WorldWideScience

Sample records for cerevisiae strain engineered

  1. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering

    DEFF Research Database (Denmark)

    Sanchez, R.G.; Karhumaa, Kaisa; Fonseca, C.;

    2010-01-01

    to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate......Background: Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced. Results: Evolutionary engineering was used...... of xylose and arabinose under aerobic and anaerobic conditions. Improved anaerobic ethanol production was achieved at the expense of xylitol and glycerol but arabinose was almost stoichiometrically converted to arabitol. Further characterization of the strain indicated that the selection pressure during...

  2. Development of N- and O-linked oligosaccharide engineered Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Abe, Hiroko; Tomimoto, Kazuya; Fujita, Yasuko; Iwaki, Tomoko; Chiba, Yasunori; Nakayama, Ken-Ichi; Nakajima, Yoshihiro

    2016-11-01

    Yeast cells have been engineered for the production of glycoproteins as biopharmaceuticals with humanized N-linked oligosaccharides. The suppression of yeast-specific O-mannosylation is important to reduce immune response and to improve heterologous protein productivity in the production of biopharmaceuticals. However, so far, there are few reports of the engineering of both N-linked and O-linked oligosaccharides in yeast cells. In the present study, we describe the generation of a Saccharomyces cerevisiae strain capable of producing a glycoprotein with humanized Man5GlcNAc2 N-linked oligosaccharides, an intermediate of mammalian hybrid- and complex-type oligosaccharides, while suppressing O-mannosylation. First, a yeast strain that produces a glycoprotein with Man5GlcNAc2 was isolated by introducing msdS encoding α-1,2-mannosidase into a strain synthesizing Man8GlcNAc2 N-linked oligosaccharides. Next, to suppress O-mannosylation, an O-mannosyltransferase-deficient strain was generated by disrupting PMT1 and PMT2 Although the relative amount of O-linked oligosaccharides in the disruptant was reduced to approximately 40% of that in wild type cells, this strain exhibited growth defects and decreased protein productivity. To overcome the growth defects, we applied a mutagenesis technique that is based on the disparity theory of evolution. Finally, to improve protein productivity of the growth-recovered strain, vacuolar proteases PEP4 and PRB1 were further disrupted. Thus, by combining genetic engineering and disparity mutagenesis, we generated an Saccharomyces cerevisiae strain whose N- and O-linked oligosaccharide synthetic pathways were engineered to effectively produce the heterologous protein.

  3. Increased resveratrol production in wines using engineered wine strains Saccharomyces cerevisiae EC1118 and relaxed antibiotic or auxotrophic selection.

    Science.gov (United States)

    Sun, Ping; Liang, Jing-Long; Kang, Lin-Zhi; Huang, Xiao-Yan; Huang, Jia-Jun; Ye, Zhi-Wei; Guo, Li-Qiong; Lin, Jun-Fang

    2015-01-01

    Resveratrol is a polyphenolic compound with diverse beneficial effects on human health. Red wine is the major dietary source of resveratrol but the amount that people can obtain from wines is limited. To increase the resveratrol production in wines, two expression vectors carrying 4-coumarate: coenzyme A ligase gene (4CL) from Arabidopsis thaliana and resveratrol synthase gene (RS) from Vitis vinifera were transformed into industrial wine strain Saccharomyces cerevisiae EC1118. When cultured with 1 mM p-coumaric acid, the engineered strains grown with and without the addition of antibiotics produced 8.249 and 3.317 mg/L of trans-resveratrol in the culture broth, respectively. Resveratrol content of the wine fermented with engineered strains was twice higher than that of the control, indicating that our engineered strains could increase the production of resveratrol during wine fermentation.

  4. Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation.

    Science.gov (United States)

    Kim, Soo Rin; Lee, Ki-Sung; Kong, In Iok; Lesmana, Anastashia; Lee, Won-Heong; Seo, Jin-Ho; Kweon, Dae-Hyuk; Jin, Yong-Su

    2013-03-10

    Saccharomyces cerevisiae can be engineered for xylose fermentation through introduction of wild type or mutant genes (XYL1/XYL1 (R276H), XYL2, and XYL3) coding for xylose metabolic enzymes from Scheffersomyces stipitis. The resulting engineered strains, however, often yielded undesirable phenotypes such as slow xylose assimilation and xylitol accumulation. In this study, we performed the mating of two engineered strains that exhibit suboptimal xylose-fermenting phenotypes in order to develop an improved xylose-fermenting diploid strain. Specifically, we obtained two engineered haploid strains (YSX3 and SX3). The YSX3 strain consumed xylose rapidly and produced a lot of xylitol. On the contrary, the SX3 strain consumed xylose slowly with little xylitol production. After converting the mating type of SX3 from alpha to a, the resulting strain (SX3-2) was mated with YSX3 to construct a heterozygous diploid strain (KSM). The KSM strain assimilated xylose (0.25gxyloseh(-1)gcells(-1)) as fast as YSX3 and accumulated a small amount of xylitol (0.03ggxylose(-1)) as low as SX3, resulting in an improved ethanol yield (0.27ggxylose(-1)). We found that the improvement in xylose fermentation by the KSM strain was not because of heterozygosity or genome duplication but because of the complementation of the two xylose-metabolic pathways. This result suggested that mating of suboptimal haploid strains is a promising strategy to develop engineered yeast strains with improved xylose fermenting capability.

  5. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Sonderegger, M.; Jeppsson, M.; Larsson, C.;

    2004-01-01

    Lignocellulose hydrolysate is an abundant substrate for bioethanol production. The ideal microorganism for such a fermentation process should combine rapid and efficient conversion of the available carbon sources to ethanol with high tolerance to ethanol and to inhibitory components in the hydrol......Lignocellulose hydrolysate is an abundant substrate for bioethanol production. The ideal microorganism for such a fermentation process should combine rapid and efficient conversion of the available carbon sources to ethanol with high tolerance to ethanol and to inhibitory components...... in the hydrolysate. A particular biological problem are the pentoses, which are not naturally metabolized by the main industrial ethanol producer Saccharomyces cerevisiae. Several recombinant, mutated, and evolved xylose fermenting S. cerevisiae strains have been developed recently. We compare here the fermentation...

  6. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion

    Science.gov (United States)

    Saccharomyces physiology and fermentation related properties vary broadly among industrial strains. In this study, six industrial strains of varied genetic background were engineered to ferment xylose. Aerobic growth rates on xylose were 0.040 h**-1 to 0.167 h**-1. Fermentation of xylose, glucose/xy...

  7. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.

    Directory of Open Access Journals (Sweden)

    Lucas S Parreiras

    Full Text Available The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX-pretreated corn stover hydrolysate (ACSH. We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.

  8. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Bellissimi, Eleonora; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2009-05-01

    Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose-xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L(-1) acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (fermentation in acetic -acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.

  9. Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach.

    Science.gov (United States)

    Kutyna, Dariusz R; Cordente, Antonio G; Varela, Cristian

    2014-01-01

    Gene modification of laboratory yeast strains is currently a very straightforward task thanks to the availability of the entire yeast genome sequence and the high frequency with which yeast can incorporate exogenous DNA into its genome. Unfortunately, laboratory strains do not perform well in industrial settings, indicating the need for strategies to modify industrial strains to enable strain development for industrial applications. Here we describe approaches we have used to genetically modify industrial strains used in winemaking.

  10. Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids.

    Science.gov (United States)

    Sanda, Tomoya; Hasunuma, Tomohisa; Matsuda, Fumio; Kondo, Akihiko

    2011-09-01

    A major challenge associated with the fermentation of lignocellulose-derived hydrolysates is improved ethanol production in the presence of fermentation inhibitors, such as acetic and formic acids. Enhancement of transaldolase (TAL) and formate dehydrogenase (FDH) activities through metabolic engineering successfully conferred resistance to weak acids in a recombinant xylose-fermenting Saccharomyces cerevisiae strain. Moreover, hybridization of the metabolically engineered yeast strain improved ethanol production from xylose in the presence of both 30 mM acetate and 20mM formate. Batch fermentation of lignocellulosic hydrolysate containing a mixture of glucose, fructose and xylose as carbon sources, as well as the fermentation inhibitors, acetate and formate, was performed for five cycles without any loss of fermentation capacity. Long-term stability of ethanol production in the fermentation phase was not only attributed to the coexpression of TAL and FDH genes, but also the hybridization of haploid strains.

  11. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability.

    Science.gov (United States)

    Moreira dos Santos, Margarida; Thygesen, Gerda; Kötter, Peter; Olsson, Lisbeth; Nielsen, Jens

    2003-10-01

    Recombinant strains altered in the ammonium assimilation pathways were constructed with the purpose of increasing NADPH availability. The NADPH-dependent glutamate dehydrogenase encoded by GDH1, which accounts for a major fraction of the NADPH consumption during growth on ammonium, was deleted, and alternative pathways for ammonium assimilation were overexpressed: GDH2 (NADH-consuming) or GLN1 and GLT1 (the GS-GOGAT system). The flux through the pentose phosphate pathway during aerobic growth on glucose decreased to about half that of the reference strain Saccharomyces cerevisiae CEN.PK113-7D, indicating a major redox alteration in the strains. The basic growth characteristics of the recombinant strains were not affected to a great extent, but the dilution rate at which the onset of aerobic fermentation occurred decreased, suggesting a relation between the onset of the Crabtree effect and the flux through the Embden-Meyerhof-Parnas pathway downstream of glucose 6-phosphate. No redox effect was observed in a strain containing a deletion of GLR1, encoding glutathione reductase, an enzyme that is NADPH-consuming.

  12. Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Zhao, Weijun; Hang, Baojian; Zhu, Xiangcheng; Wang, Ri; Shen, Minjie; Huang, Lei; Xu, Zhinan

    2016-10-20

    S-Adenosyl-l-methionine (SAM) is an important metabolite having prominent roles in treating various diseases. In order to improve the production of SAM, the regulation of three metabolic pathways involved in SAM biosynthesis were investigated in an industrial yeast strain ZJU001. GLC3 encoded glycogen-branching enzyme (GBE), SPE2 encoded SAM decarboxylase, as well as ERG4 and ERG6 encoded key enzymes in ergosterol biosynthesis, were knocked out in ZJU001 accordingly. The results indicated that blocking of either glycogen pathway or SAM decarboxylation pathway could improve the SAM accumulation significantly in ZJU001, while single disruption of either ERG4 or ERG6 gene had no obvious effect on SAM production. Moreover, the double mutant ZJU001-GS with deletion of both GLC3 and SPE2 genes was also constructed, which showed further improvement of SAM accumulation. Finally, SAM2 was overexpressed in ZJU001-GS to give the best SAM-producing recombinant strain ZJU001-GS-SAM2, in which 12.47g/L SAM was produced by following our developed pseudo-exponential fed-batch cultivation strategy, about 81.0% increase comparing to its parent strain ZJU001. The present work laid a solid base for large-scale SAM production with the industrial Saccharomyces cerevisiae strain.

  13. Progress in Metabolic Engineering of Saccharomyces cerevisiae

    OpenAIRE

    Nevoigt, Elke

    2008-01-01

    Summary: The traditional use of the yeast Saccharomyces cerevisiae in alcoholic fermentation has, over time, resulted in substantial accumulated knowledge concerning genetics, physiology, and biochemistry as well as genetic engineering and fermentation technologies. S. cerevisiae has become a platform organism for developing metabolic engineering strategies, methods, and tools. The current review discusses the relevance of several engineering strategies, such as rational and inverse metabolic...

  14. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain

    NARCIS (Netherlands)

    Vos, T.; De la Torre Cortes, P.; Van Gulik, W.M.; Pronk, J.T.; Daran-Lapujade, P.A.S.

    2015-01-01

    Introduction: Saccharomyces cerevisiae has become a popular host for production of non-native compounds. The metabolic pathways involved generally require a net input of energy. To maximize the ATP yield on sugar in S. cerevisiae, industrial cultivation is typically performed in aerobic, sugar-limit

  15. Engineering of a Nepetalactol-Producing Platform Strain of Saccharomyces cerevisiae for the Production of Plant Seco-Iridoids.

    Science.gov (United States)

    Campbell, Alex; Bauchart, Philippe; Gold, Nicholas D; Zhu, Yun; De Luca, Vincenzo; Martin, Vincent J J

    2016-05-20

    The monoterpene indole alkaloids (MIAs) are a valuable family of chemicals that include the anticancer drugs vinblastine and vincristine. These compounds are of global significance-appearing on the World Health Organization's list of model essential medicines-but remain exorbitantly priced due to low in planta levels. Chemical synthesis and genetic manipulation of MIA producing plants such as Catharanthus roseus have so far failed to find a solution to this problem. Synthetic biology holds a potential answer, by building the pathway into more tractable organisms such as Saccharomyces cerevisiae. Recent work has taken the first steps in this direction by producing small amounts of the intermediate strictosidine in yeast. In order to help improve on these titers, we aimed to optimize the early biosynthetic steps of the MIA pathway to the metabolite nepetalactol. We combined a number of strategies to create a base strain producing 11.4 mg/L of the precursor geraniol. We also show production of the critical intermediate 10-hydroxygeraniol and demonstrate nepetalactol production in vitro. Lastly we demonstrate that activity of the iridoid synthase toward the intermediates geraniol and 10-hydroxygeraniol results in the synthesis of the nonproductive intermediates citronellol and 10-hydroxycitronellol. This discovery has serious implications for the reconstruction of the MIA in heterologous organisms.

  16. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation.

    Science.gov (United States)

    Domingues, Lucília; Guimarães, Pedro M R; Oliveira, Carla

    2010-01-01

    Lactose is an interesting carbon source for the production of several bio-products by fermentation, primarily because it is the major component of cheese whey, the main by-product of dairy activities. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, does not have a lactose metabolization system. Therefore, several metabolic engineering approaches have been used to construct lactose-consuming S. cerevisiae strains, particularly involving the expression of the lactose genes of the phylogenetically related yeast Kluyveromyces lactis, but also the lactose genes from Escherichia coli and Aspergillus niger, as reviewed here. Due to the existing large amounts of whey, the production of bio-ethanol from lactose by engineered S. cerevisiae has been considered as a possible route for whey surplus. Emphasis is given in the present review on strain improvement for lactose-to-ethanol bioprocesses, namely flocculent yeast strains for continuous high-cell-density systems with enhanced ethanol productivity.

  17. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  18. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption

    DEFF Research Database (Denmark)

    Scalcinati, Gionata; Otero, José Manuel; Van Vleet, Jennifer R. H.;

    2012-01-01

    Industrial biotechnology aims to develop robust microbial cell factories, such as Saccharomyces cerevisiae, to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose...... sugar found in lignocelluloses. Significant research efforts have focused on the metabolic engineering of S. cerevisiae for fast and efficient xylose utilization. This study aims to metabolically engineer S. cerevisiae, such that it can consume xylose as the exclusive substrate while maximizing carbon......-metabolizing yeast Pichia stipitis, was constructed, followed by a directed evolution strategy to improve xylose utilization rates. The resulting S. cerevisiae strain was capable of rapid growth and fast xylose consumption producing only biomass and negligible amount of byproducts. Transcriptional profiling...

  19. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability

    DEFF Research Database (Denmark)

    Santos, Maria Margarida M. dos; Thygesen, G.; Kotter, P.;

    2003-01-01

    Recombinant strains altered in the ammonium assimilation pathways were constructed with the purpose of increasing NADPH availability. The NADPH-dependent glutamate dehydrogenase encoded by GDH1, which accounts for a major fraction of the NADPH consumption during growth on ammonium, was deleted...

  20. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization

    Directory of Open Access Journals (Sweden)

    Klimacek Mario

    2010-03-01

    Full Text Available Abstract Background In spite of the substantial metabolic engineering effort previously devoted to the development of Saccharomyces cerevisiae strains capable of fermenting both the hexose and pentose sugars present in lignocellulose hydrolysates, the productivity of reported strains for conversion of the naturally most abundant pentose, xylose, is still a major issue of process efficiency. Protein engineering for targeted alteration of the nicotinamide cofactor specificity of enzymes catalyzing the first steps in the metabolic pathway for xylose was a successful approach of reducing xylitol by-product formation and improving ethanol yield from xylose. The previously reported yeast strain BP10001, which expresses heterologous xylose reductase from Candida tenuis in mutated (NADH-preferring form, stands for a series of other yeast strains designed with similar rational. Using 20 g/L xylose as sole source of carbon, BP10001 displayed a low specific uptake rate qxylose (g xylose/g dry cell weight/h of 0.08. The study presented herein was performed with the aim of analysing (external factors that limit qxylose of BP10001 under xylose-only and mixed glucose-xylose substrate conditions. We also carried out a comprehensive investigation on the currently unclear role of coenzyme utilization, NADPH compared to NADH, for xylose reduction during co-fermentation of glucose and xylose. Results BP10001 and BP000, expressing C. tenuis xylose reductase in NADPH-preferring wild-type form, were used. Glucose and xylose (each at 10 g/L were converted sequentially, the corresponding qsubstrate values being similar for each strain (glucose: 3.0; xylose: 0.05. The distribution of fermentation products from glucose was identical for both strains whereas when using xylose, BP10001 showed enhanced ethanol yield (BP10001 0.30 g/g; BP000 0.23 g/g and decreased yields of xylitol (BP10001 0.26 g/g; BP000 0.36 g/g and glycerol (BP10001 0.023 g/g; BP000 0.072 g/g as compared

  1. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.

    Science.gov (United States)

    Sakamoto, Takatoshi; Hasunuma, Tomohisa; Hori, Yoshimi; Yamada, Ryosuke; Kondo, Akihiko

    2012-04-30

    The cost of the lignocellulose-hydrolyzing enzymes used in the saccharification process of ethanol production from biomass accounts for a relatively high proportion of total processing costs. Cell surface engineering technology has facilitated a reduction in these costs by integrating saccharification and fermentation processes into a recombinant microbe strain expressing heterologous enzymes on the cell surface. We constructed a recombinant Saccharomyces cerevisiae that not only hydrolyzed hemicelluloses by codisplaying endoxylanase from Trichoderma reesei, β-xylosidase from Aspergillus oryzae, and β-glucosidase from Aspergillus aculeatus but that also assimilated xylose through the expression of xylose reductase and xylitol dehydrogenase from Pichia stipitis and xylulokinase from S. cerevisiae. The recombinant strain successfully produced ethanol from rice straw hydrolysate consisting of hemicellulosic material containing xylan, xylooligosaccharides, and cellooligosaccharides without requiring the addition of sugar-hydrolyzing enzymes or detoxication. The ethanol titer of the strain was 8.2g/l after 72h fermentation, which was approximately 2.5-fold higher than that of the control strain. The yield (grams of ethanol per gram of total sugars in rice straw hydrolysate consumed) was 0.41g/g, which corresponded to 82% of the theoretical yield. The cell surface-engineered strain was thus highly effective for consolidating the process of ethanol production from hemicellulosic materials.

  2. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Davison, Steffi A; den Haan, Riaan; van Zyl, Willem Heber

    2016-09-01

    Enzyme cost is a major impediment to second-generation (2G) cellulosic ethanol production. One strategy to reduce enzyme cost is to engineer enzyme production capacity in a fermentative microorganism to enable consolidated bio-processing (CBP). Ideally, a strain with a high secretory phenotype, high fermentative capacity as well as an innate robustness to bioethanol-specific stressors, including tolerance to products formed during pre-treatment and fermentation of lignocellulosic substrates should be used. Saccharomyces cerevisiae is a robust fermentative yeast but has limitations as a potential CBP host, such as low heterologous protein secretion titers. In this study, we evaluated natural S. cerevisiae isolate strains for superior secretion activity and other industrially relevant characteristics needed during the process of lignocellulosic ethanol production. Individual cellulases namely Saccharomycopsis fibuligera Cel3A (β-glucosidase), Talaromyces emersonii Cel7A (cellobiohydrolase), and Trichoderma reesei Cel5A (endoglucanase) were utilized as reporter proteins. Natural strain YI13 was identified to have a high secretory phenotype, demonstrating a 3.7- and 3.5-fold higher Cel7A and Cel5A activity, respectively, compared to the reference strain S288c. YI13 also demonstrated other industrially relevant characteristics such as growth vigor, high ethanol titer, multi-tolerance to high temperatures (37 and 40 °C), ethanol (10 % w/v), and towards various concentrations of a cocktail of inhibitory compounds commonly found in lignocellulose hydrolysates. This study accentuates the value of natural S. cerevisiae isolate strains to serve as potential robust and highly productive chassis organisms for CBP strain development.

  3. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    Science.gov (United States)

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering.

  4. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Xiaowei; Guo, Daoyi; Cheng, Yongbo; Zhu, Fayin; Deng, Zixin; Liu, Tiangang

    2014-09-01

    The long hydrocarbon fatty acyl chain is energy rich, making it an ideal precursor for liquid transportation fuels and high-value oleo chemicals. As Saccharomyces cerevisiae has many advantages for industrial production compared to Escherichia coli. Here, we attempted to engineer Saccharomyces cerevisiae for overproduction of fatty acids. First, disruption of the beta-oxidation pathway, elimination of the acyl-CoA synthetases, overexpression of different thioesterases and acetyl-CoA carboxylase ACC1, and engineering the supply of precursor acetyl-CoA. The engineered strain XL122 produced more than 120 mg/L of fatty acids. In parallel, we inactivated ADH1, the dominant gene for ethanol production, to redirect the metabolic flux to fatty acids synthesis. The engineered strain DG005 produced about 140 mg/L fatty acids. Additionally, Acetyl-CoA carboxylase was identified as a critical bottleneck of fatty acids synthesis in S. cerevisiae with a cell-free system. However, overexpression of ACC1 has little effect on fatty acids biosynthesis. As it has been reported that phosphorylation of ACC1 may influent its activity, so phosphorylation sites of ACC1 were further identified. Although the regulatory mechanisms remain unclear, our results provide rationale for future studies to target this critical step. All these efforts, particularly the discovery of the limiting step are critical for developing a "cell factory" for the overproduction of fatty acids by using type I fatty acids synthase in yeast or other fungi.

  5. Redox balancing in recombinant strains of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Anderlund, M.

    1998-09-01

    In metabolically engineered Saccharomyces cerevisiae expressing Pichia stipitis XYL1 and XYL2 genes, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, xylitol is excreted as the major product during anaerobic xylose fermentation and only low yields of ethanol are produced. This has been interpreted as a result of the dual cofactor dependence of XR and the exclusive use of NAD{sup +} by XDH. The excretion of xylitol was completely stopped and the formation of glycerol and acetic acid were reduced in xylose utilising S. cerevisiae strains cultivated in oxygen-limited conditions by expressing lower levels of XR than of XDH. The expression level of XYL1 and XYL2 were controlled by changing the promoters and transcription directions of the genes. A new functional metabolic pathway was established when Thermus thermophilus xylA gene was expressed in S. cerevisiae. The recombinant strain was able to ferment xylose to ethanol when cultivated on a minimal medium containing xylose as only carbon source. In order to create a channeled metabolic transfer in the two first steps of the xylose metabolism, XYL1 and XYL2 were fused in-frame and expressed in S. cerevisiae. When the fusion protein, containing a linker of three amino acids, was co expressed together with native XR and XDH monomers, enzyme complexes consisting of chimeric and native subunits were formed. The total activity of these complexes exhibited 10 and 9 times higher XR and XDH activity, respectively, than the original conjugates, consisting of only chimeric subunits. This strain produced less xylitol and the xylitol yield was lower than with strains only expressing native XR and XDH monomers. In addition, more ethanol and less acetic acid were formed. A new gene encoding the cytoplasmic transhydrogenase from Azotobacter vinelandii was cloned. The enzyme showed high similarity to the family of pyridine nucleotide-disulphide oxidoreductase. To analyse the physiological effect of

  6. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains

    Science.gov (United States)

    Šuranská, Hana; Vránová, Dana; Omelková, Jiřina

    2016-01-01

    In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines. PMID:26887243

  7. Efficient screening of environmental isolates for Saccharomyces cerevisiae strains that are suitable for brewing.

    Science.gov (United States)

    Fujihara, Hidehiko; Hino, Mika; Takashita, Hideharu; Kajiwara, Yasuhiro; Okamoto, Keiko; Furukawa, Kensuke

    2014-01-01

    We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.

  8. Strain-engineered MOSFETs

    CERN Document Server

    Maiti, CK

    2012-01-01

    Currently strain engineering is the main technique used to enhance the performance of advanced silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Written from an engineering application standpoint, Strain-Engineered MOSFETs introduces promising strain techniques to fabricate strain-engineered MOSFETs and to methods to assess the applications of these techniques. The book provides the background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOSFETs at nanoscale. This book focuses on recent developments in st

  9. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    van der Aa Kuhle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-01-01

    strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar...

  10. Engineered production of fungal anticancer cyclooligomer depsipeptides in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yu, Dayu; Xu, Fuchao; Zi, Jiachen; Wang, Siyuan; Gage, David; Zeng, Jia; Zhan, Jixun

    2013-07-01

    Two fungal cyclooligomer depsipeptide synthetases(CODSs), BbBEAS (352 kDa) and BbBSLS (348 kDa) from Beauveria bassiana ATCC7159, were reconstituted in Saccharomyces cerevisiae BJ5464-NpgA, leading to the production of the corresponding anticancer natural products, beauvericins and bassianolide, respectively. The titers of beauvericins (33.8 ± 1.4 mg/l) and bassianolide (21.7± 0.1 mg/l) in the engineered S. cerevisiae BJ5464-NpgA strains were comparable to those in the native producer B. bassiana. Feeding D-hydroxyisovaleric acid (D-Hiv) and the corresponding L-amino acid precursors improved the production of beauvericins and bassianolide. However, the high price of D-Hiv limits its application in large-scale production of these cyclooligomer depsipeptides. Alternatively, we engineered another enzyme, ketoisovalerate reductase (KIVR) from B. bassiana, into S. cerevisiae BJ5464-NpgA for enhanced in situ synthesis of this expensive substrate. Co-expression of BbBEAS and KIVR in the yeast led to significant improvement of the production of beauvericins.The total titer of beauvericin and its congeners (beauvericins A-C) was increased to 61.7 ± 3.0 mg/l and reached 2.6-fold of that in the native producer B. bassiana ATCC7159. Supplement of L-Val at 10 mM improved the supply of ketoisovalerate, the substrate of KIVR, which consequently further increased the total titer of beauvericins to 105.8 ± 2.1 mg/l. Using this yeast system,we functionally characterized an unknown CODS from Fusarium venenatum NRRL 26139 as a beauvericin synthetase, which was named as FvBEAS. Our work thus provides a useful approach for functional reconstitution and engineering of fungal CODSs for efficient production of this family of anticancer molecules.

  11. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  12. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has be

  13. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carbosylation, oxaloacetate reduction and malate export

    NARCIS (Netherlands)

    Zelle, R.M.; Hulster, de E.; Winden, van W.A.; Waard, de P.; Dijkema, C.; Winkler, A.A.; Geertman, J.M.A.

    2008-01-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production

  14. Malic Acid Production by Saccharomyces cerevisiae: Engineering of Pyruvate Carboxylation, Oxaloacetate Reduction, and Malate Export

    NARCIS (Netherlands)

    Zelle, R.M.; De Hulster, E.; Van Winden, W.A.; De Waard, P.; Dijkema, C.; Winkler, A.A.; Geertman, J.M.; Van Dijken, J.P.; Pronk, J.T.; Van Maris, A.J.A.

    2008-01-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production

  15. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Bonde, Ida; Herrgard, Markus

    2015-01-01

    CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces...... cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains...

  16. Evaluation of cytochrome P-450 concentration in Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Míriam Cristina Sakuragui Matuo

    2010-09-01

    Full Text Available Saccharomyces cerevisiae has been widely used in mutagenicity tests due to the presence of a cytochrome P-450 system, capable of metabolizing promutagens to active mutagens. There are a large number of S. cerevisiae strains with varying abilities to produce cytochrome P-450. However, strain selection and ideal cultivation conditions are not well defined. We compared cytochrome P-450 levels in four different S. cerevisiae strains and evaluated the cultivation conditions necessary to obtain the highest levels. The amount of cytochrome P-450 produced by each strain varied, as did the incubation time needed to reach the maximum level. The highest cytochrome P-450 concentrations were found in media containing fermentable sugars. The NCYC 240 strain produced the highest level of cytochrome P-450 when grown in the presence of 20 % (w/v glucose. The addition of ethanol to the media also increased cytochrome P-450 synthesis in this strain. These results indicate cultivation conditions must be specific and well-established for the strain selected in order to assure high cytochrome P-450 levels and reliable mutagenicity results.Linhagens de Saccharomyces cerevisiae tem sido amplamente empregadas em testes de mutagenicidade devido à presença de um sistema citocromo P-450 capaz de metabolizar substâncias pró-mutagênicas à sua forma ativa. Devido à grande variedade de linhagens de S. cerevisiae com diferentes capacidades de produção de citocromo P-450, torna-se necessária a seleção de cepas, bem como a definição das condições ideais de cultivo. Neste trabalho, foram comparados os níveis de citocromo P-450 em quatro diferentes linhagens de S. cerevisiae e avaliadas as condições de cultivo necessárias para obtenção de altas concentrações deste sistema enzimático. O maior nível enzimático foi encontrado na linhagem NCYC 240 em presença de 20 % de glicose (p/v. A adição de etanol ao meio de cultura também produziu um aumento na s

  17. CRISPR-Cas9 Genome Engineering in Saccharomyces cerevisiae Cells.

    Science.gov (United States)

    Ryan, Owen W; Poddar, Snigdha; Cate, Jamie H D

    2016-06-01

    This protocol describes a method for CRISPR-Cas9-mediated genome editing that results in scarless and marker-free integrations of DNA into Saccharomyces cerevisiae genomes. DNA integration results from cotransforming (1) a single plasmid (pCAS) that coexpresses the Cas9 endonuclease and a uniquely engineered single guide RNA (sgRNA) expression cassette and (2) a linear DNA molecule that is used to repair the chromosomal DNA damage by homology-directed repair. For target specificity, the pCAS plasmid requires only a single cloning modification: replacing the 20-bp guide RNA sequence within the sgRNA cassette. This CRISPR-Cas9 protocol includes methods for (1) cloning the unique target sequence into pCAS, (2) assembly of the double-stranded DNA repair oligonucleotides, and (3) cotransformation of pCAS and linear repair DNA into yeast cells. The protocol is technically facile and requires no special equipment. It can be used in any S. cerevisiae strain, including industrial polyploid isolates. Therefore, this CRISPR-Cas9-based DNA integration protocol is achievable by virtually any yeast genetics and molecular biology laboratory.

  18. EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Stovicek, Vratislav; Borja, Gheorghe M; Forster, Jochen; Borodina, Irina

    2015-11-01

    Saccharomyces cerevisiae is one of the key cell factories for production of chemicals and active pharmaceuticals. For large-scale fermentations, particularly in biorefinery applications, it is desirable to use stress-tolerant industrial strains. However, such strains are less amenable for metabolic engineering than the standard laboratory strains. To enable easy delivery and overexpression of genes in a wide range of industrial S. cerevisiae strains, we constructed a set of integrative vectors with long homology arms and dominant selection markers. The vectors integrate into previously validated chromosomal locations via double cross-over and result in homogenous stable expression of the integrated genes, as shown for several unrelated industrial strains. Cre-mediated marker rescue is possible for removing markers positioned on different chromosomes. To demonstrate the applicability of the presented vector set for metabolic engineering of industrial yeast, we constructed xylose-utilizing strains overexpressing xylose isomerase, xylose transporter and five genes of the pentose phosphate pathway.

  19. Ciclohexadespipeptide beauvericin degradation by different strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Meca, G; Zhou, T; Li, X Z; Ritieni, A; Mañes, J

    2013-09-01

    The interaction between the mycotoxin beauvericin (BEA) and 9 yeast strains of Saccharomyces cerevisiae named LO9, YE-2, YE5, YE-6, YE-4, A34, A17, A42 and A08 was studied. The biological degradations were carried out under aerobic conditions in the liquid medium of Potato Dextrose Broth (PDB) at 25°C for 48 h and in a food/feed system composed of corn flour at 37°C for 3 days, respectively. BEA present in fermented medium and corn flour was determined using liquid chromatography coupled to the mass spectrometry detector in tandem (LC-MS/MS) and the BEA degradation products produced during the fermentations were determined using the technique of the liquid chromatography coupled to a linear ion trap (LIT). Results showed that the S. cerevisiae strains reduced meanly the concentration of the BEA present in PDB by 86.2% and in a food system by 71.1%. All the S. cerevisiae strains used in this study showed a significant BEA reduction during the fermentation process employed.

  20. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    Science.gov (United States)

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals.

  1. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose.

    Science.gov (United States)

    Divate, Nileema R; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin

    2016-11-01

    A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress.

  2. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production.

  3. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    Full Text Available The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.

  4. High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity.

    Science.gov (United States)

    Shen, Yu; Li, Hongxing; Wang, Xinning; Zhang, Xiaoran; Hou, Jin; Wang, Linfeng; Gao, Nan; Bao, Xiaoming

    2014-11-01

    The phenolic compounds present in hydrolysates pose significant challenges for the sustainable lignocellulosic materials refining industry. Three Saccharomyces cerevisiae strains with high tolerance to lignocellulose hydrolysate were obtained through ethyl methanesulfonate mutation and adaptive evolution. Among them, strain EMV-8 exhibits specific tolerance to vanillin, a phenolic compound common in lignocellulose hydrolysate. The EMV-8 maintains a specific growth rate of 0.104 h(-1) in 2 g L(-1) vanillin, whereas the reference strain cannot grow. Physiological studies revealed that the vanillin reduction rate of EMV-8 is 1.92-fold higher than its parent strain, and the Trolox equivalent antioxidant capacity of EMV-8 is 15 % higher than its parent strain. Transcriptional analysis results confirmed an up-regulated oxidoreductase activity and antioxidant activity in this strain. Our results suggest that enhancing the antioxidant capacity and oxidoreductase activity could be a strategy to engineer S. cerevisiae for improved vanillin tolerance.

  5. Xylan catabolism is improved by blending bioprospecting and metabolic pathway engineering in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2015-04-01

    Complete utilization of all available carbon sources in lignocellulosic biomass still remains a challenge in engineering Saccharomyces cerevisiae. Even with efficient heterologous xylose catabolic pathways, S. cerevisiae is unable to utilize xylose in lignocellulosic biomass unless xylan is depolymerized to xylose. Here we demonstrate that a blended bioprospecting approach along with pathway engineering and evolutionary engineering can be used to improve xylan catabolism in S. cerevisiae. Specifically, we perform whole genome sequencing-based bioprospecting of a strain with remarkable pentose catabolic potential that we isolated and named Ustilago bevomyces. The heterologous expression of xylan catabolic genes enabled S. cerevisiae to grow on xylan as a single carbon source in minimal medium. A combination of bioprospecting and metabolic pathway evolution demonstrated that the xylan catabolic pathway could be further improved. Ultimately, engineering efforts were able to achieve xylan conversion into ethanol of up to 0.22 g/L on minimal medium compositions with xylan. This pathway provides a novel starting point for improving lignocellulosic conversion by yeast.

  6. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.

    Science.gov (United States)

    Lee, Ju Young; Kang, Chang Duk; Lee, Seung Hyun; Park, Young Kyoung; Cho, Kwang Myung

    2015-04-01

    Owing to the growing market for the biodegradable and renewable polymer, polylactic acid, world demand for lactic acid is rapidly increasing. However, the very high concentrations desired for industrial production of the free lactic acid create toxicity and low pH concerns for manufacturers. Saccharomyces cerevisiae is the most well characterized eukaryote, a preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust, commercially compatible workhorse to be exploited for the production of diverse chemicals. S. cerevisiae has also been explored as a host for lactic acid production because of its high acid tolerance. Here, we constructed an L-lactic acid-overproducing S. cerevisiae by redirecting cellular metabolic fluxes to the production of L-lactic acid. To this end, we deleted the S. cerevisiae genes encoding pyruvate decarboxylase 1 (PDC1), L-lactate cytochrome-c oxidoreductase (CYB2), and glycerol-3-phosphate dehydrogenase (GPD1), replacing them with a heterologous L-lactate dehydrogenase (LDH) gene. Two new target genes encoding isoenzymes of the external NADH dehydrogenase (NDE1 and NDE2), were also deleted from the genome to re-engineer the intracellular redox balance. The resulting strain was found to produce L-lactic acid more efficiently (32.6% increase in final L-lactic acid titer). When tested in a bioreactor in fed-batch mode, this engineered strain produced 117 g/L of L-lactic acid under low pH conditions. This result demonstrates that the redox balance engineering should be coupled with the metabolic engineering in the construction of L-lactic acid-overproducing S. cerevisiae.

  7. Nanofiltration concentration of extracellular glutathione produced by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Sasaki, Kengo; Hara, Kiyotaka Y; Kawaguchi, Hideo; Sazuka, Takashi; Ogino, Chiaki; Kondo, Akihiko

    2016-01-01

    This study aimed to optimize extracellular glutathione production by a Saccharomyces cerevisiae engineered strain and to concentrate the extracellular glutathione by membrane separation processes, including ultrafiltration (UF) and nanofiltration (NF). Synthetic defined (SD) medium containing 20 g L(-1) glucose was fermented for 48 h; the fermentation liquid was passed through an UF membrane to remove macromolecules. Glutathione in this permeate was concentrated for 48 h to 545.1 ± 33.6 mg L(-1) using the NF membrane; this was a significantly higher concentration than that obtained with yeast extract peptone dextrose (YPD) medium following 96 h NF concentration (217.9 ± 57.4 mg L(-1)). This higher glutathione concentration results from lower cellular growth in SD medium (final OD600 = 6.9 ± 0.1) than in YPD medium (final OD600 = 11.0 ± 0.6) and thus higher production of extracellular glutathione (16.0 ± 1.3 compared to 9.2 ± 2.1 mg L(-1) in YPD medium, respectively). Similar fermentation and membrane processing of sweet sorghum juice containing 20 g L(-1) total sugars provided 240.3 ± 60.6 mg L(-1) glutathione. Increased extracellular production of glutathione by this engineered strain in SD medium and subsequent UF permeation and NF concentration in shortend time may help realize industrial recovery of extracellular glutathione.

  8. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ng Chiam Yu

    2012-05-01

    Full Text Available Abstract Background 2,3-Butanediol is a chemical compound of increasing interest due to its wide applications. It can be synthesized via mixed acid fermentation of pathogenic bacteria such as Enterobacter aerogenes and Klebsiella oxytoca. The non-pathogenic Saccharomyces cerevisiae possesses three different 2,3-butanediol biosynthetic pathways, but produces minute amount of 2,3-butanediol. Hence, we attempted to engineer S. cerevisiae strain to enhance 2,3-butanediol production. Results We first identified gene deletion strategy by performing in silico genome-scale metabolic analysis. Based on the best in silico strategy, in which disruption of alcohol dehydrogenase (ADH pathway is required, we then constructed gene deletion mutant strains and performed batch cultivation of the strains. Deletion of three ADH genes, ADH1, ADH3 and ADH5, increased 2,3-butanediol production by 55-fold under microaerobic condition. However, overproduction of glycerol was observed in this triple deletion strain. Additional rational design to reduce glycerol production by GPD2 deletion altered the carbon fluxes back to ethanol and significantly reduced 2,3-butanediol production. Deletion of ALD6 reduced acetate production in strains lacking major ADH isozymes, but it did not favor 2,3-butanediol production. Finally, we introduced 2,3-butanediol biosynthetic pathway from Bacillus subtilis and E. aerogenes to the engineered strain and successfully increased titer and yield. Highest 2,3-butanediol titer (2.29 g·l-1 and yield (0.113 g·g-1 were achieved by Δadh1 Δadh3 Δadh5 strain under anaerobic condition. Conclusions With the aid of in silico metabolic engineering, we have successfully designed and constructed S. cerevisiae strains with improved 2,3-butanediol production.

  9. Direct mating between diploid sake strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Hashimoto, Shinji; Aritomi, Kazuo; Minohara, Takafumi; Nishizawa, Yoshinori; Hoshida, Hisashi; Kashiwagi, Susumu; Akada, Rinji

    2006-02-01

    Various auxotrophic mutants of diploid heterothallic Japanese sake strains of Saccharomyces cerevisiae were utilized for selecting mating-competent diploid isolates. The auxotrophic mutants were exposed to ultraviolet (UV) irradiation and crossed with laboratory haploid tester strains carrying complementary auxotrophic markers. Zygotes were then selected on minimal medium. Sake strains exhibiting a MATa or MATalpha mating type were easily obtained at high frequency without prior sporulation, suggesting that the UV irradiation induced homozygosity at the MAT locus. Flow cytometric analysis of a hybrid showed a twofold higher DNA content than the sake diploid parent, consistent with tetraploidy. By crossing strains of opposite mating type in all possible combinations, a number of hybrids were constructed. Hybrids formed in crosses between traditional sake strains and between a natural nonhaploid isolate and traditional sake strains displayed equivalent fermentation ability without any apparent defects and produced comparable or improved sake. Isolation of mating-competent auxotrophic mutants directly from industrial yeast strains allows crossbreeding to construct polyploids suitable for industrial use without dependence on sporulation.

  10. Recycling carbon dioxide during xylose fermentation by engineered Saccharomyces cerevisiae

    Science.gov (United States)

    In this study, we introduced the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoribulokinase (PRK) into an engineered S. cerevisiae (SR8) harboring the XR/XDH pathway and up-regulated PPP 10, to enable CO2 recycling through a synthetic rPPP during xylose fermentation (Fig. 1). ...

  11. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.

    Science.gov (United States)

    Yu, Ai-Qun; Juwono, Nina Kurniasih Pratomo; Foo, Jee Loon; Leong, Susanna Su Jan; Chang, Matthew Wook

    2016-03-01

    Short branched-chain fatty acids (SBCFAs, C4-6) are versatile platform intermediates for the production of value-added products in the chemical industry. Currently, SBCFAs are mainly synthesized chemically, which can be costly and may cause environmental pollution. In order to develop an economical and environmentally friendly route for SBCFA production, we engineered Saccharomyces cerevisiae, a model eukaryotic microorganism of industrial significance, for the overproduction of SBCFAs. In particular, we employed a combinatorial metabolic engineering approach to optimize the native Ehrlich pathway in S. cerevisiae. First, chromosome-based combinatorial gene overexpression led to a 28.7-fold increase in the titer of SBCFAs. Second, deletion of key genes in competing pathways improved the production of SBCFAs to 387.4 mg/L, a 31.2-fold increase compared to the wild-type. Third, overexpression of the ATP-binding cassette (ABC) transporter PDR12 increased the secretion of SBCFAs. Taken together, we demonstrated that the combinatorial metabolic engineering approach used in this study effectively improved SBCFA biosynthesis in S. cerevisiae through the incorporation of a chromosome-based combinatorial gene overexpression strategy, elimination of genes in competitive pathways and overexpression of a native transporter. We envision that this strategy could also be applied to the production of other chemicals in S. cerevisiae and may be extended to other microbes for strain improvement.

  12. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides.

    Science.gov (United States)

    Dai, Zhubo; Liu, Yi; Zhang, Xianan; Shi, Mingyu; Wang, Beibei; Wang, Dong; Huang, Luqi; Zhang, Xueli

    2013-11-01

    Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal herb and exhibits diverse pharmacological activities. Protopanaxadiol is the aglycon of several dammarane-type ginsenosides, which also has anticancer activity. For microbial production of protopanaxadiol, dammarenediol-II synthase and protopanaxadiol synthase genes of Panax ginseng, together with a NADPH-cytochrome P450 reductase gene of Arabidopsis thaliana, were introduced into Saccharomyces cerevisiae, resulting in production of 0.05 mg/g DCW protopanaxadiol. Increasing squalene and 2,3-oxidosqualene supplies through overexpressing truncated 3-hydroxyl-3-methylglutaryl-CoA reductase, farnesyl diphosphate synthase, squalene synthase and 2,3-oxidosqualene synthase genes, together with increasing protopanaxadiol synthase activity through codon optimization, led to 262-fold increase of protopanaxadiol production. Finally, using two-phase extractive fermentation resulted in production of 8.40 mg/g DCW protopanaxadiol (1189 mg/L), together with 10.94 mg/g DCW dammarenediol-II (1548 mg/L). The yeast strains engineered in this work can serve as the basis for creating an alternative way for production of ginsenosides in place of extraction from plant sources.

  13. Metabolically engineered Saccharomyces cerevisiae for branched-chain ester productions.

    Science.gov (United States)

    Yuan, Jifeng; Mishra, Pranjul; Ching, Chi Bun

    2016-12-10

    Medium branched-chain esters can be used not only as a biofuel but are also useful chemicals with various industrial applications. The development of economically feasible and environment friendly bio-based fuels requires efficient cell factories capable of producing desired products in high yield. Herein, we sought to use a number of strategies to engineer Saccharomyces cerevisiae for high-level production of branched-chain esters. Mitochondrion-based expression of ATF1 gene in a base strain with an overexpressed valine biosynthetic pathway together with expression of mitochondrion-relocalized α-ketoacid decarboxylase (encoded by ARO10) and alcohol dehydrogenase (encoded by ADH7) not only produced isobutyl acetate, but also 3-methyl-1-butyl acetate and 2-methyl-1-butyl acetate. Further segmentation of the downstream esterification step into the cytosol to utilize the cytosolic acetyl-CoA pool for acetyltransferase (ATF)-mediated condensation enabled an additional fold improvement of ester productions. The best titre attained in the present study is 260.2mg/L isobutyl acetate, 296.1mg/L 3-methyl-1-butyl acetate and 289.6mg/L 2-methyl-1-butyl acetate.

  14. Draft Genome Sequence of the Beer Spoilage Bacterium Megasphaera cerevisiae Strain PAT 1T

    OpenAIRE

    Kutumbaka, Kirthi K.; Pasmowitz, Joshua; Mategko, James; Reyes, Dindo; Friedrich, Alex; Han, Sukkyun; Martens-Habbena, Willm; Neal-McKinney, Jason; Janagama, Harish K.; Nadala, Cesar; Samadpour, Mansour

    2015-01-01

    The genus Megasphaera harbors important spoilage organisms that cause beer spoilage by producing off flavors, undesirable aroma, and turbidity. Megasphaera cerevisiae is mainly found in nonpasteurized low-alcohol beer. In this study, we report the draft genome of the type strain of the genus, M. cerevisiae strain PAT 1T.

  15. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Boles Eckhard

    2006-04-01

    Full Text Available Abstract Background Fermentation of lignocellulosic biomass is an attractive alternative for the production of bioethanol. Traditionally, the yeast Saccharomyces cerevisiae is used in industrial ethanol fermentations. However, S. cerevisiae is naturally not able to ferment the pentose sugars D-xylose and L-arabinose, which are present in high amounts in lignocellulosic raw materials. Results We describe the engineering of laboratory and industrial S. cerevisiae strains to co-ferment the pentose sugars D-xylose and L-arabinose. Introduction of a fungal xylose and a bacterial arabinose pathway resulted in strains able to grow on both pentose sugars. Introduction of a xylose pathway into an arabinose-fermenting laboratory strain resulted in nearly complete conversion of arabinose into arabitol due to the L-arabinose reductase activity of the xylose reductase. The industrial strain displayed lower arabitol yield and increased ethanol yield from xylose and arabinose. Conclusion Our work demonstrates simultaneous co-utilization of xylose and arabinose in recombinant strains of S. cerevisiae. In addition, the co-utilization of arabinose together with xylose significantly reduced formation of the by-product xylitol, which contributed to improved ethanol production.

  16. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyes cerevisiae improves ethanol production

    DEFF Research Database (Denmark)

    Roca, Christophe Francois Aime; Nielsen, Jens; Olsson, Lisbeth

    2003-01-01

    Cofactor imbalance impedes xylose assimilation in Saccharomyces cerevisiae that has been metabolically engineered for xylose utilization. To improve cofactor use, we modified ammonia assimilation in recombinant S. cerevisiae by deleting GDH1, which encodes an NADPH-dependent glutamate dehydrogenase...

  17. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production.

    Science.gov (United States)

    Chen, Binbin; Lee, Dong-Yup; Chang, Matthew Wook

    2015-09-01

    Biological production of terminal alkenes has garnered a significant interest due to their industrial applications such as lubricants, detergents and fuels. Here, we engineered the yeast Saccharomyces cerevisiae to produce terminal alkenes via a one-step fatty acid decarboxylation pathway and improved the alkene production using combinatorial engineering strategies. In brief, we first characterized eight fatty acid decarboxylases to enable and enhance alkene production. We then increased the production titer 7-fold by improving the availability of the precursor fatty acids. We additionally increased the titer about 5-fold through genetic cofactor engineering and gene expression tuning in rich medium. Lastly, we further improved the titer 1.8-fold to 3.7 mg/L by optimizing the culturing conditions in bioreactors. This study represents the first report of terminal alkene biosynthesis in S. cerevisiae, and the abovementioned combinatorial engineering approaches collectively increased the titer 67.4-fold. We envision that these approaches could provide insights into devising engineering strategies to improve the production of fatty acid-derived biochemicals in S. cerevisiae.

  18. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jakočiūnas, Tadas; Bonde, Ida; Herrgård, Markus; Harrison, Scott J; Kristensen, Mette; Pedersen, Lasse E; Jensen, Michael K; Keasling, Jay D

    2015-03-01

    CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains. We applied our genome engineering tool for an exploratory analysis of all possible single, double, triple, quadruple and quintuple gene disruption combinations to search for strains with high mevalonate production, a key intermediate for the industrially important isoprenoid biosynthesis pathway. Even though we did not overexpress any genes in the mevalonate pathway, this analysis identified strains with mevalonate titers greater than 41-fold compared to the wild-type strain. Our findings illustrate the applicability of this highly specific and efficient multiplex genome engineering approach to accelerate functional genomics and metabolic engineering efforts.

  19. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges.

    Science.gov (United States)

    Abbott, Derek A; Zelle, Rintze M; Pronk, Jack T; van Maris, Antonius J A

    2009-12-01

    To meet the demands of future generations for chemicals and energy and to reduce the environmental footprint of the chemical industry, alternatives for petrochemistry are required. Microbial conversion of renewable feedstocks has a huge potential for cleaner, sustainable industrial production of fuels and chemicals. Microbial production of organic acids is a promising approach for production of chemical building blocks that can replace their petrochemically derived equivalents. Although Saccharomyces cerevisiae does not naturally produce organic acids in large quantities, its robustness, pH tolerance, simple nutrient requirements and long history as an industrial workhorse make it an excellent candidate biocatalyst for such processes. Genetic engineering, along with evolution and selection, has been successfully used to divert carbon from ethanol, the natural endproduct of S. cerevisiae, to pyruvate. Further engineering, which included expression of heterologous enzymes and transporters, yielded strains capable of producing lactate and malate from pyruvate. Besides these metabolic engineering strategies, this review discusses the impact of transport and energetics as well as the tolerance towards these organic acids. In addition to recent progress in engineering S. cerevisiae for organic acid production, the key limitations and challenges are discussed in the context of sustainable industrial production of organic acids from renewable feedstocks.

  20. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.

    Science.gov (United States)

    Lee, Won-Heong; Seo, Seung-Oh; Bae, Yi-Hyun; Nan, Hong; Jin, Yong-Su; Seo, Jin-Ho

    2012-11-01

    Engineering of Saccharomyces cerevisiae to produce advanced biofuels such as isobutanol has received much attention because this yeast has a natural capacity to produce higher alcohols. In this study, construction of isobutanol production systems was attempted by overexpression of effective 2-keto acid decarboxylase (KDC) and combinatorial overexpression of valine biosynthetic enzymes in S. cerevisiae D452-2. Among the six putative KDC enzymes from various microorganisms, 2-ketoisovalerate decarboxylase (Kivd) from L. lactis subsp. lactis KACC 13877 was identified as the most suitable KDC for isobutanol production in the yeast. Isobutanol production by the engineered S. cerevisiae was assessed in micro-aerobic batch fermentations using glucose as a sole carbon source. 93 mg/L isobutanol was produced in the Kivd overexpressing strain, which corresponds to a fourfold improvement as compared with the control strain. Isobutanol production was further enhanced to 151 mg/L by additional overexpression of acetolactate synthase (Ilv2p), acetohydroxyacid reductoisomerase (Ilv5p), and dihydroxyacid dehydratase (Ilv3p) in the cytosol.

  1. Selection of Indigenous Saccharomyces cerevisiae Strains from Kutjevo Wine Growing Area at the Laboratoy Scale

    OpenAIRE

    Sandi Orlić; Nenad Očić; Ana Jeromel; Katarina Huić; Sulejman Redžepović

    2005-01-01

    The use of selected yeasts for winemaking has clear advantages over traditional spontaneous fermentation. Selection of wine yeasts is usually carried out within the Saccharomyces cerevisiae species. Yeast strains produce different amount of secondary compounds that impart specific characteristics to the wines. This suggests that it is necessary to isolate naturally occuring autochthone strains, which exhibit a metabolic profile that corresponds to each wine. Twenty two strains of S.cerevisiae...

  2. CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Vratislav Stovicek

    2015-12-01

    Full Text Available There is a demand to develop 3rd generation biorefineries that integrate energy production with the production of higher value chemicals from renewable feedstocks. Here, robust and stress-tolerant industrial strains of Saccharomyces cerevisiae will be suitable production organisms. However, their genetic manipulation is challenging, as they are usually diploid or polyploid. Therefore, there is a need to develop more efficient genetic engineering tools. We applied a CRISPR–Cas9 system for genome editing of different industrial strains, and show simultaneous disruption of two alleles of a gene in several unrelated strains with the efficiency ranging between 65% and 78%. We also achieved simultaneous disruption and knock-in of a reporter gene, and demonstrate the applicability of the method by designing lactic acid-producing strains in a single transformation event, where insertion of a heterologous gene and disruption of two endogenous genes occurred simultaneously. Our study provides a foundation for efficient engineering of industrial yeast cell factories.

  3. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zheng

    Full Text Available The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.

  4. A repressor activator protein1 homologue from an oleaginous strain of Candida tropicalis increases storage lipid production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Chattopadhyay, Atrayee; Dey, Prabuddha; Barik, Amita; Bahadur, Ranjit P; Maiti, Mrinal K

    2015-06-01

    The repressor activator protein1 (Rap1) has been studied over the years as a multifunctional regulator in Saccharomyces cerevisiae. However, its role in storage lipid accumulation has not been investigated. This report documents the identification and isolation of a putative transcription factor CtRap1 gene from an oleaginous strain of Candida tropicalis, and establishes the direct effect of its expression on the storage lipid accumulation in S. cerevisiae, usually a non-oleaginous yeast. In silico analysis revealed that the CtRap1 polypeptide binds relatively more strongly to the promoter of fatty acid synthase1 (FAS1) gene of S. cerevisiae than ScRap1. The expression level of CtRap1 transcript in vivo was found to correlate directly with the amount of lipid produced in oleaginous native host C. tropicalis. Heterologous expression of the CtRap1 gene resulted in ∼ 4-fold enhancement of storage lipid content (57.3%) in S. cerevisiae. We also showed that the functionally active CtRap1 upregulates the endogenous ScFAS1 and ScDGAT genes of S. cerevisiae, and this, in turn, might be responsible for the increased lipid production in the transformed yeast. Our findings pave the way for the possible utility of the CtRap1 gene in suitable microorganisms to increase their storage lipid content through transcription factor engineering.

  5. Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation.

    Science.gov (United States)

    Chen, Liwei; Lee, Jaslyn Jie Lin; Zhang, Jianhua; Chen, Wei Ning

    2016-02-01

    The engineered Saccharomyces cerevisiae strain △faa1△faa4 [Acot5s] was demonstrated to accumulate more free fatty acids (FFA) previously. Here, comparative proteomic analysis was performed to get a global overview of metabolic regulation in the strain. Over 500 proteins were identified, and 82 of those proteins were found to change significantly in the engineered strains. Proteins involved in glycolysis, acetate metabolism, fatty acid synthesis, TCA cycle, glyoxylate cycle, the pentose phosphate pathway, respiration, transportation, and stress response were found to be upregulated in △faa1△faa4 [Acot5s] as compared to the wild type. On the other hand, proteins involved in glycerol, ethanol, ergosterol, and cell wall synthesis were downregulated. Taken together with our metabolite analysis, our results showed that the disruption of Faa1 and Faa4 and expression of Acot5s in the engineered strain △faa1△faa4 [Acot5s] not only relieved the feedback inhibition of fatty acyl-CoAs on fatty acid synthesis, but also caused a major metabolic rearrangement. The rearrangement redirected carbon flux toward the pathways which generate the essential substrates and cofactors for fatty acid synthesis, such as acetyl-CoA, ATP, and NADPH. Therefore, our results help shed light on the mechanism for the increased production of fatty acids in the engineered strains, which is useful in providing information for future studies in biofuel production.

  6. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Steen, EricJ.; Chan, Rossana; Prasad, Nilu; Myers, Samuel; Petzold, Christopher; Redding, Alyssa; Ouellet, Mario; Keasling, JayD.

    2008-11-25

    BackgroundIncreasing energy costs and environmental concerns have motivated engineering microbes for the production of ?second generation? biofuels that have better properties than ethanol.Results& ConclusionsSaccharomyces cerevisiae was engineered with an n-butanol biosynthetic pathway, in which isozymes from a number of different organisms (S. cerevisiae, Escherichia coli, Clostridium beijerinckii, and Ralstonia eutropha) were substituted for the Clostridial enzymes and their effect on n-butanol production was compared. By choosing the appropriate isozymes, we were able to improve production of n-butanol ten-fold to 2.5 mg/L. The most productive strains harbored the C. beijerinckii 3-hydroxybutyryl-CoA dehydrogenase, which uses NADH as a co-factor, rather than the R. eutropha isozyme, which uses NADPH, and the acetoacetyl-CoA transferase from S. cerevisiae or E. coli rather than that from R. eutropha. Surprisingly, expression of the genes encoding the butyryl-CoA dehydrogenase from C. beijerinckii (bcd and etfAB) did not improve butanol production significantly as previously reported in E. coli. Using metabolite analysis, we were able to determine which steps in the n-butanol biosynthetic pathway were the most problematic and ripe for future improvement.

  7. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol

    Directory of Open Access Journals (Sweden)

    Myers Samuel

    2008-12-01

    Full Text Available Abstract Background Increasing energy costs and environmental concerns have motivated engineering microbes for the production of "second generation" biofuels that have better properties than ethanol. Results and conclusion Saccharomyces cerevisiae was engineered with an n-butanol biosynthetic pathway, in which isozymes from a number of different organisms (S. cerevisiae, Escherichia coli, Clostridium beijerinckii, and Ralstonia eutropha were substituted for the Clostridial enzymes and their effect on n-butanol production was compared. By choosing the appropriate isozymes, we were able to improve production of n-butanol ten-fold to 2.5 mg/L. The most productive strains harbored the C. beijerinckii 3-hydroxybutyryl-CoA dehydrogenase, which uses NADH as a co-factor, rather than the R. eutropha isozyme, which uses NADPH, and the acetoacetyl-CoA transferase from S. cerevisiae or E. coli rather than that from R. eutropha. Surprisingly, expression of the genes encoding the butyryl-CoA dehydrogenase from C. beijerinckii (bcd and etfAB did not improve butanol production significantly as previously reported in E. coli. Using metabolite analysis, we were able to determine which steps in the n-butanol biosynthetic pathway were the most problematic and ripe for future improvement.

  8. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Hang; Cheng, Jing-Sheng; Wang, Benjamin L; Fink, Gerald R; Stephanopoulos, Gregory

    2012-11-01

    Xylose is the main pentose and second most abundant sugar in lignocellulosic feedstocks. To improve xylose utilization, necessary for the cost-effective bioconversion of lignocellulose, several metabolic engineering approaches have been employed in the yeast Saccharomyces cerevisiae. In this study, we describe the rational metabolic engineering of a S. cerevisiae strain, including overexpression of the Piromyces xylose isomerase gene (XYLA), Pichia stipitis xylulose kinase (XYL3) and genes of the non-oxidative pentose phosphate pathway (PPP). This engineered strain (H131-A3) was used to initialize a three-stage process of evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation followed by growth in a xylose-limited chemostat. The evolved strain H131-A3-AL(CS) displayed significantly increased anaerobic growth rate (0.203±0.006 h⁻¹) and xylose consumption rate (1.866 g g⁻¹ h⁻¹) along with high ethanol conversion yield (0.41 g/g). These figures exceed by a significant margin any other performance metrics on xylose utilization and ethanol production by S. cerevisiae reported to-date. Further inverse metabolic engineering based on functional complementation suggested that efficient xylose assimilation is attributed, in part, to the elevated expression level of xylose isomerase, which was accomplished through the multiple-copy integration of XYLA in the chromosome of the evolved strain.

  9. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Turner, Timothy L; Zhang, Guo-Chang; Oh, Eun Joong; Subramaniam, Vijay; Adiputra, Andrew; Subramaniam, Vimal; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Park, In; Jin, Yong-Su

    2016-05-01

    Efficient and rapid production of value-added chemicals from lignocellulosic biomass is an important step toward a sustainable society. Lactic acid, used for synthesizing the bioplastic polylactide, has been produced by microbial fermentation using primarily glucose. Lignocellulosic hydrolysates contain high concentrations of cellobiose and xylose. Here, we constructed a recombinant Saccharomyces cerevisiae strain capable of fermenting cellobiose and xylose into lactic acid. Specifically, genes (cdt-1, gh1-1, XYL1, XYL2, XYL3, and ldhA) coding for cellobiose transporter, β-glucosidase, xylose reductase, xylitol dehydrogenase, xylulokinase, and lactate dehydrogenase were integrated into the S. cerevisiae chromosomes. The resulting strain produced lactic acid from cellobiose or xylose with high yields. When fermenting a cellulosic sugar mixture containing 10 g/L glucose, 40 g/L xylose, and 80 g/L cellobiose, the engineered strain produced 83 g/L of lactic acid with a yield of 0.66 g lactic acid/g sugar (66% theoretical maximum). This study demonstrates initial steps toward the feasibility of sustainable production of lactic acid from lignocellulosic sugars by engineered yeast.

  10. Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism

    DEFF Research Database (Denmark)

    Bro, Christoffer; Regenberg, Birgitte; Nielsen, Jens

    2004-01-01

    The genome-wide transcriptional response of a Saccharomyces cerevisiae strain deleted in GDH1 that encodes a NADP(+)-dependent glutamate dehydrogenase was compared to a wild-type strain under anaerobic steady-state conditions. The GDH1-deleted strain has a significantly reduced NADPH requirement...

  11. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains.

    Science.gov (United States)

    Zheng, Dao-Qiong; Jin, Xin-Na; Zhang, Ke; Fang, Ya-Hong; Wu, Xue-Chang

    2017-01-26

    The aim of this work was to develop a novel strategy for improving the vanillin tolerance and ethanol fermentation performances of Saccharomyces cerevisiae strains. Isogeneic diploid, triploid, and tetraploid S. cerevisiae strains were generated by genome duplication of haploid strain CEN.PK2-1C. Ploidy increments improved vanillin tolerance and diminished proliferation capability. Antimitotic drug methyl benzimidazol-2-ylcarbamate (MBC) was used to introduce chromosomal aberrations into the tetraploid S. cerevisiae strain. Interestingly, aneuploid mutants with DNA contents between triploid and tetraploid were more resistant to vanillin and showed faster ethanol fermentation rates than all euploid strains. The physiological characteristics of these mutants suggest that higher bioconversion capacities of vanillin and ergosterol contents might contribute to improved vanillin tolerance. This study demonstrates that genome duplication and MBC treatment is a powerful strategy to improve the vanillin tolerance of yeast strains.

  12. Metabolic engineering of Saccharomyces cerevisiae for optimizing 3HP production

    DEFF Research Database (Denmark)

    Jensen, Niels Bjerg; Maury, Jerome; Oberg, Fredrik;

    2012-01-01

    and the market for acrylate products exceeds USD 100 billion. As an alternative to oil and gas derived acrylic acid, 3-hydroxypropionic (3HP) acid produced from renewable sources is highly desired, because 3HP can easily be converted into acrylic acid. We are setting out to produce 3HP in yeast Saccharomyces...... cerevisiae. One main reason for selecting Baker's yeast as host organism is that yeast has a high tolerance towards low pH in comparison to bacteria, e.g. E. coli. Hence, it lowers the consumption of base for neutralization of growth media when compared to bacteria. The preferred engineered pathway towards 3...

  13. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Amit Ghosh

    Full Text Available Biofuels derived from lignocellulosic biomass offer promising alternative renewable energy sources for transportation fuels. Significant effort has been made to engineer Saccharomyces cerevisiae to efficiently ferment pentose sugars such as D-xylose and L-arabinose into biofuels such as ethanol through heterologous expression of the fungal D-xylose and L-arabinose pathways. However, one of the major bottlenecks in these fungal pathways is that the cofactors are not balanced, which contributes to inefficient utilization of pentose sugars. We utilized a genome-scale model of S. cerevisiae to predict the maximal achievable growth rate for cofactor balanced and imbalanced D-xylose and L-arabinose utilization pathways. Dynamic flux balance analysis (DFBA was used to simulate batch fermentation of glucose, D-xylose, and L-arabinose. The dynamic models and experimental results are in good agreement for the wild type and for the engineered D-xylose utilization pathway. Cofactor balancing the engineered D-xylose and L-arabinose utilization pathways simulated an increase in ethanol batch production of 24.7% while simultaneously reducing the predicted substrate utilization time by 70%. Furthermore, the effects of cofactor balancing the engineered pentose utilization pathways were evaluated throughout the genome-scale metabolic network. This work not only provides new insights to the global network effects of cofactor balancing but also provides useful guidelines for engineering a recombinant yeast strain with cofactor balanced engineered pathways that efficiently co-utilizes pentose and hexose sugars for biofuels production. Experimental switching of cofactor usage in enzymes has been demonstrated, but is a time-consuming effort. Therefore, systems biology models that can predict the likely outcome of such strain engineering efforts are highly useful for motivating which efforts are likely to be worth the significant time investment.

  14. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export.

    Science.gov (United States)

    Zelle, Rintze M; de Hulster, Erik; van Winden, Wouter A; de Waard, Pieter; Dijkema, Cor; Winkler, Aaron A; Geertman, Jan-Maarten A; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2008-05-01

    Malic acid is a potential biomass-derivable "building block" for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO(2)-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)(-1). A previously engineered glucose-tolerant, C(2)-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter(-1) at a malate yield of 0.42 mol (mol glucose)(-1). Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on (13)C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved.

  15. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    Science.gov (United States)

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.

  16. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization.

    Science.gov (United States)

    Madhavan, Anjali; Tamalampudi, Sriappareddy; Srivastava, Aradhana; Fukuda, Hideki; Bisaria, Virendra S; Kondo, Akihiko

    2009-04-01

    Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h(-1), while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h(-1). The adapted strain could ferment 20 g l(-1) of xylose to ethanol with a yield of 0.37 g g(-1) and production rate of 0.026 g l(-1) h(-1). Raising the fermentation temperature from 30 degrees C to 35 degrees C resulted in a substantial increase in the ethanol yield (0.43 g g(-1)) and production rate (0.07 g l(-1) h(-1)) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g(-1).

  17. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering.

    Science.gov (United States)

    Xie, Wenping; Lv, Xiaomei; Ye, Lidan; Zhou, Pingping; Yu, Hongwei

    2015-07-01

    Improved supply of farnesyl diphosphate (FPP) is often considered as a typical strategy for engineering Saccharomyces cerevisiae towards efficient terpenoid production. However, in the engineered strains with enhanced precursor supply, the production of the target metabolite is often impeded by insufficient capacity of the heterologous terpenoid pathways, which limits further conversion of FPP. Here, we tried to assemble an unimpeded biosynthesis pathway by combining directed evolution and metabolic engineering in S. cerevisiae for lycopene-overproduction. First, the catalytic ability of phytoene syntheses from different sources was investigated based on lycopene accumulation. Particularly, the lycopene cyclase function of the bifunctional enzyme CrtYB from Xanthophyllomyces dendrorhous was inactivated by deletion of functional domain and directed evolution to obtain mutants with solely phytoene synthase function. Coexpression of the resulting CrtYB11M mutant along with the CrtE and CrtI genes from X. dendrorhous, and the tHMG1 gene from S. cerevisiae led to production of 4.47 mg/g DCW (Dry cell weight) of lycopene and 25.66 mg/g DCW of the by-product squalene. To further increase the FPP competitiveness of the lycopene synthesis pathway, we tried to enhance the catalytic performance of CrtE by directed evolution and created a series of pathway variants by varying the copy number of Crt genes. Finally, fed-batch fermentation was conducted for the diploid strain YXWPD-14 resulting in accumulation of 1.61 g/L (24.41 mg/g DCW) of lycopene, meanwhile, the by-production of squalene was reduced to below 1 mg/g DCW.

  18. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.

    Science.gov (United States)

    Oshoma, Cyprian E; Greetham, Darren; Louis, Edward J; Smart, Katherine A; Phister, Trevor G; Powell, Chris; Du, Chenyu

    2015-01-01

    Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.

  19. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.

    Science.gov (United States)

    Turner, Timothy L; Zhang, Guo-Chang; Kim, Soo Rin; Subramaniam, Vijay; Steffen, David; Skory, Christopher D; Jang, Ji Yeon; Yu, Byung Jo; Jin, Yong-Su

    2015-10-01

    Production of lactic acid from renewable sugars has received growing attention as lactic acid can be used for making renewable and bio-based plastics. However, most prior studies have focused on production of lactic acid from glucose despite that cellulosic hydrolysates contain xylose as well as glucose. Microbial strains capable of fermenting both glucose and xylose into lactic acid are needed for sustainable and economic lactic acid production. In this study, we introduced a lactic acid-producing pathway into an engineered Saccharomyces cerevisiae capable of fermenting xylose. Specifically, ldhA from the fungi Rhizopus oryzae was overexpressed under the control of the PGK1 promoter through integration of the expression cassette in the chromosome. The resulting strain exhibited a high lactate dehydrogenase activity and produced lactic acid from glucose or xylose. Interestingly, we observed that the engineered strain exhibited substrate-dependent product formation. When the engineered yeast was cultured on glucose, the major fermentation product was ethanol while lactic acid was a minor product. In contrast, the engineered yeast produced lactic acid almost exclusively when cultured on xylose under oxygen-limited conditions. The yields of ethanol and lactic acid from glucose were 0.31 g ethanol/g glucose and 0.22 g lactic acid/g glucose, respectively. On xylose, the yields of ethanol and lactic acid were <0.01 g ethanol/g xylose and 0.69 g lactic acid/g xylose, respectively. These results demonstrate that lactic acid can be produced from xylose with a high yield by S. cerevisiae without deleting pyruvate decarboxylase, and the formation patterns of fermentations can be altered by substrates.

  20. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Quarterman, Josh; Skerker, Jeffrey M; Feng, Xueyang; Liu, Ian Y; Zhao, Huimin; Arkin, Adam P; Jin, Yong-Su

    2016-07-10

    In the important industrial yeast Saccharomyces cerevisiae, galactose metabolism requires energy production by respiration; therefore, this yeast cannot metabolize galactose under strict anaerobic conditions. While the respiratory dependence of galactose metabolism provides benefits in terms of cell growth and population stability, it is not advantageous for producing fuels and chemicals since a substantial fraction of consumed galactose is converted to carbon dioxide. In order to force S. cerevisiae to use galactose without respiration, a subunit (COX9) of a respiratory enzyme was deleted, but the resulting deletion mutant (Δcox9) was impaired in terms of galactose assimilation. Interestingly, after serial sub-cultures on galactose, the mutant evolved rapidly and was able to use galactose via fermentation only. The evolved strain (JQ-G1) produced ethanol from galactose with a 94% increase in yield and 6.9-fold improvement in specific productivity as compared to the wild-type strain. (13)C-metabolic flux analysis demonstrated a three-fold reduction in carbon flux through the TCA cycle of the evolved mutant with redirection of flux toward the fermentation pathway. Genome sequencing of the JQ-G1 strain revealed a loss of function mutation in a master negative regulator of the Leloir pathway (Gal80p). The mutation (Glu348*) in Gal80p was found to act synergistically with deletion of COX9 for efficient galactose fermentation, and thus the double deletion mutant Δcox9Δgal80 produced ethanol 2.4 times faster and with 35% higher yield than a single knockout mutant with deletion of GAL80 alone. When we introduced a functional COX9 cassette back into the JQ-G1 strain, the JQ-G1-COX9 strain showed a 33% reduction in specific galactose uptake rate and a 49% reduction in specific ethanol production rate as compared to JQ-G1. The wild-type strain was also subjected to serial sub-cultures on galactose but we failed to isolate a mutant capable of utilizing galactose without

  1. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.

    Science.gov (United States)

    Baek, Seung-Ho; Kwon, Eunice Y; Kim, Yong Hwan; Hahn, Ji-Sook

    2016-03-01

    There is an increasing demand for microbial production of lactic acid (LA) as a monomer of biodegradable poly lactic acid (PLA). Both optical isomers, D-LA and L-LA, are required to produce stereocomplex PLA with improved properties. In this study, we developed Saccharomyces cerevisiae strains for efficient production of D-LA. D-LA production was achieved by expressing highly stereospecific D-lactate dehydrogenase gene (ldhA, LEUM_1756) from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 in S. cerevisiae lacking natural LA production activity. D-LA consumption after glucose depletion was inhibited by deleting DLD1 encoding D-lactate dehydrogenase and JEN1 encoding monocarboxylate transporter. In addition, ethanol production was reduced by deleting PDC1 and ADH1 genes encoding major pyruvate decarboxylase and alcohol dehydrogenase, respectively, and glycerol production was eliminated by deleting GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase. LA tolerance of the engineered D-LA-producing strain was enhanced by adaptive evolution and overexpression of HAA1 encoding a transcriptional activator involved in weak acid stress response, resulting in effective D-LA production up to 48.9 g/L without neutralization. In a flask fed-batch fermentation under neutralizing condition, our evolved strain produced 112.0 g/L D-LA with a yield of 0.80 g/g glucose and a productivity of 2.2 g/(L · h).

  2. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pizarra, Francisco J.; Jewett, Michael Christopher; Nielsen, Jens;

    2008-01-01

    Laboratory strains of Saccharomyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected on the basis of their adaptation to stringent environm......Laboratory strains of Saccharomyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected on the basis of their adaptation to stringent......-limited, anaerobic, steady-state chemostat cultures. Physiological characterization revealed that the growth temperature strongly impacted the biomass yield of both strains. Moreover, we found that the wine yeast was better adapted to mobilizing resources for biomass production and that the laboratory yeast...... global insight into how growth temperature affects differential physiological and transcriptional responses in laboratory and wine strains of S. cerevisiae....

  3. Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Eijsma, B.; Hofstra, H.; Huis in 't Veld, J.H.J.; Vossen, J.M.B.M. van der

    1996-01-01

    Discrimination of strains within the species Saccharomyces cerevisiae was demonstrated by the use of four different techniques to type 15 strains isolated from spoiled wine and beer. Random amplified polymorphic DNA with specific oligonucleotides and PCR fingerprinting with the microsatellite oligon

  4. Sensitivity to Lovastatin of Saccharomyces cerevisiae Strains Deleted for Pleiotropic Drug Resistance (PDR) Genes

    DEFF Research Database (Denmark)

    Formenti, Luca Riccardo; Kielland-Brandt, Morten

    2011-01-01

    based on the use of statins. We investigated the susceptibility to lovastatin of S. cerevisiae strains deleted for PDR genes, responsible for exporting hydrophobic and amphi-philic drugs, such as lovastatin. Strains deleted for the genes tested, PDR1, PDR3, PDR5 and SNQ2, exhibited remarkably different...

  5. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation.

    Science.gov (United States)

    Nissen, T L; Kielland-Brandt, M C; Nielsen, J; Villadsen, J

    2000-01-01

    Ethanol is still one of the most important products originating from the biotechnological industry with respect to both value and amount. In addition to ethanol, a number of byproducts are formed during an anaerobic fermentation of Saccharomyces cerevisiae. One of the most important of these compounds, glycerol, is produced by yeast to reoxidize NADH, formed in synthesis of biomass and secondary fermentation products, to NAD+. The purpose of this study was to evaluate whether a reduced formation of surplus NADH and an increased consumption of ATP in biosynthesis would result in a decreased glycerol yield and an increased ethanol yield in anaerobic cultivations of S. cerevisiae. A yeast strain was constructed in which GLN1, encoding glutamine synthetase, and GLT1, encoding glutamate synthase, were overexpressed, and GDH1, encoding the NADPH-dependent glutamate dehydrogenase, was deleted. Hereby the normal NADPH-consuming synthesis of glutamate from ammonium and 2-oxoglutarate was substituted by a new pathway in which ATP and NADH were consumed. The resulting strain TN19 (gdh1-A1 PGK1p-GLT1 PGK1p-GLN1) had a 10% higher ethanol yield and a 38% lower glycerol yield compared to the wild type in anaerobic batch fermentations. The maximum specific growth rate of strain TN19 was slightly lower than the wild-type value, but earlier results suggest that this can be circumvented by increasing the specific activities of Gln1p and Glt1p even more. Thus, the results verify the proposed concept of increasing the ethanol yield in S. cerevisiae by metabolic engineering of pathways involved in biomass synthesis.

  6. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation.

    Science.gov (United States)

    Lee, Won-Heong; Jin, Yong-Su

    2017-03-10

    Although simultaneous saccharification and fermentation (SSF) of cellulosic biomass can offer efficient hydrolysis of cellulose through alleviating feed-back inhibition of cellulases by glucose, supplementation of β-glucosidase is necessary because most fermenting microorganisms cannot utilize cellobiose. Previously, we observed that SSF of cellulose by an engineered Saccharomyces cerevisiae expressing a cellobiose transporter (CDT-1) and an intracellular β-glucosidase (GH1-1) without β-glucosidase could not be performed as efficiently as the traditional SSF with extracellular β-glucosidase. However, we improved the ethanol production from SSF of cellulose by employing a further engineered S. cerevisiae expressing a mutant cellobiose transporter [CDT-1 (F213L) exhibiting higher VMAX than CDT-1] and GH1-1 in this study. Furthermore, limitation of cellobiose formation by reducing the amounts of cellulases mixture in SSF could lead the further engineered strain to produce ethanol considerably better than the parental strain with β-glucosidase. Probably, better production of ethanol by the further engineered strain seemed to be due to a higher affinity to cellobiose, which might be attributed to not only 2-times lower Monod constant (KS) for cellobiose than KS of the parental strain for glucose but also 5-times lower KS than Michaelis-Menten constant (KM) of the extracellular β-glucosidase for glucose. Our results suggest that modification of the cellobiose transporter in the engineered yeast to transport lower level of cellobiose enables a more efficient SSF for producing ethanol from cellulose.

  7. Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae.

    Science.gov (United States)

    Hara, Kiyotaka Y; Aoki, Naoko; Kobayashi, Jyumpei; Kiriyama, Kentaro; Nishida, Keiji; Araki, Michihiro; Kondo, Akihiko

    2015-11-01

    Glutathione is a valuable tripeptide widely used in the pharmaceutical, food, and cosmetic industries. In industrial fermentation, glutathione is currently produced primarily using the yeast Saccharomyces cerevisiae. Intracellular glutathione exists in two forms; the majority is present as reduced glutathione (GSH) and a small amount is present as oxidized glutathione (GSSG). However, GSSG is more stable than GSH and is a more attractive form for the storage of glutathione extracted from yeast cells after fermentation. In this study, intracellular GSSG content was improved by engineering thiol oxidization metabolism in yeast. An engineered strain producing high amounts of glutathione from over-expression of glutathione synthases and lacking glutathione reductase was used as a platform strain. Additional over-expression of thiol oxidase (1.8.3.2) genes ERV1 or ERO1 increased the GSSG content by 2.9-fold and 2.0-fold, respectively, compared with the platform strain, without decreasing cell growth. However, over-expression of thiol oxidase gene ERV2 showed almost no effect on the GSSG content. Interestingly, ERO1 over-expression did not decrease the GSH content, raising the total glutathione content of the cell, but ERV1 over-expression decreased the GSH content, balancing the increase in the GSSG content. Furthermore, the increase in the GSSG content due to ERO1 over-expression was enhanced by additional over-expression of the gene encoding Pdi1, whose reduced form activates Ero1 in the endoplasmic reticulum. These results indicate that engineering the thiol redox metabolism of S. cerevisiae improves GSSG and is critical to increasing the total productivity and stability of glutathione.

  8. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers.

    Science.gov (United States)

    Generoso, Wesley Cardoso; Schadeweg, Virginia; Oreb, Mislav; Boles, Eckhard

    2015-06-01

    Saccharomyces cerevisiae has decisive advantages in industrial processes due to its tolerance to alcohols and fermentation conditions. Butanol isomers are considered as suitable fuel substitutes and valuable biomass-derived chemical building blocks. Whereas high production was achieved with bacterial systems, metabolic engineering of yeast for butanol production is in the beginning. For isobutanol synthesis, combination of valine biosynthesis and degradation, and complete pathway re-localisation into cytosol or mitochondria gave promising results. However, competing pathways, co-factor imbalances and FeS cluster assembly are still major issues. 1-Butanol production via the Clostridium pathway seems to be limited by cytosolic acetyl-CoA, its central precursor. Endogenous 1-butanol pathways have been discovered via threonine or glycine catabolism. 2-Butanol production was established but was limited by B12-dependence.

  9. Opportunistic strains of Saccharomyces cerevisiae: a potential risk sold in food products

    Directory of Open Access Journals (Sweden)

    Roberto ePérez-Torrado

    2016-01-01

    Full Text Available In recent decades, fungal infections have emerged as an important health problem associated with more people who present deficiencies in the immune system, such as HIV or transplanted patients. Saccharomyces cerevisiae is one of the emerging fungal pathogens with a unique characteristic: its presence in many food products. S. cerevisiae has an impeccably good food safety record compared to other microorganisms like virus, bacteria and some filamentous fungi. However, humans unknowingly and inadvertently ingest large viable populations of S. cerevisiae (home-brewed beer or dietary supplements that contain yeast. In the last few years, researchers have studied the nature of S. cerevisiae strains and the molecular mechanisms related to infections. Here we review the last advance made in this emerging pathogen and we discuss the implication of using this species in food products.

  10. Increased copper bioremediation ability of new transgenic and adapted Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Geva, Polina; Kahta, Rotem; Nakonechny, Faina; Aronov, Stella; Nisnevitch, Marina

    2016-10-01

    Environmental pollution with heavy metals is a very serious ecological problem, which can be solved by bioremediation of metal ions by microorganisms. Yeast cells, especially Saccharomyces cerevisiae, are known to exhibit a good natural ability to remove heavy metal ions from an aqueous phase. In the present work, an attempt was made to increase the copper-binding properties of S. cerevisiae. For this purpose, new strains of S. cerevisiae were produced by construction and integration of recombinant human MT2 and GFP-hMT2 genes into yeast cells. The ySA4001 strain expressed GFP-hMT2p under the constitutive pADH1 promoter and the ySA4002 and ySA4003 strains expressed hMT2 and GFP-hMT2 under the inducible pCUP1 promoter. An additional yMNWTA01 strain was obtained by adaptation of the BY4743 wild type S. cerevisiae strain to high copper concentrations. The yMNWTA01, ySA4002, and ySA4003 strains exhibited an enhanced ability for copper ion bioremediation.

  11. Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield.

    Science.gov (United States)

    Basso, Thiago O; de Kok, Stefan; Dario, Marcelo; do Espirito-Santo, Júlio Cézar A; Müller, Gabriela; Schlölg, Paulo S; Silva, Carlos P; Tonso, Aldo; Daran, Jean-Marc; Gombert, Andreas K; van Maris, Antonius J A; Pronk, Jack T; Stambuk, Boris U

    2011-11-01

    Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-proton symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9% higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5' coding sequences of SUC2, resulting in predominant (94%) cytosolic localization of invertase. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 90 generations of laboratory evolution in anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11% higher ethanol yield on sucrose in chemostat cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. After deletion of both copies of the duplicated AGT1, growth characteristics reverted to that of the unevolved SUC2 and iSUC2 strains. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.

  12. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Soo Rin Kim

    Full Text Available Economic bioconversion of plant cell wall hydrolysates into fuels and chemicals has been hampered mainly due to the inability of microorganisms to efficiently co-ferment pentose and hexose sugars, especially glucose and xylose, which are the most abundant sugars in cellulosic hydrolysates. Saccharomyces cerevisiae cannot metabolize xylose due to a lack of xylose-metabolizing enzymes. We developed a rapid and efficient xylose-fermenting S. cerevisiae through rational and inverse metabolic engineering strategies, comprising the optimization of a heterologous xylose-assimilating pathway and evolutionary engineering. Strong and balanced expression levels of the XYL1, XYL2, and XYL3 genes constituting the xylose-assimilating pathway increased ethanol yields and the xylose consumption rates from a mixture of glucose and xylose with little xylitol accumulation. The engineered strain, however, still exhibited a long lag time when metabolizing xylose above 10 g/l as a sole carbon source, defined here as xylose toxicity. Through serial-subcultures on xylose, we isolated evolved strains which exhibited a shorter lag time and improved xylose-fermenting capabilities than the parental strain. Genome sequencing of the evolved strains revealed that mutations in PHO13 causing loss of the Pho13p function are associated with the improved phenotypes of the evolved strains. Crude extracts of a PHO13-overexpressing strain showed a higher phosphatase activity on xylulose-5-phosphate (X-5-P, suggesting that the dephosphorylation of X-5-P by Pho13p might generate a futile cycle with xylulokinase overexpression. While xylose consumption rates by the evolved strains improved substantially as compared to the parental strain, xylose metabolism was interrupted by accumulated acetate. Deletion of ALD6 coding for acetaldehyde dehydrogenase not only prevented acetate accumulation, but also enabled complete and efficient fermentation of xylose as well as a mixture of glucose and

  13. Engineering of the Saccharomyces cerevisiae yeast strain with multiple chromosome-integrated genes of human alpha-fetoprotein and its high-yield secretory production, purification, structural and functional characterization.

    Science.gov (United States)

    Dudich, Elena; Dudich, Igor; Semenkova, Lidia; Benevolensky, Sergey; Morozkina, Elena; Marchenko, Aleksey; Zatcepin, Sergey; Dudich, Dmitry; Soboleva, Galina; Khromikh, Luidmila; Roslovtceva, Olga; Tatulov, Eduard

    2012-07-01

    Alpha-fetoprotein (AFP) is a biological drug candidate of high medicinal potential in the treatment of autoimmune diseases, cancer, and regenerative medicine. Large-scale production of recombinant human alpha-fetoprotein (rhAFP) is desirable for structural and functional studies and applied research. In this study we cloned and expressed in the secreted form wild-type glycosylated human rhAFP and non-glycosylated mutant rhAFP(0) (N233S) in the yeast strain Saccharomyces cerevisiae with multiple chromosome-integrated synthetic human AFP genes. RhAFP and rhAFP(0) were successfully produced and purified from the culture liquids active naturally folded proteins. Elimination of the glycosylation by mutation reduced rhAFP(0) secretion about threefold as compared to the wild-type protein showing critical role of the N-linked glycan for heterologous protein folding and secretion. Structural similarity of rhAFP and rhAFP(0) with natural embryonic eAFP was confirmed by circular dichroism technique. Functional tests demonstrated similar type of tumor suppressive and immunosuppressive activity for both recombinant species rhAFP and rhAFP(0) as compared to natural eAFP. It was documented that both types of biological activities attributed to rhAFP and rhAFP(0) are due to the fast induction of apoptosis in tumor cells and mitogen-activated lymphocytes. Despite the fact that rhAFP and rhAFP(0) demonstrated slightly less effective tumor suppressive activity as compared to eAFP but rhAFP(0) had produced statistically notable increase in its ability to induce inhibition of in vitro lymphocyte proliferation as compared to the glycosylated rhAFP and eAFP. We conclude that N-linked glycosylation of rhAFP is required for efficient folding and secretion. However the presence of N-linked sugar moiety was shown to be unimportant for tumor suppressive activity but was critically important for its immunoregulative activity which demonstrates that different molecular mechanisms are involved

  14. Effect of Saccharomyces cerevisiae strain UFMG A-905 in experimental model of inflammatory bowel disease.

    Science.gov (United States)

    Tiago, F C P; Porto, B A A; Ribeiro, N S; Moreira, L M C; Arantes, R M E; Vieira, A T; Teixeira, M M; Generoso, S V; Nascimento, V N; Martins, F S; Nicoli, J R

    2015-01-01

    In the present study, the protective potential of Saccharomyces cerevisiae strain UFMG A-905 was evaluated in a murine model of acute ulcerative colitis (UC). Six groups of Balb/c mice were used: not treated with yeast and not challenged with dextran sulphate sodium (DSS) (control); treated with S. cerevisiae UFMG A-905 (905); treated with the non-probiotic S. cerevisiae W303 (W303); challenged with DSS (DSS); treated with S. cerevisiae UFMG A-905 and challenged with DSS (905 + DSS); and treated with S. cerevisiae W303 and challenged with DSS (W303 + DSS). Seven days after induction of UC, mice were euthanised to remove colon for enzymatic, immunological, and histopathological analysis. In vivo intestinal permeability was also evaluated. An improvement of clinical manifestations of experimental UC was observed only in mice of the 905 + DSS group when compared to animals from DSS and W303 + DSS groups. This observation was confirmed by histological and morphometrical data and determination of myeloperoxidase and eosinophil peroxidase activities, intestinal permeability and some pro-inflammatory cytokines. S. cerevisiae UFMG A-905 showed to be a potential alternative treatment for UC when used in an experimental animal model of the disease.

  15. Glucose and maltose metabolism in MIG1-disrupted and MAL-constitutive strains of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klein, Christopher; Olsson, Lisbeth; Rønnow, B;

    1997-01-01

    The alleviation of glucose control of maltose metabolism brought about by MIG1 disruption was compared to that by MAL overexpression in a haploid Saccharomyces cerevisiae strain. The sugar consumption profiles during cultivation of the wild type, single transformants and a double transformant in ...

  16. Ecological interactions among Saccharomyces cerevisiae strains: insight into the dominance phenomenon

    Science.gov (United States)

    Pérez-Torrado, Roberto; Rantsiou, Kalliopi; Perrone, Benedeta; Navarro-Tapia, Elisabeth; Querol, Amparo; Cocolin, Luca

    2017-01-01

    This study investigates the behaviour of Saccharomyces cerevisiae strains, in order to obtain insight into the intraspecies competition taking place in mixed populations of this species. Two strains of S. cerevisiae, one dominant and one non-dominant, were labelled and mixed, and individual fermentations were set up to study the transcriptomes of the strains by means of RNA-seq. The results obtained suggest that cell-to-cell contact and aggregation, which are driven by the expression of genes that are associated with the cell surface, are indispensable conditions for the achievement of dominance. Observations on mixed aggregates, made up of cells of both strains, which were detected by means of flow cytometry, have confirmed the transcriptomic data. Furthermore, overexpression of the SSU1 gene, which encodes for a transporter that confers resistance to sulphites, provides an ecological advantage to the dominant strain. A mechanistic model is proposed that sheds light on the dominance phenomenon between different strains of the S. cerevisiae species. The collected data suggest that cell-to-cell contact, together with differential sulphite production and resistance is important in determining the dominance of one strain over another. PMID:28266552

  17. Comparison between two selected Saccharomyces cerevisiae strains as fermentation starters in the production of traditional cachaça

    OpenAIRE

    Fátima de Cássia Oliveira Gomes; Roberta Amália de Carvalho Araújo; Patrícia Silva Cisalpino; Elizabeth Spangler Andrade Moreira; Carlos Leomar Zani; Carlos Augusto Rosa

    2009-01-01

    Two Saccharomyces cerevisiae strains were tested as the starter yeasts in a traditional cachaça distillery. The strains used were S. cerevisiae UFMG-A829, isolated from a cachaça fermentation process, and S. cerevisiae K1-V1116, obtained from the wine industry. The permanence of each strain in the fermentation must was determined by RAPD (Random Amplified Polymorphic DNA)-PCR, with primer M13. Both yeast strains were prevalent in the vats for approximately 30 days. Indigenous non-Saccharomyce...

  18. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific.

    Science.gov (United States)

    Wang, Chunxiao; Mas, Albert; Esteve-Zarzoso, Braulio

    2016-01-01

    The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine, or glutamine) were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.

  19. The Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation is Species and Strain Specific

    Directory of Open Access Journals (Sweden)

    Chunxiao eWang

    2016-04-01

    Full Text Available The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations compared with Hanseniaspora uvarum and Metschnikowia pulcherrima. Strain differences in culturability and nutrient consumption (glucose, alanine, ammonium, arginine or glutamine were found within each species in mixed fermentation with S. cerevisiae. The interaction was further analyzed using cell-free supernatant from S. cerevisiae and synthetic media mimicking both single fermentations with S. cerevisiae and using mixed fermentations with the corresponding non-Saccharomyces species. Cell-free S. cerevisiae supernatants induced faster culturability loss than synthetic media corresponding to the same fermentation stage. This demonstrated that some metabolites produced by S. cerevisiae played the main role in the decreased culturability of the other non-Saccharomyces yeasts. However, changes in the concentrations of main metabolites had also an effect. Culturability differences were observed among species and strains in culture assays and thus showed distinct tolerance to S. cerevisiae metabolites and fermentation environment. Viability kit and recovery analyses on non-culturable cells verified the existence of viable but not-culturable status. These findings are discussed in the context of interaction between non-Saccharomyces and S. cerevisiae.

  20. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-01-01

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.

  1. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid.

    Science.gov (United States)

    Besada-Lombana, Pamela B; Fernandez-Moya, Ruben; Fenster, Jacob; Da Silva, Nancy A

    2017-03-14

    Biorenewable chemicals such as short and medium chain fatty acids enable functional or direct substitution of petroleum-derived building blocks, allowing reduction of anthropogenic greenhouse gases while meeting market needs of high-demand products like aliphatic alcohols and alpha olefins. However, producing these fatty acids in microorganisms can be challenging due to toxicity issues. Octanoic acid (C8) can disrupt the integrity of the cell membrane in yeast, and exogenous supplementation of oleic acid has been shown to help alleviate this. We recently engineered the Saccharomyces cerevisiae enzyme acetyl-CoA carboxylase by replacing serine residue 1157 with alanine to prevent deactivation by phosphorylation. Expression of Acc1(S1157A) in S. cerevisiae resulted in an increase in total fatty acid production, with the largest increase for oleic acid. In this study, we evaluated the effect of this modified lipid profile on C8 toxicity to the yeast. Expression of Acc1(S1157A) in S. cerevisiae BY4741 increased the percentage of oleic acid 3.1-fold and 1.6-fold in the absence and presence of octanoic acid challenge, respectively. Following exposure to 0.9 mM of C8 for 24 h, the engineered yeast had a 10-fold higher cell density relative to the baseline strain. Moreover, overexpressing Acc1(S1157A) allowed survival at C8 concentrations that were lethal for the baseline strain. This marked reduction of toxicity was shown to be due to higher membrane integrity as an 11-fold decrease in leakage of intracellular magnesium was observed. Due to the increase in oleic acid, this approach has the potential to reduce toxicity of other valuable bioproducts such as shorter chain aliphatic acids and alcohols and other membrane stressors. In an initial screen, increased resistance to n-butanol, 2-propanol and hexanoic acid was demonstrated with cell densities 3.2-fold, 1.8-fold, and 29-fold higher than the baseline strain, respectively. This article is protected by copyright. All

  2. Selection of Indigenous Saccharomyces cerevisiae Strains from Kutjevo Wine Growing Area at the Laboratoy Scale

    Directory of Open Access Journals (Sweden)

    Sandi Orlić

    2005-09-01

    Full Text Available The use of selected yeasts for winemaking has clear advantages over traditional spontaneous fermentation. Selection of wine yeasts is usually carried out within the Saccharomyces cerevisiae species. Yeast strains produce different amount of secondary compounds that impart specific characteristics to the wines. This suggests that it is necessary to isolate naturally occuring autochthone strains, which exhibit a metabolic profile that corresponds to each wine. Twenty two strains of S.cerevisiae, isolated from the Kutjevo region (Gornji and Donji Hrnjevec, Mitrovac, Graševina grapes, were tested for: fermentation vigor, ethanol resistance, volatile acidity, H2S production and β-glucosidase, polygalacturonase, and killer activity. From the results of this investigation we are able to select two yeast strains (RO 1272 and RO 1284 for more detailed fermentation trials and possible use as a starter culture in production of typical wines.

  3. A set of haploid strains available for genetic studies of Saccharomyces cerevisiae flor yeasts.

    Science.gov (United States)

    Coi, Anna Lisa; Legras, Jean-Luc; Zara, Giacomo; Dequin, Sylvie; Budroni, Marilena

    2016-09-01

    Flor yeasts of Saccharomyces cerevisiae have been extensively studied for biofilm formation, however the lack of specific haploid model strains has limited the application of genetic approaches such as gene knockout, allelic replacement and Quantitative Trait Locus mapping for the deciphering of the molecular basis of velum formation under biological ageing. The aim of this work was to construct a set of flor isogenic haploid strains easy to manipulate genetically. The analysis of the allelic variations at 12 minisatellite loci of 174 Saccharomyces cerevisiae strains allowed identifying three flor parental strains with different phylogenic positions. These strains were characterized for sporulation efficiency, growth on galactose, adherence to polystyrene, agar invasion, growth on wine and ability to develop a biofilm. Interestingly, the inability to grow on galactose was found associated with a frameshift in GAL4 gene that seems peculiar of flor strains. From these wild flor strains, isogenic haploid strains were constructed by deleting HO gene with a loxP-KanMX-loxP cassette followed by the removal of the kanamycin cassette. Haploid strains obtained were characterized for their phenotypic and genetic properties and compared with the parental strains. Preliminary results showed that the haploid strains represent new tools for genetic studies and breeding programs on biofilm formation.

  4. Efficient ammonium uptake and mobilization of vacuolar arginine by Saccharomyces cerevisiae wine strains during wine fermentation

    OpenAIRE

    Crepin, Lucie; SANCHEZ, Isabelle,; Nidelet, Thibault; Dequin, Sylvie

    2014-01-01

    Background Under N-limiting conditions, Saccharomyces cerevisiae strains display a substantial variability in their biomass yield from consumed nitrogen -in particular wine yeasts exhibit high growth abilities- that is correlated with their capacity to complete alcoholic fermentation, a trait of interest for fermented beverages industries. The aim of the present work was to assess the contribution of nitrogen availability to the strain-specific differences in the ability to efficiently use N-...

  5. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.

    Science.gov (United States)

    Wasylenko, Thomas M; Stephanopoulos, Gregory

    2015-03-01

    Over the past two decades, significant progress has been made in the engineering of xylose-consuming Saccharomyces cerevisiae strains for production of lignocellulosic biofuels. However, the ethanol productivities achieved on xylose are still significantly lower than those observed on glucose for reasons that are not well understood. We have undertaken an analysis of central carbon metabolite pool sizes and metabolic fluxes on glucose and on xylose under aerobic and anaerobic conditions in a strain capable of rapid xylose assimilation via xylose isomerase in order to investigate factors that may limit the rate of xylose fermentation. We find that during xylose utilization the flux through the non-oxidative Pentose Phosphate Pathway (PPP) is high but the flux through the oxidative PPP is low, highlighting an advantage of the strain employed in this study. Furthermore, xylose fails to elicit the full carbon catabolite repression response that is characteristic of glucose fermentation in S. cerevisiae. We present indirect evidence that the incomplete activation of the fermentation program on xylose results in a bottleneck in lower glycolysis, leading to inefficient re-oxidation of NADH produced in glycolysis.

  6. PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Haiqing; Kim, Sooah; Sorek, Hagit; Lee, Youngsuk; Jeong, Deokyeol; Kim, Jungyeon; Oh, Eun Joong; Yun, Eun Ju; Wemmer, David E; Kim, Kyoung Heon; Kim, Soo Rin; Jin, Yong-Su

    2016-03-01

    The deletion of PHO13 (pho13Δ) in Saccharomyces cerevisiae, encoding a phosphatase enzyme of unknown specificity, results in the transcriptional activation of genes related to the pentose phosphate pathway (PPP) such as TAL1 encoding transaldolase. It has been also reported that the pho13Δ mutant of S. cerevisiae expressing a heterologous xylose pathway can metabolize xylose efficiently compared to its parental strain. However, the interaction between the pho13Δ-induced transcriptional changes and the phenotypes of xylose fermentation was not understood. Thus we investigated the global metabolic changes in response to pho13Δ when cells were exponentially growing on xylose. Among the 134 intracellular metabolites that we identified, the 98% reduction of sedoheptulose was found to be the most significant change in the pho13Δ mutant as compared to its parental strain. Because sedoheptulose-7-phosphate (S7P), a substrate of transaldolase, reduced significantly in the pho13Δ mutant as well, we hypothesized that limited transaldolase activity in the parental strain might cause dephosphorylation of S7P, leading to carbon loss and inefficient xylose metabolism. Mutants overexpressing TAL1 at different degrees were constructed, and their TAL1 expression levels and xylose consumption rates were positively correlated. Moreover, as TAL1 expression levels increased, intracellular sedoheptulose concentration dropped significantly. Therefore, we concluded that TAL1 upregulation, preventing the accumulation of sedoheptulose, is the most critical mechanism for the improved xylose metabolism by the pho13Δ mutant of engineered S. cerevisiae.

  7. Social wasp intestines host the local phenotypic variability of Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Dapporto, Leonardo; Stefanini, Irene; Rivero, Damariz; Polsinelli, Mario; Capretti, Paolo; De Marchi, Paolo; Viola, Roberto; Turillazzi, Stefano; Cavalieri, Duccio

    2016-07-01

    Nowadays, the presence of Saccharomyces cerevisiae has been assessed in both wild and human-related environments. Social wasps have been shown to maintain and vector S. cerevisiae among different environments. The availability of strains isolated from wasp intestines represents a striking opportunity to assess whether the strains found in wasp intestines are characterized by peculiar traits. We analysed strains isolated from the intestines of social wasps and compared them with strains isolated from other sources, all collected in a restricted geographic area. We evaluated the production of volatile metabolites during grape must fermentation, the resistance to different stresses and the ability to exploit various carbon sources. Wasp strains, in addition to representing a wide range of S. cerevisiae genotypes, also represent large part of the phenotypes characterizing the sympatric set of yeast strains; their higher production of acetic acid and ethyl acetate could reflect improved ability to attract insects. Our findings suggest that the relationship between yeasts and wasps should be preserved, to safeguard not only the natural variance of this microorganism but also the interests of wine-makers, who could take advantage from the exploitation of their phenotypic variability. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jewett, Michael Christopher

    2008-01-01

    Industrial biotechnology is a rapidly growing field. With the increasing shift towards a bio-based economy, there is rising demand for developing efficient cell factories that can produce fuels, chemicals, pharmaceuticals, materials, nutraceuticals, and even food ingredients. The yeast Saccharomy...... programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given.......Industrial biotechnology is a rapidly growing field. With the increasing shift towards a bio-based economy, there is rising demand for developing efficient cell factories that can produce fuels, chemicals, pharmaceuticals, materials, nutraceuticals, and even food ingredients. The yeast...... in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development...

  9. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

    Directory of Open Access Journals (Sweden)

    Asadollahi Mohammad A

    2010-12-01

    Full Text Available Abstract Background The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. Results In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c. Considering only metabolic genes (782 of 5,596 annotated genes, a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications. Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10 and ergosterol biosynthetic pathway (ERG8, ERG9. Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that

  10. Industrial PE-2 strain of Saccharomyces cerevisiae: from alcoholic fermentation to the production of recombinant proteins.

    Science.gov (United States)

    Soares-Costa, Andrea; Nakayama, Darlan Gonçalves; Andrade, Letícia de Freitas; Catelli, Lucas Ferioli; Bassi, Ana Paula Guarnieri; Ceccato-Antonini, Sandra Regina; Henrique-Silva, Flavio

    2014-01-25

    Saccharomyces cerevisiae is the most important microorganism used in the ethanol fermentation process. The PE-2 strain of this yeast is widely used to produce alcohol in Brazil due to its high fermentation capacity. The aim of the present study was to develop an expression system for recombinant proteins using the industrial PE-2 strain of S. cerevisiae during the alcoholic fermentation process. The protein chosen as a model for this system was CaneCPI-1, a cysteine peptidase inhibitor. A plasmid containing the CaneCPI-1 gene was constructed and yeast cells were transformed with the pYADE4_CaneCPI-1 construct. To evaluate the effect on fermentation ability, the transformed strain was used in the fermentation process with cell recycling. During the nine-hour fermentative cycles the transformed strain did not have its viability and fermentation ability affected. In the last cycle, when the fermentation lasted longer, the protein was expressed probably at the expense of ethanol once the sugars were exhausted. The recombinant protein was expressed in yeast cells, purified and submitted to assays of activity that demonstrated its functionality. Thus, the industrial PE-2 strain of S. cerevisiae can be used as a viable system for protein expression and to produce alcohol simultaneously. The findings of the present study demonstrate the possibility of producing recombinant proteins with biotechnological applications during the ethanol fermentation process.

  11. Comparison between two selected Saccharomyces cerevisiae strains as fermentation starters in the production of traditional cachaça

    Directory of Open Access Journals (Sweden)

    Fátima de Cássia Oliveira Gomes

    2009-04-01

    Full Text Available Two Saccharomyces cerevisiae strains were tested as the starter yeasts in a traditional cachaça distillery. The strains used were S. cerevisiae UFMG-A829, isolated from a cachaça fermentation process, and S. cerevisiae K1-V1116, obtained from the wine industry. The permanence of each strain in the fermentation must was determined by RAPD (Random Amplified Polymorphic DNA-PCR, with primer M13. Both yeast strains were prevalent in the vats for approximately 30 days. Indigenous non-Saccharomyces and indigenous S. cerevisiae strains were isolated in lower counts during the fermentation period. Indigenous S. cerevisiae strains were molecularly distinct when compared to the starter yeasts. The two yeasts appeared promising starter yeasts in the fermentation process to produce traditional cachaça.Duas linhagens de Saccharomyces cerevisiae foram testadas como iniciadoras em uma destilaria de cachaça. Foram utilizadas as linhagens de S. cerevisiae UFMG-A829, isolada de fermentação de cachaça, e S. cerevisiae K1-V1116, de origem vinícola. A permanência de cada linhagem durante a fermentação foi determinada por RAPD (Random Amplified Polymorphic DNA-PCR, utilizando o iniciador M13. As duas linhagens predominaram nas dornas de fermentação por aproximadamente 30 dias. Leveduras não-Saccharomyces e S. cerevisiae indígenas foram isoladas em menor proporção durante o experimento. As linhagens de S. cerevisiae indígenas apresentaram perfis moleculares distintos em relação às linhagens iniciadoras. As duas linhagens foram promissoras para serem utilizadas como iniciadoras do processo fermentativo para a produção da cachaça.

  12. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling.

    Science.gov (United States)

    Ito, Yuma; Hirasawa, Takashi; Shimizu, Hiroshi

    2014-01-01

    We performed metabolic engineering on the budding yeast Saccharomyces cerevisiae for enhanced production of succinic acid. Aerobic succinic acid production in S. cerevisiae was achieved by disrupting the SDH1 and SDH2 genes, which encode the catalytic subunits of succinic acid dehydrogenase. Increased succinic acid production was achieved by eliminating the ethanol biosynthesis pathways. Metabolic profiling analysis revealed that succinic acid accumulated intracellularly following disruption of the SDH1 and SDH2 genes, which suggests that enhancing the export of intracellular succinic acid outside of cells increases succinic acid production in S. cerevisiae. The mae1 gene encoding the Schizosaccharomyces pombe malic acid transporter was introduced into S. cerevisiae, and as a result, succinic acid production was successfully improved. Metabolic profiling analysis is useful in producing chemicals for metabolic engineering of microorganisms.

  13. Metabolic Engineering of Ammonium Assimilation in Xylose-Fermenting Saccharomyces cerevisiae Improves Ethanol Production

    OpenAIRE

    Roca, Christophe; Nielsen, Jens; Olsson, Lisbeth

    2003-01-01

    Cofactor imbalance impedes xylose assimilation in Saccharomyces cerevisiae that has been metabolically engineered for xylose utilization. To improve cofactor use, we modified ammonia assimilation in recombinant S. cerevisiae by deleting GDH1, which encodes an NADPH-dependent glutamate dehydrogenase, and by overexpressing either GDH2, which encodes an NADH-dependent glutamate dehydrogenase, or GLT1 and GLN1, which encode the GS-GOGAT complex. Overexpression of GDH2 increased ethanol yield from...

  14. Construction of Saccharomyces cerevisiae Strains Improved Stress Tolerance and Ethanol Fermentation Performance through Metabolic Engineering and Genome Recombination%代谢工程与全基因组重组构建酿酒酵母抗逆高产乙醇菌株

    Institute of Scientific and Technical Information of China (English)

    张晓阳; 杜风光; 池小琴; 王品美; 郑道琼; 吴雪昌

    2011-01-01

    Some environmental stresses. i. e. , high osmotic stress, fluctuating temperature and ethanol concentration, will greatly influence the viability and capability of the yeast S. cerevisiae strains during ethanol fermentation. In this study, we constructed a series of yeast strains with improved stress tolerances and ethanol fermentation performance through trehalose metabolism engineering combined with hybridization-based whole genome recombination. Firstly, two haploid strains , Z1 and Z2 isolated from the diploid strain 2d4, were engineered to enhance the intracellular trehalose by ( 1 ) overexpression of trehalose-6-phosphate synthase gene TPS1 (Z1ptps1 and Z2ptps1 ) , (2) deletion of acidic trehalase gene ATH1 (Z1Δath1 and Z2Δath1 ) , and (3)TPS1 overexpression combined with ATH1 deletion ( Z1pTΔA and Z2pTΔA ) . We then obtained four recombination strains (Z12, Z12ptps1 , Z12Δath1 and Z12pTΔA) through the hybridization of Z1 and Z2 , and their engineered strains. The results of high-gravity fermentation (270 g/L glucose) showed that TPS1 overexpression combined with ATH1 deletion had a distinct advantage in the improvement of stress tolerance over the single genetic manipulation. Compared to the original strain Zd4 and Z12, the strain Z12pTΔA ( the hybrid of Z1pTΔA and Z2pTΔA) improved the fermentation rate by 11.4% and ethanol yield by 7. 0% , while the strain Z12 without metabolic engineering only increased the main fermentation rate by 4. 8% and ethanol yield by 2. 8% . These improvements of fermentation performance consisted with their tolerances of the constructed strains under the conditions with osmotic pressure, high temperature and high concentration of ethanol. The combination of trehalose metabolic engineering and genome recombinant technology could effectively improve the stress tolerance and the ethanol fermentation performance of the industrial S. cerevisiae strains is demonstrated, and an innovative strategy for industrial yeast

  15. Different patterns of extracellular proteolytic activity in W303a and BY4742 Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Seredyński, Rafał; Wolna, Dorota; Kędzior, Mateusz; Gutowicz, Jan

    2017-01-01

    Protease secretion in Saccharomyces cerevisiae cultures is a complex process, important for the application of this organism in the food industry and biotechnology. Previous studies provide rather quantitative data, yielding no information about the number of enzymes involved in proteolysis and their individual biochemical properties. Here we demonstrate that W303a and BY4742 S. cerevisiae strains reveal different patterns of spontaneous and gelatin-induced extracellular proteolytic activity. We applied the gelatin zymography assay to track changes of the proteolytic profile in time, finding the protease secretion dependent on the growth phase and the presence of the protein inducer. Detected enzymes were characterized regarding their substrate specificity, pH tolerance, and susceptibility to inhibitors. In case of the W303a strain, only one type of gelatin-degrading secretory protease (presumably metalloproteinase) was observed. However, the BY4742 strain secreted different proteases of the various catalytic types, depending on the substrate availability. Our study brings the evidence that S. cerevisiae strains secrete several kinds of proteases depending on the presence and type of the substrate. Protein induction may cause not only quantitative but also qualitative changes in the extracellular proteolytic patterns.

  16. Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions.

    Science.gov (United States)

    Watanabe, Daisuke; Kaneko, Akie; Sugimoto, Yukiko; Ohnuki, Shinsuke; Takagi, Hiroshi; Ohya, Yoshikazu

    2017-02-01

    A loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-like protein kinase, is one of the major causes of the high alcoholic fermentation rates in Saccharomyces cerevisiae sake strains closely related to Kyokai no. 7 (K7). However, impairment of Rim15p may not be beneficial under more severe fermentation conditions, such as in the late fermentation stage, as it negatively affects stress responses. To balance stress tolerance and fermentation performance, we inserted the promoter of a gluconeogenic gene, PCK1, into the 5'-untranslated region (5'-UTR) of the RIM15 gene in a laboratory strain to achieve repression of RIM15 gene expression in the glucose-rich early stage with its induction in the stressful late stage of alcoholic fermentation. The promoter-engineered strain exhibited a fermentation rate comparable to that of the RIM15-deleted strain with no decrease in cell viability. The engineered strain achieved better alcoholic fermentation performance than the RIM15-deleted strain under repetitive and high-glucose fermentation conditions. These data demonstrated the validity of promoter engineering of the RIM15 gene that governs inhibitory control of alcoholic fermentation.

  17. Production of volatile and sulfur compounds by ten Saccharomyces cerevisiae strains inoculated in Trebbiano must

    Directory of Open Access Journals (Sweden)

    Francesca ePatrignani

    2016-03-01

    Full Text Available In wines, the presence of sulphur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of Saccharomyces cerevisiae. In addition, the production of sulphur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the ten strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulphur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated.

  18. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].

    Science.gov (United States)

    Qu, Na; He, Xiu-ping; Guo, Xue-na; Liu, Nan; Zhang, Bo-run

    2006-02-01

    In the process of beer storage and transportation, off-flavor can be produced for oxidation of beer. Sulphite is important for stabilizing the beer flavor because of its antioxidant activity. However, the low level of sulphite synthesized by the brewing yeast is not enough to stabilize beer flavor. Three enzymes involve sulphite biosynthesis in yeast. One of them, APS kinase (encoded by MET14) plays important role in the process of sulphite formation. In order to construct high sulphite-producing brewing yeast strain for beer production, MET14 gene was cloned and overexpressed in industrial strain of Saccharomyces cerevisiae. Primer 1 (5'-TGTGAATTCCTGTACACCAATGGCTACT-3', EcoR I) and primer 2 (5'-TATAAGCTTGATGA GGTGGATGAAGACG-3', HindIII) were designed according to the MET14 sequence in GenBank. A 1.1kb DNA fragment containing the open reading frame and terminator of MET14 gene was amplified from Saccharomyces cerevisiae YSF-5 by PCR, and inserted into YEp352 to generate recombinant plasmid pMET14. To express MET14 gene properly in S. cerevisiae, the recombinant expression plasmids pPM with URA3 gene as the selection marker and pCPM with URA3 gene and copper resistance gene as the selection marker for yeast transformation were constructed. In plasmid pPM, the PGK1 promoter from plasmid pVC727 was fused with the MET14 gene from pMET14, and the expression cassette was inserted into the plasmid YEp352. The dominant selection marker, copper-resistance gene expression cassette CUP1-MTI was inserted in plasmid pPM to result in pCPM. Restriction enzyme analysis showed that plasmids pPM and pCPM were constructed correctly. The laboratory strain of S. cerevisiae YS58 with ura3, trp1, leu2, his4 auxotroph was transformed with plasmid pPM. Yeast transformants were screened on synthetic minimal medium (SD) containing leucine, histidine and tryptophan. The sulphite production of the transformants carrying pPM was 2 fold of that in the control strain YS58, which showed that the

  19. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    Science.gov (United States)

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  20. Comparison of Saccharomyces cerevisiae strains of clinical and nonclinical origin by molecular typing and determination of putative virulence traits.

    Science.gov (United States)

    Klingberg, Trine Danø; Lesnik, Urska; Arneborg, Nils; Raspor, Peter; Jespersen, Lene

    2008-06-01

    Saccharomyces cerevisiae strains of clinical and nonclinical origin were compared by pulse field gel electrophoresis. Complete separation between strains of clinical origin and food strains by their chromosome length polymorphism was not obtained even though there was a tendency for the clinical and food strains to cluster separately. All the investigated strains, except for one food strain, were able to grow at temperatures > or =37 degrees C but not at 42 degrees C. Great strain variations were observed in pseudohyphal growth and invasiveness, but the characters were not linked to strains of clinical origin. The adhesion capacities of the yeast strains to a human intestinal epithelial cell line (Caco-2) in response to different nutritional availabilities were determined, as were the effects of the strains on the transepithelial electrical resistance (TER) across polarized monolayers of Caco-2 cells. The yeast strains displayed very low adhesion capacities to Caco-2 cells (0.6-6.2%), and no significant difference was observed between the strains of clinical and nonclinical origin. Both S. cerevisiae strains of clinical and non-clinical origin increased the TER of polarized monolayers of Caco-2 cells. Based on the results obtained in this study, no specific virulence factor was found that clearly separated the strains of clinical origin from the strains of nonclinical origin. On the contrary, all investigated strains of S. cerevisiae were found to strengthen the epithelial barrier function.

  1. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads;

    2008-01-01

    We calculate the shear piezocoefficient of p-type silicon with grown-in biaxial strain using a 66 k·p method. We find a significant increase in the value of the shear piezocoefficient for compressive grown-in biaxial strain, while tensile strain decreases the piezocoefficient. The dependence...... of the piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity...

  2. Fungicide residues in grapes determined the dynamics of Saccharomyces cerevisiae strains during spontaneous wine fermentation

    Directory of Open Access Journals (Sweden)

    Čuš Franc

    2011-01-01

    Full Text Available Impact of three fungicides against B. cinerea (iprodione, pyrimethanil and f ludioxonil plus cyprodinil on the population of Saccharomyces cerevisiae strains during the spontaneous alcoholic fermentation was studied. With regard to the use of fungicides in the vineyard at two stages of the grapevine growth we followed four different spontaneous fermentations: control, iprodione, pyrimethanil and f ludioxonil plus cyprodinil. The fungicide residues in the grapes were determined by GC/MS system and the fermentations were followed by changes in yeast, sugar, and ethanol concentrations using colony counting and HPLC. The karyotype analysis of 473 isolates was done by pulsed-field gel electrophoresis. The fungicide residues in the grapes at the harvest were below the maximum residue limits. Isolates of S. cerevisiae were classified into 15 karyotype groups. The duration of the processes and the populations of the karyotypes differed between the fermentations. The iprodione and control fermentations lasted 36 days with the prevalence of karyotype A while the fludioxonil plus cyprodinil fermentation lasted 50 days and karyotype D led the process. In the pyrimethanil fermentation, none of the karyotypes prevailed in the must and the fermentation lasted much longer than others did (68 days. The results showed that the fungicide residues have an influence on the fermentation kinetics and selection of S. cerevisiae strains during the spontaneous alcoholic fermentation and therefore should be considered as an important factor that may indirectly influence the formation of fermentation aroma in the wine produced by such process.

  3. (13)C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids.

    Science.gov (United States)

    Ghosh, Amit; Ando, David; Gin, Jennifer; Runguphan, Weerawat; Denby, Charles; Wang, George; Baidoo, Edward E K; Shymansky, Chris; Keasling, Jay D; García Martín, Héctor

    2016-01-01

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined (13)C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.

  4. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase.

    Science.gov (United States)

    Yu, Kyung Ok; Jung, Ju; Kim, Seung Wook; Park, Chul Hwan; Han, Sung Ok

    2012-01-01

    The high price of petroleum-based diesel fuel has led to the development of alternative fuels, such as ethanol. Saccharomyces cerevisiae was metabolically engineered to utilize glycerol as a substrate for ethanol production. For the synthesis of fatty acid ethyl esters (FAEEs) by engineered S. cerevisiae that utilize glycerol as substrate, heterologous expression of an unspecific acyltransferase from Acinetobacter baylyi with glycerol utilizing genes was established. As a result, the engineered YPH499 (pGcyaDak, pGupWs-DgaTCas) strain produced 0.24 g/L FAEEs using endogenous ethanol produced from glycerol. And this study also demonstrated the possibility of increasing FAEE production by enhancing ethanol production by minimizing the synthesis of glycerol. The overall FAEE production in strain YPH499 fps1Δ gpd2Δ (pGcyaDak, pGupWs-DgaTCas) was 2.1-fold more than in YPH499 (pGcyaDak, pGupWs-DgaTCas), with approximately 0.52 g/L FAEEs produced, while nearly 17 g/L of glycerol was consumed. These results clearly indicated that FAEEs were synthesized in engineered S. cerevisiae by esterifying exogenous fatty acids with endogenously produced ethanol from glycerol. This microbial system acts as a platform in applying metabolic engineering that allows the production of FAEEs from cheap and abundant substrates specifically glycerol through the use of endogenous bioethanol.

  5. Relatedness of medically important strains of Saccharomyces cerevisiae as revealed by phylogenetics and metabolomics.

    Science.gov (United States)

    MacKenzie, Donald A; Defernez, Marianne; Dunn, Warwick B; Brown, Marie; Fuller, Linda J; de Herrera, Santiago R M Seco; Günther, Andreas; James, Steve A; Eagles, John; Philo, Mark; Goodacre, Royston; Roberts, Ian N

    2008-07-01

    Ten medically important Saccharomyces strains, comprising six clinical isolates of Saccharomyces cerevisiae and four probiotic strains of Saccharomyces boulardii, were characterized at the genetic and metabolic level and compared with non-medical, commercial yeast strains used in baking and wine-making. Strains were compared by genetic fingerprinting using amplified fragment length polymorphism (AFLP) analysis, by ribosomal DNA ITS1 sequencing and by metabolic footprinting using both direct injection mass spectrometry (DIMS) and gas chromatography-time of flight-mass spectrometry (GC-ToF-MS). Overall, the clinical isolates fell into different groupings when compared with the non-medical strains, with good but not perfect correlation amongst strains at both the genetic and metabolic levels. Probiotic strains of S. boulardii that are used therapeutically to treat human gastro-intestinal tract disorders showed tight clustering both genetically and metabolically. Metabolomics was found to be of value both as a taxonomic tool and as a means to investigate anomalous links between genotype and phenotype. Key discriminatory metabolites were identified when comparing the three main groups of clinical, probiotic and non-medical strains and included molecules such as trehalose, myo-inositol, lactic acid, fumaric acid and glycerol 3-phosphate. This study confirmed the link between a subset of clinical isolates and baking or probiotic strains but also highlighted that in general the clinical strains were more diverse at both the genomic and metabolic levels.

  6. A fast method to diagnose chromosome and plasmid loss in Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Hegemann, J H; Klein, S; Heck, S; Güldener, U; Niedenthal, R K; Fleig, U

    1999-07-01

    We have developed a simple, fast and reliable method for the analysis of genetic stability in budding yeast strains. The assay relies on our previous finding that cells expressing the green fluorescent protein (GFP) can be detected and counted by flow cytometric analysis (FACS) (Niedenthal et al., 1996). Expression of a gfp-carrying CEN-plasmid in a wild-type strain resulted in the emission of strong fluorescence from 80% of the cell population. Strong fluorescence and presence of the plasmid, determined by the presence of the URA3 genetic marker, was strictly correlated. Expression of this plasmid in 266 yeast strains, each carrying a complete deletion of a novel, non-essential gene identified in the S. cerevisiae sequencing project, pinpointed 12 strains with an increased level of mitotic plasmid loss. Finally we have shown that measurement of mitotic loss of artificial chromosome fragments equipped with the gfp expression cassette can be performed quantitatively using FACS.

  7. Engineering of Saccharomyces cerevisiae for Efficient Anaerobic Alcoholic Fermentation of L-Arabinose

    NARCIS (Netherlands)

    Wisselink, H.W.; Toirkens, M.J.; Del Rosario Franco Berriel, M.; Winkler, A.A.; Van Dijken, J.P.; Pronk, J.T.; Van Maris, A.J.A.

    2007-01-01

    For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as L-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organ

  8. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae

    OpenAIRE

    Ballester Tomás, Laura; Rández Gil, Francisca; Pérez Torrado, Roberto; Prieto Alamán, José Antonio

    2015-01-01

    Background Cold stress reduces microbial growth and metabolism being relevant in industrial processes like wine making and brewing. Knowledge on the cold transcriptional response of Saccharomyces cerevisiae suggests the need of a proper redox balance. Nevertheless, there are no direct evidence of the links between NAD(P) levels and cold growth and how engineering of enzymatic reactions requiring NAD(P) may be used to modify the performance of industrial strains at low temperature. Results Rec...

  9. Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases.

    Science.gov (United States)

    Favaro, Lorenzo; Viktor, Marko J; Rose, Shaunita H; Viljoen-Bloom, Marinda; van Zyl, Willem H; Basaglia, Marina; Cagnin, Lorenzo; Casella, Sergio

    2015-09-01

    The development of a yeast strain that converts raw starch to ethanol in one step (called Consolidated Bioprocessing, CBP) could significantly reduce the commercial costs of starch-based bioethanol. An efficient amylolytic Saccharomyces cerevisiae strain suitable for industrial bioethanol production was developed in this study. Codon-optimized variants of the Thermomyces lanuginosus glucoamylase (TLG1) and Saccharomycopsis fibuligera α-amylase (SFA1) genes were δ-integrated into two S. cerevisiae yeast with promising industrial traits, i.e., strains M2n and MEL2. The recombinant M2n[TLG1-SFA1] and MEL2[TLG1-SFA1] yeast displayed high enzyme activities on soluble and raw starch (up to 8118 and 4461 nkat/g dry cell weight, respectively) and produced about 64 g/L ethanol from 200 g/L raw corn starch in a bioreactor, corresponding to 55% of the theoretical maximum ethanol yield (g of ethanol/g of available glucose equivalent). Their starch-to-ethanol conversion efficiencies were even higher on natural sorghum and triticale substrates (62 and 73% of the theoretical yield, respectively). This is the first report of direct ethanol production from natural starchy substrates (without any pre-treatment or commercial enzyme addition) using industrial yeast strains co-secreting both a glucoamylase and α-amylase.

  10. Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production

    Directory of Open Access Journals (Sweden)

    Tomas Strucko

    2015-12-01

    Full Text Available The yeast Saccharomyces cerevisiae is a widely used eukaryotic model organism and a key cell factory for production of biofuels and wide range of chemicals. From the broad palette of available yeast strains, the most popular are those derived from laboratory strain S288c and the industrially relevant CEN.PK strain series. Importantly, in recent years these two strains have been subjected to comparative “-omics” analyzes pointing out significant genotypic and phenotypic differences. It is therefore possible that the two strains differ significantly with respect to their potential as cell factories for production of specific compounds. To examine this possibility, we have reconstructed a de novo vanillin-β-glucoside pathway in an identical manner in S288c and CEN.PK strains. Characterization of the two resulting strains in two standard conditions revealed that the S288c background strain produced up to 10-fold higher amounts of vanillin-β-glucoside compared to CEN.PK. This study demonstrates that yeast strain background may play a major role in the outcome of newly developed cell factories for production of a given product.

  11. Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Nan [Agricultural Univ., Qingdao, SD (China). College of Animal Science and Technology; Chinese Academy of Sciences, Qingdao, SD (China). Key Lab. of Biofuels; Yuan, Bo; Wang, Shi-An; Li, Fu-Li [Chinese Academy of Sciences, Qingdao, SD (China). Key Lab. of Biofuels; Sun, Juan [Agricultural Univ., Qingdao, SD (China). College of Animal Science and Technology

    2012-09-15

    Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40 C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.4515) and S. cerevisiae JZ1C (CGMCC AS2.3878) presented the highest extracellular inulinase activity and ethanol yield in this study. The highest ethanol concentration in Jerusalem artichoke tuber flour fermentation (200 g L{sup -1}) at 40 C achieved by K. marxianus PT-1 and S. cerevisiae JZ1C was 73.6 and 65.2 g L{sup -1}, which corresponded to the theoretical ethanol yield of 90.0 and 79.7 %, respectively. In the range of 30 to 40 C, temperature did not have a significant effect on ethanol production for both strains. This study displayed the distinctive superiority of K. marxianus PT-1 and S. cerevisiae JZ1C in the thermotolerance and utilization of inulin-type oligosaccharides reserved in Jerusalem artichoke tubers. It is proposed that both K. marxianus and S. cerevisiae have considerable potential in ethanol production from Jerusalem artichoke tubers by a high temperature CBP. (orig.)

  12. Engineering of Saccharomyces cerevisiae for production of resveratrol and its derivatives

    DEFF Research Database (Denmark)

    Li, Mingji

    Resveratrol is a natural potent antioxidant with multiple beneficial effects on human health and is therefore used in medical, food, and cosmetic areas. In my PhD thesis I describe how I engineered yeast cell factory Saccharomyces cerevisiae for production of resveratrol by fermentation of cheap ...

  13. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.

    Science.gov (United States)

    Turner, Timothy L; Kim, Heejin; Kong, In Iok; Liu, Jing-Jing; Zhang, Guo-Chang; Jin, Yong-Su

    2016-12-03

    To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.

  14. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Roca, Christophe Francois Aime; Haack, Martin Brian; Olsson, Lisbeth

    2004-01-01

    Two xylose-fermenting glucose-derepressed Saccharomyces cerevisiae strains were constructed in order to investigate the influence of carbon catabolite repression on xylose metabolism. S. cerevisiae CPB.CR2 (Deltamig1, XYL1, XYL2, XKS1) and CPB.MBH2 (Deltamig1, Deltamig2, XYL1, XYL2, XKS1) were...... of CPB.CR2, where the cells are assumed to grow under non-repressive conditions as they sense almost no glucose, invertase activity was lower during growth on xylose and glucose than on glucose only. The 3-fold reduction in invertase activity could only be attributed to the presence of xylose, suggesting...

  15. Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: new insights into biodiversity and industrial applications.

    Science.gov (United States)

    Beato, Felipe B; Bergdahl, Basti; Rosa, Carlos A; Forster, Jochen; Gombert, Andreas K

    2016-11-01

    Fourteen indigenous Saccharomyces cerevisiae strains isolated from the barks of three tree species located in the Atlantic Rain Forest and Cerrado biomes in Brazil were genetically and physiologically compared to laboratory strains and to strains from the Brazilian fuel ethanol industry. Although no clear correlation could be found either between phenotype and isolation spot or between phenotype and genomic lineage, a set of indigenous strains with superior industrially relevant traits over commonly known industrial and laboratory strains was identified: strain UFMG-CM-Y257 has a very high specific growth rate on sucrose (0.57 ± 0.02 h(-1)), high ethanol yield (1.65 ± 0.02 mol ethanol mol hexose equivalent(-1)), high ethanol productivity (0.19 ± 0.00 mol L(-1) h(-1)), high tolerance to acetic acid (10 g L(-1)) and to high temperature (40°C). Strain UFMG-CM-Y260 displayed high ethanol yield (1.67 ± 0.13 mol ethanol mol hexose equivalent(-1)), high tolerance to ethanol and to low pH, a trait which is important for non-aseptic industrial processes. Strain UFMG-CM-Y267 showed high tolerance to acetic acid and to high temperature (40°C), which is of particular interest to second generation industrial processes.

  16. Raspberry wine fermentation with suspended and immobilized yeast cells of two strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor

    2015-01-01

    The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212.

  17. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DEFF Research Database (Denmark)

    Ghosh, Amit; Ando, David; Gin, Jennifer

    2016-01-01

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models...... of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux...... to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source...

  18. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Grotkjaer, Thomas; Christakopoulos, Paul; Nielsen, Jens; Olsson, Lisbeth

    2005-01-01

    The recombinant xylose fermenting strain Saccharomyces cerevisiae TMB3001 can grow on xylose, but the xylose utilisation rate is low. One important reason for the inefficient fermentation of xylose to ethanol is believed to be the imbalance of redox co-factors. In the present study, a metabolic flux model was constructed for two recombinant S. cerevisiae strains: TMB3001 and CPB.CR4 which in addition to xylose metabolism have a modulated redox metabolism, i.e. ammonia assimilation was shifted from being NADPH to NADH dependent by deletion of gdh1 and over-expression of GDH2. The intracellular fluxes were estimated for both strains in anaerobic continuous cultivations when the growth limiting feed consisted of glucose (2.5 g L-1) and xylose (13 g L-1). The metabolic network analysis with 13C labelled glucose showed that there was a shift in the specific xylose reductase activity towards use of NADH as co-factor rather than NADPH. This shift is beneficial for solving the redox imbalance and it can therefore partly explain the 25% increase in the ethanol yield observed for CPB.CR4. Furthermore, the analysis indicated that the glyoxylate cycle was activated in CPB.CR4.

  19. Comparative Study on Two Commercial Strains of Saccharomyces cerevisiae for Optimum Ethanol Production on Industrial Scale

    Directory of Open Access Journals (Sweden)

    K. Mukhtar

    2010-01-01

    Full Text Available Two commercial strains of Saccharomyces cerevisiae, Saf-Instant (Baker's yeast and Ethanol red (Mutant were compared for ethanol production during hot summer season, using molasses diluted up to 6-7∘ Brix containing 4%-5% sugars. The yeasts were then propagated in fermentation vessels to study the effects of yeast cell count and varying concentrations of Urea, DAP, inoculum size and Lactrol (Antibiotic. Continuous circulation of mash was maintained for 24 hours and after this fermenter was allowed to stay for a period of 16 hours to give time for maximum conversion of sugars into ethanol. Saccharomyces cerevisiae strain (Saf-instant with cell concentration of 400 millions/mL at molasses sugar level of 13%–15% (pH 4.6±0.2, Temp. 32∘C±1, inoculum size of 25% (v/v, urea concentration, 150 ppm, DAP, 53.4 ppm and Lactrol,150 ppm supported maximum ethanol production (8.8% with YP/S=250 L ethanol per tone molasses (96.5% yield, and had significantly lower concentrations of byproducts. By selecting higher ethanol yielding yeast strain and optimizing the fermentation parameters both yield and economics of the fermentation process can be improved.

  20. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.

    Science.gov (United States)

    Gonçalves, Davi L; Matsushika, Akinori; de Sales, Belisa B; Goshima, Tetsuya; Bon, Elba P S; Stambuk, Boris U

    2014-09-01

    Since the uptake of xylose is believed to be one of the rate-limiting steps for xylose ethanol fermentation by recombinant Saccharomyces cerevisiae strains, we transformed a hxt-null strain lacking the major hexose transporters (hxt1Δ-hxt7Δ and gal2Δ) with an integrative plasmid to overexpress the genes for xylose reductase (XYL1), xylitol dehydrogenase (XYL2) and xylulokinase (XKS1), and analyzed the impact that overexpression of the HXT1, HXT2, HXT5 or HXT7 permeases have in anaerobic batch fermentations using xylose, glucose, or xylose plus glucose as carbon sources. Our results revealed that the low-affinity HXT1 permease allowed the maximal consumption of sugars and ethanol production rates during xylose/glucose co-fermentations, but was incapable to allow xylose uptake when this sugar was the only carbon source. The moderately high-affinity HXT5 permease was a poor glucose transporter, and it also did not allow significant xylose uptake by the cells. The moderately high-affinity HXT2 permease allowed xylose uptake with the same rates as those observed during glucose consumption, even under co-fermentation conditions, but had the drawback of producing incomplete fermentations. Finally, the high-affinity HXT7 permease allowed efficient xylose fermentation, but during xylose/glucose co-fermentations this permease showed a clear preference for glucose. Thus, our results indicate that approaches to engineer S. cerevisiae HXT transporters to improve second generation bioethanol production need to consider the composition of the biomass sugar syrup, whereby the HXT1 transporter seems more suitable for hydrolysates containing xylose/glucose blends, whereas the HXT7 permease would be a better choice for xylose-enriched sugar streams.

  1. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery

    OpenAIRE

    Martiniuk, Jonathan T.; Pacheco, Braydon; Russell, Gordon; Tong, Stephanie; Backstrom, Ian; Measday, Vivien

    2016-01-01

    Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae) yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation metho...

  2. Impact of different spray-drying conditions on the viability of wine Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Aponte, Maria; Troianiello, Gabriele Danilo; Di Capua, Marika; Romano, Raffaele; Blaiotta, Giuseppe

    2016-01-01

    Spray-drying (SD) is widely considered a suitable method to preserve microorganisms, but data regarding yeasts are still scanty. In this study, the effect of growing media, process variables and carriers over viability of a wild wine Saccharomyces (S.) cerevisiae LM52 was evaluated. For biomass production, the strain was grown (batch and fed-batch fermentation) in a synthetic, as well as in a beet sugar molasses based-medium. Drying of cells resuspended in several combinations of soluble starch and maltose was performed at different inlet and outlet temperatures. Under the best conditions-suspension in soluble starch plus maltose couplet to inlet and outlet temperatures of 110 and 55 °C, respectively-the loss of viability of S. cerevisiae LM52 was 0.8 ± 0.1 and 0.5 ± 0.2 Log c.f.u. g(-1) for synthetic and molasses-based medium, respectively. Similar results were obtained when S. cerevisiae strains Zymoflore F15 and EC1118, isolated from commercial active dry yeast (ADY), were tested. Moreover, powders retained a high vitality and showed good fermentation performances up to 6 month of storage, at both 4 and -20 °C. Finally, fermentation performances of different kinds of dried formulates (SD and ADY) compared with fresh cultures did not show significant differences. The procedure proposed allowed a small-scale production of yeast in continuous operation with relatively simple equipment, and may thus represent a rapid response-on-demand for the production of autochthonous yeasts for local wine-making.

  3. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Kato, Hiroko; Suyama, Hiroaki; Yamada, Ryosuke; Hasunuma, Tomohisa; Kondo, Akihiko

    2012-06-01

    To improve the ability of recombinant Saccharomyces cerevisiae strains to utilize the hemicellulose components of lignocellulosic feedstocks, the efficiency of xylose conversion to ethanol needs to be increased. In the present study, xylose-fermenting, haploid, yeast cells of the opposite mating type were hybridized to produce a diploid strain harboring two sets of xylose-assimilating genes encoding xylose reductase, xylitol dehydrogenase, and xylulokinase. The hybrid strain MN8140XX showed a 1.3- and 1.9-fold improvement in ethanol production compared to its parent strains MT8-1X405 and NBRC1440X, respectively. The rate of xylose consumption and ethanol production was also improved by the hybridization. This study revealed that the resulting improvements in fermentation ability arose due to chromosome doubling as well as the increase in the copy number of xylose assimilation genes. Moreover, compared to the parent strain, the MN8140XX strain exhibited higher ethanol production under elevated temperatures (38 °C) and acidic conditions (pH 3.8). Thus, the simple hybridization technique facilitated an increase in the xylose fermentation activity.

  4. Effects of Six Commercial Saccharomyces cerevisiae Strains on Phenolic Attributes, Antioxidant Activity, and Aroma of Kiwifruit (Actinidia deliciosa cv.) Wine

    Science.gov (United States)

    Li, Xingchen; Cao, Lin; Li, Shaohua; Wang, Ranran; Jiang, Zijing; Che, Zhenming; Lin, Hongbin

    2017-01-01

    “Hayward” kiwifruit (Actinidia deliciosa cv.), widely planted all around the world, were fermented with six different commercial Saccharomyces cerevisiae strains (BM4×4, RA17, RC212, WLP77, JH-2, and CR476) to reveal their influence on the phenolic profiles, antioxidant activity, and aromatic components. Significant differences in the levels of caffeic acid, protocatechuate, and soluble solid content were found among wines with the six fermented strains. Wines fermented with RC212 strain exhibited the highest total phenolic acids as well as DPPH radical scavenging ability and also had the strongest ability to produce volatile esters. Wines made with S. cerevisiae BM 4×4 had the highest content of volatile acids, while the highest alcohol content was presented in CR476 wines. Scoring spots of wines with these strains were separated in different quadrants on the components of phenolics and aromas by principal component analyses. Kiwifruit wines made with S. cerevisiae RC212 were characterized by a rich fruity flavor, while CR476 strain and WLP77 strain produced floral flavors and green aromas, respectively. Altogether, the results indicated that the use of S. cerevisiae RC212 was the most suitable for the fermentation of kiwifruit wine with desirable characteristics. PMID:28251154

  5. Fermentation of xylose to produce ethanol by recombinant Saccharomyces cerevisiae strain containing XYLA and XKS1

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaolin; JIANG Ning; HE Peng; LU Dajun; SHEN An

    2005-01-01

    Fermentation of the pentose sugar xylose to produce ethanol using lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyce cerevisise, an efficient ethanol producer, cannot utilize xylose because it lacks the ability to convert xylose to its isomer xylulose. In this study, XYLA gene encoding xylose isomerase (XI) from Thermoanaerobacter tengcongensis MB4T and XKS1 gene encoding xylulokinase (XK) from Pichia stipitis were cloned and functionally coexpressed in Saccharomyces cerevisiae EF-326 to construct a recombinant xylose-utilizing strain. The resulting strain S. cerevisiae EF 1014 not only grew on xylose as sole carbon source, but also produced ethanol under anaerobic conditions. Fermentations performed with different xylose concentrations at different temperatures demonstrated that the highest ethanol productivity was 0.11 g/g xylose when xylose concentration was provided at 50 g/L. Under this condition, 28.4% of xylose was consumed and 1.54 g/L xylitol was formed. An increasing fermentation temperature from 30℃ to 37℃ did not improve ethanol yield.

  6. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  7. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.

  8. BioREFINE-2G project – Engineering of industrial yeast strains for production of dicarboxylic acids from side and waste streams

    DEFF Research Database (Denmark)

    Stovicek, Vratislav; Chen, Xiao; Borodina, Irina

    2014-01-01

    compounds can be polymerised to biodegradable polymersthat can find application as plastics, coatings or adhesives. To reach the goals, the identification of relevant metabolic routes, strain engineering and the development of a toolbox for manipulation of industrial S. cerevisiae strains are required. Here...

  9. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode

    DEFF Research Database (Denmark)

    Scalcinati, Gionata; Knuf, Christoph; Partow, Siavash;

    2012-01-01

    Microbial cells engineered for efficient production of plant sesquiterpenes may allow for sustainable and scalable production of these compounds that can be used as e.g. perfumes and pharmaceuticals. Here, for the first time a Saccharomyces cerevisiae strain capable of producing high levels of α......-santalene, the precursor of a commercially interesting compound, was constructed through a rationally designed metabolic engineering approach. Optimal sesquiterpene production was obtained by modulating the expression of one of the key metabolic steps of the mevalonate (MVA) pathway, squalene synthase (Erg9). To couple...

  10. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Johnston, M.

    2000-01-01

    in the pathway, and ultimately, increasing metabolic flux through the pathway of interest, By manipulating the GAL gene regulatory network of Saccharomyces cerevisiae, which is a tightly regulated system, we produced prototroph mutant strains, which increased the flux through the galactose utilization pathway...... media. The improved galactose consumption of the gal mutants did not favor biomass formation, but rather caused excessive respiro-fermentative metabolism, with the ethanol production rate increasing linearly with glycolytic flux....

  11. Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A

    Directory of Open Access Journals (Sweden)

    Livas Daniela

    2011-08-01

    Full Text Available Abstract Background The pattern of gene transcripts in the yeast Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA, triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. In S. cerevisiae three genes, TPK1, TPK2, and TPK3, encode catalytic subunits of PKA. The lack of viability of tpk1 tpk2 tpk3 triple mutants may be suppressed by mutations such as yak1 or msn2/msn4. To investigate the requirement for PKA in glucose control of gene expression, we have compared the effects of glucose on global transcription in a wild-type strain and in two strains devoid of PKA activity, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4. Results We have identified different classes of genes that can be induced -or repressed- by glucose in the absence of PKA. Representative examples are genes required for glucose utilization and genes involved in the metabolism of other carbon sources, respectively. Among the genes responding to glucose in strains devoid of PKA some are also controlled by a redundant signalling pathway involving PKA activation, while others are not affected when PKA is activated through an increase in cAMP concentration. On the other hand, among genes that do not respond to glucose in the absence of PKA, some give a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways. We show also that, for a number of genes controlled by glucose through a PKA-dependent pathway, the changes in mRNA levels are transient. We found that, in cells grown in gluconeogenic conditions, expression of a small number of genes, mainly connected with the response to stress, is reduced in the strains lacking PKA. Conclusions In S. cerevisiae, the transcriptional responses to glucose are triggered by a variety of pathways, alone or in

  12. Recombinant Saccharomyces cerevisiae strain expressing a model cytochrome P450 in the rat digestive environment: viability and bioconversion activity.

    Science.gov (United States)

    Garrait, G; Jarrige, J F; Blanquet, S; Beyssac, E; Alric, M

    2007-06-01

    An innovative "biodrug" concept, based on the oral administration of living recombinant microorganisms, has recently emerged for the prevention or treatment of various diseases. An engineered Saccharomyces cerevisiae strain expressing plant P450 73A1 (cinnamate-4-hydroxylase [CA4H] activity) was used, and its survival and ability to convert trans-cinnamic acid (CIN) into p-coumaric acid (COU) were investigated in vivo. In rats, the recombinant yeast was resistant to gastric and small intestinal secretions but was more sensitive to the conditions found in the large intestine. After oral administration of yeast and CIN, the CA4H activity was shown in vivo, with COU being found throughout the rat's digestive tract and in its urine. The bioconversion reaction occurred very fast, with most of the COU being produced within the first 5 min. The gastrointestinal sac technique demonstrated that the recombinant yeast was able to convert CIN into COU (conversion rate ranging from 2 to 5%) in all the organs of the rat's digestive tract: stomach, duodenum, jejunum, ileum, cecum, and colon. These results promise new opportunities for the development of drug delivery systems based on engineered yeasts catalyzing a bioconversion reaction directly in the digestive tract.

  13. Molecular and Technological Characterization of Saccharomyces cerevisiae Strains Isolated from Natural Fermentation of Susumaniello Grape Must in Apulia, Southern Italy

    Directory of Open Access Journals (Sweden)

    Mariana Tristezza

    2014-01-01

    Full Text Available The characterization of autochthonous Saccharomyces cerevisiae strains is an important step towards the conservation and employment of microbial biodiversity. The utilization of selected autochthonous yeast strains would be a powerful tool to enhance the organoleptic and sensory properties of typical regional wines. In fact, indigenous yeasts are better tailored to a particular must and because of this they are able to praise the peculiarities of the derived wine. The present study described the biodiversity of indigenous S. cerevisiae strains isolated from natural must fermentations of an ancient and recently rediscovered Apulian grape cultivar, denoted as “Susumaniello.” The yeast strains denoted by the best oenological and technological features were identified and their fermentative performances were tested by either laboratory assay. Five yeast strains showed that they could be excellent candidates for the production of industrial starter cultures, since they dominated the fermentation process and produced wines characterized by peculiar oenological and organoleptic features.

  14. Molecular and Technological Characterization of Saccharomyces cerevisiae Strains Isolated from Natural Fermentation of Susumaniello Grape Must in Apulia, Southern Italy.

    Science.gov (United States)

    Tristezza, Mariana; Fantastico, Lorenagostina; Vetrano, Cosimo; Bleve, Gianluca; Corallo, Daniela; Grieco, Francesco; Mita, Giovanni; Grieco, Francesco

    2014-01-01

    The characterization of autochthonous Saccharomyces cerevisiae strains is an important step towards the conservation and employment of microbial biodiversity. The utilization of selected autochthonous yeast strains would be a powerful tool to enhance the organoleptic and sensory properties of typical regional wines. In fact, indigenous yeasts are better tailored to a particular must and because of this they are able to praise the peculiarities of the derived wine. The present study described the biodiversity of indigenous S. cerevisiae strains isolated from natural must fermentations of an ancient and recently rediscovered Apulian grape cultivar, denoted as "Susumaniello." The yeast strains denoted by the best oenological and technological features were identified and their fermentative performances were tested by either laboratory assay. Five yeast strains showed that they could be excellent candidates for the production of industrial starter cultures, since they dominated the fermentation process and produced wines characterized by peculiar oenological and organoleptic features.

  15. Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains.

    Science.gov (United States)

    Monerawela, Chandre; James, Tharappel C; Wolfe, Kenneth H; Bond, Ursula

    2015-03-01

    Lager yeasts, Saccharomyces pastorianus, are interspecies hybrids between S. cerevisiae and S. eubayanus and are classified into Group I and Group II clades. The genome of the Group II strain, Weihenstephan 34/70, contains eight so-called 'lager-specific' genes that are located in subtelomeric regions. We evaluated the origins of these genes through bioinformatic and PCR analyses of Saccharomyces genomes. We determined that four are of cerevisiae origin while four originate from S. eubayanus. The Group I yeasts contain all four S. eubayanus genes but individual strains contain only a subset of the cerevisiae genes. We identified S. cerevisiae strains that contain all four cerevisiae 'lager-specific' genes, and distinct patterns of loss of these genes in other strains. Analysis of the subtelomeric regions uncovered patterns of loss in different S. cerevisiae strains. We identify two classes of S. cerevisiae strains: ale yeasts (Foster O) and stout yeasts with patterns of 'lager-specific' genes and subtelomeric regions identical to Group I and II S. pastorianus yeasts, respectively. These findings lead us to propose that Group I and II S. pastorianus strains originate from separate hybridization events involving different S. cerevisiae lineages. Using the combined bioinformatic and PCR data, we describe a potential classification map for industrial yeasts.

  16. Comparative genomics among Saccharomyces cerevisiae × Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins

    Directory of Open Access Journals (Sweden)

    Peris David

    2012-08-01

    Full Text Available Abstract Background Interspecific hybrids between S. cerevisiae × S. kudriavzevii have frequently been detected in wine and beer fermentations. Significant physiological differences among parental and hybrid strains under different stress conditions have been evidenced. In this study, we used comparative genome hybridization analysis to evaluate the genome composition of different S. cerevisiae × S. kudriavzevii natural hybrids isolated from wine and beer fermentations to infer their evolutionary origins and to figure out the potential role of common S. kudriavzevii gene fraction present in these hybrids. Results Comparative genomic hybridization (CGH and ploidy analyses carried out in this study confirmed the presence of individual and differential chromosomal composition patterns for most S. cerevisiae × S. kudriavzevii hybrids from beer and wine. All hybrids share a common set of depleted S. cerevisiae genes, which also are depleted or absent in the wine strains studied so far, and the presence a common set of S. kudriavzevii genes, which may be associated with their capability to grow at low temperatures. Finally, a maximum parsimony analysis of chromosomal rearrangement events, occurred in the hybrid genomes, indicated the presence of two main groups of wine hybrids and different divergent lineages of brewing strains. Conclusion Our data suggest that wine and beer S. cerevisiae × S. kudriavzevii hybrids have been originated by different rare-mating events involving a diploid wine S. cerevisiae and a haploid or diploid European S. kudriavzevii strains. Hybrids maintain several S. kudriavzevii genes involved in cold adaptation as well as those related to S. kudriavzevii mitochondrial functions.

  17. Abolishment of N-glycan mannosylphosphorylation in glyco-engineered Saccharomyces cerevisiae by double disruption of MNN4 and MNN14 genes.

    Science.gov (United States)

    Kim, Yeong Hun; Kang, Ji-Yeon; Gil, Jin Young; Kim, Sang-Yoon; Shin, Keun Koo; Kang, Hyun Ah; Kim, Jeong-Yoon; Kwon, Ohsuk; Oh, Doo-Byoung

    2017-04-01

    Mannosylphosphorylated glycans are found only in fungi, including yeast, and the elimination of mannosylphosphates from glycans is a prerequisite for yeast glyco-engineering to produce human-compatible glycoproteins. In Saccharomyces cerevisiae, MNN4 and MNN6 genes are known to play roles in mannosylphosphorylation, but disruption of these genes does not completely remove the mannosylphosphates in N-glycans. This study was performed to find unknown key gene(s) involved in N-glycan mannosylphosphorylation in S. cerevisiae. For this purpose, each of one MNN4 and five MNN6 homologous genes were deleted from the och1Δmnn1Δmnn4Δmnn6Δ strain, which lacks yeast-specific hyper-mannosylation and the immunogenic α(1,3)-mannose structure. N-glycan profile analysis of cell wall mannoproteins and a secretory recombinant protein produced in mutants showed that the MNN14 gene, an MNN4 paralog with unknown function, is essential for N-glycan mannosylphosphorylation. Double disruption of MNN4 and MNN14 genes was enough to eliminate N-glycan mannosylphosphorylation. Our results suggest that the S. cerevisiae och1Δmnn1Δmnn4Δmnn14Δ strain, in which all yeast-specific N-glycan structures including mannosylphosphorylation are abolished, may have promise as a useful platform for glyco-engineering to produce therapeutic glycoproteins with human-compatible N-glycans.

  18. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Koopman Frank

    2012-12-01

    Full Text Available Abstract Background Flavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome these limitations, metabolic engineering of specific pathway in microbial systems have been envisaged to produce high quantity of a single molecules. Result Saccharomyces cerevisiae was engineered to produce the key intermediate flavonoid, naringenin, solely from glucose. For this, specific naringenin biosynthesis genes from Arabidopsis thaliana were selected by comparative expression profiling and introduced in S. cerevisiae. The sole expression of these A. thaliana genes yielded low extracellular naringenin concentrations ( Conclusion The results reported in this study demonstrate that S. cerevisiae is capable of de novo production of naringenin by coexpressing the naringenin production genes from A. thaliana and optimization of the flux towards the naringenin pathway. The engineered yeast naringenin production host provides a metabolic chassis for production of a wide range of flavonoids and exploration of their biological functions.

  19. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.

    Science.gov (United States)

    Jin, Lu; Bhuiya, Mohammad Wadud; Li, Mengmeng; Liu, XiangQi; Han, Jixiang; Deng, WeiWei; Wang, Min; Yu, Oliver; Zhang, Zhengzhu

    2014-01-01

    Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g., tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L) by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT) and Camellia sinensis caffeine synthase (TCS) in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp) slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.

  20. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.

    Directory of Open Access Journals (Sweden)

    Lu Jin

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine and theobromine (3, 7-dimethylxanthine are the major purine alkaloids in plants, e.g., tea (Camellia sinensis and coffee (Coffea arabica. Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT and Camellia sinensis caffeine synthase (TCS in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.

  1. Production of fructanase by a wild strain of Saccharomyces cerevisiae on tequila agave fructan.

    Science.gov (United States)

    Corona-González, R I; Pelayo-Ortiz, C; Jacques, G; Guatemala, G; Arriola, E; Arias, J A; Toriz, G

    2015-01-01

    A new wild strain of Saccharomyces cerevisiae (CF3) isolated from tequila must was evaluated for production of fructanase on Agave tequilana Weber fructan (FT). Fructanase activity (F) was assessed by a 3(3) factorial design (substrate, temperature and pH). High enzymatic activity (31.1 U/ml) was found at 30 °C, pH 5, using FT (10 g/l) as substrate. The effect of initial substrate concentration on F (FT0, 5.7-66 g/l) was studied and it was found that F was highest (44.8 U/ml) at FT0 25 g/l. A 2(2) factorial experimental design with five central points was utilized to study the effect of stirring and aeration on fructanase activity; stirring exhibited a stronger effect on F. The ratio fructanase to invertase (F/S) was 0.57, which confirms that the enzymes are fructanase. Crude fructanase reached high substrate hydrolysis (48 wt%) in 10 h. It is shown that S. cerevisiae CF3 was able to produce large amounts of fructanase by growing it on fructan from A. tequilana.

  2. A Recombinant Saccharomyces cerevisiae Strain Overproducing Mannoproteins Stabilizes Wine against Protein Haze▿

    Science.gov (United States)

    Gonzalez-Ramos, Daniel; Cebollero, Eduardo; Gonzalez, Ramon

    2008-01-01

    Stabilization against protein haze was one of the first positive properties attributed to yeast mannoproteins in winemaking. In previous work we demonstrated that deletion of KNR4 leads to increased mannoprotein release in laboratory Saccharomyces cerevisiae strains. We have now constructed strains with KNR4 deleted in two different industrial wine yeast backgrounds. This required replacement of two and three alleles of KNR4 for the EC1118 and T73-4 backgrounds, respectively, and the use of three different selection markers for yeast genetic transformation. The actual effect of the genetic modification was dependent on both the genetic background and the culture conditions. The fermentation performance of T73-4 derivatives was clearly impaired, and these derivatives did not contribute to the protein stability of the wine, even though they showed increased mannoprotein release in vitro. In contrast, the EC1118 derivative with both alleles of KNR4 deleted released increased amounts of mannoproteins both in vitro and during wine fermentation assays, and the resulting wines were consistently less susceptible to protein haze. The fermentation performance of this strain was slightly impaired, but only with must with a very high sugar content. These results pave the way for the development of new commercial strains with the potential to improve several mannoprotein-related quality and technological parameters of wine. PMID:18606802

  3. Construction of integrative plasmids suitable for genetic modification of industrial strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Leite, Fernanda Cristina Bezerra; Dos Anjos, Rute Salgues Gueiros; Basilio, Anna Carla Moreira; Leal, Guilherme Felipe Carvalho; Simões, Diogo Ardaillon; de Morais, Marcos A

    2013-01-01

    The development of efficient tools for genetic modification of industrial yeast strains is one of the challenges that face the use of recombinant cells in industrial processes. In this study, we examine how the construction of two complementary integrative vectors can fulfill the major requirements of industrial recombinant yeast strains: the use of lactose assimilation genes as a food-grade yeast selection marker, and a system of integration that does not leave hazardous genes in the host genome and involves minimal interference in the yeast physiology. The pFB plasmid set was constructed to co-integrate both LAC4-based and LAC12-based cassettes into the ribosomal DNA (rDNA) locus to allow yeast cells to be selected in lactose medium. This phenotype can also be used to trace the recombinant cells in the environment by simply being plated on X-gal medium. The excisable trait of the LAC12 marker allows the introduction of many different heterologous genes, and makes it possible to introduce a complete heterologous metabolic pathway. The cloned heterologous genes can be highly expressed under the strong and constitutive TPI1 gene promoter, which can be exchanged for easy digestion of enzymes if necessary. This platform was introduced into Saccharomyces cerevisiae JP1 industrial strain where a recombinant with high stability of markers was produced without any change in the yeast physiology. Thus, it proved to be an efficient tool for the genetic modification of industrial strains.

  4. Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yuan, Jifeng; Mishra, Pranjul; Ching, Chi Bun

    2017-01-01

    Isoamyl alcohol can be used not only as a biofuel, but also as a precursor for various chemicals. Saccharomyces cerevisiae inherently produces a small amount of isoamyl alcohol via the leucine degradation pathway, but the yield is very low. In the current study, several strategies were devised to overproduce isoamyl alcohol in budding yeast. The engineered yeast cells with the cytosolic isoamyl alcohol biosynthetic pathway produced significantly higher amounts of isobutanol over isoamyl alcohol, suggesting that the majority of the metabolic flux was diverted to the isobutanol biosynthesis due to the broad substrate specificity of Ehrlich pathway enzymes. To channel the key intermediate 2-ketosiovalerate (KIV) towards α-IPM biosynthesis, we introduced an artificial protein scaffold to pull dihydroxyacid dehydratase and α-IPM synthase into the close proximity, and the resulting strain yielded more than twofold improvement of isoamyl alcohol. The best isoamyl alcohol producer yielded 522.76 ± 38.88 mg/L isoamyl alcohol, together with 540.30 ± 48.26 mg/L isobutanol and 82.56 ± 8.22 mg/L 2-methyl-1-butanol. To our best knowledge, our work represents the first study to bypass the native compartmentalized α-IPM biosynthesis pathway for the isoamyl alcohol overproduction in budding yeast. More importantly, artificial protein scaffold based on the feature of quaternary structure of enzymes would be useful in improving the catalytic efficiency and the product specificity of other enzymatic reactions.

  5. Molecular and Technological Characterization of Saccharomyces cerevisiae Strains Isolated from Natural Fermentation of Susumaniello Grape Must in Apulia, Southern Italy

    OpenAIRE

    Mariana Tristezza; Lorenagostina Fantastico; Cosimo Vetrano; Gianluca Bleve; Daniela Corallo; Giovanni Mita; Francesco Grieco

    2014-01-01

    The characterization of autochthonous Saccharomyces cerevisiae strains is an important step towards the conservation and employment of microbial biodiversity. The utilization of selected autochthonous yeast strains would be a powerful tool to enhance the organoleptic and sensory properties of typical regional wines. In fact, indigenous yeasts are better tailored to a particular must and because of this they are able to praise the peculiarities of the derived wine. The present study described ...

  6. IMPROVEMENT OF BORASSUS AKEASSII WINES QUALITY BY CONTROLLED FERMENTATION USING SACCHAROMYCES CEREVISIAE STRAINS

    Directory of Open Access Journals (Sweden)

    TAPSOBA François

    2016-06-01

    Full Text Available Palm wine produced traditionally and consumed by many people around the world and specifically in Burkina Faso posed health risks because of questionable quality of wine produced by mix culture fermentation and the use of antiseptics for the stabilization. In order to improve its quality, Saccharomyces cerevisiae strains isolated from Borassus akeassii wines and identified by amplification and RFLP analysis of the 5-8S-ITS region were used for in vitro fermentation of unfermented palm sap. The physicochemical characteristics of the sap were measured before and after fermentation process by High-Performance Liquid Chromatography (HPLC and the microbiological quality were also performed. HPLC analysis showed that glucose and fructose concentration in palm sap were 37.0 and 27.6 g/L respectively, ethanol content was ranged between 2.76 and 5.31 % (g/mL for controlled fermentation and 2.20 % (g/mL for spontaneous fermentation. Lactic and acetic acids were ranged between 0.1 and 0.3 g/L and 1.5 and 1.6 g/L for controlled fermentation versus 2.5 and 3.1 g/L and the spontaneous fermentation respectively. Coliforms and Staphylococcus aureus were detected only in the unfermented palm sap and the wine fermented spontaneously. Principal component analysis showed a good separation between spontaneous and controlled fermentation. Sterilization and controlled fermentation of the unfermented sap with palm wine Saccharomyces cerevisiae strains led to the improvement of palm wine quality.

  7. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering

    OpenAIRE

    Chen, Yan; Xiao, Wenhai; Wang, Ying; Liu, Hong; Li, Xia; Yuan, Yingjin

    2016-01-01

    Background Microbial production of lycopene, a commercially and medically important compound, has received increasing concern in recent years. Saccharomyces cerevisiae is regarded as a safer host for lycopene production than Escherichia coli. However, to date, the lycopene yield (mg/g DCW) in S. cerevisiae was lower than that in E. coli and did not facilitate downstream extraction process, which might be attributed to the incompatibility between host cell and heterologous pathway. Therefore, ...

  8. Responsiveness to Exogenous Camp of a Saccharomyces Cerevisiae Strain Conferred by Naturally Occurring Alleles of Pde1 and Pde2

    OpenAIRE

    Mitsuzawa, H.

    1993-01-01

    The Saccharomyces cerevisiae strain P-28-24C, from which cAMP requiring mutants derived, responded to exogenously added cAMP. Upon the addition of cAMP, this strain showed phenotypes shared by mutants with elevated activity of the cAMP pathway. Genetic analysis involving serial crosses of this strain to a strain with another genetic background revealed that the responsiveness to cAMP results from naturally occurring loss-of-function alleles of PDE1 and PDE2, which encode low and high affinity...

  9. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789.

    Science.gov (United States)

    Wei, Wu; McCusker, John H; Hyman, Richard W; Jones, Ted; Ning, Ye; Cao, Zhiwei; Gu, Zhenglong; Bruno, Dan; Miranda, Molly; Nguyen, Michelle; Wilhelmy, Julie; Komp, Caridad; Tamse, Raquel; Wang, Xiaojing; Jia, Peilin; Luedi, Philippe; Oefner, Peter J; David, Lior; Dietrich, Fred S; Li, Yixue; Davis, Ronald W; Steinmetz, Lars M

    2007-07-31

    We sequenced the genome of Saccharomyces cerevisiae strain YJM789, which was derived from a yeast isolated from the lung of an AIDS patient with pneumonia. The strain is used for studies of fungal infections and quantitative genetics because of its extensive phenotypic differences to the laboratory reference strain, including growth at high temperature and deadly virulence in mouse models. Here we show that the approximately 12-Mb genome of YJM789 contains approximately 60,000 SNPs and approximately 6,000 indels with respect to the reference S288c genome, leading to protein polymorphisms with a few known cases of phenotypic changes. Several ORFs are found to be unique to YJM789, some of which might have been acquired through horizontal transfer. Localized regions of high polymorphism density are scattered over the genome, in some cases spanning multiple ORFs and in others concentrated within single genes. The sequence of YJM789 contains clues to pathogenicity and spurs the development of more powerful approaches to dissecting the genetic basis of complex hereditary traits.

  10. Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Schuller Dorit

    2011-04-01

    Full Text Available Abstract Background Saccharomyces cerevisiae (Baker's yeast is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. Results Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift. Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. Conclusions Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms.

  11. Genome-wide transcriptional response of a Saccharomyces cerevisiae strain with an altered redox metabolism.

    Science.gov (United States)

    Bro, Christoffer; Regenberg, Birgitte; Nielsen, Jens

    2004-02-05

    The genome-wide transcriptional response of a Saccharomyces cerevisiae strain deleted in GDH1 that encodes a NADP(+)-dependent glutamate dehydrogenase was compared to a wild-type strain under anaerobic steady-state conditions. The GDH1-deleted strain has a significantly reduced NADPH requirement, and therefore, an altered redox metabolism. Identification of genes with significantly changed expression using a t-test and a Bonferroni correction yielded only 16 transcripts when accepting two false-positives, and 7 of these were Open Reading Frames (ORFs) with unknown function. Among the 16 transcripts the only one with a direct link to redox metabolism was GND1, encoding phosphogluconate dehydrogenase. To extract additional information we analyzed the transcription data for a gene subset consisting of all known genes encoding metabolic enzymes that use NAD(+) or NADP(+). The subset was analyzed for genes with significantly changed expression again with a t-test and correction for multiple testing. This approach was found to enrich the analysis since GND1, ZWF1 and ALD6, encoding the most important enzymes for regeneration of NADPH under anaerobic conditions, were down-regulated together with eight other genes encoding NADP(H)-dependent enzymes. This indicates a possible common redox-dependent regulation of these genes. Furthermore, we showed that it might be necessary to analyze the expression of a subset of genes to extract all available information from global transcription analysis.

  12. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    Science.gov (United States)

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  13. A Saccharomyces cerevisiae Wine Strain Inhibits Growth and Decreases Ochratoxin A Biosynthesis by Aspergillus carbonarius and Aspergillus ochraceus

    Directory of Open Access Journals (Sweden)

    Marilena Budroni

    2012-12-01

    Full Text Available The aim of this study was to select wine yeast strains as biocontrol agents against fungal contaminants responsible for the accumulation of ochratoxin A (OTA in grape and wine and to dissect the mechanism of OTA detoxification by a Saccharomyces cerevisiae strain (DISAABA1182, which had previously been reported to reduce OTA in a synthetic must. All of the yeast strains tested displayed an ability to inhibit the growth of Aspergillus carbonarius both in vivo and in vitro and addition of culture filtrates from the tested isolates led to complete inhibition of OTA production. S. cerevisiae DISAABA1182 was selected and further tested for its capacity to inhibit OTA production and pks (polyketide synthase transcription in A. carbonarius and Aspergillus ochraceus in vitro. In order to dissect the mechanism of OTA detoxification, each of these two fungi was co-cultured with living yeast cells exposed to yeast crude or to autoclaved supernatant: S. cerevisiae DISAABA1182 was found to inhibit mycelial growth and OTA production in both Aspergilli when co-cultured in the OTA-inducing YES medium. Moreover, a decrease in pks transcription was observed in the presence of living cells of S. cerevisiae DISAABA1182 or its supernatant, while no effects were observed on transcription of either of the constitutively expressed calmodulin and β-tubulin genes. This suggests that transcriptional regulation of OTA biosynthetic genes takes place during the interaction between DISAABA1182 and OTA-producing Aspergilli.

  14. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: Example of transcript analysis as a tool in inverse metabolic engineering

    DEFF Research Database (Denmark)

    Bro, Christoffer; Knudsen, S.; Regenberg, Birgitte

    2005-01-01

    Through genome-wide transcript analysis of a reference strain and two recombinant Saccharomyces cerevisiae strains with different rates of galactose uptake, we obtained information about the global transcriptional response to metabolic engineering of the GAL gene regulatory network. One......-regulated in the two recombinant strains with higher galactose uptake rates. This indicated that PGM2 is a target for overexpression in terms of increasing the flux through the Leloir pathway, and through overexpression of PGM2 the galactose uptake rate could be increased by 70% compared to that of the reference...... strain. Based on our findings, we concluded that phosphoglucomutase plays a key role in controlling the flux through the Leloir pathway, probably due to increased conversion of glucose-l-phosphate to glucose-6-phosphate. This conclusion was supported by measurements of sugar phosphates, which showed...

  15. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production.

    Science.gov (United States)

    Roca, Christophe; Nielsen, Jens; Olsson, Lisbeth

    2003-08-01

    Cofactor imbalance impedes xylose assimilation in Saccharomyces cerevisiae that has been metabolically engineered for xylose utilization. To improve cofactor use, we modified ammonia assimilation in recombinant S. cerevisiae by deleting GDH1, which encodes an NADPH-dependent glutamate dehydrogenase, and by overexpressing either GDH2, which encodes an NADH-dependent glutamate dehydrogenase, or GLT1 and GLN1, which encode the GS-GOGAT complex. Overexpression of GDH2 increased ethanol yield from 0.43 to 0.51 mol of carbon (Cmol) Cmol(-1), mainly by reducing xylitol excretion by 44%. Overexpression of the GS-GOGAT complex did not improve conversion of xylose to ethanol during batch cultivation, but it increased ethanol yield by 16% in carbon-limited continuous cultivation at a low dilution rate.

  16. Adjustment of Trehalose Metabolism in Wine Saccharomyces cerevisiae Strains To Modify Ethanol Yields

    Science.gov (United States)

    Rossouw, D.; Heyns, E. H.; Setati, M. E.; Bosch, S.

    2013-01-01

    The ability of Saccharomyces cerevisiae to efficiently produce high levels of ethanol through glycolysis has been the focus of much scientific and industrial activity. Despite the accumulated knowledge regarding glycolysis, the modification of flux through this pathway to modify ethanol yields has proved difficult. Here, we report on the systematic screening of 66 strains with deletion mutations of genes encoding enzymes involved in central carbohydrate metabolism for altered ethanol yields. Five of these strains showing the most prominent changes in carbon flux were selected for further investigation. The genes were representative of trehalose biosynthesis (TPS1, encoding trehalose-6-phosphate synthase), central glycolysis (TDH3, encoding glyceraldehyde-3-phosphate dehydrogenase), the oxidative pentose phosphate pathway (ZWF1, encoding glucose-6-phosphate dehydrogenase), and the tricarboxylic acid (TCA) cycle (ACO1 and ACO2, encoding aconitase isoforms 1 and 2). Two strains exhibited lower ethanol yields than the wild type (tps1Δ and tdh3Δ), while the remaining three showed higher ethanol yields. To validate these findings in an industrial yeast strain, the TPS1 gene was selected as a good candidate for genetic modification to alter flux to ethanol during alcoholic fermentation in wine. Using low-strength promoters active at different stages of fermentation, the expression of the TPS1 gene was slightly upregulated, resulting in a decrease in ethanol production and an increase in trehalose biosynthesis during fermentation. Thus, the mutant screening approach was successful in terms of identifying target genes for genetic modification in commercial yeast strains with the aim of producing lower-ethanol wines. PMID:23793638

  17. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37.

    Science.gov (United States)

    Li, Yun-Cheng; Mitsumasu, Kanako; Gou, Zi-Xi; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Wu, Xiao-Lei; Akamatsu, Takashi; Taguchi, Hisataka; Kida, Kenji

    2016-02-01

    Industrial yeast strains with good xylose fermentation ability and inhibitor tolerance are important for economical lignocellulosic bioethanol production. The flocculating industrial Saccharomyces cerevisiae strain NAPX37, harboring the xylose reductase-xylitol dehydrogenase (XR-XDH)-based xylose metabolic pathway, displayed efficient xylose fermentation during batch and continuous fermentation. During batch fermentation, the xylose consumption rates at the first 36 h were similar (1.37 g/L/h) when the initial xylose concentrations were 50 and 75 g/L, indicating that xylose fermentation was not inhibited even when the xylose concentration was as high as 75 g/L. The presence of glucose, at concentrations of up to 25 g/L, did not affect xylose consumption rate at the first 36 h. Strain NAPX37 showed stable xylose fermentation capacity during continuous ethanol fermentation using xylose as the sole sugar, for almost 1 year. Fermentation remained stable at a dilution rate of 0.05/h, even though the xylose concentration in the feed was as high as 100 g/L. Aeration rate, xylose concentration, and MgSO4 concentration were found to affect xylose consumption and ethanol yield. When the xylose concentration in the feed was 75 g/L, a high xylose consumption rate of 6.62 g/L/h and an ethanol yield of 0.394 were achieved under an aeration rate of 0.1 vvm, dilution rate of 0.1/h, and 5 mM MgSO4. In addition, strain NAPX37 exhibited good tolerance to inhibitors such as weak acids, furans, and phenolics during xylose fermentation. These findings indicate that strain NAPX37 is a promising candidate for application in the industrial production of lignocellulosic bioethanol.

  18. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Qureshi, Abdul Sattar; Zhang, Jian; Bao, Jie

    2015-01-01

    Ethanol fermentation was investigated at the high solids content of the dry dilute sulfuric acid pretreated corn stover feedstock using an evolutionary adapted Saccharomyces cerevisiae DQ1 strain. The evolutionary adaptation was conducted by successively transferring the S. cerevisiae DQ1 cells into the inhibitors containing corn stover hydrolysate every 12h and finally a stable yeast strain was obtained after 65 days' continuous adaptation. The ethanol fermentation performance using the adapted strain was significantly improved with the high ethanol titer of 71.40 g/L and the high yield of 80.34% in the simultaneous saccharification and fermentation (SSF) at 30% solids content. No wastewater was generated from pretreatment to fermentation steps. The results were compared with the published cellulosic ethanol fermentation cases, and the obvious advantages of the present work were demonstrated not only at the high ethanol titer and yield, but also the significant reduction of wastewater generation and potential cost reduction.

  19. Selection of indigenous Saccharomyces cerevisiae strains for Nero d'Avola wine and evaluation of selected starter implantation in pilot fermentation.

    Science.gov (United States)

    Capece, Angela; Romaniello, Rossana; Siesto, Gabriella; Pietrafesa, Rocchina; Massari, Carmela; Poeta, Cinzia; Romano, Patrizia

    2010-11-15

    The present research studied Saccharomyces cerevisiae yeasts isolated from Nero d'Avola grapes, collected in different areas of the Sicily region. RAPD-PCR analysis with M13 primer was used for preliminary discrimination among 341 S. cerevisiae isolates. Inoculated fermentations with S. cerevisiae strains, exhibiting different RAPD-PCR fingerprinting, revealed the impact of selected strains on volatile compound concentration. Two selected strains were used in fermentation at cellar level and the restriction analysis of mtDNA on yeast colonies isolated during fermentation was used to control strain implantation. This study represents an important step to establish a collection of indigenous S. cerevisiae strains isolated from a unique environment, such as Nero d'Avola vineyards. Different starter implantation throughout inoculated fermentation represents an additional character, which might be considered during the selection program for wine starter cultures.

  20. CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Stovicek, Vratislav; Borodina, Irina; Förster, Jochen

    2015-01-01

    , their genetic manipulation is challenging, as they are usually diploid or polyploid. Therefore, there is a need to develop more efficient genetic engineering tools. We applied a CRISPR–Cas9 system for genome editing of different industrial strains, and show simultaneous disruption of two alleles of a gene...

  1. Evaluation of phytic acid utilization by S. cerevisiae strains used in fermentation processes and biomass production.

    Science.gov (United States)

    Mikulski, Dawid; Kłosowski, Grzegorz

    2017-01-01

    Saccharomyces cerevisiae is a well-studied yeast species used mainly in fermentation processes, bakery, and for SCP (Single Cell Protein) acquisition. The aim of the study was to analyze the possibility of phytic acid utilization as one of the hydrolysis processes carried out by yeast. The analysis of 30 yeast strains used in fermentation and for biomass production, that were grown in media containing phytic acid, revealed a high variability in the biomass production rate and the capability to hydrolyze phytates. No correlation between a high biomass concentration and a high level of phytate hydrolysis was found. Only four analyzed strains (Bayanus IOC Efficience, Sano, PINK EXCEL, FINAROME) were able to reduce the phytic acid concentration by more than 33.5%, from the initial concentration 103.0 ± 2.1 μg/ml to the level below 70 μg/ml. The presented results suggest that the selected wine and fodder yeast can be used as in situ source of phosphohydrolases in fermentation processes, and especially in the production of fodder proteins. However, further studies aimed at the optimization of growing parameters, such as the maximization of phytase secretion, and a comprehensive analysis of the catalytic activity of the isolated phosphohydrolases, are necessary.

  2. Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance.

    Science.gov (United States)

    Petrezselyova, Silvia; Zahradka, Jaromir; Sychrova, Hana

    2010-01-01

    Saccharomyces cerevisiae yeast cells serve as a model to elucidate the bases of salt tolerance and potassium homeostasis regulation in eukaryotic cells. In this study, we show that two widely used laboratory strains, BY4741 and W303-1A, differ not only in cell size and volume but also in their relative plasma-membrane potential (estimated with a potentiometric fluorescent dye diS-C3(3) and as Hygromycin B sensitivity) and tolerance to alkali-metal cations. W303-1A cells and their mutant derivatives lacking either uptake (trk1 trk2) or efflux (nha1) systems for alkali-metal cations are more tolerant to toxic sodium and lithium cations but also more sensitive to higher external concentrations of potassium than BY4741 cells and their mutants. Moreover, our results suggest that though the two strains do not differ in the total potassium content, the regulation of intracellular potassium homeostasis is probably not the same in BY4741 and W303-1A cells.

  3. Targeted proteome analysis of single-gene deletion strains of Saccharomyces cerevisiae lacking enzymes in the central carbon metabolism

    Science.gov (United States)

    Kinoshita, Syohei; Nishino, Shunsuke; Tomita, Atsumi; Shimizu, Hiroshi

    2017-01-01

    Central carbon metabolism is controlled by modulating the protein abundance profiles of enzymes that maintain the essential systems in living organisms. In this study, metabolic adaptation mechanisms in the model organism Saccharomyces cerevisiae were investigated by direct determination of enzyme abundance levels in 30 wild type and mutant strains. We performed a targeted proteome analysis using S. cerevisiae strains that lack genes encoding the enzymes responsible for central carbon metabolism. Our analysis revealed that at least 30% of the observed variations in enzyme abundance levels could be explained by global regulatory mechanisms. A enzyme-enzyme co-abundance analysis revealed that the abundances of enzyme proteins involved in the trehalose metabolism and glycolysis changed in a coordinated manner under the control of the transcription factors for global regulation. The remaining variations were derived from local mechanisms such as a mutant-specific increase in the abundances of remote enzymes. The proteome data also suggested that, although the functional compensation of the deficient enzyme was attained by using more resources for protein biosynthesis, available resources for the biosynthesis of the enzymes responsible for central metabolism were not abundant in S. cerevisiae cells. These results showed that global and local regulation of enzyme abundance levels shape central carbon metabolism in S. cerevisiae by using a limited resource for protein biosynthesis. PMID:28241048

  4. New promoters for strain engineering of Penicillium chrysogenum.

    Science.gov (United States)

    Polli, Fabiola; Meijrink, Ben; Bovenberg, Roel A L; Driessen, Arnold J M

    2016-04-01

    Filamentous fungi such as Aspergillus and Penicillium are widely used as hosts for the industrial products such as proteins and secondary metabolites. Although filamentous fungi are versatile in recognizing transcriptional and translational elements present in genes from other filamentous fungal species, only few promoters have been applied and compared in performance so far in Penicillium chrysogenum. Therefore, a set of homologous and heterologous promoters were tested in a reporter system to obtain a set of potential different strengths. Through in vivo homologous recombination in Saccharomyces cerevisiae, twelve Aspergillus niger and P. chrysogenum promoter-reporter pathways were constructed that drive the expression of green fluorescent protein while concurrent expression of the red fluorescent protein was used as an internal standard and placed under control of the PcPAF promoter. The pathways were integrated into the genome of P. chrysogenum and tested using the BioLector system for fermentation. Reporter gene expression was monitored during growth and classified according to promoter strength and expression profile. A set of novel promoters was obtained that can be used to tune the expression of target genes in future strain engineering programs.

  5. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    Science.gov (United States)

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  6. Ethanol from lignocellulose - Fermentation inhibitors, detoxification and genetic engineering of Saccharomyces cerevisiae for enhanced resistance

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Simona

    2000-07-01

    Ethanol can be produced from lignocellulose by first hydrolysing the material to sugars, and then fermenting the hydrolysate with the yeast Saccharomyces cerevisiae. Hydrolysis using dilute sulphuric acid has advantages over other methods, however, compounds which inhibit fermentation are generated during this kind of hydrolysis. The inhibitory effect of aliphatic acids, furans, and phenolic compounds was investigated. The generation of inhibitors during hydrolysis was studied using Norway spruce as raw material. It was concluded that the decrease in the fermentability coincided with increasing harshness of the hydrolysis conditions. The decrease in fermentability was not correlated solely to the content of aliphatic acids or furan derivatives. To increase the fermentability, detoxification is often employed. Twelve detoxification methods were compared with respect to the chemical composition of the hydrolysate and the fermentability after treatment. The most efficient detoxification methods were anion-exchange at pH 10.0, overliming and enzymatic detoxification with the phenol-oxidase laccase. Detailed analyses of ion exchange revealed that anion exchange and unspecific hydrophobic interactions greatly contributed to the detoxification effect, while cation exchange did not. The comparison of detoxification methods also showed that phenolic compounds are very important fermentation inhibitors, as their selective removal with laccase had a major positive effect on the fermentability. Selected compounds; aliphatic acids, furans and phenolic compounds, were characterised with respect to their inhibitory effect on ethanolic fermentation by S. cerevisiae. When aliphatic acids or furans were compared, the inhibitory effects were found to be in the same range, but the phenolic compounds displayed widely different inhibitory effects. The possibility of genetically engineering S. cerevisiae to achieve increased inhibitor resistance was explored by heterologous expression of

  7. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wang, Meng; Li, Sijin; Zhao, Huimin

    2016-01-01

    The development of high-throughput phenotyping tools is lagging far behind the rapid advances of genotype generation methods. To bridge this gap, we report a new strategy for design, construction, and fine-tuning of intracellular-metabolite-sensing/regulation gene circuits by repurposing bacterial transcription factors and eukaryotic promoters. As proof of concept, we systematically investigated the design and engineering of bacterial repressor-based xylose-sensing/regulation gene circuits in Saccharomyces cerevisiae. We demonstrated that numerous properties, such as induction ratio and dose-response curve, can be fine-tuned at three different nodes, including repressor expression level, operator position, and operator sequence. By applying these gene circuits, we developed a cell sorting based, rapid and robust high-throughput screening method for xylose transporter engineering and obtained a sugar transporter HXT14 mutant with 6.5-fold improvement in xylose transportation capacity. This strategy should be generally applicable and highly useful for evolutionary engineering of proteins, pathways, and genomes in S. cerevisiae.

  8. Effect of Temperature on the Prevalence of Saccharomyces Non cerevisiae Species against a S. cerevisiae Wine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition

    Science.gov (United States)

    Alonso-del-Real, Javier; Lairón-Peris, María; Barrio, Eladio; Querol, Amparo

    2017-01-01

    Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae, there were fermentation

  9. Effect of Temperature on the Prevalence of Saccharomyces Non cerevisiae Species against a S. cerevisiae Wine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition.

    Science.gov (United States)

    Alonso-Del-Real, Javier; Lairón-Peris, María; Barrio, Eladio; Querol, Amparo

    2017-01-01

    Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae, there were fermentation

  10. Diversity of Saccharomyces cerevisiae strains isolated from Borassus akeassii palm wines from Burkina Faso in comparison to other African beverages.

    Science.gov (United States)

    Tapsoba, François; Legras, Jean-Luc; Savadogo, Aly; Dequin, Sylvie; Traore, Alfred Sababenedyo

    2015-10-15

    In South-West of Burkina Faso, palm wine is produced by spontaneous fermentation of the sap from a specific palm tree Borassus akeassii and plays an important role in people's lives. Saccharomyces cerevisiae is the main agent of this alcoholic fermentation but little is known about the diversity of the isolates from palm. In this work, 39 Saccharomyces cerevisiae strains were isolated from palm wine samples collected from 14 sites in Burkina Faso, as well as 7 isolates obtained from sorghum beer (Dolo) from 3 distant sites. Their diversity was analyzed at 12 microsatellite loci, and compared to the genotypes obtained for other African yeast populations isolated from Cocoa hulks from Ghana, sorghum beer from Ivory Coast, palm wine from Djibouti Republic, and to our database of strains from miscellaneous origins (bread, beer, wine, sake, oaks…). The ploidy of these strains has been assessed as well by flow cytometry. Our results show that B. akeassii palm wine contains a specific yeast population of diploid strains, different from Dolo produced in the same area and from other palm wine strains from Ivory Coast, Nigeria, or Djibouti Republic. In contrast, Dolo strains appeared as a group of related and mainly tetraploid strains despite being isolated from different countries.

  11. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant.

    Science.gov (United States)

    Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi; Ledesma-Amaro, Rodrigo

    2016-09-01

    We previously created an oleaginous Saccharomyces cerevisiae transformant as a dga1 mutant overexpressing Dga1p lacking 29 amino acids at the N-terminal (Dga1∆Np). Because we have already shown that dga1 disruption decreases the expression of ESA1, which encodes histone acetyltransferase, the present study was aimed at exploring how Esa1p was involved in lipid accumulation. We based our work on the previous observation that Esa1p acetylates and activates phosphoenolpyruvate carboxykinase (PEPCK) encoded by PCK1, a rate-limiting enzyme in gluconeogenesis, and subsequently evaluated the activation of Pck1p by yeast growth with non-fermentable carbon sources, thus dependent on gluconeogenesis. This assay revealed that the ∆dga1 mutant overexpressing Dga1∆Np had much lower growth in a glycerol-lactate (GL) medium than the wild-type strain overexpressing Dga1∆Np. Moreover, overexpression of Esa1p or Pck1p in mutants improved the growth, indicating that the ∆dga1 mutant overexpressing Dga1∆Np had lower activities of Pck1p and gluconeogenesis due to lower expression of ESA1. In vitro PEPCK assay showed the same trend in the culture of the ∆dga1 mutant overexpressing Dga1∆Np with 10 % glucose medium, indicating that Pck1p-mediated gluconeogenesis decreased in this oleaginous transformant under the lipid-accumulating conditions introduced by the glucose medium. The growth of the ∆dga1 mutant overexpressing Dga1∆Np in the GL medium was also improved by overexpression of acetyl-CoA synthetase, Acs1p or Acs2p, indicating that supply of acetyl-CoA was crucial for Pck1p acetylation by Esa1p. In addition, the ∆dga1 mutant without Dga1∆Np also showed better growth in the GL medium, indicating that decreased lipid accumulation was enhancing Pck1p-mediated gluconeogenesis. Finally, we found that overexpression of Ole1p, a fatty acid ∆9-desaturase, in the ∆dga1 mutant overexpressing Dga1∆Np improved its growth in the GL medium. Although the exact

  12. Isolation and characterization of Saccharomyces cerevisiae strains of winery interest Isolamento e caracterização de cepas de Saccharomyces cerevisiae de interesse em produção de vinho

    Directory of Open Access Journals (Sweden)

    Thais M. Guimarães

    2006-03-01

    Full Text Available Despite the availability of several Saccharomyces cerevisiae commercial strains intended for wine production, strains isolated from winery regions are usually more adapted to their own climatic conditions, grapes and also partially responsible for particular characteristics that frequently identify specific wines and regions. Thus the microbiota of an important winery region (Colombo was studied in order to isolate and characterize S. cerevisiae strains that could be used on wine production. From 61 yeasts isolated, 14 were identified as S. cerevisiae. Some of them showed fermentative characteristics even better than commercial strains indicating that they could be applied on wine production in order to increase the quality and assure the particular wine characteristics of that region.

  13. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.

    Science.gov (United States)

    Guirimand, Gregory; Sasaki, Kengo; Inokuma, Kentaro; Bamba, Takahiro; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-04-01

    Xylitol, a value-added polyol deriving from D-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with β-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications.

  14. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.

    Science.gov (United States)

    Hector, Ronald E; Mertens, Jeffrey A; Bowman, Michael J; Nichols, Nancy N; Cotta, Michael A; Hughes, Stephen R

    2011-09-01

    Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances, due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses both NADH and NADPH, is hypothesized to reduce the cofactor imbalance, allowing xylose fermentation in this yeast. However, unadapted S. cerevisiae strains expressing this XR grow poorly on xylose, suggesting that metabolism is still imbalanced, even under aerobic conditions. In this study, we investigated the possible reasons for this imbalance by deleting genes required for NADPH production and gluconeogenesis in S. cerevisiae. S. cerevisiae cells expressing the XR-XDH, but not a xylose isomerase, pathway required the oxidative branch of the pentose phosphate pathway (PPP) and gluconeogenic production of glucose-6-P for xylose assimilation. The requirement for generating glucose-6-P from xylose was also shown for Kluyveromyces lactis. When grown in xylose medium, both K. lactis and S. stipitis showed increases in enzyme activity required for producing glucose-6-P. Thus, natural xylose-assimilating yeast respond to xylose, in part, by upregulating enzymes required for recycling xylose back to glucose-6-P for the production of NADPH via the oxidative branch of the PPP. Finally, we show that induction of these enzymes correlated with increased tolerance to the NADPH-depleting compound diamide and the fermentation inhibitors furfural and hydroxymethyl furfural; S. cerevisiae was not able to increase enzyme activity for glucose-6-P production when grown in xylose medium and was more sensitive to these inhibitors in xylose medium compared to glucose.

  15. Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bojsen, Rasmus K; Andersen, Kaj Scherz; Regenberg, Birgitte

    2012-01-01

    Microbial biofilms can be defined as multi-cellular aggregates adhering to a surface and embedded in an extracellular matrix (ECM). The nonpathogenic yeast, Saccharomyces cerevisiae, follows the common traits of microbial biofilms with cell-cell and cell-surface adhesion. S. cerevisiae is shown...... pathways including the protein kinase A and a mitogen-activated protein kinase pathway. Advanced genetic tools and resources have been developed for S. cerevisiae including a deletion mutant-strain collection in a biofilm-forming strain background and GFP-fusion protein collections. Furthermore, S....... cerevisiae biofilm is well applied for confocal laser scanning microscopy and fluorophore tagging of proteins, DNA and RNA. These techniques can be used to uncover the molecular mechanisms for biofilm development, drug resistance and for the study of molecular interactions, cell response to environmental...

  16. Patagonian wines: implantation of an indigenous strain of Saccharomyces cerevisiae in fermentations conducted in traditional and modern cellars.

    Science.gov (United States)

    Lopes, Christian A; Rodríguez, María E; Sangorrín, Marcela; Querol, Amparo; Caballero, Adriana C

    2007-02-01

    In this work we evaluate the implantation capacity of the selected S. cerevisiae indigenous strain MMf9 and the quality of the produced wines in a traditional (T) and a modern (M) cellar with different ecological and technological characteristics in North Patagonia (Argentina). Red musts were fermented in 10,000 l vats using the indigenous strain MMf9 as well as the respective controls: a fermentation conducted with a foreign starter culture (BC strain) in M cellar and a natural fermentation in T cellar. Since commercial S. cerevisiae starters are always used for winemaking in M cellar and in order to compare the results, natural fermentations and fermentations conducted by the indigenous strain MMf9 were performed at pilot (200 l) scale in this cellar, concomitantly. Thirty indigenous yeasts were isolated at three stages of fermentation: initial, middle and end. The identification of the yeast biota associated to vinifications was carried out using ITS1-5.8S-ITS2 PCR-RFLP. The intra-specific variability of the S. cerevisiae populations was evaluated using mtDNA-RFLP analysis. Wines obtained from all fermentations were evaluated for their chemical and volatile composition and for their sensory characteristics. A higher capacity of implantation of the indigenous MMf9 strain was evidenced in the fermentation carried out in M cellar (80% at end stage) than the one carried out in T cellar (40%). This behaviour could indicate that each cellar differs in the diversity of S. cerevisiae strains associated to wine fermentations. Moreover a higher capacity of implantation of the native starter MMf9 with regard to the foreign (BC) one was also found in M cellar. The selected indigenous strain MMf9 was able to compete with the yeast biota naturally present in the must. Additionally, a higher rate of sugar consumption and a lower fermentation temperature were observed in vinifications conducted by MMf9 strain with regard to control fermentations, producing wines with favourable

  17. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology

    Directory of Open Access Journals (Sweden)

    Nijkamp Jurgen F

    2012-03-01

    Full Text Available Abstract Saccharomyces cerevisiae CEN.PK 113-7D is widely used for metabolic engineering and systems biology research in industry and academia. We sequenced, assembled, annotated and analyzed its genome. Single-nucleotide variations (SNV, insertions/deletions (indels and differences in genome organization compared to the reference strain S. cerevisiae S288C were analyzed. In addition to a few large deletions and duplications, nearly 3000 indels were identified in the CEN.PK113-7D genome relative to S288C. These differences were overrepresented in genes whose functions are related to transcriptional regulation and chromatin remodelling. Some of these variations were caused by unstable tandem repeats, suggesting an innate evolvability of the corresponding genes. Besides a previously characterized mutation in adenylate cyclase, the CEN.PK113-7D genome sequence revealed a significant enrichment of non-synonymous mutations in genes encoding for components of the cAMP signalling pathway. Some phenotypic characteristics of the CEN.PK113-7D strains were explained by the presence of additional specific metabolic genes relative to S288C. In particular, the presence of the BIO1 and BIO6 genes correlated with a biotin prototrophy of CEN.PK113-7D. Furthermore, the copy number, chromosomal location and sequences of the MAL loci were resolved. The assembled sequence reveals that CEN.PK113-7D has a mosaic genome that combines characteristics of laboratory strains and wild-industrial strains.

  18. Heterologous Expression of Amylase Gene from Saccharomycopsis fibuligera in an Industrial Strain of Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    LIU Zeng-ran; ZHANG Guang-yi; LONG Zhang-fu; LIU Shi-gui

    2005-01-01

    An α-amylase encoding gene was amplified by polymerase chain reaction from Saccharomycopsis fibuligera and inserted into a shuttle vector YEp352,together with the yeast phosphoglycerate kinase 1 promoter and α-factor signal gene. The recombinant expression plasmid pLA8α was transformed into an industrial strain of Saccharomyces cerevisiae Sc-11. The activity of the α-amylase produced by the transformant Sc-11-pLA8α was 6.3 U/mL and the starch utilization rate in YPS medium was 42 %. The purified amylase was analyzed by SDS-PAGE,showing a molecular weight of 55×103 protein band. Furthermore, the residual sugar, ethanol and some volatile compounds in the fermented worts under simulating brewing conditions were determined by chromatographic analyses. The fermentation characteristics of Sc-11-pLA8α were similar to that of Sc-11 and only minor changes in the concentration of flavor compounds could be observed.

  19. Physicochemical characterization of pomegranate wines fermented with three different Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Berenguer, María; Vegara, Salud; Barrajón, Enrique; Saura, Domingo; Valero, Manuel; Martí, Nuria

    2016-01-01

    Three commercial Saccharomyces cerevisiae yeast strains: Viniferm Revelación, Viniferm SV and Viniferm PDM were evaluated for the production of pomegranate wine from a juice coupage of the two well-known varieties Mollar and Wonderfull. Further malolactic fermentation was carried out spontaneously. The same fermentation patterns were observed for pH, titratable acidity, density, sugar consumption, and ethanol and glycerol production. Glucose was exhausted while fructose residues remained at the end of alcoholic fermentation. A high ethanol concentration (10.91 ± 0.27% v/v) in combination with 1.49 g/L glycerol was achieved. Citric acid concentration increased rapidly a 31.7%, malic acid disappeared as result of malolactic fermentation and the lactic acid levels reached values between 0.40 and 0.96 g/L. The analysis of CIEa parameter and total anthocyanin content highlights a lower degradation of monomeric anthocyanins during winemaking with Viniferm PDM yeast. The resulting wine retains a 34.5% of total anthocyanin content of pomegranate juice blend.

  20. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae.

    Science.gov (United States)

    Martínez, José L; Liu, Lifang; Petranovic, Dina; Nielsen, Jens

    2015-01-01

    Efficient production of appropriate oxygen carriers for transfusions (blood substitutes or artificial blood) has been pursued for many decades, and to date several strategies have been used, from synthetic polymers to cell-free hemoglobin carriers. The recent advances in the field of metabolic engineering also allowed the generation of different genetically modified organisms for the production of recombinant human hemoglobin. Several studies have showed very promising results using the bacterium Escherichia coli as a production platform, reporting hemoglobin titers above 5% of the total cell protein content. However, there are still certain limitations regarding the protein stability and functionality of the recombinant hemoglobin produced in bacterial systems. In order to overcome these limitations, yeast systems have been proposed as the eukaryal alternative. We recently reported the generation of a set of plasmids to produce functional human hemoglobin in Saccharomyces cerevisiae, with final titers of active hemoglobin exceeding 4% of the total cell protein. In this study, we propose a strategy for further engineering S. cerevisiae by altering the oxygen sensing pathway by deleting the transcription factor HAP1, which resulted in an increase of the final recombinant active hemoglobin titer exceeding 7% of the total cellular protein.

  1. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae.

    Science.gov (United States)

    Da Silva, Nancy A; Srikrishnan, Sneha

    2012-03-01

    Metabolic pathway engineering in the yeast Saccharomyces cerevisiae leads to improved production of a wide range of compounds, ranging from ethanol (from biomass) to natural products such as sesquiterpenes. The introduction of multienzyme pathways requires precise control over the level and timing of expression of the associated genes. Gene number and promoter strength/regulation are two critical control points, and multiple studies have focused on modulating these in yeast. This MiniReview focuses on methods for introducing genes and controlling their copy number and on the many promoters (both constitutive and inducible) that have been successfully employed. The advantages and disadvantages of the methods will be presented, and applications to pathway engineering will be highlighted.

  2. Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Anthony R. Borneman

    2016-04-01

    Full Text Available Humans have been consuming wines for more than 7000 yr . For most of this time, fermentations were presumably performed by strains of Saccharomyces cerevisiae that naturally found their way into the fermenting must . In contrast, most commercial wines are now produced by inoculation with pure yeast monocultures, ensuring consistent, reliable and reproducible fermentations, and there are now hundreds of these yeast starter cultures commercially available. In order to thoroughly investigate the genetic diversity that has been captured by over 50 yr of commercial wine yeast development and domestication, whole genome sequencing has been performed on 212 strains of S. cerevisiae, including 119 commercial wine and brewing starter strains, and wine isolates from across seven decades. Comparative genomic analysis indicates that, despite their large numbers, commercial strains, and wine strains in general, are extremely similar genetically, possessing all of the hallmarks of a population bottle-neck, and high levels of inbreeding. In addition, many commercial strains from multiple suppliers are nearly genetically identical, suggesting that the limits of effective genetic variation within this genetically narrow group may be approaching saturation.

  3. Proteolytic activity of Saccharomyces cerevisiae strains associated with Italian dry-fermented sausages in a model system.

    Science.gov (United States)

    Chaves-López, Clemencia; Paparella, Antonello; Tofalo, Rosanna; Suzzi, Giovanna

    2011-10-17

    Strains of Saccharomyces cerevisiae isolated from Italian salami were screened for proteolytic activity in a model system containing sarcoplasmic (SMS) or myofibrillar (MMS) proteins, at 20°C for 14days, to evaluate the possible influence on the proteolysis of fermented sausages. SDS-PAGE revealed that 14 of the most osmotolerant strains were responsible for the extensive hydrolysis of the main myofibrillar proteins, while only one strain was able to hydrolyze sarcoplasmic proteins. Free amino acids (FAA) accumulated during proteolysis were strain-dependent with different patterns from sarcoplasmic or myofibrillar protein fraction. In general, proteolysis lead Cys, Glu, Lys and Val as the most abundant FAA in the inoculated MMS samples. Volatile compound analysis, determined by SPME-GC-MS, evidenced 3-methyl butanol in MMS, and 2-methyl propanol and 3-methyl-1-butanol in SMS as major compounds. Our findings highlight that S. cerevisiae could influence the composition in amino acids and volatile compounds in fermented sausages, with a strain-dependent activity.

  4. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering.

    Science.gov (United States)

    Asadollahi, Mohammad A; Maury, Jérôme; Patil, Kiran Raosaheb; Schalk, Michel; Clark, Anthony; Nielsen, Jens

    2009-11-01

    A genome-scale metabolic model was used to identify new target genes for enhanced biosynthesis of sesquiterpenes in the yeast Saccharomyces cerevisiae. The effect of gene deletions on the flux distributions in the metabolic model of S. cerevisiae was assessed using OptGene as the modeling framework and minimization of metabolic adjustments (MOMA) as objective function. Deletion of NADPH-dependent glutamate dehydrogenase encoded by GDH1 was identified as the best target gene for the improvement of sesquiterpene biosynthesis in yeast. Deletion of this gene enhances the available NADPH in the cytosol for other NADPH requiring enzymes, including HMG-CoA reductase. However, since disruption of GDH1 impairs the ammonia utilization, simultaneous over-expression of the NADH-dependent glutamate dehydrogenase encoded by GDH2 was also considered in this study. Deletion of GDH1 led to an approximately 85% increase in the final cubebol titer. However, deletion of this gene also caused a significant decrease in the maximum specific growth rate. Over-expression of GDH2 did not show a further effect on the final cubebol titer but this alteration significantly improved the growth rate compared to the GDH1 deleted strain.

  5. Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kanchana R. Kildegaard

    2015-12-01

    Full Text Available Biomass, the most abundant carbon source on the planet, may in the future become the primary feedstock for production of fuels and chemicals, replacing fossil feedstocks. This will, however, require development of cell factories that can convert both C6 and C5 sugars present in lignocellulosic biomass into the products of interest. We engineered Saccharomyces cerevisiae for production of 3-hydroxypropionic acid (3HP, a potential building block for acrylates, from glucose and xylose. We introduced the 3HP biosynthetic pathways via malonyl-CoA or β-alanine intermediates into a xylose-consuming yeast. Using controlled fed-batch cultivation, we obtained 7.37±0.17 g 3HP L−1 in 120 hours with an overall yield of 29±1% Cmol 3HP Cmol−1 xylose. This study is the first demonstration of the potential of using S. cerevisiae for production of 3HP from the biomass sugar xylose.

  6. Effect of different strains of Saccharomyces cerevisiae on production of volatiles in Napa Gamay wine and Petite Sirah wine.

    Science.gov (United States)

    Patel, Sangeeta; Shibamoto, Takayuki

    2002-09-25

    Napa Gamay grapes were fermented with four different strains of the yeast Saccharomyces cerevisiae (VL1, MI16, Fermirouge, and RA17). Petite Sirah grapes were fermented with seven different strains of the same yeast (BM45, Fermirouge, RA17, NI, CX3079, A350, and A796). Volatile compounds formed in the wines were analyzed by gas chromatography/mass spectrometry. Volatile compounds found in both wines were alcohols, esters, and acids, as well as some miscellaneous compounds. Isoamyl alcohol was the compound found in the highest relative amount with all four yeast strains in the Napa Gamay wines, followed by 2-phenyl ethanol, monoethyl succinate, and hexanoic acid. The relative amounts of isoamyl alcohol ranged from 30.84% (VL1) to 43.28% (RA17). Major volatile compounds found in Petite Sirah wines were isoamyl alcohol, 2-phenyl ethanol, 2-hydroxy ethyl propanoate, monoethyl succinate, and octanoic acid. The several esters, including 2-hydroxyethyl propanoate, may contribute to the fruity flavor of Petite Sirah wines. Overall, the S. cerevisiae yeast strains used to ferment Napa Gamay grapes and Petite Sirah grapes produced the same major components, with certain variations in formation levels.

  7. Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction

    Science.gov (United States)

    Hirasawa, Takashi; Ida, Yoshihiro; Furuasawa, Chikara; Shimizu, Hiroshi

    2014-01-01

    Saccharomyces cerevisiae shows high growth activity under low pH conditions and can be used for producing acidic chemicals such as organic acids as well as fuel ethanol. However, ethanol can also be a problematic by-product in the production of chemicals except for ethanol. We have reported that a stable low-ethanol production phenotype was achieved by disrupting 6 NADH-dependent alcohol dehydrogenase genes of S. cerevisiae. Moreover, the genes encoding the NADH-dependent glycerol biosynthesis enzymes were further disrupted because the ADH-disrupted recombinant strain showed high glycerol production to maintain intracellular redox balance. The recombinant strain incapable producing ethanol and glycerol could have the potential to be a host for producing metabolite(s) whose biosynthesis is coupled with NADH oxidation. Indeed, we successfully achieved almost 100% yield for L-lactate production using this recombinant strain as a host. In addition, the potential of our constructed recombinant strain for efficient bioproduction, particularly under anaerobic conditions, is also discussed. PMID:24247205

  8. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

    DEFF Research Database (Denmark)

    Otero, José Manuel; Vongsangnak, Wanwipa; Asadollahi, Mohammadali;

    2010-01-01

    BACKGROUND: The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where s...... that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk.......BACKGROUND: The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where...... selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. RESULTS: In this work we...

  9. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.

    Science.gov (United States)

    Görgens, Johann F; Bressler, David C; van Rensburg, Eugéne

    2015-01-01

    The production of raw starch-degrading amylases by recombinant Saccharomyces cerevisiae provides opportunities for the direct hydrolysis and fermentation of raw starch to ethanol without cooking or exogenous enzyme addition. Such a consolidated bioprocess (CBP) for raw starch fermentation will substantially reduce costs associated with energy usage and commercial granular starch hydrolyzing (GSH) enzymes. The core purpose of this review is to provide comprehensive insight into the physiological impact of recombinant amylase production on the ethanol-producing yeast. Key production parameters, based on outcomes from modifications to the yeast genome and levels of amylase production, were compared to key benchmark data. In turn, these outcomes are of significance from a process point of view to highlight shortcomings in the current state of the art of raw starch fermentation yeast compared to a set of industrial standards. Therefore, this study provides an integrated critical assessment of physiology, genetics and process aspects of recombinant raw starch fermenting yeast in relation to presently used technology. Various approaches to strain development were compared on a common basis of quantitative performance measures, including the extent of hydrolysis, fermentation-hydrolysis yield and productivity. Key findings showed that levels of α-amylase required for raw starch hydrolysis far exceeded enzyme levels for soluble starch hydrolysis, pointing to a pre-requisite for excess α-amylase compared to glucoamylase for efficient raw starch hydrolysis. However, the physiological limitations of amylase production by yeast, requiring high biomass concentrations and long cultivation periods for sufficient enzyme accumulation under anaerobic conditions, remained a substantial challenge. Accordingly, the fermentation performance of the recombinant S. cerevisiae strains reviewed in this study could not match the performance of conventional starch fermentation processes

  10. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Li, Mingji; Kildegaard, Kanchana Rueksomtawin; Chen, Yun;

    2015-01-01

    Resveratrol is a natural antioxidant compound, used as food supplement and cosmetic ingredient. Microbial production of resveratrol has until now been achieved by supplementation of expensive substrates, p-coumaric acid or aromatic amino acids. Here we engineered the yeast Saccharomyces cerevisiae...... to produce resveratrol directly from glucose or ethanol via tyrosine intermediate. First we introduced the biosynthetic pathway, consisting of tyrosine ammonia-lyase from Herpetosiphon aurantiacus, 4-coumaryl-CoA ligase from Arabidopsis thaliana and resveratrol synthase from Vitis vinifera, and obtained 2.......73±0.05 mg L−1 resveratrol from glucose. Then we over-expressed feedback-insensitive alleles of ARO4 encoding 3-deoxy-D-arabino-heptulosonate-7-phosphate and ARO7 encoding chorismate mutase, resulting in production of 4.85±0.31 mg L−1 resveratrol from glucose as the sole carbon source. Next we improved...

  11. Development of flocculent Saccharomyces cerevisiae strain GYK-10 for the selective fermentation of glucose/fructose in sugar mills.

    Science.gov (United States)

    Kato, Taku; Ohara, Satoshi; Fukushima, Yasuhiro; Sugimoto, Akira; Masuda, Takayuki; Yasuhara, Takaomi; Yamagishi, Hiromi

    2016-07-01

    Advances in glucose/fructose-selective ethanol production have successfully enhanced raw sugar extraction from sugarcane juice by converting inhibitory substances (i.e., glucose/fructose) into ethanol, which is removed by subsequent operations in cane sugar mills. However, the commercial implementation of this breakthrough process in existing cane sugar mills requires a yeast strain that (i) can be used in food production processes, (ii) exhibits stable saccharometabolic selectivity, and (iii) can be easily separated from the saccharide solution. In this study, we developed a suitable saccharometabolism-selective and flocculent strain, Saccharomyces cerevisiae GYK-10. We obtained a suitable yeast strain for selective fermentation in cane sugar mills using a yeast mating system. First, we crossed a haploid strain defective in sucrose utilization with a flocculent haploid strain. Next, we performed tetrad dissection of the resultant hybrid diploid strain and selected GYK-10 from various segregants by investigating the sucrose assimilation and flocculation capacity phenotypes. Ten consecutive fermentation tests of the GYK-10 strain using a bench-scale fermentor confirmed its suitability for the implementation of practical selective fermentation in a commercial sugar mill. The strain exhibited complete saccharometabolic selectivity and sustained flocculation, where it maintained a high ethanol yield and conversion rate throughout the test.

  12. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  13. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Scalcinati Gionata

    2012-08-01

    Full Text Available Abstract Background Sesquiterpenes are a class of natural products with a diverse range of attractive industrial proprieties. Due to economic difficulties of sesquiterpene production via extraction from plants or chemical synthesis there is interest in developing alternative and cost efficient bioprocesses. The hydrocarbon α-santalene is a precursor of sesquiterpenes with relevant commercial applications. Here, we construct an efficient Saccharomyces cerevisiae cell factory for α-santalene production. Results A multistep metabolic engineering strategy targeted to increase precursor and cofactor supply was employed to manipulate the yeast metabolic network in order to redirect carbon toward the desired product. To do so, genetic modifications were introduced acting to optimize the farnesyl diphosphate branch point, modulate the mevalonate pathway, modify the ammonium assimilation pathway and enhance the activity of a transcriptional activator. The approach employed resulted in an overall α-santalene yield of a 0.0052 Cmmol (Cmmol glucose-1 corresponding to a 4-fold improvement over the reference strain. This strategy, combined with a specifically developed continuous fermentation process, led to a final α-santalene productivity of 0.036 Cmmol (g biomass-1 h-1. Conclusions The results reported in this work illustrate how the combination of a metabolic engineering strategy with fermentation technology optimization can be used to obtain significant amounts of the high-value sesquiterpene α-santalene. This represents a starting point toward the construction of a yeast “sesquiterpene factory” and for the development of an economically viable bio-based process that has the potential to replace the current production methods.

  14. The effect of hexose ratios on metabolite production in Saccharomyces cerevisiae strains obtained from the spontaneous fermentation of mezcal.

    Science.gov (United States)

    Oliva Hernández, Amanda A; Taillandier, Patricia; Reséndez Pérez, Diana; Narváez Zapata, José A; Larralde Corona, Claudia Patricia

    2013-04-01

    Mezcal from Tamaulipas (México) is produced by spontaneous alcoholic fermentation using Agave spp. musts, which are rich in fructose. In this study eight Saccharomyces cerevisiae isolates obtained at the final stage of fermentation from a traditional mezcal winery were analysed in three semi-synthetic media. Medium M1 had a sugar content of 100 g l(-1) and a glucose/fructose (G/F) of 9:1. Medium M2 had a sugar content of 100 g l(-1) and a G/F of 1:9. Medium M3 had a sugar content of 200 g l(-1) and a G/F of 1:1. In the three types of media tested, the highest ethanol yield was obtained from the glucophilic strain LCBG-3Y5, while strain LCBG-3Y8 was highly resistant to ethanol and the most fructophilic of the mezcal strains. Strain LCBG-3Y5 produced more glycerol (4.4 g l(-1)) and acetic acid (1 g l(-1)) in M2 than in M1 (1.7 and 0.5 g l(-1), respectively), and the ethanol yields were higher for all strains in M1 except for LCBG-3Y5, -3Y8 and the Fermichamp strain. In medium M3, only the Fermichamp strain was able to fully consume the 100 g of fructose l(-1) but left a residual 32 g of glucose l(-1). Regarding the hexose transporters, a high number of amino acid polymorphisms were found in the Hxt1p sequences. Strain LCBG-3Y8 exhibited eight unique amino acid changes, followed by the Fermichamp strain with three changes. In Hxt3p, we observed nine amino acid polymorphisms unique for the Fermichamp strain and five unique changes for the mezcal strains.

  15. Creation of a synthetic xylose-inducible promoter for Saccharomyces cerevisiae

    Science.gov (United States)

    Saccharomyces cerevisiae is currently used to produce ethanol from glucose, but it cannot utilize five-carbon sugars contained in the hemicellulose component of biomass feedstocks. S. cerevisiae strains engineered for xylose fermentation have been made using constitutive promoters to express the req...

  16. Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination

    Institute of Scientific and Technical Information of China (English)

    Qiang ZHANG; Qi-he CHEN; Ming-liang FU; Jin-ling WANG; Hong-bo ZHANG; Guo-qing HE

    2008-01-01

    The bglS gene encoding endo-1,3-1,4-β-glucanase from Bacillus subtilis was cloned and sequenced in this study. The bglS expression cassette, including PGK1 promoter, bglS gene fused to the signal sequence of the yeast mating pheromone α-factor (MFals), and ADH1 terminator with G418-resistance as the selected marker, was constructed. Then one of the PEP4 allele of Saccharomyces cerevisiae WZ65 strain was replaced by bglS expression cassette using chromosomal integration of polymerase chain reaction (PCR)-mediated homologous recombination, and the bglS gene was expressed simultaneously. The recombinant strain S. cerevisiae (SC-βG) was preliminarily screened by the clearing hydrolysis zone formed after the barley β-glucan was hydrolyzed in the plate and no proteinase A (PrA) activity was measured in fermenting liquor. The results of PCR analysis ofgenome DNA showed that one of the PEP4 allele had been replaced and bglS gene had been inserted into the locus of PEP4 gene in recombinant strains. Different endo-1,3-1,4-β-glucanase assay methods showed that the recombinant strain SC-βG had high endo-1,3-1,4-β-glucanase expression level with the maximum of 69.3 U/(h-ml) after 60 h of incubation. Meanwhile, the Congo Red method was suitable for the determination of endo-1,3-1,4-β-glucanase activity during the actual brewing process. The current research implies that the constructed yeast strain could be utilized to improve the industrial brewing property of beer.

  17. Comparative study of Saccharomyces cerevisiae wine strains to identify potential marker genes correlated to desiccation stress tolerance.

    Science.gov (United States)

    Capece, Angela; Votta, Sonia; Guaragnella, Nicoletta; Zambuto, Marianna; Romaniello, Rossana; Romano, Patrizia

    2016-05-01

    The most diffused formulation of starter for winemaking is active dry yeast (ADY). ADYs production process is essentially characterized by air-drying stress, a combination of several stresses, including thermal, hyperosmotic and oxidative and cell capacity to counteract such multiple stresses will determine its survival. The molecular mechanisms underlying cell stress response to desiccation have been mostly studied in laboratory and commercial yeast strains, but a growing interest is currently developing for indigenous yeast strains which represent a valuable and alternative source of genetic and molecular biodiversity to be exploited. In this work, a comparative study of different Saccharomyces cerevisiae indigenous wine strains, previously selected for their technological traits, has been carried out to identify potentially relevant genes involved in desiccation stress tolerance. Cell viability was evaluated along desiccation treatment and gene expression was analyzed by real-time PCR before and during the stress. Our data show that the observed differences in individual strain sensitivity to desiccation stress could be associated to specific gene expression over time. In particular, either the basal or the stress-induced mRNA levels of certain genes, such as HSP12, SSA3, TPS1, TPS2, CTT1 and SOD1, result tightly correlated to the strain survival advantage. This study provides a reliable and sensitive method to predict desiccation stress tolerance of indigenous wine yeast strains which could be preliminary to biotechnological applications.

  18. Nuclear and mitochondrial genome instability induced by senna (Cassia angustifolia Vahl.) aqueous extract in Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Silva, C R; Caldeira-de-Araújo, A; Leitão, A C; Pádula, M

    2014-11-27

    Cassia angustifolia Vahl. (senna) is commonly used in self-medication and is frequently used to treat intestine constipation. A previous study involving bacteria and plasmid DNA suggested the possible toxicity of the aqueous extract of senna (SAE). The aim of this study was to extend the knowledge concerning SAE genotoxicity mechanisms because of its widespread use and its risks to human health. We investigated the impact of SAE on nuclear DNA and on the stability of mitochondrial DNA in Saccharomyces cerevisiae (wt, ogg1, msh6, and ogg1msh6) strains, monitoring the formation of petite mutants. Our results demonstrated that SAE specifically increased Can(R) mutagenesis only in the msh6 mutant, supporting the view that SAE can induce misincorporation errors in DNA. We observed a significant increase in the frequency of petite colonies in all studied strains. Our data indicate that SAE has genotoxic activity towards both mitochondrial and nuclear DNA.

  19. Zearalenone and Its Derivatives α-Zearalenol and β-Zearalenol Decontamination by Saccharomyces cerevisiae Strains Isolated from Bovine Forage

    Directory of Open Access Journals (Sweden)

    Luiz Keller

    2015-08-01

    Full Text Available Zearalenone (ZEA and its derivatives are mycotoxins with estrogenic effects on mammals. The biotransformation for ZEA in animals involves the formation of two major metabolites, α- and β-zearalenol (α-ZOL and β-ZOL, which are subsequently conjugated with glucuronic acid. The capability of Saccharomyces cerevisiae strains isolated from silage to eliminate ZEA and its derivatives α-ZOL and β-ZOL was investigated as, also, the mechanisms involved. Strains were grown on Yeast Extract-Peptone-Dextrose medium supplemented with the mycotoxins and their elimination from medium was quantified over time by HPLC-FL. A significant effect on the concentration of ZEA was observed, as all the tested strains were able to eliminate more than 90% of the mycotoxin from the culture medium in two days. The observed elimination was mainly due to ZEA biotransformation into β-ZOL (53% and α-ZOL (8% rather than to its adsorption to yeast cells walls. Further, the biotransformation of α-ZOL was not observed but a small amount of β-ZOL (6% disappeared from culture medium. ZEA biotransformation by yeasts may not be regarded as a full detoxification process because both main end-products are still estrogenic. Nonetheless, it was observed that the biotransformation favors the formation of β-ZOL which is less estrogenic than ZEA and α-ZOL. This metabolic effect is only possible if active strains are used as feed additives and may play a role in the detoxification performance of products with viable S. cerevisiae cells.

  20. Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain.

    Science.gov (United States)

    Delneri, D; Gardner, D C; Bruschi, C V; Oliver, S G

    1999-11-01

    By in silicio analysis, we have discovered that there are seven open reading frames (ORFs) in Saccharomyces cerevisiae whose protein products show a high degree of amino acid sequence similarity to the aryl alcohol dehydrogenase (AAD) of the lignin-degrading fungus Phanerochaete chrysosporium. Yeast cultures grown to stationary phase display a significant aryl alcohol dehydrogenase activity by degrading aromatic aldehydes to the corresponding alcohols. To study the biochemical and the biological role of each of the AAD genes, a series of mutant strains carrying deletion of one or more of the AAD-coding sequences was constructed by PCR-mediated gene replacement, using the readily selectable marker kanMX. The correct targeting of the PCR-generated disruption cassette into the genomic locus was verified by analytical PCR and by pulse-field gel electrophoresis (PFGE) followed by Southern blot analysis. Double, triple and quadruple mutant strains were obtained by classical genetic methods, while the construction of the quintuple, sextuple and septuple mutants was achieved by using the marker URA3 from Kluyveromyces lactis, HIS3 from Schizosaccharomyces pombe and TRP1 from S. cerevisiae. None of the knock-out strains revealed any mutant phenotype when tested for the degradation of aromatic aldehydes using both spectrophotometry and high performance liquid chromatography (HPLC). Specific tests for changes in the ergosterol and phospholipids profiles did not reveal any mutant phenotype and mating and sporulation efficiencies were not affected in the septuple deletant. Compared to the wild-type strain, the septuple deletant showed an increased resistance to the anisaldehyde, but there is a possibility that the nutritional markers used for gene replacement are causing this effect.

  1. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows.

    Science.gov (United States)

    Chung, Y-H; Walker, N D; McGinn, S M; Beauchemin, K A

    2011-05-01

    Fifteen ruminally cannulated, nonlactating Holstein cows were used to measure the effects of 2 strains of Saccharomyces cerevisiae, fed as active dried yeasts, on ruminal pH and fermentation and enteric methane (CH(4)) emissions. Nonlactating cows were blocked by total duration (h) that their ruminal pH was below 5.8 during a 6-d pre-experimental period. Within each block, cows were randomly assigned to control (no yeast), yeast strain 1 (Levucell SC), or yeast strain 2 (a novel strain selected for enhanced in vitro fiber degradation), with both strains (Lallemand Animal Nutrition, Montréal, QC, Canada) providing 1 × 10(10) cfu/head per day. Cows were fed once daily a total mixed ration consisting of a 50:50 forage to concentrate ratio (dry matter basis). The yeast strains were dosed via the rumen cannula daily at the time of feeding. During the 35-d experiment, ruminal pH was measured continuously for 7 d (d 22 to 28) by using an indwelling system, and CH(4) gas was measured for 4 d (d 32 to 35) using the sulfur hexafluoride tracer gas technique (with halters and yokes). Rumen contents were sampled on 2 d (d 22 and 26) at 0, 3, and 6h after feeding. Dry matter intake, body weight, and apparent total-tract digestibility of nutrients were not affected by yeast feeding. Strain 2 decreased the average daily minimum (5.35 vs. 5.65 or 5.66), mean (5.98 vs. 6.24 or 6.34), and maximum ruminal pH (6.71 vs. 6.86 or 6.86), and prolonged the time that ruminal pH was below 5.8 (7.5 vs. 3.3 or 1.0 h/d) compared with the control or strain 1, respectively. The molar percentage of acetate was lower and that of propionate was greater in the ruminal fluid of cows receiving strain 2 compared with cows receiving no yeast or strain 1. Enteric CH(4) production adjusted for intake of dry matter or gross energy, however, did not differ between either yeast strain compared with the control but it tended to be reduced by 10% when strain 2 was compared with strain 1. The study shows that

  2. EDITORIAL: Excelling under strain: band engineering in nanomaterials Excelling under strain: band engineering in nanomaterials

    Science.gov (United States)

    Demming, Anna

    2013-08-01

    A little stress or strain has been known to improve the performance of athletes, actors and of course nanomaterials alike. In fact strain in silicon is now a major engineering tool for improving the performance of devices, and is ubiquitously used in device design and fabrication. Strain engineering alters a material's band structure, a model of electron behaviour that describes how as atoms come together in a solid, their discrete electron orbitals overlap to ultimately give rise to bands of allowed energy levels. In a strained crystal lattice of silicon or silicon germanium the distance between atoms in the lattice is greater than usual and the bands of allowed energy levels change. This July marks 100 years since Bohr submitted his paper 'On the constitution of atoms and molecules' [1] where he describes the structure of the atom in terms of discrete allowed energy levels. The paper was a seminal contribution to the development of quantum mechanics and laid the initial theoretical precepts for band gap engineering in devices. In this issue Nrauda and a collaboration of researchers in Europe and Australia study the growth of defect-free SiGe islands on pre-patterned silicon [2]. They analyse the strain in the islands and determine at what point lattice dislocations set in with a view to informing implementation of strain engineering in devices. The effects of strain on band structure in silicon and germanium were already studied and reported in the 1950s [3, 4]. Since then the increasing focus on nanoscale materials and the hunger for control of electronic properties has prompted further study of strain effects. The increased surface area to volume ratio in nanostructures changes the strain behaviour with respect to bulk materials, and this can also be exploited for handling and fine tuning strain to manipulate material properties. It is perhaps no surprise that graphene, one of the most high-profile materials in current nanotechnology research, has attracted

  3. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds

    Directory of Open Access Journals (Sweden)

    Hawkins Gary M

    2011-11-01

    Full Text Available Abstract Background Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda. Results An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight into 17

  4. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy.

    Science.gov (United States)

    Lv, Xiaomei; Xie, Wenping; Lu, Wenqiang; Guo, Fei; Gu, Jiali; Yu, Hongwei; Ye, Lidan

    2014-09-30

    To explore the capacity of isoprene production in Saccharomyces cerevisiae, a rational push-pull-restrain strategy was proposed to engineer the mevalonic acid (MVA) and acetyl-CoA pathways. The strategy can be decomposed into the up-regulation of precursor supply in the acetyl-CoA module and the MVA pathway (push-strategy), increase of the isoprene branch flux (pull-strategy), and down-regulation of the competing pathway (restrain-strategy). Furthermore, to reduce the production cost arising from galactose addition and meanwhile maintain the high expression of Gal promoters, the galactose regulatory network was modulated by Gal80p deletion. Finally, the engineered strain YXM10-ispS-ispS could accumulate up to 37 mg/L isoprene (about 782-fold increase compared to the parental strain) under aerobic conditions with glycerol-sucrose as carbon source. In this way, a new potential platform for isoprene production was established via metabolic engineering of the yeast native pathways.

  5. Kinetic Activity of Commercial Native Linamarase (CNLIN and Engineered <&beta-glucosidase from Saccharomyces cerevisiae on Cassava Linamarin

    Directory of Open Access Journals (Sweden)

    Julius Kwagh-Har Ikya

    2014-02-01

    Full Text Available The ability of Commercial Native Linamarase (CNLIN and Engineered Linamarase (GELIN extracts from Saccharomyces cerevisiae to hydrolyse cassava linamarin was challenged. CNLIN acting as control was used together with GELIN extracts from Saccharomyces cerevisiae to evaluate the kinetic data for test enzymes at pH 3.5, 6.8 and 10.5, respectively and ambient temperature (35°C. Data obtained from the varying activity versus substrate concentrations were fitted with the Michaelis-Menten plots and Lineweaver-Burk model to obtain maximum velocity (Vmax, affinity coefficient (Km, physiological efficiency (Vmax/Km and r2 (linear regressing coefficient. The results indicated that the engineered linamarase conferred different enzyme kinetic data showing degradation of cassava linamarin by CNLIN and GELIN from Saccharomyces cerevisiae at the optimum pH and temperature. The relation was best described by the characteristic sigmoid Michaelis-Menten plots and Lineweaver-Burk model evidence from the high coefficient of linear regression (r2>0.976. Vmax and Km derived from the Lineweaver-Burk model varied from 10.0 to 13.0 µmol/min and 0.5 to 0.9 &muM respectively for engineered enzymes and 0.0-10.0 mol/min and 0.0 to 0.9 &muM respectively for CNLIN. The kinetics profiles of the studied enzymes showed their actions on cassava linamarin were influenced by degree of genetic manipulation, purification and pH at ambient temperature. The wide pH tolerance in the degradation of linamarin suggests a possible use of the engineered linamarase from Saccharomyces cerevisiae in detoxifying linamarin in cassava for the production of cyanide-free cassava-based food products.

  6. Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Marullo, Philippe; Aigle, Michel; Bely, Marina; Masneuf-Pomarède, Isabelle; Durrens, Pascal; Dubourdieu, Denis; Yvert, Gaël

    2007-09-01

    Natural Saccharomyces cerevisiae yeast strains exhibit very large genotypic and phenotypic diversity. However, the link between phenotype variation and genetic determinism is still difficult to identify, especially in wild populations. Using genome hybridization on DNA microarrays, it is now possible to identify single-feature polymorphisms among divergent yeast strains. This tool offers the possibility of applying quantitative genetics to wild yeast strains. In this instance, we studied the genetic basis for variations in acetic acid production using progeny derived from two strains from grape must isolates. The trait was quantified during alcoholic fermentation of the two strains and 108 segregants derived from their crossing. A genetic map of 2212 markers was generated using oligonucleotide microarrays, and a major quantitative trait locus (QTL) was mapped with high significance. Further investigations showed that this QTL was due to a nonsynonymous single-nucleotide polymorphism that targeted the catalytic core of asparaginase type I (ASP1) and abolished its activity. This QTL was only effective when asparagine was used as a major nitrogen source. Our results link nitrogen assimilation and CO(2) production rate to acetic acid production, as well as, on a broader scale, illustrating the specific problem of quantitative genetics when working with nonlaboratory microorganisms.

  7. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha

    2015-04-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  8. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Aouida, Mustapha; Li, Lixin; Mahjoub, Ali; Alshareef, Sahar; Ali, Zahir; Piatek, Agnieszka; Mahfouz, Magdy M

    2015-10-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S. cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S. cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production.

  9. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering.

    Science.gov (United States)

    Zha, Jian; Shen, Minghua; Hu, Menglong; Song, Hao; Yuan, Yingjin

    2014-01-01

    Fermentation of xylose in lignocellulosic hydrolysates by Saccharomyces cerevisiae has been achieved through heterologous expression of the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway. However, the fermentation efficiency is far from the requirement for industrial application due to high yield of the byproduct xylitol, low ethanol yield, and low xylose consumption rate. Through evolutionary engineering, an improved xylose-utilizing strain SyBE005 was obtained with 78.3 % lower xylitol production and a 2.6-fold higher specific ethanol production rate than those of the parent strain SyBE004, which expressed an engineered NADP(+)-preferring XDH. The transcriptional differences between SyBE005 and SyBE004 were investigated by quantitative RT-PCR. Genes including XYL1, XYL2, and XKS1 in the initial xylose metabolic pathway showed the highest up-regulation in SyBE005. The increased expression of XYL1 and XYL2 correlated with enhanced enzymatic activities of XR and XDH. In addition, the expression level of ZWF1 in the oxidative pentose phosphate pathway increased significantly in SyBE005, indicating an elevated demand for NADPH from XR. Genes involved in the TCA cycle (LAT1, CIT1, CIT2, KGD1, KGD, SDH2) and gluconeogenesis (ICL1, PYC1) were also up-regulated in SyBE005. Genomic analysis revealed that point mutations in transcriptional regulators CYC8 and PHD1 might be responsible for the altered expression. In addition, a mutation (Y89S) in ZWF1 was identified which might improve NADPH production in SyBE005. Our results suggest that increasing the expression of XYL1, XYL2, XKS1, and enhancing NADPH supply are promising strategies to improve xylose fermentation in recombinant S. cerevisiae.

  10. Vanadium pentoxide effects on stress responses in wine Saccharomyces cerevisiae strain UE-ME3.

    Science.gov (United States)

    Rosado, Tânia; Conim, Ana; Alves-Pereira, Isabel; Ferreira, Rui

    2009-11-01

    Vanadium pentoxide mainly used as catalyst in sulphuric acid, maleic anhydride and ceramics industry, is a pollutant watering redistributed around the environment. Research on biological influence of vanadium pentoxide has gained major importance because it exerts toxic effects on a wide variety of biological systems. In this work we intent to evaluate the effects of vanadium pentoxide ranging from 0 to 2 mM in culture media on a wine wild-type Saccharomyces cerevisiae from Alentejo region of Portugal. Our results show that 2.0 mM vanadium pentoxide in culture medium induced a significant increase of malonaldehyde level and Glutathione peroxidase activity, a slightly increase of Catalase A activity as well as a decrease of wet weight and mitochondrial NADH cit c reductase of S. cerevisiae UE-ME(3). Also our results show that cycloheximide prevent cell death when cells grows 30 min in presence of 1.5 mM of vanadium pentoxide.

  11. Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione.

    Science.gov (United States)

    Grabek-Lejko, Dorota; Kurylenko, Olena O; Sibirny, Vladimir A; Ubiyvovk, Vira M; Penninckx, Michel; Sibirny, Andriy A

    2011-11-01

    The ability of baker's yeast Saccharomyces cerevisiae and of the thermotolerant methylotrophic yeast Hansenula polymorpha to produce ethanol during alcoholic fermentation of glucose was compared between wild-type strains and recombinant strains possessing an elevated level of intracellular glutathione (GSH) due to overexpression of the first gene of GSH biosynthesis, gamma-glutamylcysteine synthetase, or of the central regulatory gene of sulfur metabolism, MET4. The analyzed strains of H. polymorpha with an elevated pool of intracellular GSH were found to accumulate almost twice as much ethanol as the wild-type strain during glucose fermentation, in contrast to GSH1-overexpressing S. cerevisiae strains, which also possessed an elevated pool of GSH. The ethanol tolerance of the GSH-overproducing strains was also determined. For this, the wild-type strain and transformants with an elevated GSH pool were compared for their viability upon exposure to exogenous ethanol. Unexpectedly, both S. cerevisiae and H. polymorpha transformants with a high GSH pool proved more sensitive to exogenous ethanol than the corresponding wild-type strains.

  12. Strain engineering in graphene by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Papasimakis, N.; Mailis, S.; Huang, C. C.; Al-Saab, F.; Hewak, D. W. [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Luo, Z.; Shen, Z. X. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-02-09

    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer.

  13. Production of Rebaudioside A from Stevioside Catalyzed by the Engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Yan; Li, Yangyang; Wang, Yu; Chen, Liangliang; Yan, Ming; Chen, Kequan; Xu, Lin; Ouyang, Pingkai

    2016-04-01

    Rebaudioside A has superior taste quality among the steviol glycosides extracted from Stevia rebaudiana leaves. Given its high purity as a general-purpose sweetener, rebaudioside A has received significant attention and has been widely applied in food and beverages in recent decades. Stevioside is one of the major steviol glycosides and can be converted to rebaudioside A by the uridine-diphosphate dependent glucosyltransferase UGT76G1 in S. rebaudiana. To explore the applicability of and limits in producing rebaudioside A from stevioside through whole-cell biocatalysis, the engineered Saccharomyces cerevisiae expressing UGT76G1, using a newly constructed constitutive expression vector, was used as the whole-cell biocatalyst. Citrate was added to the reaction mixture to allow metabolic regulation when glucose was fed to provide the activated sugar donor UDP-glucose for glycosylation of stevioside in vivo. In an evaluation of the whole-cell reaction parameters involving cell permeability, temperature, pH, citrate and Mg(2+) concentrations, and glucose feeding, production of 1160.5 mg/L rebaudioside A from 2 g/L stevioside was achieved after 48 h without supplementation of extracellular UDP-glucose.

  14. Transcriptomes of a xylose-utilizing industrial flocculating Saccharomyces cerevisiae strain cultured in media containing different sugar sources.

    Science.gov (United States)

    Zeng, Wei-Yi; Tang, Yue-Qin; Gou, Min; Xia, Zi-Yuan; Kida, Kenji

    2016-12-01

    Lignocellulosic hydrolysates used for bioethanol production contain a mixture of sugars, with xylose being the second most abundant after glucose. Since xylose is not a natural substrate for Saccharomyces cerevisiae, recombinant S. cerevisiae strongly prefers glucose over xylose, and the fermentation rate and ethanol yield with xylose are both lower than those with glucose. To determine the molecular basis for glucose and xylose fermentation, we used microarrays to investigate the transcriptional difference of a xylose-utilizing industrial strain cultured in both single sugar media and a mixed sugar medium of glucose and xylose. The transcriptomes were nearly identical between glucose metabolizing cells in the glucose alone medium and those in the glucose fermentation phase in the mixed-sugar medium. Whereas the transcriptomes highly differed between the xylose metabolizing cells in the xylose alone medium and those in the xylose fermentation phase in the mixed sugar medium, and the differences mainly involved sulfur metabolism. When the transcriptional profiles were compared between glucose fermentation state and xylose fermentation state, we found the expression patterns of hexose transporters and glucose signaling pathway differed in response to different sugar sources, and the expression levels of the genes involved in gluconeogenesis, the glyoxylate and tricarboxylic acid cycles and respiration increased with xylose, indicating that the xylose-metabolizing cells had high requirements for maintenance energy and lacked the carbon catabolite repression capability. The effect of carbon catabolite repression by glucose lasted after glucose depletion for specific genes to different extents.

  15. Effect of fermentation with Saccharomyces cerevisiae strain PJ69-4 on the phytic acid, raffinose, and stachyose contents of soybean meal

    Science.gov (United States)

    Three experiments were conducted to determine the impact of submerged fermentation procedures using Saccharomyces cerevisiae baker’s yeast strain PJ69-4a on degradation of phytic acid and the raffinosaccharides, raffinose, and stachyose, in soybean meal. The goal of the research was to identify a n...

  16. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid : Growth profiles and catalase activities in relation to microbody proliferation

    NARCIS (Netherlands)

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    1990-01-01

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two olei

  17. An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses.

    Science.gov (United States)

    Inaba, Takuya; Watanabe, Daisuke; Yoshiyama, Yoko; Tanaka, Koichi; Ogawa, Jun; Takagi, Hiroshi; Shimoi, Hitoshi; Shima, Jun

    2013-12-30

    Bacterial contamination is known as a major cause of the reduction in ethanol yield during bioethanol production by Saccharomyces cerevisiae. Acetate is an effective agent for the prevention of bacterial contamination, but it negatively affects the fermentation ability of S. cerevisiae. We have proposed that the combined use of organic acids including acetate and lactate and yeast strains tolerant to organic acids may be effective for the elimination of principally lactic acid bacterial (LAB) contamination. In a previous study employing laboratory S. cerevisiae strains, we showed that overexpression of the HAA1 gene, which encodes a transcriptional activator, could be a useful molecular breeding method for acetate-tolerant yeast strains. In the present study, we constructed a HAA1-overexpressing diploid strain (MATa/α, named ER HAA1-OP) derived from the industrial bioethanol strain Ethanol Red (ER). ER HAA1-OP showed tolerance not only to acetate but also to lactate, and this tolerance was dependent on the increased expression of HAA1 gene. The ethanol production ability of ER HAA1-OP was almost equivalent to that of the parent strain during the bioethanol production process from sugarcane molasses in the absence of acetate. The addition of acetate at 0.5% (w/v, pH 4.5) inhibited the fermentation ability of the parent strain, but such an inhibition was not observed in the ethanol production process using ER HAA1-OP.

  18. The Flo11p-deficient Saccharomyces cerevisiae strain background S288c can adhere to plastic surfaces

    DEFF Research Database (Denmark)

    Mortensen, Henrik Dam; Dupont, Kitt; Jespersen, Lene;

    2007-01-01

    The effects of four types of plastic surfaces and four pre-incubation media, containing high/low glucose and +/- amino acids, on adhesion of Saccharomyces cerevisiae BY4742 wild type and Deltaflo11 mutant (strain background S288c) were investigated. No difference in adhesive ability between the two...... yeast strains was observed in any of our experiments, thus confirming that FLO11 is not operational in the S. cerevisiae S288c strain background. The adhesive abilities of both yeast strains depended on the plastic type and pre-incubation conditions. The poorest adhesion was observed on hydrophilic...... hydrophobicity and enhanced the adhesion to all four types of polystyrene. Lack of amino acids in the pre-incubation media increased the cell surface hydrophobicity and enhanced the adhesion especially to polystyrene surfaces with combined hydrophilic/hydrophobic domains. Our results suggest that glucose...

  19. [Effect of radio-frequency electromagnetic radiation on physiological features of Saccharomyces cerevisiae strain UCM Y-517].

    Science.gov (United States)

    Voĭchuk, S I; Podgorskiĭ, V S; Gromozova, E N

    2004-01-01

    Effect of electromagnetic radiation (40.68 MHz) on growth characteristics of Saccharomyces cerevisiae strain UCM Y-517 has been studied. Reliable increase of the specific growth rate (by 7-15%) and change of duration of growth phases as a result of irradiation of yeast population has been shown. The EMR effect has been found to depend on physiological state of the irradiated cells and composition of the irradiation performance medium: reliable effects were found only for the cells preliminarily grown on the dense nutrition medium in the late phase of delayed growth or on achieving the stationary growth phase. The role of radiation term and power as well as of temperature factor in EMR effect on the cells is discussed. It has been noted that the dependence of specific growth rate of yeast on the initial density of cells population acquire the nonlinear character as affected by EMR of radiofrequency range.

  20. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement.

    Science.gov (United States)

    Ding, Jun; Bierma, Jan; Smith, Mark R; Poliner, Eric; Wolfe, Carole; Hadduck, Alex N; Zara, Severino; Jirikovic, Mallori; van Zee, Kari; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2013-08-01

    Acetic acid inhibition of yeast fermentation has a negative impact in several industrial processes. As an initial step in the construction of a Saccharomyces cerevisiae strain with increased tolerance for acetic acid, mutations conferring resistance were identified by screening a library of deletion mutants in a multiply auxotrophic genetic background. Of the 23 identified mutations, 11 were then introduced into a prototrophic laboratory strain for further evaluation. Because none of the 11 mutations was found to increase resistance in the prototrophic strain, potential interference by the auxotrophic mutations themselves was investigated. Mutants carrying single auxotrophic mutations were constructed and found to be more sensitive to growth inhibition by acetic acid than an otherwise isogenic prototrophic strain. At a concentration of 80 mM acetic acid at pH 4.8, the initial uptake of uracil, leucine, lysine, histidine, tryptophan, phosphate, and glucose was lower in the prototrophic strain than in a non-acetic acid-treated control. These findings are consistent with two mechanisms by which nutrient uptake may be inhibited. Intracellular adenosine triphosphate (ATP) levels were severely decreased upon acetic acid treatment, which likely slowed ATP-dependent proton symport, the major form of transport in yeast for nutrients other than glucose. In addition, the expression of genes encoding some nutrient transporters was repressed by acetic acid, including HXT1 and HXT3 that encode glucose transporters that operate by facilitated diffusion. These results illustrate how commonly used genetic markers in yeast deletion libraries complicate the effort to isolate strains with increased acetic acid resistance.

  1. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology

    NARCIS (Netherlands)

    Nijkamp, J.F.; Van den Broek, M.A.; Datema, E.; De Kok, S.; Bosman, L.; Luttik, M.A.H.; Daran-Lapujade, P.A.S.; Vongsangnak, W.; Nielsen, J.; Heijne. W.H.M.; Klaassen, P.; Paddon, C.J.; Platt, D.; Kötter, P.; Van Ham, R.C.; Reinders, M.J.T.; Pronk, J.T.; De Ridder, D.; Daran, J.M.

    2012-01-01

    Saccharomyces cerevisiae CEN.PK 113-7D is widely used for metabolic engineering and systems biology research in industry and academia. We sequenced, assembled, annotated and analyzed its genome. Single-nucleotide variations (SNV), insertions/deletions (indels) and differences in genome organization

  2. Geographical markers for Saccharomyces cerevisiae strains with similar technological origins domesticated for rice-based ethnic fermented beverages production in North East India.

    Science.gov (United States)

    Jeyaram, Kumaraswamy; Tamang, Jyoti Prakash; Capece, Angela; Romano, Patrizia

    2011-11-01

    Autochthonous strains of Saccharomyces cerevisiae from traditional starters used for the production of rice-based ethnic fermented beverage in North East India were examined for their genetic polymorphism using mitochondrial DNA-RFLP and electrophoretic karyotyping. Mitochondrial DNA-RFLP analysis of S. cerevisiae strains with similar technological origins from hamei starter of Manipur and marcha starter of Sikkim revealed widely separated clusters based on their geographical origin. Electrophoretic karyotyping showed high polymorphism amongst the hamei strains within similar mitochondrial DNA-RFLP cluster and one unique karyotype of marcha strain was widely distributed in the Sikkim-Himalayan region. We conceptualized the possibility of separate domestication events for hamei strains in Manipur (located in the Indo-Burma biodiversity hotspot) and marcha strains in Sikkim (located in Himalayan biodiversity hotspot), as a consequence of less homogeneity in the genomic structure between these two groups, their clear separation being based on geographical origin, but not on technological origin and low strain level diversity within each group. The molecular markers developed based on HinfI-mtDNA-RFLP profile and the chromosomal doublets in chromosome VIII position of Sikkim-Himalayan strains could be effectively used as geographical markers for authenticating the above starter strains and differentiating them from other commercial strains.

  3. Nanoscale strain engineering of graphene and graphene-based devices

    Science.gov (United States)

    Yeh, N.-C.; Hsu, C.-C.; Teague, M. L.; Wang, J.-Q.; Boyd, D. A.; Chen, C.-C.

    2016-06-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simulations and nano-fabrication technology.

  4. Nanoscale strain engineering of graphene and graphene-based devices

    Institute of Scientific and Technical Information of China (English)

    N-C Yeh; C-C Hsu; M L Teague; J-Q Wang; D A Boyd; C-C Chen

    2016-01-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simula-tions and nano-fabrication technology.

  5. Towards a metabolic engineering strain "commons": an Escherichia coli platform strain for ethanol production.

    Science.gov (United States)

    Woodruff, Lauren B A; May, Brian L; Warner, Joseph R; Gill, Ryan T

    2013-05-01

    In the genome-engineering era, it is increasingly important that researchers have access to a common set of platform strains that can serve as debugged production chassis and the basis for applying new metabolic engineering strategies for modeling and characterizing flux, engineering complex traits, and optimizing overall performance. Here, we describe such a platform strain of E. coli engineered for ethanol production. Starting with a fully characterized host strain (BW25113), we site-specifically integrated the genes required for homoethanol production under the control of a strong inducible promoter into the genome and deleted the genes encoding four enzymes from competing pathways. This strain is capable of producing >30 g/L of ethanol in minimal media with production or tolerance was lost when grown under production conditions. Thus, our findings reinforce the need for a metabolic engineering "commons" that could provide a set of platform strains for use in more sophisticated genome-engineering strategies. Towards this end, we have made this production strain available to the scientific community.

  6. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Mezard, C.; Nicolas, A. [Universite Paris-Sud, Orsay (France)

    1994-02-01

    Different modes of in vivo repair of double-strand breaks (DSBs) have been described for various organisms: the recombinational DSB repair (DSBR) mode, the single-strand annealing (SSA) mode, and end-to-end joining. To investigate these modes of DSB repair in Saccharomyces cerevisiae, we have examined the fate of in vitro linearized replicative plasmids during transformation with respect to several parameters. We found that (i) the efficiencies of both intramolecular and intermolecular linear plasmid DSB repair are homology dependent (according to the amount of DNA used during transformation [100 ng or less], recombination between similar but not identical [homeologous] P450s sequences sharing 73% identity is 2- to 18-fold lower than recombination between identical sequences); (ii) the RAD52 gene product is not essential for intramolecular recombination between homologous and homeologous direct repeats (as in the wild-type strain, recombination occurs with respect to the overall alignment of the parental sequences); (iii) in contrast, the RAD52 gene product is required for intermolecular interactions; (iv) similarly, sequencing data revealed examples of intramolecular joining within the few terminal nucleotides of the transforming DNA upon transformation with a linear plasmid with no repeat in the wild-type strain. The recombinant junctions of the rare illegitimate events obtained with S. cerevisiae are very similar to those observed in the repair of DSB in mammalian cells. Together, these and previous results suggest the existence of alternative modes for DSB repair during transformation which differ in their efficiencies and in the structure of their products. We discuss the implications of these results with respect to the existence of alternative pathways and the role of the RAD52 gene product. 67 refs., 4 figs., 5 tabs.

  7. Protein design in systems metabolic engineering for industrial strain development.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering.

  8. Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Kelsey L [ORNL; Rodriguez Jr, Miguel [ORNL; Thompson, Olivia A [ORNL; Fu, Chunxiang [Noble Foundation; Wang, Zeng-Yu [Noble Foundation; Davison, Brian H [ORNL; Mielenz, Jonathan R [ORNL

    2014-01-01

    Background: Switchgrass is an abundant and dedicated bioenergy feedstock however its inherent recalcitrance is one of the economic hurdles for producing biofuels. The down-regulation of the caffeic acid O-methyl transferase (COMT) gene in the lignin pathway of switchgrass reduced lignin content and S/G ratio, and the transgenic lines showed improved fermentation yield with S. cerevisiae and C. thermocellum (ATCC 27405) in comparison to the wild-type switchgrass. Results: Here we examine the fermentation potential of the COMT transgenic switchgrass and its wild-type line, with an engineered and evolved Clostridium thermocellum (M1570) strain. The fermentation of the transgenic switchgrass had superior conversion relative to the control line with an increase of 20% and ethanol was the primary metabolite accounting for 90% of the total metabolites measured by HPLC. Conclusions: The down-regulation of the COMT gene in switchgrass reduced recalcitrance and improved microbial bioconversion yield. Moreover, these results showed ethanol as the main fermentation metabolite produced by an engineered and evolved C. thermocellum strain grown on a transgenic switchgrass.

  9. Novel starters for old processes: use of Saccharomyces cerevisiae strains isolated from artisanal sourdough for craft beer production at a brewery scale.

    Science.gov (United States)

    Marongiu, Antonella; Zara, Giacomo; Legras, Jean-Luc; Del Caro, Alessandra; Mascia, Ilaria; Fadda, Costantino; Budroni, Marilena

    2015-01-01

    The deliberate inoculation of yeast strains isolated from food matrices such as wine or bread, could allow the transfer of novel properties to beer. In this work, the feasibility of the use of baker's yeast strains as starters for craft beer production has been evaluated at laboratory and brewery scale. Nine out of 12 Saccharomyces cerevisiae strains isolated from artisanal sourdoughs metabolized 2 % maltose, glucose and trehalose and showed growth rates and cell populations higher than those of the brewer's strain Safbrew-S33. Analysis of allelic variation at 12 microsatellite loci clustered seven baker's strains and Safbrew-S33 in the main group of bread isolates. Chemical analyses of beers produced at a brewery scale showed significant differences among the beers produced with the baker's strain S38 or Safbrew-S33, while no significant differences were observed when S38 or the brewer's strain Safbrew-F2 was used for re-fermentation. The sensory profile of beers obtained with S38 or the brewer's yeasts did not show significant differences, thus suggesting that baker's strains of S. cerevisiae could represent a reservoir of biodiversity for the selection of starter strains for craft beer production.

  10. GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation.

    Science.gov (United States)

    Ahn, Jungoh; Park, Kyung-Min; Lee, Hongweon; Son, Yeo-Jin; Choi, Eui-Sung

    2013-02-01

    The removal of Gal80 protein by gene disruption turned into efficient GAL promoter-driven heterologous gene expression under anaerobic alcoholic fermentation of Saccharomyces cerevisiae. Using lipase B from Candida antarctica as a reporter, the relative strength of GAL10 promoter (P(GAL10) ) in Δgal80 mutant that does not require galactose as an inducer was compared to those of ADH1, PDC1, and PGK promoters, which have been known to work well anaerobically in actively fermenting yeast cells under high glucose concentration. P(GAL10) in the Δgal80 mutant showed 0.8-fold (ADH1), fourfold (PDC1), and 50-fold (PGK) in promoter strength.

  11. Benchmarking two commonly used Saccharomyces cerevisiae strains for heterologous vanillin-β-glucoside production

    DEFF Research Database (Denmark)

    Strucko, Tomas; Magdenoska, Olivera; Mortensen, Uffe Hasbro

    2015-01-01

    factories for production of specific compounds. To examine this possibility, we have reconstructed a de novo vanillin-β-glucoside pathway in an identical manner in S288c and CEN.PK strains. Characterization of the two resulting strains in two standard conditions revealed that the S288c background strain...... produced up to 10-fold higher amounts of vanillin-β-glucoside compared to CEN.PK. This study demonstrates that yeast strain background may play a major role in the outcome of newly developed cell factories for production of a given product....

  12. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae.

    Science.gov (United States)

    Swinnen, Steve; Thevelein, Johan M; Nevoigt, Elke

    2012-03-01

    Saccharomyces cerevisiae has become a favorite production organism in industrial biotechnology presenting new challenges to yeast engineers in terms of introducing advantageous traits such as stress tolerances. Exploring subspecies diversity of S. cerevisiae has identified strains that bear industrially relevant phenotypic traits. Provided that the genetic basis of such phenotypic traits can be identified inverse engineering allows the targeted modification of production strains. Most phenotypic traits of interest in S. cerevisiae strains are quantitative, meaning that they are controlled by multiple genetic loci referred to as quantitative trait loci (QTL). A straightforward approach to identify the genetic basis of quantitative traits is QTL mapping which aims at the allocation of the genetic determinants to regions in the genome. The application of high-density oligonucleotide arrays and whole-genome re-sequencing to detect genetic variations between strains has facilitated the detection of large numbers of molecular markers thus allowing high-resolution QTL mapping over the entire genome. This review focuses on the basic principle and state of the art of QTL mapping in S. cerevisiae. Furthermore we discuss several approaches developed during the last decade that allow down-scaling of the regions identified by QTL mapping to the gene level. We also emphasize the particular challenges of QTL mapping in nonlaboratory strains of S. cerevisiae.

  13. Whole Genome Analysis of 132 Clinical Saccharomyces cerevisiae Strains Reveals Extensive Ploidy Variation

    Science.gov (United States)

    Zhu, Yuan O.; Sherlock, Gavin; Petrov, Dmitri A.

    2016-01-01

    Budding yeast has undergone several independent transitions from commercial to clinical lifestyles. The frequency of such transitions suggests that clinical yeast strains are derived from environmentally available yeast populations, including commercial sources. However, despite their important role in adaptive evolution, the prevalence of polyploidy and aneuploidy has not been extensively analyzed in clinical strains. In this study, we have looked for patterns governing the transition to clinical invasion in the largest screen of clinical yeast isolates to date. In particular, we have focused on the hypothesis that ploidy changes have influenced adaptive processes. We sequenced 144 yeast strains, 132 of which are clinical isolates. We found pervasive large-scale genomic variation in both overall ploidy (34% of strains identified as 3n/4n) and individual chromosomal copy numbers (36% of strains identified as aneuploid). We also found evidence for the highly dynamic nature of yeast genomes, with 35 strains showing partial chromosomal copy number changes and eight strains showing multiple independent chromosomal events. Intriguingly, a lineage identified to be baker’s/commercial derived with a unique damaging mutation in NDC80 was particularly prone to polyploidy, with 83% of its members being triploid or tetraploid. Polyploidy was in turn associated with a >2× increase in aneuploidy rates as compared to other lineages. This dataset provides a rich source of information on the genomics of clinical yeast strains and highlights the potential importance of large-scale genomic copy variation in yeast adaptation. PMID:27317778

  14. Evaluation of different Saccharomyces cerevisiae strains on the profile of volatile compounds and polyphenols in cherry wines.

    Science.gov (United States)

    Sun, Shu Yang; Jiang, Wen Guang; Zhao, Yu Ping

    2011-07-15

    Tart cherries of 'Early Richmond', widely grown in Shandong (China), were fermented with six different Saccharomyces cerevisiae strains (BM4×4, RA17, RC212, D254, D21 and GRE) to elucidate their influence on the production of volatiles and polyphenols. Acetic acid and 3-methylbutanol were found in the highest concentrations among all identified volatiles with all six yeast strains, followed by 2-methylpropanol and ethyl lactate. RA17 and GRE cherry wines were characterised by a higher amount of esters and acids. D254 wine contained a higher concentration of alcohols. With respect to polyphenols, five phenolic acids and four anthocyanins were identified among all tested samples, with chlorogenic and neochlorogenic acids, cyanidin 3-glucosylrutinoside and cyanidin 3-rutinoside being the major compounds. When using principal component analysis to classify the cherry wines according to the volatiles and polyphenols, they were divided into three groups: (1) RA17 and GRE, (2) RC212 and D254 and (3) BM4×4 and D21.

  15. Using mixed inocula of Saccharomyces cerevisiae killer strains to improve the quality of traditional sparkling-wine.

    Science.gov (United States)

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, Manuel; Álvarez, María L; Ramírez, Manuel

    2016-10-01

    The quality of traditional sparkling-wine depends on the aging process in the presence of dead yeast cells. These cells undergo a slow autolysis process thereby releasing some compounds, mostly colloidal polymers such as polysaccharides and mannoproteins, which influence the wine's foam properties and mouthfeel. Saccharomyces cerevisiae killer yeasts were tested to increase cell death and autolysis during mixed-yeast-inoculated second fermentation and aging. These yeasts killed sensitive strains in killer plate assays done under conditions of low pH and temperature similar to those used in sparkling-wine making, although some strains showed a different killer behaviour during the second fermentation. The fast killer effect improved the foam quality and mouthfeel of the mixed-inoculated wines, while the slow killer effect gave small improvements over single-inoculated wines. The effect was faster under high-pressure than under low-pressure conditions. Wine quality improvement did not correlate with the polysaccharide, protein, mannan, or aromatic compound concentrations, suggesting that the mouthfeel and foaming quality of sparkling wine are very complex properties influenced by other wine compounds and their interactions, as well as probably by the specific chemical composition of a given wine.

  16. Rumen fermentation and acetogen population changes in response to an exogenous acetogen TWA4 strain and Saccharomyces cerevisiae fermentation product.

    Science.gov (United States)

    Yang, Chun-lei; Guan, Le-luo; Liu, Jian-xin; Wang, Jia-kun

    2015-08-01

    The presence of yeast cells could stimulate hydrogen utilization of acetogens and enhance acetogenesis. To understand the roles of acetogens in rumen fermentation, an in vitro rumen fermentation experiment was conducted with addition of acetogen strain (TWA4) and/or Saccharomyces cerevisiae fermentation product (XP). A 2×2 factorial design with two levels of TWA4 (0 or 2×10(7) cells/ml) and XP (0 or 2 g/L) was performed. Volatile fatty acids (VFAs) were increased (P<0.05) in XP and TWA4XP, while methane was increased only in TWA4XP (P<0.05). The increase rate of microorganisms with formyltetrahydrofolate synthetase, especially acetogens, was higher than that of methanogens under all treatments. Lachnospiraceae was predominant in all acetogen communities, but without close acetyl-CoA synthase (ACS) amino acid sequences from cultured isolates. Low-Acetitomaculum ruminis-like ACS was predominant in all acetogen communities, while four unique phylotypes in XP treatment were all amino acid identified low-Eubacterium limosum-like acetogens. It differs to XP treatment that more low-A. ruminis-like and less low-E. limosum-like sequences were identified in TWA4 and TWA4XP treatments. Enhancing acetogenesis by supplementation with an acetogen strain and/or yeast cells may be an approach to mitigate methane, by targeting proper acetogens such as uncultured low-E. limosum-like acetogens.

  17. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.

    Directory of Open Access Journals (Sweden)

    Catarina Barbosa

    Full Text Available Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23, under low (67 mg/L and high nitrogen (670 mg/L regimes, at three time points during fermentation (12 h, 24 h and 96 h. Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this

  18. Field Performance of a Genetically Engineered Strain of Pink Bollworm

    Science.gov (United States)

    Simmons, Gregory S.; McKemey, Andrew R.; Morrison, Neil I.; O'Connell, Sinead; Tabashnik, Bruce E.; Claus, John; Fu, Guoliang; Tang, Guolei; Sledge, Mickey; Walker, Adam S.; Phillips, Caroline E.; Miller, Ernie D.; Rose, Robert I.; Staten, Robert T.; Donnelly, Christl A.; Alphey, Luke

    2011-01-01

    Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT) – mass-release of sterile insects to mate with, and thereby control, their wild counterparts – has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field – ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area – were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests. PMID:21931649

  19. Field performance of a genetically engineered strain of pink bollworm.

    Directory of Open Access Journals (Sweden)

    Gregory S Simmons

    Full Text Available Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.

  20. An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization.

    Science.gov (United States)

    Fox, Jerome M; Levine, Seth E; Blanch, Harvey W; Clark, Douglas S

    2012-03-01

    Commercial-scale cellulosic ethanol production has been hindered by high costs associated with cellulose-to-glucose conversion and hexose and pentose co-fermentation. Simultaneous saccharification and fermentation (SSF) with a yeast strain capable of xylose and cellobiose co-utilization has been proposed as a possible avenue to reduce these costs. The recently developed DA24-16 strain of Saccharomyces cerevisiae incorporates a xylose assimilation pathway and a cellodextrin transporter (CDT) that permit rapid growth on xylose and cellobiose. In the current work, a mechanistic kinetic model of cellulase-catalyzed hydrolysis of cellulose was combined with a multi-substrate model of microbial growth to investigate the ability of DA24-16 and improved cellobiose-consuming strains to obviate the need for exogenously added β-glucosidase and to assess the impact of cellobiose utilization on SSF and separate hydrolysis and fermentation (SHF). Results indicate that improved CDT-containing strains capable of growing on cellobiose as rapidly as on glucose produced ethanol nearly as rapidly as non-CDT-containing yeast supplemented with β-glucosidase. In producing 75 g/L ethanol, SSF with any strain did not result in shorter residence times than SHF with a 12 h saccharification step. Strains with improved cellobiose utilization are therefore unlikely to allow higher titers to be reached more quickly in SSF than in SHF.

  1. Genome engineering and gene expression control for bacterial strain development.

    Science.gov (United States)

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen.

  2. Delay time and Hartman effect in strain engineered graphene

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi, E-mail: xchen@shu.edu.cn; Deng, Zhi-Yong [Department of Physics, Shanghai University, 200444 Shanghai (China); Ban, Yue, E-mail: yban@shu.edu.cn [Department of Electronic Information Materials, Shanghai University, 200444 Shanghai (China)

    2014-05-07

    Tunneling times, including group delay and dwell time, are studied for massless Dirac electrons transmitting through a one-dimensional barrier in strain-engineered graphene. The Hartman effect, the independence of group delay on barrier length, is induced by the strain effect, and associated with the transmission gap and the evanescent mode. The influence of barrier height/length and strain modulus/direction on the group delay is also discussed, which provides the flexibility to control the group delay with applications in graphene-based devices. The relationship between group delay and dwell time is finally derived to clarify the nature of the Hartman effect.

  3. Study on the development of high yielding alcohol resistant strain of Saccharomyces cerevisiae and the Influence of Magnetic field on Saccharomyces cerevisiae Inoculum for the production of Alcohol and Vinegar from apple juice.

    Directory of Open Access Journals (Sweden)

    Rabiul Haque

    2014-12-01

    Full Text Available Natural vinegar is one of the fermented products which has some potentiality with respect to a nutraceutical standpoint. The present study is an optimization of the fermentation conditions for apple juice vinegar production from aple juice wine, this biochemical process being aided by Acetobacter aceti.We have studied on the development of high yielding alcohol resistant strain of Saccharomyces cerevisiae for the production of alcohol. Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomassdirected processes. It results from elevated apple juice containing sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high initial sugar concentrations From the results it is clear that strain T2. which has been exposed to 15% alcohol for 18 hrs is the high yielding strain, as it gives 16% alcohol after distillation. We also find that as the exposure is increased, that is, with increasing exposure to 20% alcohol for 5 hrs, 18 hrs, and 20 hrs, the production of alcohol decreases. Saccharomyces cerevisiae yeast cells strain T2. which has been exposed to 15% alcohol for 18 hrs were exposed to a homogenous static magnetic field of 125 mT for periods of 24, 48 or 72 hours and then used as inoculum for the alcoholic fermentation. The exposure to the magnetic field improved the fermentation process kinetics. Biomass and ethanol yields of fermentations inoculated with treated inoculum were higher than those in the control fermentation, which

  4. Enological characterization of Spanish Saccharomyces kudriavzevii strains, one of the closest relatives to parental strains of winemaking and brewing Saccharomyces cerevisiae × S. kudriavzevii hybrids.

    Science.gov (United States)

    Peris, D; Pérez-Través, L; Belloch, C; Querol, A

    2016-02-01

    Wine fermentation and innovation have focused mostly on Saccharomyces cerevisiae strains. However, recent studies have shown that other Saccharomyces species can also be involved in wine fermentation or are useful for wine bouquet, such as Saccharomyces uvarum and Saccharomyces paradoxus. Many interspecies hybrids have also been isolated from wine fermentation, such as S. cerevisiae × Saccharomyces kudriavzevii hybrids. In this study, we explored the genetic diversity and fermentation performance of Spanish S. kudriavzevii strains, which we compared to other S. kudriavzevii strains. Fermentations of red and white grape musts were performed, and the phenotypic differences between Spanish S. kudriavzevii strains under different temperature conditions were examined. An ANOVA analysis suggested striking similarity between strains for glycerol and ethanol production, although a high diversity of aromatic profiles among fermentations was found. The sources of these phenotypic differences are not well understood and require further investigation. Although the Spanish S. kudriavzevii strains showed desirable properties, particularly must fermentations, the quality of their wines was no better than those produced with a commercial S. cerevisiae. We suggest hybridization or directed evolution as methods to improve and innovate wine.

  5. Magneto-strain driven quantum engine on a graphene flake

    Science.gov (United States)

    Muñoz, E.; Peña, F. J.

    2016-10-01

    A novel proof of principle prototype for a quantum heat engine is proposed, based on the quasi-static tuning of an external magnetic field, in combination with controlled mechanical strain applied to a single graphene flake. The "working fluid" of this engine is composed by a statistical ensemble of Dirac quasiparticles in Landau levels. The cyclic operation of the engine, whose intermediate states are described through a density matrix, is discussed in detail, and its thermodynamic efficiency is calculated in the quasi-static limit.

  6. Strain-dependent occurrence of functional GTP:AMP phosphotransferase (AK3) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Schricker, R; Magdolen, V; Strobel, G; Bogengruber, E; Breitenbach, M; Bandlow, W

    1995-12-29

    The gene for yeast GTP:AMP phosphotransferase (PAK3) was found to encode a nonfunctional protein in 10 laboratory strains and one brewers' strain. The protein product showed high similarity to vertebrate AK3 and was located exclusively in the mitochondrial matrix. The deduced amino acid sequence revealed a protein that was shorter at the carboxyl terminus than all other known adenylate kinases. Introduction of a +1 frameshift into the 3'-terminal region of the gene extended homology of the deduced amino acid sequence to other members of the adenylate kinase family including vertebrate AK3. Frameshift mutations obtained after in vitro and in vivo mutagenesis were capable of complementing the adk1 temperature-conditional deficiency in Escherichia coli, indicating that the frameshift led to the expression of a protein that could phosphorylate AMP. Some yeasts, however, including strain D273-10B, two wine yeasts, and two more distantly related yeast genera, harbored an active allele, named AKY3, which contained a +1 frameshift close to the carboxyl terminus as compared with the laboratory strains. The encoded protein exhibited GTP:AMP and ITP:AMP phosphotransferase activities but did not accept ATP as phosphate donor. Although single copy in the haploid genome, disruption of the AKY3 allele displayed no phenotype, excluding the possibility that laboratory and brewers' strains had collected second site suppressors. It must be concluded that yeast mitochondria can completely dispense with GTP:AMP phosphotransferase activity.

  7. Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and l-ascorbic acid-producing strains.

    Science.gov (United States)

    Martani, Francesca; Fossati, Tiziana; Posteri, Riccardo; Signori, Lorenzo; Porro, Danilo; Branduardi, Paola

    2013-09-01

    Biotechnological processes are of increasing significance for industrial production of fine and bulk chemicals, including biofuels. Unfortunately, under operative conditions microorganisms meet multiple stresses, such as non-optimal pH, temperature, oxygenation and osmotic stress. Moreover, they have to face inhibitory compounds released during the pretreatment of lignocellulosic biomasses, which constitute the preferential substrate for second-generation processes. Inhibitors include furan derivatives, phenolic compounds and weak organic acids, among which acetic acid is one of the most abundant and detrimental for cells. They impair cellular metabolism and growth, reducing the productivity of the process: therefore, the development of robust cell factories with improved production rates and resistance is of crucial importance. Here we show that a yeast strain engineered to endogenously produce vitamin C exhibits an increased tolerance compared to the parental strain when exposed to acetic acid at moderately toxic concentrations, measured as viability on plates. Starting from this evidence, we investigated more deeply: (a) the nature and levels of reactive oxygen species (ROS); (b) the activation of enzymes that act directly as detoxifiers of reactive oxygen species, such as superoxide dismutase (SOD) and catalase, in parental and engineered strains during acetic acid stress. The data indicate that the engineered strain can better recover from stress by limiting ROS accumulation, independently from SOD activation. The engineered yeast can be proposed as a model for further investigating direct and indirect mechanism(s) by which an antioxidant can rescue cells from organic acid damage; moreover, these studies will possibly provide additional targets for further strain improvements.

  8. Strain Engineering Water Transport in Graphene Nano-channels

    CERN Document Server

    Xiong, Wei; Ma, Ming; Xu, Zhiping; Sheridan, John; Zheng, Quanshui

    2011-01-01

    Using equilibrium and non-equilibrium molecular dynamic (MD) simulations, we found that engineering the strain on the graphene planes forming a channel can drastically change the interfacial friction of water transport through it. There is a sixfold change of interfacial friction stress when the strain changes from -10% to 10%. Stretching the graphene walls increases the interfacial shear stress, while compressing the graphene walls reduces it. Detailed analysis of the molecular structure reveals the essential roles of the interfacial potential energy barrier and the structural commensurateness between the solid walls and the first water layer. Our results suggest that the strain engineering is an effective way of controlling the water transport inside nano-channels. The resulting quantitative relations between shear stress and slip velocity and the understanding of the molecular mechanisms will be invaluable in designing graphene nano-channel devices.

  9. Strain engineering for improved expression of recombinant proteins in bacteria.

    Science.gov (United States)

    Makino, Tomohiro; Skretas, Georgios; Georgiou, George

    2011-05-14

    Protein expression in Escherichia coli represents the most facile approach for the preparation of non-glycosylated proteins for analytical and preparative purposes. So far, the optimization of recombinant expression has largely remained a matter of trial and error and has relied upon varying parameters, such as expression vector, media composition, growth temperature and chaperone co-expression. Recently several new approaches for the genome-scale engineering of E. coli to enhance recombinant protein expression have been developed. These methodologies now enable the generation of optimized E. coli expression strains in a manner analogous to metabolic engineering for the synthesis of low-molecular-weight compounds. In this review, we provide an overview of strain engineering approaches useful for enhancing the expression of hard-to-produce proteins, including heterologous membrane proteins.

  10. Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL pretreated lodgepole pine

    Science.gov (United States)

    The performances of 5 yeast strains under three levels of toxicity were evaluated using hydrolysates from lodgepole pine pretreated by Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL). The highest level of toxicity was represented by the whole pretreated biomass slurry, ...

  11. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Swinnen, Steve; Fernández-Niño, Miguel; González-Ramos, Daniel; van Maris, Antonius J A; Nevoigt, Elke

    2014-06-01

    High acetic acid tolerance of Saccharomyces cerevisiae is a relevant phenotype in industrial biotechnology when using lignocellulosic hydrolysates as feedstock. A screening of 38 S. cerevisiae strains for tolerance to acetic acid revealed considerable differences, particularly with regard to the duration of the latency phase. To understand how this phenotype is quantitatively manifested, four strains exhibiting significant differences were studied in more detail. Our data show that the duration of the latency phase is primarily determined by the fraction of cells within the population that resume growth. Only this fraction contributed to the exponential growth observed after the latency phase, while all other cells persisted in a viable but non-proliferating state. A remarkable variation in the size of the fraction was observed among the tested strains differing by several orders of magnitude. In fact, only 11 out of 10(7)  cells of the industrial bioethanol production strain Ethanol Red resumed growth after exposure to 157 mM acetic acid at pH 4.5, while this fraction was 3.6 × 10(6) (out of 10(7)  cells) in the highly acetic acid tolerant isolate ATCC 96581. These strain-specific differences are genetically determined and represent a valuable starting point to identify genetic targets for future strain improvement.

  12. Short-term response of different Saccharomyces cerevisiae strains to hyperosmotic stress caused by inoculation in grape must: RT-qPCR study and metabolite analysis.

    Science.gov (United States)

    Noti, Olta; Vaudano, Enrico; Pessione, Enrica; Garcia-Moruno, Emilia

    2015-12-01

    During the winemaking process, glycerol synthesis represents the first adaption response of Saccharomyces cerevisiae to osmotic stress after inoculation in grape must. We have implemented an RT-qPCR (Reverse Transcription-quantitative PCR) methodology with a preventive evaluation of candidate reference genes, to study six target genes related to glycerol synthesis (GPD1, GPD2, GPP2 and GPP1) and flux (STL1 and FPS1), and three ALD genes coding for aldehyde dehydrogenase involved in redox equilibrium via acetate production. The mRNA level in three strains, characterized by different metabolite production, was monitored in the first 120 min from inoculation into natural grape must. Expression analysis shows a transient response of genes GPD1, GPD2, GPP2, GPP1 and STL1 with differences among strains in term of mRNA abundance, while FPS1 was expressed constitutively. The transient response and different expression intensity among strains, in relation to the intracellular glycerol accumulation pattern, prove the negative feedback control via the HOG (High Osmolarity Glycerol) signalling pathway in S. cerevisiae wine strains under winery conditions. Among the ALD genes, only ALD6 was moderately induced in the hyperosmotic environment but not in all strains tested, while ALD3 and ALD4 were drastically glucose repressed. The intensity of transcription of ALD6 and ALD3 seems to be related to different acetate production found among the strains.

  13. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.

    Science.gov (United States)

    Moreno-García, Jaime; García-Martínez, Teresa; Millán, M Carmen; Mauricio, Juan Carlos; Moreno, Juan

    2015-10-01

    A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC.

  14. Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages.

    Science.gov (United States)

    Jespersen, Lene

    2003-04-01

    Indigenous fermented foods and beverages play a major role in the diet of African people. The predominant yeast species seen is Saccharomyces cerevisiae, involved in basically three groups of indigenous fermented products: non-alcoholic starchy foods, alcoholic beverages and fermented milk. These products are to a great extent made by spontaneous fermentation and consequently S. cerevisiae often coexists with other microorganisms even though a microbiological succession usually takes place both between and within species. The functions of S. cerevisiae are mainly related to formation of alcohols and other aroma compounds, but stimulation of e.g. lactic acid bacteria, improvement of nutritional value, probiotic effects, inhibition of undesired microorganisms and production of tissue-degrading enzymes may also be observed. Several different isolates of S. cerevisiae have been shown to be involved in the fermentations and some of the isolates show pheno- and genotypic characteristics that deviate from those normally recognised for S. cerevisiae.

  15. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Tomas Pejo, Elia; Oliva, Jose M.; Ballesteros, Mercedes

    2008-01-01

    In this study, bioethanol production from steam-exploded wheat straw using different process configurations was evaluated using two Saccharomyces cerevisiae strains, F12 and Red Star. The strain F12 has been engineerically modified to allow xylose consumption as cereal straw contain considerable...... concentration was improved in all tests due to the increase of potential fermentable sugars in the fermentation broth. Inhibitory compounds present in the pretreated wheat straw caused a significantly negative effect on the fermentation rate. However, it was found that the inhibitors furfural and HMF were...

  16. Metabolic engineering of Saccharomyces cerevisiae microbial cell factories for succinic acid production

    DEFF Research Database (Denmark)

    Otero, José Manuel; Olsson, Lisbeth; Nielsen, Jens

    2007-01-01

    products is 18, 14, 54, and 9 C-mol/C-mol-glucose, respectively, with acids, encompassing fumaric, malic, and succinic acid. Succinic acid is a key building block molecule...... for further conversion to precursor molecules such as tetrahydrofuran, 1,4-butanediol, and butyrolactone. Succinic acid has the potential to become a commodity chemical, with world-wide annual demand exceeding $2 billion USD and over 160 million kg currently produced from petrochemical conversion of maleic...... anhydride. There are several biomass platforms, all prokaryotic, for succinic acid production; however, overproduction of succinic acid in S. cerevisiae offers distinct process advantages. For example, S. cerevisiae has been awarded GRAS status for use in human consumables, grows well at low p...

  17. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Bjorn [Los Alamos National Laboratory; Brown, Donald W [Los Alamos National Laboratory; Tome, Carlos N [Los Alamos National Laboratory; Balogh, Levente [Los Alamos National Laboratory; Vogel, Sven C [Los Alamos National Laboratory

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  18. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing

    NARCIS (Netherlands)

    Van Rossum, H.M.; Kozak, B.U.; Pronk, J.T.; Van Maris, A.J.A.

    2016-01-01

    Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are

  19. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering.

    Science.gov (United States)

    Cotten, Cameron; Reed, Jennifer L

    2013-05-01

    In recent years, a growing number of metabolic engineering strain design techniques have employed constraint-based modeling to determine metabolic and regulatory network changes which are needed to improve chemical production. These methods use systems-level analysis of metabolism to help guide experimental efforts by identifying deletions, additions, downregulations, and upregulations of metabolic genes that will increase biological production of a desired metabolic product. In this work, we propose a new strain design method with continuous modifications (CosMos) that provides strategies for deletions, downregulations, and upregulations of fluxes that will lead to the production of the desired products. The method is conceptually simple and easy to implement, and can provide additional strategies over current approaches. We found that the method was able to find strain design strategies that required fewer modifications and had larger predicted yields than strategies from previous methods in example and genome-scale networks. Using CosMos, we identified modification strategies for producing a variety of metabolic products, compared strategies derived from Escherichia coli and Saccharomyces cerevisiae metabolic models, and examined how imperfect implementation may affect experimental outcomes. This study gives a powerful and flexible technique for strain engineering and examines some of the unexpected outcomes that may arise when strategies are implemented experimentally.

  20. Enhanced 3-sulfanylhexan-1-ol production in sequential mixed fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae reveals a situation of synergistic interaction between two industrial strains

    Directory of Open Access Journals (Sweden)

    Philippe eRenault

    2016-03-01

    Full Text Available The aim of this work was to study the volatile thiol productions of 2 industrial strains of Torulaspora delbrueckii and Saccharomyces cerevisiae during alcoholic fermentation (AF of Sauvignon Blanc must. In order to evaluate the influence of the inoculation procedure, sequential and simultaneous mixed cultures were carried out and compared to pure cultures of T. delbrueckii and S. cerevisiae. The results confirmed the inability of T. delbrueckii to release 4-methyl-4-sulfanylpentan-2-one (4MSP and its low capacity to produce 3-sulfanylhexyl acetate (3SHA, as already reported in previous studies. A synergistic interaction was observed between the two species, resulting in higher levels of 3SH (3-sulfanylhexan-1-ol and its acetate when S. cerevisiae was inoculated 24 hours after T. delbrueckii, compared to the pure cultures. To elucidate the nature of the interactions between these 2 species, the yeast population kinetics were examined and monitored, as well as the production of 3SH, its acetate and their related non-odorous precursors: Glut-3SH (glutathionylated conjugate precursor and Cys-3SH (cysteinylated conjugate precursor. For the first time, it was suggested that, unlike, S. cerevisiae, which is able to metabolize the two precursor forms, T. delbrueckii was only able to metabolize the glutathionylated precursor. Consequently, the presence of T. delbrueckii during mixed fermentation led to an increase in Glut-3SH degradation and Cys-3SH production. This overproduction was dependent on the T. delbrueckii biomass. In sequential culture, thus favouring T. delbrueckii development, the higher availability of Cys-3SH throughout AF (alcoholic fermentation resulted in more abundant 3SH and 3SHA production by S. cerevisiae

  1. Gap engineering in strained fold-like armchair graphene nanoribbons

    Science.gov (United States)

    Torres, V.; León, C.; Faria, D.; Latgé, A.

    2017-01-01

    Strained fold-like deformations on armchair graphene nanoribbons (AGNRs) can be properly engineered in experimental setups, and could lead to a controlling tool for gaps and transport properties. Here, we analyze the electronic properties of folded AGNRs relating to the electronic responses and the mechanical deformation. An important and universal parameter for the gap engineering is the ribbon percent-width variation, i.e., the difference between the deformed and undeformed ribbon widths. AGNRs band gap can be tuned mechanically in a well-defined bounded range of energy values, eventually leading to a metallic system. This characteristic provides a controllable degree of freedom that allows manipulation of electronic currents. We show that the numerical results are analytically predicted by solving the Dirac equation for the strained system.

  2. High temperature strain gage technology for gas turbine engines

    Science.gov (United States)

    Fichtel, Edward J.; McDaniel, Amos D.

    1994-08-01

    This report summarizes the results of a six month study that addressed specific issues to transfer the Pd-13Cr static strain sensor to a gas turbine engine environment. The application issues that were addressed include: (1) evaluation of a miniature, variable potentiometer for use as the ballast resistor, in conjunction with a conventional strain gage signal conditioning unit; (2) evaluation of a metal sheathed, platinum conductor leadwire assembly for use with the three-wire sensor; and (3) subjecting the sensor to dynamic strain cyclic testing to determine fatigue characteristics. Results indicate a useful static strain gage system at all temperature levels up to 1350 F. The fatigue characteristics also appear to be very promising, indicating a potential use in dynamic strain measurement applications. The procedure, set-up, and data for all tests are presented in this report. This report also discusses the specific strain gage installation technique for the Pd-13Cr gage because of its potential impact on the quality of the output data.

  3. Tunable thermoelectric transport in nanomeshes via elastic strain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Piccione, Brian; Gianola, Daniel S., E-mail: gianola@seas.upenn.edu [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-03-16

    Recent experimental explorations of silicon nanomeshes have shown that the unique metastructures exhibit reduced thermal conductivity while preserving bulk electrical conductivity via feature sizes between relevant phonon and electron mean free paths, aiding in the continued promise that nanometer-scale engineering may further enhance thermoelectric behavior. Here, we introduce a strategy for tuning thermoelectric transport phenomena in semiconductor nanomeshes via heterogeneous elastic strain engineering, using silicon as a model material for demonstration of the concept. By combining analytical models for electron mobility in uniformly stressed silicon with finite element analysis of strained silicon nanomeshes in a lumped physical model, we show that the nonuniform and multiaxial strain fields defined by the nanomesh geometry give rise to spatially varying band shifts and warping, which in aggregate accelerate electron transport along directions of applied stress. This allows for global electrical conductivity and Seebeck enhancements beyond those of homogenous samples under equivalent far-field stresses, ultimately increasing thermoelectric power factor nearly 50% over unstrained samples. The proposed concept and structures—generic to a wide class of materials with large dynamic ranges of elastic strain in nanoscale volumes—may enable a new pathway for active and tunable control of transport properties relevant to waste heat scavenging and thermal management.

  4. Origin of co-expression patterns in E. coli and S. cerevisiae emerging from reverse engineering algorithms.

    Directory of Open Access Journals (Sweden)

    Mattia Zampieri

    Full Text Available BACKGROUND: The concept of reverse engineering a gene network, i.e., of inferring a genome-wide graph of putative gene-gene interactions from compendia of high throughput microarray data has been extensively used in the last few years to deduce/integrate/validate various types of "physical" networks of interactions among genes or gene products. RESULTS: This paper gives a comprehensive overview of which of these networks emerge significantly when reverse engineering large collections of gene expression data for two model organisms, E. coli and S. cerevisiae, without any prior information. For the first organism the pattern of co-expression is shown to reflect in fine detail both the operonal structure of the DNA and the regulatory effects exerted by the gene products when co-participating in a protein complex. For the second organism we find that direct transcriptional control (e.g., transcription factor-binding site interactions has little statistical significance in comparison to the other regulatory mechanisms (such as co-sharing a protein complex, co-localization on a metabolic pathway or compartment, which are however resolved at a lower level of detail than in E. coli. CONCLUSION: The gene co-expression patterns deduced from compendia of profiling experiments tend to unveil functional categories that are mainly associated to stable bindings rather than transient interactions. The inference power of this systematic analysis is substantially reduced when passing from E. coli to S. cerevisiae. This extensive analysis provides a way to describe the different complexity between the two organisms and discusses the critical limitations affecting this type of methodologies.

  5. Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yue-Qin; Liu, Kai; An, Ming-Zhe; Morimura, Shigeru; Kida, Kenji [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Koike, Yoji [Tokyo Gas Co., Ltd., 1-7-7 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045 (Japan); Wu, Xiao-Lei [Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2008-11-15

    A process for producing ethanol from kitchen waste was developed in this study. The process consists of freshness preservation of the waste, saccharification of the sugars in the waste, continuous ethanol fermentation of the saccharified liquid, and anaerobic treatment of the saccharification residue and the stillage. Spraying lactic acid bacteria (LCB) on the kitchen waste kept the waste fresh for over 1 week. High glucose recovery (85.5%) from LCB-sprayed waste was achieved after saccharification using Nagase N-40 glucoamylase. The resulting saccharified liquid was used directly for ethanol fermentation, without the addition of any nutrients. High ethanol productivity (24.0 g l{sup -1} h{sup -1}) was obtained when the flocculating yeast strain KF-7 was used in a continuous ethanol fermentation process at a dilution rate of 0.8 h{sup -1}. The saccharification residue was mixed with stillage and treated in a thermophilic anaerobic continuous stirred tank reactor (CSTR); a VTS loading rate of 6 g l{sup -1} d{sup -1} with 72% VTS digestion efficiency was achieved. Using this process, 30.9 g ethanol, and 65.2 l biogas with 50% methane, was produced from 1 kg of kitchen waste containing 118.0 g total sugar. Thus, energy in kitchen waste can be converted to ethanol and methane, which can then be used as fuels, while simultaneously treating kitchen waste. (author)

  6. Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: a proof of concept.

    Science.gov (United States)

    Nguyen, H T T; Nevoigt, E

    2009-11-01

    Dihydroxyacetone (DHA) has numerous industrial applications. In this work, we pursue the idea to produce DHA from sugars in the yeast Saccharomyces cerevisiae, via glycerol as an intermediate. Firstly, three glycerol dehydrogenase (GDH) genes from different microbial sources were expressed in yeast. Among them, the NAD(+)-dependent GDH of Hansenula polymorpha showed the highest glycerol-oxidizing activity. DHA concentration in shake-flask experiments was roughly 100mg/lDHA from 20g/l glucose, i.e. five times the wild-type level. This level was achieved only when cultures were subjected to osmotic stress, known to enhance glycerol production and accumulation in S. cerevisiae. Secondly, DHA kinase activity was abolished to prevent conversion of DHA to dihydroxyacetone phosphate (DHAP). The dak1Deltadak2Delta double-deletion mutant overexpressing H. polymorpha gdh produced 700mg/l DHA under the same conditions. Although current DHA yield and titer still need to be optimized, our approach provides the proof of concept for producing DHA from sugars in yeast.

  7. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress.

    Science.gov (United States)

    Kim, Il-Sup; Yun, Hae-Sun; Park, In-Su; Sohn, Ho-Yong; Iwahashi, Hitoshi; Jin, Ing-Nyol

    2006-10-01

    To investigate the tolerance factor of Saccharomyces cerevisiae KNU5377 against various types of environmental stress during fermentation, we identified the protein that is upregulated at high temperatures. The highly upregulated protein was high-score-matched as a cytoplasmic peptidyl-prolyl cis-trans isomerase, cyclophilin (Cpr1p), by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). We constructed a CPR1-deleted KNU5377 strain (KNU5377Y cpr1Delta) to determine the roles of the protein under fermentative or stress condition. The growth of the S. cerevisiae KNU5377Y cpr1Delta strain was completely inhibited under the following conditions: heat (40 degrees C), hydrogen peroxide (20-30 mM), menadione (0.3 mM), ethanol (16%), sulfuric acid (5 mm), and lactic acid (0.4-0.8%). However, the wild-type and cpr1Delta mutant of S. cerevisiae BY4741 as a positive control did not show differences in sensitivity to stress. It is interesting to note that the wild-type KNU5377Y and KNU5377Y cpr1Delta mutant showed high sensitivity against various stresses, particularly, acid stress such as in the presence of sulfuric and lactic acid. Although the alcohol fermentation rate of the KNU5377Y cpr1Delta mutant markedly decreased with an increase in temperature up to 40 degrees C, we observed no decrease in that of the wild-type strain under the same conditions. These results suggest that CPR1 contributes to the stress tolerance of KNU5377 against various types of environmental stress caused during fermentation, thus leading to the physiological role of maintaining an alcohol fermentation yield, even at high temperatures such as 40 degrees C.

  8. The effects of dietary administration with chemical treated Saccharomyces cerevisiae strain YG3-1 on the growth of aquatic invertebrates in Artemia

    Institute of Scientific and Technical Information of China (English)

    Behnam Shekarchi; Ali Nekuiefard; Ramin Manaffar

    2016-01-01

    Objective: To investigate the biological effects of β-glucans in cell wall of new identified strain Saccharomyces cerevisiae strain YG3-1 on the growth of aquatic invertebrates, in Artemia as model organism. Methods: All yeasts used in the present study were isolated from Rainbow trout intestine and then cultured in yeast extract-peptone-glycerol medium. Activation of β-glucan in yeasts was performed by chemical treatment with 2-mercaptoethanol (2ME) (3.5% v/v). Then nauplii and larvae individuals of Artemia urmiana and Artemia franciscana (two different species of Artemia as test organisms) were fed with 2ME-treated yeasts during the culture. At the end of experiment, after feeding individual length (total length and growth rate) in adult individuals of Artemia was measured. Results: Following this administration, growth in both species of Artemia was improved (P Conclusions: This study suggested that 2ME-treated Saccharomyces cerevisiae strain YG3-1 yeasts can be used for enhancing the growth of other aquatic invertebrates like shrimps as probiotic supplement and growth promoter.

  9. The effects of dietary administration with chemical treated Saccharomyces cerevisiae strain YG3-1 on the growth of aquatic invertebrates in Artemia

    Directory of Open Access Journals (Sweden)

    Behnam Shekarchi

    2016-02-01

    Full Text Available Objective: To investigate the biological effects of β-glucans in cell wall of new identified strain Saccharomyces cerevisiae strain YG3-1 on the growth of aquatic invertebrates, in Artemia as model organism. Methods: All yeasts used in the present study were isolated from Rainbow trout intestine and then cultured in yeast extract-peptone-glycerol medium. Activation of β-glucan in yeasts was performed by chemical treatment with 2-mercaptoethanol (2ME (3.5% v/v. Then nauplii and larvae individuals of Artemia urmiana and Artemia franciscana (two different species of Artemia as test organisms were fed with 2ME-treated yeasts during the culture. At the end of experiment, after feeding individual length (total length and growth rate in adult individuals of Artemia was measured. Results: Following this administration, growth in both species of Artemia was improved (P < 0.05. So, the results showed that Artemia urmiana adults individuals that fed with 2MEtreated yeasts had the highest growth and total length. These results were confirmed with growth measurement in adult individuals of Artemia. Conclusions: This study suggested that 2ME-treated Saccharomyces cerevisiae strain YG3-1 yeasts can be used for enhancing the growth of other aquatic invertebrates like shrimps as probiotic supplement and growth promoter.

  10. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol.

    Science.gov (United States)

    Wang, Yanfeng; Zhang, Shuxian; Liu, Huaqing; Zhang, Lei; Yi, Chenfeng; Li, Hao

    2015-12-01

    Bioethanol fermentation by Saccharomyces cerevisiae is often stressed by the accumulation of ethanol. Cell membrane is the first assaulting target of ethanol. Ethanol-adapted S. cerevisiae strains provide opportunity to shed light on membrane functions in the ethanol tolerance. This study aimed at clarifying the roles of cell membrane in the ethanol tolerance of S. cerevisiae through comparing membrane components between S. cerevisiae parental strain and ethanol-adapted strains. A directed evolutionary engineering was performed to obtain the ethanol-adapted S. cerevisiae strains. The parental, ethanol-adapted M5 and M10 strains were selected to be compared the percentage of viable cells after exposing to ethanol stress and cell membrane compositions (i.e., ergosterol, trehalose, and fatty acids). Compared with the parental strain, M5 or M10 strain had higher survival rate in the presence of 10% v/v ethanol. Compared with that in the parental strain, contents of trehalose, ergosterol, and fatty acids increased about 15.7, 12.1, and 29.3%, respectively, in M5 strain, and about 47.5, 107.8, and 61.5%, respectively, in M10 strain. Moreover, expression differences of genes involved in fatty acids metabolisms among the parental, M5 and M10 strains were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and results demonstrated that M5 or M10 strain had higher expression of ACC1 and OLE1 than the parental strain. These results indicated that although being exposed to step-wise increased ethanol, S. cerevisiae cells might remodel membrane components or structure to adapt to the ethanol stress.

  11. Strain engineered high reflectivity DBRs in the deep UV

    Science.gov (United States)

    Franke, A.; Hoffmann, M. P.; Hernandez-Balderrama, L.; Kaess, F.; Bryan, I.; Washiyama, S.; Bobea, M.; Tweedie, J.; Kirste, R.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-02-01

    The maximum achievable reflectivity of current III-nitride Bragg reflectors in the UV-C spectral range is limited due to plastic relaxation of thick multilayer structures. Cracking due to a large mismatch of the thermal expansion and lattice constants between AlxGa1-xN/AlyGa1-yN alloys of different composition and the substrate at the heterointerface is the common failure mode. Strain engineering and strain relaxation concepts by the growth on a strain reduced Al0.85Ga0.15N template and the implementation of low temperature interlayers is demonstrated. A significant enhancement of the maximum reflectivity above 97% at a resonance wavelength of 270 nm due to an increase of the critical thickness of our AlN/Al0.65Ga0.35N DBRs to 1.45 μm (25.5 pairs) prove their potential. By comparing the growth of identical Bragg reflectors on different pseudo-templates, the accumulated mismatch strain energy in the DBR, not the dislocation density provided by the template/substrate, was identified to limit the critical thickness. To further enhance the reflectivity low temperature interlays were implemented into the DBR to partially relief the misfit strain. Relaxation is enabled by the nucleation of small surface domains facilitating misfit dislocation injection and glide. Detailed structural and optical investigations will be conducted to prove the influence of the LT-AlN interlayers on the strain state, structural integrity and reflectivity properties. Coherent growth and no structural and optical degradation of the Bragg mirror properties was observed proving the fully applicability of the relaxation concept to fabricate thick high reflectivity DBR and vertical cavity laser structures.

  12. Crystallization engineering as a route to epitaxial strain control

    Directory of Open Access Journals (Sweden)

    Andrew R. Akbashev

    2015-10-01

    Full Text Available The controlled synthesis of epitaxial thin films offers opportunities for tuning their functional properties via enabling or suppressing strain relaxation. Examining differences in the epitaxial crystallization of amorphous oxide films, we report on an alternate, low-temperature route for strain engineering. Thin films of amorphous Bi–Fe–O were grown on (001SrTiO3 and (001LaAlO3 substrates via atomic layer deposition. In situ X-ray diffraction and X-ray photoelectron spectroscopy studies of the crystallization of the amorphous films into the epitaxial (001BiFeO3 phase reveal distinct evolution profiles of crystallinity with temperature. While growth on (001SrTiO3 results in a coherently strained film, the same films obtained on (001LaAlO3 showed an unstrained, dislocation-rich interface, with an even lower temperature onset of the perovskite phase crystallization than in the case of (001SrTiO3. Our results demonstrate how the strain control in an epitaxial film can be accomplished via its crystallization from the amorphous state.

  13. Bio-Engineering High Performance Microbial Strains for MEOR

    Energy Technology Data Exchange (ETDEWEB)

    Xiangdong Fang; Qinghong Wang; Patrick Shuler

    2007-12-30

    The main objectives of this three-year research project are: (1) to employ the latest advances in genetics and bioengineering, especially Directed Protein Evolution technology, to improve the effectiveness of the microbial enhanced oil recovery (MEOR) process. (2) to improve the surfactant activity and the thermal stability of bio-surfactant systems for MEOR; and (3) to develop improved laboratory methods and tools that screen quickly candidate bio-systems for EOR. Biosurfactants have been receiving increasing attention as Enhanced Oil Recovery (EOR) agents because of their unique properties (i.e., mild production conditions, lower toxicity, and higher biodegradability) compared to their synthetic chemical counterparts. Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including EOR and bioremediation. During the three-year of the project period, we have successfully cloned the genes involved in the rhamnolipid bio-synthesis. And by using the Transposon containing Rhamnosyltransferase gene rhlAB, we engineered the new mutant strains P. aeruginosa PEER02 and E. coli TnERAB so they can produce rhamnolipid biosurfactans. We were able to produce rhamnolipds in both P. aeroginosa PAO1-RhlA- strain and P. fluorescens ATCC15453 strain, with the increase of 55 to 175 fold in rhamnolipid production comparing with wild type bacteria strain. We have also completed the first round direct evolution studies using Error-prone PCR technique and have constructed the library of RhlAB-containing Transposon to express mutant gene in heterologous hosts. Several methods, such as colorimetric agar plate assay, colorimetric spectrophotometer assay, bioactive assay and oil spreading assay have been established to detect and screen rhamnolipid production. Our engineered P. aeruginosa PEER02 strain can produce rhamnolipids with different carbon sources as substrate. Interfacial tension analysis (IFT) showed that different rhamnolipids from different

  14. Anaerobic and sequential aerobic production of high-titer ethanol and single cell protein from NaOH-pretreated corn stover by a genome shuffling-modified Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Ren, Xueliang; Wang, Juncong; Yu, Hui; Peng, Chunlan; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Liang, Yunxiang; Peng, Nan

    2016-10-01

    In this study, a Saccharomyces cerevisiae recombinant strain 14 was constructed through genome shuffling method by transferring the whole genomic DNA of Candida intermedia strain 23 into a thermo-tolerant S. cerevisiae strain. The recombinant strain 14 combined the good natures of both parent strains that efficiently produced ethanol from glucose and single cell protein from xylose with 54.6% crude protein and all essential amino acids except cysteine at 35°C. Importantly, the recombinant strain 14 produced 64.07g/L ethanol from 25%(w/v) NaOH-pretreated and washed corn stover with the ethanol yield of 0.26g/g total stover by fed-batch simultaneous saccharification and fermentation and produced 66.50g/L dry cell mass subsequently from the residual hydrolysate and ethanol. Therefore, this study represents a feasible method to comprehensively utilize hexose and pentose in lignocellulosic materials.

  15. Antimonide-based membranes synthesis integration and strain engineering

    Science.gov (United States)

    Anwar, Farhana; Klein, Brianna A.; Rasoulof, Amin; Dawson, Noel M.; Schuler-Sandy, Ted; Deneke, Christoph F.; Ferreira, Sukarno O.; Cavallo, Francesca; Krishna, Sanjay

    2017-01-01

    Antimonide compounds are fabricated in membrane form to enable materials combinations that cannot be obtained by direct growth and to support strain fields that are not possible in the bulk. InAs/(InAs,Ga)Sb type II superlattices (T2SLs) with different in-plane geometries are transferred from a GaSb substrate to a variety of hosts, including Si, polydimethylsiloxane, and metal-coated substrates. Electron microscopy shows structural integrity of transferred membranes with thickness of 100 nm to 2.5 μm and lateral sizes from 24×24μm2 to 1×1 cm2. Electron microscopy reveals the excellent quality of the membrane interface with the new host. The crystalline structure of the T2SL is not altered by the fabrication process, and a minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. A method to locally strain-engineer antimonide-based membranes is theoretically illustrated. Continuum elasticity theory shows that up to ∼3.5% compressive strain can be induced in an InSb quantum well through external bending. Photoluminescence spectroscopy and characterization of an IR photodetector based on InAs/GaSb bonded to Si demonstrate the functionality of transferred membranes in the IR range. PMID:27986953

  16. [Comparative study of the physiological and biochemical characteristics of the varying ploidy of Saccharomyces cerevisiae strains in the process of their growth].

    Science.gov (United States)

    Shkidchenko, A N; Orlova, V S; Rylkin, S S; Korogodin, V I

    1978-01-01

    The growth of Saccharomyces cerevisiae strains having different ploidy was compared in the conditions of periodic cultivation, and was found to consist of two stages: (1) at the account of glucose utilization and (2) due to assimilation of cellular metabolites following a period of adaptation. The secondary growth was linear. The haploid, diploid and triploid strains differed in the character of growth, substrate utilization, the rate of respiration and the economic coefficient. Their qualitative protein composition was the same though certain changes were detected in the content of individual amino acids. The amount of essential amino acids (their sum) in proteins increased when the yeast started to oxidize cellular metabolites instead of glucose utilization.

  17. Allelic variants of hexose transporter Hxt3p and hexokinases Hxk1p/Hxk2p in strains of Saccharomyces cerevisiae and interspecies hybrids.

    Science.gov (United States)

    Zuchowska, Magdalena; Jaenicke, Elmar; König, Helmut; Claus, Harald

    2015-11-01

    The transport of sugars across the plasma membrane is a critical step in the utilization of glucose and fructose by Saccharomyces cerevisiae during must fermentations. Variations in the molecular structure of hexose transporters and kinases may affect the ability of wine yeast strains to finish sugar fermentation, even under stressful wine conditions. In this context, we sequenced and compared genes encoding the hexose transporter Hxt3p and the kinases Hxk1p/Hxk2p of Saccharomyces strains and interspecies hybrids with different industrial usages and regional backgrounds. The Hxt3p primary structure varied in a small set of amino acids, which characterized robust yeast strains used for the production of sparkling wine or to restart stuck fermentations. In addition, interspecies hybrid strains, previously isolated at the end of spontaneous fermentations, revealed a common amino acid signature. The location and potential influence of the amino acids exchanges is discussed by means of a first modelled Hxt3p structure. In comparison, hexokinase genes were more conserved in different Saccharomyces strains and hybrids. Thus, molecular variants of the hexose carrier Hxt3p, but not of kinases, correlate with different fermentation performances of yeast.

  18. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae.

    Science.gov (United States)

    Guo, Yakun; Dong, Junkai; Zhou, Tong; Auxillos, Jamie; Li, Tianyi; Zhang, Weimin; Wang, Lihui; Shen, Yue; Luo, Yisha; Zheng, Yijing; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Cai, Yizhi; Dai, Junbiao

    2015-07-27

    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using β-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts.

  19. Development Of An Efficient Glycerol Utilizing Saccharomyces Cerevisiae Strain Via Adaptive Laboratory Evolution

    DEFF Research Database (Denmark)

    Strucko, Tomas; Zirngibl, Katharina; Tharwat Tolba Mohamed, Elsayed

    2015-01-01

    With increasing interest in biosustainable technologies, the need for converting available non-saccharide carbon sources most efficiently is emerging. Highly abundant crude glycerol, a major waste residue in biodiesel production, has attracted attention as a cheap carbon source for microbial...... fermentation processes. The most commonly known microbial cell factory, the yeast Saccharomyces cerevisiae, has been extensively applied for the production of a wide range of scientifically and industrially relevant products using saccharides (mainly glucose) as carbon source. However, it was shown...

  20. Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory

    Directory of Open Access Journals (Sweden)

    Hedfalk Kristina

    2010-06-01

    Full Text Available Abstract Background Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. Results Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. Conclusions The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass

  1. Construction of an environmental safe Bacillus thuringiensis engineered strain against Coleoptera.

    Science.gov (United States)

    Yu, Yajun; Yuan, Yihui; Gao, Meiying

    2016-05-01

    Cloning of new toxic genes from Bacillus thuringiensis (Bt) and construction of Bt engineered strains are two key strategies for bio-control of coleopteran pests in agriculture and forestry. In this study, we cloned a new cry3Aa-type gene, cry3Aa8, from wild Bt strain YC-03 against coleopteran, and constructed a Bt engineered strain, ACE-38, containing insecticidal protein-encoding gene cry3Aa8. The engineered strain, with almost four times of Cry3Aa yield compared with strain YC-03, was an antibiotic marker-free strain. Though no selective pressure was presented in the medium, cry3Aa8 in the engineered strain ACE-38 remained stable. The yield of Cry3Aa by strain ACE-38 reached 2.09 mg/ml in the optimized fermentation medium. The activity of strain ACE-38 against Plagiodera versicolora was tested, and the LC50 of ACE-38 cultures in the optimized fermentation medium was 1.13 μl/ml. Strain ACE-38 is a non-antibiotic Bt engineered strain with high Chrysomelidae toxicity and exhibits good fermentation property. The modified indigenous site-specific recombination system constructed in this study might be useful for the construction of Bt engineered strains containing genes that cannot be expressed in the indigenous site-specific recombination system using plasmid pBMB1205R.

  2. Evaluation of microbial qPCR workflows using engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    S.M. Da Silva

    2016-03-01

    Significance and impact of the study: The engineered yeast has potential to support measurement assurance for the analytical process of qPCR, encompassing the method, equipment, and operator, to increase confidence in results and better inform decision-making in areas of applied microbiology. This material can also support process assessment for other DNA-based detection technologies.

  3. Metabolic engineering of free-energy (ATP) conserving reactions in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    De Kok, S.

    2012-01-01

    Metabolic engineering – the improvement of cellular activities by manipulation of enzymatic, transport and regulatory functions of the cell – has enabled the industrial production of a wide variety of biological molecules from renewable resources. Microbial production of fuels and chemicals thereby

  4. Engineering precursor supply in Saccharomyces cerevisiae: new strategies for cytosolic acetyl-CoA formation

    NARCIS (Netherlands)

    Kozak, B.U.

    2015-01-01

    Metabolic engineering – the improvement and addition, by genetic modification, of industrially relevant properties of microorganisms with respect to catalysis, transport and regulatory functions – is a well-established method for development of more cost-effective and ‘green’ industrial processes. R

  5. Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity.

    Science.gov (United States)

    Mannazzu, Ilaria; Angelozzi, Daniele; Belviso, Simona; Budroni, Marilena; Farris, Giovanni Antonio; Goffrini, Paola; Lodi, Tiziana; Marzona, Mario; Bardi, Laura

    2008-01-15

    During must fermentation wine strains are exposed to a variety of biotic and abiotic stresses which, when prevailing over the cellular defence systems, can affect cell viability with negative consequences on the progression of the fermentative process. To investigate the ability of wine strains to survive and adapt to unfavourable conditions of fermentation, the lipid composition, membrane integrity, cell viability and fermentative activity of three strains of Saccharomyces cerevisiae were analysed during hypoxic growth in a sugar-rich medium lacking lipid nutrients. These are stressful conditions, not unusual during must fermentation, which, by affecting lipid biosynthesis may exert a negative effect on yeast viability. The results obtained showed that the three strains were able to modulate cell lipid composition during fermentation. However, only two of them, which showed highest viability and membrane integrity at the end of the fermentation process, reached a fatty acid composition which seemed to be optimal for a successful adaptation. In particular, C16/TFA and UFA/TFA ratios, more than total lipid and ergosterol contents, seem to be involved in yeast adaptation.

  6. Engineering precursor supply in Saccharomyces cerevisiae: new strategies for cytosolic acetyl-CoA formation

    OpenAIRE

    Kozak, B.U.

    2015-01-01

    Metabolic engineering – the improvement and addition, by genetic modification, of industrially relevant properties of microorganisms with respect to catalysis, transport and regulatory functions – is a well-established method for development of more cost-effective and ‘green’ industrial processes. Rapid depletion of oil reserves and a growing demand for sustainable, environmentally friendly processes provide incentives for efficient exploitation of new, renewable resources for the production ...

  7. [Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae].

    Science.gov (United States)

    Yan, Daojiang; Wang, Caixia; Zhou, Jiemin; Liu, Yilan; Yang, Maohua; Xing, Jianmin

    2013-10-01

    Malic acid is widely used in food, and chemical industries. Through overexpressing pyruvate carboxylase and malate dehydrogenase in pdc1-deficient Saccharomyces cerevisiae, malic acid was successfully produced through the reductive TCA pathway. No malic acid was detected in wild type Saccharomyces cerevisiae, however, 45 mmol/L malic acid was produced in engineered strain, and the concentration of byproduct ethanol also reduced by 18%. The production of malic acid enhanced 6% by increasing the concentration of Ca2+. In addition, the final concentration reached 52.5 mmol/L malic acid by addition of biotin. The increasing is almost 16% higher than that of the original strain.

  8. Genetic engineering of AtAOX1a in Saccharomyces cerevisiae prevents oxidative damage and maintains redox homeostasis.

    Science.gov (United States)

    Vishwakarma, Abhaypratap; Dalal, Ahan; Tetali, Sarada Devi; Kirti, Pulugurtha Bharadwaja; Padmasree, Kollipara

    2016-02-01

    This study aimed to validate the physiological importance of Arabidopsis thaliana alternative oxidase 1a (AtAOX1a) in alleviating oxidative stress using Saccharomyces cerevisiae as a model organism. The AOX1a transformant (pYES2AtAOX1a) showed cyanide resistant and salicylhydroxamic acid (SHAM)-sensitive respiration, indicating functional expression of AtAOX1a in S. cerevisiae. After exposure to oxidative stress, pYES2AtAOX1a showed better survival and a decrease in reactive oxygen species (ROS) when compared to S. cerevisiae with empty vector (pYES2). Furthermore, pYES2AtAOX1a sustained growth by regulating GPX2 and/or TSA2, and cellular NAD (+)/NADH ratio. Thus, the expression of AtAOX1a in S. cerevisiae enhances its respiratory tolerance which, in turn, maintains cellular redox homeostasis and protects from oxidative damage.

  9. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Miletti Luiz C

    2008-02-01

    Full Text Available Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by

  10. Reaction and strain engineering for improved stereo-selective whole-cell reduction of a bicyclic diketone.

    Science.gov (United States)

    Johanson, Ted; Carlquist, Magnus; Olsson, Cecilia; Rudolf, Andreas; Frejd, Torbjörn; Gorwa-Grauslund, Marie F

    2008-01-01

    Reduction of bicyclo[2.2.2]octane-2,6-dione to (1R, 4S, 6S)-6-hydroxy-bicyclo[2.2.2]octane-2-one by whole cells of Saccharomyces cerevisiae was improved using an engineered recombinant strain and process design. The substrate inhibition followed a Han-Levenspiel model showing an effective concentration window between 12 and 22 g/l, in which the activity was kept above 95%. Yeast growth stage, substrate concentration and a stable pH were shown to be important parameters for effective conversion. The over-expression of the reductase gene YDR368w significantly improved diastereoselectivity compared to previously reported results. Using strain TMB4110 expressing YDR368w in batch reduction with pH control, complete conversion of 40 g/l (290 mM) substrate was achieved with 97% diastereomeric excess (de) and >99 enantiomeric excess (ee), allowing isolation of the optically pure ketoalcohol in 84% yield.

  11. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering

    DEFF Research Database (Denmark)

    Asadollahi, Mohammadali; Maury, Jerome; Patil, Kiran Raosaheb;

    2009-01-01

    and minimization of metabolic adjustments (MOMA) as objective function. Deletion of NADPH-dependent glutamate dehydrogenase encoded by GDH1 was identified as the best target gene for the improvement of sesquiterpene biosynthesis in yeast. Deletion of this gene enhances the available NADPH in the cytosol for other...... NADPH requiring enzymes, including HMG-CoA reductase. However, since disruption of GDH1 impairs the ammonia utilization, simultaneous over-expression of the NADH-dependent glutamate dehydrogenase encoded by GDH2 was also considered in this study. Deletion of GDH1 led to an approximately 85% increase...... in the final cubebol titer. However, deletion of this gene also caused a significant decrease in the maximum specific growth rate. Over-expression of GDH2 did not show a further effect on the final cubebol titer but this alteration significantly improved the growth rate compared to the GDH1 deleted strain....

  12. Enhanced succinate production from glycerol by engineered Escherichia coli strains.

    Science.gov (United States)

    Li, Qing; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-10-01

    In this study, an engineered strain Escherichia coli MLB (ldhA(-)pflB(-)) was constructed for production of succinate from glycerol. The succinate yield was 0.37mol/mol in anaerobic culture, however, the growth and glycerol consumption rates were very slow, resulting in a low succinate level. Two-stage fermentation was performed in flasks, and the succinate yield reached 0.93mol/mol, but the succinate titer was still low. Hence, overexpression of malate dehydrogenase, malic enzyme, phosphoenolpyruvate (PEP) carboxylase and PEP carboxykinase (PCK) from E. coli, and pyruvate carboxylase from Corynebacterium glutamicum in MLB was investigated for improving succinate production. Overexpression of PCK resulted in remarkable enhancement of glycerol consumption and succinate production. In flask experiments, the succinate concentration reached 118.1mM, and in a 1.5-L bioreactor the succinate concentration further increased to 360.2mM. The highest succinate yield achieved 0.93mol/mol, which was 93% of the theoretical yield, in the anaerobic stage.

  13. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2016-03-01

    Bioprospecting is an effective way to find novel enzymes from strains with desirable phenotypes. Such bioprospecting has enabled organisms such as Saccharomyces cerevisiae to utilize nonnative pentose sugars. Yet, the efficiency of this pentose catabolism (especially for the case of arabinose) remains suboptimal. Thus, further pathway optimization or identification of novel, optimal pathways is needed. Previously, we identified a novel set of xylan catabolic pathway enzymes from a superior pentose-utilizing strain of Ustilago bevomyces. These enzymes were used to successfully engineer a xylan-utilizing S. cerevisiae through a blended approach of bioprospecting and evolutionary engineering. Here, we expanded this approach to xylose and arabinose catabolic pathway engineering and demonstrated that bioprospected xylose and arabinose catabolic pathways from U. bevomyces offer alternative choices for enabling efficient pentose catabolism in S. cerevisiae. By introducing a novel set of xylose catabolic genes from U. bevomyces, growth rates were improved up to 85 % over a set of traditional Scheffersomyces stipitis pathway genes. In addition, we suggested an alternative arabinose catabolic pathway which, after directed evolution and pathway engineering, enabled S. cerevisiae to grow on arabinose as a sole carbon source in minimal medium with growth rates upwards of 0.05 h(-1). This pathway represents the most efficient growth of yeast on pure arabinose minimal medium. These pathways provide great starting points for further strain development and demonstrate the utility of bioprospecting from U. bevomyces.

  14. Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever.

    Science.gov (United States)

    Martins, Flaviano S; Elian, Samir D A; Vieira, Angélica T; Tiago, Fabiana C P; Martins, Ariane K S; Silva, Flávia C P; Souza, Ericka L S; Sousa, Lirlândia P; Araújo, Helena R C; Pimenta, Paulo F; Bonjardim, Cláudio A; Arantes, Rosa M E; Teixeira, Mauro M; Nicoli, Jacques R

    2011-04-01

    Salmonella spp. are Gram-negative, facultative, intracellular pathogens that cause several diarrheal diseases ranging from self-limiting gastroenteritis to typhoid fever. Previous results from our laboratory showed that Saccharomyces cerevisiae strain UFMG 905 isolated from 'cachaça' production presented probiotic properties due to its ability to protect against experimental infection with Salmonella enterica serovar Typhimurium. In this study, the effects of oral treatment with S. cerevisiae 905 were evaluated at the immunological level in a murine model of typhoid fever. Treatment with S. cerevisiae 905 inhibited weight loss and increased survival rate after Salmonella challenge. Immunological data demonstrated that S. cerevisiae 905 decreased levels of proinflammatory cytokines and modulated the activation of mitogen-activated protein kinases (p38 and JNK, but not ERK1/2), NF-κB and AP-1, signaling pathways which are involved in the transcriptional activation of proinflammatory mediators. Experiments in germ-free mice revealed that probiotic effects were due, at least in part, to the binding of Salmonella to the yeast. In conclusion, S. cerevisiae 905 acts as a potential new biotherapy against S. Typhimurium infection due to its ability to bind bacteria and modulate signaling pathways involved in the activation of inflammation in a murine model of typhoid fever.

  15. Engineering strategy of yeast metabolism for higher alcohol production

    Directory of Open Access Journals (Sweden)

    Shimizu Hiroshi

    2011-09-01

    Full Text Available Abstract Background While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. Results The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. Conclusions The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols.

  16. Engineering strategy of yeast metabolism for higher alcohol production

    Science.gov (United States)

    2011-01-01

    Background While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. Results The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. Conclusions The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols. PMID:21902829

  17. A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks.

    Directory of Open Access Journals (Sweden)

    Ran Du

    Full Text Available The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY. These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.

  18. Flocculation in ale brewing strains of Saccharomyces cerevisiae: re-evaluation of the role of cell surface charge and hydrophobicity.

    Science.gov (United States)

    Holle, Ann Van; Machado, Manuela D; Soares, Eduardo V

    2012-02-01

    Flocculation is an eco-friendly process of cell separation, which has been traditionally exploited by the brewing industry. Cell surface charge (CSC), cell surface hydrophobicity (CSH) and the presence of active flocculins, during the growth of two (NCYC 1195 and NCYC 1214) ale brewing flocculent strains, belonging to the NewFlo phenotype, were examined. Ale strains, in exponential phase of growth, were not flocculent and did not present active flocculent lectins on the cell surface; in contrast, the same strains, in stationary phase of growth, were highly flocculent (>98%) and presented a hydrophobicity of approximately three to seven times higher than in exponential phase. No relationship between growth phase, flocculation and CSC was observed. For comparative purposes, a constitutively flocculent strain (S646-1B) and its isogenic non-flocculent strain (S646-8D) were also used. The treatment of ale brewing and S646-1B strains with pronase E originated a loss of flocculation and a strong reduction of CSH; S646-1B pronase E-treated cells displayed a similar CSH as the non-treated S646-8D cells. The treatment of the S646-8D strain with protease did not reduce CSH. In conclusion, the increase of CSH observed at the onset of flocculation of ale strains is a consequence of the presence of flocculins on the yeast cell surface and not the cause of yeast flocculation. CSH and CSC play a minor role in the auto-aggregation of the ale strains since the degree of flocculation is defined, primarily, by the presence of active flocculins on the yeast cell wall.

  19. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.

    Science.gov (United States)

    Ryu, Young Shin; Biswas, Rajesh Kumar; Shin, Kwangsu; Parisutham, Vinuselvi; Kim, Suk Min; Lee, Sung Kuk

    2014-01-01

    Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.

  20. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.

    Directory of Open Access Journals (Sweden)

    Young Shin Ryu

    Full Text Available Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.

  1. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing.

    Science.gov (United States)

    van Rossum, Harmen M; Kozak, Barbara U; Pronk, Jack T; van Maris, Antonius J A

    2016-07-01

    Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic acetyl-CoA consumes 2 ATP equivalents in the acetyl-CoA synthetase reaction. Catabolism of additional sugar substrate, which may be required to generate this ATP, negatively affects product yields. Here, we review alternative pathways that can be engineered into yeast to optimize supply of cytosolic acetyl-CoA as a precursor for product formation. Particular attention is paid to reaction stoichiometry, free-energy conservation and redox-cofactor balancing of alternative pathways for acetyl-CoA synthesis from glucose. A theoretical analysis of maximally attainable yields on glucose of four compounds (n-butanol, citric acid, palmitic acid and farnesene) showed a strong product dependency of the optimal pathway configuration for acetyl-CoA synthesis. Moreover, this analysis showed that combination of different acetyl-CoA production pathways may be required to achieve optimal product yields. This review underlines that an integral analysis of energy coupling and redox-cofactor balancing in precursor-supply and product-formation pathways is crucial for the design of efficient cell factories.

  2. Variations in mitochondrial membrane potential correlate with malic acid production by natural isolates of Saccharomyces cerevisiae sake strains.

    Science.gov (United States)

    Oba, Takahiro; Kusumoto, Kenichi; Kichise, Yuki; Izumoto, Eiji; Nakayama, Shunichi; Tashiro, Kosuke; Kuhara, Satoru; Kitagaki, Hiroshi

    2014-08-01

    Research on the relationship between mitochondrial membrane potential and fermentation profile is being intensely pursued because of the potential for developing advanced fermentation technologies. In the present study, we isolated naturally occurring strains of yeast from sake mash that produce high levels of malic acid and demonstrate that variations in mitochondrial membrane potential correlate with malic acid production. To define the underlying biochemical mechanism, we determined the activities of enzymes required for malic acid synthesis and found that pyruvate carboxylase and malate dehydrogenase activities in strains that produce high levels of malic acid were elevated compared with the standard sake strain K901. These results inspired us to hypothesize that decreased mitochondrial membrane potential was responsible for increased malic acid synthesis, and we present data supporting this hypothesis. Thus, the mitochondrial membrane potential of high malic acid producers was lower compared with standard strains. We conclude that mitochondrial membrane potential correlates with malic acid production.

  3. Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: new insights into biodiversity and industrial applications

    DEFF Research Database (Denmark)

    Beato, Felipe B.; Bergdahl, Basti; Rosa, Carlos A.

    2016-01-01

    no clear correlation could be found either between phenotype and isolation spot or between phenotype and genomic lineage, a set of indigenous strains with superior industrially relevant traits over commonly known industrial and laboratory strains was identified: strain UFMG-CM-Y257 has a very high specific...... growth rate on sucrose (0.57 ± 0.02 h-1), high ethanol yield (1.65 ± 0.02 mol ethanol mol hexose equivalent-1), high ethanol productivity (0.19 ± 0.00 mol L-1 h-1), high tolerance to acetic acid (10 g L(-1)) and to high temperature (40°C). Strain UFMG-CM-Y260 displayed high ethanol yield (1.67 ± 0.13 mol...... ethanol mol hexose equivalent-1), high tolerance to ethanol and to low pH, a trait which is important for non-aseptic industrial processes. Strain UFMG-CM-Y267 showed high tolerance to acetic acid and to high temperature (40°C), which is of particular interest to second generation industrial processes....

  4. Strain engineering of WS2, WSe2, and WTe2

    KAUST Repository

    Amin, Bin

    2014-01-01

    We perform first-principles calculations to investigate the structural, electronic, and vibrational properties of WS2, WSe2, and WTe2 monolayers, taking into account the strong spin orbit coupling. A transition from a direct to an indirect band gap is achieved for compressive strain of 1% for WS2, 1.5% for WSe2, and 2% for WTe 2, while the nature of the band gap remains direct in the case of tensile strain. The size of the band gap passes through a maximum under compressive strain and decreases monotonically under tensile strain. A strong spin splitting is found for the valence band in all three compounds, which is further enhanced by tensile strain. The mobility of the electrons grows along the series WS2 < WSe2 < WTe2. This journal is © the Partner Organisations 2014.

  5. Effect of Engineering Character on Stress-Strain Relationship in Post-Peak Area

    Institute of Scientific and Technical Information of China (English)

    TANG Lei; KE Min-yong; YAN Jian-hua

    2003-01-01

    Constitutive experiments are the base of all rock mechanics works. The effect of engineering character on constitutive law is a new problem of rock mechanics. The results of series specimens based on the uniaxial and plane strain compression experiments were presented and discussed. It is found that engineering or experiment character has obvious effects on stress-strain relationship and especially on mechanic parameters in post-peak area. And the law of size effect of softening materials was also discussed.

  6. Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1

    Directory of Open Access Journals (Sweden)

    Bonander Nicklas

    2008-07-01

    Full Text Available Abstract Background We previously described the first respiratory Saccharomyces cerevisiae strain, KOY.TM6*P, by integrating the gene encoding a chimeric hexose transporter, Tm6*, into the genome of an hxt null yeast. Subsequently we transferred this respiratory phenotype in the presence of up to 50 g/L glucose to a yeast strain, V5 hxt1-7Δ, in which only HXT1-7 had been deleted. In this study, we compared the transcriptome of the resultant strain, V5.TM6*P, with that of its wild-type parent, V5, at different glucose concentrations. Results cDNA array analyses revealed that alterations in gene expression that occur when transitioning from a respiro-fermentative (V5 to a respiratory (V5.TM6*P strain, are very similar to those in cells undergoing a diauxic shift. We also undertook an analysis of transcription factor binding sites in our dataset by examining previously-published biological data for Hap4 (in complex with Hap2, 3, 5, Cat8 and Mig1, and used this in combination with verified binding consensus sequences to identify genes likely to be regulated by one or more of these. Of the induced genes in our dataset, 77% had binding sites for the Hap complex, with 72% having at least two. In addition, 13% were found to have a binding site for Cat8 and 21% had a binding site for Mig1. Unexpectedly, both the up- and down-regulation of many of the genes in our dataset had a clear glucose dependence in the parent V5 strain that was not present in V5.TM6*P. This indicates that the relief of glucose repression is already operable at much higher glucose concentrations than is widely accepted and suggests that glucose sensing might occur inside the cell. Conclusion Our dataset gives a remarkably complete view of the involvement of genes in the TCA cycle, glyoxylate cycle and respiratory chain in the expression of the phenotype of V5.TM6*P. Furthermore, 88% of the transcriptional response of the induced genes in our dataset can be related to the potential

  7. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Jeppsson, M.; Johansson, B.; Jensen, Peter Ruhdal;

    2003-01-01

    transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate...

  8. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.

    Science.gov (United States)

    Matsushika, Akinori; Sawayama, Shigeki

    2012-12-01

    The inhibitory effects of pH and acetic acid on the co-fermentation of glucose and xylose in complex medium by recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated. In the absence of acetic acid, the fermentation performance of strain MA-R4 was similar between pH 4.0-6.0, but was negatively affected at pH 2.5. The addition of acetic acid to batch cultures resulted in negligible inhibition of several fermentation parameters at pH 6.0, whereas the interactive inhibition of pH and acetic acid on the maximum cell and ethanol concentrations, and rates of sugar consumption and ethanol production were observed at pH levels below 5.4. The inhibitory effect of acetic acid was particularly marked for the consumption rate of xylose, as compared with that of glucose. With increasing initial acetic acid concentration, the ethanol yield slightly increased at pH 5.4 and 6.0, but decreased at pH values lower than 4.7. Notably, ethanol production was nearly completely inhibited under low pH (4.0) and high acetic acid (150-200 mM) conditions. Together, these results indicate that the inhibitory effects of acetic acid and pH on ethanol fermentation by MA-R4 are highly synergistic, although the inhibition can be reduced by increasing the medium pH.

  9. Saccharomyces cerevisiae strain UFMG 905 protects against bacterial translocation, preserves gut barrier integrity and stimulates the immune system in a murine intestinal obstruction model.

    Science.gov (United States)

    Generoso, Simone V; Viana, Mirelle; Santos, Rosana; Martins, Flaviano S; Machado, José A N; Arantes, Rosa M E; Nicoli, Jacques R; Correia, Maria I T D; Cardoso, Valbert N

    2010-06-01

    Probiotic is a preparation containing microorganisms that confers beneficial effect to the host. This work assessed whether oral treatment with viable or heat-killed yeast Saccharomyces cerevisiae strain UFMG 905 prevents bacterial translocation (BT), intestinal barrier integrity, and stimulates the immunity, in a murine intestinal obstruction (IO) model. Four groups of mice were used: mice undergoing only laparotomy (CTL), undergoing intestinal obstruction (IO) and undergoing intestinal obstruction after previous treatment with viable or heat-killed yeast. BT, determined as uptake of (99m)Tc-E. coli in blood, mesenteric lymph nodes, liver, spleen and lungs, was significantly higher in IO group than in CTL group. Treatments with both yeasts reduced BT in blood and all organs investigated. The treatment with both yeasts also reduced intestinal permeability as determined by blood uptake of (99m)Tc-DTPA. Immunological data demonstrated that both treatments were able to significantly increase IL-10 levels, but only viable yeast had the same effect on sIgA levels. Intestinal lesions were more severe in IO group when compared to CTL and yeasts groups. Concluding, both viable and heat-killed cells of yeast prevent BT, probably by immunomodulation and by maintaining gut barrier integrity. Only the stimulation of IgA production seems to depend on the yeast viability.

  10. Conclusion on the peer review of the pesticide risk assessment of the active substance cerevisane (cell walls of Saccharomyces cerevisiae strain LAS117

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2014-06-01

    Full Text Available The conclusions of the European Food Safety Authority (EFSA following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State France for the pesticide active substance cerevisane (cell walls of Saccharomyces cerevisiae strain LAS117, and the assessment of the proposal for inclusion of the substance in Annex IV of Regulation (EC No 396/2005, are reported. The context of the peer review was that required by Regulation (EC No 1107/2009 of the European Parliament and of the Council. The conclusions were reached on the basis of the evaluation of the representative uses of the active substance as a systemic resistance inducer against fungi and bacteria in lettuce and other salad crops. The reliable endpoints concluded as being appropriate for use in regulatory risk assessment, derived from the available studies and literature in the dossier peer reviewed, are presented. Missing information identified as being required by the regulatory framework is listed. No concerns are identified.

  11. Bioconversion of lactose/whey to fructose diphosphate with recombinant Saccharomyces cerevisiae cells

    Energy Technology Data Exchange (ETDEWEB)

    Compagno, C.; Tura, A.; Ranzi, B.M.; Martegani, E. (Univ. di Milano (Italy))

    1993-07-01

    Genetically engineered Saccharomyces cerevisiae strains that express Escherichia coli [beta]-galactosidase gene are able to bioconvert lactose or whey into fructose-1,6-diphosphate (FDP). High FDP yields from whey were obtained with an appropriate ratio between cell concentration and inorganic phosphate. The biomass of transformed cells can be obtained from different carbon sources, according to the expression vector bearing the lacZ gene. The authors showed that whey can be used as the carbon source for S. cerevisiae growth and as the substrate for bioconversion to fructose diphosphate.

  12. Strain engineering the work function in monolayer metal dichalcogenides.

    Science.gov (United States)

    Lanzillo, Nicholas A; Simbeck, Adam J; Nayak, Saroj K

    2015-05-08

    We use first-principles density functional theory to investigate the effect of both tensile and compressive strain on the work functions of various metal dichalcogenide monolayers. We find that for all six species considered, including MoS2, WS2, SnS2, VS2, MoSe2 and MoTe2, that compressive strain of up to 10% decreases the work function continuously by as much as 1.0 eV. Large enough tensile strain is also found to decrease the work function, although in some cases we observe an increase in the work function for intermediate values of tensile strain. This work function modulation is attributed to a weakening of the chalcogenide-metal bonds and an increase in total energy of each system as a function of strain. Values of strain which bring the metal atoms closer together lead to an increase in electrostatic potential energy, which in turn results in an increase in the vacuum potential level. The net effect on the work function can be explained in terms of the balance between the increases in the vacuum potential levels and Fermi energy.

  13. Effect of Agave tequilana juice on cell wall polysaccharides of three Saccharomyces cerevisiae strains from different origins.

    Science.gov (United States)

    Aguilar-Uscanga, Blanca; Arrizon, Javier; Ramirez, Jesús; Solis-Pacheco, Josué

    2007-02-01

    In this study, a characterization of cell wall polysaccharide composition of three yeasts involved in the production of agave distilled beverages was performed. The three yeast strains were isolated from different media (tequila, mezcal and bakery) and were evaluated for the beta(1,3)-glucanase lytic activity and the beta-glucan/ mannan ratio during the fermentation of Agave tequilana juice and in YPD media (control). Fermentations were performed in shake flasks with 30 g l(-1) sugar concentration of A. tequilana juice and with the control YPD using 30 g l(-1) of glucose. The three yeasts strains showed different levels of beta-glucan and mannan when they were grown in A. tequilana juice in comparison to the YPD media. The maximum rate of cell wall lyses was 50% lower in fermentations with A. tequilana juice for yeasts isolated from tequila and mezcal than compared to the bakery yeast.

  14. Progress in engineering high strain lead-free piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Serhiy O Leontsev and Richard E Eitel

    2010-01-01

    Full Text Available Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The 'structural engineering' approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications.

  15. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  16. Efeitos do cádmio sobre o crescimento das leveduras Saccharomyces cerevisiae PE-2 e Saccharomyces cerevisiae IZ-1904, e a capacidade da vinhaça em atenuar a toxicidade Effect of cadmium on the growth of two Saccharomyces cerevisiae strains, and the vinasse capacity to atenuate the toxicity

    Directory of Open Access Journals (Sweden)

    Samuel Mariano-da-Silva

    2004-03-01

    , minimizando os efeitos deletérios do metal.The present study was carried out in order to evaluate the capability of different cadmium concentration (0; 0,05, 0,10 and 0,50mM to affect the growth of two S. cerevisiae strains (PE-2 and IZ-1904 in YED (yeast extract 1% and dextrose 2% medium, and to evaluate the three vinasse concentration capability (0,15 and 30% to attenuate the two cadmium concentration toxicity (0,1 and 0,5mM, using S. cerevisiae PE-2 strain in YED medium. In the first assay, the medium was inoculated in aseptic conditions with 1mL of 1% yeast suspension (PE-2 or IZ-1904 and incubated at 30ºC, 70 RPM for 18 hours. During anaerobic growth (0, 2, 4, 6, 8, 10, 12, 14, 16 and 18 hours, portions of cell suspension were taken out and biomass concentration was determined. At the end of fermentation, yeast viability, budding rate and bacterial contamination were determined. Both, initial and final trehalose, was measured. In the second assay, the medium was inoculated in aseptic conditions with 2mL of 1% PE-2 suspension and incubated at 30ºC, 120 rpm for 18 hours. During the anaerobic growth (0, 2, 4, 6, 8, 10, 12,14, 16 and 18 hours portions of cell suspension were taken out and biomass concentration was determined. At the end of fermentation, alcohol production, yeast viability, budding rate and bacterial contamination were determined. Both, initial and final trehalose, was measured. The increase of cadmium levels showed a reduction on yeast growth and cell viability. Vinasse showed low toxicity, but protected yeast cells very effectively against the toxic effects of cadmium.

  17. Strain Engineering of Kapitza Resistance in Few-Layer Graphene

    DEFF Research Database (Denmark)

    Chen, Jie; Walther, Jens Honore; Koumoutsakos, Petros

    2014-01-01

    We demonstrate through molecular dynamics simulations that the Kapitza resistance in few-layer graphene (FLG) can be controlled by applying mechanical strain. For unstrained FLG, the Kapitza resistance decreases with the increase of thickness and reaches an asymptotic value of 6 × 10–10 m2K/W at ...

  18. Adenine auxotrophy--be aware: some effects of adenine auxotrophy in Saccharomyces cerevisiae strain W303-1A.

    Science.gov (United States)

    Kokina, Agnese; Kibilds, Juris; Liepins, Janis

    2014-08-01

    Adenine auxotrophy is a commonly used genetic marker in haploid yeast strains. Strain W303-1A, which carries the ade2-1 mutation, is widely used in physiological and genetic research. Yeast extract-based rich medium contains a low level of adenine, so that adenine is often depleted before glucose. This could affect the cell physiology of adenine auxotrophs grown in rich medium. The aim of our study was to assess the effects of adenine auxotrophy on cell morphology and stress physiology. Our results show that adenine depletion halts cell division, but that culture optical density continues to increase due to cell swelling. Accumulation of trehalose and a coincident 10-fold increase in desiccation stress tolerance is observed in adenine auxotrophs after adenine depletion, when compared to prototrophs. Under adenine starvation, long-term survival of W303-1A is lower than during carbon starvation, but higher than during leucine starvation. We observed drastic adenine-dependent changes in cell stress physiology, suggesting that results may be biased when adenine auxotrophs are grown in rich media without adenine supplementation.

  19. Straining mode-dependent collagen remodeling in engineered cardiovascular tissue

    NARCIS (Netherlands)

    Rubbens, M.P.; Mol, A.; Marion, M.H. van; Hanemaaijer, R.; Bank, R.A.; Baaijens, F.P.T.; Bouten, C.V.C.

    2009-01-01

    Similar to native cardiovascular tissues, the mechanical properties of engineered cardiovascular constructs depend on the composition and quality of the extracellular matrix, which is a net result of matrix remodeling processes within the tissue. To improve tissue remodeling, and hence tissue mechan

  20. Efficient construction of homozygous diploid strains identifies genes required for the hyper-filamentous phenotype in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Kentaro Furukawa

    Full Text Available Yeast cells undergo diploid-specific developments such as spore formation via meiosis and pseudohyphal development under certain nutrient-limited conditions. Studies on these aspects require homozygous diploid mutants, which are generally constructed by crossing strains of opposite mating-type with the same genetic mutation. So far, there has been no direct way to generate and select diploids from haploid cells. Here, we developed a method for efficient construction of homozygous diploids using a PGAL1-HO gene (galactose-inducible mating-type switch and a PSTE18-URA3 gene (counter selection marker for diploids. Diploids are generated by transient induction of the HO endonuclease, which is followed by mating of part of the haploid population. Since the STE18 promoter is repressed in diploids, diploids carrying PSTE18-URA3 can be selected on 5-fluoroorotic acid (5-FOA plates where the uracil prototrophic haploids cannot grow. To demonstrate that this method is useful for genetic studies, we screened suppressor mutations of the complex colony morphology, strong agar invasion and/or hyper-filamentous growth caused by lack of the Hog1 MAPK in the diploid Σ1278b strain background. Following this approach, we identified 49 suppressor mutations. Those include well-known positive regulator genes for filamentous growth signaling pathways, genes involved in mitochondrial function, DNA damage checkpoint, chromatin remodeling, and cell cycle, and also previously uncharacterized genes. Our results indicate that combinatorial use of the PGAL1-HO and PSTE18-URA3 genes is suitable to efficiently construct and select diploids and that this approach is useful for genetic studies especially when combined with large-scale screening.

  1. Engineering the strain in graphene layers with Au decoration

    Energy Technology Data Exchange (ETDEWEB)

    Pannu, Compesh, E-mail: compesh@gmail.com; Singh, Udai B.; Kumar, Sunil; Tripathi, A.; Kabiraj, D.; Avasthi, D.K., E-mail: dka4444@gmail.com

    2014-07-01

    Graphene sheets decorated with Au nanodots are synthesized by deposition of Au of three different thicknesses and subsequent annealing at 400 °C. Different thicknesses of Au film for the formation of Au nanodots on graphene are measured using Rutherford backscattering spectrometry and morphology is studied using scanning electron microscopy. Raman spectroscopy indicates 3–6-fold increase in I{sub D}/I{sub G} ratio depending on the content of Au deposited on graphene. The increase in disorder in Au decorated graphene layers is explained on the basis of interaction of Au atoms with Π bonds of graphene. The splitting and blueshift in G band signifies compressive strain in Au deposited graphene. X-ray diffraction studies using synchrotron radiation source confirm compressive strain in graphene, which increases with increase of Au film thickness.

  2. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1β in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy

    Directory of Open Access Journals (Sweden)

    Zueco Jesus

    2009-12-01

    Full Text Available Abstract Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β, using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain. Results Our results show that the concentrations of ACA in the feeding solution, corresponding to those routinely used in the literature, are limiting for the growth of S. cerevisiae BY4741 [PIR4-IL1β] in fed-batch reactor. Even in the presence of a proper ACA supplementation, S. cerevisiae BY4741 [PIR4-IL1β] did not achieve a high cell density. The Δyca1 deletion did not have a beneficial effect on the overall performance of the strain, but it had a clear effect on its viability, which was not impaired during fed-batch operations, as shown by the kd value (0.0045 h-1, negligible if compared to that of the parental strain (0.028 h-1. However, independently of their robustness, both the parental and the Δyca1 mutant ceased to grow early during fed-batch runs, both strains using most of the

  3. Magnetic engineering in 3d transition metals on phosphorene by strain

    Science.gov (United States)

    Cai, Xiaolin; Niu, Chunyao; Wang, Jianjun; Yu, Weiyang; Ren, XiaoYan; Zhu, Zhili

    2017-04-01

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields.

  4. Strain engineering for improved expression of recombinant proteins in bacteria

    OpenAIRE

    Skretas Georgios; Makino Tomohiro; Georgiou George

    2011-01-01

    Abstract Protein expression in Escherichia coli represents the most facile approach for the preparation of non-glycosylated proteins for analytical and preparative purposes. So far, the optimization of recombinant expression has largely remained a matter of trial and error and has relied upon varying parameters, such as expression vector, media composition, growth temperature and chaperone co-expression. Recently several new approaches for the genome-scale engineering of E. coli to enhance re...

  5. Tunable gaps and enhanced mobilities in strain-engineered silicane

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Oscar D.; Mishra, Rohan; Windl, Wolfgang, E-mail: windl@matsceng.ohio-state.edu [Department of Materials Science and Engineering, the Ohio State University, Columbus, Ohio 43210 (United States); Goldberger, Joshua E. [Department of Chemistry and Biochemistry, the Ohio State University, Columbus, Ohio 43210 (United States)

    2014-01-21

    The recent demonstration of single-atom thick, sp{sup 3}-hybridized group 14 analogues of graphene enables the creation of materials with electronic structures that are manipulated by the nature of the covalently bound substituents above and below the sheet. These analogues can be electronically derived from isolated (111) layers of the bulk diamond lattice. Here, we perform systematic Density Functional Theory calculations to understand how the band dispersions, effective masses, and band gaps change as the bulk silicon (111) layers are continuously separated from each other until they are electronically isolated, and then passivated with hydrogen. High-level calculations based on HSE06 hybrid functionals were performed on each endpoint to compare directly with experimental values. We find that the change in the electronic structure due to variations in the Si-H bond length, Si-Si-Si bond angle, and most significantly the Si-Si bond length can tune the nature of the band gap from indirect to direct with dramatic effects on the transport properties. First-principles calculations of the phonon-limited electron mobility predict a value of 464 cm{sup 2}/Vs for relaxed indirect band gap Si-H monolayers at room temperature. However, for 1.6% tensile strain, the band gap becomes direct, which increases the mobility significantly (8 551 cm{sup 2}/Vs at 4% tensile strain). In total, this analysis of Si-based monolayers suggests that strain can change the nature of the band gap from indirect to direct and increase the electron mobility more than 18-fold.

  6. Application of fiber optic distributed sensor for strain measurement in civil engineering

    Science.gov (United States)

    Kurashima, Toshio; Usu, Tomonori; Tanaka, Kuniaki; Nobiki, Atsushi; Sato, Masashi; Nakai, Kenji

    1997-11-01

    We report on civil engineering applications of a fiber optic distributed strain sensor. It consists of a sensing fiber and a high performance optical time domain reflectometer (OTDR), for measuring both strain and optical loss distribution along optical fibers by accessing only one end of the fiber. The OTDR can measure distributed strain with an accuracy of better than +/- 60 X 10-6 and a high spatial resolution of up to 1 m over a 10 km long fiber. In model experiments using the OTDR, we measured the strain changes in fibers attached to the surface of a concrete test beam. The performance of the fiber strain sensor was tested by measuring the strain distribution in optical fibers and comparing the results with resistance strain gage measurements for several loads. We found that the two sets of results were similar, and in addition, we demonstrated experimentally that the sensor was able to measure an induced strain change of less than 100 by 10-6, which is nearly the elastic limit of the concrete material. These results show the potential of the OTDR to extend the application of monitoring systems to such areas as large building diagnostics for civil engineering.

  7. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jared W Wenger

    2010-05-01

    Full Text Available Fermentation of xylose is a fundamental requirement for the efficient production of ethanol from lignocellulosic biomass sources. Although they aggressively ferment hexoses, it has long been thought that native Saccharomyces cerevisiae strains cannot grow fermentatively or non-fermentatively on xylose. Population surveys have uncovered a few naturally occurring strains that are weakly xylose-positive, and some S. cerevisiae have been genetically engineered to ferment xylose, but no strain, either natural or engineered, has yet been reported to ferment xylose as efficiently as glucose. Here, we used a medium-throughput screen to identify Saccharomyces strains that can increase in optical density when xylose is presented as the sole carbon source. We identified 38 strains that have this xylose utilization phenotype, including strains of S. cerevisiae, other sensu stricto members, and hybrids between them. All the S. cerevisiae xylose-utilizing strains we identified are wine yeasts, and for those that could produce meiotic progeny, the xylose phenotype segregates as a single gene trait. We mapped this gene by Bulk Segregant Analysis (BSA using tiling microarrays and high-throughput sequencing. The gene is a putative xylitol dehydrogenase, which we name XDH1, and is located in the subtelomeric region of the right end of chromosome XV in a region not present in the S288c reference genome. We further characterized the xylose phenotype by performing gene expression microarrays and by genetically dissecting the endogenous Saccharomyces xylose pathway. We have demonstrated that natural S. cerevisiae yeasts are capable of utilizing xylose as the sole carbon source, characterized the genetic basis for this trait as well as the endogenous xylose utilization pathway, and demonstrated the feasibility of BSA using high-throughput sequencing.

  8. Enhanced Seebeck effect in graphene devices by strain and doping engineering

    Science.gov (United States)

    Nguyen, M. Chung; Nguyen, V. Hung; Nguyen, Huy-Viet; Saint-Martin, J.; Dollfus, P.

    2015-09-01

    In this work, we investigate the possibility of enhancing the thermoelectric power (Seebeck coefficient) in graphene devices by strain and doping engineering. While a local strain can result in the misalignment of Dirac cones of different graphene sections in the k-space, doping engineering leads to their displacement in energy. By combining these two effects, we demonstrate that a conduction gap as large as a few hundred meV can be achieved and hence the enhanced Seebeck coefficient can reach a value higher than 1.4 mV/K in graphene doped heterojunctions with a locally strained area. Such hetero-channels appear to be very promising for enlarging the applications of graphene devices as in strain and thermal sensors.

  9. SALSA-A new instrument for strain imaging in engineering materials and components

    Energy Technology Data Exchange (ETDEWEB)

    Pirling, Thilo [Institut Max von Laue-Paul Langevin, 6 rue Jules Horowitz, BP156, F-38042 Grenoble (France)]. E-mail: pirling@ill.fr; Bruno, Giovanni [Institut Max von Laue-Paul Langevin, 6 rue Jules Horowitz, BP156, F-38042 Grenoble (France); Materials Science Centre, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Withers, Philip J. [Materials Science Centre, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom)

    2006-11-10

    Residual stresses are very hard to predict and if undetected can lead to premature failure or unexpected behaviour of engineering materials or components. This paper describes the operation of a new residual strain-mapping instrument, Strain Analyser for Large and Small scale engineering Applications (SALSA), recently commissioned at the public user facility, the Institut Laue-Langevin in Grenoble, France. A unique feature of this neutron diffraction instrument is the sample manipulator, which is the first of its kind, allowing precise scanning of large and heavy (<500 kg) samples along any trajectory involving translations, tilts and rotations. Other notable features of the instrument are also described.

  10. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation

    Science.gov (United States)

    Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses nicotinamide adenine dinucl...

  11. Essential validation methods for E. coli strains created by chromosome engineering

    OpenAIRE

    Krishnan, S.T.; Moolman, M.C.; van Laar, T.; Meyer, A. S; Dekker, N.H.

    2015-01-01

    Background Chromosome engineering encompasses a collection of homologous recombination-based techniques that are employed to modify the genome of a model organism in a controlled fashion. Such techniques are widely used in both fundamental and industrial research to introduce multiple insertions in the same Escherichia coli strain. To date, λ-Red recombination (also known as recombineering) and P1 phage transduction are the most successfully implemented chromosome engineering techniques in E....

  12. Strain engineering on structures and properties in ferroelectric thin films with perovskite structures

    Directory of Open Access Journals (Sweden)

    TANG Yanxue

    2015-08-01

    Full Text Available Ferroelectric thin films possess ferroelectric,piezoelectric,pyroelectric and photovoltaic properties,which have bright prospect for transducers,actuators,sensors,energy harvesting and solar cells.The properties of ferroelectric films are closely related to their strain due to films constrained by substrates.Therefore,the key to improve the properties of ferroelectric films is how to use substrates to regulate and control their strain,and then regulate their polarized state.This paper review the research progress of regulating the properties of ferroelectric films with perovskite structure by strain engineering and the problems needed to be resolved.

  13. Modulations of thermal properties of graphene by strain-induced phonon engineering

    Science.gov (United States)

    Tada, Kento; Funatani, Takashi; Konabe, Satoru; Sasaoka, Kenji; Ogawa, Matsuto; Souma, Satofumi; Yamamoto, Takahiro

    2017-02-01

    Modulation of the thermal properties of graphene due to strain-induced phononic band engineering was theoretically investigated by first-principles calculations based on the density functional theory. The high-energy phonon modes are found to exhibit softening owing to the strain, whereas a low-energy acoustic mode (out-of-plane mode) exhibits hardening. Moreover, the dispersion relation of the out-of-plane mode associated with the strain essentially changes from quadratic (∝ k 2) to linear (∝ k). Accordingly, the temperature dependence of the low-temperature specific heat also changes from linear (∝ T) to quadratic (∝ T 2).

  14. Analysis of strain gage reliability in F-100 jet engine testing at NASA Lewis Research Center

    Science.gov (United States)

    Holanda, R.

    1983-01-01

    A reliability analysis was performed on 64 strain gage systems mounted on the 3 rotor stages of the fan of a YF-100 engine. The strain gages were used in a 65 hour fan flutter research program which included about 5 hours of blade flutter. The analysis was part of a reliability improvement program. Eighty-four percent of the strain gages survived the test and performed satisfactorily. A post test analysis determined most failure causes. Five failures were caused by open circuits, three failed gages showed elevated circuit resistance, and one gage circuit was grounded. One failure was undetermined.

  15. Controlling thermal and electrical properties of graphene by strain-engineering its flexural phonons

    Science.gov (United States)

    Conley, Hiram; Nicholl, Ryan; Bolotin, Kirill

    2014-03-01

    We explore the effects of flexural phonons on the thermal and electrical properties of graphene. To control the amplitude of flexural phonons, we developed a technique to engineer uniform mechanical strain between 0 and 1% in suspended graphene. We determine the level of strain, thermal conductivity and carrier mobility of graphene through a combination of mechanical resonance and electrical transport measurements. Depending on strain, we find significant changes in the thermal expansion coefficient, thermal conductivity, and carrier mobility of suspended graphene. These changes are consistent with the expected contribution of flexural phonons.

  16. Strain and Cracking Surveillance in Engineered Cementitious Composites by Piezoresistive Properties

    Directory of Open Access Journals (Sweden)

    Jia Huan Yu

    2010-01-01

    Full Text Available Engineered Cementitious Composites (ECCs are novel cement-based ultraductile materials which is crack resistant and undergoes strain hardening when loaded in tension. In particular, the material is piezoresistive with changes in electrical resistance correlated with mechanical strain. The unique electrical properties of ECC render them a smart material capable of measuring strain and the evolution of structural damage. In this study, the conductivity of the material prior to loading was quantified. The piezoresistive property of ECC structural specimens are exploited to directly measure levels of cracking pattern and tensile strain. Changes in ECC electrical resistance are measured using a four-probe direct-current (DC resistance test as specimens are monotonically loaded in tension. The change in piezoresistivity correlates the cracking and strain in the ECC matrix and results in a nonlinear change in the material conductivity.

  17. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications.

    Science.gov (United States)

    Curran, Kathleen A; Karim, Ashty S; Gupta, Akash; Alper, Hal S

    2013-09-01

    Control of gene and protein expression of both endogenous and heterologous genes is a key component of metabolic engineering. While a large amount of work has been published characterizing promoters for this purpose, less effort has been exerted to elucidate the role of terminators in yeast. In this study, we characterize over 30 terminators for use in metabolic engineering applications in Saccharomyces cerevisiae and determine mRNA half-life changes to be the major cause of the varied protein and transcript expression level. We demonstrate that the difference in transcript level can be over 6.5-fold even for high strength promoters. The influence of terminator selection is magnified when coupled with a low-expression promoter, with a maximum difference in protein expression of 11-fold between an expression-enhancing terminator and the parent plasmid terminator and over 35-fold difference when compared with a no-terminator baseline. This is the first time that terminators have been investigated in the context of multiple promoters spanning orders of magnitude in activity. Finally, we demonstrate the utility of terminator selection for metabolic engineering by using a mutant xylose isomerase gene as a proof-of-concept. Through pairing an expression-enhancing terminator with a low-expression promoter, we were able to achieve the same phenotypic result as with a promoter considerably higher in strength. Moreover, we can further boost the phenotype of the high-strength promoter by pairing it with an expression-enhancing terminator. This work highlights how terminator elements can be used to control metabolic pathways in the same way that promoters are traditionally used in yeast. Together, this work demonstrates that terminators will be an important part of heterologous gene expression and metabolic engineering for yeast in the future.

  18. A dual approach for improving homogeneity of a human-type N-glycan structure in Saccharomyces cerevisiae.

    Science.gov (United States)

    Piirainen, Mari A; Boer, Harry; de Ruijter, Jorg C; Frey, Alexander D

    2016-04-01

    N-glycosylation is an important feature of therapeutic and other industrially relevant proteins, and engineering of the N-glycosylation pathway provides opportunities for developing alternative, non-mammalian glycoprotein expression systems. Among yeasts, Saccharomyces cerevisiae is the most established host organism used in therapeutic protein production and therefore an interesting host for glycoengineering. In this work, we present further improvements in the humanization of the N-glycans in a recently developed S. cerevisiae strain. In this strain, a tailored trimannosyl lipid-linked oligosaccharide is formed and transferred to the protein, followed by complex-type glycan formation by Golgi apparatus-targeted human N-acetylglucosamine transferases. We improved the glycan pattern of the glycoengineered strain both in terms of glycoform homogeneity and the efficiency of complex-type glycosylation. Most of the interfering structures present in the glycoengineered strain were eliminated by deletion of the MNN1 gene. The relative abundance of the complex-type target glycan was increased by the expression of a UDP-N-acetylglucosamine transporter from Kluyveromyces lactis, indicating that the import of UDP-N-acetylglucosamine into the Golgi apparatus is a limiting factor for efficient complex-type N-glycosylation in S. cerevisiae. By a combination of the MNN1 deletion and the expression of a UDP-N-acetylglucosamine transporter, a strain forming complex-type glycans with a significantly improved homogeneity was obtained. Our results represent a further step towards obtaining humanized glycoproteins with a high homogeneity in S. cerevisiae.

  19. Acetone production with metabolically engineered strains of Acetobacterium woodii.

    Science.gov (United States)

    Hoffmeister, Sabrina; Gerdom, Marzena; Bengelsdorf, Frank R; Linder, Sonja; Flüchter, Sebastian; Öztürk, Hatice; Blümke, Wilfried; May, Antje; Fischer, Ralf-Jörg; Bahl, Hubert; Dürre, Peter

    2016-07-01

    Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation.

  20. Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering

    NARCIS (Netherlands)

    Hubmann, Georg; Foulquié-Moreno, Maria R.; Nevoigt, Elke; Duitama, Jorge; Meurens, Nicolas; Pais, Thiago M.; Mathé, Lotte; Saerens, Sofie; Nguyen, Huyen Thi Thanh; Swinnen, Steve; Verstrepen, Kevin J.; Concilio, Luigi; de Troostembergh, Jean-Claude; Thevelein, Johan M.

    2013-01-01

    Engineering of metabolic pathways by genetic modification has been restricted largely to enzyme-encoding structural genes. The product yield of such pathways is a quantitative genetic trait. Out of 52 Saccharomyces cerevisiae strains phenotyped in small-scale fermentations, we identified strain CBS6

  1. The evaluation of nanoparticles ZnO and TiO2 effects on Saccharomyces cerevisiae CNMN-Y-20 yeast strain

    Directory of Open Access Journals (Sweden)

    Usatîi Agafia

    2016-06-01

    Full Text Available This paper investigates the action of nanoparticles ZnO (10 nm and TiO2 (30 nm on growth of Saccharomyces cerevisiae CNMN-Y-20 yeast. Nanoparticles in concentration of 0,5; 1,0 and 5,0 mg/L in YPD medium did not modify significantly cell proliferation, biomass production, the carbohydrate content and the content of β-glucans at Saccharomyces cerevisiae CNMN-Y-20. Nanoparticles ZnO and TiO2 contributed to the decrease in protein content, which demonstrated the appearance of the alterations of yeast cell membranes.

  2. Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jung, Joon-Young; Yun, Hyun Shik; Lee, Jinwon; Oh, Min-Kyu

    2011-08-01

    Glycerol has become an attractive carbon source in the biotechnology industry owing to its low price and reduced state. However, glycerol is rarely used as a carbon source in Saccharomyces cerevisiae because of its low utilization rate. In this study, we used glycerol as a main carbon source in S. cerevisiae to produce 1,2-propanediol. Metabolically engineered S. cerevisiae strains with overexpression of glycerol dissimilation pathway genes, including glycerol kinase (GUT1), glycerol 3-phosphate dehydrogenase (GUT2), glycerol dehydrogenase (gdh), and a glycerol transporter gene (GUP1), showed increased glycerol utilization and growth rate. More significant improvement of glycerol utilization and growth rate was accomplished by introducing 1,2-propanediol pathway genes, mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase) from Escherichia coli. By engineering both glycerol dissimilation and 1,2-propanediol pathways, the glycerol utilization and growth rate were improved 141% and 77%, respectively, and a 2.19 g 1,2- propanediol/l titer was achieved in 1% (v/v) glycerolcontaining YEPD medium in engineered S. cerevisiae.

  3. Adaption of Saccharomyces cerevisiae expressing a heterologous protein

    DEFF Research Database (Denmark)

    Krogh, Astrid Mørkeberg; Beck, Vibe; Højlund Christensen, Lars;

    2008-01-01

    Production of the heterologous protein, bovine aprotinin, in Saccharomyces cerevisiae was shown to affect the metabolism of the host cell to various extent depending on the strain genotype. Strains with different genotypes, industrial and laboroatory, respectively, were investigated. The maximal...

  4. 微波诱变选育低产高级醇啤酒酵母菌株%Breeding of A Low-Yield of Higher Alcohols Saccharomyces Cerevisiae Strain by Microwave-Induced Mution

    Institute of Scientific and Technical Information of China (English)

    朱莉娜; 程殿林; 尹明浩; 王亚楠; 李静欣

    2011-01-01

    Higher alcohols is the by-product in the beer yeast fermentation process of normal metabolism, and the discretion of higher alcohols content has an important impact on beer flavor. In order to properly reduce beer higher alcohols and improve beer flavor, this experiment uses microwave mutation on saccha-romyces cerevisiae for a low-yield of higher alcohols strains. Saccharomyces cerevisiae strain CF - 1 was used as original strain for microwave-induced mutation and a low-yield of higher alcohols mutant strains were obtained through repeated selections. After genetic experiment of stability fermentation,it founds no fluctation of the yield of higher alcohols. Besides,the basic property of the mutant straiins has not changed greatly and they are the new strains of low-yield of higher alcohols.%高级醇是啤酒发酵过程中酵母正常代谢的副产物,高级醇质量分数的高低对啤酒风味有重要影响.为了适当地降低啤酒中高级醇的产量,改善啤酒的风味,采用微波诱变技术对啤酒酵母进行诱变.对出发菌株CF-1进行诱变处理,通过不同鉴别培养基进行反复筛选,得到高级醇产量低的目标菌株7种,经过遗传稳定性实验后进行发酵实验.实验结果表明,高级醇产量没有明显波动,且发现在基础性能测试中无较大差异,是适量低产高级醇啤酒酵母的新菌株.

  5. Engineering expression of the heavy metal transporter MerC in Saccharomyces cerevisiae for increased cadmium accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Kiyono, Masako; Miyahara, Kiyomi; Sone, Yuka; Nakamura, Ryosuke; Sakabe, Kou [Kitasato Univ., Tokyo (Japan). Dept. of Public Health and Molecular Toxicology; Pan-Hou, Hidemitsu [Setsunan Univ., Osaka (Japan). Faculty of Pharmaceutical Sciences; Uraguchi, Shimpei [Tokyo Univ. (Japan). Biotechnology Research Center

    2010-03-15

    The merC gene from the Tn21-encoded mer operon has potential uses as a molecular tool for bioremediation. It was overexpressed as the fusion proteins MerC-Sso1p or MerC-Vam3p in Saccharomyces cerevisiae. Green fluorescent protein (GFP)-MerC-Sso1p fusion proteins located primarily in the plasma membrane, although some protein was detected in the endoplasmic reticulum. In contrast, GFP-MerC-Vam3p was expressed in the vacuolar membranes. These results suggest that yeast Sso1p and Vam3p are essential for targeting molecules to the plasma and vacuolar membranes, respectively. Significantly more cadmium ions were accumulated by yeast cells expressing MerC-Sso1p than with MerC-Vam3p or control cells. These results suggest that expression of MerC in the plasma membrane may be a particularly promising strategy for improving accumulation of cadmium in yeast. (orig.)

  6. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae.

    Science.gov (United States)

    Milne, N; Luttik, M A H; Cueto Rojas, H F; Wahl, A; van Maris, A J A; Pronk, J T; Daran, J M

    2015-07-01

    In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing chemicals, uptake and assimilation of ammonium requires 1 ATP per incorporated NH3. Urea assimilation by this yeast is more energy efficient but still requires 0.5 ATP per NH3 produced. To decrease ATP costs for nitrogen assimilation, the S. cerevisiae gene encoding ATP-dependent urease (DUR1,2) was replaced by a Schizosaccharomyces pombe gene encoding ATP-independent urease (ure2), along with its accessory genes ureD, ureF and ureG. Since S. pombe ure2 is a Ni(2+)-dependent enzyme and Saccharomyces cerevisiae does not express native Ni(2+)-dependent enzymes, the S. pombe high-affinity nickel-transporter gene (nic1) was also expressed. Expression of the S. pombe genes into dur1,2Δ S. cerevisiae yielded an in vitro ATP-independent urease activity of 0.44±0.01 µmol min(-1) mg protein(-1) and restored growth on urea as sole nitrogen source. Functional expression of the Nic1 transporter was essential for growth on urea at low Ni(2+) concentrations. The maximum specific growth rates of the engineered strain on urea and ammonium were lower than those of a DUR1,2 reference strain. In glucose-limited chemostat cultures with urea as nitrogen source, the engineered strain exhibited an increased release of ammonia and reduced nitrogen content of the biomass. Our results indicate a new strategy for improving yeast-based production of nitrogen-containing chemicals and demonstrate that Ni(2+)-dependent enzymes can be functionally expressed in S. cerevisiae.

  7. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response

    NARCIS (Netherlands)

    Verwaal, R.; Jiang, Y.; Wang, J.; Daran, J.M.; Sandmann, G.; Berg, van den J.A.; Ooyen, van A.J.J.

    2010-01-01

    To obtain insight into the genome-wide transcriptional response of heterologous carotenoid production in Saccharomyces cerevisiae, the transcriptome of two different S. cerevisiae strains overexpressing carotenogenic genes from the yeast Xanthophyllomyces dendrorhous grown in carbon-limited chemosta

  8. The isolation and characterization of a mutant strain of Saccharomyces cerevisiae that requires a long chain base for growth and for synthesis of phosphosphingolipids.

    Science.gov (United States)

    Wells, G B; Lester, R L

    1983-09-10

    A mutant of Saccharomyces cerevisiae has been obtained that shows an absolute growth requirement for long chain bases found in sphingolipids. In the absence of a long chain base, the cells are unable to synthesize the phosphoinositol-containing sphingolipids characteristic of yeast. These results suggest that one or more of the yeast sphingolipids plays a vital biological role.

  9. Space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b and screening of higher yielding strains.

    Science.gov (United States)

    Wang, Junfeng; Liu, Changting; Liu, Jinyi; Fang, Xiangqun; Xu, Chen; Guo, Yinghua; Chang, De; Su, Longxiang

    2014-03-01

    The aim of this study was to investigate the space mutagenesis of genetically engineered bacteria expressing recombinant human interferon α1b. The genetically engineered bacteria expressing the recombinant interferon α1b were sent into outer space on the Chinese Shenzhou VIII spacecraft. After the 17 day space flight, mutant strains that highly expressed the target gene were identified. After a series of screening of spaceflight-treated bacteria and the quantitative comparison of the mutant strains and original strain, we found five strains that showed a significantly higher production of target proteins, compared with the original strain. Our results support the notion that the outer space environment has unique effects on the mutation breeding of microorganisms, including genetically engineered strains. Mutant strains that highly express the target protein could be obtained through spaceflight-induced mutagenesis.

  10. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae.

    Science.gov (United States)

    Wang, Pin-Mei; Zheng, Dao-Qiong; Liu, Tian-Zhe; Tao, Xiang-Lin; Feng, Ming-Guang; Min, Hang; Jiang, Xin-Hang; Wu, Xue-Chang

    2012-03-01

    A challenge associated with the ethanol productivity under very-high-gravity (VHG) conditions, optimizing multi-traits (i.e. byproduct formation and stress tolerance) of industrial yeast strains, is overcome by a combination of metabolic engineering and genome shuffling. First, industrial strain Y12 was deleted with a glycerol exporter Fps1p and hetero-expressed with glyceraldehydes-3-phosphate dehydrogenase, resulting in the modified strain YFG12 with lower glycerol yield. Second, YFG12 was subjected to three rounds of drug resistance marker-aided genome shuffling to increase its ethanol tolerance, and the best shuffled strain TS5 was obtained. Compared with wild strain Y12, shuffled strain TS5 not only decreased glycerol formation by 14.8%, but also increased fermentation rate and ethanol yield by 3.7% and 7.6%, respectively. Moreover, the system of genetic modification and Cre/loxP in aid of three different drug-resistance markers presented in the study significantly improved breeding efficiency and will facilitate the application of breeding technologies in prototrophic industrial microorganisms.

  11. Impact of strain engineering on nanoscale strained III-V PMOSFETs.

    Science.gov (United States)

    Chang, S T; Liu, Y C; Ou-Yang, H

    2012-07-01

    Stress distributions in the strained InGaAs PMOSFET with source/drain (S/D) stressors for various lengths and widths were studied with 3D stress simulations. The resulting mobility improvement was analyzed. Compressive stress along the transport direction was found to dominate the hole mobility improvement for the wide width devices. Stress along the vertical direction perpendicular to the gate oxide was found to affect the mobility the least, while stress along the width direction enhanced in the middle wide width region. The impact of channel width and length on performance improvements such as the mobility gain was analyzed using the Kubo-Greenwood formalism accounting for nonpolar hole-phonon scattering (acoustic and optical), surface roughness scattering, polar phonon scattering, alloy scattering and remote phonon scattering. The novelty of this paper is studying the impact of channel width and length on the performance of InGaAs PMOSFET such as mobility and exploring physical insight for scaling the future III-V CMOS devices.

  12. Strain-engineered band parameters of graphene-like SiC monolayer

    Science.gov (United States)

    Behera, Harihar; Mukhopadhyay, Gautam

    2014-10-01

    Using full-potential density functional theory (DFT) calculations we show that the band gap and effective masses of charge carriers in SiC monolayer (ML-SiC) in graphene-like two-dimensional honeycomb structure are tunable by strain engineering. ML-SiC was found to preserve its flat 2D graphene-like structure under compressive strain up to 7%. A transition from indirect-to-direct gap-phase is predicted to occur for a strain value lying within the interval (1.11 %, 1.76%). In both gap-phases band gap decreases with increasing strain, although the rate of decrease is different in the two gap-phases. Effective mass of electrons show a non-linearly decreasing trend with increasing tensile strain in the direct gap-phase. The strain-sensitive properties of ML-SiC, may find applications in future strain-sensors, nanoelectromechanical systems (NEMS) and nano-optomechanical systems (NOMS) and other nano-devices.

  13. MoS2-WSe2 Hetero Bilayer: Possibility of Mechanical Strain Induced Band Gap Engineering

    Science.gov (United States)

    Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2014-03-01

    The tunability of band gap in two-dimensional (2D) hetero-bilayers of MoS2-WSe2 with applied mechanical strains (in-plane and out-of-plane) in two different types of stackings (AA and AB) have been investigated in the framework of density functional theory (DFT). The in-plane biaxial tensile strain is found to reduce electronic band gap monotonically and rendered considered bilayer into metal at 6% of applied strain. The transition pressure required for complete semiconductor-to-metal transition is found to be of 7.89 GPa while tensile strength of the reported hetero-bilayer has been calculated 10 GPa at 25% strain. In case of vertical compression strain, 16 GPa pressure has been calculated for complete semiconductor-to-metal transition. The band-gap deformation potentials and effective masses (electron and hole) have been found to posses strong dependence on the type of applied strain. Such band gap engineering in controlled manner (internal control by composition and external control by applied strain) makes the considered hetero-bilayer as a strong candidate for the application in variety of nano scale devices.

  14. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2010-03-01

    Full Text Available Abstract Background Baker's yeast (Saccharomyces cerevisiae has been engineered for xylose utilization to enable production of fuel ethanol from lignocellulose raw material. One unresolved challenge is that S. cerevisiae lacks a dedicated transport system for pentose sugars, which means that xylose is transported by non-specific Hxt transporters with comparatively low transport rate and affinity for xylose. Results In this study, we compared three heterologous xylose transporters that have recently been shown to improve xylose uptake under different experimental conditions. The transporters Gxf1, Sut1 and At5g59250 from Candida intermedia, Pichia stipitis and Arabidopsis thaliana, respectively, were expressed in isogenic strains of S. cerevisiae and the transport kinetics and utilization of xylose was evaluated. Expression of the Gxf1 and Sut1 transporters led to significantly increased affinity and transport rates of xylose. In batch cultivation at 4 g/L xylose concentration, improved transport kinetics led to a corresponding increase in xylose utilization, whereas no correlation could be demonstrated at xylose concentrations greater than 15 g/L. The relative contribution of native sugar transporters to the overall xylose transport capacity was also estimated during growth on glucose and xylose. Conclusions Kinetic characterization and aerobic batch cultivation of strains expressing the Gxf1, Sut1 and At5g59250 transporters showed a direct relationship between transport kinetics and xylose growth. The Gxf1 transporter had the highest transport capacity and the highest xylose growth rate, followed by the Sut1 transporter. The range in which transport controlled the growth rate was determined to between 0 and 15 g/L xylose. The role of catabolite repression in regulation of native transporters was also confirmed by the observation that xylose transport by native S. cerevisiae transporters increased significantly during cultivation in xylose and

  15. Improving Engineered Escherichia coli strains for High-level Biosynthesis of Isobutyrate

    Directory of Open Access Journals (Sweden)

    Mingyong Xiong

    2015-05-01

    Full Text Available Isobutyrate is an important platform chemical with various industrial applications. Previously, a synthetic metabolic pathway was constructed in E. coli to produce isobutyrate from glucose. However, isobutanol was found to be a major byproduct. Herein, gene knockouts and enzyme overexpressions were performed to optimize further the engineered E. coli strain. Besides yqhD, the knockouts of three genes eutG, yiaY and ygjB increased isobutyrate production in shake flasks. Furthermore, the introduction of an additional padA on a medium copy number plasmid under the constitutive promoter significantly reduced isobutanol formation. The IBA15-2C strain (BW25113, DyqhD, DygjB; carrying two copies of padA produced 39.2% more isobutyrate (0.39 g/glucose yield, 80% of the theoretical maximum yield than IBA1-1C strain (BW25113, DyqhD; carrying one copy of padA. A scale-up process was also investigated for IBA15-2C strain to optimize the conditions for the production of isobutyrate in the fermentor. With Ca(OH2 as the base for pH control and 10% dissolved oxygen level, IBA15-2C strain produced 90 g/L isobutyrate after 144 h. This study has engineered E. coli to achieve biosynthesis of a nonnative compound with the highest titer and opened up the possibility of the industrial production of isobutyrate.

  16. Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel δ5-desaturase from Paramecium tetraurelia

    DEFF Research Database (Denmark)

    de Andrade Pereira Tavares, Sabina; Grotkjær, Thomas; Obsen, Thomas;

    2011-01-01

    protozoan Paramecium tetraurelia and from the microalgae Ostreococcus tauri and Ostreococcus lucimarinus were identified via a BLAST search, and their substrate preferences and desaturation efficiencies were assayed in a yeast strain producing the ω6 and ω3 fatty acid substrates for Δ5-desaturation. The Δ5...

  17. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Kosugi, Akihiko; Murata, Yoshinori; Arai, Takamitsu; Mori, Yutaka [Post-harvest Science and Technology Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686 (Japan); Kondo, Akihiko [Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Nada-ku, Kobe, 657-8501 (Japan); Ueda, Mitsuyoshi [Department of Applied Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Vaithanomsat, Pilanee; Thanapase, Warunee [Nanotechnology and Biotechnology Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Chatuchak, Ladyao, Bangkok 10900 (Thailand)

    2009-05-15

    Cassava (Manihot esculenta Crantz) pulp, produced in large amounts as a by-product of starch manufacturing, is a major biomass resource in Southeast Asian countries. It contains abundant starch (approximately 60%) and cellulose fiber (approximately 20%). To effectively utilize the cassava pulp, an attempt was made to convert its components to ethanol using a sake-brewing yeast displaying glucoamylase on the cell surface. Saccharomyces cerevisiae Kyokai no. 7 (strain K7) displaying Rhizopus oryzae glucoamylase, designated strain K7G, was constructed using the C-terminal-half region of {alpha}-agglutinin. A sample of cassava pulp was pretreated with a hydrothermal reaction (140 C for 1 h), followed by treatment with a Trichoderma reesei cellulase to hydrolyze the cellulose in the sample. The K7G strain fermented starch and glucose in pretreated samples without addition of amylolytic enzymes, and produced ethanol in 91% and 80% of theoretical yield from 5% and 10% cassava pulp, respectively. (author)

  18. Strain engineering for mechanical properties in graphene nanoribbons revisited: The warping edge effect

    Science.gov (United States)

    Jiang, Jin-Wu

    2016-06-01

    We investigate the strain engineering and the edge effect for mechanical properties in graphene nanoribbons. The free edges of the graphene nanoribbons are warped due to compressive edge stresses. There is a structural transformation for the free edges from the three-dimensional warping configuration to the two-dimensional planar structure at the critical strain ɛc = 0.7%, at which the applied mechanical stress is equal to the intrinsic compressive edge stress. This structural transformation leads to step-like changes in several mechanical properties studied in the present work, including the Young's modulus, the Poisson's ratio, the quality factor of nanomechanical resonators, and the phonon edge mode.

  19. Electrically integrated SU-8 clamped graphene drum resonators for strain engineering

    Science.gov (United States)

    Lee, Sunwoo; Chen, Changyao; Deshpande, Vikram V.; Lee, Gwan-Hyoung; Lee, Ilkyu; Lekas, Michael; Gondarenko, Alexander; Yu, Young-Jun; Shepard, Kenneth; Kim, Philip; Hone, James

    2013-04-01

    Graphene mechanical resonators are the ultimate two-dimensional nanoelectromechanical systems (NEMS) with applications in sensing and signal processing. While initial devices have shown promising results, an ideal graphene NEMS resonator should be strain engineered, clamped at the edge without trapping gas underneath, and electrically integratable. In this Letter, we demonstrate fabrication and direct electrical measurement of circular SU-8 polymer-clamped chemical vapor deposition graphene drum resonators. The clamping increases device yield and responsivity, while providing a cleaner resonance spectrum from eliminated edge modes. Furthermore, the clamping induces a large strain in the resonator, increasing its resonant frequency.

  20. Engineering single-valley forward transport in strained graphene by magnetic-electric modulation

    Science.gov (United States)

    Wang, Yu

    2013-08-01

    Based on the distinct response of valley transport in graphene under the uniform strain, magnetic barrier, and electrostatic barrier manipulation, completely single-valley forward transport has been theoretically demonstrated by aligning deliberately the field profile of magnetic barrier and strain field. Further imposing electrostatic engineering, the receiving single-valley transport can be flexibly tuned to adapt much realistic field modulation, improve its ability to resist the temperature-induced thermal smooth, and even turn on or off this single-valley transport mode, displaying the appealing features for valleytronic device application.

  1. Combining Protein and Strain Engineering for the Production of Glyco-Engineered Horseradish Peroxidase C1A in Pichia pastoris.

    Science.gov (United States)

    Capone, Simona; Ćorajević, Lejla; Bonifert, Günther; Murth, Patrick; Maresch, Daniel; Altmann, Friedrich; Herwig, Christoph; Spadiut, Oliver

    2015-09-24

    Horseradish peroxidase (HRP), conjugated to antibodies and lectins, is widely used in medical diagnostics. Since recombinant production of the enzyme is difficult, HRP isolated from plant is used for these applications. Production in the yeast Pichia pastoris (P. pastoris), the most promising recombinant production platform to date, causes hyperglycosylation of HRP, which in turn complicates conjugation to antibodies and lectins. In this study we combined protein and strain engineering to obtain an active and stable HRP variant with reduced surface glycosylation. We combined four mutations, each being beneficial for either catalytic activity or thermal stability, and expressed this enzyme variant as well as the unmutated wildtype enzyme in both a P. pastoris benchmark strain and a strain where the native α-1,6-mannosyltransferase (OCH1) was knocked out. Considering productivity in the bioreactor as well as enzyme activity and thermal stability, the mutated HRP variant produced in the P. pastoris benchmark strain turned out to be interesting for medical diagnostics. This variant shows considerable catalytic activity and thermal stability and is less glycosylated, which might allow more controlled and efficient conjugation to antibodies and lectins.

  2. Combining Protein and Strain Engineering for the Production of Glyco-Engineered Horseradish Peroxidase C1A in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Simona Capone

    2015-09-01

    Full Text Available Horseradish peroxidase (HRP, conjugated to antibodies and lectins, is widely used in medical diagnostics. Since recombinant production of the enzyme is difficult, HRP isolated from plant is used for these applications. Production in the yeast Pichia pastoris (P. pastoris, the most promising recombinant production platform to date, causes hyperglycosylation of HRP, which in turn complicates conjugation to antibodies and lectins. In this study we combined protein and strain engineering to obtain an active and stable HRP variant with reduced surface glycosylation. We combined four mutations, each being beneficial for either catalytic activity or thermal stability, and expressed this enzyme variant as well as the unmutated wildtype enzyme in both a P. pastoris benchmark strain and a strain where the native α-1,6-mannosyltransferase (OCH1 was knocked out. Considering productivity in the bioreactor as well as enzyme activity and thermal stability, the mutated HRP variant produced in the P. pastoris benchmark strain turned out to be interesting for medical diagnostics. This variant shows considerable catalytic activity and thermal stability and is less glycosylated, which might allow more controlled and efficient conjugation to antibodies and lectins.

  3. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Garcia Vanegas, Katherina; Lehka, Beata Joanna; Mortensen, Uffe Hasbro

    2017-01-01

    to the pathway control state where production was optimized by downregulating an essential gene TSC13, hence, reducing formation of a byproduct. Conclusions We have successfully integrated two CRISPR tools, one for genetic engineering and one for pathway control, into one system and successfully used it for cell...

  4. Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kirby, James; Dietzel, Kevin L.; Wichmann, Gale;

    2016-01-01

    Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP...

  5. Magnetism in alkali-metal-doped wurtzite semiconductor materials controlled by strain engineering

    Science.gov (United States)

    Guo, J. H.; Li, T. H.; Liu, L. Z.; Hu, F. R.

    2016-09-01

    The study of the magnetism and optical properties of semiconductor materials by defect engineering has attracted much attention because of their potential uses in spintronic and optoelectronic devices. In this paper, first-principle calculations discloses that cationic vacancy formation energy of the doped wurtzite materials can be sharply decreased due to alkali metal dopants and shows that their magnetic properties strongly depend on defect and doping concentration. This effect can be ascribed to the volume change induced by foreign elements doped into the host system and atomic population's difference. The symmetric deformation induced by biaxial strain can further regulate this behavior. Our results suggest that the formation of cationic vacancy can be tailored by strain engineering and dopants incorporation.

  6. Elementary Flux Mode Analysis for Optimized Ethanol Yield in Anaerobic Fermentation of Glucose with Saccharomyces cerevisiae%利用基元模式分析酿酒酵母的葡萄糖厌氧发酵过程以提高己醇产量

    Institute of Scientific and Technical Information of China (English)

    许晓菁; 曹利民; 陈询

    2008-01-01

    Elementary flux mode (EFM) analysis was used in the metabolic analysis of central carbon metabolism in Saccharomyces cerevisiae based on constructed cellular network. Calculated from the metabolic model, the ethanol-producing pathway No. 37 furthest converts the substrate into ethanol among the 78 elementary flux modes.The in silico metabolic phenotypes predicted based on this analysis fit well with the fermentation performance of the engineered strains, KAM3 and KAM11, which confirmed that EFM analysis is valid to direct the construction of Saccharomyces cerevisiae engineered strains, to increase the ethanol yield.

  7. Hybrid orientation technology and strain engineering for ultra-high speed MOSFETs

    Indian Academy of Sciences (India)

    T K Maiti; C K Maiti

    2012-10-01

    We report here RF MOSFET performance in sub-45-nm hybrid orientation CMOS technology. Based on the combination of hybrid orientation technology (HOT) and process-induced local strain engineering,MOSFET RF performance is investigated using CAD (TCAD) technology. Transistor optimization on (100) substrate via silicon nitride (Si3N4) cap layer thickness for -MOSFETs, Ge mole fraction optimization for -MOSFETs on (110) substrates and channel length scaling have resulted in record RF performance, viz. the cut-off frequency, T.

  8. Flocculation of Saccharomyces cerevisiae tup1 mutants.

    OpenAIRE

    1984-01-01

    Strains of Saccharomyces cerevisiae carrying a mutation in the TUP1 locus exhibited calcium-dependent flocculation. The flocculation had none of the characteristics of sexual agglutination. The flocculation differed from that exhibited by a FLO1 strain in the effect of pH on cation dependence and sensitivity to chemical inactivation.

  9. Epitaxial strain-engineered self-assembly of magnetic nanostructures in FeRh thin films

    Science.gov (United States)

    Witte, Ralf; Kruk, Robert; Molinari, Alan; Wang, Di; Schlabach, Sabine; Brand, Richard A.; Provenzano, Virgil; Hahn, Horst

    2017-01-01

    In this paper we introduce an innovative bottom-up approach for engineering self-assembled magnetic nanostructures using epitaxial strain-induced twinning and phase separation. X-ray diffraction, 57Fe Mössbauer spectroscopy, scanning tunneling microscopy, and transmission electron microscopy show that epitaxial films of a near-equiatomic FeRh alloy respond to the applied epitaxial strain by laterally splitting into two structural phases on the nanometer length scale. Most importantly, these two structural phases differ with respect to their magnetic properties, one being paramagnetic and the other ferromagnetic, thus leading to the formation of a patterned magnetic nanostructure. It is argued that the phase separation directly results from the different strain-dependence of the total energy of the two competing phases. This straightforward relation directly enables further tailoring and optimization of the nanostructures’ properties.

  10. Monolithically Integrated Microelectromechanical Systems for On-Chip Strain Engineering of Quantum Dots.

    Science.gov (United States)

    Zhang, Yang; Chen, Yan; Mietschke, Michael; Zhang, Long; Yuan, Feifei; Abel, Stefan; Hühne, Ruben; Nielsch, Kornelius; Fompeyrine, Jean; Ding, Fei; Schmidt, Oliver G

    2016-09-14

    Elastic strain fields based on single crystal piezoelectric elements represent an effective way for engineering the quantum dot (QD) emission with unrivaled precision and technological relevance. However, pioneering researches in this direction were mainly based on bulk piezoelectric substrates, which prevent the development of chip-scale devices. Here, we present a monolithically integrated Microelectromechanical systems (MEMS) device with great potential for on-chip quantum photonic applications. High-quality epitaxial PMN-PT thin films have been grown on SrTiO3 buffered Si and show excellent piezoelectric responses. Dense arrays of MEMS with small footprints are then fabricated based on these films, forming an on-chip strain tuning platform. After transferring the QD-containing nanomembranes onto these MEMS, the nonclassical emissions (e.g., single photons) from single QDs can be engineered by the strain fields. We envision that the strain tunable QD sources on the individually addressable and monolithically integrated MEMS pave the way toward complex quantum photonic applications on chip.

  11. Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a coproduct in an ethanologenic Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Hughes, Stephen R; Dowd, Patrick F; Hector, Ronald E; Panavas, Tadas; Sterner, David E; Qureshi, Nasib; Bischoff, Kenneth M; Bang, Sookie S; Mertens, Jeffrey A; Johnson, Eric T; Li, Xin-Liang; Jackson, John S; Caughey, Robert J; Riedmuller, Steven B; Bartolett, Scott; Liu, Siqing; Rich, Joseph O; Farrelly, Philip J; Butt, Tauseef R; Labaer, Joshua; Cotta, Michael A

    2008-09-01

    New methods of safe biological pest control are required as a result of evolution of insect resistance to current biopesticides. Yeast strains being developed for conversion of cellulosic biomass to ethanol are potential host systems for expression of commercially valuable peptides, such as bioinsecticides, to increase the cost-effectiveness of the process. Spider venom is one of many potential sources of novel insect-specific peptide toxins. Libraries of mutants of the small amphipathic peptide lycotoxin-1 from the wolf spider were produced in high throughput using an automated integrated plasmid-based functional proteomic platform and screened for ability to kill fall armyworms, a significant cause of damage to corn (maize) and other crops in the United States. Using amino acid scanning mutagenesis (AASM) we generated a library of mutagenized lycotoxin-1 open reading frames (ORF) in a novel small ubiquitin-like modifier (SUMO) yeast expression system. The SUMO technology enhanced expression and improved generation of active lycotoxins. The mutants were engineered to be expressed at high level inside the yeast and ingested by the insect before being cleaved to the active form (so-called Trojan horse strategy). These yeast strains expressing mutant toxin ORFs were also carrying the xylose isomerase (XI) gene and were capable of aerobic growth on xylose. Yeast cultures expressing the peptide toxins were prepared and fed to armyworm larvae to identify the mutant toxins with greatest lethality. The most lethal mutations appeared to increase the ability of the toxin alpha-helix to interact with insect cell membranes or to increase its pore-forming ability, leading to cell lysis. The toxin peptides have potential as value-added coproducts to increase the cost-effectiveness of fuel ethanol bioproduction.

  12. Production of 2-butanol from crude glycerol by a genetically-engineered Klebsiella pneumoniae strain.

    Science.gov (United States)

    Oh, Baek-Rock; Heo, Sun-Yeon; Lee, Sung-Mok; Hong, Won-Kyung; Park, Jang Min; Jung, You Ree; Kim, Dae-Hyuk; Sohn, Jung-Hoon; Seo, Jeong-Woo; Kim, Chul Ho

    2014-01-01

    Klebsiella pneumoniae was engineered to produce 2-butanol from crude glycerol as a sole carbon source by expressing acetolactate synthase (ilvIH), keto-acid reducto-isomerase (ilvC) and dihydroxy-acid dehydratase (ilvD) from K. pneumoniae, and α-ketoisovalerate decarboxylase (kivd) and alcohol dehydrogenase (adhA) from Lactococcus lactis. Engineered K. pneumonia, ∆ldhA/pBR-iBO (ilvIH–ilvC–ilvD–kivd–adhA), produced 2-butanol (160 mg l−1) from crude glycerol. To increase the yield of 2-butanol, we eliminated the 2,3-butanediol pathway from the recombinant strain by inactivating α-acetolactate decarboxylase (adc). This further engineering step improved the yield of 2-butanol from 160 to 320 mg l−1. This represents the first successful attempt to produce 2-butanol from crude glycerol.

  13. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering.

    Science.gov (United States)

    Yang, Shengxue; Wang, Cong; Sahin, Hasan; Chen, Hui; Li, Yan; Li, Shu-Shen; Suslu, Aslihan; Peeters, Francois M; Liu, Qian; Li, Jingbo; Tongay, Sefaattin

    2015-03-11

    Creating materials with ultimate control over their physical properties is vital for a wide range of applications. From a traditional materials design perspective, this task often requires precise control over the atomic composition and structure. However, owing to their mechanical properties, low-dimensional layered materials can actually withstand a significant amount of strain and thus sustain elastic deformations before fracture. This, in return, presents a unique technique for tuning their physical properties by "strain engineering". Here, we find that local strain induced on ReSe2, a new member of the transition metal dichalcogenides family, greatly changes its magnetic, optical, and electrical properties. Local strain induced by generation of wrinkle (1) modulates the optical gap as evidenced by red-shifted photoluminescence peak, (2) enhances light emission, (3) induces magnetism, and (4) modulates the electrical properties. The results not only allow us to create materials with vastly different properties at the nanoscale, but also enable a wide range of applications based on 2D materials, including strain sensors, stretchable electrodes, flexible field-effect transistors, artificial-muscle actuators, solar cells, and other spintronic, electromechanical, piezoelectric, photonic devices.

  14. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs.

    Directory of Open Access Journals (Sweden)

    Nicky de Jonge

    Full Text Available AIMS: Tissue engineering is an innovative method to restore cardiovascular tissue function by implanting either an in vitro cultured tissue or a degradable, mechanically functional scaffold that gradually transforms into a living neo-tissue by recruiting tissue forming cells at the site of implantation. Circulating endothelial colony forming cells (ECFCs are capable of differentiating into endothelial cells as well as a mesenchymal ECM-producing phenotype, undergoing Endothelial-to-Mesenchymal-transition (EndoMT. We investigated the potential of ECFCs to produce and organize ECM under the influence of static and cyclic mechanical strain, as well as stimulation with transforming growth factor β1 (TGFβ1. METHODS AND RESULTS: A fibrin-based 3D tissue model was used to simulate neo-tissue formation. Extracellular matrix organization was monitored using confocal laser-scanning microscopy. ECFCs produced collagen and also elastin, but did not form an organized matrix, except when cultured with TGFβ1 under static strain. Here, collagen was aligned more parallel to the strain direction, similar to Human Vena Saphena Cell-seeded controls. Priming ECFC with TGFβ1 before exposing them to strain led to more homogenous matrix production. CONCLUSIONS: Biochemical and mechanical cues can induce extracellular matrix formation by ECFCs in tissue models that mimic early tissue formation. Our findings suggest that priming with bioactives may be required to optimize neo-tissue development with ECFCs and has important consequences for the timing of stimuli applied to scaffold designs for both in vitro and in situ cardiovascular tissue engineering. The results obtained with ECFCs differ from those obtained with other cell sources, such as vena saphena-derived myofibroblasts, underlining the need for experimental models like ours to test novel cell sources for cardiovascular tissue engineering.

  15. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway

    Directory of Open Access Journals (Sweden)

    Krainer Florian W

    2012-02-01

    Full Text Available Abstract Βackground The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. Results A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein

  16. Design and Validation of Equiaxial Mechanical Strain Platform, EQUicycler, for 3D Tissue Engineered Constructs.

    Science.gov (United States)

    Elsaadany, Mostafa; Harris, Matthew; Yildirim-Ayan, Eda

    2017-01-01

    It is crucial to replicate the micromechanical milieu of native tissues to achieve efficacious tissue engineering and regenerative therapy. In this study, we introduced an innovative loading platform, EQUicycler, that utilizes a simple, yet effective, and well-controlled mechanism to apply physiologically relevant homogenous mechanical equiaxial strain on three-dimensional cell-embedded tissue scaffolds. The design of EQUicycler ensured elimination of gripping effects through the use of biologically compatible silicone posts for direct transfer of the mechanical load to the scaffolds. Finite Element Modeling (FEM) was created to understand and to quantify how much applied global strain was transferred from the loading mechanism to the tissue constructs. In vitro studies were conducted on various cell lines associated with tissues exposed to equiaxial mechanical loading in their native environment. In vitro results demonstrated that EQUicycler was effective in maintaining and promoting the viability of different musculoskeletal cell lines and upregulating early differentiation of osteoprogenitor cells. By utilizing EQUicycler, collagen fibers of the constructs were actively remodeled. Residing cells within the collagen construct elongated and aligned with strain direction upon mechanical loading. EQUicycler can provide an efficient and cost-effective tool to conduct mechanistic studies for tissue engineered constructs designed for tissue systems under mechanical loading in vivo.

  17. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  18. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    Science.gov (United States)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  19. Effect of dilution rate and nutrients addition on the fermentative capability and synthesis of aromatic compounds of two indigenous strains of Saccharomyces cerevisiae in continuous cultures fed with Agave tequilana juice.

    Science.gov (United States)

    Morán-Marroquín, G A; Córdova, J; Valle-Rodríguez, J O; Estarrón-Espinosa, M; Díaz-Montaño, D M

    2011-11-15

    Knowledge of physiological behavior of indigenous tequila yeast used in fermentation process is still limited. Yeasts have significant impact on the productivity fermentation process as well as the sensorial characteristics of the alcoholic beverage. For these reasons a better knowledge of the physiological and metabolic features of these yeasts is required. The effects of dilution rate, nitrogen and phosphorus source addition and micro-aeration on growth, fermentation and synthesis of volatile compounds of two native Saccharomyces cerevisiae strains, cultured in continuous fed with Agave tequilana juice were studied. For S1 and S2 strains, maximal concentrations of biomass, ethanol, consumed sugars, alcohols and esters were obtained at 0.04 h⁻¹. Those concentrations quickly decreased as D increased. For S. cerevisiae S1 cultures (at D=0.08 h⁻¹) supplemented with ammonium phosphate (AP) from 1 to 4 g/L, concentrations of residual sugars decreased from 29.42 to 17.60 g/L and ethanol increased from 29.63 to 40.08 g/L, respectively. The S1 culture supplemented with AP was then micro-aerated from 0 to 0.02 vvm, improving all the kinetics parameters: biomass, ethanol and glycerol concentrations increased from 5.66, 40.08 and 3.11 g/L to 8.04, 45.91 and 4.88 g/L; residual sugars decreased from 17.67 g/L to 4.48 g/L; and rates of productions of biomass and ethanol, and consumption of sugars increased from 0.45, 3.21 and 7.33 g/L·h to 0.64, 3.67 and 8.38 g/L·h, respectively. Concentrations of volatile compounds were also influenced by the micro-aeration rate. Ester and alcohol concentrations were higher, in none aerated and in aerated cultures respectively.

  20. [Construction and evaluation of an engineered bacterial strain for producing lipopeptide under anoxic conditions].

    Science.gov (United States)

    Liang, Xiao-long; Zhao, Feng; Shi, Rong-jiu; Ban, Yun-he; Zhou, Ji-dong; Han, Si-qin; Zhang, Ying

    2015-08-01

    Biosurfactant-facilitated oil recovery is one of the most important aspects of microbial enhanced oil recovery (MEOR). However, the biosurfactant production by biosurfactant-producing microorganisms, most of which are aerobes, is severely suppressed due to the in-situ anoxic conditions within oil reservoirs. In this research, we successfully engineered a strain JD-3, which could grow rapidly and produce lipopeptide under anoxic conditions, by protoplast confusion using a Bacillus amyloliquefaciens strain BQ-2 which produces biosurfactant aerobically, and a facultative anaerobic Pseudomonas stutzeri strain DQ-1 as parent strains. The alignment of 16S rDNA sequence (99% similarity) and comparisons of cell colony morphology showed that fusant JD-3 was closer to the parental strain B. amyloliquefaciens BQ-2. The surface tension of culture broth of fusant JD-3, after 36-hour cultivation under anaerobic conditions, decreased from initially 63.0 to 32.5 mN · m(-1). The results of thin layer chromatography and infrared spectrum analysis demonstrated that the biosurfactant produced by JD-3 was lipopeptide. The surface-active lipopeptide had a low critical micelle concentration (CMC) of 90 mg · L(-1) and presented a good ability to emulsify various hydrocarbons such as crude oil, liquid paraffin, and kerosene. Strain JD-3 could utilize peptone as nitrogen source and sucrose, glucose, glycerin or other common organics as carbon sources for anaerobic lipopeptide synthesis. The subculture of fusant JD-3 showed a stable lipopeptide-producing ability even after ten serial passages. All these results indicated that fusant JD-3 holds a great potential to microbially enhance oil recovery under anoxic conditions.

  1. Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production

    Directory of Open Access Journals (Sweden)

    Yoon Byoung

    2009-01-01

    Full Text Available Abstract Background Deletion of large blocks of nonessential genes that are not needed for metabolic pathways of interest can reduce the production of unwanted by-products, increase genome stability, and streamline metabolism without physiological compromise. Researchers have recently constructed a reduced-genome Escherichia coli strain MDS42 that lacks 14.3% of its chromosome. Results Here we describe the reengineering of the MDS42 genome to increase the production of the essential amino acid L-threonine. To this end, we over-expressed a feedback-resistant threonine operon (thrA*BC, deleted the genes that encode threonine dehydrogenase (tdh and threonine transporters (tdcC and sstT, and introduced a mutant threonine exporter (rhtA23 in MDS42. The resulting strain, MDS-205, shows an ~83% increase in L-threonine production when cells are grown by flask fermentation, compared to a wild-type E. coli strain MG1655 engineered with the same threonine-specific modifications described above. And transcriptional analysis revealed the effect of the deletion of non-essential genes on the central metabolism and threonine pathways in MDS-205. Conclusion This result demonstrates that the elimination of genes unnecessary for cell growth can increase the productivity of an industrial strain, most likely by reducing the metabolic burden and improving the metabolic efficiency of cells.

  2. Engineering a high-yield glutathione strain of Hansenula polymorpha using ion beam implantation.

    Science.gov (United States)

    Qian, Weidong; Fu, Yunfang; Cai, Changlong

    2013-01-01

    To generate an industrial strain of Hansenula polymorpha capable of yielding greater levels of glutathione (GSH), wild strain H. polymorpha DL-1 cells were mutated using a nitrogen ion beam, a novel mutagen. At an energy level of 20 keV and dose of 2.13 × 10(16) ions/cm(2), H. polymorpha strain 28 (HP28) with a high-yield of GSH was screened. HP28 intracellular GSH levels reached 337.16 mg/L by ion beam implantation, 1.56 times greater than that of the wild type strain when the fermentation time was shortened from 48 hr to 42 hr, greatly improving efficiency and reducing the cost of industrial-scale production. The enhanced efficiency of HP28 is promising for GSH production from lignocellulosic materials. Therefore, the ion beam implantation would be a cost-effective alternative to the conventional mutation method for engineering yeast and improving its utility.

  3. Engineering Pichia pastoris for improved NADH regeneration: A novel chassis strain for whole-cell catalysis

    Directory of Open Access Journals (Sweden)

    Martina Geier

    2015-09-01

    Full Text Available Many synthetically useful reactions are catalyzed by cofactor-dependent enzymes. As cofactors represent a major cost factor, methods for efficient cofactor regeneration are required especially for large-scale synthetic applications. In order to generate a novel and efficient host chassis for bioreductions, we engineered the methanol utilization pathway of Pichia pastoris for improved NADH regeneration. By deleting the genes coding for dihydroxyacetone synthase isoform 1 and 2 (DAS1 and DAS2, NADH regeneration via methanol oxidation (dissimilation was increased significantly. The resulting Δdas1 Δdas2 strain performed better in butanediol dehydrogenase (BDH1 based whole-cell conversions. While the BDH1 catalyzed acetoin reduction stopped after 2 h reaching ~50% substrate conversion when performed in the wild type strain, full conversion after 6 h was obtained by employing the knock-out strain. These results suggest that the P. pastoris Δdas1 Δdas2 strain is capable of supplying the actual biocatalyst with the cofactor over a longer reaction period without the over-expression of an additional cofactor regeneration system. Thus, focusing the intrinsic carbon flux of this methylotrophic yeast on methanol oxidation to CO2 represents an efficient and easy-to-use strategy for NADH-dependent whole-cell conversions. At the same time methanol serves as co-solvent, inductor for catalyst and cofactor regeneration pathway expression and source of energy.

  4. [Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae].

    Science.gov (United States)

    Zhao, Xinqing; Zhang, Mingming; Xu, Guihong; Xu, Jianren; Bai, Fengwu

    2014-03-01

    Industrial microorganisms are subject to various stress conditions, including products and substrates inhibitions. Therefore, improvement of stress tolerance is of great importance for industrial microbial production. Acetic acid is one of the major inhibitors in the cellulosic hydrolysates, which affects seriously on cell growth and metabolism of Saccharomyces cerevisiae. Studies on the molecular mechanisms underlying adaptive response and tolerance of acetic acid of S. cerevisiae benefit breeding of robust strains of industrial yeast for more efficient production. In recent years, more insights into the molecular mechanisms underlying acetic acid tolerance have been revealed through analysis of global gene expression and metabolomics analysis, as well as phenomics analysis by single gene deletion libraries. Novel genes related to response to acetic acid and improvement of acetic acid tolerance have been identified, and novel strains with improved acetic acid tolerance were constructed by modifying key genes. Metal ions including potassium and zinc play important roles in acetic acid tolerance in S. cerevisiae, and the effect of zinc was first discovered in our previous studies on flocculating yeast. Genes involved in cell wall remodeling, membrane transport, energy metabolism, amino acid biosynthesis and transport, as well as global transcription regulation were discussed. Exploration and modification of the molecular mechanisms of yeast acetic acid tolerance will be done further on levels such as post-translational modifications and synthetic biology and engineering; and the knowledge obtained will pave the way for breeding robust strains for more efficient bioconversion of cellulosic materials to produce biofuels and bio-based chemicals.

  5. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin

    Directory of Open Access Journals (Sweden)

    Steuer Kristin

    2011-04-01

    Full Text Available Abstract Background The xanthophyll astaxanthin is a high-value compound with applications in the nutraceutical, cosmetic, food, and animal feed industries. Besides chemical synthesis and extraction from naturally producing organisms like Haematococcus pluvialis, heterologous biosynthesis in non-carotenogenic microorganisms like Escherichia coli, is a promising alternative for sustainable production of natural astaxanthin. Recent achievements in the metabolic engineering of E. coli strains have led to a significant increase in the productivity of carotenoids like lycopene or β-carotene by increasing the metabolic flux towards the isoprenoid precursors. For the heterologous biosynthesis of astaxanthin in E. coli, however, the conversion of β-carotene to astaxanthin is obviously the most critical step towards an efficient biosynthesis of astaxanthin. Results Here we report the construction of the first plasmid-free E. coli strain that produces astaxanthin as the sole carotenoid compound with a yield of 1.4 mg/g cdw (E. coli BW-ASTA. This engineered E. coli strain harbors xanthophyll biosynthetic genes from Pantoea ananatis and Nostoc punctiforme as individual expression cassettes on the chromosome and is based on a β-carotene-producing strain (E. coli BW-CARO recently developed in our lab. E. coli BW-CARO has an enhanced biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP and produces β-carotene in a concentration of 6.2 mg/g cdw. The expression of crtEBIY along with the β-carotene-ketolase gene crtW148 (NpF4798 and the β-carotene-hydroxylase gene (crtZ under controlled expression conditions in E. coli BW-ASTA directed the pathway exclusively towards the desired product astaxanthin (1.4 mg/g cdw. Conclusions By using the λ-Red recombineering technique, genes encoding for the astaxanthin biosynthesis pathway were stably integrated into the chromosome of E. coli. The expression levels of chromosomal integrated recombinant

  6. A novel approach for the improvement of ethanol fermentation by Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Hou, L.; Cao, X.; Wang, C. [Tianjin Univ. of Science and Technology, Tianjin (China). Key Laboratory of Food Nutrition and Safety

    2010-06-15

    The partial substitution of fossil fuels with bioethanol has become an important strategy for the use of renewable energy. Ethanol production is generally achieved through fermentation of starch or sugar-based feedstock by Saccharomyces cerevisiae. In order to meet the growing demand for ethanol, there is a need for new yeast strains that can produce ethanol more efficiently and cost effectively. This paper presented a new genome engineering approach that was developed to improve ethanol production by S. cerevisiae. In this study, the aneuploid strain constructed on the base of tetraploid cells was shown to have favourable metabolic traits in very high gravity (VHG) fermentation with 300 g/L glucose as the carbon source. The tetraploid strain was constructed using the plasmid YCplac33-GHK, which comprised the HO gene encoding the site-specific HO endonucleases. The aneuploid strain, WT4-M, was chosen and screened once the tetraploid cells were treated with methyl benzimidazole-2-yl-carbamate to induce loss of mitotic chromosomes. The aneuploid strain WT4-M increased ethanol production as well as osmotic and thermal tolerance. The sugar to ethanol conversion rate also improved. It was concluded that this new approach is valuable for creating yeast strains with better fermentation characteristics. 25 refs., 3 figs.

  7. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field

    Science.gov (United States)

    Lu, Ning; Guo, Hongyan; Li, Lei; Dai, Jun; Wang, Lu; Mei, Wai-Ning; Wu, Xiaojun; Zeng, Xiao Cheng

    2014-02-01

    We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For M = Mo, Cr, W; X = S, Se, all heterobilayers show semiconducting characteristics with an indirect bandgap with the exception of the WSe2/MoS2 heterobilayer which retains the direct-bandgap character of the constituent monolayer. For M = Fe, V; X = S, Se, the MX2/MoS2 heterobilayers exhibit metallic characters. Particular attention of this study has been focused on engineering the bandgap of the TMD heterobilayer materials via application of either a tensile strain or an external electric field. We find that with increasing either the biaxial or uniaxial tensile strain, the MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can undergo a semiconductor-to-metal transition. For the WSe2/MoS2 heterobilayer, a direct-to-indirect bandgap transition may occur beyond a critical biaxial or uniaxial strain. For M (=Fe, V) and X (=S, Se), the magnetic moments of both metal and chalcogen atoms are enhanced when the MX2/MoS2 heterobilayers are under a biaxial tensile strain. Moreover, the bandgap of MX2/MoS2 (M = Mo, Cr, W; X = S, Se) heterobilayers can be reduced by the vertical electric field. For two heterobilayers MSe2/MoS2 (M = Mo, Cr), PBE calculations suggest that the indirect-to-direct bandgap transition may occur under an external electric field. The transition is attributed to the enhanced spontaneous polarization. The tunable bandgaps in general and possible indirect-direct bandgap transitions due to tensile strain or external electric field make the TMD heterobilayer materials a viable candidate for optoelectronic applications.We have performed a comprehensive first-principles study of the electronic and magnetic properties of two-dimensional (2D) transition-metal dichalcogenide (TMD) heterobilayers MX2/MoS2 (M = Mo, Cr, W, Fe, V; X = S, Se). For

  8. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects

    Directory of Open Access Journals (Sweden)

    Danuza Nogueira Moysés

    2016-02-01

    Full Text Available Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review.

  9. Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sun, Zhiqiang; Meng, Hailin; Li, Jing; Wang, Jianfeng; Li, Qian; Wang, Yong; Zhang, Yansheng

    2014-01-01

    Many terpenoids have important pharmacological activity and commercial value; however, application of these terpenoids is often limited by problems associated with the production of sufficient amounts of these molecules. The use of Saccharomyces cerevisiae (S. cerevisiae) for the production of heterologous terpenoids has achieved some success. The objective of this study was to identify S. cerevisiae knockout targets for improving the synthesis of heterologous terpeniods. On the basis of computational analysis of the S. cerevisiae metabolic network, we identified the knockout sites with the potential to promote terpenoid production and the corresponding single mutant was constructed by molecular manipulations. The growth rates of these strains were measured and the results indicated that the gene deletion had no adverse effects. Using the expression of amorphadiene biosynthesis as a testing model, the gene deletion was assessed for its effect on the production of exogenous terpenoids. The results showed that the dysfunction of most genes led to increased production of amorphadiene. The yield of amorphadiene produced by most single mutants was 8-10-fold greater compared to the wild type, indicating that the knockout sites can be engineered to promote the synthesis of exogenous terpenoids.

  10. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction.

    Science.gov (United States)

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha

    2014-07-31

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  11. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction

    Science.gov (United States)

    Knipe, Kevin; Manero, Albert; Siddiqui, Sanna F.; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha

    2014-07-01

    The mechanical behaviour of thermal barrier coatings in operation holds the key to understanding durability of jet engine turbine blades. Here we report the results from experiments that monitor strains in the layers of a coating subjected to thermal gradients and mechanical loads representing extreme engine environments. Hollow cylindrical specimens, with electron beam physical vapour deposited coatings, were tested with internal cooling and external heating under various controlled conditions. High-energy synchrotron X-ray measurements captured the in situ strain response through the depth of each layer, revealing the link between these conditions and the evolution of local strains. Results of this study demonstrate that variations in these conditions create corresponding trends in depth-resolved strains with the largest effects displayed at or near the interface with the bond coat. With larger temperature drops across the coating, significant strain gradients are seen, which can contribute to failure modes occurring within the layer adjacent to the interface.

  12. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose.

    Science.gov (United States)

    Choi, Eun-Ji; Kim, Jin-Woo; Kim, Soo-Jung; Seo, Seung-Oh; Lane, Stephan; Park, Yong-Cheol; Jin, Yong-Su; Seo, Jin-Ho

    2016-11-01

    Galactose and glucose are two of the most abundant monomeric sugars in hydrolysates of marine biomasses. While Saccharomyces cerevisiae can ferment galactose, its uptake is tightly controlled in the presence of glucose by catabolite repression. It is desirable to construct engineered strains capable of simultaneous utilization of glucose and galactose for producing biofuels and chemicals from marine biomass. The MTH1 gene coding for transcription factor in glucose signaling was mutated in a pyruvate decarboxylase (Pdc)-deficient S. cerevisiae expressing heterologous 2,3-butanediol (2,3-BD) biosynthetic genes. The engineered S. cerevisiae strain consumed glucose and galactose simultaneously and produced 2,3-BD as a major product. Total sugar consumption rates increased with a low ratio of glucose/galactose, though, occurrence of the glucose depletion in a fed-batch fermentation decreased 2,3-BD production substantially. Through optimizing the profiles of sugar concentrations in a fed-batch cultivation with the engineered strain, 99.1 ± 1.7 g/L 2,3-BD was produced in 143 hours with a yield of 0.353 ± 0.022 g 2,3-BD/g sugars. This result suggests that simultaneous and efficient utilization of glucose and galactose by the engineered yeast might be applicable to the economical production of not only 2,3-BD, but also other biofuels and chemicals from marine biomass.

  13. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ahlgren Simon

    2011-09-01

    Full Text Available Abstract Background The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP. Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases. Results We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel™ to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase. Conclusions Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.

  14. Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose.

    Science.gov (United States)

    Shen, Li; Nishimura, Yuya; Matsuda, Fumio; Ishii, Jun; Kondo, Akihiko

    2016-07-01

    2-Phenylethanol (2-PE) is a higher aromatic alcohol that is used in the cosmetics and food industries. The budding yeast Saccharomyces cerevisiae is considered to be a suitable host for the industrial production of higher alcohols, including 2-PE. To produce 2-PE from glucose in S. cerevisiae, we searched for suitable 2-keto acid decarboxylase (KDC) and alcohol dehydrogenase (ADH) enzymes of the Ehrlich pathway for overexpression in strain YPH499, and found that overexpression of the ARO10 and/or ADH1 genes increased 2-PE production from glucose. Further, we screened ten BY4741 single-deletion mutants of genes involved in the competing pathways for 2-PE production, and found that strains aro8Δ and aat2Δ displayed increased 2-PE production. Based on these results, we engineered a BY4741 strain that overexpressed ARO10 and contained an aro8Δ deletion, and demonstrated that the strain produced 96 mg/L 2-PE from glucose as the sole carbon source. As this engineered S. cerevisiae strain showed a significant increase in 2-PE production from glucose without the addition of an intermediate carbon substrate, it is a promising candidate for the large-scale production of 2-PE.

  15. Wrinkling instability in nanoparticle-supported graphene: implications for strain engineering

    Science.gov (United States)

    Cullen, William; Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael; Einstein, Theodore

    2013-03-01

    We have carried out a systematic study of the wrinkling instability of graphene membranes supported on SiO2 substrates with randomly placed silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate and is highly conformal over the nanoparticles. With increasing nanoparticle density, and decreasing nanoparticle separation to ~100 nm, graphene's elastic response dominates substrate adhesion, and elastic stretching energy is reduced by the formation of wrinkles which connect protrusions. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, delamination from the substrate is observed. Since the wrinkling instability acts to remove inhomogeneous in-plane elastic strains through out-of-plane buckling, our results can be used to place limits on the possible in-plane strain magnitudes that may be created in graphene to realized strain-engineered electronic structures.[2] Supported by the UMD NSF-MRSEC under Grant No. DMR 05-20471, the US ONR MURI and UMD CNAM.

  16. Controlling the thermal conductance of graphene/h -BN lateral interface with strain and structure engineering

    Science.gov (United States)

    Ong, Zhun-Yong; Zhang, Gang; Zhang, Yong-Wei

    2016-02-01

    Although phonon-mediated thermal conduction in pristine graphene and hexagonal boron nitride is well understood, less is known about phonon transport in single-sheet graphene-hexagonal boron nitride (Gr /h -BN ) lateral heterostructures, where the thermal resistance of the interfaces plays an important role in the overall thermal conductivity. We apply the newly developed extended atomistic Green's function method to analyze with detail the effect of strain and structure engineering on the thermal conductance Gint of the Gr /h -BN interface. Our calculations show that longitudinal tensile strain leads to significant Gint enhancement (up to 25 % at 300 K) primarily through the improved alignment of the flexural acoustic phonon bands, despite the reduction in the longitudinal acoustic (LA) and transverse acoustic phonon velocities. In addition, we find that alternating C-N zigzag bonds along the zigzag interface lead to a greater Gint than C-B bonds through more effective transmission of high-frequency LA and transverse optical phonons, especially at high strain levels. We also demonstrate how the interfacial structure dramatically affects the orientation of the transmitted optical phonons, a phenomenon that is neither seen for acoustic phonons nor predictable from conventional acoustic wave scattering theory. Insights from our paper can provide the basis for manipulating the interfacial thermal conductance in other two-dimensional heterostructures.

  17. Systems biology and pathway engineering enable Saccharomyces cerevisiae to utilize C-5 and C-6 sugars simultaneously for cellulosic ethanol production

    Science.gov (United States)

    Saccharomyces cerevisiae is a traditional industrial workhorse for ethanol production. However, conventional ethanologenic yeast is superior in fermentation of hexose sugars (C-6) such as glucose but unable to utilize pentose sugars (C-5) such as xylose richly embedded in lignocellulosic biomass. In...

  18. Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome.

    Science.gov (United States)

    Legras, Jean-Luc; Erny, Claude; Charpentier, Claudine

    2014-01-01

    Wine biological aging is a wine making process used to produce specific beverages in several countries in Europe, including Spain, Italy, France, and Hungary. This process involves the formation of a velum at the surface of the wine. Here, we present the first large scale comparison of all European flor strains involved in this process. We inferred the population structure of these European flor strains from their microsatellite genotype diversity and analyzed their ploidy. We show that almost all of these flor strains belong to the same cluster and are diploid, except for a few Spanish strains. Comparison of the array hybridization profile of six flor strains originating from these four countries, with that of three wine strains did not reveal any large segmental amplification. Nonetheless, some genes, including YKL221W/MCH2 and YKL222C, were amplified in the genome of four out of six flor strains. Finally, we correlated ICR1 ncRNA and FLO11 polymorphisms with flor yeast population structure, and associate the presence of wild type ICR1 and a long Flo11p with thin velum formation in a cluster of Jura strains. These results provide new insight into the diversity of flor yeast and show that combinations of different adaptive changes can lead to an increase of hydrophobicity and affect velum formation.

  19. Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Legras

    Full Text Available Wine biological aging is a wine making process used to produce specific beverages in several countries in Europe, including Spain, Italy, France, and Hungary. This process involves the formation of a velum at the surface of the wine. Here, we present the first large scale comparison of all European flor strains involved in this process. We inferred the population structure of these European flor strains from their microsatellite genotype diversity and analyzed their ploidy. We show that almost all of these flor strains belong to the same cluster and are diploid, except for a few Spanish strains. Comparison of the array hybridization profile of six flor strains originating from these four countries, with that of three wine strains did not reveal any large segmental amplification. Nonetheless, some genes, including YKL221W/MCH2 and YKL222C, were amplified in the genome of four out of six flor strains. Finally, we correlated ICR1 ncRNA and FLO11 polymorphisms with flor yeast population structure, and associate the presence of wild type ICR1 and a long Flo11p with thin velum formation in a cluster of Jura strains. These results provide new insight into the diversity of flor yeast and show that combinations of different adaptive changes can lead to an increase of hydrophobicity and affect velum formation.

  20. Genomic landscapes of endogenous retroviruses unveil intricate genetics of conventional and genetically-engineered laboratory mouse strains.

    Science.gov (United States)

    Lee, Kang-Hoon; Lim, Debora; Chiu, Sophia; Greenhalgh, David; Cho, Kiho

    2016-04-01

    Laboratory strains of mice, both conventional and genetically engineered, have been introduced as critical components of a broad range of studies investigating normal and disease biology. Currently, the genetic identity of laboratory mice is primarily confirmed by surveying polymorphisms in selected sets of "conventional" genes and/or microsatellites in the absence of a single completely sequenced mouse genome. First, we examined variations in the genomic landscapes of transposable repetitive elements, named the TREome, in conventional and genetically engineered mouse strains using murine leukemia virus-type endogenous retroviruses (MLV-ERVs) as a probe. A survey of the genomes from 56 conventional strains revealed strain-specific TREome landscapes, and certain families (e.g., C57BL) of strains were discernible with defined patterns. Interestingly, the TREome landscapes of C3H/HeJ (toll-like receptor-4 [TLR4] mutant) inbred mice were different from its control C3H/HeOuJ (TLR4 wild-type) strain. In addition, a CD14 knock-out strain had a distinct TREome landscape compared to its control/backcross C57BL/6J strain. Second, an examination of superantigen (SAg, a "TREome gene") coding sequences of mouse mammary tumor virus-type ERVs in the genomes of the 46 conventional strains revealed a high diversity, suggesting a potential role of SAgs in strain-specific immune phenotypes. The findings from this study indicate that unexplored and intricate genomic variations exist in laboratory mouse strains, both conventional and genetically engineered. The TREome-based high-resolution genetics surveillance system for laboratory mice would contribute to efficient study design with quality control and accurate data interpretation. This genetics system can be easily adapted to other species ranging from plants to humans.

  1. Heterologous expression of MlcE in Saccharomyces cerevisiae provides resistance to natural and semi-synthetic statins

    DEFF Research Database (Denmark)

    Ley, Ana; Coumou, Hilde Cornelijne; Frandsen, Rasmus John Normand

    2015-01-01

    -encoding gene mlcE from the mevastatin-producing Penicillium citrinum into the S. cerevisiae genome. The resulting strain showed increased resistance to both natural statins (mevastatin and lovastatin) and semi-synthetic statin (simvastatin) when compared to the wild type strain. Expression of RFP-tagged mlc......E showed that MlcE is localized to the yeast plasma and vacuolar membranes. We provide a possible engineering strategy for improvement of future yeast based production of natural and semi-synthetic statins....

  2. Development of Industrial Yeast Platform Strains

    DEFF Research Database (Denmark)

    Bergdahl, Basti; Dato, Laura; Förster, Jochen

    2014-01-01

    frequently encounter high substrate concentrations, low pH, high temperatures and various inhibitory compounds originating either from the raw material used or from cellular metabolism. The aim of this research project is to develop robust platform strains of Saccharomyces cerevisiae based on industrial...... screening of the 36 industrial and laboratory yeast strains. In addition, progress in the development of molecular biology methods for generating the new strains will be presented.......Most of the current metabolic engineering projects are carried out using laboratory strains as the starting host. Although such strains are easily manipulated genetically, their robustness does not always meet the requirements set by industrial fermentation conditions. In such conditions, the cells...

  3. Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine

    Directory of Open Access Journals (Sweden)

    Gosset Guillermo

    2007-09-01

    Full Text Available Abstract Background The rational design of L-phenylalanine (L-Phe overproducing microorganisms has been successfully achieved by combining different genetic strategies such as inactivation of the phosphoenolpyruvate: phosphotransferase transport system (PTS and overexpression of key genes (DAHP synthase, transketolase and chorismate mutase-prephenate dehydratase, reaching yields of 0.33 (g-Phe/g-Glc, which correspond to 60% of theoretical maximum. Although genetic modifications introduced into the cell for the generation of overproducing organisms are specifically targeted to a particular pathway, these can trigger unexpected transcriptional responses of several genes. In the current work, metabolic transcription analysis (MTA of both L-Phe overproducing and non-engineered strains using Real-Time PCR was performed, allowing the detection of transcriptional responses to PTS deletion and plasmid presence of genes related to central carbon metabolism. This MTA included 86 genes encoding enzymes of glycolysis, gluconeogenesis, pentoses phosphate, tricarboxylic acid cycle, fermentative and aromatic amino acid pathways. In addition, 30 genes encoding regulatory proteins and transporters for aromatic compounds and carbohydrates were also analyzed. Results MTA revealed that a set of genes encoding carbohydrate transporters (galP, mglB, gluconeogenic (ppsA, pckA and fermentative enzymes (ldhA were significantly induced, while some others were down-regulated such as ppc, pflB, pta and ackA, as a consequence of PTS inactivation. One of the most relevant findings was the coordinated up-regulation of several genes that are exclusively gluconeogenic (fbp, ppsA, pckA, maeB, sfcA, and glyoxylate shunt in the best PTS- L-Phe overproducing strain (PB12-ev2. Furthermore, it was noticeable that most of the TCA genes showed a strong up-regulation in the presence of multicopy plasmids by an unknown mechanism. A group of genes exhibited transcriptional responses to

  4. Band gap engineering in polymers through chemical doping and applied mechanical strain

    Science.gov (United States)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-08-01

    We report simulations based on density functional theory and many-body perturbation theory exploring the band gaps of common crystalline polymers including polyethylene, polypropylene and polystyrene. Our reported band gaps of 8.6 eV for single-chain polyethylene and 9.1 eV for bulk crystalline polyethylene are in excellent agreement with experiment. The effects of chemical doping along the polymer backbone and side-groups are explored, and the use mechanical strain as a means to modify the band gaps of these polymers over a range of several eV while leaving the dielectric constant unchanged is discussed. This work highlights some of the opportunities available to engineer the electronic properties of polymers with wide-reaching implications for polymeric dielectric materials used for capacitive energy storage.

  5. PRODUCTION, PROPERTIES AND APPLICATION OF SACCHAROMYCES CEREVISIAE VGSH-2 INULINASE

    Directory of Open Access Journals (Sweden)

    G. P. Shuvaeva

    2014-01-01

    Full Text Available Summary. Experimental data on an acid and thermal inactivation of a high refined inulinase (2,1-β-D- fructanfructanohydrolase, KF 3.2.17, produced by the race of Saccharomyces cerevisiae VGSh-2 yeast are presented. The strain of S. cerevisiae VGSh-2 was produced by the method of the induced mutagenesis and deposited to the collection of pure cultures of the chair of biochemistry and biotechnology of Voronezh state university of engineering technologies. The cells of source culture (S. cerevisiae XII were affected step-by-step by the ultra-violet radiation (UFR and UFR in a complex with a chemical mutagen (etilenimine. The culture was grown up by the method of liquid-phase deep cultivation on a constant nutrient medium. Refining conditions for inulinase are sorted out. Activity of enzyme dependence on physical and chemical factors (рН and temperature is obtained and numerical values of the main kinetic constants – Km and Vmax are determined. The structure of enzyme molecule is studied by an infrared-spectroscopy method: the type and relative quantity of elements of secondary structure of protein are defined. Substrate binding groups of the active center of an inulinase are found. The comparative analysis of the ability to hydrolysis of inulin in several enzyme preparations from Jerusalem artichoke and to the subsequent their fermentation by the VGSh-2 and XI S. cerevisiae yeasts is carried out. Optimum conditions of enzyme hydrolysis of inulin are selected. Research of the fermentation process of starchcontaining raw materials by yeasts of VGSh-2 and XI races is done. It is established that the using of VGSh-2 S. cerevisiae yeast for a grain wort and the Jerusalem artichoke fermentation, allows to increase an extraction of ethyl alcohol comparing to control race, to improve its quality characteristics, and also allows to predict the using of new race in the food industry for production ethanol from grain raw materials and a fermentation of

  6. Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma

    Directory of Open Access Journals (Sweden)

    Zhang Shu-Cheng

    2012-09-01

    Full Text Available Abstract Background Hepatoblastoma (HB is the most common primary, malignant pediatric liver tumor in children. The treatment results for affected children have markedly improved in recent decades. However, the prognosis for high-risk patients who have extrahepatic extensions, invasion of the large hepatic veins, distant metastases and very high alpha-fetoprotein (AFP serum levels remains poor. There is an urgent need for the development of novel therapeutic approaches. Methods An attenuated strain of measles virus, derived from the Edmonston vaccine lineage, was genetically engineered to produce carcinoembryonic antigen (CEA. We investigated the antitumor potential of this novel viral agent against human HB both in vitro and in vivo. Results Infection of the Hep2G and HUH6 HB cell lines, at multiplicities of infection (MOIs ranging from 0.01 to 1, resulted in a significant cytopathic effect consisting of extensive syncytia formation and massive cell death at 72–96 h after infection. Both of the HB lines overexpressed the measles virus receptor CD46 and supported robust viral replication, which correlated with CEA production. The efficacy of this approach in vivo was examined in murine Hep2G xenograft models. Flow cytometry assays indicated an apoptotic mechanism of cell death. Intratumoral administration of MV-CEA resulted in statistically significant delay of tumor growth and prolongation of survival. Conclusions The engineered measles virus Edmonston strain MV-CEA has potent therapeutic efficacy against HB cell lines and xenografts. Trackable measles virus derivatives merit further exploration in HB treatment.

  7. Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia.

    Science.gov (United States)

    Lee, Sang-Hyun; Yun, Eun Ju; Kim, Jungyeon; Lee, Sang Jun; Um, Youngsoon; Kim, Kyoung Heon

    2016-10-01

    Butanol is considered an attractive biofuel and a commercially important bulk chemical. However, economical production of butanol by solventogenic clostridia, e.g., via fermentative production of acetone-butanol-ethanol (ABE), is hampered by low fermentation performance, mainly as a result of toxicity of butanol to microorganisms and high substrate costs. Recently, sugars from marine macroalgae and syngas were recognized as potent carbon sources in biomass feedstocks that are abundant and do not compete for arable land with edible crops. With the aid of systems metabolic engineering, many researchers have developed clostridial strains with improved performance on fermentation of these substrates. Alternatively, fermentation strategies integrated with butanol recovery processes such as adsorption, gas stripping, liquid-liquid extraction, and pervaporation have been designed to increase the overall titer of butanol and volumetric productivity. Nevertheless, for economically feasible production of butanol, innovative strategies based on recent research should be implemented. This review describes and discusses recent advances in the development of biomass feedstocks, microbial strains, and fermentation processes for butanol production.

  8. Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seohyoung; Seol, Eunhee; Park, Sunghoon [Department of Chemical and Biochemical Engineering, Pusan National University, Busan 609-735 (Korea); Oh, You-Kwan [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-543 (Korea); Wang, G.Y. [Department of Oceanography, University of Hawaii at Manoa Honolulu, HI 96822 (United States)

    2009-09-15

    Escherichia coli can produce H{sub 2} from glucose via formate hydrogen lyase (FHL). In order to improve the H{sub 2} production rate and yield, metabolically engineered E. coli strains, which included pathway alterations in their H{sub 2} production and central carbon metabolism, were developed and characterized by batch experiments and metabolic flux analysis. Deletion of hycA, a negative regulator for FHL, resulted in twofold increase of FHL activity. Deletion of two uptake hydrogenases (1 (hya) and hydrogenase 2 (hyb)) increased H{sub 2} production yield from 1.20 mol/mol glucose to 1.48 mol/mol glucose. Deletion of lactate dehydrogenase (ldhA) and fumarate reductase (frdAB) further improved the H{sub 2} yield; 1.80 mol/mol glucose under high H{sub 2} pressure or 2.11 mol/mol glucose under reduced H{sub 2} pressure. Several batch experiments at varying concentrations of glucose (2.5-10 g/L) and yeast extract (0.3 or 3.0 g/L) were conducted for the strain containing all these genetic alternations, and their carbon and energy balances were analyzed. The metabolic flux analysis revealed that deletion of ldhA and frdAB directed most of the carbons from glucose to the glycolytic pathway leading to H{sub 2} production by FHL, not to the pentose phosphate pathway. (author)

  9. Predictive Synthesis of Freeform Carbon Nanotube Microarchitectures by Strain-Engineered Chemical Vapor Deposition.

    Science.gov (United States)

    Park, Sei Jin; Zhao, Hangbo; Kim, Sanha; De Volder, Michael; John Hart, A

    2016-08-01

    High-throughput fabrication of microstructured surfaces with multi-directional, re-entrant, or otherwise curved features is becoming increasingly important for applications such as phase change heat transfer, adhesive gripping, and control of electromagnetic waves. Toward this goal, curved microstructures of aligned carbon nanotubes (CNTs) can be fabricated by engineered variation of the CNT growth rate within each microstructure, for example by patterning of the CNT growth catalyst partially upon a layer which retards the CNT growth rate. This study develops a finite-element simulation framework for predictive synthesis of complex CNT microarchitectures by this strain-engineered growth process. The simulation is informed by parametric measurements of the CNT growth kinetics, and the anisotropic mechanical properties of the CNTs, and predicts the shape of CNT microstructures with impressive fidelity. Moreover, the simulation calculates the internal stress distribution that results from extreme deformation of the CNT structures during growth, and shows that delamination of the interface between the differentially growing segments occurs at a critical shear stress. Guided by these insights, experiments are performed to study the time- and geometry-depended stress development, and it is demonstrated that corrugating the interface between the segments of each microstructure mitigates the interface failure. This study presents a methodology for 3D microstructure design based on "pixels" that prescribe directionality to the resulting microstructure, and show that this framework enables the predictive synthesis of more complex architectures including twisted and truss-like forms.

  10. Invertase SUC2 Is the Key Hydrolase for Inulin Degradation in Saccharomyces cerevisiae

    OpenAIRE

    Wang, Shi-An; Li, Fu-li

    2013-01-01

    Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.

  11. Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production.

    Science.gov (United States)

    Chen, Xianzhong; Xiao, Yan; Shen, Wei; Govender, Algasan; Zhang, Liang; Fan, You; Wang, Zhengxiang

    2016-03-01

    Currently, development of biofuels as an alternative fuel has gained much attention due to resource and environmental challenges. Bioethanol is one of most important and dominant biofuels, and production using corn or cassava as raw materials has become a prominent technology. However, phytate contained in the raw material not only decreases the efficiency of ethanol production, but also leads to an increase in the discharge of phosphorus, thus impacting on the environment. In this study, to decrease phytate and its phosphorus content in an ethanol fermentation process, Saccharomyces cerevisiae was engineered through a surface-displaying system utilizing the C-terminal half of the yeast α-agglutinin protein. The recombinant yeast strain, PHY, was constructed by successfully displaying phytase on the surface of cells, and enzyme activity reached 6.4 U/g wet biomass weight. Ethanol productions using various strains were compared, and the results demonstrated that the specific growth rate and average fermentation rate of the PHY strain were higher 20 and 18 %, respectively, compared to the control strain S. cerevisiae CICIMY0086, in a 5-L bioreactor process by simultaneous saccharification and fermentation. More importantly, the phytate phosphorus concentration decreased by 89.8 % and free phosphorus concentration increased by 142.9 % in dry vinasse compared to the control in a 5-L bioreactor. In summary, we constructed a recombinant S. cerevisiae strain displaying phytase on the cell surface, which could improve ethanol production performance and effectively reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate.

  12. Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-Saccharomyces wine-related strains

    DEFF Research Database (Denmark)

    Albergaria, Helena; Francisco, Diana; Gori, Klaus;

    2010-01-01

    of those supernatants seemed to contain antimicrobial peptides active against H. guilliermondii. Thus, the (2-10) kDa protein fraction was concentrated and its inhibitory effect tested against strains of Kluyveromyces marxianus, Kluyveromyces thermotolerans, Torulaspora delbrueckii and H. guilliermondii...

  13. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt.

    Science.gov (United States)

    Zhou, Pingping; Ye, Lidan; Xie, Wenping; Lv, Xiaomei; Yu, Hongwei

    2015-10-01

    Astaxanthin is a highly valued carotenoid with strong antioxidant activity and has wide applications in aquaculture, food, cosmetic, and pharmaceutical industries. The market demand for natural astaxanthin promotes research in metabolic engineering of heterologous hosts for astaxanthin production. In this study, an astaxanthin-producing Saccharomyces cerevisiae strain was created by successively introducing the Haematococcus pluvialis β-carotenoid hydroxylase (crtZ) and ketolase (bkt) genes into a previously constructed β-carotene hyperproducer. Further integration of strategies including codon optimization, gene copy number adjustment, and iron cofactor supplementation led to significant increase in the astaxanthin production, reaching up to 4.7 mg/g DCW in the shake-flask cultures which is the highest astaxanthin content in S. cerevisiae reported to date. Besides, the substrate specificity of H. pluvialis CrtZ and BKT and the probable formation route of astaxanthin from β-carotene in S. cerevisiae were figured out by expressing the genes separately and in combination. The yeast strains engineered in this work provide a basis for further improving biotechnological production of astaxanthin and might offer a useful general approach to the construction of heterologous biosynthetic pathways for other natural products.

  14. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.

    Science.gov (United States)

    Ueki, Toshiyuki; Nevin, Kelly P; Woodard, Trevor L; Lovley, Derek R

    2014-10-21

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. Importance: The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  15. Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, T; Nevin, KP; Woodard, TL; Lovley, DR

    2014-08-26

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H-2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. IMPORTANCE The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  16. Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain

    OpenAIRE

    Yee, Kelsey L; Rodriguez Jr, Miguel; Thompson, Olivia A; Fu, Chunxiang; Wang, Zeng-Yu; Davison, Brian H.; Mielenz, Jonathan R

    2014-01-01

    Background Switchgrass is an abundant and dedicated bioenergy feedstock, however its inherent recalcitrance is one of the economic hurdles for producing biofuels. The downregulation of the caffeic acid O-methyl transferase (COMT) gene in the lignin pathway of switchgrass reduced lignin content and S/G ratio, and the transgenic lines showed improved fermentation yield with Saccharomyces cerevisiae and wild-type Clostridium thermocellum (ATCC 27405) in comparison to the wild-type switchgrass. R...

  17. Characterization of technological features of dry yeast (strain I-7-43) preparation, product of electrofusion between Saccharomyces cerevisiae and Saccharomyces diastaticus, in industrial application.

    Science.gov (United States)

    Kotarska, Katarzyna; Kłosowski, Grzegorz; Czupryński, Bogusław

    2011-06-10

    The aim of the study was to verify the technological usability and stability of biotechnological features of active dry distillery yeast preparation (strain I-7-43 with amylolytic abilities) applied to full-scale production of agricultural distillery. Various reduced doses of glucoamylase preparation (San-Extra L) were used for starch saccharification, from 90% to 70% in relation to the full standard dose of preparation. The dry distillery yeast I-7-43 were assessed positively in respect to fermentation activity and yield of ethanol production. Application of the dry yeast I-7-43 preparation in distillery practice lowers the costs of spirit production by saving the glucoamylase preparation (up to 30%) used in the process of mash saccharification. Concentrations of the volatile fermentation by-products in raw spirits obtained from fermentations with application of I-7-43 strain were on the levels guaranteeing good organoleptic properties of distillates.

  18. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.

    Directory of Open Access Journals (Sweden)

    José Manuel Otero

    Full Text Available Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol, and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the α-keto-glutarate dehydrogenase catalyzed conversion of α-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2(nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we

  19. Fermentation performance and physiology of two strains of Saccharomyces cerevisiae during growth in high gravity spruce hydrolysate and spent sulphite liquor

    OpenAIRE

    Johansson, Emma; Xiros, Charilaos; Larsson, Christer

    2014-01-01

    Background Lignocellulosic materials are a diverse group of substrates that are generally scarce in nutrients, which compromises the tolerance and fermentation performance of the fermenting organism. The problem is exacerbated by harsh pre-treatment, which introduces sugars and substances inhibitory to yeast metabolism. This study compares the fermentation behaviours of two yeast strains using different types of lignocellulosic substrates; high gravity dilute acid spruce hydrolysate (SH) and ...

  20. 高产酿酒酵母SCY6生长与发酵条件的优化%Optimization of Growth and Fermentation Conditions for High Ethanol-Producing Saccharomyces cerevisiae Strain SCY6

    Institute of Scientific and Technical Information of China (English)

    顾华祥; 宋晨; 李迅

    2012-01-01

    采用高产酿酒酵母(Saccharomyces cerevisiae)SCY6发酵葡萄糖产乙醇,设计单因素试验考察该酵母菌株适宜的生长条件,采用正交试验优化酵母发酵产乙醇的条件.结果表明,该酵母菌株的最适生长温度和pH分别为28℃、5.0,培养基中葡萄糖质量分数为15%时其生长状态较好.正交试验结果表明,最适合该酿酒酵母发酵产乙醇的条件为玉米浆和(NH4)2SO4作为氮源,用量分别为20 g/L和2 g/L,接种量为4%,pH 5.0.在此条件下进行发酵,发酵液中乙醇体积分数可达7.77%,葡萄糖转化率达83.82%.%The high ethanol-producing Saccharomyces cerevisiae strain SCY6 was used to ferment glucose to ethanol. Single factor tests were conducted to optimize the cultivation conditions; while orthogonal design was adopted to optimize ethanol fermentation conditions. The results showed that the optimum temperature and pH for yeast growth was 28℃ and 5.0, respectively. The yeast grew well when mass ratio of glucose in YPD medium was 15%. The result of orthogonal test showed that the optimal ethanol fermentation conditions were, 2 g/L (NH4)2SO4 and 20g/L corn syrup as N source; inoculation dose, 4% volume fraction; and pH 5.0. The yield of ethanol reached 7.77%; and the conversion rate of glucose was 83.82% under these conditions.

  1. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production.

  2. 产β-胡萝卜素酿酒酵母工程菌的构建%Construction of engineering Saccharomyces cerevisiae producing β-carotene

    Institute of Scientific and Technical Information of China (English)

    高书良; 朱丽; 蒋宇; 戈梅; 杨晟; 陈代杰

    2013-01-01

    以酿酒酵母Saccharomyces cerevisiae BY4742 为宿主菌,利用DNA 组装(DNA assemble)技 术,向宿主菌导入了β-胡萝卜素合成途径,表达了源自Xanthophyllomyces dendrorhous 的CrtE,CrtYB 和CrtI 3 个基因,获得了一株染色体整合型工程菌株HCCB08531,β-胡萝卜素产量达3.68 mg/ g 干重.

  3. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhao, Jianzhi; Bao, Xiaoming; Li, Chen; Shen, Yu; Hou, Jin

    2016-05-01

    Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae. We evaluated three geraniol synthases in S. cerevisiae, and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 (G) (ERG20 (K197G) ) and ERG20 (WW) (ERG20 (F96W-N127W) ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1, tHMG1, and UPC2-1. The results showed that overexpressing ERG20 (WW) and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.

  4. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Jin-Woo; Chin, Young-Wook; Park, Yong-Cheol; Seo, Jin-Ho

    2012-01-01

    Bioethanol is currently used as an alternative fuel for gasoline worldwide. For economic production of bioethanol by Saccharomyces cerevisiae, formation of a main by-product, glycerol, should be prevented or minimized in order to reduce a separation cost of ethanol from fermentation broth. In this study, S. cerevisiae was engineered to investigate the effects of the sole and double disruption of NADH-dependent glycerol-3-phosphate dehydrogenase 1 (GPD1) and NADPH-requiring glutamate dehydrogenase 1 (GDH1) on the production of glycerol and ethanol from glucose. Even though sole deletion of GPD1 or GDH1 reduced glycerol production, double deletion of GPD1 and GDH1 resulted in the lowest glycerol concentration of 2.31 g/L, which was 46.4% lower than the wild-type strain. Interestingly, the recombinant S. cerevisiae ∆GPD1∆GDH1 strain showed a slight improvement in ethanol yield (0.414 g/g) compared with the wild-type strain (0.406 g/g). Genetic engineering of the glycerol and glutamate metabolic pathways modified NAD(P)H-requiring metabolic pathways and exerted a positive effect on glycerol reduction without affecting ethanol production.

  5. Band gap tuning of epitaxial SrTiO{sub 3-δ}/Si(001) thin films through strain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cottier, Ryan J.; Steinle, Nathan A.; Currie, Daniel A.; Theodoropoulou, Nikoleta, E-mail: ntheo@txstate.edu [Physics Department, Texas State University, San Marcos, Texas 78666 (United States)

    2015-11-30

    We investigate the effect of strain and oxygen vacancies (V{sub O}) on the crystal and optical properties of oxygen deficient, ultra-thin (4–30 nm) films of SrTiO{sub 3-δ} (STO) grown heteroepitaxially on p-Si(001) substrates by molecular beam epitaxy. We demonstrate that STO band gap tuning can be achieved through strain engineering and show that the energy shift of the direct energy gap transition of SrTiO{sub 3-δ}/Si films has a quantifiable dimensional and doping dependence that correlates well with the changes in crystal structure.

  6. Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices.

    Science.gov (United States)

    Liu, Yueqin; Zhang, Genli; Sun, Huan; Sun, Xiangying; Jiang, Nisi; Rasool, Aamir; Lin, Zhanglin; Li, Chun

    2014-10-01

    In this study, thermo-tolerant devices consisting of heat shock genes from thermophiles were designed and introduced into Saccharomyces cerevisiae for improving its thermo-tolerance. Among ten engineered thermo-tolerant yeasts, T.te-TTE2469, T.te-GroS2 and T.te-IbpA displayed over 25% increased cell density and 1.5-4-fold cell viability compared with the control. Physiological characteristics of thermo-tolerant strains revealed that better cell wall integrity, higher trehalose content and enhanced metabolic energy were preserved by thermo-tolerant devices. Engineered thermo-tolerant strain was used to investigate the impact of thermo-tolerant device on pathway efficiency by introducing β-amyrin synthesis pathway, showed 28.1% increased β-amyrin titer, 28-35°C broadened growth temperature range and 72h shortened fermentation period. The results indicated that implanting heat shock proteins from thermophiles to S. cerevisiae would be an efficient approach to improve its thermo-tolerance.

  7. Short communication: Conversion of lactose and whey into lactic acid by engineered yeast.

    Science.gov (United States)

    Turner, Timothy L; Kim, Eunbee; Hwang, ChangHoon; Zhang, Guo-Chang; Liu, Jing-Jing; Jin, Yong-Su

    2017-01-01

    Lactose is often considered an unwanted and wasted byproduct, particularly lactose trapped in acid whey from yogurt production. But using specialized microbial fermentation, the surplus wasted acid whey could be converted into value-added chemicals. The baker's yeast Saccharomyces cerevisiae, which is commonly used for industrial fermentation, cannot natively ferment lactose. The present study describes how an engineered S. cerevisiae yeast was constructed to produce lactic acid from purified lactose, whey, or dairy milk. Lactic acid is an excellent proof-of-concept chemical to produce from lactose, because lactic acid has many food, pharmaceutical, and industrial uses, and over 250,000 t are produced for industrial use annually. To ferment the milk sugar lactose, a cellodextrin transporter (CDT-1, which also transports lactose) and a β-glucosidase (GH1-1, which also acts as a β-galactosidase) from Neurospora crassa were expressed in a S. cerevisiae strain. A heterologous lactate dehydrogenase (encoded by ldhA) from the fungus Rhizopus oryzae was integrated into the CDT-1/GH1-1-expressing strain of S. cerevisiae. As a result, the engineered strain was able to produce lactic acid from purified lactose, whey, and store-bought milk. A lactic acid yield of 0.358g/g of lactose was achieved from whey fermentation, providing an initial proof of concept for the production of value-added chemicals from excess industrial whey using engineered yeast.

  8. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose

    DEFF Research Database (Denmark)

    Van Vleet, Jennifer; Jeffries, T.W.; Olsson, Lisbeth

    2008-01-01

    this inhibition under aerobic growth conditions in well-controlled bioreactors using engineered S. cerevisiae CEN.PK. Growth on glucose was not significantly affected in pho13 Delta mutants, but acetate production increased by 75%. Cell growth, ethanol production, and xylose consumption all increased markedly...... in pho13 Delta mutants. The specific growth rate and rate of specific xylose uptake were approximately 1.5 times higher in the deletion strain than in the parental strain when growing on glucose-xylose mixtures and up to 10-fold higher when growing on xylose alone. In addition to showing higher acetate...

  9. Saccharomyces cerevisiae BLYAS, a New Bioluminescent Bioreporter for Detection of Androgenic Compounds▿

    Science.gov (United States)

    Eldridge, Melanie L.; Sanseverino, John; Layton, Alice C.; Easter, James P.; Schultz, T. Wayne; Sayler, Gary S.

    2007-01-01

    A Saccharomyces cerevisiae strain, capable of autonomous bioluminescence, was engineered to respond to androgenic chemicals. The strain, S. cerevisiae BLYAS, contains the human androgen receptor in the chromosome and was constructed by inserting a series of androgen response elements between divergent yeast promoters GPD and ADH1 on pUTK401 that constitutively expressed luxA and luxB to create pUTK420. Cotransformation of this plasmid with a second plasmid (pUTK404), containing the genes required for aldehyde synthesis (luxCDE) and FMN reduction (frp), yielded a bioluminescent bioreporter responsive to androgenic chemicals. Using dihydrotestosterone (DHT) as a standard, the response time and the 50% effective concentration values were 3 to 4 h and (9.7 ± 4.6) × 10−9 M, respectively. The lower limit of detection in response to DHT was 2.5 × 10−9 M, and in response to testosterone it was 2.5 × 10−10 M. This strain is suitable for high-throughput screening of chemicals with potential for remote environmental monitoring systems because of the assay speed, sensitivity, and self-containment. PMID:17675419

  10. Isolation of the catalase T structural gene of Saccharomyces cerevisiae by functional complementation.

    OpenAIRE

    Spevak, W; Fessl, F; Rytka, J; Traczyk, A; Skoneczny, M; Ruis, H

    1983-01-01

    The catalase T structural gene of Saccharomyces cerevisiae was cloned by functional complementation of a mutation causing specific lack of the enzyme (cttl). Catalase T-deficient mutants were obtained by UV mutagenesis of an S. cerevisiae strain bearing the cas1 mutation, which causes insensitivity of catalase T to glucose repression. Since the second catalase protein of S. cerevisiae, catalase A, is completely repressed on 10% glucose, catalase T-deficient mutant colonies could be detected u...

  11. Raw data for 'Tensile Strain Engineering of Germanium Micro-Disks on Free-Standing SiO2 Beams'.

    OpenAIRE

    Al-Attili, Abdelrahman

    2016-01-01

    This dataset contains the raw data for 'Tensile Strain Engineering of Germanium Micro-Disks on Free-Standing SiO2 Beams'. Summary of this dataset in the form of figures were published by the Japanese Journal of Applied Physics (JJAP), Special Issues of the International Conference on Solid-State Devices and Materials (SSDM) 2015, Sapporo, Japan.\\ud Copyright 2016 The Japan Society of Applied Physics.\\ud \\ud

  12. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2013-01-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective pr...... developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid....

  13. A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain.

    Science.gov (United States)

    Middelhoven, W J; van Eijk, J; van Renesse, R; Blijham, J M

    1978-01-01

    NAD-specific glutamate dehydrogenase (GDH-B) was induced in a wild-type strain derived of alpha-sigma 1278b by alpha-amino acids, the nitrogen of which according to known degradative pathways is transferred to 2-oxoglutarate. A recessive mutant (gdhB) devoid of GDH-B activity grew more slowly than the wild type if one of these amino acids was the sole source of nitrogen. Addition of ammonium chloride, glutamine, asparagine or serine to growth media with inducing alpha-amino acids as the main nitrogen source increased the growth rate of the gdhB mutant to the wild-type level and repressed GDH-B synthesis in the wild type. Arginine, urea and allantoin similarly increased the growth rate of the gdhB mutant and repressed GDH-B synthesis in the presence of glutamate, but not in the presence of aspartate, alanine or proline as the main nitrogen source. These observations are consistent with the view that GDH-B in vivo deaminates glutamate. Ammonium ions are required for the biosynthesis of glutamine, asparagine, arginine, histidine and purine and pyrimidine bases. Aspartate and alanine apparently are more potent inducers of GDH-B than glutamate. Anabolic NADP-specific glutamate dehydrogenase (GDH-A) can not fulfil the function of GDH-B in the gdhB mutant. This is concluded from the equal growth rates in glutamate, aspartate and proline media as observed with a gdhB mutant and with a gdhA, gdhB double mutant in which both glutamate dehydrogenases area lacking. The double mutant showed an anomalous growth behaviour, growth rates on several nitrogen sources being unexpectedly low.

  14. Selection of indigenous Saccharomyces cerevisiae strains in Tianjin and their oenological characterization of low-alcohol white wine%本土酿酒酵母的筛选及其低醇葡萄酒特性研究

    Institute of Scientific and Technical Information of China (English)

    崔艳; 吕文; 王伟; 蒋珍珍; 刘金福

    2011-01-01

    以天津宝坻产区的三种葡萄为原料,分别从自然发酵的葡萄汁中筛选出340株酵母菌,经生理生化,产酸、酯、尿酶、H2S,发酵能力测定及26SrRNA测序,确定4株为酿酒酵母,用于贵人香低醇白葡萄酒的酿造。以商用酵母为对照,定量分析了不同酵母所酿酒中的香气成分、氨基甲酸乙酯含量,并进行了理化指标和感官测定,发现酵母C508和G611酿造的低醇酒具有更独特的香气特点,氨基甲酸乙酯的含量较低,微生物稳定性较高,更适合低醇酒的酿造。%In order to identify the Saccharomyces spp.associated with spontaneous fermentation of three different grape varieties(Italian Riesling,Muscat and Cabernet Sauvignon grapes)from Tianjin Baodi wine region and to evaluate the micro-fermentation performance of low-alcohol white wine.The indigeous yeast flora isolated during fermentation was studied and analyzed.Firstly,yeasts were identified to genus level by growth on WL nutrient agar and the tests of assimilation carbon and nitrogen source and so on.Later,formation of amyloid,acids,esters,H2S and urease and fermentation power were studied.Three hundred and forty strains were isolated,four of which were identified as Saccharomyces cerevisiae by PCR of D1/D2 regions of the 26S rRNA gene and tested as starters in low-alcohol white wine fermentations for their satisfactory oenological properties.The quality of the produced wines was evaluated after determination of their physical-chemical parameters,volatile compounds and ethyl carbamate produced in wine fermentation.The results showed the potential of employing indigenous yeast strains for the production low-alcohol white wine with improved stability,a richer aromatic bouquet,less ethyl carbamate concentration.

  15. Strain properties analysis and wireless collection system of PVDF for structural local health monitoring of civil engineering structures

    Science.gov (United States)

    Yu, Yan; Wang, Yang; Dong, Weijie; Jin, Yajing; Ou, Jinping

    2009-07-01

    For large civil engineering structures and base establishments, for example, bridges, super-high buildings, long-span space structures, offshore platforms and pipe systems of water & gas supply, their lives are up to a few decades or centuries. Damaged by environmental loads, fatigue effects, corrosion effects and material aging, these structures experience inevitably such side effects as damage accumulation, resistance reduction and even accidents. The traditional civil structure is a kind of passive one, whose performance and status are unpredictable to a great extent, but the informatics' introduction breaks a new path to obtain the status of the structure, thus it is an important research direction to evaluate and improve reliability of civil structures by the use of monitoring and health diagnosis technique, and this also assures the security of service for civil engineering structures. Smart material structure, originated from the aerospace sector, has been a research hotspot in civil engineering, medicine, shipping, and so on. For structural health monitoring of civil engineering, the research about high-performance sensing unit of smart material structure is very important, and this will possibly push further the development and application of monitoring and health diagnosis techniques. At present, piezoelectric materials are one of the most widely used sensing materials among the research of smart material structures. As one of the piezoelectric materials, PVDF(Polyvinylidene Fluoride)film is widely considered for the advantages of low cost, good mechanical ability, high sensibility, the ability of being easily placed and resistance of corrosion. However, only a few studies exit about building a mature monitoring system using PVDF. In this paper, for the sake of using PVDF for sensing unit for structural local monitoring of civil engineering, the strain sensing properties of PVDF are studied in detail. Firstly, the operating mechanism of PVDF is analyzed

  16. Promoting Ethanol Production of Cane Molasses by a Mutant Thermophilic Strain Saccharomyces cerevisiae AQ Using an in situ Pretreatment Method%原位预处理甘蔗糖蜜对耐高温酿酒酵母突变株Saccharomyces cerevisiae AQ生产乙醇的影响

    Institute of Scientific and Technical Information of China (English)

    何珣; 蒋学剑; 花加伟; 陈可泉; 柏建新

    2016-01-01

    [目的]探讨和分析原位预处理糖蜜促进酿酒酵母生长和乙醇生产的原因,开发一条绿色、低成本糖蜜乙醇生产途径.[方法]先在不同温度和初始糖浓度条件下,考察酿酒酵母原始菌株Saccharom yces cerevisiae A及其突变株Saccharomyces cerevisiae AQ的生长和乙醇生产性能差异,再以原位预处理前后糖蜜为发酵底物,测定突变株Saccharomyces cerevisiae AQ在不同培养基中的生长量、出芽率、乙醇产量、胞内超氧化物歧化酶(SOD)、过氧化物酶、细胞质内ATP酶和线粒体内ATP酶活力,研究原位预处理糖蜜对其生理特性的影响.[结果]在高温发酵糖蜜过程中,突变株Saccharom yces cerevisiae AQ较原始菌株Saccharom yces cerevisiae A表现出更好的生长和乙醇发酵稳定性.当以原位预处理糖蜜作为 Saccharomyces cerevisiae AQ唯一碳源时,其胞内SOD酶、过氧化物酶、细胞质内ATP酶和线粒体内ATP酶活力较以糖蜜原料为唯一碳源时分别提高2.51倍,0.92倍,1.80倍和1.45倍,乙醇收率为31.07%,较以糖蜜原料为唯一碳源时提高36.26%.[结论]突变株Saccharomyces cerevisiae AQ较原始菌株 Saccharom yces cerevisiae A更适用于糖蜜发酵生产乙醇体系,且新型的原位预处理方法能通过增强Saccharom yces cerevisiae AQ在糖蜜培养基中的呼吸作用,提高菌株活力,从而进一步提高乙醇收率.

  17. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    Science.gov (United States)

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment.

  18. Ethanol fermentation from Jerusalem artichoke tubers by a genetically-modified Saccharomyces cerevisiae strain capable of secreting inulinase%菊粉酶基因在酿酒酵母中的表达及乙醇发酵

    Institute of Scientific and Technical Information of China (English)

    李楠楠; 袁文杰; 王娜; 辛程勋; 葛旭萌; 白凤武

    2011-01-01

    Ethanol fermentation from Jerusalem artichoke tubers by recombinant Saccharomyces cerevisiae strains expressing the inulinase gene (inu) from Kluyveromyces marxianus was investigated. The inu native and pgk promoters were used to drive the expression of the inu gene, and the inulinase was expressed as an extracellular enzyme. All positive clones (confirmed by PCR) were able to express inulinase as measured by enzyme activity in the culture supernatant, among which two clones HI6/6 and HPI6/3 were selected, and their inulinase activity and ethanol fermentation performance were compared with their wild type. The inulinase activities of 86 and 23.8 U/mL were achieved, which were 4.6-fold and 1.5-fold higher than that of the wild type. Furthermore, ethanol fermentation was carried out with the recombinants and medium containing 200 g/L raw Jerusalem artichoke meal, and ethanol concentrations of 55 g/L and 52 g/L were obtained, with ethanol yields of 0.495 and 0.453, respectively, equivalent to 96.9% and 88.6% of the theoretical value.%以乙醇耐受力较强的酿酒酵母为受体菌,构建了能够分泌菊粉酶的基因工程菌并进行了菊芋粉的生料发酵.首先,以马克斯克鲁维酵母Kluyveromyces marxianus中的基因组DNA为模板,PCR扩增菊粉酶编码基因inu,分别使用菊粉酶自身启动子和酵母磷酸甘油激酶(Phosphoglycerate kinase,pgk)启动子,构建重组表达质粒HO/p-inu和HO/pgk-inu.经Not I线性化后,采用电击法转化酿酒酵母工业菌株Saccharomyces cerevisiae 6525,分别得到含菊粉酶基因的阳性菌株HI6/1~HI6/10及HPI6/1~HPI6/3.实验结果表明HI6/6及HPI6/3的菊粉酶活力较高,分别为86.0U/mL和23.8 U/mL,是出发菌株的4.6倍和1.5倍.进而以粗菊芋粉生料为底物进行了乙醇发酵,当浓度为200 g/L时,重组菌株HI6/6和HPI6/3的发酵终点乙醇浓度分别为55 g/L和52 g/L,糖醇转化率分别为0.495和0.453,达到理论值的96.9%和88.6%.这些研究工作

  19. Construction of engineering Trichoderma strains and their characteristics against tomato gray mold

    Institute of Scientific and Technical Information of China (English)

    LIU Xian; ZHUANG Jing-hua; GAO Zeng-gui; YANG Chang-cheng; CHEN Jie

    2004-01-01

    @@ The transformed Trichoderma strains Ttrm31, Ttrm34 and Ttrm55 were obtained from Trichoderma wild strain T21 mutated by REMI technique for more effective biocontrol of tomato gray mold (Botrytis cinerea) with Trichoderma agent. Those transformants appeared much better in biocontrol activity in vitro or in vivo against tomato gray mold were better than that of wild strain T21. The main results were as follow:

  20. [Morphological and biochemical characteristics of new isolates Saccharomyces cerevisiae U-503].

    Science.gov (United States)

    Abramov, Sh A; Kotenko, S Ts; Aliverdieva, D A

    1997-01-01

    Compared with S. cerevisiae N73, its laser irradiation-induced mutant S. cerevisiae U-503 exhibited a significantly higher respiration rate. Electron microscopic changes consistent with this finding were found in the mitochondrial system of mutant cells. The mutant strain retained its physiological and biochemical properties over a nine-year storage period.

  1. Genetic engineering of baker's and wine yeasts using formaldehyde hyperresistance-mediating plasmids

    Directory of Open Access Journals (Sweden)

    Schmidt M.

    1997-01-01

    Full Text Available Yeast multi-copy vectors carrying the formaldehyde-resistance marker gene SFA have proved to be a valuable tool for research on industrially used strains of Saccharomyces cerevisiae. The genetics of these strains is often poorly understood, and for various reasons it is not possible to simply subject these strains to protocols of genetic engineering that have been established for laboratory strains of S. cerevisiae. We tested our vectors and protocols using 10 randomly picked baker's and wine yeasts all of which could be transformed by a simple protocol with vectors conferring hyperresistance to formaldehyde. The application of formaldehyde as a selecting agent also offers the advantage of its biodegradation to CO2 during fermentation, i.e., the selecting agent will be consumed and therefore its removal during down-stream processing is not necessary. Thus, this vector provides an expression system which is simple to apply and inexpensive to use

  2. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Penttilä Merja

    2008-06-01

    Full Text Available Abstract Background Considerable interest in the bioconversion of lignocellulosic biomass into ethanol has led to metabolic engineering of Saccharomyces cerevisiae for fermentation of xylose. In the present study, the transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with those of glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at the genome-wide level how signalling and carbon catabolite repression differ in cells grown on either glucose or xylose. The more detailed knowledge whether xylose is sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is rather recognised as a non-fermentable carbon source is important for further engineering this yeast for more efficient anaerobic fermentation of xylose. Results Genes encoding respiratory proteins, proteins of the tricarboxylic acid and glyoxylate cycles, and gluconeogenesis were only partially repressed by xylose, similar to the genes encoding their transcriptional regulators HAP4, CAT8 and SIP1-2 and 4. Several genes that are repressed via the Snf1p/Mig1p-pathway during growth on glucose had higher expression in the cells grown on xylose than in the glucose repressed cells but lower than in the glucose derepressed cells. The observed expression profiles of the transcription repressor RGT1 and its target genes HXT2-3, encoding hexose transporters suggested that extracellular xylose was sensed by the glucose sensors Rgt2p and Snf3p. Proteome analyses revealed distinct patterns in phosphorylation of hexokinase 2, glucokinase and enolase isoenzymes in the xylose- and glucose-grown cells. Conclusion The results indicate that the metabolism of yeast growing on xylose corresponds neither to that of fully glucose repressed cells nor that of derepressed cells. This may be one of the major reasons for the suboptimal fermentation of xylose by

  3. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example.

    Science.gov (United States)

    Katzberg, Michael; Skorupa-Parachin, Nàdia; Gorwa-Grauslund, Marie-Françoise; Bertau, Martin

    2010-04-14

    The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the gamma-diketone 2,5-hexanedione furnishing the diol (2S,5S)-hexanediol and the gamma-hydroxyketone (5S)-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%). This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants.

  4. Engineering Cofactor Preference of Ketone Reducing Biocatalysts: A Mutagenesis Study on a γ-Diketone Reductase from the Yeast Saccharomyces cerevisiae Serving as an Example

    Directory of Open Access Journals (Sweden)

    Michael Katzberg

    2010-04-01

    Full Text Available The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the γ-diketone 2,5-hexanedione furnishing the diol (2S,5S-hexanediol and the γ-hydroxyketone (5S-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%. This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants.

  5. 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae.

    Science.gov (United States)

    Strope, Pooja K; Kozmin, Stanislav G; Skelly, Daniel A; Magwene, Paul M; Dietrich, Fred S; McCusker, John H

    2015-12-01

    We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer.

  6. Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis.

    Science.gov (United States)

    Zhuo, Ying; Zhang, Wenquan; Chen, Difei; Gao, Hong; Tao, Jun; Liu, Mei; Gou, Zhongxuan; Zhou, Xianlong; Ye, Bang-Ce; Zhang, Qing; Zhang, Siliang; Zhang, Li-Xin

    2010-06-22

    Avermectin and its analogues are produced by the actinomycete Streptomyces avermitilis and are widely used in the field of animal health, agriculture, and human health. Here we have adopted a practical approach to successfully improve avermectin production in an industrial overproducer. Transcriptional levels of the wild-type strain and industrial overproducer in production cultures were monitored using microarray analysis. The avermectin biosynthetic genes, especially the pathway-specific regulatory gene, aveR, were up-regulated in the high-producing strain. The upstream promoter region of aveR was predicted and proved to be directly recognized by sigma(hrdB) in vitro. A mutant library of hrdB gene was constructed by error-prone PCR and selected by high-throughput screening. As a result of evolved hrdB expressed in the modified avermectin high-producing strain, 6.38 g/L of avermectin B1a was produced with over 50% yield improvement, in which the transcription level of aveR was significantly increased. The relevant residues were identified to center in the conserved regions. Engineering of the hrdB gene can not only elicit the overexpression of aveR but also allows for simultaneous transcription of many other genes. The results indicate that manipulating the key genes revealed by reverse engineering can effectively improve the yield of the target metabolites, providing a route to optimize production in these complex regulatory systems.

  7. Flux Balance Analysis Inspired Bioprocess Upgrading for Lycopene Production by a Metabolically Engineered Strain of Yarrowia lipolytica

    Science.gov (United States)

    Nambou, Komi; Jian, Xingxing; Zhang, Xinkai; Wei, Liujing; Lou, Jiajia; Madzak, Catherine; Hua, Qiang

    2015-01-01

    Genome-scale metabolic models embody a significant advantage of systems biology since their applications as metabolic flux simulation models enable predictions for the production of industrially-interesting metabolites. The biotechnological production of lycopene from Yarrowia lipolytica is an emerging scope that has not been fully scrutinized, especially for what concerns cultivation conditions of newly generated engineered strains. In this study, by combining flux balance analysis (FBA) and Plackett-Burman design, we screened chemicals for lycopene production from a metabolically engineered strain of Y. lipolytica. Lycopene concentrations of 126 and 242 mg/L were achieved correspondingly from the FBA-independent and the FBA-assisted designed media in fed-batch cultivation mode. Transcriptional studies revealed upregulations of heterologous genes in media designed according to FBA, thus implying the efficiency of model predictions. Our study will potentially support upgraded lycopene and other terpenoids production from existing or prospect bioengineered strains of Y. lipolytica and/or closely related yeast species. PMID:26703753

  8. Ferromagnetic (Ga,Mn)As layers and nanostructures: control of magnetic anisotropy by strain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Wenisch, Jan

    2008-07-01

    This work studies the fundamental connection between lattice strain and magnetic anisotropy in the ferromagnetic semiconductor (Ga,Mn)As. The first chapters provide a general introduction into the material system and a detailed description of the growth process by molecular beam epitaxy. A finite element simulation formalism is developed to model the strain distribution in (Ga,Mn)As nanostructures is introduced and its predictions verified by high-resolution X-ray diffraction methods. The influence of lattice strain on the magnetic anisotropy is explained by an magnetostatic model. A possible device application is described in the closing chapter. (orig.)

  9. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.

    Science.gov (United States)

    Saitoh, Satoshi; Tanaka, Tsutomu; Kondo, Akihiko

    2011-09-01

    We constructed a recombinant industrial Saccharomyces cerevisiae yeast strain OC2-AXYL2-ABGL2-Xyl2 by inserting two copies of the β-glucosidase (BGL) and β-xylosidase (XYL) genes, and a gene cassette for xylose assimilation in the genome of yeast strain OC-2HUT. Both BGL and XYL were expressed on the yeast cell surface with high enzyme activities. Using OC2-AXYL2-ABGL2-Xyl2, we performed ethanol fermentation from a mixture of powdered cellulose (KC-flock) and Birchwood xylan, with the additional supplementation of a 30-g/l Trichoderma reesei cellulase complex mixture. The ethanol yield (gram per gram of added cellulases) of the strain OC2-AXYL2-ABGL2-Xyl2 increased approximately 2.5-fold compared to that of strain OC2-Xyl2, which lacked β-glucosidase and β-xylosidase activities. Notably, the concentration of additional T. reesei cellulase was reduced from 30 to 24 g/l without affecting ethanol production. The BGL- and XYL-displaying industrial yeast of the strain OC2-AXYL2-ABGL2-Xyl2 represents a promising yeast for reducing cellulase consumption of ethanol fermentation from lignocellulosic biomass by compensating for the inherent weak BGL and XYL activities of T. reesei cellulase complexes.

  10. Saccharomyces cerevisiae metabolism in ecological context

    Science.gov (United States)

    Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon; Patil, Kiran R.

    2016-01-01

    The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype–metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype–phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype–environment–phenotype relationships. PMID:27634775

  11. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress.

    Science.gov (United States)

    Rodríguez-Vargas, Sonia; Sánchez-García, Alicia; Martínez-Rivas, Jose Manuel; Prieto, Jose Antonio; Randez-Gil, Francisca

    2007-01-01

    Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Delta(9) position. We expressed two sunflower (Helianthus annuus) oleate Delta(12) desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Delta(9,12), the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15 degrees C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp(+) or Trp(-) strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30 degrees C or 15 degrees C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains.

  12. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose.

    Science.gov (United States)

    Cao, Limin; Tang, Xingliang; Zhang, Xinyuan; Zhang, Jingtao; Tian, Xuelei; Wang, Jingyu; Xiong, Mingyong; Xiao, Wei

    2014-07-01

    Conversion of lignocellulosic material to ethanol is a major challenge in second generation bio-fuel production by yeast Saccharomyces cerevisiae. This report describes a novel strategy named "two-stage transcriptional reprogramming (TSTR)" in which key gene expression at both glucose and xylose fermentation phases is optimized in engineered S. cerevisiae. Through a combined genome-wide screening of stage-specific promoters and the balancing of the metabolic flux, ethanol yields and productivity from mixed sugars were significantly improved. In a medium containing 50g/L glucose and 50g/L xylose, the top-performing strain WXY12 rapidly consumed glucose within 12h and within 84h it consistently achieved an ethanol yield of 0.48g/g total sugar, which was 94% of the theoretical yield. WXY12 utilizes a KGD1 inducible promoter to drive xylose metabolism, resulting in much higher ethanol yield than a reference strain using a strong constitutive PGK1 promoter. These promising results validate the TSTR strategy by synthetically regulating the xylose assimilation pathway towards efficient xylose fermentation.

  13. Energy-efficient strain gauges for the wireless condition monitoring systems in mechanical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Michael; Fellner, Thomas; Zeiser, Roderich; Wilde, Juergen [Freiburg Univ. (Germany). Dept. for Microsystems Engineering (IMTEK)

    2012-07-01

    This work focuses on the development of novel strain gauges, which are suited for the operation in autonomous wireless condition monitoring systems. For this purpose, capacitive as well as highly resistive strain gauges were designed and fabricated. The C- and R-sensors were utilised in combination with demonstration circuits, which integrate the circuits for instrumentation, A/D-conversion and furthermore comprise a microcontroller with a wireless transceiver system, all on a small separate printed wiring board. (orig.)

  14. Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus.

    Science.gov (United States)

    Goshima, Tetsuya; Negi, Kanako; Tsuji, Masaharu; Inoue, Hiroyuki; Yano, Shinichi; Hoshino, Tamotsu; Matsushika, Akinori

    2013-11-01

    We constructed a xylose-fermenting recombinant strain of thermotolerant yeast Kluyveromyces marxianus, DMB3-7. Both xylose consumption and ethanol production were remarkably increased in DMB3-7 compared to the control strain at 30°C. Furthermore, DMB3-7 produced ethanol from xylose at both 42°C and 45°C, above which xylose metabolic activity decreased.

  15. Carrier Mobility Enhancement of Tensile Strained Si and SiGe Nanowires via Surface Defect Engineering.

    Science.gov (United States)

    Ma, J W; Lee, W J; Bae, J M; Jeong, K S; Oh, S H; Kim, J H; Kim, S-H; Seo, J-H; Ahn, J-P; Kim, H; Cho, M-H

    2015-11-11

    Changes in the carrier mobility of tensile strained Si and SiGe nanowires (NWs) were examined using an electrical push-to-pull device (E-PTP, Hysitron). The changes were found to be closely related to the chemical structure at the surface, likely defect states. As tensile strain is increased, the resistivity of SiGe NWs deceases in a linear manner. However, the corresponding values for Si NWs increased with increasing tensile strain, which is closely related to broken bonds induced by defects at the NW surface. Broken bonds at the surface, which communicate with the defect state of Si are critically altered when Ge is incorporated in Si NW. In addition, the number of defects could be significantly decreased in Si NWs by incorporating a surface passivated Al2O3 layer, which removes broken bonds, resulting in a proportional decrease in the resistivity of Si NWs with increasing strain. Moreover, the presence of a passivation layer dramatically increases the extent of fracture strain in NWs, and a significant enhancement in mobility of about 2.6 times was observed for a tensile strain of 5.7%.

  16. Strain-engineering the anisotropic electrical conductance in ReS2 monolayer

    Science.gov (United States)

    Yu, Sheng; Zhu, Hao; Eshun, Kwesi; Shi, Chen; Zeng, Min; Li, Qiliang

    2016-05-01

    Rhenium disulfide (ReS2) is a semiconducting layered transition metal dichalcogenide that exhibits a stable distorted 1 T (Re in octahedral coordination) phase. The reduced symmetry in ReS2 leads to in-plane anisotropy in various material properties. In this work, we performed a comprehensive first-principle computational study of strain effect on the anisotropic mechanical and electronic properties of ReS2 monolayers. We found that the anisotropic ratio in electron mobility along two principle axes is 2.36 while the ratio in hole mobility reaches 7.76. The study of strain applied along different directions shows that the elastic modulus is largest for out-of-plane direction, and the strain along a-direction induces indirect bandgap while strain along b- or c-direction does not. In addition, the carrier mobility can be significantly improved by the c-direction tensile strain. This study indicates that the ReS2 monolayer has promising applications in nanoscale strain sensor and conductance-switch FETs.

  17. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    Science.gov (United States)

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid.

  18. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  19. 赤霞珠葡萄自然发酵过程中的酿酒酵母筛选及其发酵特性%Screening of S.cerevisiae Strains in Natural Fermentation Process of Cabernet Sauvignon Grape and Study of Their Fermenting Properties

    Institute of Scientific and Technical Information of China (English)

    程仕伟; 韩鹏; 赵慧; 屈慧鸽; 于英; 沈志毅; 李记明

    2015-01-01

    In the experiments, indigenous S.cerevisiae strains were screened from naturally fermented Cabernet Sauvignon grape from Yantai by use of rose Bengal medium, and then 9 strains were obtained through the identification of WL medium. All strains underwent fermenting performance and tolerance measurement including alcohol, SO2, citrate and high concentration glucose. Finally, three strains were used to pro-duce Cabernet Sauvignon dry red wine. The results suggested that, strain YCF2 had satisfactory fermenting indexes and some of the indexes were superior to commercial yeast strains. Accordingly, it had potential application values in grape wine-making industry.%采用孟加拉红选择性培养基筛选烟台产区赤霞珠葡萄自然发酵醪液中的酵母菌,并经WL培养基鉴定获得9株酿酒酵母。酿酒酵母经发酵性能和耐受能力(酒精度、SO2、酸、高糖)测定,选育3株酵母用于酿造赤霞珠干红葡萄酒,结果显示,菌株YCF2的发酵指标较好,部分指标优于商品化酿酒酵母,具备工业化发酵应用潜力。

  20. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae

    Science.gov (United States)

    Tremaine, Mary; Hebert, Alexander S.; Myers, Kevin S.; Sardi, Maria; Dickinson, Quinn; Reed, Jennifer L.; Zhang, Yaoping; Coon, Joshua J.; Hittinger, Chris Todd; Gasch, Audrey P.; Landick, Robert

    2016-01-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. PMID:27741250

  1. Engineering and systems level analysis of Saccharomyces cerevisiae for production of 3 hydroxypropionic acid via malonyl CoA reductase dependent pathway

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg; Schneider, Konstantin;

    2016-01-01

    In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3...

  2. Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy.

    Science.gov (United States)

    Summerfield, Alex; Davies, Andrew; Cheng, Tin S; Korolkov, Vladimir V; Cho, YongJin; Mellor, Christopher J; Foxon, C Thomas; Khlobystov, Andrei N; Watanabe, Kenji; Taniguchi, Takashi; Eaves, Laurence; Novikov, Sergei V; Beton, Peter H

    2016-03-01

    Graphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 μm, and exhibits moiré patterns with large periodicities, up to ~30 nm, indicating that the layers are highly strained. Topological defects in the moiré patterns are observed and attributed to the relaxation of graphene islands which nucleate at different sites and subsequently coalesce. In addition, cracks are formed leading to strain relaxation, highly anisotropic strain fields, and abrupt boundaries between regions with different moiré periods. These cracks can also be formed by modification of the layers with a local probe resulting in the contraction and physical displacement of graphene layers. The Raman spectra of regions with a large moiré period reveal split and shifted G and 2D peaks confirming the presence of strain. Our work demonstrates a new approach to the growth of epitaxial graphene and a means of generating and modifying strain in graphene.

  3. Strain Engineering of the Band Gap of HgTe Quantum Wells Using Superlattice Virtual Substrates

    Science.gov (United States)

    Leubner, Philipp; Lunczer, Lukas; Brüne, Christoph; Buhmann, Hartmut; Molenkamp, Laurens W.

    2016-08-01

    The HgTe quantum well (QW) is a well-characterized two-dimensional topological insulator (2D TI). Its band gap is relatively small (typically on the order of 10 meV), which restricts the observation of purely topological conductance to low temperatures. Here, we utilize the strain dependence of the band structure of HgTe QWs to address this limitation. We use CdTe-Cd 0.5Zn0.5Te strained-layer superlat