectively [PSI⁺] and [psi⁻]. Analyses by immunoprecipitation, centrifugal fractionation and fluorescent microscopy reveal interaction between LamR and Sup35 in [PSI⁺] strains. The presence of [PSI⁺] promotes LamR co-precipitation with Sup35 as well as LamR aggregation. In [PSI⁺] cells, LamR tagged with GFP or mCherry forms bright fluorescent aggregates that co-localize with visible [PSI⁺] foci. The yeast prion model will facilitate studying the interaction of LamR with amyloidogenic prions in a safe and easily manipulated system that may lead to a better understanding and treatment of amyloid diseases.

  12. Robust heat shock induces eIF2α-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Groušl, Tomáš; Ivanov, P.; Frýdlová, Ivana; Vašicová, Pavla; Janda, Filip; Vojtová, Jana; Malínská, Kateřina; Malcová-Janatová, Ivana; Nováková, Lenka; Janošková, Dana; Valášek, Leoš; Hašek, Jiří

    2009-01-01

    Roč. 122, č. 12 (2009), s. 2078-2088. ISSN 0021-9533 R&D Projects: GA ČR GA204/02/1424; GA ČR GA204/05/0838; GA ČR GA204/09/1924; GA MŠk LC545; GA MŠk ME 939 Institutional research plan: CEZ:AV0Z50200510 Keywords : p-bodies * stress granules * yeast Subject RIV: EE - Microbiology, Virology Impact factor: 6.144, year: 2009

  13. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    OpenAIRE

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to ...

  14. Heat shock decrease Saccharomyces cerevisiae UE-ME3 survival exposed to nanoparticles of titanium dioxide.

    OpenAIRE

    Capela-Pires, JM; I. Alves-Pereira; Ferreira, Rui

    2011-01-01

    The main objective of this study was to evaluate the effect of temperature in Saccharomyces cerevisiae exposed to nanoparticles of titanium dioxide (NP-TiO2), because there are scarces studies to evaluate the toxic effects of NP-TiO2 in eukaryote cells. S. cerevisiae UE-ME3, wild-type yeast, belonging to the Enology laboratory collection of University of Evora

  15. Mitotic Spindle Positioning in Saccharomyces cerevisiae Is Accomplished by Antagonistically Acting Microtubule Motor Proteins

    OpenAIRE

    Cottingham, Frank R.; Hoyt, M. Andrew

    1997-01-01

    Proper positioning of the mitotic spindle is often essential for cell division and differentiation processes. The asymmetric cell division characteristic of budding yeast, Saccharomyces cerevisiae, requires that the spindle be positioned at the mother–bud neck and oriented along the mother–bud axis. The single dynein motor encoded by the S. cerevisiae genome performs an important but nonessential spindle-positioning role. We demonstrate that kinesin-related Kip3p makes a major contribution to...

  16. The Bioconversion of Red Ginseng Ethanol Extract into Compound K by Saccharomyces cerevisiae HJ-014

    OpenAIRE

    Choi, Hak Joo; Kim, Eun A.; Kim, Dong Hee; Shin, Kwang-Soo

    2014-01-01

    A β-glucosidase producing yeast strain was isolated from Korean traditional rice wine. Based on the sequence of the YCL008c gene and analysis of the fatty acid composition, the isolate was identified as Saccharomyces cerevisiae strain HJ-014. S. cerevisiae HJ-014 produced ginsenoside Rd, F2, and compound K from the ethanol extract of red ginseng. The production was increased by shaking culture, where the bioconversion efficiency was increased 2-fold compared to standing culture. The productio...

  17. Rapid Identification and Enumeration of Saccharomyces cerevisiae Cells in Wine by Real-Time PCR

    OpenAIRE

    Martorell, P.; Querol, A.; Fernández-Espinar, M. T.

    2005-01-01

    Despite the beneficial role of Saccharomyces cerevisiae in the food industry for food and beverage production, it is able to cause spoilage in wines. We have developed a real-time PCR method to directly detect and quantify this yeast species in wine samples to provide winemakers with a rapid and sensitive method to detect and prevent wine spoilage. Specific primers were designed for S. cerevisiae using the sequence information obtained from a cloned random amplified polymorphic DNA band that ...

  18. Biological Treatment of Textile Effluent Using Candida zeylanoides and Saccharomyces cerevisiae Isolated from Soil

    Directory of Open Access Journals (Sweden)

    O. P. Abioye

    2014-01-01

    Full Text Available This study evaluates the efficacy of yeasts isolated from soil in the treatment of textile wastewater. Two yeast species were isolated from soil; they were identified as Candida zeylanoides and Saccharomyces cerevisiae. The yeasts were inoculated into flask containing effluent and incubated for 15 days. Saccharomyces cerevisiae showed the most significant treatment capacity with a 66% reduction in BOD; this was followed closely by Candida zeylanoides with 57.3% reduction in BOD and a consortium of the two species showed the least remediation potential of 36.9%. The use of Saccharomyces cerevisiae and Candida zeylanoides in treatment of textile wastewater will help to limit the adverse environmental and health implications associated with disposal of untreated effluent into water bodies.

  19. Modeling competition between yeast strains

    Science.gov (United States)

    de Gee, Maarten; van Mourik, Hilda; de Visser, Arjan; Molenaar, Jaap

    2016-04-01

    We investigate toxin interference competition between S. cerevisiae colonies grown on a solid medium. In vivo experiments show that the outcome of this competition depends strongly on nutrient availability and cell densities. Here we present a new model for S. cerevisiae colonies, calculating the local height and composition of the colonies. The model simulates yeast colonies that show a good fit to experimental data. Simulations of colonies that start out with a homogeneous mixture of toxin producing and toxin sensitive cells can display remarkable pattern formation, depending on the initial ratio of the strains. Simulations in which the toxin producing and toxin sensitive species start at nearby positions clearly show that toxin production is advantageous.

  20. Genetic study on yeast

    International Nuclear Information System (INIS)

    Research during the past year has moved ahead on several fronts. A major compilation of all the genetic mapping data for the yeast Saccharomyces cerevisiae has been completed. The map describes the location of over 300 genes on 17 chromosomes. A report on this work will appear in Microbiological Reviews in December 1980. Recombinant DNA procedures have been introduced into the experiments and RAD52 (one of the genes involved in recombination and repair damage), has been successfully cloned. This clone will be used to determine the gene product. Diploid cells homozygous for RAD52 have exceptionally high frequencies of mitotic loss of chromosomes. This loss is stimulated by ionizing radiation. This effect is a very significant finding. The effect has also been seen with certain other RAD mutants

  1. Yeast as a platform to explore polyglutamine toxicity and aggregation.

    Science.gov (United States)

    Duennwald, Martin L

    2013-01-01

    Protein misfolding is associated with many neurodegenerative diseases, including neurodegenerative diseases caused by polyglutamine expansion proteins, such as Huntington's disease. The model organism baker's yeast (Saccharomyces cerevisiae) has provided important general insights into the basic cellular mechanisms underlying protein misfolding. Furthermore, experiments in yeast have identified cellular factors that modulate the toxicity and the aggregation associated with polyglutamine expansion proteins. Notably, many features discovered in yeast have been proven to be highly relevant in other model organisms and in human pathology. The experimental protocols depicted here serve to reliably determine polyglutamine toxicity and polyglutamine aggregation in yeast. PMID:23719914

  2. Construction of Yeast Vectors with Resistance to Geneticin

    Institute of Scientific and Technical Information of China (English)

    林会兰; 张广; 周全; 陈国强

    2002-01-01

    Two Escherichia coli-Saccharomyces cerevisiae shuttle vectors containing a resistance marker to geneticin (G418) are constructed. Both vectors contain a kanamycin-resistant marker (KanMX4) module coding aminoglycoside 3'-phosphotransferase (APH) that renders E. coli resistant to kanamycin and S. cerevisiae to geneticin. These vectors overcome the shortage of the conventional yeast vectors bearing HIS3, TRP1, LEU2, and URA3 modules as selection markers, which require hosts to be auxotrophic. Green fluorescent protein (GFP) is used as the reporter to examine the functions of the vectors. The vectors are powerful tools for the convenient cloning and controlled expression of genes in most S. cerevisiae strains.

  3. In situ selective determination of methylmercury in river water by diffusive gradient in thin films technique (DGT) using baker's yeast (Saccharomyces cerevisiae) immobilized in agarose gel as binding phase

    Energy Technology Data Exchange (ETDEWEB)

    Tafurt-Cardona, Makenly [Programa de Pós-graduação em Geociências e Meio Ambiente, Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Eismann, Carlos Eduardo; Suárez, Carlos Alfredo [Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Menegário, Amauri Antonio, E-mail: amenega@rc.unesp.br [Programa de Pós-graduação em Geociências e Meio Ambiente, Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Silva Luko, Karen [Programa de Pós-graduação em Geociências e Meio Ambiente, Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); Centro de Estudos Ambientais, UNESP – Univ. Estadual Paulista, Av. 24-A, 1515, CEP: 13506-900, Rio Claro, SP (Brazil); and others

    2015-08-05

    Saccharomyces cerevisiae immobilized in agarose gel as binding phase and polyacrylamide as diffusive layer in the diffusive gradient in thin films technique (DGT) was used for selective determination of methylmercury (MeHg). Deployment tests showed good linearity in mass uptake up to 48 h (3276 ng). When coupling the DGT technique with Cold Vapor Atomic Fluorescence Spectrometry, the method has a limit of detection of 0.44 ng L{sup −1} (pre concentration factor of 11 for 48 h deployment). Diffusion coefficient of 7.03 ± 0.77 × 10{sup −6} cm{sup 2} s{sup −1} at 23 °C in polyacrylamide gel (pH = 5.5 and ionic strength = 0.05 mol L{sup −1} NaCl) was obtained. Influence of ionic strength (from 0.0005 mol L{sup −1} to 0.1 mol L{sup −1} NaCl) and pH (from 3.5 to 8.5) on MeHg uptake were evaluated. For these range, recoveries of 84–105% and 84–98% were obtained for ionic strength and pH respectively. Potential interference due to presence of Cu, Fe, Mn, Zn was also assessed showing good recoveries (70–87%). The selectivity of the proposed approach was tested by deployments in solutions containing MeHg and Hg(II). Results obtained showed recoveries of 102–115 % for MeHg, while the uptake of Hg(II) was insignificant. The proposed approach was successfully employed for in situ measurements in the Negro River (Manaus-AM, Brazil). - Highlights: • A method for in situ selective determination of MeHg by DGT technique is proposed. • Saccharomyces cerevisiae immobilized in agarose gel was used as binding agent. • Effects of pH, ionic strength and concomitant ions on uptake of MeHg were evaluated. • DGT device containing polyacrylamide gel as diffusive layer showed better selectivity. • The proposed approach was successfully applied for analysis of river water.

  4. In situ selective determination of methylmercury in river water by diffusive gradient in thin films technique (DGT) using baker's yeast (Saccharomyces cerevisiae) immobilized in agarose gel as binding phase

    International Nuclear Information System (INIS)

    Saccharomyces cerevisiae immobilized in agarose gel as binding phase and polyacrylamide as diffusive layer in the diffusive gradient in thin films technique (DGT) was used for selective determination of methylmercury (MeHg). Deployment tests showed good linearity in mass uptake up to 48 h (3276 ng). When coupling the DGT technique with Cold Vapor Atomic Fluorescence Spectrometry, the method has a limit of detection of 0.44 ng L−1 (pre concentration factor of 11 for 48 h deployment). Diffusion coefficient of 7.03 ± 0.77 × 10−6 cm2 s−1 at 23 °C in polyacrylamide gel (pH = 5.5 and ionic strength = 0.05 mol L−1 NaCl) was obtained. Influence of ionic strength (from 0.0005 mol L−1 to 0.1 mol L−1 NaCl) and pH (from 3.5 to 8.5) on MeHg uptake were evaluated. For these range, recoveries of 84–105% and 84–98% were obtained for ionic strength and pH respectively. Potential interference due to presence of Cu, Fe, Mn, Zn was also assessed showing good recoveries (70–87%). The selectivity of the proposed approach was tested by deployments in solutions containing MeHg and Hg(II). Results obtained showed recoveries of 102–115 % for MeHg, while the uptake of Hg(II) was insignificant. The proposed approach was successfully employed for in situ measurements in the Negro River (Manaus-AM, Brazil). - Highlights: • A method for in situ selective determination of MeHg by DGT technique is proposed. • Saccharomyces cerevisiae immobilized in agarose gel was used as binding agent. • Effects of pH, ionic strength and concomitant ions on uptake of MeHg were evaluated. • DGT device containing polyacrylamide gel as diffusive layer showed better selectivity. • The proposed approach was successfully applied for analysis of river water

  5. Yeast Genetics and Biotechnological Applications

    Science.gov (United States)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  6. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress

    Science.gov (United States)

    Cheng, Yanfei; Du, Zhaoli; Zhu, Hui; Guo, Xuena; He, Xiuping

    2016-01-01

    Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation. PMID:27507154

  7. Primary sequence and biological functions of a Saccharomyces cerevisiae O6-methylguanine/O4-methylthymine DNA repair methyltransferase gene.

    OpenAIRE

    Xiao, W; Derfler, B; J. Chen; Samson, L

    1991-01-01

    We previously identified and characterized biochemically an O6-methylguanine (O6MeG) DNA repair methyltransferase (MTase) in the yeast Saccharomyces cerevisiae and showed that it recognizes both O6MeG and O4-methylthymine (O4MeT) in vitro. Here we characterize the cloned S. cerevisiae O6MeG DNA MTase gene (MGT1) and determine its in vivo role in protecting yeast from DNA alkylation damage. We isolated a yeast DNA fragment that suppressed alkylation-induced killing and mutation in Escherichia ...

  8. Oral administration of myostatin-specific recombinant Saccharomyces cerevisiae vaccine in rabbit.

    Science.gov (United States)

    Liu, Zhongtian; Zhou, Gang; Ren, Chonghua; Xu, Kun; Yan, Qiang; Li, Xinyi; Zhang, Tingting; Zhang, Zhiying

    2016-04-29

    Yeast is considered as a simple and cost-effective host for protein expression, and our previous studies have proved that Saccharomyces cerevisiae can deliver recombinant protein and DNA into mouse dendritic cells and can further induce immune responses as novel vaccines. In order to know whether similar immune responses can be induced in rabbit by oral administration of such recombinant S. cerevisiae vaccine, we orally fed the rabbits with heat-inactivated myostatin-recombinant S. cerevisiae for 5 weeks, and then myostatin-specific antibody in serum was detected successfully by western blotting and ELISA assay. The rabbits treated with myostatin-recombinant S. cerevisiae vaccine grew faster and their muscles were much heavier than that of the control group. As a common experimental animal and a meat livestock with great economic value, rabbit was proved to be the second animal species that have been successfully orally immunized by recombinant S. cerevisiae vaccine after mice. PMID:27005809

  9. 绿色荧光蛋白酿酒酵母表达系统的建立%The Establishment of the Green Fluorescent Protein in Saccharomyces Cerevisiae Yeast Expression System

    Institute of Scientific and Technical Information of China (English)

    祁浩; 刘新利

    2016-01-01

    利用质粒YEplac112为骨架,在其多克隆位点HindIII和EcoRI之间插入水母绿色荧光蛋白( GFP )开放阅读框上下游约1 kb 左右的DNA序列,得到YEplac112-CT质粒,在其多克隆位点 PstI和 BamHI 之间插入750bp左右的GFP DNA序列,构建表达质粒YEplac112-C-GFP-T,以酿酒酵母W303为宿主,通过报告基因GFP验证了所构建的表达载体具有便捷筛选及良好的表达效果。%In this paper,plasmid YEplac112 skeleton was used,green fluorescent protein ( GFP ) was inserted in the multiple cloning sites between HindIII and EcoRI in the open reading frame downstream about 1 KB of DNA sequence, plasmid YEplac112-CT was obtained. 750bp left by the GFP DNA sequence was inserted in the multiple cloning sites PstI and BamHI. Using Saccharomyces cerevisiae W303 as the host, it is proved by reporter gene GFP that the constructed expression vector has good effect,convenient screening and expression.

  10. Ring test assesment of the mKir2.1 growth based assay in Saccharomyces cerevisiae using parametric models and model free fits

    Czech Academy of Sciences Publication Activity Database

    Hasenbrink, G.; Koláčná, Lucie; Ludwig, J.; Sychrová, Hana; Kschischo, M.; Lichtenberg-Fraté, H.

    Praha, 2006. s. 39-39. [Small Meeting on Yeast Transport and Energetics /24./. 31.08.2006-03.09.2006, Prague] Keywords : mKir2.1 * Saccharomyces cerevisiae * heterologous expression Subject RIV: FR - Pharmacology ; Medidal Chemistry

  11. Growth of Saccharomyces cerevisiae in form of solid particles in a gaseous fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Moebus, O.; Teuber, M.; Reuter, H.

    1981-01-01

    The growth of yeast paricles in a pneumatic bioreactor (gaseous fluidized bed) is described. Pressed bakers yeast was grated into small particles suitable for fluidization. The growth medium was sprayed onto the fluidized particles. Growth of yeasts in the new type of bioreactor was proven by: production of yeast biomass (growth yield 45.7 g yeast dry matter per 100 g glucose; technical generation time = 17 h); assimilation of glucose (99%) and nitrogen (100%) from the medium. Production of enough biological heat to effect direct evaporation of the water content of the medium; proof of the Crabtree-effect (production of ethanol at high substrate supply rates); and proof of the viability of the yeast cells in the yeast particles during pneumatic fermentation. The conditions (temperature, humidity and speed of the supporting air flow) for the aerobic fermentation of glucose by Saccharomyces cerevisiae are described.

  12. Paclitaxel-induced microtubule stabilization causes mitotic block and apoptotic-like cell death in a paclitaxel-sensitive strain of Saccharomyces cerevisiae

    OpenAIRE

    Foland, Travis B.; Dentler, William L.; SUPRENANT, KATHY A.; Gupta, Mohan L.; Himes, Richard H.

    2005-01-01

    Wild-type Saccharomyces cerevisiae tubulin does not bind the anti-mitotic microtubule stabilizing agent paclitaxel. Previously, we introduced mutations into the S. cerevisiae gene for β-tubulin that imparted paclitaxel binding to the protein, but the mutant strain was not sensitive to paclitaxel and other microtubule-stabilizing agents, due to the multiple ABC transporters in the membranes of budding yeast. Here, we introduced the mutated β-tubulin gene into a S. cerevisiae strain with dimini...

  13. Selenium enrichment and anti-oxidant status in baker’s yeast, Saccharomyces cerevisiae at different sodium selenite concentrations Enriquecimiento con selenio y estado anti-oxidante de la levadura de harinas Saccharomyces Cerevisiae con diferentes concentraciones de selenito sódico

    Directory of Open Access Journals (Sweden)

    T. Kaur

    2006-12-01

    Full Text Available The use of selenized yeast as enriched selenium supplements in human nutrition has become a topic of increasing interest over the last decade. The present study was designed with the aim to achieve a balance between selenium (Se incorporation and optimal growth of yeast cells along with effect of Se enrichment on antioxidant defense status of yeast cells. Since oxidative stress has been known to play a role in the life span of all types of cells, so in the present studies anti-oxidant defense status was evaluated in the Se- enriched baker’s yeast cell culture model. Upon Se supplementation as sodium selenite at various concentrations in the growth medium, a continuous increase in glutathione peroxidase (GSH-Px activity and Se content was observed. In case of reduced glutathione (GSH decreasing trend were observed with increasing Se concentrations An increasing trend in total glutathione as well as glutathione-s-transferase activity was observed at increasing Se concentrations. Thus, Se supplementation significantly enhanced GSH-Px levels along with alterations in other anti-oxidant enzymes, suggesting the role of Se in the enzyme defense system of yeast against oxidative damage. Further, as Se exerts growth inhibitory effect on cells, the growth inhibition study was carried out and decrease in biomass was observed with increasing concentrations of Se. Due to nutritional benefits, Se-enriched yeast may be considered a safe source of Se supplementation.El uso de levaduras "selenizadas" como suplementos enriquecidos con selenio en nutrición humana se ha convertido en un tema de interés creciente en la última década. Este estudio se diseño con el objetivo de conseguir un equilibrio entre la incorporación de selenio (Se y el crecimiento óptimo de las células levaduriformes, junto con el efecto del enriquecimiento de Se sobre el estado de defensa anti-oxidante de las levaduras. Puesto que se sabe que el estrés oxidativo desempeña una funci

  14. Importância da parede celular de levedura (Saccharomyces sp. como fonte de fibra na alimentação Importance of yeast (Saccharomyces cerevisiae cell wall as source of dietary fiber

    Directory of Open Access Journals (Sweden)

    Eloísa A. PÁDUA

    2000-08-01

    Full Text Available O principal objetivo desta pesquisa foi estudar a influência da adição de 10% e 20% da fração parede celular de levedura (Saccharomyces sp., a uma dieta hipercolesterolêmica (5% gordura de coco mais 2% colesterol em ratos Wistar. A justificativa para o trabalho está relacionada com a quantidade crescente de levedura gerada como subproduto nas indústrias de álcool e de cerveja e o interesse na utilização de derivados de levedura como ingredientes funcionais em alimentação humana. Utilizou-se como padrão uma dieta de caseína (AIN-93G com 5% de celulose. Foram também utilizadas dietas hipercolesterolêmicas com 10 ou 20% de celulose, para comparação. Foram avaliados os índices: digestibilidade, valor biológico e utilização líquida aparentes da proteína, quociente de eficiência alimentar, velocidade de trânsito do conteúdo intestinal, comprimento do intestino delgado e as concentrações séricas de lipídios totais, triacilgliceróis e colesterol total. A fração parede celular, assim como a celulose provocaram uma diminuição da digestibilidade da proteína e do quociente de eficiência alimentar, mas não se observou influência no valor biológico da proteína e no ganho de peso. A adição de 10% ou 20%, tanto de parede celular como de celulose promoveu aumento da velocidade de trânsito do conteúdo intestinal e aumento no comprimento do intestino delgado. A fração parede celular nas concentrações de 10% (1° ensaio ou 20% (2° ensaio promoveu abaixamento nos níveis de triacilgliceróis séricos, contudo não influiu no abaixamento das concentrações de lipídios totais e de colesterol total.The main objective of this investigation was to study the influence of 10 and 20% addition of yeast (Saccharomyces sp. cell wall into a hypercholesterolemic (5% coconut fat plus 2% cholesterol diet, on Wistar rats. The work is justified by the increasing amount of yeast generated as byproduct of the alcohol and brewer

  15. Sucrose and Saccharomyces cerevisiae: a relationship most sweet.

    Science.gov (United States)

    Marques, Wesley Leoricy; Raghavendran, Vijayendran; Stambuk, Boris Ugarte; Gombert, Andreas Karoly

    2016-02-01

    Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is focused on sucrose metabolism in S. cerevisiae, a rather unexplored subject in the scientific literature. An analysis of sucrose availability in nature and yeast sugar metabolism was performed, in order to understand the molecular background that makes S. cerevisiae consume this sugar efficiently. A historical overview on the use of sucrose and S. cerevisiae by humans is also presented considering sugarcane and sugarbeet as the main sources of this carbohydrate. Physiological aspects of sucrose consumption are compared with those concerning other economically relevant sugars. Also, metabolic engineering efforts to alter sucrose catabolism are presented in a chronological manner. In spite of its extensive use in yeast-based industries, a lot of basic and applied research on sucrose metabolism is imperative, mainly in fields such as genetics, physiology and metabolic engineering. PMID:26658003

  16. Studies of the Saccharomyces cerevisiae Cultivation under Oscillatory Mixing Conditions

    OpenAIRE

    M?ris Rikmanis; Stoyan Tzonkov; Uldis Viesturs; Andr?js B?rzi??

    2005-01-01

    Saccharomyces cerevisiae was cultivated under non-aerated conditions in a 5 l laboratory bioreactor. Using the experimental data and the regression analysis method, some mathematical correlations for stirrer rotational speed oscillation frequency and the reaction of the yeast were established. It has been found that different growth parameters are influenced variously by stirrer rotational speed and stirrer rotational speed oscillation frequency. Stirring oscillations can be among the methods...

  17. Magnetically altered ethanol fermentation capacity of Saccharomyces cerevisiae

    OpenAIRE

    Galonja-Corghill Tamara; Kostadinović Ljiljana M.; Bojat Nenad C.

    2009-01-01

    We studied the effect of static magnetic fields on ethanol production by yeast Saccharomyces cerevisiae 424A (LNH-ST) using sugar cane molasses during the fermentation in an enclosed bioreactor. Two static NdFeB magnets were attached to a cylindrical tube reactor with their opposite poles (north to south), creating 150 mT magnetic field inside the reactor. Comparable differences emerged between the results of these two experimental conditions. We found ethanol productivity to be 15% higher in...

  18. Expression of Pneumocystis jirovecii Major Surface Glycoprotein in Saccharomyces cerevisiae

    OpenAIRE

    Kutty, Geetha; England, Katherine J.; Kovacs, Joseph A.

    2013-01-01

    The major surface glycoprotein (Msg), which is the most abundant protein expressed on the cell surface of Pneumocystis organisms, plays an important role in the attachment of this organism to epithelial cells and macrophages. In the present study, we expressed Pneumocystis jirovecii Msg in Saccharomyces cerevisiae, a phylogenetically related organism. Full-length P. jirovecii Msg was expressed with a DNA construct that used codons optimized for expression in yeast. Unlike in Pneumocystis orga...

  19. Engineering Saccharomyces cerevisiae toward n‐butanol production

    OpenAIRE

    Swidah, Reem

    2016-01-01

    Biobutanol represents a second generation biofuel, which can be producedfrom renewable resources by microorganisms. A Saccharomyces cerevisiae strainbearing the five butanol synthetic genes (hbd, adhe2, crt, ccr and ERG10) wasconstructed, where the hbd, adhe2, crt and ccr genes are derived from Clostridiumbeijerinckii, while ERG10 is a yeast gene. The genes were transformed individually onsingle cassettes, which integrated into specific chromosomal sites. The single integrantstrains were back...

  20. The enantioselective b-keto ester reductions by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    HASSAN TAJIK

    2006-09-01

    Full Text Available The enantioselective yeast reduction of aromatic b-keto esters, by use of potassium dihydrogen phosphate, calcium phosphate (monobasic, magnesium sulfate and ammonium tartrate (diammonium salt (10:1:1:50 in water at pH 7 as a buffer for 72–120 h with 45–90 % conversion to the corresponding aromatic -hydroxy esters was achieved by means of Saccharomyces cerevisiae.

  1. Regulation of Maltose Transport and Metabolism in Saccharomyces cerevisiae

    OpenAIRE

    Novak, Srđan; Zechner-Krpan, Vesna; Marić, Vladimir

    2004-01-01

    Maltose metabolism in the yeast Saccharomyces cerevisiae is of great importance both for academic and industrial researchers. It requires the presence of at least one of five independent MAL loci: MAL1, MAL2, MAL3, MAL4 and MAL6. Each active locus is made of three genes: two structural genes that encode intracellular enzyme maltase and transport protein for maltose, and the third gene that encodes positive regulatory protein. Maltose is transported unchanged into the cell with the help of spe...

  2. A novel selection system for chromosome translocations in Saccharomyces cerevisiae.

    OpenAIRE

    Tennyson, Rachel B; Ebran, Nathalie; Herrera, Anissa E; Lindsley, Janet E.

    2002-01-01

    Chromosomal translocations are common genetic abnormalities found in both leukemias and solid tumors. While much has been learned about the effects of specific translocations on cell proliferation, much less is known about what causes these chromosome rearrangements. This article describes the development and use of a system that genetically selects for rare translocation events using the yeast Saccharomyces cerevisiae. A translocation YAC was created that contains the breakpoint cluster regi...

  3. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Miletti Luiz C

    2008-02-01

    Full Text Available Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by

  4. Disruption of the Saccharomyces cerevisiae homologue to the murine fatty acid transport protein impairs uptake and growth on long-chain fatty acids

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; DiRusso, C C; Elberger, A;

    1997-01-01

    The yeast Saccharomyces cerevisiae is able to utilize exogenous fatty acids for a variety of cellular processes including beta-oxidation, phospholipid biosynthesis, and protein modification. The molecular mechanisms that govern the uptake of these compounds in S. cerevisiae have not been describe...

  5. Comet assay on tetraploid yeast cells

    DEFF Research Database (Denmark)

    Rank, Jette; Syberg, Kristian; Jensen, Klara

    2009-01-01

    Tetraploid yeast cells (Saccharomyces cerevisiae) were used in the comet assay with the intention of developing a new, fast and easy assay for detecting environmental genotoxic agents without using higher organisms. Two DNA-damaging chemicals, H2O2 and acrylamide, together with wastewater from...... three municipal treatment plants were tested for their effect on the yeast-cell DNA. The main problem with using yeast in the comet assay is the necessity to degrade the cell wall. This was achieved by using Zymolase 100 T twice during the procedure, since Zymolase 20 T did not open the cell wall...... causing significant DNA damage was 20 μM for H2O2 and 200 mg/l for acrylamide. Tertiary-treated wastewater from the outlets of three municipal wastewater-treatment plants was tested, but did not cause DNA damage. Even though it is possible to produce comets with tetraploid yeast cells, the amount of DNA...

  6. Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits.

    Directory of Open Access Journals (Sweden)

    Carole Camarasa

    Full Text Available The species Saccharomyces cerevisiae includes natural strains, clinical isolates, and a large number of strains used in human activities. The aim of this work was to investigate how the adaptation to a broad range of ecological niches may have selectively shaped the yeast metabolic network to generate specific phenotypes. Using 72 S. cerevisiae strains collected from various sources, we provide, for the first time, a population-scale picture of the fermentative metabolic traits found in the S. cerevisiae species under wine making conditions. Considerable phenotypic variation was found suggesting that this yeast employs diverse metabolic strategies to face environmental constraints. Several groups of strains can be distinguished from the entire population on the basis of specific traits. Strains accustomed to growing in the presence of high sugar concentrations, such as wine yeasts and strains obtained from fruits, were able to achieve fermentation, whereas natural yeasts isolated from "poor-sugar" environments, such as oak trees or plants, were not. Commercial wine yeasts clearly appeared as a subset of vineyard isolates, and were mainly differentiated by their fermentative performances as well as their low acetate production. Overall, the emergence of the origin-dependent properties of the strains provides evidence for a phenotypic evolution driven by environmental constraints and/or human selection within S. cerevisiae.

  7. How does yeast respond to pressure?

    Directory of Open Access Journals (Sweden)

    Fernandes P.M.B.

    2005-01-01

    Full Text Available The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

  8. Combinatorial pathway assembly in yeast

    Directory of Open Access Journals (Sweden)

    Khalil Essani

    2015-10-01

    Full Text Available With the emergence of synthetic biology and the vast knowledge about individual biocatalytic reactions, the challenge nowadays is to implement whole natural or synthetic pathways into microorganisms. For this purpose balanced enzyme activities throughout the pathway need to be achieved in addition to simple functional gene expression to avoid bottlenecks and to obtain high titers of the desired product. As the optimization of pathways in a specific biological context is often hard to achieve by rational design, combinatorial approaches have been developed to address this issue. Here, current strategies and proof of concepts for combinatorial pathway assembly in yeasts are reviewed. By exploiting its ability to join multiple DNA fragments in a very efficient and easy manner, the yeast Saccharomyces cerevisiae does not only constitute an attractive host for heterologous pathway expression, but also for assembling pathways by recombination in vivo.

  9. The sensitive [SWI+] prion: New perspectives on yeast prion diversity

    OpenAIRE

    Hines, Justin K; Craig, Elizabeth A

    2011-01-01

    Yeast prions are heritable protein-based genetic elements which rely on molecular chaperone proteins for stable transmission to cell progeny. Within the past few years, five new prions have been validated and 18 additional putative prions identified in Saccharomyces cerevisiae. The exploration of the physical and biological properties of these “nouveau prions” has begun to reveal the extent of prion diversity in yeast. We recently reported that one such prion, [SWI+], differs from the best st...

  10. Evaluation and Properties of the Budding Yeast Phosphoproteome

    OpenAIRE

    Amoutzias, G. D.; He, Y.; Lilley, K. S.; Van de Peer, Y.; Oliver, S G

    2012-01-01

    We have assembled a reliable phosphoproteomic data set for budding yeast Saccharomyces cerevisiae and have investigated its properties. Twelve publicly available phosphoproteome data sets were triaged to obtain a subset of high-confidence phosphorylation sites (p-sites), free of "noisy" phosphorylations. Analysis of this combined data set suggests that the inventory of phosphoproteins in yeast is close to completion, but that these proteins may have many undiscovered p-sites. Proteins involve...

  11. Yeasts and wine off-flavours: a technological perspective

    OpenAIRE

    Malfeito-Ferreira, Manuel

    2010-01-01

    In wine production, yeasts have both beneficial and detrimental activities. Saccharomyces cerevisiae is the yeast mainly responsible for turning grape juice into wine but this species and several others may also show undesirable effects in wines. Among such effects, technologists are particularly concerned with the production of offflavours that may occur during all stages of winemaking. Typical spoiling activities include the production of ethyl acetate by apiculate y...

  12. Aging-related changes in yeast mitochondrial morphology and respiration

    Czech Academy of Sciences Publication Activity Database

    Sigler, Karel; Pichová, Alena; Volejníková, Andrea; Hlousková, Jana

    Bratislava : Bratislava: SAS, 2011. s. 55-55. ISSN 1336-4839. [Annual Conference on Yeasts /39./. 03.05.2011-06.05.2011, Smolenice] R&D Projects: GA MŠk 1M0570; GA MŠk ME09043; GA ČR GA301/07/0339 Institutional research plan: CEZ:AV0Z50200510 Keywords : s. cerevisiae * yeast Subject RIV: EE - Microbiology, Virology

  13. Yeast PPR proteins, watchdogs of mitochondrial gene expression

    OpenAIRE

    Herbert, Christopher J.; Golik, Pawel; Bonnefoy, Nathalie

    2013-01-01

    PPR proteins are a family of ubiquitous RNA-binding factors, found in all the Eukaryotic lineages, and are particularly numerous in higher plants. According to recent bioinformatic analyses, yeast genomes encode from 10 (in S. pombe) to 15 (in S. cerevisiae) PPR proteins. All of these proteins are mitochondrial and very often interact with the mitochondrial membrane. Apart from the general factors, RNA polymerase and RNase P, most yeast PPR proteins are involved in the stability and/or transl...

  14. Identification and assessment of kefir yeast potential for sugar/ethanol-resistance

    Directory of Open Access Journals (Sweden)

    M.G.C.P. Miguel

    2013-01-01

    Full Text Available Biochemical and molecular analysis was used for identification of different kefir yeasts species from Brazil, Canada and the United States of America. The sugar/ethanol-resistant activity of the yeasts was evaluated. Saccharomyces cerevisiae and Kluyveromyces marxianus had the highest growth rates, suggesting biotechnological applications possible for these strains.

  15. Identification and assessment of kefir yeast potential for sugar/ethanol-resistance

    OpenAIRE

    M.G.C.P. Miguel; P.G. Cardoso; K.T. Magalhães-Guedes; Schwan, R.F.

    2013-01-01

    Biochemical and molecular analysis was used for identification of different kefir yeasts species from Brazil, Canada and the United States of America. The sugar/ethanol-resistant activity of the yeasts was evaluated. Saccharomyces cerevisiae and Kluyveromyces marxianus had the highest growth rates, suggesting biotechnological applications possible for these strains.

  16. Selection of Indigenous Saccharomyces cerevisiae Strains from Kutjevo Wine Growing Area at the Laboratoy Scale

    Directory of Open Access Journals (Sweden)

    Sandi Orlić

    2005-09-01

    Full Text Available The use of selected yeasts for winemaking has clear advantages over traditional spontaneous fermentation. Selection of wine yeasts is usually carried out within the Saccharomyces cerevisiae species. Yeast strains produce different amount of secondary compounds that impart specific characteristics to the wines. This suggests that it is necessary to isolate naturally occuring autochthone strains, which exhibit a metabolic profile that corresponds to each wine. Twenty two strains of S.cerevisiae, isolated from the Kutjevo region (Gornji and Donji Hrnjevec, Mitrovac, Graševina grapes, were tested for: fermentation vigor, ethanol resistance, volatile acidity, H2S production and β-glucosidase, polygalacturonase, and killer activity. From the results of this investigation we are able to select two yeast strains (RO 1272 and RO 1284 for more detailed fermentation trials and possible use as a starter culture in production of typical wines.

  17. Telomere behavior in a hybrid yeast

    Institute of Scientific and Technical Information of China (English)

    Ona C Martin; Christopher G De Sevo; Benjamin Z Guo; Douglas E Koshland; Maiterya J Dunham; Yixian Zheng

    2009-01-01

    @@ Dear Editor, Telomeres and the protein/RNA complexes involved in maintaining them are rapidly evolving systems across eukaryotes.Using two Saccharomyces species, among S.cerevisiae and S.bayanus, we provide evidence that the telomere systems of these two closely related yeasts have evolved significantly apart and that the gene in one spe-cies cannot maintain the set-point of telomere length of the other soecies in the hybrid.

  18. Yeast mutants auxotrophic for choline or ethanolamine.

    OpenAIRE

    Atkinson, K D; Jensen, B.; Kolat, A I; Storm, E M; Henry, S. A.; Fogel, S

    1980-01-01

    Three mutants of the yeast Saccharomyces cerevisiae which require exogenous ethanolamine or choline were isolated. The mutants map to a single locus (cho1) on chromosome V. The lipid composition suggests that cho1 mutants do not synthesize phosphatidylserine under any growth conditions. If phosphatidylethanolamine or phosphatidylcholine, which are usually derived from phosphatidylserine, were synthesized from exogenous ethanolamine or choline, the mutants grew and divided relatively normally....

  19. Regulation of phospholipid synthesis in yeast

    OpenAIRE

    Carman, George M.; Han, Gil-Soo

    2009-01-01

    Phospholipid synthesis in the yeast Saccharomyces cerevisiae is a complex process that involves regulation by both genetic and biochemical mechanisms. The activity levels of phospholipid synthesis enzymes are controlled by gene expression (e.g., transcription) and by factors (lipids, water-soluble phospholipid precursors and products, and covalent modification of phosphorylation) that modulate catalysis. Phosphatidic acid, whose levels are controlled by the biochemical regulation of key phosp...

  20. Population genomics of domestic and wild yeasts

    OpenAIRE

    Liti, Gianni; Carter, David M.; Moses, Alan M.; Warringer, Jonas; Parts, Leopold; James, Stephen A.; Davey, Robert P.; Roberts, Ian N.; Burt, Austin; Koufopanou, Vassiliki; Tsai, Isheng J.; Bergman, Casey M.; Bensasson, Douda; O'Kelly, Michael J.T.; van Oudenaarden, Alexander

    2009-01-01

    Since the completion of the genome sequence of Saccharomyces cerevisiae in 19961,2, there has been an exponential increase in complete genome sequences accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions3,4, population structure5-8, and sexual versus asexual reproduction9,10. Less well understood a...

  1. Yeast Oligo-mediated Genome Engineering (YOGE)

    OpenAIRE

    DiCarlo, JE; Conley, AJ; Penttilä, M; Jäntti, J; Wang, HH; Church, GM

    2013-01-01

    High-frequency oligonucleotide-directed recombination engineering (recombineering) has enabled rapid modification of several prokaryotic genomes to date. Here, we present a method for oligonucleotide-mediated recombineering in the model eukaryote and industrial production host S. cerevisiae, which we call Yeast Oligo-mediated Genome Engineering (YOGE). Through a combination of overexpression and knockouts of relevant genes and optimization of transformation and oligonucleotide designs, we ach...

  2. Yeast Interactions in Inoculated Wine Fermentation

    OpenAIRE

    Ciani, Maurizio; Capece, Angela; Comitini, Francesca; Canonico, Laura; Siesto, Gabriella; Romano, Patrizia

    2016-01-01

    The use of selected starter culture is widely diffused in winemaking. In pure fermentation, the ability of inoculated Saccharomyces cerevisiae to suppress the wild microflora is one of the most important feature determining the starter ability to dominate the process. Since the wine is the result of the interaction of several yeast species and strains, many studies are available on the effect of mixed cultures on the final wine quality. In mixed fermentation the interactions between the diffe...

  3. Zinc accumulation and utilization by wine yeasts

    OpenAIRE

    Walker, Graeme

    2009-01-01

    Raffaele De Nicola1,3, Nichola Hall2,3, Tatiana Bollag3, Georgios Thermogiannis3, Graeme M Walker31DSM Nutritional Products, Dept. NRD/CX, Basel, Switzerland; 2Vinquiry, Inc. Windsor, CA, USA; 3School of Contemporary Sciences, University of Abertay Dundee, Dundee, UK Abstract: The present study has focused on the accumulation of zinc by wine yeast strains of Saccharomyces cerevisiae during fermentation of both grape juice and chemically defined medium with different carbohydrates and...

  4. Effect of in vitro digested cod liver oil of different quality on oxidative, proteomic and inflammatory responses in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Larsson, Karin; Istenič, Katja; Wulff, Tune;

    2015-01-01

    oil with 22–53 µmol L−1 malondialdehyde and 0.26–3.7 µmol L−1 4-hydroxy-2-hexenal increased intracellular oxidation and cell energy metabolic activity compared to a digested blank in yeast cells and the influence of digests on mitochondrial protein expression was more pronounced for oxidised cod liver...... expression. The ratio of secreted cytokines, IL-12p40/IL-10, suggested a pro-inflammatory effect of the digested oils in relation to the blank (1.47–1.67 vs. 1.07). CONCLUSION: Gastro-intestinal digestion of cod liver oil increases the amount of oxidation products and resulting digests affect oxidation in...... oil than fresh cod liver oil. The four differentially expressed and identified proteins were related to energy metabolism and oxidative stress response. Maturation of dendritic cells was affected in the presence of digested fresh cod liver oil compared to the digested blank, measured as lower CD86...

  5. Saccharomyces cerevisiae Signature Genes for Predicting Nitrogen Deficiency during Alcoholic Fermentation▿ †

    OpenAIRE

    Mendes Ferreira, A.; Olmo Muñoz, Marcel·lí del; García Martínez, José; Jiménez Martí, Elena; Leão, C.; Mendes Faia, A.; Pérez Ortín, José Enrique

    2007-01-01

    Genome-wide analysis of the wine yeast strain Saccharomyces cerevisiae PYCC4072 identified 36 genes highly expressed under conditions of low or absent nitrogen in comparison with a nitrogen-replete condition. Reverse transcription-PCR analysis for four of these transcripts with this strain and its validation with another wine yeast strain underlines the usefulness of these signature genes for predicting nitrogen deficiency and therefore the diagnosis of wine stuck/sluggish fermentations.

  6. Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production

    OpenAIRE

    Tomas Strucko; Olivera Magdenoska; Mortensen, Uffe H.

    2015-01-01

    The yeast Saccharomyces cerevisiae is a widely used eukaryotic model organism and a key cell factory for production of biofuels and wide range of chemicals. From the broad palette of available yeast strains, the most popular are those derived from laboratory strain S288c and the industrially relevant CEN.PK strain series. Importantly, in recent years these two strains have been subjected to comparative “-omics” analyzes pointing out significant genotypic and phenotypic differences. It is ther...

  7. Use of Nonionic Surfactants for Improvement of Terpene Production in Saccharomyces cerevisiae

    OpenAIRE

    Kirby, James; Nishimoto, Minobu; Chow, Ruthie W. N.; Pasumarthi, Venkata N.; Chan, Rossana; Chan, Leanne Jade G.; Petzold, Christopher J.; Keasling, Jay D.

    2014-01-01

    To facilitate enzyme and pathway engineering, a selection was developed for improved sesquiterpene titers in Saccharomyces cerevisiae. α-Bisabolene, a candidate advanced biofuel, was found to protect yeast against the disruptive action of nonionic surfactants such as Tween 20 (T20). An experiment employing competition between two strains of yeast, one of which makes twice as much bisabolene as the other, demonstrated that growth in the presence of T20 provided sufficient selective pressure to...

  8. Longevity Regulation in Saccharomyces cerevisiae: Linking Metabolism, Genome Stability, and Heterochromatin

    OpenAIRE

    Bitterman, Kevin J.; Medvedik, Oliver; Sinclair, David A.

    2003-01-01

    When it was first proposed that the budding yeast Saccharomyces cerevisiae might serve as a model for human aging in 1959, the suggestion was met with considerable skepticism. Although yeast had proved a valuable model for understanding basic cellular processes in humans, it was difficult to accept that such a simple unicellular organism could provide information about human aging, one of the most complex of biological phenomena. While it is true that causes of aging are likely to be multifar...

  9. Production of ethanol by solid particles of Saccharomyces cerevisiae in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Moebus, O.; Teuber, M.

    1982-01-01

    CO/sub 2/ can be used as the fluid continuous phase for the fermentation of 10-40% aqueous solutions of glucose to ethanol with S. cerevisiae using a closed circuit consisting of a fluidized bed of small solid yeast particles, a cooled condenser for the sampling of water and ethanol, and a blower. At 80 degrees, a fermentation of 12 mu mol glucose/minute-g dry yeast was achieved.

  10. Metabolic Engineering of Saccharomyces cerevisiae for Astaxanthin Production and Oxidative Stress Tolerance▿

    OpenAIRE

    Ukibe, Ken; Hashida, Keisuke; Yoshida, Nobuyuki; Takagi, Hiroshi

    2009-01-01

    The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product)...

  11. The utilization of some iron and zinc compounds as regulators of catalase activity at Saccharomyces cerevisiae

    OpenAIRE

    Efremova, N.; E. Molodoi; Usatîi, A.; Fulga, L.

    2013-01-01

    The main aim of this study was to examine the impact of some zinc and iron compounds as oxidative stress factors on catalase activity, which is known to be important defense system of microorganisms to metal stress. For the investigation was used baker's yeast strain - Saccharomyces cerevisiae CNMN-Y-11 previously selected as a source of protein and catalase. The obtained results have revealed that compounds of iron and zinc with citrate and acetate contributes to the accumulation of yeast bi...

  12. Evaluation of apoptosis and necrosis in Saccharomyces cerevisiae during wine fermentations

    OpenAIRE

    Salvador, Vanessa Alexandra Guerreiro

    2009-01-01

    During wine fermentation the yeast cells are affected by several stress conditions in different phases of the fermentation process, which induces deeply changes in yeast cells physiology. The aim of this work was to evaluate different parameters related to the physiological state of an industrial strain of Saccharomyces cerevisiae (ISA1000), during wine fermentations of white grape must, 15ºC and 30ºC, simulating winery conditions. As indicator of the number of viable cells and...

  13. Ethanol production from high-glucose industrial substrates using ethanol-tolerant Saccharomyces cerevisiae strains

    OpenAIRE

    Cunha, M. R. M.; Guimarães, Pedro M. R.; Teixeira, J.A.; Domingues, Lucília

    2008-01-01

    Ethanol is well known as a toxic metabolite for yeast cells. Thus, strains that can grow well under high ethanol stress condition are highly desirable. This work aims to select and characterize Saccharomyces cerevisiae strains with improved ethanol tolerance. Moreover, it aims to evaluate the feasibility of industrial residues as fermentation media and to optimize the composition of such media. The ethanol production and tolerance of the yeast strains have been evaluated, carrying out batc...

  14. Effects of Potentised Substances on Growth Kinetics of Saccharomyces cerevisiae and Schizosaccharomyces pombe

    OpenAIRE

    Scherr, Claudia; Baumgartner, Stephan; Spranger, Jörg; Simon, Meinhard

    2006-01-01

    Background: Homeopathic potencies are used as specific remedies in complementary medicine. Since the mode of action is unknown, the presumed specificity is discussed controversially. Objective: This study investigated the effects of potentised substances on two yeast species, Saccharomyces cerevisiae and Schizosaccharomyces pombe, in a stable and reliable test system with systematic negative controls. Materials and Methods: Yeast cells were cultivated in either potentised substances or ...

  15. Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae

    OpenAIRE

    Magwene, Paul M.; Kayıkçı, Ömür; Granek, Joshua A.; Reininga, Jennifer M.; Scholl, Zackary; Murray, Debra

    2011-01-01

    We carried out a population genomic survey of Saccharomyces cerevisiae diploid isolates and find that many budding yeast strains have high levels of genomic heterozygosity, much of which is likely due to outcrossing. We demonstrate that variation in heterozygosity among strains is correlated with a life-history trade-off that involves how readily yeast switch from asexual to sexual reproduction under nutrient stress. This trade-off is reflected in a negative relationship between sporulation e...

  16. Saccharomyces cerevisiae Rif1 cooperates with MRX-Sae2 in promoting DNA-end resection

    OpenAIRE

    Martina, Marina; Bonetti, Diego; Villa, Matteo; Lucchini, Giovanna; Longhese, Maria Pia

    2014-01-01

    Diverse roles in DNA metabolism have been envisaged for budding yeast and mammalian Rif1. In particular, yeast Rif1 is involved in telomere homeostasis, while its mammalian counterpart participates in the cellular response to DNA double-strand breaks (DSBs). Here, we show that Saccharomyces cerevisiae Rif1 supports cell survival to DNA lesions in the absence of MRX or Sae2. Furthermore, it contributes to the nucleolytic processing (resection) of DSBs. This Rif1-dependent control of DSB resect...

  17. New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains

    DEFF Research Database (Denmark)

    Masneuf, I; Hansen, J.; Groth, C;

    1998-01-01

    Two yeast isolates, a wine-making yeast first identified as a Mel(+) strain (ex. S. uvarum) and a cider-making yeast, were characterized for their nuclear and mitochondrial genomes, Electrophoretic karyotyping analyses, restriction fragment length polymorphism maps of PCR-amplified MET2 gene...... different sequences of the OLI1 gene. The sequence of the OLI1 gene from the wine hybrid strain appeared to be the same as that of the S. cerevisiae gene, whereas the OLI1 gene of the cider hybrid strain its equally divergent from both putative parents, S. bayanus and S, cerevisiae, Some fermentative...

  18. Role of DNA sequences in genetic recombination in the iso-1-cytochrome c gene of yeast. I. Discrepancies between physical distances and genetic distances determined by five mapping procedures

    International Nuclear Information System (INIS)

    Recombination rates have been examined in two-point crosses of various defined cyc1 mutants using five mapping methods. Nucleotide sequences of mutant codons were identified in previous studies from alterations in functional iso-1-cytochromes c produced by intragenic revertants. Heteroallelic diploids were analyzed for rates of mitotic recombination that occurred spontaneously and that were induced with x rays, ultraviolet light and the near-ultraviolet light emitted by sunlamps, as well as rates of meiotic recombination that occur after sporulation. Frequencies of both mitotic and meiotic recombination do not necessarily correspond with physical distances separating altered nucleotides. The most extreme discrepancy involved two adjacent intervals of thirteen base pairs which differed approximately thirtyfold in their spontaneous and x-ray-induced recombination rates. Marked disproportions between genetic and physical distances appear to be due to the interaction of the two nucleotide sequences in the heteroallelic combination and not to the sequences of the mutant codons alone. Recombination values that were obtained by all five methods could not be used to establish the correct order of mutant sites. Relationships of the recombination rates for the various pairwise crosses are different after mitosis from those after meiosis, suggesting that these two recombinational processes are to some extent different in their dependence on particular nucleotide configurations. On the other hand, the relationships of the rates induced by uv, sunlamp- and x-irradiation were identical or very similar. In addition to the intrinsic properties of the alleles affecting frequencies of mitotic and meiotic recombination rates, two- to threefold variations in recombination rates could be attributed to genetic backgrounds. (U.S.)

  19. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  20. The effect of gamma irradiation on alcoholic fermentation of cassava by saccharomyces cerevisiae and kluyveromyces marxianus

    International Nuclear Information System (INIS)

    A study to examine the influence of gamma irradiation (Co60) on the production of alcohol from cassava by two yeast cultures, S. cerevisiae and a thermotolerant K. marxianus was carried out. Irradiation doses used were 0; 0.1; 0.3; 0.5 and 7 kGy. Two enzymes thermamyl and amyloglucosidase were used for liquifaction and saccharification, respectively. A part of the cassava substrate was enriched with NH4H2PO4 as nitrogen source. Irradiated yeast suspension (+-108 cells/ml) was inoculated to the medium to a final concentration of 5% (v/v). Incubation period was 3 days at a temperature of 30oC for S. cerevisiae and 37oC for K. marxianus. Results showed that gamma irradiation had a significant effect on the number of both yeast colonies. It decreased the number of yeast colonies, but not the content of ethanol produced by its fermentation. The yeast still viable after irradiation probably had an increased activity. Adding nitrogen to S. cerevisiae caused a decrease in the content of ethanol, but no significant effect was found on the number of colonies of both yeasts as affected by added nitrogen. (author). 10 refs

  1. Genetic effects of decay of tritium incorporated into cells of yeast Saccharomyces cerevisiae. 5. Lethal and mutagenic effects and the nature of mutations induced by /sup 3/H decay in the 6-th position of thymine

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, E.L.; Korolev, V.G. (AN SSSR, Leningrad. Inst. Yadernoj Fiziki)

    1982-03-01

    Lethal and mutagenous effects as well as nature of mutations induced with /sup 3/H decay in the sixth position of thymine (6-/sup 3/H-T) have been studied. Inactivation probability of haploid yeasts constituted ..cap alpha..=(6.1+-1.0)x10/sup -3/ decay/sup -1/ or ..cap alpha..=(7.6+-1.3)x10/sup -5/ rad/sup -1/, and probability of mutation appearance in genes ade 1, ade -K is (2.8+-1.7)x10/sup -8/ decay/sup -1/ or K=(3.5+-2.1)x10/sup -10/ rad/sup -1/. Lethal and mutageneous effects of 6-/sup 3/H-T don't differ considerably from those for /sup 3/H decay in the fifth position of thymine (5-/sup 3/H-T). From the point of view of frequency of transversions and mutations of read-out frame shift type induced in ade 2 gene, 6-/sup 3/H-T doesn't differ from 5-/sup 3/H-T. However, in comparison with the latter 6-/sup 3/H-T causes appearance of a larger amount of AT ..-->.. GTs transitions. A scheme, according to which 5 methyl barbituric acid (5MBK) is a finite product of /sup 3/H decay in the sixth position of thymine, is suggested. The results obtained point to that fact that 5MBK represents weak mutageneous damage of thymine causing the exchange of AT pair.

  2. Mead production: selection and characterization assays of Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Pereira, Ana Paula; Dias, Teresa; Andrade, João; Ramalhosa, Elsa; Estevinho, Letícia M

    2009-08-01

    Mead is a traditional drink, which results from the alcoholic fermentation of diluted honey carried out by yeasts. However, when it is produced in a homemade way, mead producers find several problems, namely, the lack of uniformity in the final product, delayed and arrested fermentations, and the production of "off-flavours" by the yeasts. These problems are usually associated with the inability of yeast strains to respond and adapt to unfavourable and stressful growth conditions. The main objectives of this work were to evaluate the capacity of Saccharomyces cerevisiae strains, isolated from honey of the Trás-os-Montes (Northeast Portugal), to produce mead. Five strains from honey, as well as one laboratory strain and one commercial wine strain, were evaluated in terms of their fermentation performance under ethanol, sulphur dioxide and osmotic stress. All the strains showed similar behaviour in these conditions. Two yeasts strains isolated from honey and the commercial wine strain were further tested for mead production, using two different honey (a dark and a light honey), enriched with two supplements (one commercial and one developed by the research team), as fermentation media. The results obtained in this work show that S. cerevisiae strains isolated from honey, are appropriate for mead production. However it is of extreme importance to take into account the characteristics of the honey, and supplements used in the fermentation medium formulation, in order to achieve the best results in mead production. PMID:19481129

  3. A Simple Laboratory Exercise Illustrating Active Transport in Yeast Cells.

    Science.gov (United States)

    Stambuk, Boris U.

    2000-01-01

    Describes a simple laboratory activity illustrating the chemiosmotic principles of active transport in yeast cells. Demonstrates the energy coupling mechanism of active a-glucoside uptake by Saccaromyces cerevisiae cells with a colorimetric transport assay using very simple equipment. (Contains 22 references.) (Author/YDS)

  4. Synthetic biology for engineering acetyl coenzyme a metabolism in yeast

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting...

  5. Engineering industrial yeast for renewable advanced biofuels applications

    Science.gov (United States)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  6. Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV.

    OpenAIRE

    Popoff, S C; Spira, A I; Johnson, A. W.; Demple, B

    1990-01-01

    DNA damage generated by oxygen radicals includes base-free apurinic/apyrimidinic (AP) sites and strand breaks that bear deoxyribose fragments. The yeast Saccharomyces cerevisiae repairs such DNA lesions by using a single major enzyme. We have cloned the yeast structural gene (APN1) encoding this AP endonuclease/3'-repair diesterase by immunological screening of a yeast genomic DNA expression library in lambda gt11. Gene disruption experiments confirm that the Apn1 protein accounts for greater...

  7. Evolution of Yeasts and Lactic Acid Bacteria During Fermentation and Storage of Bordeaux Wines

    OpenAIRE

    Fleet, G. H.; Lafon-Lafourcade, S.; Ribéreau-Gayon, P.

    1984-01-01

    The levels of yeasts and lactic acid bacteria that naturally developed during the vinification of two red and two white Bordeaux wines were quantitatively examined. Yeasts of the genera Rhodotorula, Pichia, Candida, and Metschnikowia occurred at low levels in freshly extracted grape musts but died off as soon as fermentation commenced. Kloeckera apiculata (Hanseniaspora uvarum), Torulopsis stellata, and Saccharomyces cerevisiae, the dominant yeasts in musts, proliferated to conduct alcoholic ...

  8. Catalytic activity of baker's yeast in a mediatorless microbial fuel cell.

    Science.gov (United States)

    Sayed, Enas Taha; Tsujiguchi, Takuya; Nakagawa, Nobuyoshi

    2012-08-01

    The catalytic activity of baker's yeast, Saccharomyces cerevisiae, as a biocatalyst was investigated in a mediatorless microbial fuel cell. The yeast cells that adhered on the anode surface were the active biocatalyst for glucose oxidation in a mediatorless biofuel cell, suggesting that the electron transfer took place through the surface confined species. The species in the anolyte solution including the dispersed yeast cells did not take a part in the electron transfer and thus in the power generation. PMID:22357359

  9. Bradykinetic alcohol dehydrogenases make yeast fitter for growth in the presence of allyl alcohol

    OpenAIRE

    Plapp, Bryce V.; Lee, Ann Ting-I.; Khanna, Aditi; Pryor, John M.

    2012-01-01

    Previous studies showed that fitter yeast (Saccharomyces cerevisiae) that can grow by fermenting glucose in the presence of allyl alcohol, which is oxidized by alcohol dehydrogenase I (ADH1) to toxic acrolein, had mutations in the ADH1 gene that led to decreased ADH activity. These yeast may grow more slowly due to slower reduction of acetaldehyde and a higher NADH/NAD+ ratio, which should decrease the oxidation of allyl alcohol. We determined steady-state kinetic constants for three yeast AD...

  10. Tagging Morphogenetic Genes by Insertional Mutagenesis in the Yeast Yarrowia lipolytica

    OpenAIRE

    Richard, Mathias; Quijano, Raymundo Rosas; Bezzate, Samira; Bordon-Pallier, Florence; Gaillardin, Claude

    2001-01-01

    The yeast Yarrowia lipolytica is distantly related to Saccharomyces cerevisiae, can be genetically modified, and can grow in both haploid and diploid states in either yeast, pseudomycelial, or mycelial forms, depending on environmental conditions. Previous results have indicated that the STE and RIM pathways, which mediate cellular switching in other dimorphic yeasts, are not required for Y. lipolytica morphogenesis. To identify the pathways involved in morphogenesis, we mutagenized a wild-ty...

  11. Influence of yeast strains on phenolic composition and antioxidant activity of Vranec wines

    OpenAIRE

    Ivanova, Violeta; Ricci, Arianna; Nedelkovski, Dusko; Dimovska, Violeta; Parpinello, Giuseppina P.; Versari, Andrea

    2014-01-01

    The phenolic composition of ten autochthonous monovarietal Vranec red wines produced with different yeast strains was determined by HPLC-DAD analysis. Vranec wines were fermented with the following Saccharomyces cerevisiae yeast strains: Clos, RC212, D254, BDX (from Lallemand), and six Vinalco yeasts isolated from the Tikveš wine region (Republic of Macedonia). A total of 19 phenolic compounds were identified and quantified in wines and among them the malvidin-3-glucoside and its derivatives ...

  12. Off-Target Effects of Psychoactive Drugs Revealed by Genome-Wide Assays in Yeast

    OpenAIRE

    Ericson, Elke; Gebbia, Marinella; Heisler, Lawrence E.; Wildenhain, Jan; Tyers, Mike; Giaever, Guri; Nislow, Corey

    2008-01-01

    To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 comp...

  13. Molecular Monitoring of Wine Fermentations Conducted by Active Dry Yeast Strains

    OpenAIRE

    Querol, Amparo; Barrio, Eladio; Huerta, Tomás; Ramón, Daniel

    1992-01-01

    A simple and rapid method of yeast strain characterization based on mitochondrial DNA restriction analysis was applied to the control of wine fermentations conducted by active dry yeast strains. This molecular approach allows us to understand several important aspects of this process, such as the role of the active dry yeast strain and that of the natural Saccharomyces cerevisiae flora during vinification. In this paper, we demonstrate that the inoculated strain is really responsible for the ...

  14. Saccharomyces cerevisiae as a model in ecotoxicological studies: A post-genomics perspective.

    Science.gov (United States)

    Braconi, Daniela; Bernardini, Giulia; Santucci, Annalisa

    2016-03-30

    The budding yeast Saccharomyces cerevisiae represents a well-consolidated and widely used eukaryotic model, with a number of features that make it an ideal organism to carry out functional toxicological studies. Several advantages are permitted by the use of yeast cells, as the possibility to identify molecular biomarkers, unknown mechanisms of action and novel potential targets. Thanks to the evolutionary conservation, yeast can provide also useful clues allowing the prioritization of more complex analyses and toxicity predictions in higher eukaryotes. The last two decades were incredibly fruitful for yeast "omics", but referring to the analysis of the effects of pesticides on yeast much still remains to be done. Furthermore, a deeper knowledge of the effects of environmental pollutants on biotechnological processes associated with the use of yeasts is to be hoped. PMID:26365628

  15. Wheat cytosolic acetyl-CoA carboxylase complements an ACC1 null mutation in yeast

    OpenAIRE

    Joachimiak, M.; Tevzadze, G.; Podkowinski, J; Haselkorn, R.; Gornicki, P.

    1997-01-01

    Spores harboring an ACC1 deletion derived from a diploid Saccharomyces cerevisiae strain, in which one copy of the entire ACC1 gene is replaced with a LEU2 cassette, fail to grow. A chimeric gene consisting of the yeast GAL10 promoter, yeast ACC1 leader, wheat cytosolic acetyl-CoA carboxylase (ACCase) cDNA, and yeast ACC1 3′ tail was used to complement a yeast ACC1 mutation. The complementation demonstrates that active wheat ACCase can be produced in yeast. At low concentrations of galactose,...

  16. Genome Sequence of Saccharomyces cerevisiae Double-Stranded RNA Virus L-A-28.

    Science.gov (United States)

    Konovalovas, Aleksandras; Serviené, Elena; Serva, Saulius

    2016-01-01

    We cloned and sequenced the complete genome of the L-A-28 virus from the Saccharomyces cerevisiae K28 killer strain. This sequence completes the set of currently identified L-A helper viruses required for expression of double-stranded RNA-originated killer phenotypes in baking yeast. PMID:27313294

  17. Mapping Condition-Dependent Regulation of Lipid Metabolism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jewett, Michael Christopher; Workman, Christopher; Nookaew, Intawat; Pizarro, Francisco A; Agosin, Eduardo; Hellgren, Lars; Nielsen, Jens

    2013-01-01

    levels, and lipid levels are currently lacking. Here, we map condition-dependent regulation controlling lipid metabolism in Saccharomyces cerevisiae by measuring 5636 mRNAs, 50 metabolites, 97 lipids, and 57 13C-reaction fluxes in yeast using a three-factor full-factorial design. Correlation analysis...

  18. Statistical analysis of selected cellular parameters in chronologically aging culture of Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Švenkrtová, Andrea; Volejníková, Andrea; Rogalewicz, V.

    Smolenice : Visegrad Fund, 2012. s. 85-85. ISSN 1336-4839. [Annual Conference on Yeasts /40./. 08.0.52012-11.05.2012, Smoleni] R&D Projects: GA MŠk 1M0570; GA MŠk ME09043; GA ČR GA301/07/0339 Institutional research plan: CEZ:AV0Z5020903 Keywords : s. cerevisiae

  19. Implementation of Sliding Mode Controller with Boundary Layer for Saccharomyces cerevisiae Fed-batch Cultivation

    Directory of Open Access Journals (Sweden)

    Stoyan Tzonkov

    2005-04-01

    Full Text Available An implementation of sliding mode control for yeast fed-batch cultivation is presented in this paper. Developed controller has been implemented on two real fed-batch cultivations of Saccharomyces cerevisiae. The controller successfully stabilizes the process and shows a very good performance at high input disturbances.

  20. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E; Winther, Jakob R.; Dunn, B M; Wlodawer, A; Kay, J; Gustchina, A

    2000-01-01

    Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2.2 a...

  1. Recombinant Production of Human Aquaporin-1 to an Exceptional High Membrane Density in Saccharomyces Cerevisiae

    DEFF Research Database (Denmark)

    Bomholt, Julie; Helix Nielsen, Claus; Scharff-Poulsen, Peter;

    2014-01-01

    cerevisiae was exploited as a host for heterologous expression of human aquaporins. Aquaporin cDNA was expressed from a galactose inducible promoter situated on a plasmid with an adjustable copy number. Human aquaporin was C-terminally tagged with yeast-enhanced GFP to quantify functional expression...

  2. Heterologous production of non-ribosomal peptide LLD-ACV in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Siewers, Verena; Chen, Xiao; Huang, Le;

    2009-01-01

    Non-ribosomal peptides (NRPs) are a diverse family of secondary metabolites with a broad range of biological activities. We started to develop an eukaryotic microbial platform based on the yeast Saccharomyces cerevisiae for heterologous production of NRPs using δ-(l-α-aminoadipyl)–l-cysteinyl–d-v...

  3. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carbosylation, oxaloacetate reduction and malate export

    NARCIS (Netherlands)

    Zelle, R.M.; Hulster, de E.; Winden, van W.A.; Waard, de P.; Dijkema, C.; Winkler, A.A.; Geertman, J.M.A.

    2008-01-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production

  4. Malic Acid Production by Saccharomyces cerevisiae: Engineering of Pyruvate Carboxylation, Oxaloacetate Reduction, and Malate Export

    NARCIS (Netherlands)

    Zelle, R.M.; De Hulster, E.; Van Winden, W.A.; De Waard, P.; Dijkema, C.; Winkler, A.A.; Geertman, J.M.; Van Dijken, J.P.; Pronk, J.T.; Van Maris, A.J.A.

    2008-01-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production

  5. Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass

    Science.gov (United States)

    The Aspergillus niger ferulic acid esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interactio...

  6. Engineering Saccharomyces cerevisiae for consolidated bioprocessing in starch and biomass conversion

    Science.gov (United States)

    The conversion of starch or biomass to biofuel is a two-stage process involving enzymatic treatment, followed by yeast fermentation. An alternative route would be to consolidate the process by engineering Saccharomyces cerevisiae capable of both saccharification and fermentation. An approach was d...

  7. Genomic approaches for identifying DNA damage response pathways in S. cerevisiae

    NARCIS (Netherlands)

    Chang, Michael; Parsons, Ainslie B; Sheikh, Bilal H; Boone, Charles; Brown, Grant W

    2006-01-01

    DNA damage response pathways have been studied extensively in the budding yeast Saccharomyces cerevisiae, yet new genes with roles in the DNA damage response are still being identified. In this chapter we describe the use of functional genomic approaches in the identification of DNA damage response

  8. Haploinsufficiency and the sex chromosomes from yeasts to humans

    Directory of Open Access Journals (Sweden)

    Oliver Stephen G

    2011-02-01

    Full Text Available Abstract Background Haploinsufficient (HI genes are those for which a reduction in copy number in a diploid from two to one results in significantly reduced fitness. Haploinsufficiency is increasingly implicated in human disease, and so predicting this phenotype could provide insights into the genetic mechanisms behind many human diseases, including some cancers. Results In the present work we show that orthologues of Saccharomyces cerevisiae HI genes are preferentially retained across the kingdom Fungi, and that the HI genes of S. cerevisiae can be used to predict haploinsufficiency in humans. Our HI gene predictions confirm known associations between haploinsufficiency and genetic disease, and predict several further disorders in which the phenotype may be relevant. Haploinsufficiency is also clearly relevant to the gene-dosage imbalances inherent in eukaryotic sex-determination systems. In S. cerevisiae, HI genes are over-represented on chromosome III, the chromosome that determines yeast's mating type. This may be a device to select against the loss of one copy of chromosome III from a diploid. We found that orthologues of S. cerevisiae HI genes are also over-represented on the mating-type chromosomes of other yeasts and filamentous fungi. In animals with heterogametic sex determination, accumulation of HI genes on the sex chromosomes would compromise fitness in both sexes, given X chromosome inactivation in females. We found that orthologues of S. cerevisiae HI genes are significantly under-represented on the X chromosomes of mammals and of Caenorhabditis elegans. There is no X inactivation in Drosophila melanogaster (increased expression of X in the male is used instead and, in this species, we found no depletion of orthologues to yeast HI genes on the sex chromosomes. Conclusion A special relationship between HI genes and the sex/mating-type chromosome extends from S. cerevisiae to Homo sapiens, with the microbe being a useful model for

  9. Boolean model of Yeast Apoptosis as a tool to study yeast and human apoptotic regulations

    Directory of Open Access Journals (Sweden)

    MarijaCvijovic

    2012-12-01

    Full Text Available Programmed cell death (PCD is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modelling is becoming promising approach to capture qualitative behaviour and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP are included in the model. We showed that accumulation of Bax in in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behaviour. Extended model of humanized yeast gives new insights of how complex human disease like neurodegenration can initially be tested.

  10. How do yeast cells become tolerant to high ethanol concentrations?

    Science.gov (United States)

    Snoek, Tim; Verstrepen, Kevin J; Voordeckers, Karin

    2016-08-01

    The brewer's yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast's exceptional ethanol tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance. PMID:26758993

  11. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Sun

    Full Text Available At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  12. Multiple Gene Mediated NAD(P)H-Dependent Aldehyde Reduction is a Mechanism of in situ Detoxification of Furfural and HMF by Saccharomyces cerevisiae

    Science.gov (United States)

    Furfural and 5-hydroxymethylfurfural (HMF) are representative inhibitors to ethanologenic yeast generated from biomass pretreatment using dilute acid hydrolysis. Few yeast strains tolerant to inhibitors are available. In this study, we report a tolerant strain 12HF10 of Saccharomyces cerevisiae ha...

  13. Mediated electrochemical measurement of the inhibitory effects of furfural and acetic acid on Saccharomyces cerevisiae and Candida shehatae.

    Science.gov (United States)

    Zhao, Jinsheng; Wang, Min; Yang, Zhenyu; Gong, Qintao; Lu, Yao; Yang, Zhengyu

    2005-02-01

    The toxic effects of furfural and acetic acid on two yeasts, Saccharomyces cerevisiae and Candida shehatae, were evaluated using an electrochemical method. Intracellular redox activities were lowered by 40% and 78% for S. cerevisiae and C. shehatae, respectively, by 8 g furfural l(-1), and by 46% and 67%, respectively, by 8 g acetic acid l(-1). The proposed method can accurately measure the effects of inhibitors on cell cultures. PMID:15717131

  14. Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae

    OpenAIRE

    Patterson, Melissa N.; Maxwell, Patrick H.

    2014-01-01

    Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For i...

  15. The Genetic Basis of Variation in Clean Lineages of Saccharomyces cerevisiae in Response to Stresses Encountered during Bioethanol Fermentations

    OpenAIRE

    Greetham, Darren; Wimalasena, Tithira T.; Leung, Kay; Marvin, Marcus E.; Chandelia, Yogeshwar; Hart, Andrew J.; Phister, Trevor G.; Tucker, Gregory A; Louis, Edward J.; Smart, Katherine A.

    2014-01-01

    Saccharomyces cerevisiae is the micro-organism of choice for the conversion of monomeric sugars into bioethanol. Industrial bioethanol fermentations are intrinsically stressful environments for yeast and the adaptive protective response varies between strain backgrounds. With the aim of identifying quantitative trait loci (QTL's) that regulate phenotypic variation, linkage analysis on six F1 crosses from four highly divergent clean lineages of S. cerevisiae was performed. Segregants from each...

  16. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.

    Science.gov (United States)

    Dong, Shi-Jun; Lin, Xiang-Hua; Li, Hao

    2015-11-01

    During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation. PMID:26279142

  17. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions

    OpenAIRE

    Dorit Schuller; Filipa Cardoso; Susana Sousa; Paula Gomes; Gomes, Ana C.; Santos, Manuel A. S.; Margarida Casal

    2012-01-01

    We herein evaluate intraspecific genetic diversity of fermentative vineyard-associated S. cerevisiae strains and evaluate relationships between grape varieties and geographical location on populational structures. From the musts obtained from 288 grape samples, collected from two wine regions (16 vineyards, nine grape varieties), 94 spontaneous fermentations were concluded and 2820 yeast isolates were obtained that belonged mainly (92%) to the species S. cerevisiae. Isolates were classified i...

  18. Desempenho de Poedeiras Comerciais Alimentadas com Levedura Seca (Saccharomyces Crevisiae de Cana-de-Açúcar Performance of Commercial Brown Egg Layers Fed Dried Yeast (Saccharomyces Cerevisiae of Sugar-Cane

    Directory of Open Access Journals (Sweden)

    GAR Maia

    2001-05-01

    Full Text Available Essa pesquisa teve por objetivo avaliar o efeito da adição de levedura seca de álcool (LSA à dieta de poedeiras. Foram utilizadas 120 poedeiras Isabrown com 33 semanas de idade, distribuídas em um delineamento estatístico de blocos ao acaso, com cinco tratamentos (0, 7, 14, 21 e 28% de levedura, quatro repetições e seis aves por unidade experimental. Rações isoprotéicas (18% PB, isoenergéticas (2.800 kcal EM/kg, isocálcicas (3,8% Ca e isofosfóricas (0,38% Pd foram formuladas à base de milho e farelo de soja. Os níveis de LSA não afetaram a produção galinha dia (PGD=94,71± 0,96%, peso dos ovos (PO=64,35± 0,85g, peso médio final das aves (PMF=1.872,07± 50,36g, ganho de peso das aves (GP=-52± 25,84g e umidade das excretas (UE=75,85± 3,81%. Observou-se efeito quadrático para as variáveis: consumo de ração (CR=117,03-0,34LSA+0,02LSA² e conversão alimentar por dúzia de ovos (CADO=1,48-0,0025LSA+0,00023LSA². Efeito linear foi observado para a variável conversão alimentar por massa de ovo (CAMO=1,867+0,0072LSA. A utilização de até 14% de levedura proporcionou desempenho semelhante ao obtido com a dieta à base de milho e farelo de soja. A análise econômica mostrou ser viável a utilização de níveis até 28% de levedura.This research had the objective of evaluating the effect of growing levels of dry yeast of alcohol (LSA to the laying hen diet. One hundred and twenty Isabrown laying hens were used with 33 weeks of age, in a randomized complete block design, with five treatments, four replicates and six birds per pen. The diets (18% CP, 2800 kcal ME/kg, 3,8% Ca and 0,38% AP, were formulated based on corn and soybean meal, with five levels of LSA inclusion: 0; 7; 14; 21 and 28,0%. The levels of LSA did not affect the production of hen per day (PGD=94,71± 0,96%, egg weight (PO=64,35± 0,85g, chicken weight (PMF=1.872,07± 50,36g, weight gain (GP=-52± 25,84g, and moisture of faeces (UE=75,85± 3,81%. Quadratic

  19. Human G protein-coupled receptor studies in Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Rongfang; Wong, Winsy; IJzerman, Adriaan P

    2016-08-15

    G protein-coupled receptors (GPCRs) are one of the largest families of membrane proteins, with approximately 800 different GPCRs in the human genome. Signaling via GPCRs regulates many biological processes, such as cell proliferation, differentiation, and development. In addition, many receptors have a pivotal role in immunophysiology. Many hormones and neurotransmitters are ligands for these receptors, and hence it is not surprising that many drugs, either mimicking or blocking the action of the bodily substances, have been developed. It is estimated that 30-40% of current drugs on the market target GPCRs. Further identifying and elucidating the functions of GPCRs will provide opportunities for novel drug discovery, including for immunotherapy. The budding yeast Saccharomyces cerevisiae (S. cerevisiae) is a very important and useful platform in this respect. There are many advantages of using a yeast assay system, as it is cheap, safe and stable; it is also convenient for rapid feasibility and optimization studies. Moreover, it offers a "null" background when studying human GPCRs. New developments regarding human GPCRs expressed in a yeast platform are providing insight into GPCR activation and signaling, and facilitate agonist and antagonist identification. In this review we summarize the latest findings regarding human G-protein-coupled receptors in studies using S. cerevisiae, ever since the year 2005 when we last published a review on this topic. We describe 11 families of GPCRs in detail, while including the principles and developments of each yeast system applied to these different GPCRs and highlight and generalize the experimental findings of GPCR function in these systems. PMID:26920251

  20. Detection and identification of wild yeasts in lager breweries.

    Science.gov (United States)

    van der Aa Kühle, A; Jespersen, L

    1998-09-01

    Wild yeasts were detected in 41 out of 101 brewery yeast samples investigated using six different selective principles. Malt extract, yeast extract, glucose, peptone (MYGP) agar supplemented with 195 ppm CuSO4 was found to be the most effective selective principle, detecting wild yeasts in 80% of the contaminated samples. Both Saccharomyces and non-Saccharomyces wild yeasts were detected on this medium. Lysine medium, crystal violet medium and incubation of non-selective media at 37 degrees C detected wild yeasts in 46-56% of the contaminated samples. On using actidione medium, only 20% of the wild yeasts were detected. The combined use of MYGP supplemented with 195 ppm CuSO4 and one of the other selective principles did not improve the recovery of the wild yeasts. The wild yeasts found consisted of Saccharomyces cerevisiae (57%), Pichia spp. (28%) and Candida spp. (15%). Using the API ID 32 C kit, 35 different assimilation profiles were obtained for the 124 wild yeast isolates investigated. All isolates were capable of glucose assimilation, whereas only 79% of the isolates assimilated saccharose, 75% maltose, 70% galactose, 65% raffinose and 65% lactate. Lactose, inositol, rhamnose and glucuronate were not assimilated by any of the isolates. The differences in assimilation pattern did not reflect any differences in recovery by the selective principles investigated. The majority of the wild yeast isolates investigated were capable of growth in wort and beer, indicating their possible role as spoilage organisms. The Sacch. cerevisiae isolates were found to be the most hazardous, with some isolates being capable of extensive growth in bottled beer within seventeen days at ambient temperature. PMID:9801196