WorldWideScience

Sample records for cerevisiae rad51 protein

  1. Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs, but not on Rad52

    International Nuclear Information System (INIS)

    Veelen, Lieneke R. van; Essers, Jeroen; Rakt, Mandy W.M.M. van de; Odijk, Hanny; Pastink, Albert; Zdzienicka, MaIgorzata Z.; Paulusma, Coen C.; Kanaar, Roland

    2005-01-01

    Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response

  2. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-07-25

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  3. DMC1 functions in a Saccharomyces cerevisiae meiotic pathway that is largely independent of the RAD51 pathway

    International Nuclear Information System (INIS)

    Dresser, M.E.; Ewing, D.J.; Conrad, M.N.; Dominguez, A.M.; Barstead, R.; Jiang, H.; Kodadek, T.

    1997-01-01

    Meiotic recombination in the yeast Saccharomyces cerevisiae requires two similar recA-like proteins, Dmc1p and Rad51p. A screen for dominant meiotic mutants provided DMC1-G126D, a dominant allele mutated in the conserved ATP-binding site (specifically, the A-loop motif) that confers a null phenotype. A recessive null allele, dmc1-K69E, was isolated as an intragenic suppressor of DMC1-G126D. Dmc1-K69Ep, unlike Dmc1p, does not interact homotypically in a two-hybrid assay, although it does interact with other fusion proteins identified by two-hybrid screen with Dmc1p. Dmc1p, unlike Rad51p, does not interact in the two-hybrid assay with Rad52p or Rad54p. However, Dmc1p does interact with Tid1p, a Rad54p homologue, with Tid4p, a Rad16p homologue, and with other fusion proteins that do not interact with Rad51p, suggesting that Dmc1p and Rad51p function in separate, though possibly overlapping, recombinational repair complexes. Epistasis analysis suggests that DMC1 and RAD51 function in separate pathways responsible for meiotic recombination. Taken together, our results are consistent with a requirement for DMC1 for meiosis-specific entry of DNA double-strand break ends into chromatin. Interestingly, the pattern on CHEF gels of chromosome fragments that result from meiotic DNA double-strand break formation is different in DMC1 mutant strains from that seen in rad50S strains. (author)

  4. Roles of Rad51 protein in homologous recombination in mammalian cells: relation with repair, replication and cell cycle

    International Nuclear Information System (INIS)

    Lambert, S.

    2001-01-01

    Homologous recombination (HR) is a fundamental process, allowing a faithful repair. In mammalian, MmRAD51, which is the homologue of Saccharomyces cerevisiae ScRAD51 key protein for HR, is an essential gene. This work is based on the characterisation of viable hyper and hypo-recombinant cell lines specifically affected in the Rad51 pathway. By expressing wild type and dominant negative forms of MmRad51, we demonstrated that Rad51 pathway participates to the repair by HR to induced DNA damages. However, inhibition of the Rad 51 pathway does not affect cell viability, spontaneously or after irradiation, whereas, radiation induced HR is inhibited. In the presence of DNA damages during late S and G2/M phase, inhibition of Rad51 pathway induced chromosomal aberrations, leading to a transient arrest in mitosis. This arrest is associated with an increased of cell death. However, a fraction of cells can escape from this transient arrest by forming tetraploid cells, associated with an absence of chromalid separation. Thus, in response to impaired Rad51 pathway, mitotic checkpoints seems to play an essential role. In line with this, we showed that the essential function of Rad51 is p53-dependent, which is in agreement with the role of p53 in tetraploidy inhibition. Our results suggest that the Rad51 protein could participate to the control of mitotic checkpoints and thus to the maintenance of genetic stability. This function could involve other Rad51 partners such as the tumour suppressors BRCA1, BRCA2 and p53. (author) [fr

  5. Evidence that a recombinationless strain, rad 51, of Saccharomyces cerevisiae lacks the budding cell resistance to γ-rays

    International Nuclear Information System (INIS)

    Hama-Inaba, Hiroko; Saeki, Tetsuya

    1975-01-01

    The radiosensitivities of a wild-type and x-ray sensitive mutant, rad 51 (defective in genetic recombination) of Saccharomyces cerevisiae to γ-rays were compared, using non-synchronized and partially synchronized cultures. The rad 51 cells, either haploid or diploid, showed only very small changes in radiosensitivity during cell growth, whereas the wild-type cells, especially haploid, showed the well-known budding resistance. The heterozygous (wild/rad 51) diploid cells showed in a survival curve a remarkable budding resistance and sigmoidal inactivation kinetics similar to those of wild-type homozygous diploid cells. (author)

  6. Regulation of homologous recombination repair protein Rad51 by Ku70

    International Nuclear Information System (INIS)

    Du Liqing; Liu Qiang; Wang Yan; Xu Chang; Cao Jia; Fu Yue; Chen Fenghua; Fan Feiyue

    2013-01-01

    Objective: To explore the regulative effect of non-homologous end joining (NHEJ)protein Ku70 on homologous recombination repair protein Rad51, and to investigate the synergistic mechanism of homologous recombination repair in combination with NHEJ. Methods: Observed Rad51 protein expression after transfect Ku70 small interfering RNA or Ku70 plasmid DNA into tumor cells using Western blot. Results: Expression of Rad51 was obviously reduced after pretreated with Ku70 small interfering RNA. And with the increasing expression of Ku70 protein after transfection of Ku70 plasmid DNA PGCsi3.0-hKu70 into tumor cell lines, the Rad51 protein expression was increased. Conclusion: Ku70 protein has regulating effect on gene expression of Rad51, and it might participate in the collaboration between homologous recombination repair and NHEJ. (authors)

  7. Location of RAD51-like protein during meiotic prophase in Eimeria tenella.

    Science.gov (United States)

    Del Cacho, Emilio; Gallego, Margarita; Pagés, Marc; Barbero, José Luís; Monteagudo, Luís; Sánchez-Acedo, Caridad

    2011-05-31

    This study focuses on reporting events in Eimeria tenella oocysts from early to late prophase I in terms of RAD51 protein in association with the synaptonemal complex formed between homologous chromosomes. The aim of the study was the sequential localization of RAD51 protein, which is involved in the repair of double-strand breaks (DSBs) on the eimerian chromosomes as they synapse and desynapse. Structural Maintenance of Chromosome protein SMC3, which plays a role in synaptonemal complex formation, was labeled to identify initiation and progress of chromosome synapsis and desynapsis in parallel with the appearance and disappearance of RAD51 foci. Antibodies directed against RAD51 and cohesin subunit SMC3 proteins were labeled with either fluorescence or colloidal gold to visualize RAD51 protein foci and synaptonemal complexes. RAD51 protein localization during prophase I was studied on meiotic chromosomes spreads obtained from oocysts at different points in time after the start of sporulation. The present findings showed that foci detected with the antibody directed against RAD51 protein first appeared at the pre-leptotene stage before homologous chromosomes began pairing. Subsequently, the foci were detected in association with the lateral elements at the precise sites where synapsis were in progress. These findings lead us to suggest that in E. tenella, homologous chromosome pairing was a DSB-dependent mechanism and reinforced the participation of RAD51 protein in meiotic homology search, alignment and pairing of chromosomes. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Prolonged exposure to particulate chromate inhibits RAD51 nuclear import mediator proteins.

    Science.gov (United States)

    Browning, Cynthia L; Wise, John Pierce

    2017-09-15

    Particulate hexavalent chromium (Cr(VI)) is a human lung carcinogen and a human health concern. The induction of structural chromosome instability is considered to be a driving mechanism of Cr(VI)-induced carcinogenesis. Homologous recombination repair protects against Cr(VI)-induced chromosome damage, due to its highly accurate repair of Cr(VI)-induced DNA double strand breaks. However, recent studies demonstrate Cr(VI) inhibits homologous recombination repair through the misregulation of RAD51. RAD51 is an essential protein in HR repair that facilitates the search for a homologous sequence. Recent studies show prolonged Cr(VI) exposure prevents proper RAD51 subcellular localization, causing it to accumulate in the cytoplasm. Since nuclear import of RAD51 is crucial to its function, this study investigated the effect of Cr(VI) on the RAD51 nuclear import mediators, RAD51C and BRCA2. We show acute (24h) Cr(VI) exposure induces the proper localization of RAD51C and BRCA2. In contrast, prolonged (120h) exposure increased the cytoplasmic localization of both proteins, although RAD51C localization was more severely impaired. These results correlate temporally with the previously reported Cr(VI)-induced RAD51 cytoplasmic accumulation. In addition, we found Cr(VI) does not inhibit interaction between RAD51 and its nuclear import mediators. Altogether, our results suggest prolonged Cr(VI) exposure inhibits the nuclear import of RAD51C, and to a lesser extent, BRCA2, which results in the cytoplasmic accumulation of RAD51. Cr(VI)-induced inhibition of nuclear import may play a key role in its carcinogenic mechanism since the nuclear import of many tumor suppressor proteins and DNA repair proteins is crucial to their function. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Promotion of Homologous Recombination and Genomic Stability byRAD51AP1 via RAD51 Recombinase Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Dray, Eloise; Groesser, Torsten; San Filippo,Joseph; Shi, Idina; Collins, David W.; Tsai, Miaw-Sheue; Williams,Gareth; Rydberg, Bjorn; Sung, Patrick; Schild, David

    2007-04-11

    Homologous recombination (HR) repairs chromosome damage and is indispensable for tumor suppression in humans. RAD51 mediates the DNA strand pairing step in HR. RAD51AP1 (RAD51 Associated Protein 1) is a RAD51-interacting protein whose function has remained elusive. Knockdown of RAD51AP1 in human cells by RNA interference engenders sensitivity to different types of genotoxic stress. Moreover, RAD51AP1-depleted cells are impaired for the recombinational repair of a DNA double-strand break and exhibit chromatid breaks both spontaneously and upon DNA damaging treatment. Purified RAD51AP1 binds dsDNA and RAD51, and it greatly stimulates the RAD51-mediated D-loop reaction. Biochemical and cytological results show that RAD51AP1 functions at a step subsequent to the assembly of the RAD51-ssDNA nucleoprotein filament. Our findings provide the first evidence that RAD51AP1 helps maintain genomic integrity via RAD51 recombinase enhancement.

  10. Function of Rad51 paralogs in eukaryotic homologous recombinational repair

    International Nuclear Information System (INIS)

    Liu, N.; Skowronek, K.

    2003-01-01

    Full text: Homologous recombinational repair (HRR) is an important mechanism for maintaining genetic integrity and cancer prevention by accurately repair of DNA double strand breaks induced by environmental insults or occurred in DNA replication. A critical step in HRR is the polymerization of Rad51 on single stranded DNA to form nuclear protein filaments, the later conduct DNA strand paring and exchange between homologous strands. A number of proteins, including replication protein A (RPA), Rad52 and Rad51 paralogs, are suggested to modulate or facilitate the process of Rad51 filament formation. Five Rad51 paralogs, namely XRCC2, XRCC3, Rad51B, Rad51C and Rad51D have been identified in eucaryotic cells. These proteins show distant protein sequence identity to Rad51, to yeast Rad51 paralogs (Rad55 and Rad57) and to each other. Hamster or chicken mutants of Rad51 paralogs exhibit hypersensitivity to a variety of DNA damaging agents, especially cross-linking agents, and are defective in assembly of Rad51 onto HRR site after DNA damage. Recent data from our and other labs showed that Rad51 paralogs constitute two distinct complexes in cell extracts, one contains XRCC2, Rad51B, Rad51C and Rad51D, and the other contains Rad51C and XRCC3. Rad51C is involved in both complexes. Our results also showed that XRCC3-Rad51C complex interacts with Rad51 in vivo. Furthermore, overexpression of Rad52 can partially suppress the hypersensitivity of XRCC2 mutant irs1 to ionizing radiation and corrected the defects in Rad51 focus formation. These results suggest that XRCC2 and other Rad51 paralogs play a mediator function to Rad51 in the early stage of HRR

  11. Pir51, a Rad51-interacting protein with high expression in aggressive lymphoma, controls mitomycin C sensitivity and prevents chromosomal breaks

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Sarah E. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Tsai, Shih-Chang [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Malone, Cindy Sue [Department of Biology, California State University Northridge, Northridge, CA 91330 (United States); Soghomonian, Shahe V. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Ouyang, Yan [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Wall, Randolph [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Marahrens, York [Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States) and Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)]. E-mail: YMarahrens@mednet.ucla.edu; Teitell, Michael A. [Molecular Biology Institute and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States) and Department of Pathology and Laboratory Medicine, California NanoSystems Institute, and Institute for Stem Cell Biology and Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States)]. E-mail: mteitell@ucla.edu

    2006-10-10

    Pir51, a protein of unknown function that interacts with Rad51, was identified in a screen for genes that were highly expressed in aggressive mantle cell lymphoma (MCL) versus indolent small lymphocytic lymphoma (SLL) patient samples. We show that Pir51 is a nuclear protein expressed in a variety of cell types and that its expression is regulated during the cell cycle in a pattern nearly identical to Rad51. Also similar to Rad51, Pir51 levels did not change in response to a variety of DNA damaging agents. siRNA depletion of Pir51 did not reduce homologous recombination repair (HRR), but sensitized cells to mitomycin C (MMC)-induced DNA crosslinking and resulted in elevated levels of double-strand breaks (DSBs) in metaphase chromosome spreads and reduced colony formation. Therefore, Pir51 maintains genomic integrity and potentially connects the early response to DNA crosslinks, orchestrated by the ATR kinase and Fanconi Anemia (FA) proteins, to later stages of Rad51-dependent repair. Our results provide the first example of a Rad51-binding protein that influences DNA crosslink repair without affecting homologous recombination repair.

  12. Pir51, a Rad51-interacting protein with high expression in aggressive lymphoma, controls mitomycin C sensitivity and prevents chromosomal breaks

    International Nuclear Information System (INIS)

    Henson, Sarah E.; Tsai, Shih-Chang; Malone, Cindy Sue; Soghomonian, Shahe V.; Ouyang, Yan; Wall, Randolph; Marahrens, York; Teitell, Michael A.

    2006-01-01

    Pir51, a protein of unknown function that interacts with Rad51, was identified in a screen for genes that were highly expressed in aggressive mantle cell lymphoma (MCL) versus indolent small lymphocytic lymphoma (SLL) patient samples. We show that Pir51 is a nuclear protein expressed in a variety of cell types and that its expression is regulated during the cell cycle in a pattern nearly identical to Rad51. Also similar to Rad51, Pir51 levels did not change in response to a variety of DNA damaging agents. siRNA depletion of Pir51 did not reduce homologous recombination repair (HRR), but sensitized cells to mitomycin C (MMC)-induced DNA crosslinking and resulted in elevated levels of double-strand breaks (DSBs) in metaphase chromosome spreads and reduced colony formation. Therefore, Pir51 maintains genomic integrity and potentially connects the early response to DNA crosslinks, orchestrated by the ATR kinase and Fanconi Anemia (FA) proteins, to later stages of Rad51-dependent repair. Our results provide the first example of a Rad51-binding protein that influences DNA crosslink repair without affecting homologous recombination repair

  13. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament.

    Science.gov (United States)

    Ma, Chu Jian; Gibb, Bryan; Kwon, YoungHo; Sung, Patrick; Greene, Eric C

    2017-01-25

    Homologous recombination (HR) is a crucial pathway for double-stranded DNA break (DSB) repair. During the early stages of HR, the newly generated DSB ends are processed to yield long single-stranded DNA (ssDNA) overhangs, which are quickly bound by replication protein A (RPA). RPA is then replaced by the DNA recombinase Rad51, which forms extended helical filaments on the ssDNA. The resulting nucleoprotein filament, known as the presynaptic complex, is responsible for pairing the ssDNA with homologous double-stranded DNA (dsDNA), which serves as the template to guide DSB repair. Here, we use single-molecule imaging to visualize the interplay between human RPA (hRPA) and human RAD51 during presynaptic complex assembly and disassembly. We demonstrate that ssDNA-bound hRPA can undergo facilitated exchange, enabling hRPA to undergo rapid exchange between free and ssDNA-bound states only when free hRPA is present in solution. Our results also indicate that the presence of free hRPA inhibits RAD51 filament nucleation, but has a lesser impact upon filament elongation. This finding suggests that hRPA exerts important regulatory influence over RAD51 and may in turn affect the properties of the assembled RAD51 filament. These experiments provide an important basis for further investigations into the regulation of human presynaptic complex assembly. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Correlation of RAD51 and radiosensitization of methotrexate

    International Nuclear Information System (INIS)

    Du Liqing; Bai Jianqiang; Liu Qiang; Wang Yan; Zhao Peng; Chen Fenghua; Wang Hong; Fan Feiyue

    2012-01-01

    Objective: To evaluate the correlation between homologous recombination repair protein RAD51 and methotrexate-enhanced radiosensitivity. Methods: Western blot and RT-PCR assays were used to detect RAD51 expression in HOS osteosarcoma cells exposed to γ-ray irradiation alone and in combination with methotrexate. Colony formation assay was used to test the survival fraction of HOS cells exposed to γ-rays and methotrexate. Results: Methotrexate inhibited both protein and RNA expressions of RAD51, and the combination of radiation and methotrexate enhanced the inhibition of RAD51 expression. Moreover, transfection of cells with RAD51 gene decreased cellular sensitivity to methotrexate and γ-rays. The sensitizer enhancement ratios after irradiation in combination with methotrexate were 1.51 and 0.99, respectively. Methotrexate was a preferred radiosensitizer to HOS cell. Conclusions: RAD51 might be involved in the methotrexate-enhanced radiosensitivity. (authors)

  15. The role of Rad 51 protein in radioresistance of spheroid model of Du 145 prostate carcinoma cell line

    International Nuclear Information System (INIS)

    Taghizadeh, M.; Khoei, S.; Nikoofar, A. R.; Ghamsari, L.; Goliaei, B.

    2009-01-01

    Rad 51 is a protein with critical role in double strand break repair. Down-regulation of this protein has a significant effect in radiosensitivity of some cell lines like prostate carcinoma. Compared to monolayer cell culture model, the spheroids are more resistant to radiation. The aim of the current study was to determine the Rad 51 protein level in Du 145 spheroids, and monolayer cells before and after exposure to gamma irradiation. Materials and Methods: In the present study, western blot was used to determine the level of Rad 51 protein in Du 145 cell line grown as monolayer and spheroid. Results: Western blot analysis showed that in the spheroid cells, Rad 51 had an elevated level before and after radiation in comparison with monolayer cells. Higher doses of radiation induced elevated expression of Rad 51 protein in both culture models.The level of at protein after exposure to gamma rays had been time-dependent. Conclusion: Rad 51 might act as a mediator of radiation resistance in tumor cells. Repression of Rad 51 activity could be a prominent strategy to overcome radiation resistance of tumors.

  16. RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates

    International Nuclear Information System (INIS)

    Reynolds, P.; Weber, S.; Prakash, L.

    1985-01-01

    The RAD6 gene of Saccharomyces cerevisiae is required for postreplication repair of UV-damaged DNA, for induced mutagenesis, and for sporulation. The authors have mapped the transcripts and determined the nucleotide sequence of the cloned RAD6 gene. The RAD6 gene encodes two transcripts of 0.98 and 0.86 kilobases which differ only in their 3' termini. The transcribed region contains an open reading frame of 516 nucleotides. The rad6-1 and rad6-3 mutant alleles, which the authors have cloned and sequenced, introduce amber and ochre nonsense mutations, respectively into the open reading frame, proving that it encodes the RAD6 protein. The RAD6 protein predicted by the nucleotide sequence is 172 amino acids long, has a molecular weight of 19,704, and contains 23.3% acidic and 11.6% basic residues. Its most striking feature is the highly acidic carboxyl terminus: 20 of the 23 terminal amino acids are acidic, including 13 consecutive aspartates. RAD6 protein thus resembles high mobility group proteins HMG-1 and HMG-2, which each contain a carboxyl-proximal tract of acidic amino acids. 48 references, 6 figures

  17. Rad51-Rad52 mediated maintenance of centromeric chromatin in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Sreyoshi Mitra

    2014-04-01

    Full Text Available Specification of the centromere location in most eukaryotes is not solely dependent on the DNA sequence. However, the non-genetic determinants of centromere identity are not clearly defined. While multiple mechanisms, individually or in concert, may specify centromeres epigenetically, most studies in this area are focused on a universal factor, a centromere-specific histone H3 variant CENP-A, often considered as the epigenetic determinant of centromere identity. In spite of variable timing of its loading at centromeres across species, a replication coupled early S phase deposition of CENP-A is found in most yeast centromeres. Centromeres are the earliest replicating chromosomal regions in a pathogenic budding yeast Candida albicans. Using a 2-dimensional agarose gel electrophoresis assay, we identify replication origins (ORI7-LI and ORI7-RI proximal to an early replicating centromere (CEN7 in C. albicans. We show that the replication forks stall at CEN7 in a kinetochore dependent manner and fork stalling is reduced in the absence of the homologous recombination (HR proteins Rad51 and Rad52. Deletion of ORI7-RI causes a significant reduction in the stalled fork signal and an increased loss rate of the altered chromosome 7. The HR proteins, Rad51 and Rad52, have been shown to play a role in fork restart. Confocal microscopy shows declustered kinetochores in rad51 and rad52 mutants, which are evidence of kinetochore disintegrity. CENP-ACaCse4 levels at centromeres, as determined by chromatin immunoprecipitation (ChIP experiments, are reduced in absence of Rad51/Rad52 resulting in disruption of the kinetochore structure. Moreover, western blot analysis reveals that delocalized CENP-A molecules in HR mutants degrade in a similar fashion as in other kinetochore mutants described before. Finally, co-immunoprecipitation assays indicate that Rad51 and Rad52 physically interact with CENP-ACaCse4 in vivo. Thus, the HR proteins Rad51 and Rad52

  18. A novel interation of nucleolin with Rad51

    International Nuclear Information System (INIS)

    De, Ananya; Donahue, Sarah L.; Tabah, Azah; Castro, Nancy E.; Mraz, Naomi; Cruise, Jennifer L.; Campbell, Colin

    2006-01-01

    Nucleolin associates with various DNA repair, recombination, and replication proteins, and possesses DNA helicase, strand annealing, and strand pairing activities. Examination of nuclear protein extracts from human somatic cells revealed that nucleolin and Rad51 co-immunoprecipitate. Furthermore, purified recombinant Rad51 associates with in vitro transcribed and translated nucleolin. Electroporation-mediated introduction of anti-nucleolin antibody resulted in a 10- to 20-fold reduction in intra-plasmid homologous recombination activity in human fibrosarcoma cells. Additionally, introduction of anti-nucleolin antibody sensitized cells to death induced by the topoisomerase II inhibitor, amsacrine. Introduction of anti-Rad51 antibody also reduced intra-plasmid homologous recombination activity and induced hypersensitivity to amsacrine-induced cell death. Co-introduction of anti-nucleolin and anti-Rad51 antibodies did not produce additive effects on homologous recombination or on cellular sensitivity to amsacrine. The association of the two proteins raises the intriguing possibility that nucleolin binding to Rad51 may function to regulate homologous recombinational repair of chromosomal DNA

  19. Rad52 multimerization is important for its nuclear localization in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Plate, Iben; Albertsen, Line; Lisby, Michael

    2008-01-01

    Rad52 is essential for all homologous recombination and DNA double strand break repair events in Saccharomyces cerevisiae. This protein is multifunctional and contains several domains that allow it to interact with DNA as well as with different repair proteins. However, it has been unclear how Rad...

  20. Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy

    KAUST Repository

    Reymer, A.; Frykholm, K.; Morimatsu, K.; Takahashi, M.; Norden, B.

    2009-01-01

    for central and N-terminal parts of pure (uncomplexed) Rad51 protein by aid of linear dichroism spectroscopy, providing angular orientations of substituted tyrosine residues of Rad51-dsDNA filaments in solution. The structure, validated by comparison

  1. Molecular anatomy of the recombination mediator function of Saccharomyces cerevisiae Rad52

    DEFF Research Database (Denmark)

    Seong, C.; Sehorn, M.G.; Plate, Iben

    2008-01-01

    A helical filament of Rad51 on single-strand DNA (ssDNA), called the presynaptic filament, catalyzes DNA joint formation during homologous recombination. Rad52 facilitates presynaptic filament assembly, and this recombination mediator activity is thought to rely on the interactions of Rad52...... with Rad51, the ssDNA-binding protein RPA, and ssDNA. The N-terminal region of Rad52, which has DNA binding activity and an oligomeric structure, is thought to be crucial for mediator activity and recombination. Unexpectedly, we find that the C-terminal region of Rad52 also harbors a DNA binding function....... Importantly, the Rad52 C-terminal portion alone can promote Rad51 presynaptic filament assembly. The middle portion of Rad52 associates with DNA-bound RPA and contributes to the recombination mediator activity. Accordingly, expression of a protein species that harbors the middle and C-terminal regions of Rad...

  2. Role of teh Rad52 Amino-terminal DNA Binding Activity in DNA Strand Capture in Homologous Recombination

    DEFF Research Database (Denmark)

    Shi, Idina; Hallwyl, Swee Chuang Lim; Seong, Changhyun

    2009-01-01

    Saccharomyces cerevisiae Rad52 protein promotes homologous recombination by nucleating the Rad51 recombinase onto replication protein A-coated single-stranded DNA strands and also by directly annealing such strands. We show that the purified rad52-R70A mutant protein, with a compromised amino-ter...

  3. Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation

    Science.gov (United States)

    Dobson, Rachel; Stockdale, Christopher; Lapsley, Craig; Wilkes, Jonathan; McCulloch, Richard

    2011-01-01

    Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue. PMID:21615552

  4. Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions

    International Nuclear Information System (INIS)

    Sung, P.; Prakash, S.; Prakash, L.

    1990-01-01

    The RAD6 gene of Saccharomyces cerevisiae is required for DNA repair, DNA damage-induced mutagenesis, and sporulation. RAD6 protein is a ubiquitin-conjugating enzyme (E2) that has been shown to attach multiple molecules of ubiquitin to histones H2A and H2B. We have now examined whether the E2 activity of RAD6 is involved in its various biological functions. Since the formation of a thioester adduct between E2 and ubiquitin is necessary for E2 activity, the single cysteine residue (Cys-88) present in RAD6 was changed to alanine or valine. The mutant proteins were overproduced in yeast cells and purified to near homogeneity. We show that the rad6 Ala-88 and rad6 Val-88 mutant proteins lack the capacity for thioester formation with ubiquitin and, as a consequence, are totally devoid of any E2 activity. The rad6 Ala-88 and rad6 Val-88 mutations confer a defect in DNA repair, mutagenesis, and sporulation equivalent to that in the rad6 null allele. We suggest that the biological functions of RAD6 require its E2 activity. (author)

  5. Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy

    KAUST Repository

    Reymer, A.

    2009-07-08

    To get mechanistic insight into the DNA strand-exchange reaction of homologous recombination, we solved a filament structure of a human Rad51 protein, combining molecular modeling with experimental data. We build our structure on reported structures for central and N-terminal parts of pure (uncomplexed) Rad51 protein by aid of linear dichroism spectroscopy, providing angular orientations of substituted tyrosine residues of Rad51-dsDNA filaments in solution. The structure, validated by comparison with an electron microscopy density map and results from mutation analysis, is proposed to represent an active solution structure of the nucleo-protein complex. An inhomogeneously stretched double-stranded DNA fitted into the filament emphasizes the strategic positioning of 2 putative DNA-binding loops in a way that allows us speculate about their possibly distinct roles in nucleo-protein filament assembly and DNA strand-exchange reaction. The model suggests that the extension of a single-stranded DNA molecule upon binding of Rad51 is ensured by intercalation of Tyr-232 of the L1 loop, which might act as a docking tool, aligning protein monomers along the DNA strand upon filament assembly. Arg-235, also sitting on L1, is in the right position to make electrostatic contact with the phosphate backbone of the other DNA strand. The L2 loop position and its more ordered compact conformation makes us propose that this loop has another role, as a binding site for an incoming double-stranded DNA. Our filament structure and spectroscopic approach open the possibility of analyzing details along the multistep path of the strand-exchange reaction.

  6. Cloning of an E. coli RecA and yeast RAD51 homolog, radA, an allele of the uvsC in Aspergillus nidulans and its mutator effects.

    Science.gov (United States)

    Seong, K Y; Chae, S K; Kang, H S

    1997-04-30

    An E. coli RecA and yeast RAD51 homolog from Aspergillus nidulans, radA, has been cloned by screening genomic and cDNA libraries with a PCR-amplified probe. This probe was generated using primers carrying the conserved sequences of eukaryotic RecA homologs. The deduced amino acid sequence revealed two conserved Walker-A and -B type nucleotide-binding domains and exhibited 88%, 60%, and 53% identity with Mei-3 of Neurospora crassa, rhp51+ of Schizosaccharomyces pombe, and Rad51 of Saccharomyces cerevisiae, respectively. radA null mutants constructed by replacing the whole coding region with a selection marker showed high methyl methanesulfonate (MMS) sensitivity. Heterozygous diploids of radA disruptant with the uvsC114 mutant failed to complement with respect to MMS-sensitivity, indicating that radA is an allele of uvsC. In selecting spontaneous forward selenate resistant mutations, mutator effects were observed in radA null mutants similarly to those shown in uvsC114 mutant strains.

  7. Rad51C deficiency destabilizes XRCC3, impairs recombination and radiosensitizes S/G2-phase cells

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Yi-Ching; Schild, David; Brenneman, Mark A.; Redpath, J. Leslie; Chen, David J.

    2004-05-01

    The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, XRCC3) are expressed in mitotically growing cells, and are thought to play mediating roles in homologous recombination, though their precise functions remain unclear. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA cross-linking agent mitomycin C, and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G{sub 2}/M phases of the cell cycle but not in G{sub 1} phase. Together, these results provide direct cellular evidence for the importance of human Rad51C in homologous recombinational repair.

  8. Characterisation of the novel deleterious RAD51C p.Arg312Trp variant and prioritisation criteria for functional analysis of RAD51C missense changes.

    Science.gov (United States)

    Gayarre, Javier; Martín-Gimeno, Paloma; Osorio, Ana; Paumard, Beatriz; Barroso, Alicia; Fernández, Victoria; de la Hoya, Miguel; Rojo, Alejandro; Caldés, Trinidad; Palacios, José; Urioste, Miguel; Benítez, Javier; García, María J

    2017-09-26

    Despite a high prevalence of deleterious missense variants, most studies of RAD51C ovarian cancer susceptibility gene only provide in silico pathogenicity predictions of missense changes. We identified a novel deleterious RAD51C missense variant (p.Arg312Trp) in a high-risk family, and propose a criteria to prioritise RAD51C missense changes qualifying for functional analysis. To evaluate pathogenicity of p.Arg312Trp variant we used sequence homology, loss of heterozygosity (LOH) and segregation analysis, and a comprehensive functional characterisation. To define a functional-analysis prioritisation criteria, we used outputs for the known functionally confirmed deleterious and benign RAD51C missense changes from nine pathogenicity prediction algorithms. The p.Arg312Trp variant failed to correct mitomycin and olaparib hypersensitivity and to complement abnormal RAD51C foci formation according to functional assays, which altogether with LOH and segregation data demonstrated deleteriousness. Prioritisation criteria were based on the number of predictors providing a deleterious output, with a minimum of 5 to qualify for testing and a PredictProtein score greater than 33 to assign high-priority indication. Our study points to a non-negligible number of RAD51C missense variants likely to impair protein function, provides a guideline to prioritise and encourage their selection for functional analysis and anticipates that reference laboratories should have available resources to conduct such assays.

  9. The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.S.; Prakash, L. (Univ. of Rochester School of Medicine, NY (USA)); Weber, S. (Kodak Research Park, Rochester, NY (USA))

    1988-07-25

    The RAD18 gene of Saccharomyces cerevisiae is required for postreplication repair of UV damaged DNA. The authors have isolated the RAD18 gene, determined its nucleotide sequence and examined if deletion mutations of this gene show different or more pronounced phenotypic effects than the previously described point mutations. The RAD18 gene open reading frame encodes a protein of 487 amino acids, with a calculated molecular weight of 55,512. The RAD18 protein contains three potential zinc finger domains for nucleic acid binding, and a putative nucleotide binding sequence that is present in many proteins that bind and hydrolyze ATP. The DNA binding and nucleotide binding activities could enable the RAD18 protein to bind damaged sites in the template DNA with high affinity. Alternatively, or in addition, RAD18 protein may be a transcriptional regulator. The RAD18 deletion mutation resembles the previously described point mutations in its effects on viability, DNA repair, UV mutagenesis, and sporulation.

  10. Recruitment of RecA homologs Dmc1p and Rad51p to the double-strand break repair site initiated by meiosis-specific endonuclease VDE (PI-SceI).

    Science.gov (United States)

    Fukuda, Tomoyuki; Ohya, Yoshikazu

    2006-02-01

    During meiosis, VDE (PI-SceI), a homing endonuclease in Saccharomyces cerevisiae, introduces a double-strand break (DSB) at its recognition sequence and induces homologous recombinational repair, called homing. Meiosis-specific RecA homolog Dmc1p, as well as mitotic RecA homolog Rad51p, acts in the process of meiotic recombination, being required for strand invasion and exchange. In this study, recruitment of Dmc1p and Rad51p to the VDE-induced DSB repair site is investigated by chromatin immunoprecipitation assay. It is revealed that Dmc1p and Rad51p are loaded to the repair site in an independent manner. Association of Rad51p requires other DSB repair proteins of Rad52p, Rad55p, and Rad57p, while loading of Dmc1p is facilitated by the different protein, Sae3p. Absence of Tid1p, which can bind both RecA homologs, appears specifically to cause an abnormal distribution of Dmc1p. Lack of Hop2, Mnd1p, and Sae1p does not impair recruitment of both RecA homologs. These findings reveal the discrete functions of each strand invasion protein in VDE-initiated homing, confirm the similarity between VDE-initiated homing and Spo11p-initiated meiotic recombination, and demonstrate the availability of VDE-initiated homing for the study of meiotic recombination.

  11. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Moore, Destaye M; Karlin, Justin; González-Barrera, Sergio

    2009-01-01

    In the yeast Saccharomyces cerevisiae, the Rad1-Rad10 protein complex participates in nucleotide excision repair (NER) and homologous recombination (HR). During HR, the Rad1-Rad10 endonuclease cleaves 3' branches of DNA and aberrant 3' DNA ends that are refractory to other 3' processing enzymes. ...

  13. Recovery of deficient homologous recombination in Brca2-depleted mouse cells by wild-type Rad51 expression.

    Science.gov (United States)

    Lee, Shauna A; Roques, Céline; Magwood, Alissa C; Masson, Jean-Yves; Baker, Mark D

    2009-02-01

    The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.

  14. Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells.

    Science.gov (United States)

    Choi, Eui-Hwan; Yoon, Seobin; Hahn, Yoonsoo; Kim, Keun P

    2017-02-01

    Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

  15. Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6, and rad9 of Saccharomyces cerevisiae. [nicking

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L [Rochester Univ., N.Y. (USA). Dept. of Radiation Biology and Biophysics; Rochester Univ., N.Y. (USA). School of Medicine and Dentistry)

    1977-10-01

    The ability to remove ultraviolet-induced pyrimidine dimers was examined in four radiation-sensitive mutants of Saccharomyces cerevisiae. The susceptibility of DNA from irradiated cells to nicking by either the T4 uv-endonuclease or an endonuclease activity found in crude extracts of Micrococcus luteus was used to measure the presence of dimers in DNA. The rad3 and rad4 mutants are shown to be defective in dimer excision whereas the rad6 and rad9 mutants are proficient in dimer excision.

  16. Resolving RAD51C function in late stages of homologous recombination

    Directory of Open Access Journals (Sweden)

    Kuznetsov Sergey G

    2007-06-01

    Full Text Available Abstract DNA double strand breaks are efficiently repaired by homologous recombination. One of the last steps of this process is resolution of Holliday junctions that are formed at the sites of genetic exchange between homologous DNA. Although various resolvases with Holliday junctions processing activity have been identified in bacteriophages, bacteria and archaebacteria, eukaryotic resolvases have been elusive. Recent biochemical evidence has revealed that RAD51C and XRCC3, members of the RAD51-like protein family, are involved in Holliday junction resolution in mammalian cells. However, purified recombinant RAD51C and XRCC3 proteins have not shown any Holliday junction resolution activity. In addition, these proteins did not reveal the presence of a nuclease domain, which raises doubts about their ability to function as a resolvase. Furthermore, oocytes from infertile Rad51C mutant mice exhibit precocious separation of sister chromatids at metaphase II, a phenotype that reflects a defect in sister chromatid cohesion, not a lack of Holliday junction resolution. Here we discuss a model to explain how a Holliday junction resolution defect can lead to sister chromatid separation in mouse oocytes. We also describe other recent in vitro and in vivo evidence supporting a late role for RAD51C in homologous recombination in mammalian cells, which is likely to be resolution of the Holliday junction.

  17. Interactions of checkpoint-genes RAD9, RAD17, RAD24 and RAD53 determining radioresistance of Yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Koltovaya, N.A.; Nikulushkina, Yu.V.; Roshchina, M.P.; Devin, A.B.

    2007-01-01

    The mechanisms of genetic control of progress through the division cell cycle (checkpoint-control) in yeast Saccharomyces cerevisiae have been studied intensively. To investigate the role of checkpoint-genes RAD9, RAD17, RAD24, RAD53 in cell radioresistance we have investigated cell sensitivity of double mutants to γ-ray. Double mutants involving various combinations with rad9Δ show epistatic interactions, i.e. the sensitivity of the double mutants to γ-ray was no greater than that of more sensitive of the two single mutants. This suggests that all these genes govern the same pathway. This group of genes was named RAD9-epistasis group. It is interesting to note that the genes RAD9 and RAD53 have positive effect but RAD17 and RAD24 have negative effect on radiosensitivity of yeast cells. Interactions between mutations may differ depending on the agent γ-ray or UV-light, for example mutations rad9Δ and rad24Δ show additive effect for γ-ray and epistatic effect for UV-light

  18. Overexpressed of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Schild, David; Wiese, Claudia

    2009-10-15

    RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the 'recombination mediators'. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as 'recombination co-mediators'. Defects in either recombination mediators or comediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic restabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51.

  19. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1.

    Science.gov (United States)

    Callender, Tracy L; Laureau, Raphaelle; Wan, Lihong; Chen, Xiangyu; Sandhu, Rima; Laljee, Saif; Zhou, Sai; Suhandynata, Ray T; Prugar, Evelyn; Gaines, William A; Kwon, YoungHo; Börner, G Valentin; Nicolas, Alain; Neiman, Aaron M; Hollingsworth, Nancy M

    2016-08-01

    During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.

  20. Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1.

    Directory of Open Access Journals (Sweden)

    Tracy L Callender

    2016-08-01

    Full Text Available During meiosis, programmed double strand breaks (DSBs are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i phosphorylation of Rad54 by Mek1 and (ii binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.

  1. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway

    International Nuclear Information System (INIS)

    Schiestl, R.H.; Prakash, S.; Prakash, L.

    1990-01-01

    rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, the authors have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6Δ) mutations and show that they also suppress the γ-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of γ-ray sensitivity. The six suppressor mutations they isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. They show that suppression of rad6Δ is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6Δ SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed

  2. Molecular Basis for Enhancement of the Meiotic DMCI Recombinase by RAD51AP1

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Dunlop, Myun Hwa; Kauppi, Liisa; San Filippo, Joseph San; Wiese, Claudia; Tsai, Miaw-Sheue; Begovic, Sead; Schild, David; Jasin, Maria; Keeney, Scott; Sung, Patrick

    2010-11-05

    Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 Associated Protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional co-operation is dependent on complex formation between DMC1 and RAD51AP1, and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci co-localize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.

  3. Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51.

    Science.gov (United States)

    van Heemst, D; Swart, K; Holub, E F; van Dijk, R; Offenberg, H H; Goosen, T; van den Broek, H W; Heyting, C

    1997-05-01

    We have cloned the uvsC gene of Aspergillus nidulans by complementation of the A. nidulans uvsC114 mutant. The predicted protein UVSC shows 67.4% sequence identity to the Saccharomyces cerevisiae Rad51 protein and 27.4% sequence identity to the Escherichia coli RecA protein. Transcription of uvsC is induced by methyl-methane sulphonate (MMS), as is transcription of RAD51 of yeast. Similar levels of uvsC transcription were observed after MMS induction in a uvsC+ strain and the uvsC114 mutant. The coding sequence of the uvsC114 allele has a deletion of 6 bp, which results in deletion of two amino acids and replacement of one amino acid in the translation product. In order to gain more insight into the biological function of the uvsC gene, a uvsC null mutant was constructed, in which the entire uvsC coding sequence was replaced by a selectable marker gene. Meiotic and mitotic phenotypes of a uvsC+ strain, the uvsC114 mutant and the uvsC null mutant were compared. The uvsC null mutant was more sensitive to both UV and MMS than the uvsC114 mutant. The uvsC114 mutant arrested in meiotic prophase-I. The uvsC null mutant arrested at an earlier stage, before the onset of meiosis. One possible interpretation of these meiotic phenotypes is that the A. nidulans homologue of Rad51 of yeast has a role both in the specialized processes preceding meiosis and in meiotic prophase I.

  4. RAD9, RAD17; RAD24, and RAD53 control one pathway of resistance to γ irradiation in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Koltovaya, N.A.; Nikulushkina, Yu.V.; Roshina, M.P.; Devin, A.B.

    2009-01-01

    Mechanisms for the genetic control of the cell cycle transition (checkpoint control) have been studied in more detail in yeast Saccharomyces cerevisiae. To clarify tho role of the RAD9, RAD17, RAD24, and RAD53 checkpoint genes in cell radioresistance, diploid double mutants were analyzed for cell sensitivity to ionizing radiation. All mutations in combination with rad9Δ were shown to manifest the epistatic type of interaction. Our results suggest that the RAD9, RAD17, RAD24, and RAD53 checkpoint genes belong to a single epistasis group called the RAD9 group and participate in the same pathway. RAD9 and RAD53 have a positive effect on sensitivity to γ irradiation, whereas RAD17 and RAD24 have a negative effect. For haploid interactions between mutations may differ in the case of γ or UV irradiation, mutations - for example, rad9Δ and rad24Δ - were shown to have an additive effect in the first case and epistatic - in the second. The analyzed genes can also participate in minor mechanisms of radioresistance that are relatively independent of the above major mechanism

  5. FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5′-DNA end

    Science.gov (United States)

    Sato, Koichi; Shimomuki, Mayo; Katsuki, Yoko; Takahashi, Daisuke; Kobayashi, Wataru; Ishiai, Masamichi; Miyoshi, Hiroyuki; Takata, Minoru; Kurumizaka, Hitoshi

    2016-01-01

    The FANCI-FANCD2 (I-D) complex is considered to work with RAD51 to protect the damaged DNA in the stalled replication fork. However, the means by which this DNA protection is accomplished have remained elusive. In the present study, we found that the I-D complex directly binds to RAD51, and stabilizes the RAD51-DNA filament. Unexpectedly, the DNA binding activity of FANCI, but not FANCD2, is explicitly required for the I-D complex-mediated RAD51-DNA filament stabilization. The RAD51 filament stabilized by the I-D complex actually protects the DNA end from nucleolytic degradation by an FA-associated nuclease, FAN1. This DNA end protection is not observed with the RAD51 mutant from FANCR patient cells. These results clearly answer the currently enigmatic question of how RAD51 functions with the I-D complex to prevent genomic instability at the stalled replication fork. PMID:27694619

  6. RAD51C germline mutations in breast and ovarian cancer cases from high-risk families.

    Directory of Open Access Journals (Sweden)

    Jessica Clague

    Full Text Available BRCA1 and BRCA2 are the most well-known breast cancer susceptibility genes. Additional genes involved in DNA repair have been identified as predisposing to breast cancer. One such gene, RAD51C, is essential for homologous recombination repair. Several likely pathogenic RAD51C mutations have been identified in BRCA1- and BRCA2-negative breast and ovarian cancer families. We performed complete sequencing of RAD51C in germline DNA of 286 female breast and/or ovarian cancer cases with a family history of breast and ovarian cancers, who had previously tested negative for mutations in BRCA1 and BRCA2. We screened 133 breast cancer cases, 119 ovarian cancer cases, and 34 with both breast and ovarian cancers. Fifteen DNA sequence variants were identified; including four intronic, one 5' UTR, one promoter, three synonymous, and six non-synonymous variants. None were truncating. The in-silico SIFT and Polyphen programs were used to predict possible pathogenicity of the six non-synonomous variants based on sequence conservation. G153D and T287A were predicted to be likely pathogenic. Two additional variants, A126T and R214C alter amino acids in important domains of the protein such that they could be pathogenic. Two-hybrid screening and immunoblot analyses were performed to assess the functionality of these four non-synonomous variants in yeast. The RAD51C-G153D protein displayed no detectable interaction with either XRCC3 or RAD51B, and RAD51C-R214C displayed significantly decreased interaction with both XRCC3 and RAD51B (p<0.001. Immunoblots of RAD51C-Gal4 activation domain fusion peptides showed protein levels of RAD51C-G153D and RAD51C-R214C that were 50% and 60% of the wild-type, respectively. Based on these data, the RAD51C-G153D variant is likely to be pathogenic, while the RAD51C- R214C variant is hypomorphic of uncertain pathogenicity. These results provide further support that RAD51C is a rare breast and ovarian cancer susceptibility gene.

  7. p53 is involved in clearance of ionizing radiation-induced RAD51 foci in a human colon cancer cell line

    International Nuclear Information System (INIS)

    Orre, Lukas M.; Stenerloew, Bo; Dhar, Sumeer; Larsson, Rolf; Lewensohn, Rolf; Lehtioe, Janne

    2006-01-01

    We have investigated p53-related differences in cellular response to DNA damaging agents, focusing on p53s effects on RAD51 protein level and sub-cellular localization post exposure to ionizing radiation. In a human colon cancer cell line, HCT116 and its isogenic p53-/- subcell line we show here p53-independent RAD51 foci formation but interestingly the resolution of RAD51 foci showed clear p53 dependence. In p53 wt cells, but not in p53-/- cells, RAD51 protein level decreased 48 h post irradiation and fluorescence immunostaining showed resolution of RAD51 foci and relocalization of RAD51 to nucleoli at time points corresponding to the decrease in RAD51 protein level. Both cell lines rejoined DNA double strand breaks efficiently with similar kinetics and p53 status did not influence sensitivity to DNA damaging agents. We suggest that p53 has a role in RAD51 clearance post DSB repair and that nucleoli might be sites of RAD51 protein degradation

  8. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells.

    Science.gov (United States)

    King, Harry O; Brend, Tim; Payne, Helen L; Wright, Alexander; Ward, Thomas A; Patel, Karan; Egnuni, Teklu; Stead, Lucy F; Patel, Anjana; Wurdak, Heiko; Short, Susan C

    2017-01-10

    Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The USP1-UAF1 complex interacts with RAD51AP1 to promote homologous recombination repair.

    Science.gov (United States)

    Cukras, Scott; Lee, Euiho; Palumbo, Emily; Benavidez, Pamela; Moldovan, George-Lucian; Kee, Younghoon

    2016-10-01

    USP1 deubiquitinating enzyme and its stoichiometric binding partner UAF1 play an essential role in promoting DNA homologous recombination (HR) repair in response to various types of DNA damaging agents. Deubiquitination of FANCD2 may be attributed to the key role of USP1-UAF1 complex in regulating HR repair, however whether USP1-UAF1 promotes HR repair independently of FANCD2 deubiquitination is not known. Here we show evidence that the USP1-UAF1 complex has a FANCD2-independent function in promoting HR repair. Proteomic search of UAF1-interacting proteins revealed that UAF1 associates with RAD51AP1, a RAD51-interacting protein implicated in HR repair. We show that UAF1 mediates the interaction between USP1 and RAD51AP1, and that depletion of USP1 or UAF1 led to a decreased stability of RAD51AP1. Protein interaction mapping analysis identified some key residues within RAD51AP1 required for interacting with the USP1-UAF1 complex. Cells expressing the UAF1 interaction-deficient mutant of RAD51AP1 show increased chromosomal aberrations in response to Mitomycin C treatment. Moreover, similar to the RAD51AP1 depleted cells, the cells expressing UAF1-interaction deficient RAD51AP1 display persistent RAD51 foci following DNA damage exposure, indicating that these factors regulate a later step during the HR repair. These data altogether suggest that the USP1-UAF1 complex promotes HR repair via multiple mechanisms: through FANCD2 deubiquitination, as well as by interacting with RAD51AP1.

  10. Dynamic changes in Rad51 distribution on chromatin during meiosis in male and female vertebrates.

    Science.gov (United States)

    Ashley, T; Plug, A W; Xu, J; Solari, A J; Reddy, G; Golub, E I; Ward, D C

    1995-10-01

    Antibodies against human Rad51 protein were used to examine the distribution of Rad51 on meiotic chromatin in mouse spermatocytes and oocytes as well as chicken oocytes during sequential stages of meiosis. We observed the following dynamic changes in distribution of Rad51 during meiosis: (1) in early leptotene nuclei there are multiple, apparently randomly distributed, foci that by late leptonema become organized into tracks of foci. (2) These foci persist into zygonema, but most foci are now localized on Rad51-positive axes that correspond to lateral elements of the synaptonemal complex. As homologs synapse foci from homologous axes fuse. The distribution and involvement of Rad51 foci as contact points between homologs suggest that they may be components to early recombination nodules. (3) As pachynema progresses the number of foci drops dramatically; the temporal occurrence (mice) and physical and numerical distribution of foci on axes (chickens) suggest that they may be a component of late recombination nodules. (4) In early pachynema there are numerous Rad51 foci on the single axis of the X (mouse spermatocytes) or the Z (chicken oocytes) chromosomes that neither pair, nor recombine. (5) In late pachynema in mouse spermatocytes, but not oocytes, the Rad51 signal is preferentially enhanced at both ends of all the bivalents. As bivalents in spermatocytes, but not oocytes, begin to desynapse at diplonema they are often held together at these Rad51-positive termini. These observations parallel observations that recombination rates are exceptionally high near chromosome ends in male but not female eutherian mammals. (6) From diakinesis through metaphase I, Rad51 protein is detected as low-intensity fluorescent doublets that localize with CREST-specific antigens (kinetochores), suggesting that Rad51 participates, at least as a structural component of the materials involved, in sister kinetochore cohesiveness. Finally, the changes in Rad51 distribution during meiosis

  11. Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament.

    KAUST Repository

    Fornander, Louise H

    2013-12-03

    The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.

  12. RAD51B in Familial Breast Cancer

    OpenAIRE

    Pelttari, L.M.; Khan, S.; et al.,

    2016-01-01

    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737\\ud and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast\\ud cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer\\ud predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the\\ud coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for\\ud identifi...

  13. RAD51B in familial breast cancer

    OpenAIRE

    Pelttari, LM; Khan, S; Vuorela, M; Kiiski, JI; Vilske, S; Nevanlinna, V; Ranta, S; Schleutker, J; Winqvist, R; Kallioniemi, A; Dörk, T; Bogdanova, NV; Figueroa, J; Pharoah, PDP; Schmidt, MK

    2016-01-01

    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possi...

  14. Identification of a breast cancer family double heterozygote for RAD51C and BRCA2 gene mutations

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Steffensen, Ane Y; Jønson, Lars

    2015-01-01

    for mutations in the RAD51C and BRCA2 genes. The RAD51C missense mutation p.Arg258His has previously been identified in a homozygous state in a patient with Fanconi anemia. This mutation is known to affect the DNA repair function of the RAD51C protein. The BRCA2 p.Leu3216Leu synonymous mutation has not been...

  15. RAD51B in Familial Breast Cancer

    DEFF Research Database (Denmark)

    Pelttari, Liisa M; Khan, Sofia; Vuorela, Mikko

    2016-01-01

    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition......, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD......51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients...

  16. Identification of cloned genes that complement the rad50-1, rad51-1, rad54-3 and rad55-3 mutations in yeast

    International Nuclear Information System (INIS)

    Calderon, I.L.; Contopoulou, C.R.; Mortimer, R.K.

    1982-01-01

    Plasmids that complement the rad50-1, rad51-1, rad54-3 and rad55-3 mutations in yeast, have been isolated. They were obtained by transforming strains, carrying the leu2-112 leu2-3 alleles and the particular rad mutation, with YEp13 plasmids containing near random yeast DNA inserts. Rad + clones were identified among the Leu + transformants. Integration by targeting into the RAD55 locus showed that the rad55-3 complementing plasmid contained the actual RAD55 gene. BamHI fragments from each of the plasmids that complement rad50-1, rad51-1 and rad54-3, all of which lacked Rad + activity, were subcloned into the integrating plasmid YIp5 and the hybrid plasmids were used to transform a Rad + Ura - strain to Ura + . By genetic mapping, the rad51 and rad54 subclones were shown to integrate at their respective loci. However, the rad50 subclones integrated at a site unlinked to the RAD50 locus. This suggests that no homology exists between this BamHI fragment and the RAD50 gene. Integration at the RAD54 locus of the rad54 subclone made the host cell Ura + but Rad - ; excision of the plasmid was shown to be x-ray inducible and to restore the Ura - Rad + phenotype. These results indicate that the BamHI fragment of the RAD54 plasmid is internal to the RAD54 gene. We can conclude also that the RAD54 gene is not essential as cells bearing a disrupted copy of this gene are able to survive. Additionally, a plasmid carrying an amber suppressor has been isolated and characterized

  17. RAD51 and RTEL1 compensate telomere loss in the absence of telomerase.

    Science.gov (United States)

    Olivier, Margaux; Charbonnel, Cyril; Amiard, Simon; White, Charles I; Gallego, Maria E

    2018-03-16

    Replicative erosion of telomeres is naturally compensated by telomerase and studies in yeast and vertebrates show that homologous recombination can compensate for the absence of telomerase. We show that RAD51 protein, which catalyzes the key strand-invasion step of homologous recombination, is localized at Arabidopsis telomeres in absence of telomerase. Blocking the strand-transfer activity of the RAD51 in telomerase mutant plants results in a strikingly earlier onset of developmental defects, accompanied by increased numbers of end-to-end chromosome fusions. Imposing replication stress through knockout of RNaseH2 increases numbers of chromosome fusions and reduces the survival of these plants deficient for telomerase and homologous recombination. This finding suggests that RAD51-dependent homologous recombination acts as an essential backup to the telomerase for compensation of replicative telomere loss to ensure genome stability. Furthermore, we show that this positive role of RAD51 in telomere stability is dependent on the RTEL1 helicase. We propose that a RAD51 dependent break-induced replication process is activated in cells lacking telomerase activity, with RTEL1 responsible for D-loop dissolution after telomere replication.

  18. The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer

    DEFF Research Database (Denmark)

    Hansen, Lasse Tengbjerg; Lundin, Cecilia; Spang-Thomsen, Mogens

    2003-01-01

    Etoposide (VP16) is a potent inducer of DNA double-strand breaks (DSBs) and is efficiently used in small cell lung cancer (SCLC) therapy. However, acquired VP16 resistance remains an important barrier to effective treatment. To understand the underlying mechanisms for VP16 resistance in SCLC, we...... investigated DSB repair and cellular VP16 sensitivity of SCLC cells. VP16 sensitivity and RAD51, DNA-PK(cs), topoisomerase IIalpha and P-glycoprotein protein levels were determined in 17 SCLC cell lines. In order to unravel the role of RAD51 in VP16 resistance, we cloned the human RAD51 gene, transfected SCLC...... cells with RAD51 sense or antisense constructs and measured the VP16 resistance. Finally, we measured VP16-induced DSBs in the 17 SCLC cell lines. Two cell lines exhibited a multidrug-resistant phenotype. In the other SCLC cell lines, the cellular VP16 resistance was positively correlated with the RAD51...

  19. Caffeine inhibits gene conversion by displacing Rad51 from ssDNA

    Science.gov (United States)

    Tsabar, Michael; Mason, Jennifer M.; Chan, Yuen-Ling; Bishop, Douglas K.; Haber, James E.

    2015-01-01

    Efficient repair of chromosomal double-strand breaks (DSBs) by homologous recombination relies on the formation of a Rad51 recombinase filament that forms on single-stranded DNA (ssDNA) created at DSB ends. This filament facilitates the search for a homologous donor sequence and promotes strand invasion. Recently caffeine treatment has been shown to prevent gene targeting in mammalian cells by increasing non-productive Rad51 interactions between the DSB and random regions of the genome. Here we show that caffeine treatment prevents gene conversion in yeast, independently of its inhibition of the Mec1ATR/Tel1ATM-dependent DNA damage response or caffeine's inhibition of 5′ to 3′ resection of DSB ends. Caffeine treatment results in a dosage-dependent eviction of Rad51 from ssDNA. Gene conversion is impaired even at low concentrations of caffeine, where there is no discernible dismantling of the Rad51 filament. Loss of the Rad51 filament integrity is independent of Srs2's Rad51 filament dismantling activity or Rad51's ATPase activity and does not depend on non-specific Rad51 binding to undamaged double-stranded DNA. Caffeine treatment had similar effects on irradiated HeLa cells, promoting loss of previously assembled Rad51 foci. We conclude that caffeine treatment can disrupt gene conversion by disrupting Rad51 filaments. PMID:26019181

  20. FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells

    DEFF Research Database (Denmark)

    Simandlova, Jitka; Zagelbaum, Jennifer; Payne, Miranda J

    2013-01-01

    Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD......51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences...... filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under...

  1. Schizosaccharomyces pombe Rad22A and Rad22B have similar biochemical properties and form multimeric structures

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Femke A.T. de [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Zonneveld, Jose B.M. [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Groot, Anton J. de [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Koning, Roman I. [Department of Molecular Cell Biology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert A. van [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands); Pastink, Albert [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden (Netherlands)]. E-mail: A.Pastink@lumc.nl

    2007-02-03

    The Saccharomyces cerevisiae Rad52 protein has a crucial role in the repair of DNA double-strand breaks by homologous recombination. In vitro, Rad52 displays DNA binding and strand annealing activities and promotes Rad51-mediated strand exchange. Schizosaccharomyces pombe has two Rad52 homologues, Rad22A and Rad22B. Whereas rad22A deficient strains exhibit severe defects in repair and recombination, rad22B mutants have a much less severe phenotype. To better understand the role of Rad22A and Rad22B in double-strand break repair, both proteins were purified to near homogeneity. Using gel retardation and filter binding assays, binding of Rad22A and Rad22B to short single-stranded DNAs was demonstrated. Binding of Rad22A to double-stranded oligonucleotides or linearized plasmid molecules containing blunt ends or short single-stranded overhangs could not be detected. Rad22B also does not bind efficiently to short duplex oligonucleotides but binds readily to DNA fragments containing 3'-overhangs. Rad22A as well as Rad22B efficiently promote annealing of complementary single-stranded DNAs. In the presence of Rad22A annealing of complementary DNAs is almost 90%. Whereas in reactions containing Rad22B the maximum level of annealing is 60%, most likely due to inhibition of the reaction by duplex DNA. Gel-filtration experiments and electron microscopic analyses indicate self-association of Rad22A and Rad22B and the formation of multimeric structures as has been observed for Rad52 in yeast and man.

  2. Germline RAD51B truncating mutation in a family with cutaneous melanoma

    DEFF Research Database (Denmark)

    Wadt, Karin A W; Aoude, Lauren G; Golmard, Lisa

    2015-01-01

    Known melanoma predisposition genes only account for around 40% of high-density melanoma families. Other rare mutations are likely to play a role in melanoma predisposition. RAD51B plays an important role in DNA repair through homologous recombination, and inactivation of RAD51B has been implicated...... in tumorigenesis. Thus RAD51B is a good candidate melanoma susceptibility gene, and previously, a germline splicing mutation in RAD51B has been identified in a family with early-onset breast cancer. In order to find genetic variants associated with melanoma predisposition, whole-exome sequencing was carried out...... on blood samples from a three-case cutaneous melanoma family. We identified a novel germline RAD51B nonsense mutation, and we demonstrate reduced expression of RAD51B in melanoma cells indicating inactivation of RAD51B. This is only the second report of a germline truncating RAD51B mutation. While...

  3. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1979-01-01

    Effects of the rad52 mutation in Saccharomyces cerevisiae on meiotic, γ-ray-induced, uv-induced, and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Intra- and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the hisl-1/hisl-315 and trp5-2/trp5-48 heteroalleles. Gene-centromere recombination was also not observed in rad52/rad52 diploids. No γ-ray-induced intragenic mitotic recombination is seen in rad52/rad52 diploids and uv-induced intragenic recombination is greatly reduced. However, spontaneous mitotic recombination is not similarly affected. The RAD52 gene thus functions in recombination in meiosis and in γ-ray and uv-induced mitotic recombination but not in spontaneous mitotic recombination

  4. RAD51B in Familial Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Liisa M Pelttari

    Full Text Available Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC that were genotyped on a custom chip (iCOGS. We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259 and population controls (n = 3586 from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR: 1.15, 95% confidence interval (CI: 1.11-1.19, P = 8.88 x 10-16 and among familial cases (OR: 1.24, 95% CI: 1.16-1.32, P = 6.19 x 10-11, compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk.

  5. RAD51B in Familial Breast Cancer

    Science.gov (United States)

    Pelttari, Liisa M.; Khan, Sofia; Vuorela, Mikko; Kiiski, Johanna I.; Vilske, Sara; Nevanlinna, Viivi; Ranta, Salla; Schleutker, Johanna; Winqvist, Robert; Kallioniemi, Anne; Dörk, Thilo; Bogdanova, Natalia V.; Figueroa, Jonine; Pharoah, Paul D. P.; Schmidt, Marjanka K.; Dunning, Alison M.; García-Closas, Montserrat; Bolla, Manjeet K.; Dennis, Joe; Michailidou, Kyriaki; Wang, Qin; Hopper, John L.; Southey, Melissa C.; Rosenberg, Efraim H.; Fasching, Peter A.; Beckmann, Matthias W.; Peto, Julian; dos-Santos-Silva, Isabel; Sawyer, Elinor J.; Tomlinson, Ian; Burwinkel, Barbara; Surowy, Harald; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E.; Nordestgaard, Børge G.; Benitez, Javier; González-Neira, Anna; Neuhausen, Susan L.; Anton-Culver, Hoda; Brenner, Hermann; Arndt, Volker; Meindl, Alfons; Schmutzler, Rita K.; Brauch, Hiltrud; Brüning, Thomas; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Hartikainen, Jaana M.; Chenevix-Trench, Georgia; Van Dyck, Laurien; Janssen, Hilde; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Peterlongo, Paolo; Hallberg, Emily; Olson, Janet E.; Giles, Graham G.; Milne, Roger L.; Haiman, Christopher A.; Schumacher, Fredrick; Simard, Jacques; Dumont, Martine; Kristensen, Vessela; Borresen-Dale, Anne-Lise; Zheng, Wei; Beeghly-Fadiel, Alicia; Grip, Mervi; Andrulis, Irene L.; Glendon, Gord; Devilee, Peter; Seynaeve, Caroline; Hooning, Maartje J.; Collée, Margriet; Cox, Angela; Cross, Simon S.; Shah, Mitul; Luben, Robert N.; Hamann, Ute; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Couch, Fergus J.; Yannoukakos, Drakoulis; Orr, Nick; Swerdlow, Anthony; Darabi, Hatef; Li, Jingmei; Czene, Kamila; Hall, Per; Easton, Douglas F.; Mattson, Johanna; Blomqvist, Carl; Aittomäki, Kristiina; Nevanlinna, Heli

    2016-01-01

    Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11–1.19, P = 8.88 x 10−16) and among familial cases (OR: 1.24, 95% CI: 1.16–1.32, P = 6.19 x 10−11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk. PMID:27149063

  6. RFWD3-Mediated Ubiquitination Promotes Timely Removal of Both RPA and RAD51 from DNA Damage Sites to Facilitate Homologous Recombination.

    Science.gov (United States)

    Inano, Shojiro; Sato, Koichi; Katsuki, Yoko; Kobayashi, Wataru; Tanaka, Hiroki; Nakajima, Kazuhiro; Nakada, Shinichiro; Miyoshi, Hiroyuki; Knies, Kerstin; Takaori-Kondo, Akifumi; Schindler, Detlev; Ishiai, Masamichi; Kurumizaka, Hitoshi; Takata, Minoru

    2017-06-01

    RFWD3 is a recently identified Fanconi anemia protein FANCW whose E3 ligase activity toward RPA is essential in homologous recombination (HR) repair. However, how RPA ubiquitination promotes HR remained unknown. Here, we identified RAD51, the central HR protein, as another target of RFWD3. We show that RFWD3 polyubiquitinates both RPA and RAD51 in vitro and in vivo. Phosphorylation by ATR and ATM kinases is required for this activity in vivo. RFWD3 inhibits persistent mitomycin C (MMC)-induced RAD51 and RPA foci by promoting VCP/p97-mediated protein dynamics and subsequent degradation. Furthermore, MMC-induced chromatin loading of MCM8 and RAD54 is defective in cells with inactivated RFWD3 or expressing a ubiquitination-deficient mutant RAD51. Collectively, our data reveal a mechanism that facilitates timely removal of RPA and RAD51 from DNA damage sites, which is crucial for progression to the late-phase HR and suppression of the FA phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament.

    KAUST Repository

    Fornander, Louise H; Renodon-Corniè re, Axelle; Kuwabara, Naoyuki; Ito, Kentaro; Tsutsui, Yasuhiro; Shimizu, Toshiyuki; Iwasaki, Hiroshi; Nordé n, Bengt; Takahashi, Masayuki

    2013-01-01

    The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure

  8. Nucleotide sequence, transcript mapping, and regulation of the RAD2 gene of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Madura, K.; Prakash, S.

    1986-01-01

    The authors determined the nucleotide sequence, mapped the 5' and 3' nRNA termini, and examined the regulation of the RAD2 gene of Saccharomyces cerevisiae. A long open reading frame within the RAD2 transcribed region encodes a protein of 1031 amino acids with a calculated molecular weight of 117,847. A disruption of the RAD2 gene that deletes the 78 carboxyl terminal codons results in loss of RAD2 function. The 5' ends of RAD2 mRNA show considerable heterogeneity, mapping 5 to 62 nucleotides upstream of the first ATG codon of the long RAD2 open reading frame. The longest RAD2 transcripts also contain a short open reading frame of 37 codons that precedes and overlaps the 5' end of the long RAD2 open reading frame. The RAD2 3' nRNA end maps 171 nucleotides downstream of the TAA termination codon and 20 nucleotides downstream from a 12-base-pair inverted repeat that might function in transcript termination. Northern blot analysis showed a ninefold increase in steady-state levels of RAD2 mRNA after treatment of yeast cells with UV light. The 5' flanking region of the RAD2 gene contains several direct and inverted repeats and a 44-nuclotide-long purine-rich tract. The sequence T G G A G G C A T T A A found at position - 167 to -156 in the RAD2 gene is similar to at sequence present in the 5' flanking regions of the RAD7 and RAD10 genes

  9. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1980-01-01

    Effects of the rad 52 mutation in Saccharomyces cerevisiae on meiotic, γ-ray-induced, uv-induced and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Both intra and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the his1-1/his1-315 and trp-5-2/trp5-48 heteroalleles. Gene-centromere recombination also was not observed in rad/52/rad52 diploids. No γ-ray- or uv-induced intragenic mitotic recombination is seen in rad52/rad52 diploids. The rate of spontaneous mitotic recombination is lowered five-fold at the his1-1/his1-315 and leu1-c/leu1-12 heteroalleles. Spontaneous reversion rates of both his1-1 and his1-315 were elevated 10 to 20 fold in rad52/rad52 diploids. The RAD52 gene function is required for spontaneous mitotic recombination, uv- and γ-ray-induced mitotic recombination and mitotic recombination

  10. Protein dynamics during presynaptic complex assembly on individual ssDNA molecules

    OpenAIRE

    Gibb, Bryan; Ye, Ling F.; Kwon, YoungHo; Niu, Hengyao; Sung, Patrick; Greene, Eric C.

    2014-01-01

    Homologous recombination is a conserved pathway for repairing double?stranded breaks, which are processed to yield single?stranded DNA overhangs that serve as platforms for presynaptic complex assembly. Here we use single?molecule imaging to reveal the interplay between Saccharomyce cerevisiae RPA, Rad52, and Rad51 during presynaptic complex assembly. We show that Rad52 binds RPA?ssDNA and suppresses RPA turnover, highlighting an unanticipated regulatory influence on protein dynamics. Rad51 b...

  11. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J. P. [NIH, Bethesda, MD. (United States); Levine, A. S.; Woodgate, R.

    1997-12-15

    Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1 genes, in UV resistance and UV-induced mutagenesis. Similar to its prokaryotic homologues, RAD30 was found to be damage inducible. Like many S. cerevisiae genes involved in error-prone DNA repair, epistasis analysis clearly places RAD30 in the RAD6 group and rad30 mutants display moderate UV sensitivity reminiscent of rev mutants. However, unlike rev mutants, no defect in UV-induced reversion was seen in rad30 strains. While rad6 and rad18 are both epistatic to rad30, no epistasis was observed with rev1, rev3, rev7 or rad5, all of which are members of the RAD6 epistasis group. These findings suggest that RD30 participates in a novel error-free repair pathway dependent on RAD6 and RAD18, but independent of REV1, REV3, REV7 and RAD5. (author)

  12. Brca2 C-terminus interacts with Rad51 and contributes to nuclear forcus formation in double-strand break repair of DNA

    International Nuclear Information System (INIS)

    Ochiai, Kazuhiko; Morimatsu, Masami; Yoshikawa, Yasunaga; Syuto, Bunei; Hashizume, Kazuyoshi

    2004-01-01

    In humans and mice, the interaction between the breast cancer susceptibility protein, Brca2, and Rad51 recombinase is essential for DNA repair by homologous recombination, the failure of this process can predispose to cancer. Cells with mutated Brca2 are hypersensitive to ionizing radiation (IR) and exhibit defective DNA repair. Using yeast and mammalian two-hybrid assays, we demonstrate that canine Rad51 protein interacts specifically with the C-terminus of canine Brca2. In support of the biological significance of this interaction, we found that radiation-induced focus formation of Rad51 in COS-7 cells was compromised by forced expression of the C-terminus of canine Brca2. A similar result was obtained for the murine C-terminus. These data suggest that the C-terminal domain of canine Brca2 functions to bind Rad51 and that this domain contributes to the IR-induced assembly of the Rad51 complex in vivo. (author)

  13. Enhancement of the RAD51 Recombinase Activity by the Tumor Suppressor PALB2

    Energy Technology Data Exchange (ETDEWEB)

    Dray, Eloise; Etchin, Julia; Wiese, Claudia; Saro, Dorina; Williams, Gareth J.; Hammel, Michal; Yu, Xiong; Galkin, Vitold E.; Liu, Dongqing; Tsai, Miaw-Sheue; Sy, Shirley M-H.; Egelman, Edward; Chen, Junjie; Sung, Patrick; Schild, D.

    2010-08-24

    Homologous recombination mediated by the RAD51 recombinase helps eliminate chromosomal lesions, such as DNA double-stranded breaks induced by radiation or arising from injured DNA replication forks. The tumor suppressors BRCA2 and PALB2 act together to deliver RAD51 to chromosomal lesions to initiate repair. Here we document a new function of PALB2 in the enhancement of RAD51's ability to form the D-loop. We show that PALB2 binds DNA and physically interacts with RAD51. Importantly, while PALB2 alone stimulates D-loop formation, a cooperative effect is seen with RAD51AP1, an enhancer of RAD51. This stimulation stems from PALB2's ability to function with RAD51 and RAD51AP1 to assemble the synaptic complex. Our results help unveil a multi-faceted role of PALB2 in chromosome damage repair. Since PALB2 mutations can cause breast and other tumors or lead to Fanconi anemia, our findings are important for understanding the mechanism of tumor suppression in humans.

  14. Regulation of Rad51-Mediated Homologous Recombination by BRCA2, DSS1 and RAD52

    DEFF Research Database (Denmark)

    Rants, Louise Olthaver Juhl

    Homologous recombination (HR) provides a mechanism to restore integrity and maintain stability of the genetic material. HR is a major pathway for repair of DNA double-strand breaks (DSB), recovery of broken replication forks and generation of meiotic crossovers. The defining step in HR is homolog......Homologous recombination (HR) provides a mechanism to restore integrity and maintain stability of the genetic material. HR is a major pathway for repair of DNA double-strand breaks (DSB), recovery of broken replication forks and generation of meiotic crossovers. The defining step in HR...... is homologous strand exchange directed by the RecA-related recombinase Rad51. BRCA2 participates in HR by mediating Rad51 homology-directed repair. Both BRCA2 and Rad51 are essential for HR, DNA repair, and the maintenance of genome stability. In the present study, we seek to understand the mechanism of BRCA2...... with RAD52-mediated repair at sites of CPT-induced DNA damage. The synthetic lethality approach using RAD52 small molecule inhibitors in brca-deficient cancers is a promising therapeutic strategy for cancer treatment....

  15. Differential RPA-1 and RAD-51 recruitment in vivo throughout the C. elegans germline, as revealed by laser microirradiation.

    Science.gov (United States)

    Koury, Emily; Harrell, Kailey; Smolikove, Sarit

    2018-01-25

    Studies of the repair pathways associated with DNA double strand breaks (DSBs) are numerous, and provide evidence for cell-cycle specific regulation of homologous recombination (HR) by the regulation of its associated proteins. Laser microirradiation is a well-established method to examine in vitro kinetics of repair and allows for live-imaging of DSB repair from the moment of induction. Here we apply this method to whole, live organisms, introducing an effective system to analyze exogenous, microirradiation-induced breaks in the Caenorhabditis elegans germline. Through this method we observed the sequential kinetics of the recruitment of ssDNA binding proteins RPA-1 and RAD-51 in vivo. We analyze these kinetics throughout different regions of the germline, and thus throughout a range of developmental stages of mitotic and meiotic nuclei. Our analysis demonstrates a largely conserved timing of recruitment of ssDNA binding proteins to DSBs throughout the germline, with a delay of RAD-51 recruitment at mid-pachytene nuclei. Microirradiated nuclei are viable and undergo a slow kinetics of resolution. We observe RPA-1 and RAD-51 colocalization for hours post-microirradiation throughout the germline, suggesting that there are mixed RPA-1/RAD-51 filaments. Finally, through live imaging analysis we observed RAD-51 foci movement with low frequency of coalescence. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14, and MMS19

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L; Prakash, S

    1979-01-01

    The ability to remove ultraviolet (uv)-induced pyrimidine dimers from the nuclear DNA of yeast was examined in two radiation-sensitive (rad) mutants and one methyl methanesulfonate-sensitive (mms) mutant of the yeast Saccharomyces cerevisiae. The susceptibility of DNA from irradiated cells to nicking by an endonuclease activity prepared from crude extracts of Micrococcus luteus was used to measure the presence of dimers in DNA. The rad7, rad14, and mms19 mutants were found to be defective in their ability to remove uv-induced dimers from nuclear DNA. All three mutants belong to the same episatic group as the other mutants involved in excision-repair. All three mutants show enhanced uv-induced mutations. The rad 14 mutant also shows epistatic interactions with genes in the other two uv repair pathways.

  17. Minocycline enhances mitomycin C-induced cytotoxicity through down-regulating ERK1/2-mediated Rad51 expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Wang, Tai-Jing; Chang, Po-Yuan; Syu, Jhan-Jhang; Chen, Jyh-Cheng; Chen, Chien-Yu; Jian, Yun-Ting; Jian, Yi-Jun; Zheng, Hao-Yu; Chen, Wen-Ching; Lin, Yun-Wei

    2015-10-01

    Minocycline is a semisynthetic tetracycline derivative; it has anti-inflammatory and anti-cancer effects distinct from its antimicrobial function. However, the molecular mechanism of minocycline-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the MKK1/2-ERK1/2 signal pathway maintains the expression of Rad51 in NSCLC cells. In this study, minocycline treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1975. Treatment with minocycline decreased Rad51 mRNA and protein levels through MKK1/2-ERK1/2 inactivation. Furthermore, expression of constitutively active MKK1 (MKK1-CA) vectors significantly rescued the decreased Rad51 protein and mRNA levels in minocycline-treated NSCLC cells. However, combined treatment with MKK1/2 inhibitor U0126 and minocycline further decreased the Rad51 expression and cell viability of NSCLC cells. Knocking down Rad51 expression by transfection with small interfering RNA of Rad51 enhanced the cytotoxicity and cell growth inhibition of minocycline. Mitomycin C (MMC) is typically used as a first or second line regimen to treat NSCLC. Compared to a single agent alone, MMC combined with minocycline resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-ERK1/2, and reduced Rad51 protein levels. Overexpression of MKK1-CA or Flag-tagged Rad51 could reverse the minocycline and MMC-induced synergistic cytotoxicity. These findings may have implications for the rational design of future drug regimens incorporating minocycline and MMC for the treatment of NSCLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. OsRAD51C Is Essential for Double Strand Break Repair in Rice Meiosis

    Directory of Open Access Journals (Sweden)

    Ding eTang

    2014-05-01

    Full Text Available RAD51C is one of the RAD51 paralogs that plays an important role in DNA double-strand break repair by homologous recombination. Here, we identified and characterized OsRAD51C, the rice homolog of human RAD51C. The Osrad51c mutant plant is normal in vegetative growth but exhibits complete male and female sterility. Cytological investigation revealed that homologous pairing and synapsis were severely disrupted. Massive chromosome fragmentation occurred during metaphase I in Osrad51c meiocytes, and was fully suppressed by the CRC1 mutation. Immunofluorescence analysis showed that OsRAD51C localized onto the chromosomes from leptotene to early pachytene during prophase I, and that normal loading of OsRAD51C was dependent on OsREC8, PAIR2, and PAIR3. Additionally, ZEP1 did not localize properly in Osrad51c, indicating that OsRAD51C is required for synaptonemal complex assembly. Our study also provided evidence in support of a functional divergence in RAD51C among organisms.

  19. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    KAUST Repository

    Fornander, Louise H; Frykholm, Karolin; Reymer, Anna; Renodon-Corniè re, Axelle; Takahashi, Masayuki; Nordé n, Bengt

    2012-01-01

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated

  20. Genetics of x-ray induced double strand break repair in saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Budd, M.E.

    1982-07-01

    The possible fates of x-ray-induced double-strand breaks in Saccharomyces cerevisiae were examined. One possible pathway which breaks can follow, the repair pathway, was studied by assaying strains with mutations in the RAD51, RAD54, and RAD57 loci for double-strand break repair. In order of increasing radiation sensitivity one finds: rad57-1(23 0 )> rad51-1(30 0 )> rad54-3(36 0 ). At 36 0 , rad54-3 cells cannot repair double-strand breaks, while 23 0 , they can. Strains with the rad57-1 mutation can rejoin broken chromosomes at both temperatures. However, the low survival at 36 0 shows that the assay is not distinguishing large DNA fragments which allow cell survival from those which cause cell death. A rad51-1 strain could also rejoin broken chromosomes, and was thus capable of incomplete repair. The data can be explained with the hypothesis that rad54-3 cells are blocked in an early step of repair, while rad51-1 and rad57-1 strains are blocked in a later step of repair. The fate of double-strand breaks when they are left unrepaired was investigated with the rad54-3 mutation. If breaks are prevented from entering the RAD54 repair pathway they become uncommitted lesions. These lesions are repaired slower than the original breaks. One possible fate for an uncommitted lesion is conversion into a fixed lesion, which is likely to be an unrepairable or misrepaired double-strand break. The presence of protein synthesis after irradiation increases the probability that a break will enter the repair pathway. Evidence shows that increased probability of repair results from enhanced synthesis of repair proteins shortly after radiation

  1. Roles of C-Terminal Region of Yeast and Human Rad52 in Rad51-Nucleoprotein Filament Formation and ssDNA Annealing.

    Directory of Open Access Journals (Sweden)

    Nilesh V Khade

    Full Text Available Yeast Rad52 (yRad52 has two important functions at homologous DNA recombination (HR; annealing complementary single-strand DNA (ssDNA molecules and recruiting Rad51 recombinase onto ssDNA (recombination mediator activity. Its human homolog (hRAD52 has a lesser role in HR, and apparently lacks mediator activity. Here we show that yRad52 can load human Rad51 (hRAD51 onto ssDNA complexed with yeast RPA in vitro. This is biochemically equivalent to mediator activity because it depends on the C-terminal Rad51-binding region of yRad52 and on functional Rad52-RPA interaction. It has been reported that the N-terminal two thirds of both yRad52 and hRAD52 is essential for binding to and annealing ssDNA. Although a second DNA binding region has been found in the C-terminal region of yRad52, its role in ssDNA annealing is not clear. In this paper, we also show that the C-terminal region of yRad52, but not of hRAD52, is involved in ssDNA annealing. This suggests that the second DNA binding site is required for the efficient ssDNA annealing by yRad52. We propose an updated model of Rad52-mediated ssDNA annealing.

  2. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress.

    Science.gov (United States)

    Chastain, Megan; Zhou, Qing; Shiva, Olga; Fadri-Moskwik, Maria; Whitmore, Leanne; Jia, Pingping; Dai, Xueyu; Huang, Chenhui; Ye, Ping; Chai, Weihang

    2016-08-02

    The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Curcumin enhances the mitomycin C-induced cytotoxicity via downregulation of MKK1/2-ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Ko, Jen-Chung; Tsai, Min-Shao; Weng, Shao-Hsing; Kuo, Ya-Hsun; Chiu, Yu-Fan; Lin, Yun-Wei

    2011-01-01

    Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), has been reported to suppress the proliferation of a wide variety of tumor cells. Rad51 is a key protein in the homologous recombination (HR) pathway of DNA double-strand break repair, and HR represents a novel target for cancer therapy. A high expression of Rad51 has been reported in chemo- or radio-resistant carcinomas. Therefore, in the current study, we will examine whether curcumin could enhance the effects of mitomycin C (MMC), a DNA interstrand cross-linking agent, to induce cytotoxicity by decreasing Rad51 expression. Exposure of two human non-small lung cancer (NSCLC) cell lines (A549 and H1975) to curcumin could suppress MMC-induced MKK1/2-ERK1/2 signal activation and Rad51 protein expression. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased Rad51 protein levels in curcumin and MMC co-treated human lung cells. Moreover, the synergistic cytotoxic effect induced by curcumin combined with MMC was decreased by MKK1-CA-mediated enhancement of ERK1/2 activation by a significant degree. In contrast, MKK1/2 inhibitor, U0126 was shown to augment the cytotoxicity of curcumin and MMC through downregulation of ERK1/2 activation and Rad51 expression. Depletion of endogenous Rad51 expression by siRad51 RNA transfection significantly enhanced MMC and/or curcumin induced cell death and cell growth inhibition. In contrast, an overexpression of Rad51 protected lung cancer cells from synergistic cytotoxic effects induced by curcumin and MMC. We concluded that Rad51 inhibition may be an additional action mechanism for enhancing the chemosensitization of MMC by curcumin in NSCLC. - Highlights: → Curcumin downregulates MKK-ERK-mediated Rad51 expression. → Curcumin enhances mitomycin C-induced cytotoxicity. → Rad51 protects cells from cytotoxic effects induced by curcumin and mitomycin C. → Rad51 inhibition enhances the chemosensitization of

  4. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    KAUST Repository

    Fornander, Louise H

    2012-02-22

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.

  5. Disparate requirements for the Walker A and B ATPase motifs ofhuman RAD51D in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Hinz, John M.; Tebbs, Robert S.; Nham, Peter B.; Urbin, Salustra S.; Collins, David W.; Thompson, Larry H.; Schild, David

    2006-04-21

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C, and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks. Ectopic expression of wild type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  6. Loss of the homologous recombination gene rad51 leads to Fanconi anemia-like symptoms in zebrafish.

    Science.gov (United States)

    Botthof, Jan Gregor; Bielczyk-Maczyńska, Ewa; Ferreira, Lauren; Cvejic, Ana

    2017-05-30

    RAD51 is an indispensable homologous recombination protein, necessary for strand invasion and crossing over. It has recently been designated as a Fanconi anemia (FA) gene, following the discovery of two patients carrying dominant-negative mutations. FA is a hereditary DNA-repair disorder characterized by various congenital abnormalities, progressive bone marrow failure, and cancer predisposition. In this report, we describe a viable vertebrate model of RAD51 loss. Zebrafish rad51 loss-of-function mutants developed key features of FA, including hypocellular kidney marrow, sensitivity to cross-linking agents, and decreased size. We show that some of these symptoms stem from both decreased proliferation and increased apoptosis of embryonic hematopoietic stem and progenitor cells. Comutation of p53 was able to rescue the hematopoietic defects seen in the single mutants, but led to tumor development. We further demonstrate that prolonged inflammatory stress can exacerbate the hematological impairment, leading to an additional decrease in kidney marrow cell numbers. These findings strengthen the assignment of RAD51 as a Fanconi gene and provide more evidence for the notion that aberrant p53 signaling during embryogenesis leads to the hematological defects seen later in life in FA. Further research on this zebrafish FA model will lead to a deeper understanding of the molecular basis of bone marrow failure in FA and the cellular role of RAD51.

  7. Synergistic interactions between RAD5, RAD16, and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway

    International Nuclear Information System (INIS)

    Glassner, B.J.; Mortimer, R.K.

    1994-01-01

    Considerable homology has recently been noted between the proteins encoded by the RAD5, RAD16 and RAD54 genes of Saccharomyces cerevisiae. These genes are members of the RAD6, RAD3 and RAD50 epistasis groups, respectively, which correspond to the three major DNA repair pathways in yeast. These proteins also share homology with other eucaryotic proteins, including those encoded by SNF2 and MO1 of yeast, brahma and lodestar of Drosophila and the human ERCC6 gene. The homology shares features with known helicases, suggesting a newly identified helicase subfamily. We have constructed a series of congenic single-, double- and triple-deletion mutants involving RAD5, RAD16 and RAD54 to examine the interactions between these genes. Each deletion mutation alone has only a moderate effect on survival after exposure to UV radiation. Each pairwise-double mutant exhibits marked synergism. The triple-deletion mutant displays further synergism. These results confirm the assignment of the RAD54 gene to the RAD50 epistasis group and suggest that the RAD16 gene plays a larger role in DNA repair after exposure to UV radiation than has been suggested previously. Additionally, the proteins encoded by RAD5, RAD16, and RAD54 may compete for the same substrate after damage induced by UV radiation, possibly at an early step in their respective pathways. 49 refs., 6 figs., 2 tabs

  8. Down-regulation of Rad51 activity during meiosis in yeast prevents competition with Dmc1 for repair of double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2014-01-01

    Full Text Available Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that exhibits a preference for repairing double strand breaks (DSBs using sister chromatids, in contrast to the conserved, meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1Δ mutants, where the failure to repair meiotic DSBs triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A, makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors. Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs.

  9. Protein dynamics during presynaptic complex assembly on individual ssDNA molecules

    Science.gov (United States)

    Gibb, Bryan; Ye, Ling F.; Kwon, YoungHo; Niu, Hengyao; Sung, Patrick; Greene, Eric C.

    2014-01-01

    Homologous recombination is a conserved pathway for repairing double–stranded breaks, which are processed to yield single–stranded DNA overhangs that serve as platforms for presynaptic complex assembly. Here we use single–molecule imaging to reveal the interplay between Saccharomyce cerevisiae RPA, Rad52, and Rad51 during presynaptic complex assembly. We show that Rad52 binds RPA–ssDNA and suppresses RPA turnover, highlighting an unanticipated regulatory influence on protein dynamics. Rad51 binding extends the ssDNA, and Rad52–RPA clusters remain interspersed along the presynaptic complex. These clusters promote additional binding of RPA and Rad52. Together, our work illustrates the spatial and temporal progression of RPA and Rad52 association with the presynaptic complex, and reveals a novel RPA–Rad52–Rad51–ssDNA intermediate, which has implications for understanding how the activities of Rad52 and RPA are coordinated with Rad51 during the later stages recombination. PMID:25195049

  10. Assay for Human Rad51-Mediated DNA Displacement Loop Formation

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Steven Raynard and Patrick Sung Corresponding author ([]()) ### INTRODUCTION Homologous recombination is an important mechanism for the repair of damaged chromosomes, for preventing the demise of damaged replication forks, and for several other aspects of chromosome metabolism and maintenance. The homologous recombination reaction is mediated by the Rad51 recombinase. In the presence of ATP, Rad51 polymerizes on single-stranded D...

  11. Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination.

    Science.gov (United States)

    Wiese, Claudia; Hinz, John M; Tebbs, Robert S; Nham, Peter B; Urbin, Salustra S; Collins, David W; Thompson, Larry H; Schild, David

    2006-01-01

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  12. C. elegans ring finger protein RNF-113 is involved in interstrand DNA crosslink repair and interacts with a RAD51C homolog.

    Directory of Open Access Journals (Sweden)

    Hyojin Lee

    Full Text Available The Fanconi anemia (FA pathway recognizes interstrand DNA crosslinks (ICLs and contributes to their conversion into double-strand DNA breaks, which can be repaired by homologous recombination. Seven orthologs of the 15 proteins associated with Fanconi anemia are functionally conserved in the model organism C. elegans. Here we report that RNF-113, a ubiquitin ligase, is required for RAD-51 focus formation after inducing ICLs in C. elegans. However, the formation of foci of RPA-1 or FCD-2/FANCD2 in the FA pathway was not affected by depletion of RNF-113. Nevertheless, the RPA-1 foci formed did not disappear with time in the depleted worms, implying serious defects in ICL repair. As a result, RNF-113 depletion increased embryonic lethality after ICL treatment in wild-type worms, but it did not increase the ICL-induced lethality of rfs-1/rad51C mutants. In addition, the persistence of RPA-1 foci was suppressed in doubly-deficient rnf-113;rfs-1 worms, suggesting that there is an epistatic interaction between the two genes. These results lead us to suggest that RNF-113 and RFS-1 interact to promote the displacement of RPA-1 by RAD-51 on single-stranded DNA derived from ICLs.

  13. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Small Rad51 and Dmc1 Complexes Often Co-occupy Both Ends of a Meiotic DNA Double Strand Break.

    Directory of Open Access Journals (Sweden)

    M Scott Brown

    2015-12-01

    Full Text Available The Eukaryotic RecA-like proteins Rad51 and Dmc1 cooperate during meiosis to promote recombination between homologous chromosomes by repairing programmed DNA double strand breaks (DSBs. Previous studies showed that Rad51 and Dmc1 form partially overlapping co-foci. Here we show these Rad51-Dmc1 co-foci are often arranged in pairs separated by distances of up to 400 nm. Paired co-foci remain prevalent when DSBs are dramatically reduced or when strand exchange or synapsis is blocked. Super-resolution dSTORM microscopy reveals that individual foci observed by conventional light microscopy are often composed of two or more substructures. The data support a model in which the two tracts of ssDNA formed by a single DSB separate from one another by distances of up to 400 nm, with both tracts often bound by one or more short (about 100 nt Rad51 filaments and also by one or more short Dmc1 filaments.

  15. Effect of Rad 51 overexpression on chromosomal stability and radiation sensitivity in tumour cells

    International Nuclear Information System (INIS)

    Jend, C.; Stuerzbecher, H.W.; Dikomey, E.; Borgmann, K.

    2004-01-01

    The present study was dedicated to examining the effects of Rad51 overexpression on genomic instability, expressed in terms of chromosomal aberrations in G1 and G2 phases following X-ray irradiation. For this purpose an osteosarcoma cell line (Ui-OS) which shows inducing Rad51 overexpression (UiRad5-2) after stable transfection was compared with an isogenetic line (UiLacZ) which overexpresses beta-galactosidase instead of Rad51 [de

  16. TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity

    DEFF Research Database (Denmark)

    Moudry, Pavel; Watanabe, Kenji; Wolanin, Kamila M.

    2016-01-01

    to chromatin and formation of RAD51 foci, but without affecting the upstream HR steps of DNA end resection and RPA loading. Furthermore, TOPBP1 BRCT domains 7/8 are essential for RAD51 foci formation. Mechanistically, TOPBP1 physically binds PLK1 and promotes PLK1 kinase-mediated phosphorylation of RAD51...

  17. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants

    International Nuclear Information System (INIS)

    Lawrence, C.W.; Christensen, R.B.

    1979-01-01

    Dominant mutations at two newly identified loci, designated SRS1 and SRS2, that metabolically suppress the trimethoprim sensitivity of rad6 and rad18 strains, have been isolated from trimethorprim-resistant mutants arising spontaneously in rad6-1 rad18-2 strains of the yeast Saccharomyces cerevisiae. The SRS2 mutations also efficiently suppress the ultraviolet light sensitivity of the parent strains. They do not, however, suppress their sensitivity to ionizing radiation or their deficiency with respect to induced mutagenesis and sporulation. Such observations support the hypothesis that RAD6-dependent activities can be separated into two functionally distinct groups: a group of error-free repair activities that are responsible for a large amount of the radiation resistance of wild-type strains and also for their resistance to trimethoprim, and a group of error-prone activities that are responsible for induced mutagenesis and are also important in sporulation, but which account at best for only a very small amount of wild-type recovery

  18. Failure to induce a DNA repair gene, RAD54, in Saccharomyces cerevisiae does not affect DNA repair or recombination phenotypes

    International Nuclear Information System (INIS)

    Cole, G.M.; Mortimer, R.K.

    1989-01-01

    The Saccharomyces cerevisiae RAD54 gene is transcriptionally regulated by a broad spectrum of DNA-damaging agents. Induction of RAD54 by DNA-damaging agents is under positive control. Sequences responsible for DNA damage induction (the DRS element) lie within a 29-base-pair region from -99 to -70 from the most proximal transcription start site. This inducible promoter element is functionally separable from a poly(dA-dT) region immediately downstream which is required for constitutive expression. Deletions which eliminate induction of RAD54 transcription by DNA damage but do not affect constitutive expression have no effect on growth or survival of noninducible strains relative to wild-type strains in the presence of DNA-damaging agents. The DRS element is also not required for homothallic mating type switching, transcriptional induction of RAD54 during meiosis, meiotic recombination, or spontaneous or X-ray-induced mitotic recombination. We find no phenotype for a lack of induction of RAD54 message via the damage-inducible DRS, which raises significant questions about the physiology of DNA damage induction in S. cerevisiae

  19. Design of potent inhibitors of human RAD51 recombinase based on BRC motifs of BRCA2 protein: modeling and experimental validation of a chimera peptide.

    KAUST Repository

    Nomme, Julian; Renodon-Corniè re, Axelle; Asanomi, Yuya; Sakaguchi, Kazuyasu; Stasiak, Alicja Z; Stasiak, Andrzej; Norden, Bengt; Tran, Vinh; Takahashi, Masayuki

    2010-01-01

    We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.

  20. Design of potent inhibitors of human RAD51 recombinase based on BRC motifs of BRCA2 protein: modeling and experimental validation of a chimera peptide.

    KAUST Repository

    Nomme, Julian

    2010-08-01

    We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.

  1. RAD24 (=R1/sup S/) gene product of Saccharomyces cerevisiae participates in two different pathways of DNA repair

    International Nuclear Information System (INIS)

    Eckardt-Schupp, F.; Siede, W.; Game, J.C.

    1987-01-01

    The moderately UV- and X-ray-sensitive mutant of Saccharomyces cerevisiae originally designated r 1 /sup s/ complements all rad and mms mutants available. Therefore, the new nomination rad24-1 according to the RAD nomenclature is suggested. RAD24 maps on chromosome V, close to RAD3 (1.3 cM). In order to associate the RAD24 gene with one of the three repair pathways, double mutants of rad24 and various representative genes of each pathway were constructed. The UV and X-ray sensitivities of the double mutants compared to the single mutants indicate that RAD24 is involved in excision repair of UV damage (RAD3 epistasis group), as well as in recombination repair of UV and X-ray damage (RAD52 epistasis group). Properties of the mutant are discussed which hint at the control of late steps in the pathways

  2. Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2

    Energy Technology Data Exchange (ETDEWEB)

    Godthelp, Barbara C. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands); Wiegant, Wouter W. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands); Waisfisz, Quinten [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Medhurst, Annette L. [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Arwert, Fre [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Joenje, Hans [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Zdzienicka, Malgorzata Z. [Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, NL-2333 AL Leiden (Netherlands) and Department of Molecular Cell Genetics, Collegium Medicum, N. Copernicus University, Bydgoszcz (Poland)]. E-mail: m.z.zdzienicka@lumc.nl

    2006-02-22

    Fanconi anemia (FA) is a cancer susceptibility disorder characterized by chromosomal instability and hypersensitivity to DNA cross-linking agents. So far 11 complementation groups have been identified, from which only FA-D1/BRCA2 and FA-J are defective downstream of the central FANCD2 protein as cells from these groups are capable of monoubiquitinating FANCD2. In this study we show that cells derived from patients from the new complementation groups, FA-I, FA-J and FA-L are all proficient in DNA damage induced Rad51 foci formation, making the cells from FA-D1/BRCA2 patients that are defective in this process the sole exception. Although FA-B patient HSC230 was previously reported to also have biallelic BRCA2 mutations, we found normal Rad51 foci formation in cells from this patient, consistent with the recent identification of an X-linked gene being mutated in four unrelated FA-B patients. Thus, our data show that none of the FA proteins, except BRCA2, are required to sequester Rad51 into nuclear foci. Since cells from the FA-D1 and FA-J patient groups are both able to monoubiquitinate FANCD2, the 'Rad51 foci phenotype' provides a convenient assay to distinguish between these two groups. Our results suggest that FANCJ and FANCD1/BRCA2 are part of the integrated FANC/BRCA DNA damage response pathway or, alternatively, that they represent sub-pathways in which only FANCD1/BRCA2 is directly connected to the process of homologous recombination.

  3. Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2

    International Nuclear Information System (INIS)

    Godthelp, Barbara C.; Wiegant, Wouter W.; Waisfisz, Quinten; Medhurst, Annette L.; Arwert, Fre; Joenje, Hans; Zdzienicka, Malgorzata Z.

    2006-01-01

    Fanconi anemia (FA) is a cancer susceptibility disorder characterized by chromosomal instability and hypersensitivity to DNA cross-linking agents. So far 11 complementation groups have been identified, from which only FA-D1/BRCA2 and FA-J are defective downstream of the central FANCD2 protein as cells from these groups are capable of monoubiquitinating FANCD2. In this study we show that cells derived from patients from the new complementation groups, FA-I, FA-J and FA-L are all proficient in DNA damage induced Rad51 foci formation, making the cells from FA-D1/BRCA2 patients that are defective in this process the sole exception. Although FA-B patient HSC230 was previously reported to also have biallelic BRCA2 mutations, we found normal Rad51 foci formation in cells from this patient, consistent with the recent identification of an X-linked gene being mutated in four unrelated FA-B patients. Thus, our data show that none of the FA proteins, except BRCA2, are required to sequester Rad51 into nuclear foci. Since cells from the FA-D1 and FA-J patient groups are both able to monoubiquitinate FANCD2, the 'Rad51 foci phenotype' provides a convenient assay to distinguish between these two groups. Our results suggest that FANCJ and FANCD1/BRCA2 are part of the integrated FANC/BRCA DNA damage response pathway or, alternatively, that they represent sub-pathways in which only FANCD1/BRCA2 is directly connected to the process of homologous recombination

  4. Functional analysis of the RAD50/MRE11 protein complex through targeted disruption of the murine RAD50 genomic locus: implications for DNA double strand break repair. An astro research fellowship presentation

    International Nuclear Information System (INIS)

    Yao, Michelle S.; Bladl, Anthony R.; Petrini, John H.J.

    1997-01-01

    Purpose/Objective: The products of the S. cerevisiae genes ScRAD50 and ScMRE11 act in a protein complex and are required for non-homologous end-joining, the predominant mechanism of DNA double strand break (dsb) repair in mammalian cells. Mutation of these genes results in sensitivity to ionizing radiation (IR), a defect in initiation of meiosis, increased and error-prone recombination during mitosis, and overall genomic instability. This resultant phenotype is reminiscent of that seen in mammalian syndromes of genomic instability such as ataxia-telangiectasia and Bloom syndrome, hallmarks of which are radiation sensitivity and predisposition to malignancy. The murine homologues to ScRAD50 and ScMRE11 have recently been identified; both demonstrate impressive primary sequence conservation with their yeast counterparts, and are expected to mediate conserved functions. The roles of muRAD50 in genomic maintenance and in dsb repair will be examined in two parts. The first will include a determination of normal muRAD50 expression patterns. Second, the effects of disruption of the muRAD50 gene will be assessed. A specific targeting event has introduced a conditional murad50 null mutation into the genome of murine embryonic stem (ES) cells. These mutant ES cells are being used to create mutant mice, thus allowing functional characterization of muRAD50 on both the cellular and organismic levels. Such analyses will contribute to the delineation of the mammalian dsb repair pathway and to the cellular response to IR, and will serve as a mammalian model system for genomic instability. Materials and Methods: Wild-type tissue expression patterns and protein-protein interactions were determined by standard biochemical techniques, including immunoprecipitation, polyacrylamide gel electrophoresis, and Western blotting. Molecular cloning techniques were used to create the gene targeting vectors, which were designed to result in either a deletion of exon 1 (equivalent to a null

  5. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Wang, Z.; Wu, X.; Friedberg, E.C.

    1993-01-01

    A wide spectrum of DNA lesions are repaired by the nucleotide-excision repair (NER) pathway in both eukaryotic and prokaryotic cells. We have developed a cell-free system in Saccharomyces cerevisiae that supports NER. NER was monitored by measuring repair synthesis in DNA treated with cisplatin or with UV radiation. Repair synthesis in vitro was defective in extracts of rad1, rad2, and rad10 mutant cells, all of which have mutations in genes whose products are known to be required for NER in vivo. Additionally, repair synthesis was complemented by mixing different mutant extracts, or by adding purified Rad1 or Rad10 protein to rad1 or rad10 mutant extracts, respectively. The latter observation demonstrates that the Rad1 and Rad10 proteins directly participate in the biochemical pathway of NER. NER supported by nuclear extracts requires ATP and Mg 2+ and is stimulated by polyethylene glycol and by small amounts of whole cell extract containing overexpressed Rad2 protein. The nuclear extracts also contain base-excision repair activity that is present at wild-type levels in rad mutant extracts. This cell-free system is expected to facilitate studies on the biochemical pathway of NER in S. cerevisiae

  6. HHR23A, a human homolog of Saccharomyces cerevisiae Rad23, regulates xeroderma pigmentosum C protein and is required for nucleotide excision repair

    International Nuclear Information System (INIS)

    Hsieh, Hui-Chuan; Hsieh, Yi-Hsuan; Huang, Yu-Hsin; Shen, Fan-Ching; Tsai, Han-Ni; Tsai, Jui-He; Lai, Yu-Ting; Wang, Yu-Ting; Chuang, Woei-Jer; Huang, Wenya

    2005-01-01

    HHR23A and hHR23B are the human homologs of Saccharomyces cerevisiae Rad23. hHR23B is associated with the nucleotide excision repair (NER) factor xeroderma pigmentosum C (XPC) protein and is required for global genome repair. The function of hHR23A is not yet clear. In this study, the potential function of the hHR23A protein was investigated using RNA interference techniques. The hHR23A knock-down (KD) construct diminished the RNA level of hHR23A protein by approximately 60%, and it did not interfere with expression of the hHR23B gene. Based on Southwestern immunoblot and host-cell reactivation assays, hHR23A KD cells were found to be deficient in DNA repair activity against the DNA damage caused by UVC irradiation. In these hHR23A KD cells, the XPC gene was not normally induced by UVC irradiation, indicating that the hHR23A protein is involved in NER through regulation of the DNA damage recognition protein XPC. Co-immunoprecipitation experiments revealed that hHR23A was associated with a small portion of hHR23B and the majority of p53 protein, indicating that hHR23A regulates the function of XPC by its association with the NER activator p53

  7. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination

    DEFF Research Database (Denmark)

    Gao, Min; Wei, Wei; Li, Ming Hua

    2014-01-01

    resection as well as RPA and Mre11 loading is unaffected by Ago2 or Dicer depletion, suggesting that Ago2 very likely functions directly in mediating Rad51 accumulation at DSBs. Taken together, our findings suggest that guided by diRNAs, Ago2 can promote Rad51 recruitment and/or retention at DSBs...

  8. Studies of DNA repair in Saccharomyces cerevisiae. I. Characterization of a new allele of RAD6. II. Investigation of events in the first cell cycle after DNA damage

    International Nuclear Information System (INIS)

    Dolthwright-Fasse, J.A.

    1980-01-01

    Studies in two independent, but related, areas of DNA repair have been carried out in the eucaryotic yeast, Saccharomyces cerevisiae. The first is the characterization of a new allele in the RAD6 gene suggesting that the gene is multifunctional. The second is the utilization of photoreactivation as a probe of events occurring during the first cell cycle after DNA damage. Strains carrying the new allele, designated rad6-4, of the RAD6 locus are about as sensitive to uv and ionizing radiation as those carrying rad6-1 or rad6-3. Although rad6-4 may well be a missense mutation, the data suggest that the RAD6 gene is multifunctional. One function is necessary to recover from DNA damage in an error-free manner, and the other is concerned with mutagenic processes and sporulation. The loss of photoreversibility (LOP) of ultraviolet induced mutations to arginine independence in an excision defective strain carrying arg4-17 examines the events occurring in the first cell cycle. The post uv protein synthesis causes pyrimidine dimmers to become inaccessible to the photoreactivating enzyme in some unknown manner. There is no evidence indicating whether the normal function of the protein is involved in excision repair, or in one of the two repair processes believed to be inducible; induced mutagenesis or recombinational repair

  9. Lingering single-strand breaks trigger Rad51-independent homology-directed repair of collapsed replication forks in the polynucleotide kinase/phosphatase mutant of fission yeast.

    Directory of Open Access Journals (Sweden)

    Arancha Sanchez

    2017-09-01

    Full Text Available The DNA repair enzyme polynucleotide kinase/phosphatase (PNKP protects genome integrity by restoring ligatable 5'-phosphate and 3'-hydroxyl termini at single-strand breaks (SSBs. In humans, PNKP mutations underlie the neurological disease known as MCSZ, but these individuals are not predisposed for cancer, implying effective alternative repair pathways in dividing cells. Homology-directed repair (HDR of collapsed replication forks was proposed to repair SSBs in PNKP-deficient cells, but the critical HDR protein Rad51 is not required in PNKP-null (pnk1Δ cells of Schizosaccharomyces pombe. Here, we report that pnk1Δ cells have enhanced requirements for Rad3 (ATR/Mec1 and Chk1 checkpoint kinases, and the multi-BRCT domain protein Brc1 that binds phospho-histone H2A (γH2A at damaged replication forks. The viability of pnk1Δ cells depends on Mre11 and Ctp1 (CtIP/Sae2 double-strand break (DSB resection proteins, Rad52 DNA strand annealing protein, Mus81-Eme1 Holliday junction resolvase, and Rqh1 (BLM/WRN/Sgs1 DNA helicase. Coupled with increased sister chromatid recombination and Rad52 repair foci in pnk1Δ cells, these findings indicate that lingering SSBs in pnk1Δ cells trigger Rad51-independent homology-directed repair of collapsed replication forks. From these data, we propose models for HDR-mediated tolerance of persistent SSBs with 3' phosphate in pnk1Δ cells.

  10. Rad51 expression levels predict synthetic lethality and metastatic potential in high grade breast cancers

    International Nuclear Information System (INIS)

    Wiegmans, A.P.; Al-Ejeh, F.; Khanna, K.K.

    2012-01-01

    Among women with breast cancer, 30-40% will develop metastatic disease and only achieve an overall survival of less than 5 years. Despite new-targeted therapy, breast tumors that harbour similar histology or molecular phenotype differ in their response to treatment. To uncover potential new therapeutic targets and improve outcome, we performed data mining of cancer micro array databases. We found that high expression of the homologous recombination protein, RAD51, was significantly associated with high-grade breast cancer, aggressive subtypes and increased risk of metastasis. We confirmed using immunohistochemistry that RAD5 1 was highly expressed in metastatic tumours and high-grade triple negative, HER2+ and luminal-B tumours. This provided a rationale for targeting RAD5 1 in high-grade, therapy-resistant breast cancers. Here, we report for the first time preclinical evaluation of RAD5 1 as a therapeutic target. We found that, in-vitro high RAD5 expressing cell lines were resistant to PARP inhibitor while knockdown reversed this resistance. In-vivo, knockdown of RAD5 1 inhibited metastatic progression using a syngeneic breast cancer model and the seeding of human xenografts to distant sites, including brain and lung. Concurrent PARP inhibition reduced primary tumor growth and delayed metastasis supporting synthetic lethality in-vivo. Together these insights provide pre-clinical data demonstrating RAD5 1 as a new biomarker and potential therapeutic target against aggressive metastatic breast cancer. (author)

  11. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.

    Science.gov (United States)

    Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae

    2016-05-27

    Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.

  12. The rad2 mutation affects the molecular nature of UV and acridine-mustard-induced mutations in the ADE2 gene of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ivanov, E.L.; Kovaltzova, S.V.; Kassinova, G.V.; Gracheva, L.M.; Korolev, V.G.; Zakharov, I.A.

    1986-01-01

    The authors have studied the molecular nature of ade2 mutations induced by UV light and bifunctional acridine-mustard (BAM) in wild-type (RAD) and in excision-deficient (rad2) strains of the yeast, Saccharomyces cerevisiae. In the RAD strain, UV causes 45% GC → AT transitions among all mutations; in the rad2 strain this value is 77%. BAM was shown to be highly specific for frameshift mutagenesis: 60% frameshifts in the RAD strain, and as many as 84% frameshifts in the rad2 strain were induced. Therefore, the rad2 mutation affects the specificity of UV- and BAM-induced mutagenesis in yeast. Experimental data agree with the view that the majority of mutations in the RAD strain are induced by a prereplicative mechanism, whereas mutations in the rad2 strain are predominantly postreplicative events. (Auth.)

  13. Cellular radiation effects and hyperthermia cell cycle kinetics of radiation sensitive mutants of saccharomyces cerevisiae after x-irradiation and hyperthermia

    International Nuclear Information System (INIS)

    Fingerhut, R.; Kiefer, J.; Otto, F.

    1983-01-01

    Radiosensitive mutants rad2, rad9, and rad51 of Saccharomyces cerevisiae were X-irradiated with 120 Gy or 60 Gy, heated at 50 0 C for 30 min or treated with a combination of both and incubated in nutrient medium at 30 0 C. Cell number, percentage of budding cells, and cell cycle progression were determined in 45-min intervals. Cell cycle kinetics were investigated by flow cytofluorometry. Hyperthermia leads mainly to a lengthening of G1, whereas X-rays arrest cells of the rad2 and rad9 mutant in G2 and the rad51 - mutant additionaly in a state with DNA contents above G2. Cell division dealy is influenced by oxygen in all strains but to a lesser extent in the rad2 mutant. The effect of the combined treatment appears to be merely additive in the rad2 and rad9 mutant while the rad51 mutant is sensitized to X-irradiation by hyperthermia. No selective action of hyperthermia on hypoxic cells was found. (orig.)

  14. Studies of DNA repair in saccharomyces cerevisiae. I. Characterization of a new allele of RAD6. II. Investigation of events in the first cell cycle after DNA damage

    International Nuclear Information System (INIS)

    Douthwright-Fasse, J.A.

    1979-01-01

    Studies in two independent, but related, areas of DNA repair have been carried out in Saccharomyces cerevisiae; characterization of a new allele in the RAD6 gene which suggests that the gene is multifunctional, and utilization of photoreactivation as a probe of events occurring during the first cell cycle after DNA damage. Strains carrying the new allele, designated rad6-4, are as sensitive to uv and ionizing radiation as those carrying rad6-1 or rad6-3 but, unlike them, are capable of induced mutagenesis and sporulation. Although rad6-4 may well be a missense mutation, the evidence shows that it is unlikely that this phenotype is due to leakiness. Instead, the data suggest that the RAD6 gene is multifunctional. One function is necessary to recover from DNA damage in an error-free manner, and the other is concerned with mutagenic processes and sporulation. Rad6-1 and rad6-3 strains are deficient in both of these functions, while rad6-4 strains are deficient only in the error-free function. The loss of photoreversibility (LOP) of ultraviolet induced mutations to arginine independence in an excision defective strain carrying arg4-17 examines the events occurring in the first cell cycle after DNA damage. LOP is dependent upon de novo protein synthesis. LOP begins immediately after UV irradiation, before semiconservative DNA synthesis takes place, and is complete after four hours in growth medium.There is no evidence indicating whether the normal function of the protein is involved in excision repair, or in one of the two repair processes believed to be inducible; induced mutagenesis or recombinational repair

  15. Congenital Mirror Movements Due to RAD51: Cosegregation with a Nonsense Mutation in a Norwegian Pedigree and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Oriane Trouillard

    2016-11-01

    Full Text Available Background: Autosomal dominant congenital mirror movements (CMM is a neurodevelopmental disorder characterized by early onset involuntary movements of one side of the body that mirror intentional movements on the contralateral side; these persist throughout life in the absence of other neurological symptoms. The main culprit genes responsible for this condition are RAD51 and DCC. This condition has only been reported in a few families, and the molecular mechanisms linking RAD51 mutations and mirror movements (MM are poorly understood. Methods: We collected demographic, clinical, and genetic data of a new family with CMM due to a truncating mutation of RAD51. We reviewed the literature to identify all reported patients with CMM due to RAD51 mutations. Results: We identified a heterozygous nonsense mutation c.760C>T (p.Arg254∗ in eight subjects: four with obvious and disabling MM, and four with a mild phenotype. Including our new family, we identified 32 patients from 6 families with CMM linked to RAD51 variants. Discussion: Our findings further support the involvement of RAD51 in CMM pathogenesis. Possible molecular mechanisms involved in CMM pathogenesis are discussed.

  16. RAD51 potentiates synergistic effects of chemotherapy with PCI-24781 and cis-diamminedichloroplatinum on gastric cancer

    Science.gov (United States)

    He, Wei-Ling; Li, Yu-Huang; Hou, Wei-Jian; Ke, Zun-Fu; Chen, Xin-Lin; Lu, Li-Ya; Cai, Shi-Rong; Song, Wu; Zhang, Chang-Hua; He, Yu-Long

    2014-01-01

    AIM: To explore the efficacy of PCI-24781, a broad-spectrum, hydroxamic acid-derived histone deacetylase inhibitor, in the treatment of gastric cancer (GC). METHODS: With or without treatment of PCI-24781 and/or cis-diamminedichloroplatinum (CDDP), GC cell lines were subjected to functional analysis, including cell growth, apoptosis and clonogenic assays. Chromatin immunoprecipitation and luciferase reporter assays were used to determine the interacting molecules and the activity of the enzyme. An in vivo study was carried out in GC xenograft mice. Cell culture-based assays were represented as mean ± SD. ANOVA tests were used to assess differences across groups. All pairwise comparisons between tumor weights among treatment groups were made using the Tukey-Kramer method for multiple comparison adjustment to control experimental-wise type I error rates. Significance was set at P PCI-24781 significantly reduced the growth of the GC cells, enhanced cell apoptosis and suppressed clonogenicity, and these effects synergized with the effects of CDDP. PCI-24781 modulated the cell cycle and significantly reduced the expression of RAD51, which is related to homologous recombination. Depletion of RAD51 augmented the biological functions of PCI-24781, CDDP and the combination treatment, whereas overexpressing RAD51 had the opposite effects. Increased binding of the transcription suppressor E2F4 on the RAD51 promoter appeared to play a major role in these processes. Furthermore, significant suppression of tumor growth and weight in vivo was obtained following PCI-24781 treatment, which synergized with the anticancer effect of CDDP. CONCLUSION: These data suggest that RAD51 potentiates the synergistic effects of chemotherapy with PCI-24781 and CDDP on GC. PMID:25110436

  17. Characterization of RAD4 gene required for ultraviolet-induced excision repair of Saccharomyces cerevisiae propagated in Escherichia coli without inactivation

    International Nuclear Information System (INIS)

    Choi, I.S.; Kim, J.B.; Lee, K.N.; Park, S.D.

    1990-01-01

    The previously isolated RAD4 gene designated as pPC1 from the genomic library of Saccharomyces cerevisiae appeared to propagate in Escherichia coli and yet retained its complementing activity of rad4 mutants without inactivation. The subcloned RAD4 gene was found to be localized within a 2.5 kb DNA fragment flanking Bg/II and BamHI sites in the insert DNA, and was shown to have the same restriction map as a yeast chromosomal DNA, as determined by Southern hybridization. Tetrad analysis and pulse-field chromosome mapping have revealed that the cloned RAD4 gene can be mapped and integrated into the yeast chromosome V, the actual site of this gene. DNA-tRNA hybridization has shown that the isolated RAD4 gene did not contain a suppressor tRNA gene. These results have indicated that the pPC1 is a functional RAD4 gene playing a unique role involved in the nucleotide excision repair of yeast without any genetic change during amplification in E. coli. (author)

  18. Homologous Recombination Repair Signaling in Chemical Carcinogenesis: Prolonged Particulate Hexavalent Chromium Exposure Suppresses the Rad51 Response in Human Lung Cells

    Science.gov (United States)

    Qin, Qin; Xie, Hong; Wise, Sandra S.; Browning, Cynthia L.; Thompson, Kelsey N.; Holmes, Amie L.; Wise, John Pierce

    2014-01-01

    The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double strand breaks. For particulate Cr(VI), data show DNA double strand break repair must be overcome for neoplastic transformation to occur. Acute Cr(VI) exposures reveal a robust DNA double strand break repair response, however, longer exposures have not been considered. Using the comet assay, we found longer exposures to particulate zinc chromate induced concentration-dependent increases in DNA double strand breaks indicating breaks were occurring throughout the exposure time. Acute (24 h) exposure induced DNA double strand break repair signaling by inducing Mre11 foci formation, ATM phosphorylation and phosphorylated ATM foci formation, Rad51 protein levels and Rad51 foci formation. However, longer exposures reduced the Rad51 response. These data indicate a major chemical carcinogen can simultaneously induce DNA double strand breaks and alter their repair and describe a new and important aspect of the carcinogenic mechanism for Cr(VI). PMID:25173789

  19. Cellular responses of Saccharomyces cerevisiae to DNA damage

    International Nuclear Information System (INIS)

    Ciesla, Z.; Sledziewska-Gojska, E.; Nowicka, A.; Mieczkowski, P.; Fikus, M.U.; Koprowski, P.

    1998-01-01

    Full text. Several experimental strategies have been used to study responses of S. cerevisiae cells to DNA damage. One approach was based on the isolation of novel genes, the expression of which is induced by lesions in DNA. One of these genes, DIN7, was cloned and partially characterized previously. The product of DIN7 belongs to a large family of proteins involved in DNA repair and mutagenesis. This family includes Rad2, Rad27 and ExoI proteins of S. cerevisiae and their respective human homologues, all of which are endowed with DNA nuclease activity. To study cellular function of Din7 we constructed the pPK3 plasmid carrying DIN7 fused to the GAL1 promoter. Effects of DIN7 overproduction on the phenotypes of wild-type cells and of rad27 and exoI mutants were examined. Overproduction of Din7 does not seem to affect the proficiency of wild-type S. cerevisiae cells in recombination and mutagenesis. Also, overexpression of DIN7 does not suppress the deficiency of the EXOI gene product, the closest homologue of Din7, both in recombination and in controlling the fidelity of DNA replication. Unexpectedly, we found that elevated levels of Din7 result in a very high frequency of mitochondrial rho - mutants. A high frequency of production of rho - mutants wa s also observed in strains defective in the functioning of the Dun1 protein kinase involved in signal transmission in cells exposed to DNA damaging agents. Interestingly, deficiency of Dun1 results also in a significant derepression of the DIN7 gene. Experiments are under way to distinguish whether a high cellular level of Din7 specifically decreases stability of mitochondrial DNA or affects stability of chromosomal DNA as well. Analysis of previously constructed S. cerevisiae strains carrying random geno mic fusions with reporter lacZ gene, allowed us to identify the reading frame YBR173c, on chromosome II as a novel damage inducible gene - DIN8. We have shown that DIN8-lacZ fusion is induced in yeast cells treated

  20. Radioresistance of chordoma cells is associated with the ATM/ATR pathway, in which RAD51 serves as an important downstream effector.

    Science.gov (United States)

    Zhang, Chao; Wang, Bing; Li, Lei; Li, Yawei; Li, Pengzhi; Lv, Guohua

    2017-09-01

    Surgery followed by radiotherapy is the standard treatment for chordomas, which are a rare but low-grade type of bone cancer arising from remnants of the embryonic notochord. However, disease recurrence following radiotherapy is common, most likely due to endogenous DNA repair mechanisms that promote cell survival upon radiation strikes. The ataxia telangiectasia mutated/ataxia telangiectasia mutated and Rad3 related (ATM/ATR)-mediated pathway has a critical role in DNA repair mechanisms; however, it has rarely been investigated in chordomas. In the present study, the expression of signal molecules related to the ATM/ATR pathway in chordoma tissues and adjacent normal tissues were initially examined using immunohistochemistry and western blot analysis. Chordoma U-CH1 and U-CH2 cells were subsequently used to investigate cell responses to ionizing radiation and the potential protective actions mediated by the ATM/ATR pathway. Phosphorylated (p)-ATM, p-ATR, γ-H2A histone family, member X (H2AX) and RAD51 were significantly upregulated in chordoma tissues relative to adjacent normal tissues (PATM, γ-H2AX and RAD51 expression in U-CH1 cells (PATM, p-ATR and RAD51 levels in U-CH2 cells (PATM/ATR pathway, in which RAD51 serves as an important downstream effector. Thus, RAD51 presents a promising therapeutic target for improving the outcome of radiotherapy treatment in chordomas.

  1. Defective thymine dimer excision in radiation-sensitive mutants rad10 and rad16 of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L [Rochester Univ., N.Y. (USA). School of Medicine and Dentistry

    1977-04-01

    Two rad mutants of yeast, rad10 and rad16, are shown to be defective in the removal of UV-induced pyrimidine dimers since DNAs obtained from irradiated cells following a post-irradiation incubation in the dark still retain UV-endonuclease-sensitive sites. Both rad10 and rad16 mutants are in the same pathway of excision-repair as the rad1, rad2, rad3, and rad4 mutants.

  2. Icotinib hydrochloride enhances chemo- and radiosensitivity by inhibiting EGFR signaling and attenuating RAD51 expression and function in Hela S3 cells

    Directory of Open Access Journals (Sweden)

    Wang X

    2018-03-01

    Full Text Available Xuanxuan Wang, Yanjun Gu, Hai Liu, Liming Shi, Xiaonan Sun Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China Background: Radiotherapy and cisplatin-based chemotherapy are currently considered as standard treatments employed for advanced cervical cancer (CC. However, patients with local recurrence or distant metastasis continue to have poor outcomes. EGFR overexpression correlated with chemo/radioresistance, and disease failure has been well proved in the previous studies. Hence, the aim of this study was to explore the therapeutic efficacy and underlying mechanism of the sensitization to radiation or cisplatin of icotinib hydrochloride (IH, a high-selective EGFR tyrosine kinase inhibitor (TKI, in the Hela S3 human CC cell line.Methods: Cell proliferation was measured with cell counting kit-8 (CCK-8 assay. Flow cytometry analysis was performed to examine cell cycle distribution and apoptosis. The phosphorylation of EGFR and its downstream signaling molecules were measured by Western blot analysis. γ-H2AX foci and RAD51 foci in the cellular nucleus were visualized using immunofluoresence staining. Expression levels of RAD51 in the whole cells and subceullar fractions were detected to demonstrate the impact of IH on DNA repair. Results: IH can significantly inhibit cell proliferation, redistribute cell cycle, enhance apoptosis and impair DNA damage response of Hela S3 cells following radiation or cisplatin treatment through suppressing the activation of the EGFR signaling pathway and attenuating the expression and function of homologous recombination (HR protein RAD51.Conclusion: This study suggests that IH is a potential sensitizer in radiotherapy and cisplatin-based chemotherapy for CC and RAD51 may serve as a prognosis biomarker for this combination treatment. Keywords: icotinib hydrochloride, cervical cancer, EGFR, radiotherapy, chemotherapy

  3. Physical mapping and cloning of RAD56

    DEFF Research Database (Denmark)

    Mathiasen, David P; Gallina, Irene; Germann, Susanne Manuela

    2013-01-01

    Here we report the physical mapping of the rad56-1 mutation to the NAT3 gene, which encodes the catalytic subunit of the NatB N-terminal acetyltransferase in Saccharomyces cerevisiae. Mutation of RAD56 causes sensitivity to X-rays, methyl methanesulfonate, zeocin, camptothecin and hydroxyurea...

  4. The response of mammalian cells to UV-light reveals Rad54-dependent and independent pathways of homologous recombination

    DEFF Research Database (Denmark)

    Eppink, Berina; Tafel, Agnieszka A; Hanada, Katsuhiro

    2011-01-01

    with lesions in replicating DNA. The core HR protein in mammalian cells is the strand exchange protein RAD51, which is aided by numerous proteins, including RAD54. We used RAD54 as a cellular marker for HR to study the response of mammalian embryonic stem (ES) cells to UV irradiation. In contrast to yeast, ES...

  5. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation

    Science.gov (United States)

    Zelensky, Alex N.; Sanchez, Humberto; Ristic, Dejan; Vidic, Iztok; van Rossum-Fikkert, Sari E.; Essers, Jeroen; Wyman, Claire; Kanaar, Roland

    2013-01-01

    Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair. PMID:23666627

  6. nuvA, an Aspergillus nidulans gene involved in DNA repair and recombination, is a homologue of Saccharomyces cerevisiae RAD18 and Neurospora crassa uvs-2.

    Science.gov (United States)

    Iwanejko, L; Cotton, C; Jones, G; Tomsett, B; Strike, P

    1996-03-01

    A 40 kb genomic clone and 2.3 kb EcoRI subclone that rescued the DNA repair and recombination defects of the Aspergillus nidulans nuvA11 mutant were isolated and the subclone sequenced. The subclone hybridized to a cosmid in a chromosome-specific library confirming the assignment of nuvA to linkage group IV and indicating its closeness to bimD. Amplification by PCR clarified the relative positions of nuvA and bimD. A region identified within the subclone, encoding a C3HC4 zinc finger motif, was used as a probe to retrieve a cDNA clone. Sequencing of this clone showed that the nuvA gene has an ORF of 1329 bp with two introns of 51 bp and 60 bp. Expression of nuvA appears to be extremely low. The putative NUVA polypeptide has two zinc finger motifs, a molecular mass of 48906 Da and has 39% identity with the Neurospora crassa uvs-2 and 25% identity with the Saccharomyces cerevisiae RAD18 translation products. Although mutations in nuvA, uvs-2 and RAD18 produce similar phenotypes, only the nuvA11 mutation affects meiotic recombination. A role for nuvA in both DNA repair and genetic recombination is proposed.

  7. Simultaneous ATM/BRCA1/RAD51 expression variations associated with prognostic factors in Iranian sporadic breast cancer patients.

    Science.gov (United States)

    Hallajian, Zeinab; Mahjoubi, Frouzandeh; Nafissi, Nahid

    2017-07-01

    DNA double-strand breaks (DSBs) as a serious lesion are repaired by non-homologous end-joining and homologous recombination pathways. ATM, BRCA1, RAD51 genes are involved in HR pathways. While some studies have revealed individual expression changes of these genes in different types of cancer, there are limited studies attempting to evaluate correlation of expression variations of these genes in breast cancer pathogenesis. This study aimed to determine RAD51, ATM and BRCA1 gene expression level and its association with clinicopathological factors in fresh breast cancer tissues. Moreover, this study evaluates potential correlations among expression levels of these genes. 50 breast cancer tissues were collected and examined for BRCA1, RAD51 and ATM gene expression by Real Time PCR. Expression changes were analyzed with REST software version 2009. mRNA expression was reduced in all these three genes when compared with β-Actin as a control gene (P value  ATM, BRCA1 and RAD51 gene down expression (P value  ATM with stage (P value  < 0.05), necrosis (P value  < 0.05), perineural invasion (P value  < 0.05), vascular invasion (P value  < 0.01), malignancy (P value  ≤ 0.001), PR (P value  < 0.05) and ER status (P value  < 0.01). In addition, there was a significant association between down expression of BRCA1 with Ki67 (P value  ≤ 0.001). Moreover, there was a significant association between down expression of RAD51 with lymph node involvement (P value  < 0.01), auxiliary lymph node metastasis (P value  = 0.01), age (P = 0.001), grade (P value  < 0.05) and PR status (P value  < 0.05). This study suggests association between expression changes in several DSB repair genes in a common functional pathway in breast cancer and the significant association between abnormal expression of these genes and important clinical prognostic factors.

  8. Coordination of Rad1-Rad10 interactions with Msh2-Msh3, Saw1 and RPA is essential for functional 3' non-homologous tail removal.

    Science.gov (United States)

    Eichmiller, Robin; Medina-Rivera, Melisa; DeSanto, Rachel; Minca, Eugen; Kim, Christopher; Holland, Cory; Seol, Ja-Hwan; Schmit, Megan; Oramus, Diane; Smith, Jessica; Gallardo, Ignacio F; Finkelstein, Ilya J; Lee, Sang Eun; Surtees, Jennifer A

    2018-04-06

    Double strand DNA break repair (DSBR) comprises multiple pathways. A subset of DSBR pathways, including single strand annealing, involve intermediates with 3' non-homologous tails that must be removed to complete repair. In Saccharomyces cerevisiae, Rad1-Rad10 is the structure-specific endonuclease that cleaves the tails in 3' non-homologous tail removal (3' NHTR). Rad1-Rad10 is also an essential component of the nucleotide excision repair (NER) pathway. In both cases, Rad1-Rad10 requires protein partners for recruitment to the relevant DNA intermediate. Msh2-Msh3 and Saw1 recruit Rad1-Rad10 in 3' NHTR; Rad14 recruits Rad1-Rad10 in NER. We created two rad1 separation-of-function alleles, rad1R203A,K205A and rad1R218A; both are defective in 3' NHTR but functional in NER. In vitro, rad1R203A,K205A was impaired at multiple steps in 3' NHTR. The rad1R218A in vivo phenotype resembles that of msh2- or msh3-deleted cells; recruitment of rad1R218A-Rad10 to recombination intermediates is defective. Interactions among rad1R218A-Rad10 and Msh2-Msh3 and Saw1 are altered and rad1R218A-Rad10 interactions with RPA are compromised. We propose a model in which Rad1-Rad10 is recruited and positioned at the recombination intermediate through interactions, between Saw1 and DNA, Rad1-Rad10 and Msh2-Msh3, Saw1 and Msh2-Msh3 and Rad1-Rad10 and RPA. When any of these interactions is altered, 3' NHTR is impaired.

  9. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    International Nuclear Information System (INIS)

    Imura, Yoshiyuki; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D.

    2015-01-01

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase

  10. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Yoshiyuki, E-mail: imura@brs.nihon-u.ac.jp; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D., E-mail: pdnagy2@uky.edu

    2015-10-15

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.

  11. Reconstitution of DNA strand exchange mediated by Rhp51 recombinase and two mediators.

    Directory of Open Access Journals (Sweden)

    Yumiko Kurokawa

    2008-04-01

    Full Text Available In the fission yeast Schizosaccharomyces pombe, genetic evidence suggests that two mediators, Rad22 (the S. pombe Rad52 homolog and the Swi5-Sfr1 complex, participate in a common pathway of Rhp51 (the S. pombe Rad51 homolog-mediated homologous recombination (HR and HR repair. Here, we have demonstrated an in vitro reconstitution of the central step of DNA strand exchange during HR. Our system consists entirely of homogeneously purified proteins, including Rhp51, the two mediators, and replication protein A (RPA, which reflects genetic requirements in vivo. Using this system, we present the first robust biochemical evidence that concerted action of the two mediators directs the loading of Rhp51 onto single-stranded DNA (ssDNA precoated with RPA. Dissection of the reaction reveals that Rad22 overcomes the inhibitory effect of RPA on Rhp51-Swi5-Sfr1-mediated strand exchange. In addition, Rad22 negates the requirement for a strict order of protein addition to the in vitro system. However, despite the presence of Rad22, Swi5-Sfr1 is still essential for strand exchange. Importantly, Rhp51, but neither Rad22 nor the Swi5-Sfr1 mediator, is the factor that displaces RPA from ssDNA. Swi5-Sfr1 stabilizes Rhp51-ssDNA filaments in an ATP-dependent manner, and this stabilization is correlated with activation of Rhp51 for the strand exchange reaction. Rad22 alone cannot activate the Rhp51 presynaptic filament. AMP-PNP, a nonhydrolyzable ATP analog, induces a similar stabilization of Rhp51, but this stabilization is independent of Swi5-Sfr1. However, hydrolysis of ATP is required for processive strand transfer, which results in the formation of a long heteroduplex. Our in vitro reconstitution system has revealed that the two mediators have indispensable, but distinct, roles for mediating Rhp51 loading onto RPA-precoated ssDNA.

  12. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination.

    NARCIS (Netherlands)

    J. Essers (Jeroen); R.W. Hendriks (Rudi); S.M.A. Swagemakers (Sigrid); C. Troelstra (Christine); J. de Wit (Jan); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland)

    1997-01-01

    textabstractDouble-strand DNA break (DSB) repair by homologous recombination occurs through the RAD52 pathway in Saccharomyces cerevisiae. Its biological importance is underscored by the conservation of many RAD52 pathway genes, including RAD54, from fungi to humans. We have analyzed the phenotype

  13. Structure of a hexameric form of RadA recombinase from Methanococcus voltae

    International Nuclear Information System (INIS)

    Du, Liqin; Luo, Yu

    2012-01-01

    Hexameric rings of RadA recombinase from M. voltae have been crystallized. Structural comparisons suggest that homologues of RadA tend to form double-ringed assemblies. Archaeal RadA proteins are close homologues of eukaryal Rad51 and DMC1 proteins and are remote homologues of bacterial RecA proteins. For the repair of double-stranded breaks in DNA, these recombinases promote a pivotal strand-exchange reaction between homologous single-stranded and double-stranded DNA substrates. This DNA-repair function also plays a key role in the resistance of cancer cells to chemotherapy and radiotherapy and in the resistance of bacterial cells to antibiotics. A hexameric form of a truncated Methanococcus voltae RadA protein devoid of its small N-terminal domain has been crystallized. The RadA hexamers further assemble into two-ringed assemblies. Similar assemblies can be observed in the crystals of Pyrococcus furiosus RadA and Homo sapiens DMC1. In all of these two-ringed assemblies the DNA-interacting L1 region of each protomer points inward towards the centre, creating a highly positively charged locus. The electrostatic characteristics of the central channels can be utilized in the design of novel recombinase inhibitors

  14. Differential expression and requirements for Schizosaccharomyces pombe RAD52 homologs in DNA repair and recombination

    OpenAIRE

    van den Bosch, Michael; Zonneveld, José B. M.; Vreeken, Kees; de Vries, Femke A. T.; Lohman, Paul H. M.; Pastink, Albert

    2002-01-01

    In fission yeast two RAD52 homologs have been identified, rad22A+ and rad22B+. Two-hybrid experiments and GST pull-down assays revealed physical interaction between Rad22A and Rad22B, which is dependent on the N-terminal regions. Interaction with Rhp51 is dependent on the C-terminal parts of either protein. Both Rad22A and Rad22B also interact with RPA. The expression of rad22B+ in mitotically dividing cells is very low in comparison with rad22A+ but is strongly enhanced after induction of me...

  15. ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function

    DEFF Research Database (Denmark)

    Ahlskog, Johanna K; Larsen, Brian D; Achanta, Kavya

    2016-01-01

    DNA damage activates the ATM and ATR kinases that coordinate checkpoint and DNA repair pathways. An essential step in homology-directed repair (HDR) of DNA breaks is the formation of RAD51 nucleofilaments mediated by PALB2-BRCA2; however, roles of ATM and ATR in this critical step of HDR are poor...... function, as the PALB2-dependent checkpoint response is normal in cells expressing the phospho-deficient PALB2 mutant. Collectively, our findings highlight a critical importance of PALB2 phosphorylation as a novel regulatory step in genome maintenance after genotoxic stress....

  16. Preferential binding of yeast Rad4-Rad23 complex to damaged DNA

    International Nuclear Information System (INIS)

    Jansen, L.E.T.; Verhage, R.A.; Brouwer, J.

    1998-01-01

    The yeast Rad4 and Rad23 proteins form a complex that is involved in nucleotide excision repair (NER). Their function in this process is not known yet, but genetic data suggest that they act in an early step in NER. We have purified an epitope-tagged Rad4.Rad23 (tRad4. Rad23) complex from yeast cells, using a clone overproducing Rad4 with a hemagglutinin-tag at its C terminus. tRad4.Rad23 complex purified by both conventional and immuno-affinity chromatography complements the in vitro repair defect of rad4 and rad23 mutant extracts, demonstrating that these proteins are functional in NER. Using electrophoretic mobility shift assays, we show preferential binding of the tRad4.Rad23 complex to damaged DNA in vitro. UV-irradiated, as well as N-acetoxy-2-(acetylamino)fluorene-treated DNA, is efficiently bound by the protein complex. These data suggest that Rad4.Rad23 interacts with DNA damage during NER and may play a role in recognition of the damage

  17. Functions and structures of eukaryotic recombination proteins

    International Nuclear Information System (INIS)

    Ogawa, Tomoko

    1994-01-01

    We have found that Rad51 and RecA Proteins form strikingly similar structures together with dsDNA and ATP. Their right handed helical nucleoprotein filaments extend the B-form DNA double helixes to 1.5 times in length and wind the helix. The similarity and uniqueness of their structures must reflect functional homologies between these proteins. Therefore, it is highly probable that similar recombination proteins are present in various organisms of different evolutional states. We have succeeded to clone RAD51 genes from human, mouse, chicken and fission yeast genes, and found that the homologues are widely distributed in eukaryotes. The HsRad51 and MmRad51 or ChRad51 proteins consist of 339 amino acids differing only by 4 or 12 amino acids, respectively, and highly homologous to both yeast proteins, but less so to Dmcl. All of these proteins are homologous to the region from residues 33 to 240 of RecA which was named ''homologous core. The homologous core is likely to be responsible for functions common for all of them, such as the formation of helical nucleoprotein filament that is considered to be involved in homologous pairing in the recombination reaction. The mouse gene is transcribed at a high level in thymus, spleen, testis, and ovary, at lower level in brain and at a further lower level in some other tissues. It is transcribed efficiently in recombination active tissues. A clear functional difference of Rad51 homologues from RecA was suggested by the failure of heterologous genes to complement the deficiency of Scrad51 mutants. This failure seems to reflect the absence of a compatible partner, such as ScRad52 protein in the case of ScRad51 protein, between different species. Thus, these discoveries play a role of the starting point to understand the fundamental gene targeting in mammalian cells and in gene therapy. (J.P.N.)

  18. Genetic control of diploid recovery after γ-irradiation in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Saeki, T.; Machida, I.; Nakai, S.

    1980-01-01

    Genetic mechanism(s) of γ-ray resistance of the diploid and budding haploid cells of S. cerevisiae were investigated, with special reference to mitotic recombination, by examining 11 rad mutant strains. The radiosentivity of the diploid was markedly enhanced in certain γ-ray-sensitive rad mutants, whereas the sensitivity of the haploid was not so enhanced in these rad mutants. These enhanced sensitivities of diploids were irrespective of their own haploid sensitivities. From these results, the existence of a mechanism of diploid-specific recovery was postulated. The magnitude of diploid radioresistance in rad mutants was positively correlated with the ability for the induction of mitotic recombinational events which were controlled by RAD genes belonging to the RAD-51 genetic pathway. The genetic mechanism(s) of the diploid recovery after γ-irradiation are probably related to recombinational processes between the homologous chromosomes leading to reciprocal recombination or non-reciprocal gene conversion. Furthermore, the higher radioresistance of budding cells in comparison with the non-budding cells was also correlated to the diploid radioresistance with a few exceptions. Consequently, the mechanism(s) of budding radioresistance similar to the diploid recovery seems to be related to mitotic recombinational processes. (orig.)

  19. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA

    International Nuclear Information System (INIS)

    Guzder, S.N.; Sung, P.; Prakash, S.; Prakash, L.

    1993-01-01

    Xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers due to a defect in excision repair of UV light-damaged DNA. Of the seven XP complementation groups, A--G, group A represents a severe and frequent form of the disease. The Saccharomyces cerevisiae RAD14 gene is a homolog of the XP-A correcting (XPAC) gene. Like XP-A cells, rad14-null mutants are defective in the incision step of excision repair of UV-damaged DNA. The authors have purified RAD14 protein to homogeneity from extract of a yeast strain genetically tailored to overexpress RAD14. As determined by atomic emission spectroscopy, RAD14 contains one zinc atom. They also show in vitro that RAD14 binds zinc but does not bind other divalent metal ions. In DNA mobility-shift assays, RAD14 binds specifically to UV-damaged DNA. Removal of cyclobutane pyrimidine dimers from damaged DNA by enzymatic photoreactivation has no effect on binding, strongly suggesting that RAD14 recognizes pyrimidine(6-4)pyrimidone photoproduct sites. These findings indicate that RAD14 functions in damage recognition during excision repair. 37 refs., 4 figs

  20. The recombination protein RAD52 cooperates with the excision repair protein OGG1 for the repair of oxidative lesions in mammalian cells

    DEFF Research Database (Denmark)

    de Souza-Pinto, Nadja C; Maynard, Scott; Hashiguchi, Kazunari

    2009-01-01

    number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic...... knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1...... to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities....

  1. Ultraviolet-endonuclease activity in cell extracts of Saccharomyces cerevisiae mutants defective in excision of pyrimidine dimers

    International Nuclear Information System (INIS)

    Bekker, M.L.; Kaboev, O.K.; Akhmedov, A.T.; Luchkina, L.A.

    1980-01-01

    Cell-free extracts of ultraviolet-sensitive mutants of Saccharomyces cerevisiae defective in excision of pyrimidine dimers, rad1, rad2, rad3, rad4, rad10, and rad16, as well as the extracts of the wild-type strain RAD+, display ultraviolet-endonuclease activity

  2. Roles for the yeast RAD18 and RAD52 DNA repair genes in UV mutagenesis.

    Science.gov (United States)

    Armstrong, J D; Chadee, D N; Kunz, B A

    1994-11-01

    Experimental evidence indicates that although the Saccharomyces cerevisiae RAD18 and RAD52 genes are not required for nucleotide excision repair, they function in the processing of UV-induced DNA damage in yeast. Conflicting statements regarding the UV mutability of strains deleted for RAD18 prompted us to re-examine the influence of RAD18, and RAD52, on UV mutagenesis. To do so, we characterized mutations induced by UV in SUP4-o, a yeast suppressor tRNA gene. SUP4-o was maintained on a plasmid in isogenic strains that either carried one of two different rad18 deletions (rad18 delta) or had RAD52 disrupted. Both rad18 deletions decreased the frequency of UV-induced SUP4-o mutations to levels close to those for spontaneous mutagenesis in the rad18 delta backgrounds, and prevented a net increase in mutant yield. A detailed analysis of mutations isolated after UV irradiation of one of the rad18 delta strains uncovered little evidence of the specificity features typical for UV mutagenesis in the isogenic repair-proficient (RAD) parent (e.g., predominance of G.C-->A.T transitions). Evidently, UV induction of SUP4-o mutations is highly dependent on the RAD18 gene. Compared to the RAD strain, disruption of RAD52 reduced the frequency and yield of UV mutagenesis by about two-thirds. Closer inspection revealed that 80% of this reduction was due to a decrease in the frequency of G.C-->A.T transitions. In addition, there were differences in the distributions and site specificities of single base-pair substitutions. Thus, RAD52 also participates in UV mutagenesis of a plasmid-borne gene in yeast, but to a lesser extent than RAD18.

  3. Influence of different inhibitors on the activity of the RAD54 dependent step of DNA repair in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Siede, W.; Obermaier, S.; Eckhardt, F.

    1985-01-01

    The recombinagenic pathway of DNA repair in yeast was characterized by the effect of different inhibitors on the temperature-dependent survival after ..gamma..-irradiation in haploid cells of the thermoconditional mutant rad54-3. Blocking protein synthesis with cycloheximide in replicating cells caused partial inhibition of the RAD54 dependent function but some repair activity remained detectable. This indicates that ..gamma..-rays can induce RAD54 activity above some constitutive level of function. Inhibition of DNA replication by hydroxyurea efficiently blocked the RAD54 dependent function in stationary-phase cells but not in logarithmic-phase cells. In logarithmic-phase cells, the authors found a strong inhibitory effect of caffeine on the RAD54 mediated repair process.

  4. The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway

    International Nuclear Information System (INIS)

    Cohen-Fix, O.; Koshland, D.

    1997-01-01

    Inhibition of DNA replication and physical DNA damage induce checkpoint responses that arrest cell cycle progression at two different stages. In Saccharomyces cerevisiae, the execution of both checkpoint responses requires the Mec1 and Rad53 proteins. This observation led to the suggestion that these checkpoint responses are mediated through a common signal transduction pathway. However, because the checkpoint-induced arrests occur at different cell cycle stages, the downstream effectors mediating these arrests are likely to be distinct. We have previously shown that the S. cerevisiae protein Pds1p is an anaphase inhibitor and is essential for cell cycle arrest in mitosis in the presence DNA damage. Herein we show that DNA damage, but not inhibition of DNA replication, induces the phosphorylation of Pds1p. Analyses of Pds1p phosphorylation in different checkpoint mutants reveal that in the presence of DNA damage, Pds1p is phosphorylated in a Mec1p- and Rad9p-dependent hut Rad53p-independent manner. Our data place Pds1p and Rad53p on parallel branches of the DNA damage checkpoint pathway. We suggest that Pds1p is a downstream target of the DNA damage checkpoint pathway and that it is involved in implementing the DNA damage checkpoint arrest specifically in mitosis

  5. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination.

    NARCIS (Netherlands)

    D.F.R. Muris; O.Y. Bezzubova (Olga); J-M. Buerstedde; K. Vreeken; A.S. Balajee; C.J. Osgood; C. Troelstra (Christine); J.H.J. Hoeijmakers (Jan); K. Ostermann; H. Schmidt (Henning); A.T. Natarajan; J.C.J. Eeken; P.H.M. Lohmann (Paul); A. Pastink (Albert)

    1994-01-01

    textabstractThe RAD52 gene of Saccharomyces cerevisiae is required for recombinational repair of double-strand breaks. Using degenerate oligonucleotides based on conserved amino acid sequences of RAD52 and rad22, its counterpart from Schizosaccharomyces pombe, RAD52 homologs from man and mouse were

  6. VDE-initiated intein homing in Saccharomyces cerevisiae proceeds in a meiotic recombination-like manner.

    Science.gov (United States)

    Fukuda, Tomoyuki; Nogami, Satoru; Ohya, Yoshikazu

    2003-07-01

    Inteins and group I introns found in prokaryotic and eukaryotic organisms occasionally behave as mobile genetic elements. During meiosis of the yeast Saccharomyces cerevisiae, the site-specific endonuclease encoded by VMA1 intein, VDE, triggers a single double-strand break (DSB) at an inteinless allele, leading to VMA1 intein homing. Besides the accumulating information on the in vitro activity of VDE, very little has been known about the molecular mechanism of intein homing in yeast nucleus. We developed an assay to detect the product of VMA1 intein homing in yeast genome. We analysed mutant phenotypes of RecA homologs, Rad51p and Dmc1p, and their interacting proteins, Rad54p and Tid1p, and found that they all play critical roles in intein inheritance. The absence of DSB end processing proteins, Sae2p and those in the Mre11-Rad50-Xrs2 complex, also causes partial reduction in homing efficiency. As with meiotic recombination, crossover events are frequently observed during intein homing. We also observed that the absence of premeiotic DNA replication caused by hydroxyurea (HU) or clb5delta clb6delta mutation reduces VDE-mediated DSBs. The repairing system working in intein homing shares molecular machinery with meiotic recombination induced by Spo11p. Moreover, like Spo11p-induced DNA cleavage, premeiotic DNA replication is a prerequisite for a VDE-induced DSB. VMA1 intein thus utilizes several host factors involved in meiotic and recombinational processes to spread its genetic information and guarantee its progeny through establishment of a parasitic relationship with the organism.

  7. Dynamic organization of genetic recombination proteins and chromosomes

    International Nuclear Information System (INIS)

    Essers, J.; Van Cappellen, G.; Van Drunen, E.; Theil, A.; Jaspers, N.N.G.J.; Houtsmuller, A.B.; Vermeulen, W.; Kanaar, R.

    2003-01-01

    Homologous recombination requires the co-ordinated action of the RAD52 group proteins, including Rad51, Rad52 and Rad54. Upon treatment of mammalian cells with ionizing radiation, these proteins accumulate into foci at sites of DSB induction. We probed the nature of the DNA damage-induced foci in living cells with the use of photobleaching techniques. These foci are not static assemblies of DNA repair proteins. Instead, they are dynamic structures of which Rad51 is a stable core component, while Rad52 and Rad54 reversibly interact with the structure. Furthermore, even though the RAD52 group proteins colocalize in the DNA damage-induced foci, the majority of the proteins are not part of the same multi-protein complex in the absence of DNA damage. Executing DNA transactions through dynamic multi-protein complexes, rather than stable holo-complexes, allows greater flexibility during the transaction. In case of DNA repair, for example, it allows cross talk between different DNA repair pathways and coupling to other DNA transactions, such as replication. In addition to the behavior of proteins in living cells, we have tracked chromosomes during cell division. Our results suggest that the relative position of chromosomes in the mother cell is conserved in its daughter cells

  8. The C-terminal region of Rad52 is essential for Rad52 nuclear and nucleolar localization, and accumulation at DNA damage sites immediately after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Manabu, E-mail: m_koike@nirs.go.jp [DNA Repair Gene Res., National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yutoku, Yasutomo [DNA Repair Gene Res., National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Science, Chiba University, Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Koike, Aki [DNA Repair Gene Res., National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2013-05-31

    Highlights: •Rad52 might play a key role in the repair of DSB immediately after irradiation. •EYFP-Rad52 accumulates rapidly at DSB sites and colocalizes with Ku80. •Accumulation of Rad52 at DSB sites is independent of the core NHEJ factors. •Localization and recruitment of Rad52 to DSB sites are dependent on the Rad52 CTR. •Basic amino acids in Rad52 CTR are highly conserved among vertebrate species. -- Abstract: Rad52 plays essential roles in homologous recombination (HR) and repair of DNA double-strand breaks (DSBs) in Saccharomyces cerevisiae. However, in vertebrates, knockouts of the Rad52 gene show no hypersensitivity to agents that induce DSBs. Rad52 localizes in the nucleus and forms foci at a late stage following irradiation. Ku70 and Ku80, which play an essential role in nonhomologous DNA-end-joining (NHEJ), are essential for the accumulation of other core NHEJ factors, e.g., XRCC4, and a HR-related factor, e.g., BRCA1. Here, we show that the subcellular localization of EYFP-Rad52(1–418) changes dynamically during the cell cycle. In addition, EYFP-Rad52(1–418) accumulates rapidly at microirradiated sites and colocalizes with the DSB sensor protein Ku80. Moreover, the accumulation of EYFP-Rad52(1–418) at DSB sites is independent of the core NHEJ factors, i.e., Ku80 and XRCC4. Furthermore, we observed that EYFP-Rad52(1–418) localizes in nucleoli in CHO-K1 cells and XRCC4-deficient cells, but not in Ku80-deficient cells. We also found that Rad52 nuclear localization, nucleolar localization, and accumulation at DSB sites are dependent on eight amino acids (411–418) at the end of the C-terminal region of Rad52 (Rad52 CTR). Furthermore, basic amino acids on Rad52 CTR are highly conserved among mammalian, avian, and fish homologues, suggesting that Rad52 CTR is important for the regulation and function of Rad52 in vertebrates. These findings also suggest that the mechanism underlying the regulation of subcellular localization of Rad52 is

  9. Affinity purification and partial characterization of a yeast multiprotein complex for nucleotide excision repair using histidine-tagged Rad14 protein

    International Nuclear Information System (INIS)

    Rodriguez, K.; Talamantez, J.; Huang, W.; Reed, S.H.; Wang, Z.; Chen, L.; Feaver, W.J.; Friedberg, E.C.; Tomkinson, A.E.

    1998-01-01

    The nucleotide excision repair (NER) pathway of eukaryotes involves approximately 30 polypeptides. Reconstitution of this pathway with purified components is consistent with the sequential assembly of NER proteins at the DNA lesion. However, recent studies have suggested that NER proteins may be pre-assembled in a high molecular weight complex in the absence of DNA damage. To examine this model further, we have constructed a histidine-tagged version of the yeast DNA damage recognition protein Rad14. Affinity purification of this protein from yeast nuclear extracts resulted in the co-purification of Rad1, Rad7, Rad10, Rad16, Rad23, RPA, RPB1, and TFIIH proteins, whereas none of these proteins bound to the affinity resin in the absence of recombinant Rad14. Furthermore, many of the co-purifying proteins were present in approximately equimolar amounts. Co-elution of these proteins was also observed when the nuclear extract was fractionated by gel filtration, indicating that the NER proteins were associated in a complex with a molecular mass of >1000 kDa prior to affinity chromatography. The affinity purified NER complex catalyzed the incision of UV-irradiated DNA in an ATP-dependent reaction. We conclude that active high molecular weight complexes of NER proteins exist in undamaged yeast cells

  10. HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis

    DEFF Research Database (Denmark)

    Adelman, Carrie A.; Lolo, Rafal L.; Birkbak, Nicolai Juul

    2013-01-01

    Repair of interstrand crosslinks (ICLs) requires the coordinated action of the intra-S-phase checkpoint and the Fanconi anaemia pathway, which promote ICL incision, translesion synthesis and homologous recombination (reviewed in refs 1, 2). Previous studies have implicated the 3'-5' superfamily 2......, phenotype than the null, indicative of haploinsufficiency. We establish that HELQ interacts directly with the RAD51 paralogue complex BCDX2 and functions in parallel to the Fanconi anaemia pathway to promote efficient homologous recombination at damaged replication forks. Thus, our results reveal a critical...

  11. Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta.

    Science.gov (United States)

    Patil, Shrikant; Moeys, Sara; von Dassow, Peter; Huysman, Marie J J; Mapleson, Daniel; De Veylder, Lieven; Sanges, Remo; Vyverman, Wim; Montresor, Marina; Ferrante, Maria Immacolata

    2015-11-14

    Sexual reproduction is an obligate phase in the life cycle of most eukaryotes. Meiosis varies among organisms, which is reflected by the variability of the gene set associated to the process. Diatoms are unicellular organisms that belong to the stramenopile clade and have unique life cycles that can include a sexual phase. The exploration of five diatom genomes and one diatom transcriptome led to the identification of 42 genes potentially involved in meiosis. While these include the majority of known meiosis-related genes, several meiosis-specific genes, including DMC1, could not be identified. Furthermore, phylogenetic analyses supported gene identification and revealed ancestral loss and recent expansion in the RAD51 family in diatoms. The two sexual species Pseudo-nitzschia multistriata and Seminavis robusta were used to explore the expression of meiosis-related genes: RAD21, SPO11-2, RAD51-A, RAD51-B and RAD51-C were upregulated during meiosis, whereas other paralogs in these families showed no differential expression patterns, suggesting that they may play a role during vegetative divisions. An almost identical toolkit is shared among Pseudo-nitzschia multiseries and Fragilariopsis cylindrus, as well as two species for which sex has not been observed, Phaeodactylum tricornutum and Thalassiosira pseudonana, suggesting that these two may retain a facultative sexual phase. Our results reveal the conserved meiotic toolkit in six diatom species and indicate that Stramenopiles share major modifications of canonical meiosis processes ancestral to eukaryotes, with important divergences in each Kingdom.

  12. In Vivo Delivery of miR-34a Sensitizes Lung Tumors to Radiation Through RAD51 Regulation

    Directory of Open Access Journals (Sweden)

    Maria Angelica Cortez

    2015-01-01

    Full Text Available MiR-34a, an important tumor-suppressing microRNA, is downregulated in several types of cancer; loss of its expression has been linked with unfavorable clinical outcomes in non-small-cell lung cancer (NSCLC, among others. MiR-34a represses several key oncogenic proteins, and a synthetic mimic of miR-34a is currently being tested in a cancer trial. However, little is known about the potential role of miR-34a in regulating DNA damage response and repair. Here, we demonstrate that miR-34a directly binds to the 3’ untranslated region of RAD51 and regulates homologous recombination, inhibiting double-strand-break repair in NSCLC cells. We further demonstrate the therapeutic potential of miR-34a delivery in combination with radiotherapy in mouse models of lung cancer. Collectively, our results suggest that administration of miR-34a in combination with radiotherapy may represent a novel strategy for treating NSCLC.

  13. Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo

    DEFF Research Database (Denmark)

    Burgess, Rebecca C; Lisby, Michael; Altmannova, Veronika

    2009-01-01

    , and surprisingly, can form in the absence of Rad52 mediation. However, these Rad51 foci do not represent repair-proficient filaments, as determined by recombination assays. Antagonistic roles for Rad52 and Srs2 in Rad51 filament formation are also observed in vitro. Furthermore, we provide evidence that Srs2......Homologous recombination (HR), although an important DNA repair mechanism, is dangerous to the cell if improperly regulated. The Srs2 "anti-recombinase" restricts HR by disassembling the Rad51 nucleoprotein filament, an intermediate preceding the exchange of homologous DNA strands. Here, we...... removes Rad51 indiscriminately from DNA, while the Rad52 protein coordinates appropriate filament reformation. This constant breakdown and rebuilding of filaments may act as a stringent quality control mechanism during HR....

  14. Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants.

    Directory of Open Access Journals (Sweden)

    Katarzyna Jarmoszewicz

    Full Text Available Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking.

  15. Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.; Prakash, S.

    1977-01-01

    We have isolated mutants sensitive to methyl methanesulfonate (MMS) in Saccharomyces cerevisiae. Alleles of rad1, rad4, rad6, rad52, rad55 and rad57 were found among these mms mutants. Twenty-nine of the mms mutants which complement the existing radiation-sensitive (rad and rev) mutants belong to 22 new complementation groups. Mutants from five complementation groups are sensitive only to MMS. Mutants of 11 complementation groups are sensitive to uv or x rays in addition to MMS, mutants of six complementation groups are sensitive to all three agents. The cross-sensitivities of these mms mutants to uv and x rays are discussed in terms of their possible involvement in DNA repair. Sporulation is reduced or absent in homozygous diploids of mms mutants from nine complementation groups

  16. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Österlund, Tobias; Liu, Zihe

    2013-01-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular...... stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent...... the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high...

  17. A miR-590/Acvr2a/Rad51b Axis Regulates DNA Damage Repair during mESC Proliferation

    Directory of Open Access Journals (Sweden)

    Qidong Liu

    2014-12-01

    Full Text Available Embryonic stem cells (ESCs enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF, which maintains the self-renewal capability of mouse ESCs (mESCs, significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB and double-strand break (DSB damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal.

  18. Schizosaccharomyces pombe Mms1 channels repair of perturbed replication into Rhp51 independent homologous recombination

    DEFF Research Database (Denmark)

    Vejrup-Hansen, Rasmus; Mizuno, Ken'Ichi; Miyabe, Izumi

    2011-01-01

    -like protein, Rtt101/Cul8, a potential paralog of Cullin 4. We performed epistasis analysis between ¿mms1 and mutants of pathways with known functions in genome integrity, and measured the recruitment of homologous recombination proteins to blocked replication forks and recombination frequencies. We show that......-specific replication fork barrier and that, in a ¿mms1 strain, Rad22(Rad52) and RPA recruitment to blocked forks are reduced, whereas Rhp51 recruitment is unaffected. In addition, Mms1 appears to specifically promote chromosomal rearrangements in a recombination assay. These observations suggest that Mms1 acts...... is particularly important when a single strand break is converted into a double strand break during replication. Genetic data connect Mms1 to a Mus81 and Rad22(Rad52) dependent, but Rhp51 independent, branch of homologous recombination. This is supported by results demonstrating that Mms1 is recruited to a site...

  19. Adaption of Saccharomyces cerevisiae expressing a heterologous protein

    DEFF Research Database (Denmark)

    Krogh, Astrid Mørkeberg; Beck, Vibe; Højlund Christensen, Lars

    2008-01-01

    Production of the heterologous protein, bovine aprotinin, in Saccharomyces cerevisiae was shown to affect the metabolism of the host cell to various extent depending on the strain genotype. Strains with different genotypes, industrial and laboroatory, respectively, were investigated. The maximal...

  20. Specific inhibition of Wee1 kinase and Rad51 recombinase: A strategy to enhance the sensitivity of leukemic T-cells to ionizing radiation-induced DNA double-strand breaks

    International Nuclear Information System (INIS)

    Havelek, Radim; Cmielova, Jana; Kralovec, Karel; Bruckova, Lenka; Bilkova, Zuzana; Fousova, Ivana; Sinkorova, Zuzana; Vavrova, Jirina; Rezacova, Martina

    2014-01-01

    Highlights: • Pre-treatment with the inhibitors increased the sensitivity of Jurkat cells to irradiation. • Combining both inhibitors together resulted in a G2 cell cycle arrest abrogation in Jurkat. • Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. • Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction in MOLT-4 cells. • When dosed together, the combination decreased MOLT-4 cell survival. - Abstract: Present-day oncology sees at least two-thirds of cancer patients receiving radiation therapy as a part of their anticancer treatment. The objectives of the current study were to investigate the effects of the small molecule inhibitors of Wee1 kinase II (681641) and Rad51 (RI-1) on cell cycle progression, DNA double-strand breaks repair and apoptosis following ionizing radiation exposure in human leukemic T-cells Jurkat and MOLT-4. Pre-treatment with the Wee1 681641 or Rad51 RI-1 inhibitor alone increased the sensitivity of Jurkat cells to irradiation, however combining both inhibitors together resulted in a further enhancement of apoptosis. Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. MOLT-4 cells were less affected by inhibitors application prior to ionizing radiation exposure. Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction; however Wee1 681641 increased ionizing radiation-induced cell death in MOLT-4 cells

  1. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks

    Science.gov (United States)

    Schär, Primo; Herrmann, Gernot; Daly, Graham; Lindahl, Tomas

    1997-01-01

    Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA replication, repair, and recombination. Whereas mammalian cells contain several different DNA ligases, encoded by at least three distinct genes, only one DNA ligase has been detected previously in either budding yeast or fission yeast. Here, we describe a newly identified nonessential Saccharomyces cerevisiae gene that encodes a DNA ligase distinct from the CDC9 gene product. This DNA ligase shares significant amino acid sequence homology with human DNA ligase IV; accordingly, we designate the yeast gene LIG4. Recombinant LIG4 protein forms a covalent enzyme-AMP complex and can join a DNA single-strand break in a DNA/RNA hybrid duplex, the preferred substrate in vitro. Disruption of the LIG4 gene causes only marginally increased cellular sensitivity to several DNA damaging agents, and does not further sensitize cdc9 or rad52 mutant cells. In contrast, lig4 mutant cells have a 1000-fold reduced capacity for correct recircularization of linearized plasmids by illegitimate end-joining after transformation. Moreover, homozygous lig4 mutant diploids sporulate less efficiently than isogenic wild-type cells, and show retarded progression through meiotic prophase I. Spore viability is normal, but lig4 mutants appear to produce a higher proportion of tetrads with only three viable spores. The mutant phenotypes are consistent with functions of LIG4 in an illegitimate DNA end-joining pathway and ensuring efficient meiosis. PMID:9271115

  2. The KYxxL motif in Rad17 protein is essential for the interaction with the 9–1–1 complex

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Yasunori, E-mail: fukumoto@faculty.chiba-u.jp [Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan); Ikeuchi, Masayoshi; Nakayama, Yuji [Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414 (Japan); Yamaguchi, Naoto, E-mail: nyama@faculty.chiba-u.jp [Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan)

    2016-09-02

    ATR-dependent DNA damage checkpoint is the major DNA damage checkpoint against UV irradiation and DNA replication stress. The Rad17–RFC and Rad9–Rad1–Hus1 (9–1–1) complexes interact with each other to contribute to ATR signaling, however, the precise regulatory mechanism of the interaction has not been established. Here, we identified a conserved sequence motif, KYxxL, in the AAA+ domain of Rad17 protein, and demonstrated that this motif is essential for the interaction with the 9–1–1 complex. We also show that UV-induced Rad17 phosphorylation is increased in the Rad17 KYxxL mutants. These data indicate that the interaction with the 9–1–1 complex is not required for Rad17 protein to be an efficient substrate for the UV-induced phosphorylation. Our data also raise the possibility that the 9–1–1 complex plays a negative regulatory role in the Rad17 phosphorylation. We also show that the nucleotide-binding activity of Rad17 is required for its nuclear localization. - Highlights: • We have identified a conserved KYxxL motif in Rad17 protein. • The KYxxL motif is crucial for the interaction with the 9–1–1 complex. • The KYxxL motif is dispensable or inhibitory for UV-induced Rad17 phosphorylation. • Nucleotide binding of Rad17 is required for its nuclear localization.

  3. Identification of Putative Mek1 Substrates during Meiosis in Saccharomyces cerevisiae Using Quantitative Phosphoproteomics.

    Directory of Open Access Journals (Sweden)

    Raymond T Suhandynata

    Full Text Available Meiotic recombination plays a key role in sexual reproduction as it generates crossovers that, in combination with sister chromatid cohesion, physically connect homologous chromosomes, thereby promoting their proper segregation at the first meiotic division. Meiotic recombination is initiated by programmed double strand breaks (DSBs catalyzed by the evolutionarily conserved, topoisomerase-like protein Spo11. Repair of these DSBs is highly regulated to create crossovers between homologs that are distributed throughout the genome. This repair requires the presence of the mitotic recombinase, Rad51, as well as the strand exchange activity of the meiosis-specific recombinase, Dmc1. A key regulator of meiotic DSB repair in Saccharomyces cerevisiae is the meiosis-specific kinase Mek1, which promotes interhomolog strand invasion and is required for the meiotic recombination checkpoint and the crossover/noncrossover decision. Understanding how Mek1 regulates meiotic recombination requires the identification of its substrates. Towards that end, an unbiased phosphoproteomic approach utilizing Stable Isotope Labeling by Amino Acids in Cells (SILAC was utilized to generate a list of potential Mek1 substrates, as well as proteins containing consensus phosphorylation sites for cyclin-dependent kinase, the checkpoint kinases, Mec1/Tel1, and the polo-like kinase, Cdc5. These experiments represent the first global phosphoproteomic dataset for proteins in meiotic budding yeast.

  4. Loss of heterozygosity and DNA damage repair in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Daigaku, Yasukazu [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan); Endo, Kingo [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan); Watanabe, Eri [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan); Ono, Tetsuya [Graduate School of Medicine, Tohoku University, Sendai 980-8575 (Japan); Yamamoto, Kazuo [Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 (Japan)]. E-mail: yamamot@mail.tains.tohoku.ac.jp

    2004-11-22

    Loss of heterozygosity (LOH) of tumor suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Understanding how LOH events arise may provide an opportunity for the prevention or early intervention of cancer development. In an effort to investigate the source of LOH events, we constructed MAT{alpha} can1{delta}::LEU2 and MATa CAN1 haploid yeast strains and examined canavanine-resistance mutations in a MATa CAN1/MAT{alpha} can1{delta}::LEU2 heterozygote formed by mating UV-irradiated and nonirradiated haploids. An increase in LOH was observed when the irradiated CAN1 haploid was mated with nonirradiated can1{delta}::LEU2, while reversed irradiation only marginally increased LOH. In the rad51{delta} background, allelic crossover type LOH increased following UV irradiation but not gene conversion. In the rad52{delta} background, neither type of LOH increased. The chromosome structure following LOH and the requirement for Rad51 and Rad52 proteins indicated the involvement of gene conversion, allelic crossover and break-induced replication. We argued that LOH events could have occurred during the repair of double-strand breaks on a functional (damaged) but not nonfunctional (undamaged) chromosome through recombination.

  5. Rad9 Has a Functional Role in Human Prostate Carcinogenesis

    Science.gov (United States)

    Zhu, Aiping; Zhang, Charles Xia; Lieberman, Howard B.

    2013-01-01

    Prostate cancer is currently the most common type of neoplasm found in American men, other than skin cancer, and is the second leading cause of cancer death in males. Because cell cycle checkpoint proteins stabilize the genome, the relationship of one such protein, Rad9, to prostate cancer was investigated. We found that four prostate cancer cell lines (CWR22, DU145, LNCaP, and PC-3), relative to PrEC normal prostate cells, have aberrantly high levels of Rad9 protein. The 3′-end region of intron 2 of Rad9 in DU145 cells is hypermethylated at CpG islands, and treatment with 5′-aza-2′-deoxycytidine restores near-normal levels of methylation and reduces Rad9 protein abundance. Southern blot analyses indicate that PC-3 cells contain an amplified Rad9 copy number. Therefore, we provide evidence that Rad9 levels are high in prostate cancer cells due at least in part to aberrant methylation or gene amplification. The effectiveness of small interfering RNA to lower Rad9 protein levels in CWR22, DU145, and PC-3 cells correlated with reduction of tumorigenicity in nude mice, indicating that Rad9 actively contributes to the disease. Rad9 protein levels were high in 153 of 339 human prostate tumor biopsy samples examined and detectable in only 2 of 52 noncancerous prostate tissues. There was a strong correlation between Rad9 protein abundance and cancer stage. Rad9 protein level can thus provide a biomarker for advanced prostate cancer and is causally related to the disease, suggesting the potential for developing novel diagnostic, prognostic, and therapeutic tools based on detection or manipulation of Rad9 protein abundance. PMID:18316588

  6. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    OpenAIRE

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly ...

  7. Mimivirus reveals Mre11/Rad50 fusion proteins with a sporadic distribution in eukaryotes, bacteria, viruses and plasmids

    Directory of Open Access Journals (Sweden)

    Ogata Hiroyuki

    2011-09-01

    Full Text Available Abstract Background The Mre11/Rad50 complex and the homologous SbcD/SbcC complex in bacteria play crucial roles in the metabolism of DNA double-strand breaks, including DNA repair, genome replication, homologous recombination and non-homologous end-joining in cellular life forms and viruses. Here we investigated the amino acid sequence of the Mimivirus R555 gene product, originally annotated as a Rad50 homolog, and later shown to have close homologs in marine microbial metagenomes. Results Our bioinformatics analysis revealed that R555 protein sequence is constituted from the fusion of an N-terminal Mre11-like domain with a C-terminal Rad50-like domain. A systematic database search revealed twelve additional cases of Mre11/Rad50 (or SbcD/SbcC fusions in a wide variety of unrelated organisms including unicellular and multicellular eukaryotes, the megaplasmid of a bacterium associated to deep-sea hydrothermal vents (Deferribacter desulfuricans and the plasmid of Clostridium kluyveri. We also showed that R555 homologs are abundant in the metagenomes from different aquatic environments and that they most likely belong to aquatic viruses. The observed phyletic distribution of these fusion proteins suggests their recurrent creation and lateral gene transfers across organisms. Conclusions The existence of the fused version of protein sequences is consistent with known functional interactions between Mre11 and Rad50, and the gene fusion probably enhanced the opportunity for lateral transfer. The abundance of the Mre11/Rad50 fusion genes in viral metagenomes and their sporadic phyletic distribution in cellular organisms suggest that viruses, plasmids and transposons played a crucial role in the formation of the fusion proteins and their propagation into cellular genomes.

  8. Two mutations which confer temperature-sensitive radiation sensitivity in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ho, K.S.Y.; Mortimer, R.K.

    1975-01-01

    X-ray survival curves for two mutations, rad54 and rad55, in the yeast Saccharomyces cerevisiae are presented. These mutations confer temperature sensitive X-ray sensitivity; that is, rad54 and rad55 strains display a wild type X-ray survival response at permissive temperatures and a radiosensitive X-ray survival response at restrictive temperatures. The survival response of cells which were shifted from a permissive to a restrictive temperature or vice versa at various post-irradiation times indicates that repair and fixation of X-ray induced lesions is largely complete three hours after X-irradiation. Experiments to determine the utilization sequence of the rad54 and rad55 gene products in the repair of X-ray induced damage suggest that the two products are required in an interdependent manner

  9. Characterization of Fluorescent Proteins for Three- and Four-Color Live-Cell Imaging in S. cerevisiae.

    Science.gov (United States)

    Higuchi-Sanabria, Ryo; Garcia, Enrique J; Tomoiaga, Delia; Munteanu, Emilia L; Feinstein, Paul; Pon, Liza A

    2016-01-01

    Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.

  10. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    Science.gov (United States)

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. RAD18 and associated proteins are immobilized in nuclear foci in human cells entering S-phase with ultraviolet light-induced damage

    International Nuclear Information System (INIS)

    Watson, Nicholas B.; Nelson, Eric; Digman, Michelle; Thornburg, Joshua A.; Alphenaar, Bruce W.; McGregor, W. Glenn

    2008-01-01

    Proteins required for translesion DNA synthesis localize in nuclear foci of cells with replication-blocking lesions. The dynamics of this process were examined in human cells with fluorescence-based biophysical techniques. Photobleaching recovery and raster image correlation spectroscopy experiments indicated that involvement in the nuclear foci reduced the movement of RAD18 from diffusion-controlled to virtual immobility. Examination of the mobility of REV1 indicated that it is similarly immobilized when it is observed in nuclear foci. Reducing the level of RAD18 greatly reduced the focal accumulation of REV1 and reduced UV mutagenesis to background frequencies. Fluorescence lifetime measurements indicated that RAD18 and RAD6A or polη only transferred resonance energy when these proteins colocalized in damage-induced nuclear foci, indicating a close physical association only within such foci. Our data support a model in which RAD18 within damage-induced nuclear foci is immobilized and is required for recruitment of Y-family DNA polymerases and subsequent mutagenesis. In the absence of damage these proteins are not physically associated within the nucleoplasm

  12. Functional roles for Rad9 in prostate cancer

    International Nuclear Information System (INIS)

    Lieberman, H.B.; Broustas, C.G.

    2012-01-01

    The goal of this work is to understand the mechanistic relationship between high levels of Rad9 protein and prostate cancer. The study is based on several findings suggesting a role for Rad9 in this disease. Rad9 has all the hallmark features of an oncogene or tumor suppressor. It regulates genomic stability, multiple cell cycle checkpoints, apoptosis and DNA repair. In addition, it can transactivate downstream target genes via direct interaction with promoter DNA sequences. We found Rad9 protein levels were very high in prostate cancer cell lines. Furthermore, we examined 52 primary normal prostate and 339 prostate cancer specimens for Rad9 protein by immunohistochemical staining. Statistical significance for Rad9 positive staining versus cancer, and stain intensity versus Stage were tested. We get a p-value of <0.001 when comparing percentage positive by cancer Stage, or stain intensity by cancer Stage. Based on these data, we sought to define the nature of the relationship between Rad9 and prostate cancer. We demonstrate that Rad9 acts as an oncogene in prostate cancer by playing a critical role in tumor formation in a mouse xenograph model. We also show that Rad9 is important for cellular phenotypes essential for metastasis, including tumor cell migration, invasion and resistance to programmed cell death after detachment from extracellular matrix. Therefore, Rad9 is critical for several aspects of prostate tumor progression, and could serve as a novel target for anti-cancer therapy

  13. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effect of genes controlling radiation sensitivity on chemically induced mutations in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.

    1976-01-01

    The effect of 16 different genes (rad) conferring radiation sensitivity on chemically induced reversion in the yeast Saccharomyces cerevisiae was determined. The site of reversion used was a well-defined chain initiation mutant mapping in the structural gene coding for iso-1-cytochrome c. High doses of EMS and HNO 2 resulted in decreased reversion of cyc1-131 in rad6, rad9 and rad15 strains compared to the normal RAD + strains. In addition, rad52 greatly decreased EMS reversion of cyc1-131 but had no effect on HNO 2 -induced reversion; rad18, on the other hand, increased HNO 2 -induced reversion but did not alter EMS-induced reversion. When NQO was used as the mutagen, every rad gene tested, except for rad18, had an effect on reversion; rad6, rad9, rad15, rad17, rad18, rad22, rev1, rev2, and rev3 lowered NQO reversion while rad1, rad2, rad3, rad4, rad10, rad12, and rad16 increased it compared to the RAD + strain. The effect of rad genes on chemical mutagenesis is discussed in terms of their effect on uv mutagenesis. It is concluded that although the nature of the repair pathways may differ for uv- and chemically-induced mutations in yeast, a functional repair system is required for the induction of mutation by the chemical agents NQO, EMS, and HNO 2

  15. Sensing Conformational Changes in DNA upon Ligand Binding Using QCM-D. Polyamine Condensation and Rad51 Extension of DNA Layers

    KAUST Repository

    Sun, Lu

    2014-10-16

    © 2014 American Chemical Society. Biosensors, in which binding of ligands is detected through changes in the optical or electrochemical properties of a DNA layer confined to the sensor surface, are important tools for investigating DNA interactions. Here, we investigate if conformational changes induced in surface-attached DNA molecules upon ligand binding can be monitored by the quartz crystal microbalance with dissipation (QCM-D) technique. DNA duplexes containing 59-184 base pairs were formed on QCM-D crystals by stepwise assembly of synthetic oligonucleotides of designed base sequences. The DNA films were exposed to the cationic polyamines spermidine and spermine, known to condense DNA molecules in bulk experiments, or to the recombination protein Rad51, known to extend the DNA helix. The binding and dissociation of the ligands to the DNA films were monitored in real time by measurements of the shifts in resonance frequency (Δf) and in dissipation (ΔD). The QCM-D data were analyzed using a Voigt-based model for the viscoelastic properties of polymer films in order to evaluate how the ligands affect thickness and shear viscosity of the DNA layer. Binding of spermine shrinks all DNA layers and increases their viscosity in a reversible fashion, and so does spermidine, but to a smaller extent, in agreement with its lower positive charge. SPR was used to measure the amount of bound polyamines, and when combined with QCM-D, the data indicate that the layer condensation leads to a small release of water from the highly hydrated DNA films. The binding of Rad51 increases the effective layer thickness of a 59bp film, more than expected from the know 50% DNA helix extension. The combined results provide guidelines for a QCM-D biosensor based on ligand-induced structural changes in DNA films. The QCM-D approach provides high discrimination between ligands affecting the thickness and the structural properties of the DNA layer differently. The reversibility of the film

  16. The gene dosage effect of the rad52 mutation on X-ray survival curves of tetraploid yeast strains

    International Nuclear Information System (INIS)

    Ho, K.S.Y.

    1975-01-01

    The mutation rad52 in the yeast Saccharomyces cerevisiae confers sensitivity to X-rays. The gene dosage effect of this mutation on X-ray survival curves of tetraploid yeast strains is shown. With increasing number of rad52 alleles, both a decrease in the survival for a given dose and a decrease in the survival curve shoulder width are observed. The generation of such a family of survival curves using three different mathematical models is discussed

  17. An integrated in silico approach to analyze the involvement of single amino acid polymorphisms in FANCD1/BRCA2-PALB2 and FANCD1/BRCA2-RAD51 complex.

    Science.gov (United States)

    Doss, C George Priya; Nagasundaram, N

    2014-11-01

    Fanconi anemia (FA) is an autosomal recessive human disease characterized by genomic instability and a marked increase in cancer risk. The importance of FANCD1 gene is manifested by the fact that deleterious amino acid substitutions were found to confer susceptibility to hereditary breast and ovarian cancers. Attaining experimental knowledge about the possible disease-associated substitutions is laborious and time consuming. The recent introduction of genome variation analyzing in silico tools have the capability to identify the deleterious variants in an efficient manner. In this study, we conducted in silico variation analysis of deleterious non-synonymous SNPs at both functional and structural level in the breast cancer and FA susceptibility gene BRCA2/FANCD1. To identify and characterize deleterious mutations in this study, five in silico tools based on two different prediction methods namely pathogenicity prediction (SIFT, PolyPhen, and PANTHER), and protein stability prediction (I-Mutant 2.0 and MuStab) were analyzed. Based on the deleterious scores that overlap in these in silico approaches, and the availability of three-dimensional structures, structure analysis was carried out with the major mutations that occurred in the native protein coded by FANCD1/BRCA2 gene. In this work, we report the results of the first molecular dynamics (MD) simulation study performed to analyze the structural level changes in time scale level with respect to the native and mutated protein complexes (G25R, W31C, W31R in FANCD1/BRCA2-PALB2, and F1524V, V1532F in FANCD1/BRCA2-RAD51). Analysis of the MD trajectories indicated that predicted deleterious variants alter the structural behavior of BRCA2-PALB2 and BRCA2-RAD51 protein complexes. In addition, statistical analysis was employed to test the significance of these in silico tool predictions. Based on these predictions, we conclude that the identification of disease-related SNPs by in silico methods, in combination with MD

  18. CRISPR Technology Reveals RAD(51)-ical Mechanisms of Repair in Roundworms: An Educational Primer for Use with "Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans".

    Science.gov (United States)

    Turcotte, Carolyn A; Andrews, Nicolas P; Sloat, Solomon A; Checchi, Paula M

    2016-11-01

    The mechanisms cells use to maintain genetic fidelity via DNA repair and the accuracy of these processes have garnered interest from scientists engaged in basic research to clinicians seeking improved treatment for cancer patients. Despite the continued advances, many details of DNA repair are still incompletely understood. In addition, the inherent complexity of DNA repair processes, even at the most fundamental level, makes it a challenging topic. This primer is meant to assist both educators and students in using a recent paper, "Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in Caenorhabditis elegans," to understand mechanisms of DNA repair. The goals of this primer are to highlight and clarify several key techniques utilized, with special emphasis on the clustered, regularly interspaced, short palindromic repeats technique and the ways in which it has revolutionized genetics research, as well as to provide questions for deeper in-class discussion. Copyright © 2016 by the Genetics Society of America.

  19. Protein expression of saccharomyces cerevisiae in response to uranium exposure

    International Nuclear Information System (INIS)

    Sakamoto, Fuminori; Nankawa, Takuya; Kozai, Naofumi; Ohnuki, Toshihiko; Fujii, Tsutomu; Iefuji, Haruyuki; Francis, A.J.

    2007-01-01

    Protein expression of Saccharomyces cerevisiae grown in the medium containing 238 U (VI) and 233 U (VI) was examined by two-dimensional gel electrophoresis. Saccharomyces cerevisiae of BY4743 was grown in yeast nitrogen base medium containing glucose and glycerol 2-phosphate and 238 U of 0, 2.0, and 5.0 x 10 -4 M or 233 U of 2.5 x 10 -6 M (radioactivity was higher by 350 times than 2.0 x 10 -4 M 238 U) and 5.0 x 10 -6 M for 112 h at 30 degC. The growth of Saccharomyces cerevisiae was monitored by measuring OD 600 at 112 h after the inoculation. Uranium concentrations in the media also were measured by radiometry using a liquid scintillation counter. The growths of the yeast grown in the above media were in the following order: control>2.5 x 10 -6 M 233 U>2.0 x 10 -4 M 238 U>5.0 x 10 -6 M 233 U>5.0 x 10 -4 M 238 U. This result indicated that not only radiological but also chemical effect of U reduced the growth of the yeast. The concentrations of U in the medium containing 238 U or 233 U decreased, suggesting U accumulation by the yeast cells. The 2-D gel electrophoresis analysis showed the appearance of several spots after exposure to 238 U or to 233 U but not in the control containing no uranium. These results show that the yeast cells exposed to U express several specific proteins. (author)

  20. Identification of a deoxyribonuclease controlled by the rad52 gene of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chow, T.Y.K.; Resnick, M.A.

    1983-01-01

    We have examined deoxyribonuclease levels in extracts of wild-type and rad52 mutants and have observed no significant differences. However, major differences were observed when we employed anti-serum raised against a purified single strand DNA-binding endoexonuclease from Neurospora crassa. As much as sixty percent of the alkaline deoxyribonuclease in wild-type extracts exhibited immunocrossreactivity, whereas none was found in extracts from rad52 strains. This DNase activity was also followed through meiosis; maximum activity was observed in wild-type cells, at a time corresponding to an early stage of premeiotic DNA-synthesis and commitment to recombination. 14 references, 4 figures, 1 table

  1. The role of the Mre11–Rad50–Nbs1 complex in double-strand break repair—facts and myths

    International Nuclear Information System (INIS)

    Takeda, Shunichi; Hoa, Nguyen Ngoc; Sasanuma, Hiroyuki

    2016-01-01

    Homologous recombination (HR) initiates double-strand break (DSB) repair by digesting 5′-termini at DSBs, the biochemical reaction called DSB resection, during which DSBs are processed by nucleases to generate 3′ single-strand DNA. Rad51 recombinase polymerizes along resected DNA, and the resulting Rad51–DNA complex undergoes homology search. Although DSB resection by the Mre11 nuclease plays a critical role in HR in Saccharomyces cerevisiae, it remains elusive whether DSB resection by Mre11 significantly contributes to HR-dependent DSB repair in mammalian cells. Depletion of Mre11 decreases the efficiency of DSB resection only by 2- to 3-fold in mammalian cells. We show that although Mre11 is required for efficient HR-dependent repair of ionizing-radiation–induced DSBs, Mre11 is largely dispensable for DSB resection in both chicken DT40 and human TK6 B cell lines. Moreover, a 2- to 3-fold decrease in DSB resection has virtually no impact on the efficiency of HR. Thus, although a large number of researchers have reported the vital role of Mre11-mediated DSB resection in HR, the role may not explain the very severe defect in HR in Mre11-deficient cells, including their lethality. We here show experimental evidence for the additional roles of Mre11 in (i) elimination of chemical adducts from DSB ends for subsequent DSB repair, and (ii) maintaining HR intermediates for their proper resolution

  2. [High-level expression of heterologous protein based on increased copy number in Saccharomyces cerevisiae].

    Science.gov (United States)

    Zhang, Xinjie; He, Peng; Tao, Yong; Yang, Yi

    2013-11-04

    High-level expression system of heterologous protein mediated by internal ribosome entry site (IRES) in Saccharomyces cerevisiae was constructed, which could be used for other applications of S. cerevisiae in metabolic engineering. We constructed co-expression cassette (promoter-mCherry-TIF4631 IRES-URA3) containing promoters Pilv5, Padh2 and Ptdh3 and recombined the co-expression cassette into the genome of W303-1B-A. The URA3+ transformants were selected. By comparing the difference in the mean florescence value of mCherry in transformants, the effect of three promoters was detected in the co-expression cassette. The copy numbers of the interested genes in the genome were determined by Real-Time PCR. We analyzed genetic stability by continuous subculturing transformants in the absence of selection pressure. To verify the application of co-expression cassette, the ORF of mCherry was replaced by beta-galactosidase (LACZ) and xylose reductase (XYL1). The enzyme activities and production of beta-galactosidase and xylose reductase were detected. mCherry has been expressed in the highest-level in transformants with co-expression cassette containing Pilv5 promoter. The highest copy number of DNA fragment integrating in the genome was 47 in transformants containing Pilv5. The engineering strains showed good genetic stability. Xylose reductase was successfully expressed in the co-expression cassette containing Pilv5 promoter and TIF4631 IRES. The highest enzyme activity was 0. 209 U/mg crude protein in the transformants WIX-10. Beta-galactosidase was also expressed successfully. The transformants that had the highest enzyme activity was WIL-1 and the enzyme activity was 12.58 U/mg crude protein. The system mediated by Pilv5 promoter and TIF4631 IRES could express heterologous protein efficiently in S. cerevisiae. This study offered a new strategy for expression of heterologous protein in S. cerevisiae and provided sufficient experimental evidence for metabolic engineering

  3. The Aspergillus uvsH gene encodes a product homologous to yeast RAD18 and Neurospora UVS-2.

    Science.gov (United States)

    Yoon, J H; Lee, B J; Kang, H S

    1995-07-28

    The uvsH DNA repair gene of Aspergillus nidulans has been cloned by complementation of the uvsH77 mutation with a cosmid library containing genomic DNA inserts from a wild-type strain. Methylmethane sulfonate (MMS)-resistant transformants were obtained on medium containing 0.01% MMS, to which uvsH mutants exhibit high sensitivity. Retransformation of uvsH77 mutants with the rescued cosmids from the MMS-resistant transformants resulted in restoration of both UV and MMS resistance to wild-type levels. Nucleotide sequence analysis of the genomic DNA and cDNA of the uvsH gene shows that it has an open reading frame (ORF) of 1329 bp, interrupted by two introns of 51 and 61 bp. A 2.4 kb transcript of the uvsH gene was detected by Northern blot analysis. Primer extension analysis revealed that transcription starts at 31 bp upstream from the translation initiation codon. This gene encodes a predicted polypeptide of 443 amino acids, which has two unique zinc finger motifs. The proposed polypeptide displays 39% identity to the Neurospora crassa UVS-2 protein and 24% identity to the Saccharomyces cerevisiae RAD18 protein. The sequence similarity is particularly high in three domains. One zinc finger (RING finger) motif is located in the first domain close to the N-terminus. The other zinc finger motif is in the second domain. In the third domain, the mutation sites in both the uvsH77 and uvsH304 alleles were identified.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Identification of Novel Desiccation-Tolerant S. cerevisiae Strains for Deep Space Biosensors

    Science.gov (United States)

    Tieze, Sofia Massaro; Santa Maria, Sergio R.; Liddell, Lauren; Bhattacharya, Sharmila

    2017-01-01

    NASA's BioSentinel mission, a secondary payload that will fly on the Space Launch Systems first Exploration Mission (EM-1), utilizes the budding yeast S. cerevisiae to study the biological response to the deep space radiation environment. Yeast samples are desiccated prior to launch to suspend growth and metabolism while the spacecraft travels to its target heliocentric orbit beyond Low Earth Orbit. Each sample is then rehydrated at the desired time points to reactivate the cells. A major risk in this mission is the loss of cell viability that occurs in the recovery period following the desiccation and rehydration process. Cell survival is essential for the detection of the biological response to features in the deep space environment, including ionizing radiation.The aim of this study is to mitigate viable cell loss in future biosensors by identifying mutations and genes that confer tolerance to desiccation stress in rad51, a radiation-sensitive yeast strain. We initiated a screen for desiccation-tolerance after rehydrating cells that were desiccated for three years, and selected various clones exhibiting robust growth. To verify retention of radiation sensitivity in the isolated clonesa crucial feature for a successful biosensorwe exposed them to ionizing radiation. Finally, to elucidate the genetic and molecular bases for observed desiccation-tolerance, we will perform whole-genome sequencing of those rad51 clones that exhibit both robust growth and radiation sensitivity following desiccation. The identification and characterization of desiccation-tolerant strains will allow us to engineer a biological model that will be resilient in face of the challenges of the deep space environment, and will thus ensure the experimental success of future biosensor missions.

  5. Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype

    DEFF Research Database (Denmark)

    Figueroa, Jonine D; Garcia-Closas, Montserrat; Humphreys, Manjeet

    2011-01-01

    A genome-wide association study (GWAS) identified single-nucleotide polymorphisms (SNPs) at 1p11.2 and 14q24.1 (RAD51L1) as breast cancer susceptibility loci. The initial GWAS suggested stronger effects for both loci for estrogen receptor (ER)-positive tumors. Using data from the Breast Cancer As...

  6. Comparative expression profiling of AtRAD5B and AtNDL1: Hints towards a role in G protein mediated signaling.

    Science.gov (United States)

    Khatri, Nisha; Singh, Swati; Hakim, Nasmeen; Mudgil, Yashwanti

    2017-11-01

    Arabidopsis AtRAD5B encodes for a putative helicase of the class SWItch/Sucrose Non-Fermentable (SWI/SNF) ATPases. We identified AtRAD5B as an interactor of N-MYC DOWNREGULATED-LIKE1 (AtNDL1) in a yeast two-hybrid screen. AtNDL1 is a G protein signaling component which regulates auxin transport and gradients together with GTP binding protein beta 1 (AGB1). Auxin gradients are known to recruit SWI/SNF remodeling complexes to the chromatin and regulate expression of genes involved in flower and leaf formation. In current study, a comparative spatial and temporal co-expression/localization analysis of AtNDL1, AGB1 with AtRAD5B was carried out in order to explore the possibility of their coexistence in a common signaling network. Translational fusion (GUS) of AtNDL1 and AtRAD5B in seedlings and reproductive organs revealed that both shared similar expression patterns with the highest expression observed in male reproductive organs. Moreover, they shared similar domains of localization in roots, suggesting their potential functioning together in reproductive and root development processes. This study predicts the existence of a signaling network involving AtNDL1, AGB1 with AtRAD5B. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The fungus Ustilago maydis and humans share disease-related proteins that are not found in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Steinberg Gero

    2007-12-01

    Full Text Available Abstract Background The corn smut fungus Ustilago maydis is a well-established model system for molecular phytopathology. In addition, it recently became evident that U. maydis and humans share proteins and cellular processes that are not found in the standard fungal model Saccharomyces cerevisiae. This prompted us to do a comparative analysis of the predicted proteome of U. maydis, S. cerevisiae and humans. Results At a cut off at 20% identity over protein length, all three organisms share 1738 proteins, whereas both fungi share only 541 conserved proteins. Despite the evolutionary distance between U. maydis and humans, 777 proteins were shared. When applying a more stringent criterion (≥ 20% identity with a homologue in one organism over at least 50 amino acids and ≥ 10% less in the other organism, we found 681 proteins for the comparison of U. maydis and humans, whereas the both fungi share only 622 fungal specific proteins. Finally, we found that S. cerevisiae and humans shared 312 proteins. In the U. maydis to H. sapiens homology set 454 proteins are functionally classified and 42 proteins are related to serious human diseases. However, a large portion of 222 proteins are of unknown function. Conclusion The fungus U. maydis has a long history of being a model system for understanding DNA recombination and repair, as well as molecular plant pathology. The identification of functionally un-characterized genes that are conserved in humans and U. maydis opens the door for experimental work, which promises new insight in the cell biology of the mammalian cell.

  8. The Molecular Basis of Double-Strand DNA Break Repair: The Critical Structure of the RAD52/RPA Complex

    National Research Council Canada - National Science Library

    Jackson, Dobra

    2001-01-01

    .... RAD52 has specific interactions with RAD51, RPA and DNA (1,2,3). The binding of RAD52 to ends of double-strand breaks has been found to be a key initiation step to DNA repair by homologous recombination...

  9. Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype

    DEFF Research Database (Denmark)

    Figueroa, Jonine D; Garcia-Closas, Montserrat; Humphreys, Manjeet

    2011-01-01

    for tumors of lower grade (case-only P= 6.7 × 10(-3)) and lobular histology (case-only P= 0.01). SNPs at 14q24.1 were associated with risk for most tumor subtypes evaluated, including triple-negative breast cancers, which has not been described previously. Our results underscore the need for large pooling......A genome-wide association study (GWAS) identified single-nucleotide polymorphisms (SNPs) at 1p11.2 and 14q24.1 (RAD51L1) as breast cancer susceptibility loci. The initial GWAS suggested stronger effects for both loci for estrogen receptor (ER)-positive tumors. Using data from the Breast Cancer......10483813 (r(2)= 0.98) at 14q24.1 (RAD51L1), for up to 46 036 invasive breast cancer cases and 46 930 controls from 39 studies. Analyses by tumor characteristics focused on subjects reporting to be white women of European ancestry and were based on 25 458 cases, of which 87% had ER data. The SNP at 1p11...

  10. Optimization of protein extraction from the yeast Saccharomyces cerevisiae/ Otimização da extração de proteínas da levedura Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Raul Jorge Hernan C. Gómez

    2005-06-01

    Full Text Available This work aimed to determine the optimum temperature, pH and sodium chloride sodium concentration for protein extraction of yeast cells during autolysis process. The cellular extract was obtained using commercial compressed baker’s yeast Saccharomyces cerevisiae and for statistical analysis and definition of the variation levels of temperature (32,0 to 52,0°C, pH (1,32 to 7,00 and NaCl (2,0 to 75% the Response Surface Analysis Methodology was used. The result obtained showed that the best extraction conditions were: temperature between 49,0 and 51,0°C combined with pH values between 3,8 and 5,0 and sodium chloride concentration between 10,0 and 12,0% (w/v, however, sodium chloride concentration higher than 12% was not recommended.Este trabalho objetivou determinar os melhores níveis de temperatura, pH e concentração de cloreto de sódio para a extração de proteínas de células de levedura pelo processo de autólise. O extrato celular foi obtido a partir da levedura comercial prensada Saccharomyces cerevisiae e para análise estatística e definição dos níveis das variáveis temperatura (32,0 a 52,0°C, pH (1,32 a 7,00 e NaCl (2,0 a 75,0% utilizou-se a metodologia da Análise de Superfície de Resposta. Os resultados obtidos por meio desta metodologia mostraram como melhores condições: temperaturas entre 49,0 e 51,0°C combinadas com valores de pH entre 3,8 e 5,0 e concentrações de cloreto de sódio entre 10,0 e 12,0% (p/v, entretanto, concentrações de NaCl superiores a 12,0% não se mostraram favoráveis.

  11. [Intragenic mitotic recombination induced by ultraviolet and gamma rays in radiosensitive mutants of Saccharomyces cerevisiae yeasts].

    Science.gov (United States)

    Zakharov, I A; Kasinova, G V; Koval'tsova, S V

    1983-01-01

    The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.

  12. Mitotic chromosome loss in a radiation-sensitive strain of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Mortimer, R.K.; Contopoulou, R.; Schild, D.

    1981-01-01

    Cells of Saccharomyces cerevisiae with mutations in the RAD52 gene have previously been shown to be defective in meiotic and mitotic recombination, in sporulation, and in repair of radiation-induced damage to DNA. In this study we show that diploid cells homozygous for rad52 lose chromosomes at high frequencies and that these frequencies of loss can be increased dramatically by exposure of these cells to x-rays. Genetic analyses of survivors of x-ray treatment demonstrate that chromosome loss events result in the conversion of diploid cells to cells with near haploid chromosome numbers

  13. Investigation of centers sensitive to S1-nuclease in the genoma of the yeast S. cerevisiae after in-vivo exposure to gamma radiation

    International Nuclear Information System (INIS)

    Geigl, E.M.

    1987-09-01

    The structure, distribution and repair of basal damage in DNS after exposure to 60 Co gamma radiation were investigated in S. cerevisiae cells. Small DNS regions with mispaired or unpaired bases of rather high stability were found whose rate of incidence and linear dose dependence appear to be similar to those of double strand breaks. In contrast to double strand breaks, they showed no statistical' distribution pattern across the genoma. Liquid holding experiments showed that centers sensitive to S1-nuclease will be repaired in S. cerevisiae by a combined process of recombination and postreplication repair; the gene products of the genes RAD50 and RAD18 are involved. (orig./AJ) [de

  14. A Rad53 independent function of Rad9 becomes crucial for genome maintenance in the absence of the Recq helicase Sgs1.

    Directory of Open Access Journals (Sweden)

    Ida Nielsen

    Full Text Available The conserved family of RecQ DNA helicases consists of caretaker tumour suppressors, that defend genome integrity by acting on several pathways of DNA repair that maintain genome stability. In budding yeast, Sgs1 is the sole RecQ helicase and it has been implicated in checkpoint responses, replisome stability and dissolution of double Holliday junctions during homologous recombination. In this study we investigate a possible genetic interaction between SGS1 and RAD9 in the cellular response to methyl methane sulphonate (MMS induced damage and compare this with the genetic interaction between SGS1 and RAD24. The Rad9 protein, an adaptor for effector kinase activation, plays well-characterized roles in the DNA damage checkpoint response, whereas Rad24 is characterized as a sensor protein also in the DNA damage checkpoint response. Here we unveil novel insights into the cellular response to MMS-induced damage. Specifically, we show a strong synergistic functionality between SGS1 and RAD9 for recovery from MMS induced damage and for suppression of gross chromosomal rearrangements, which is not the case for SGS1 and RAD24. Intriguingly, it is a Rad53 independent function of Rad9, which becomes crucial for genome maintenance in the absence of Sgs1. Despite this, our dissection of the MMS checkpoint response reveals parallel, but unequal pathways for Rad53 activation and highlights significant differences between MMS- and hydroxyurea (HU-induced checkpoint responses with relation to the requirement of the Sgs1 interacting partner Topoisomerase III (Top3. Thus, whereas earlier studies have documented a Top3-independent role of Sgs1 for an HU-induced checkpoint response, we show here that upon MMS treatment, Sgs1 and Top3 together define a minor but parallel pathway to that of Rad9.

  15. Challenges in biotechnology at LLNL: from genes to proteins; TOPICAL

    International Nuclear Information System (INIS)

    Albala, J S

    1999-01-01

    This effort has undertaken the task of developing a link between the genomics, DNA repair and structural biology efforts within the Biology and Biotechnology Research Program at LLNL. Through the advent of the I.M.A.G.E. (Integrated Molecular Analysis of Genomes and their Expression) Consortium, a world-wide effort to catalog the largest public collection of genes, accepted and maintained within BBRP, it is now possible to systematically express the protein complement of these to further elucidate novel gene function and structure. The work has ensued in four phases, outlined as follows: (1) Gene and System selection; (2) Protein expression and purification; (3) Structural analysis; and (4) biological integration. Proteins to be expressed have been those of high programmatic interest. This includes, in particular, proteins involved in the maintenance of genome integrity, particularly those involved in the repair of DNA damage, including ERCC1, ERCC4, XRCC2, XRCC3, XRCC9, HEX1, APN1, p53, RAD51B, RAD51C, and RAD51. Full-length cDNA cognates of selected genes were isolated, and cloned into baculovirus-based expression vectors. The baculoviral expression system for protein over-expression is now well-established in the Albala laboratory. Procedures have been successfully optimized for full-length cDNA clining into expression vectors for protein expression from recombinant constructs. This includes the reagents, cell lines, techniques necessary for expression of recombinant baculoviral constructs in Spodoptera frugiperda (Sf9) cells. The laboratory has also generated a high-throughput baculoviral expression paradigm for large scale expression and purification of human recombinant proteins amenable to automation

  16. Photoreactivity in Saccharomyces cerevisiae cells after irradiation with 25 MeV electrons

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Seleva, N.G.; Myasnik, M.N.; Kabakova, N.M.

    1986-01-01

    Significant photoreactivation was noted in radio- and UV-sensitive rad-mutants of Saccharomyces cerevisiae cells exposed to 25 MeV electrons. In order to make the photoreactivable damage be manifest anoxic conditions of irradiation should be chosen as optimal ones. It was shown that the low oxygen effect was partially associated with the photoreactivable damage involved in the lethal effect of ionizing radiation

  17. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M. Pádula

    1999-09-01

    Full Text Available In the present study, we analyzed DNA damage induced by phycocyanin (PHY in the presence of visible light (VL using a set of repair endonucleases purified from Escherichia coli. We demonstrated that the profile of DNA damage induced by PHY is clearly different from that induced by molecules that exert deleterious effects on DNA involving solely singlet oxygen as reactive species. Most of PHY-induced lesions are single strand breaks and, to a lesser extent, base oxidized sites, which are recognized by Nth, Nfo and Fpg enzymes. High pressure liquid chromatography coupled to electrochemical detection revealed that PHY photosensitization did not induce 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo at detectable levels. DNA repair after PHY photosensitization was also investigated. Plasmid DNA damaged by PHY photosensitization was used to transform a series of Saccharomyces cerevisiae DNA repair mutants. The results revealed that plasmid survival was greatly reduced in rad14 mutants, while the ogg1 mutation did not modify the plasmid survival when compared to that in the wild type. Furthermore, plasmid survival in the ogg1 rad14 double mutant was not different from that in the rad14 single mutant. The results reported here indicate that lethal lesions induced by PHY plus VL are repaired differently by prokaryotic and eukaryotic cells. Morever, nucleotide excision repair seems to play a major role in the recognition and repair of these lesions in Saccharomyces cerevisiae.

  18. Human RAD50 makes a functional DNA-binding complex.

    Science.gov (United States)

    Kinoshita, Eri; van Rossum-Fikkert, Sari; Sanchez, Humberto; Kertokalio, Aryandi; Wyman, Claire

    2015-06-01

    The MRE11-RAD50-NBS1 (MRN) complex has several distinct functions in DNA repair including important roles in both non-homologous end-joining (NHEJ) and homologous recombination (HR). The biochemical activities of MR(N) have been well characterized implying specific functional roles for the components. The arrangement of proteins in the complex implies interdependence of their biochemical activities making it difficult to separate specific functions. We obtained purified human RAD50 and observed that it binds ATP, undergoes ATP-dependent conformational changes as well as having ATPase activity. Scanning force microscopy analysis clearly showed that RAD50 binds DNA although not as oligomers. RAD50 alone was not functional in tethering DNA molecules. ATP increased formation of RAD50 multimers which were however globular lacking extended coiled coils, in contrast to the MR complex where ATP induced oligomers have obvious coiled coils protruding from a central domain. These results suggest that MRE11 is important in maintaining the structural arrangement of RAD50 in the protein complex and perhaps has a role in reinforcing proper alignment of the coiled coils in the ATP-bound state. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. Decreased uv mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.; Hinkle, D.; Prakash, S.

    1978-01-01

    A DNA replication mutant of yeast, cdc8, was found to decrease uv-induced reversion of lys2-1, arg4-17, tryl and ural. This effect was observed with all three alleles of cdc8 tested. Survival curves obtained following uv irradiation in cdc8 rad double mutants show that cdc8 is epistatic to rad6, as well as to rad1; cdc8 rad51 double mutants seem to be more sensitive than the single mutants. Since uv-induced reversion in cdc8 rad1 and cdc8 rad51 double mutants is like that of the cdc8 single mutants, we conclude that CDC8 plays a direct role in error-prone repair. To test whether CDC8 codes for a DNA polymerase, we have purified both DNA polymerase I and DNA polymerase II from cdc8 and CDC+ cells. The purified DNA polymerases from cdc8 were no more heat labile than those from CDC+, suggesting that CDC8 is not a structural gene for either enzyme

  20. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  1. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Knuf, Christoph; Förster, Jochen

    2015-01-01

    a less leaky Cu2+-inducible promoter based on CUP1. The basal expression level of the new promoter was approx. 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu2+-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae......Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP...... functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different...

  2. Lipid Raft-Based Membrane Compartmentation of a Plant Transport Protein Expressed in Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Grossmann, Q.; Opekarová, Miroslava; Nováková, L.; Stolz, J.; Tanner, W.

    2006-01-01

    Roč. 5, č. 6 (2006), s. 945-953 ISSN 1535-9778 R&D Projects: GA MŠk LC545 Institutional research plan: CEZ:AV0Z50200510 Keywords : saccharomyces cerevisiae * plant transport protein * hup1 Subject RIV: EE - Microbiology, Virology Impact factor: 3.707, year: 2006

  3. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    Science.gov (United States)

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  4. RNA-processing proteins regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA.

    Science.gov (United States)

    Manfrini, Nicola; Trovesi, Camilla; Wery, Maxime; Martina, Marina; Cesena, Daniele; Descrimes, Marc; Morillon, Antonin; d'Adda di Fagagna, Fabrizio; Longhese, Maria Pia

    2015-02-01

    Eukaryotic cells respond to DNA double-strand breaks (DSBs) by activating a checkpoint that depends on the protein kinases Tel1/ATM and Mec1/ATR. Mec1/ATR is activated by RPA-coated single-stranded DNA (ssDNA), which arises upon nucleolytic degradation (resection) of the DSB. Emerging evidences indicate that RNA-processing factors play critical, yet poorly understood, roles in genomic stability. Here, we provide evidence that the Saccharomyces cerevisiae RNA decay factors Xrn1, Rrp6 and Trf4 regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. The lack of Xrn1 inhibits ssDNA generation at the DSB by preventing the loading of the MRX complex. By contrast, DSB resection is not affected in the absence of Rrp6 or Trf4, but their lack impairs the recruitment of RPA, and therefore of Mec1, to the DSB. Rrp6 and Trf4 inactivation affects neither Rad51/Rad52 association nor DSB repair by homologous recombination (HR), suggesting that full Mec1 activation requires higher amount of RPA-coated ssDNA than HR-mediated repair. Noteworthy, deep transcriptome analyses do not identify common misregulated gene expression that could explain the observed phenotypes. Our results provide a novel link between RNA processing and genome stability. © 2014 The Authors.

  5. Rad GTPase is essential for the regulation of bone density and bone marrow adipose tissue in mice.

    Science.gov (United States)

    Withers, Catherine N; Brown, Drew M; Byiringiro, Innocent; Allen, Matthew R; Condon, Keith W; Satin, Jonathan; Andres, Douglas A

    2017-10-01

    The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca 2+ channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad -/- calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of low X-ray doses in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Jordan, A.; Laskowski, W.

    1987-01-01

    Three strains of Saccharomyces cerevisiae with different capacities for repair of radiation damage (RAD, rad18, and rad52) have been tested for their colony forming ability (CFA) and growth rates after application of small X-ray doses from 3.8 mGy to 40 Gy. There was no reproducible increase in CFA observable after application of doses between 3.8 mGy and 4.7 Gy.X-ray doses of 40 Gy causing an inactivation of CFA from 90% to 50%, depending on the repair capacity of the strains used, caused a reduced increase in optical density during 2 h buffer treatment in comparison to unirradiated cells. This reduction however, is reversible as soon as the cells are transferred into nutrient medium. One hour after transfer into growh medium the portions of cells with large buds (Gs and M phase) and cells with small buds (S phase) are drastically different in irradiated cells from those obtained in unirradiated cells. The time necessary for separation of mother and daughter cells is prolonged by X-ray irradiation and the formation of new buds is retarded. (orig.)

  7. Differential hRad17 expression by histologic subtype of ovarian cancer

    Directory of Open Access Journals (Sweden)

    Young Jennifer L

    2011-03-01

    Full Text Available Abstract Background In the search for unique ovarian cancer biomarkers, ovarian specific cDNA microarray analysis identified hRad17, a cell cycle checkpoint protein, as over-expressed in ovarian cancer. The aim of this study was to validate this expression. Methods Immunohistochemistry was performed on 72 serous, 19 endometrioid, 10 clear cell, and 6 mucinous ovarian cancers, 9 benign ovarian tumors, and 6 normal ovarian tissue sections using an anti-hRad17 antibody. Western blot analysis and quantitative PCR were performed using cell lysates and total RNA prepared from 17 ovarian cancer cell lines and 6 normal ovarian epithelial cell cultures (HOSE. Results Antibody staining confirmed upregulation of hRad17 in 49.5% of ovarian cancer cases. Immunohistochemistry demonstrated that only 42% of serous and 47% of endometrioid subtypes showed overexpression compared to 80% of clear cell and 100% of mucinous cancers. Western blot confirmed overexpression of hRad17 in cancer cell lines compared to HOSE. Quantitative PCR demonstrated an upregulation of hRad17 RNA by 1.5-7 fold. hRad17 RNA expression differed by subtype. Conclusions hRad17 is over-expressed in ovarian cancer. This over-expression varies by subtype suggesting a role in the pathogenesis of these types. Functional studies are needed to determine the potential role of this protein in ovarian cancer.

  8. The tumor suppressor homolog in fission yeast, myh1+, displays a strong interaction with the checkpoint gene rad1+

    International Nuclear Information System (INIS)

    Jansson, Kristina; Warringer, Jonas; Farewell, Anne; Park, Han-Oh; Hoe, Kwang-Lae; Kim, Dong-Uk; Hayles, Jacqueline; Sunnerhagen, Per

    2008-01-01

    The DNA glycosylase MutY is strongly conserved in evolution, and homologs are found in most eukaryotes and prokaryotes examined. This protein is implicated in repair of oxidative DNA damage, in particular adenine mispaired opposite 7,8-dihydro-8-oxoguanine. Previous investigations in Escherichia coli, fission yeast, and mammalian cells show an association of mutations in MutY homologs with a mutator phenotype and carcinogenesis. Eukaryotic MutY homologs physically associate with several proteins with a role in replication, DNA repair, and checkpoint signaling, specifically the trimeric 9-1-1 complex. In a genetic investigation of the fission yeast MutY homolog, myh1 + , we show that the myh1 mutation confers a moderately increased UV sensitivity alone and in combination with mutations in several DNA repair genes. The myh1 rad1, and to a lesser degree myh1 rad9, double mutants display a synthetic interaction resulting in enhanced sensitivity to DNA damaging agents and hydroxyurea. UV irradiation of myh1 rad1 double mutants results in severe chromosome segregation defects and visible DNA fragmentation, and a failure to activate the checkpoint. Additionally, myh1 rad1 double mutants exhibit morphological defects in the absence of DNA damaging agents. We also found a moderate suppression of the slow growth and UV sensitivity of rhp51 mutants by the myh1 mutation. Our results implicate fission yeast Myh1 in repair of a wider range of DNA damage than previously thought, and functionally link it to the checkpoint pathway

  9. Analysis of ionizing radiation-induced foci of DNA damage repair proteins

    International Nuclear Information System (INIS)

    Veelen, Lieneke R. van; Cervelli, Tiziana; Rakt, Mandy W.M.M. van de; Theil, Arjan F.; Essers, Jeroen; Kanaar, Roland

    2005-01-01

    Repair of DNA double-strand breaks by homologous recombination requires an extensive set of proteins. Among these proteins are Rad51 and Mre11, which are known to re-localize to sites of DNA damage into nuclear foci. Ionizing radiation-induced foci can be visualized by immuno-staining. Published data show a large variation in the number of foci-positive cells and number of foci per nucleus for specific DNA repair proteins. The experiments described here demonstrate that the time after induction of DNA damage influenced not only the number of foci-positive cells, but also the size of the individual foci. The dose of ionizing radiation influenced both the number of foci-positive cells and the number of foci per nucleus. Furthermore, ionizing radiation-induced foci formation depended on the cell cycle stage of the cells and the protein of interest that was investigated. Rad51 and Mre11 foci seemed to be mutually exclusive, though a small subset of cells did show co-localization of these proteins, which suggests a possible cooperation between the proteins at a specific moment during DNA repair

  10. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Lipson, Rebecca S.; Webb, Kristofor J.; Clarke, Steven G.

    2010-01-01

    Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.

  11. Requirement of Sequences outside the Conserved Kinase Domain of Fission Yeast Rad3p for Checkpoint Control

    Science.gov (United States)

    Chapman, Carolyn Riley; Evans, Sarah Tyler; Carr, Antony M.; Enoch, Tamar

    1999-01-01

    The fission yeast Rad3p checkpoint protein is a member of the phosphatidylinositol 3-kinase-related family of protein kinases, which includes human ATMp. Mutation of the ATM gene is responsible for the disease ataxia-telangiectasia. The kinase domain of Rad3p has previously been shown to be essential for function. Here, we show that although this domain is necessary, it is not sufficient, because the isolated kinase domain does not have kinase activity in vitro and cannot complement a rad3 deletion strain. Using dominant negative alleles of rad3, we have identified two sites N-terminal to the conserved kinase domain that are essential for Rad3p function. One of these sites is the putative leucine zipper, which is conserved in other phosphatidylinositol 3-kinase-related family members. The other is a novel motif, which may also mediate Rad3p protein–protein interactions. PMID:10512862

  12. Rad52 forms DMA repair and recombination centers during S phase

    DEFF Research Database (Denmark)

    Lisby, M.; Rothstein, R.; Mortensen, Uffe Hasbro

    2001-01-01

    fluorescent protein (GFP) is fully functional in DNA repair and recombination. After induction of DNA double-strand breaks by gamma -irradiation, meiosis, or the HO endonuclease, Rad52-GFP relocalizes from a diffuse nuclear distribution to distinct foci. Interestingly, Rad52 foci are formed almost exclusively...

  13. Expression of Human CTP Synthetase in Saccharomyces cerevisiae Reveals Phosphorylation by Protein Kinase A*

    Science.gov (United States)

    Han, Gil-Soo; Sreenivas, Avula; Choi, Mal-Gi; Chang, Yu-Fang; Martin, Shelley S.; Baldwin, Enoch P.; Carman, George M.

    2005-01-01

    CTP synthetase (EC 6.3.4.2, UTP: ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Δ ura8Δ mutant lacking CTP synthetase activity. The expression of the CTPS1-and CTPS2-encoded human CTP synthetase enzymes in the ura7Δ ura8Δ mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from 32Pi-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation. PMID:16179339

  14. Genetic Interactions Between the Meiosis-Specific Cohesin Components, STAG3, REC8, and RAD21L.

    Science.gov (United States)

    Ward, Ayobami; Hopkins, Jessica; Mckay, Matthew; Murray, Steve; Jordan, Philip W

    2016-06-01

    Cohesin is an essential structural component of chromosomes that ensures accurate chromosome segregation during mitosis and meiosis. Previous studies have shown that there are cohesin complexes specific to meiosis, required to mediate homologous chromosome pairing, synapsis, recombination, and segregation. Meiosis-specific cohesin complexes consist of two structural maintenance of chromosomes proteins (SMC1α/SMC1β and SMC3), an α-kleisin protein (RAD21, RAD21L, or REC8), and a stromal antigen protein (STAG1, 2, or 3). STAG3 is exclusively expressed during meiosis, and is the predominant STAG protein component of cohesin complexes in primary spermatocytes from mouse, interacting directly with each α-kleisin subunit. REC8 and RAD21L are also meiosis-specific cohesin components. Stag3 mutant spermatocytes arrest in early prophase ("zygotene-like" stage), displaying failed homolog synapsis and persistent DNA damage, as a result of unstable loading of cohesin onto the chromosome axes. Interestingly, Rec8, Rad21L double mutants resulted in an earlier "leptotene-like" arrest, accompanied by complete absence of STAG3 loading. To assess genetic interactions between STAG3 and α-kleisin subunits RAD21L and REC8, our lab generated Stag3, Rad21L, and Stag3, Rec8 double knockout mice, and compared them to the Rec8, Rad21L double mutant. These double mutants are phenotypically distinct from one another, and more severe than each single knockout mutant with regards to chromosome axis formation, cohesin loading, and sister chromatid cohesion. The Stag3, Rad21L, and Stag3, Rec8 double mutants both progress further into prophase I than the Rec8, Rad21L double mutant. Our genetic analysis demonstrates that cohesins containing STAG3 and REC8 are the main complex required for centromeric cohesion, and RAD21L cohesins are required for normal clustering of pericentromeric heterochromatin. Furthermore, the STAG3/REC8 and STAG3/RAD21L cohesins are the primary cohesins required for

  15. Increased interreader agreement in diagnosis of hepatocellular carcinoma using an adapted LI-RADS algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Anton S., E-mail: anton.becker@usz.ch; Barth, Borna K.; Marquez, Paulo H.; Donati, Olivio F.; Ulbrich, Erika J.; Karlo, Christoph; Reiner, Cäcilia S.; Fischer, Michael A.

    2017-01-15

    Purpose: To evaluate a simplified Liver Imaging Reporting and Data System (LI-RADS) algorithm to improve interreader agreement while maintaining diagnostic performance for HCC. Materials and methods: MRI scans of 84 cirrhotic patients with 104 distinct liver observations were retrospectively selected to equivocally match each of the LI-RADS grades (LR1-5) using histopathology and imaging follow up as standard of reference. Four independent radiologists categorized all observations as benign (LR1-2) or potentially malignant (LR3-5) and determined LI-RADS based imaging features including observation size, arterial phase hyperenhancement, washout, capsule appearance and threshold growth for LR3-5 observations and timed their readouts. LR3-5 observations were categorized according to the LI-RADS v2014 algorithm and according to a modified LI-RADS (mLI-RADS) version. Diagnostic performance and Interreader agreement were determined for LI-RADS and mLI-RADS using receiver operating characteristics (ROC) and Fleiss’ and Cohen’s Kappa analysis respectively. Results: ROC analysis revealed equal diagnostic performance for LI-RADS and mLI-RADS (area under the ROC curve = 0.91). Interreader agreement was higher using mLI-RADS as compared to current LI-RADS showing an improved overall (κ = 0.53 ± 0.04 vs. 0.45 ± 0.04), and pair-wise agreement between most readers (κ range 0.44-0.62 vs. 0.35-0.60) at a reduced median evaluation time (51 vs. 62 s per observation, p < 0.0001). Conclusion: Focusing on observation size and washout criteria using a modified, stepwise LI-RADS decision tree for LR3-5 observations results in higher interobserver reliability and faster categorization while maintaining diagnostic accuracy.

  16. The tumor suppressor homolog in fission yeast, myh1{sup +}, displays a strong interaction with the checkpoint gene rad1{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Kristina; Warringer, Jonas; Farewell, Anne [Department of Cell and Molecular Biology, Lundberg Laboratory, Goeteborg University, P.O. Box 462, Goeteborg SE-405 30 (Sweden); Park, Han-Oh [Bioneer Corporation, 49-3, Munpyeong-dong, Daedeok-gu, Daejon 306-220 (Korea, Republic of); Hoe, Kwang-Lae; Kim, Dong-Uk [Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yusong, Daejeon (Korea, Republic of); Hayles, Jacqueline [Cell Cycle Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln' s Inn Fields, London WC2A 3PX (United Kingdom); Sunnerhagen, Per [Department of Cell and Molecular Biology, Lundberg Laboratory, Goeteborg University, P.O. Box 462, Goeteborg SE-405 30 (Sweden)], E-mail: per.sunnerhagen@cmb.gu.se

    2008-09-26

    The DNA glycosylase MutY is strongly conserved in evolution, and homologs are found in most eukaryotes and prokaryotes examined. This protein is implicated in repair of oxidative DNA damage, in particular adenine mispaired opposite 7,8-dihydro-8-oxoguanine. Previous investigations in Escherichia coli, fission yeast, and mammalian cells show an association of mutations in MutY homologs with a mutator phenotype and carcinogenesis. Eukaryotic MutY homologs physically associate with several proteins with a role in replication, DNA repair, and checkpoint signaling, specifically the trimeric 9-1-1 complex. In a genetic investigation of the fission yeast MutY homolog, myh1{sup +}, we show that the myh1 mutation confers a moderately increased UV sensitivity alone and in combination with mutations in several DNA repair genes. The myh1 rad1, and to a lesser degree myh1 rad9, double mutants display a synthetic interaction resulting in enhanced sensitivity to DNA damaging agents and hydroxyurea. UV irradiation of myh1 rad1 double mutants results in severe chromosome segregation defects and visible DNA fragmentation, and a failure to activate the checkpoint. Additionally, myh1 rad1 double mutants exhibit morphological defects in the absence of DNA damaging agents. We also found a moderate suppression of the slow growth and UV sensitivity of rhp51 mutants by the myh1 mutation. Our results implicate fission yeast Myh1 in repair of a wider range of DNA damage than previously thought, and functionally link it to the checkpoint pathway.

  17. [Cloning of cDNA for RNA polymerase subunit from the fission yeast Schizosaccharomyces pombe by heterospecific complementation in Saccharomyces cerevisiae].

    Science.gov (United States)

    Shpakovskiĭ, G V; Lebedenko, E N; Thuriaux, P

    1997-02-01

    The rpb10 cDNA of the fission yeast Schizosaccharomyces pombe, encoding one of the five small subunits common to all three nuclear DNA-dependent RNA polymerases, was isolated from an expression cDNA library by two independent approaches: PCR-based screening and direct suppression by means of heterospecific complementation of a temperature-sensitive mutant defective in the corresponding gene of Saccharomyces cerevisiae. The cloned Sz. pombe cDNA encodes a protein Rpb10 of 71 amino acids with an M of 8,275 Da, sharing 51 amino acids (71% identity) with the subunit ABC10 beta of RNA polymerases I-III from S. cerevisiae. All eukaryotic members of this protein family have the same general organization featuring two highly conserved motifs (RCFT/SCGK and RYCCRRM) around an atypical zinc finger and an additional invariant HVDLIEK motif toward the C-terminal end. The last motif is only characteristics for homologs from eukaryotes. In keeping with this remarkable structural conservation, the Sz. pombe cDNA also fully complemented a S. cerevisiae deletion mutant lacking subunit ABC10 beta (null allele rpb10-delta 1::HIS3).

  18. Breast imaging reporting and data system (BI-RADS) lexicon for breast MRI: Interobserver variability in the description and assignment of BI-RADS category

    International Nuclear Information System (INIS)

    El Khoury, Mona; Lalonde, Lucie; David, Julie; Labelle, Maude; Mesurolle, Benoit; Trop, Isabelle

    2015-01-01

    Highlights: • The use of BI-RADS lexicon in interpreting breast MRI examinations is beneficial. • Our study shows: (a) moderate to substantial agreement between observers and (b) better agreement in interpreting mass than non-mass enhancement (NME). • Careful analysis of the NME should be done to help detect cancer as early as possible. - Abstract: Purpose: To retrospectively evaluate interobserver variability between breast radiologists when describing abnormal enhancement on breast MR examinations and assigning a BI-RADS category using the Breast Imaging Reporting and Data System (BI-RADS) terminology. Materials and methods: Five breast radiologists blinded to patients’ medical history and pathologic results retrospectively and independently reviewed 257 abnormal areas of enhancement on breast MRI performed in 173 women. Each radiologist described the focal enhancement using BI-RADS terminology and assigned a final BI-RADS category. Krippendorff's α coefficient of agreement was used to asses interobserver variability. Results: All radiologists agreed on the morphology of enhancement in 183/257 (71%) lesions, yielding a substantial agreement (Krippendorff's α = 0.71). Moderate agreement was obtained for mass descriptors – shape, margins and internal enhancement – (α = 0.55, 0.51 and 0.45 respectively) and NME (non-mass enhancement) descriptors – distribution and internal enhancement – (α = 0.54 and 0.43). Overall substantial agreement was obtained for BI-RADS category assignment (α = 0.71). It was however only moderate (α = 0.38) for NME compared to mass (α = 0.80). Conclusion: Our study shows good agreement in describing mass and NME on a breast MR examination but a better agreement in predicting malignancy for mass than NME

  19. Breast imaging reporting and data system (BI-RADS) lexicon for breast MRI: Interobserver variability in the description and assignment of BI-RADS category

    Energy Technology Data Exchange (ETDEWEB)

    El Khoury, Mona, E-mail: monelkhoury@gmail.com [Centre Hospitalier Universitaire de Montréal, Breast Centre, Radiology Department, 3840 Rue Saint Urbain, Montréal, QC H2W1T8 (Canada); Lalonde, Lucie; David, Julie; Labelle, Maude [Centre Hospitalier Universitaire de Montréal, Breast Centre, Radiology Department, 3840 Rue Saint Urbain, Montréal, QC H2W1T8 (Canada); Mesurolle, Benoit [Centre Hospitalier Universitaire de McGill, Cedar Breast Centre, Radiology Department, 687 Pine Avenue West, Montreal, QC H3A1A1 (Canada); Trop, Isabelle [Centre Hospitalier Universitaire de Montréal, Breast Centre, Radiology Department, 3840 Rue Saint Urbain, Montréal, QC H2W1T8 (Canada)

    2015-01-15

    Highlights: • The use of BI-RADS lexicon in interpreting breast MRI examinations is beneficial. • Our study shows: (a) moderate to substantial agreement between observers and (b) better agreement in interpreting mass than non-mass enhancement (NME). • Careful analysis of the NME should be done to help detect cancer as early as possible. - Abstract: Purpose: To retrospectively evaluate interobserver variability between breast radiologists when describing abnormal enhancement on breast MR examinations and assigning a BI-RADS category using the Breast Imaging Reporting and Data System (BI-RADS) terminology. Materials and methods: Five breast radiologists blinded to patients’ medical history and pathologic results retrospectively and independently reviewed 257 abnormal areas of enhancement on breast MRI performed in 173 women. Each radiologist described the focal enhancement using BI-RADS terminology and assigned a final BI-RADS category. Krippendorff's α coefficient of agreement was used to asses interobserver variability. Results: All radiologists agreed on the morphology of enhancement in 183/257 (71%) lesions, yielding a substantial agreement (Krippendorff's α = 0.71). Moderate agreement was obtained for mass descriptors – shape, margins and internal enhancement – (α = 0.55, 0.51 and 0.45 respectively) and NME (non-mass enhancement) descriptors – distribution and internal enhancement – (α = 0.54 and 0.43). Overall substantial agreement was obtained for BI-RADS category assignment (α = 0.71). It was however only moderate (α = 0.38) for NME compared to mass (α = 0.80). Conclusion: Our study shows good agreement in describing mass and NME on a breast MR examination but a better agreement in predicting malignancy for mass than NME.

  20. Complementation of Saccharomyces cerevisiae mutations in genes involved in translation and protein folding (EFB1 and SSB1) with Candida albicans cloned genes.

    Science.gov (United States)

    Maneu, V; Roig, P; Gozalbo, D

    2000-11-01

    We have demonstrated that the expression of Candida albicans genes involved in translation and protein folding (EFB1 and SSB1) complements the phenotype of Saccharomyces cerevisiae mutants. The elongation factor 1beta (EF-1beta) is essential for growth and efb1 S. cerevisiae null mutant cells are not viable; however, viable haploid cells, carrying the disrupted chromosomal allele of the S. cerevisiae EFB1 gene and pEFB1, were isolated upon sporulation of a diploid strain which was heterozygous at the EFB1 locus and transformed with pEFB1 (a pEMBLYe23 derivative plasmid containing an 8-kb DNA fragment from the C. albicans genome which contains the EFB1 gene). This indicates that the C. albicans EFB1 gene encodes a functional EF-1beta. Expression of the SSB1 gene from C. albicans, which codes for a member of the 70-kDa heat shock protein family, in S. cerevisiae ssb1 ssb2 double mutant complements the mutant phenotype (poor growth particularly at low temperature, and sensitivity to certain protein synthesis inhibitors, such as paromomycin). This complementation indicates that C. albicans Ssbl may function as a molecular chaperone on the translating ribosomes, as described in S. cerevisiae. Northern blot analysis showed that SSB mRNA levels increased after mild cold shift (28 degrees C to 23 degrees C) and rapidly decreased after mild heat shift (from 28 degrees C to 37 degrees C, and particularly to 42 degrees C), indicating that SSB1 expression is regulated by temperature. Therefore, Ssb1 may be considered as a molecular chaperone whose pattern of expression is similar to that found in ribosomal proteins, according to its common role in translation.

  1. Crystallization and preliminary X-ray diffraction analysis of motif N from Saccharomyces cerevisiae Dbf4

    International Nuclear Information System (INIS)

    Matthews, Lindsay A.; Duong, Andrew; Prasad, Ajai A.; Duncker, Bernard P.; Guarné, Alba

    2009-01-01

    To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. The Cdc7–Dbf4 complex plays an instrumental role in the initiation of DNA replication and is a target of replication-checkpoint responses in Saccharomyces cerevisiae. Cdc7 is a conserved serine/threonine kinase whose activity depends on association with its regulatory subunit, Dbf4. A conserved sequence near the N-terminus of Dbf4 (motif N) is necessary for the interaction of Cdc7–Dbf4 with the checkpoint kinase Rad53. To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. A complete native data set was collected at 100 K from crystals that diffracted X-rays to 2.75 Å resolution and structure determination is currently under way

  2. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment.

    Science.gov (United States)

    Eyboulet, Fanny; Cibot, Camille; Eychenne, Thomas; Neil, Helen; Alibert, Olivier; Werner, Michel; Soutourina, Julie

    2013-12-01

    Mediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair. We identified a functional contact between the Med17 Mediator subunit and Rad2/XPG, the 3' endonuclease involved in nucleotide excision DNA repair. Genome-wide location analyses revealed that Rad2 is associated with RNA polymerase II (Pol II)- and Pol III-transcribed genes and telomeric regions in the absence of exogenous genotoxic stress. Rad2 occupancy of Pol II-transcribed genes is transcription-dependent. Genome-wide Rad2 occupancy of class II gene promoters is well correlated with that of Mediator. Furthermore, UV sensitivity of med17 mutants is correlated with reduced Rad2 occupancy of class II genes and concomitant decrease of Mediator interaction with Rad2 protein. Our results suggest that Mediator is involved in DNA repair by facilitating Rad2 recruitment to transcribed genes.

  3. Arabidopsis rad23-4 gene is required for pollen development under ...

    African Journals Online (AJOL)

    Nucleotide excision repair (NER) is a highly conserved DNA repair pathway for correcting DNA lesions that cause distortion of the double helical structure. The protein heterodimer Rad23 is involved in recognition and binding to such lesions. Here, we showed that rad23-4 (AT5g38470) was expressed in the roots, mature ...

  4. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Brian H. Carrick

    2016-03-01

    Full Text Available Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.

  5. A/α-specific effect of the mms3 mutation on ultraviolet mutagenesis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Martin, P.; Prakash, L.; Prakash, S.

    1981-01-01

    A new gene involved in error-prone repair of ultraviolet (uv) damage has been identified in Saccharomyces cerevisiae by the mms3-1 mutation. Uv-induced reversion is reduced in diploids that are homozygous for mms3-1, only if they are also heterozygous (MATa/MATα) at the mating type locus. The mms3-1 mutation has no effect on uv-induced reversion either in haploids or MATa/MATα or MATα/MATα diploids. The mutation confers sensitivity to uv and methyl methane sulfonate in both haploids and diploids. Even though mutation induction by uv is restored to wild-type levels in MATa/MATa mms3-1/mms3-1 or MATα/MATα mms3-1/mms3-1 diploids, such strains still retain sensitivity to the lethal effects of uv. Survival after uv irradiation in mms3-1 rad double mutant combinations indicates that mms3-1 is epistatic to rad6-1 whereas non-epistatic interactions are observed with rad3 and rad52 mutants. When present in the homozygous state in MATa/MATα his1-1/his1-315 heteroallelic diploids, mms3-1 was found to lower uv-induced mitotic recombination

  6. Effect of 60-Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ager, D D; Radul, J A

    1992-12-01

    The purpose of this study was to examine the effect of extremely low frequency (ELF) magnetic fields on the induction of genetic damage. In general, mutational studies involving ELF magnetic fields have proven negative. However, studies examining sister-chromatid exchange and chromosome aberrations have yielded conflicting results. In this study, we have examined whether 60-Hz magnetic fields are capable of inducing mutation or mitotic recombination in the yeast Saccharomyces cerevisiae. In addition we determined whether magnetic fields were capable of altering the genetic response of S. cerevisiae to UV (254 nm). We measured the frequencies of induced mutation, gene conversion and reciprocal mitotic crossing-over for exposures to magnetic fields alone (1 mT) or in combination with various UV exposures (2-50 J/m2). These experiments were performed using a repair-proficient strain (RAD+), as well as a strain of yeast (rad3) which is incapable of excising UV-induced thymine dimers. Magnetic field exposures did not induce mutation, gene conversion or reciprocal mitotic crossing-over in either of these strains, nor did the fields influence the frequencies of UV-induced genetic events.

  7. Role of endogenous substances in enhancing radioresistance background

    International Nuclear Information System (INIS)

    Goncharenko, E.N.; Gorskaya, T.G.; Gudz', T.I.; Zolotareva, L.T.; Kovaleva, Z.I.; Peshkova, E.N.

    1978-01-01

    It is shown that in Saccharomyces cerevisiae of ''wild type'' diploid cells (more radioresistant than haploid ones) are characterized by a higher content of endogenous biologically active substances, which possess a radioprotective ability (biogenous amines and SOD), and a lower level of radiosensitizing substances (hydroperoxides of higher unsaturated fatty acids). With Saccharomyces cerevisiae, bearing mutation rad 51, not all the components of the radioresistance background shoW this dependence, which is indicative of the presence of additional factors affecting radioresistance of these cells

  8. Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy

    International Nuclear Information System (INIS)

    Chang, Lihong; Huang, Jiancong; Wang, Kai; Li, Jingjia; Yan, Ruicheng; Zhu, Ling; Ye, Jin; Wu, Xifu; Zhuang, Shimin; Li, Daqing; Zhang, Gehua

    2016-01-01

    The Mre11-Rad50-Nbs1 (MRN) complex is well known for its crucial role in initiating DNA double strand breaks (DSBs) repair pathways to resistant irradiation (IR) injury and thus facilitating radioresistance which severely reduces radiocurability of nasopharyngeal cancer (NPC). Targeting native cellular MRN function would sensitize NPC cells to IR. A recombinant adenovirus containing a mutant Rad50 gene (Ad-RAD50) expressing Rad50 zinc hook domain but lacking the ATPase domain and the Mre11 interaction domain was constructed to disrupt native cellular MRN functions. The effects of Ad-RAD50 on the MRN functions were assessed in NPC cells lines using western blot, co-immunoprecipitation and confocal microscopy analyses. The increased radiosensitivity of transient Ad-RAD50 to IR was examined in NPC cells, including MTT assay, colony formation. The molecular mechanisms of radiosensitization were confirmed by neutral comet assay and western bolts. Nude mice subcutaneous injection, tumor growth curve and TUNEL assay were used to evaluate tumor regression and apoptosis in vivo. Rad50 is remarkably upregulated in NPC cells after IR, implying the critical role of Rad50 in MRN functions. The transient expression of this mutant Rad50 decreased the levels of native cellular Rad50, Mre11 and Nbs1, weakened the interactions among these proteins, abrogated the G2/M arrest induced by DSBs and reduced the DNA repair ability in NPC cells. A combination of IR and mutant RAD50 therapy produced significant tumor cytotoxicity in vitro, with a corresponding increase in DNA damage, prevented proliferation and cell viability. Furthermore, Ad-RAD50 sensitized NPC cells to IR by causing dramatic tumor regression and inducing apoptosis in vivo. Our findings define a novel therapeutic approach to NPC radiosensitization via targeted native cellular Rad50 disruption. The online version of this article (doi:10.1186/s12885-016-2190-8) contains supplementary material, which is available to

  9. HyCCAPP as a tool to characterize promoter DNA-protein interactions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Guillen-Ahlers, Hector; Rao, Prahlad K; Levenstein, Mark E; Kennedy-Darling, Julia; Perumalla, Danu S; Jadhav, Avinash Y L; Glenn, Jeremy P; Ludwig-Kubinski, Amy; Drigalenko, Eugene; Montoya, Maria J; Göring, Harald H; Anderson, Corianna D; Scalf, Mark; Gildersleeve, Heidi I S; Cole, Regina; Greene, Alexandra M; Oduro, Akua K; Lazarova, Katarina; Cesnik, Anthony J; Barfknecht, Jared; Cirillo, Lisa A; Gasch, Audrey P; Shortreed, Michael R; Smith, Lloyd M; Olivier, Michael

    2016-06-01

    Currently available methods for interrogating DNA-protein interactions at individual genomic loci have significant limitations, and make it difficult to work with unmodified cells or examine single-copy regions without specific antibodies. In this study, we describe a physiological application of the Hybridization Capture of Chromatin-Associated Proteins for Proteomics (HyCCAPP) methodology we have developed. Both novel and known locus-specific DNA-protein interactions were identified at the ENO2 and GAL1 promoter regions of Saccharomyces cerevisiae, and revealed subgroups of proteins present in significantly different levels at the loci in cells grown on glucose versus galactose as the carbon source. Results were validated using chromatin immunoprecipitation. Overall, our analysis demonstrates that HyCCAPP is an effective and flexible technology that does not require specific antibodies nor prior knowledge of locally occurring DNA-protein interactions and can now be used to identify changes in protein interactions at target regions in the genome in response to physiological challenges. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Identification of proteins whose synthesis in Saccharomyces cerevisiae is induced by DNA damage and heat shock

    International Nuclear Information System (INIS)

    Gailit, James

    1990-01-01

    Protein synthesis in Saccharomyces cerevisiae after exposure to ultraviolet light (UV) was examined by two-dimensional gel electrophoresis of pulse-labelled proteins. The synthesis of 12 distinct proteins was induced by treatment with UV doses of 10-200 J/m 2 . The induced proteins differed in minimum dose necessary for induction, maximum dose at which induction still occurred and constitutive level present in unirradiated cells. A chemical mutagen, 4-nitroquinoline-1-oxide, induced synthesis of the same proteins. Induction after UV treatment was observed in seven different yeast strains, including three mutants deficient in DNA repair. Synthesis of five of the proteins was also induced by brief heat shock treatment. These five may be members of a family of proteins whose synthesis is regulated by two different pathways responding to different types of stress. (author)

  11. Characterization of the interaction between the cohesin subunits Rad21 and SA1/2.

    Directory of Open Access Journals (Sweden)

    Nenggang Zhang

    Full Text Available The cohesin complex is responsible for the fidelity of chromosomal segregation during mitosis. It consists of four core subunits, namely Rad21/Mcd1/Scc1, Smc1, Smc3, and one of the yeast Scc3 orthologs SA1 or SA2. Sister chromatid cohesion is generated during DNA replication and maintained until the onset of anaphase. Among the many proposed models of the cohesin complex, the 'core' cohesin subunits Smc1, Smc3, and Rad21 are almost universally displayed as tripartite ring. However, other than its supportive role in the cohesin ring, little is known about the fourth core subunit SA1/SA2. To gain deeper insight into the function of SA1/SA2 in the cohesin complex, we have mapped the interactive regions of SA2 and Rad21 in vitro and ex vivo. Whereas SA2 interacts with Rad21 through a broad region (301-750 aa, Rad21 binds to SA proteins through two SA-binding motifs on Rad21, namely N-terminal (NT and middle part (MP SA-binding motif, located at 60-81 aa of the N-terminus and 383-392 aa of the MP of Rad21, respectively. The MP SA-binding motif is a 10 amino acid, α-helical motif. Deletion of these 10 amino acids or mutation of three conserved amino acids (L(385, F(389, and T(390 in this α-helical motif significantly hinders Rad21 from physically interacting with SA1/2. Besides the MP SA-binding motif, the NT SA-binding motif is also important for SA1/2 interaction. Although mutations on both SA-binding motifs disrupt Rad21-SA1/2 interaction, they had no apparent effect on the Smc1-Smc3-Rad21 interaction. However, the Rad21-Rad21 dimerization was reduced by the mutations, indicating potential involvement of the two SA-binding motifs in the formation of the two-ring handcuff for chromosomal cohesion. Furthermore, mutant Rad21 proteins failed to significantly rescue precocious chromosome separation caused by depletion of endogenous Rad21 in mitotic cells, further indicating the physiological significance of the two SA-binding motifs of Rad21.

  12. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae.

    Science.gov (United States)

    Konte, Tilen; Terpitz, Ulrich; Plemenitaš, Ana

    2016-01-01

    The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.

  13. Kinetics of phosphomevalonate kinase from Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    David E Garcia

    Full Text Available The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2 from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3 and purified on a Ni²⁺ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The K(M of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The V(max was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg²⁺ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.

  14. Repair of UV-irradiated plasmid DNA in excision repair deficient mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ikai, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-01-01

    The repair of UV-irradiated DNA of plasmid YEp13 was studied in the incision defective strains by measurement of cell transformation frequency. In Saccharomyces cerevisiae, rad1,2,3 and 4 mutants could repair UV-damaged plasmid DNA. In Escherichia coli, uvrA mutant was unable to repair UV-damaged plasmid DNA; however, pretreatment of the plasmid with Micrococcus luteus endonuclease increased repair. It was concluded that all the mutations of yeast were probably limited only to the nuclear DNA. (author)

  15. Saccharomyces cerevisiae GTPase complex: Gtr1p-Gtr2p regulates cell-proliferation through Saccharomyces cerevisiae Ran-binding protein, Yrb2p

    International Nuclear Information System (INIS)

    Wang Yonggang; Nakashima, Nobutaka; Sekiguchi, Takeshi; Nishimoto, Takeharu

    2005-01-01

    A Gtr1p GTPase, the GDP mutant of which suppresses both temperature-sensitive mutants of Saccharomyces cerevisiae RanGEF/Prp20p and RanGAP/Rna1p, was presently found to interact with Yrb2p, the S. cerevisiae homologue of mammalian Ran-binding protein 3. Gtr1p bound the Ran-binding domain of Yrb2p. In contrast, Gtr2p, a partner of Gtr1p, did not bind Yrb2p, although it bound Gtr1p. A triple mutant: yrb2Δ gtr1Δ gtr2Δ was lethal, while a double mutant: gtr1Δ gtr2Δ survived well, indicating that Yrb2p protected cells from the killing effect of gtr1Δ gtr2Δ. Recombinant Gtr1p and Gtr2p were purified as a complex from Escherichia coli. The resulting Gtr1p-Gtr2p complex was comprised of an equal amount of Gtr1p and Gtr2p, which inhibited the Rna1p/Yrb2 dependent RanGAP activity. Thus, the Gtr1p-Gtr2p cycle was suggested to regulate the Ran cycle through Yrb2p

  16. Dosimetric properties of the pocket alarm dosimeter type Alnor RAD 21L, RAD 21H, RAD 22

    International Nuclear Information System (INIS)

    Hauser, M.; Burgkhardt, B.; Piesch, E.

    1981-02-01

    In personnel monitoring pocket dosimeters with build-in alarm devices are increasingly in use. The report presents results of a test performed at Karlsruhe for the pocket dose and alarm meter type Alnor RAD 21L, RAD 21H, RAD 22. The properties investigated are above all linearity and reproducibility of the dose reading as well as of the acoustic alarm indication, dependence of the dose reading on the photon energy, the direction of the radiation incidence, the dose rate, the temperature, operational characteristic of the batteries. (orig.) [de

  17. Oral administration of myostatin-specific recombinant Saccharomyces cerevisiae vaccine in rabbit.

    Science.gov (United States)

    Liu, Zhongtian; Zhou, Gang; Ren, Chonghua; Xu, Kun; Yan, Qiang; Li, Xinyi; Zhang, Tingting; Zhang, Zhiying

    2016-04-29

    Yeast is considered as a simple and cost-effective host for protein expression, and our previous studies have proved that Saccharomyces cerevisiae can deliver recombinant protein and DNA into mouse dendritic cells and can further induce immune responses as novel vaccines. In order to know whether similar immune responses can be induced in rabbit by oral administration of such recombinant S. cerevisiae vaccine, we orally fed the rabbits with heat-inactivated myostatin-recombinant S. cerevisiae for 5 weeks, and then myostatin-specific antibody in serum was detected successfully by western blotting and ELISA assay. The rabbits treated with myostatin-recombinant S. cerevisiae vaccine grew faster and their muscles were much heavier than that of the control group. As a common experimental animal and a meat livestock with great economic value, rabbit was proved to be the second animal species that have been successfully orally immunized by recombinant S. cerevisiae vaccine after mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins.

    Science.gov (United States)

    Barras, Frédéric; Loiseau, Laurent; Py, Béatrice

    2005-01-01

    , plants and parasites. ISC and SUF systems share a common core function made of a cysteine desulfurase, which acts as a sulfur donor, and scaffold proteins, which act as sulfur and iron acceptors. The ISC and SUF systems also exhibit important differences. In particular, the ISC system includes an Hsp70/Hsp40-like pair of chaperones, while the SUF system involves an unorthodox ATP-binding cassette (ABC)-like component. The role of these two sets of ATP-hydrolyzing proteins in Fe/S cluster biogenesis remains unclear. Both systems are likely to target overlapping sets of apoproteins. However, regulation and phenotypic studies in E. coli, which synthesizes both types of systems, leads us to envisage ISC as the house-keeping one that functions under normal laboratory conditions, while the SUF system appears to be required in harsh environmental conditions such as oxidative stress and iron starvation. In Saccharomyces cerevisiae, the ISC system is located in the mitochondria and its function is necessary for maturation of both mitochondrial and cytosolic Fe/S proteins. Here, we attempt to provide the first comprehensive review of the ISC and SUF systems since their discovery in the mid and late 1990s. Most emphasis is put on E. coli and S. cerevisiae models with reference to other organisms when their analysis provided us with information of particular significance. We aim at covering information made available on each Isc and Suf component by the different experimental approaches, including physiology, gene regulation, genetics, enzymology, biophysics and structural biology. It is our hope that this parallel coverage will facilitate the identification of both similarities and specificities of ISC and SUF systems.

  19. RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis.

    Science.gov (United States)

    Lee, Jibak; Hirano, Tatsuya

    2011-01-24

    Cohesins are multi-subunit protein complexes that regulate sister chromatid cohesion during mitosis and meiosis. Here we identified a novel kleisin subunit of cohesins, RAD21L, which is conserved among vertebrates. In mice, RAD21L is expressed exclusively in early meiosis: it apparently replaces RAD21 in premeiotic S phase, becomes detectable on the axial elements in leptotene, and stays on the axial/lateral elements until mid pachytene. RAD21L then disappears, and is replaced with RAD21. This behavior of RAD21L is unique and distinct from that of REC8, another meiosis-specific kleisin subunit. Remarkably, the disappearance of RAD21L at mid pachytene correlates with the completion of DNA double-strand break repair and the formation of crossovers as judged by colabeling with molecular markers, γ-H2AX, MSH4, and MLH1. RAD21L associates with SMC3, STAG3, and either SMC1α or SMC1β. Our results suggest that cohesin complexes containing RAD21L may be involved in synapsis initiation and crossover recombination between homologous chromosomes.

  20. The role of the Saccharomyces cerevisiae lipoate protein ligase homologue, Lip3, in lipoic acid synthesis.

    Science.gov (United States)

    Hermes, Fatemah A; Cronan, John E

    2013-10-01

    The covalent attachment of lipoate to the lipoyl domains (LDs) of the central metabolism enzymes pyruvate dehydrogenase (PDH) and oxoglutarate dehydrogenase (OGDH) is essential for their activation and thus for respiratory growth in Saccharomyces cerevisiae. A third lipoate-dependent enzyme system, the glycine cleavage system (GCV), is required for utilization of glycine as a nitrogen source. Lipoate is synthesized by extraction of its precursor, octanoyl-acyl carrier protein (ACP), from the pool of fatty acid biosynthetic intermediates. Alternatively, lipoate is salvaged from previously modified proteins or from growth medium by lipoate protein ligases (Lpls). The first Lpl to be characterized, LplA of Escherichia coli, catalyses two partial reactions: activation of the acyl chain by formation of acyl-AMP, followed by transfer of the acyl chain to lipoyl domains (LDs). There is a surprising diversity within the Lpl family of enzymes, several of which catalyse reactions other than ligation reactions. For example, the Bacillus subtilis Lpl homologue LipM is an octanoyltransferase that transfers the octanoyl moiety from octanoyl-ACP to GCV. Another B. subtilis Lpl homologue, LipL, transfers octanoate from octanoyl-GCV to other LDs in an amido-transfer reaction. Study of eukaryotic Lpls has lagged behind studies of the bacterial enzymes. We report that the Lip3 Lpl homologue of the yeast S. cerevisiae has octanoyl-CoA-protein transferase activity, and discuss implications of this activity on the physiological role of Lip3 in lipoate synthesis. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  1. The DNA repair capability of cdc9, the saccharomyces cerevisiae mutant defective in DNA ligase

    International Nuclear Information System (INIS)

    Johnston, L.H.

    1979-01-01

    The cell cycle mutant, cdc9, in the yeast Saccharomyces cerevisiae is defective in DNA ligase with the consequence to be deficient in the repair of DNA damaged by methyl methane sulphonate. On the other hand survival of cdc9 after irradiation by γ-rays is little different from that of the wild-type, even after a period of stress at the restrictive temperature. The mutant cdc9 is not allelic with any known rad or mms mutants. (orig./AJ) [de

  2. Sensitization of Tumor to 212Pb Radioimmunotherapy by Gemcitabine Involves Initial Abrogation of G2 Arrest and Blocked DNA Damage Repair by Interference With Rad51

    International Nuclear Information System (INIS)

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E.; Brechbiel, Martin W.

    2013-01-01

    Purpose: To elucidate the mechanism of the therapeutic efficacy of targeted α-particle radiation therapy using 212 Pb-TCMC-trastuzumab together with gemcitabine for treatment of disseminated peritoneal cancers. Methods and Materials: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pretreated with gemcitabine, followed by 212 Pb-TCMC-trastuzumab and compared with controls. Results: Treatment with 212 Pb-TCMC-trastuzumab increased the apoptotic rate in the S-phase-arrested tumors induced by gemcitabine at earlier time points (6 to 24 hours). 212 Pb-TCMC-trastuzumab after gemcitabine pretreatment abrogated G2/M arrest at the same time points, which may be associated with the inhibition of Chk1 phosphorylation and, in turn, cell cycle perturbation, resulting in apoptosis. 212 Pb-TCMC-trastuzumab treatment after gemcitabine pretreatment caused depression of DNA synthesis, DNA double-strand breaks, accumulation of unrepaired DNA, and down-regulation of Rad51 protein, indicating that DNA damage repair was blocked. In addition, modification in the chromatin structure of p21 may be associated with transcriptionally repressed chromatin states, indicating that the open structure was delayed at earlier time points. Conclusion: These findings suggest that the cell-killing efficacy of 212 Pb-TCMC-trastuzumab after gemcitabine pretreatment may be associated with abrogation of the G2/M checkpoint, inhibition of DNA damage repair, and chromatin remodeling

  3. Physical interaction between components of DNA mismatch repair and nucleotide excision repair

    International Nuclear Information System (INIS)

    Bertrand, P.; Tishkoff, D.X.; Filosi, N.; Dasgupta, R.; Kolodner, R.D.

    1998-01-01

    Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as 'bait,' and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 coimmunoprecipitated specifically with epitope-tagged versions of RAD2, RAD10, RAD14, and RAD25. MSH2 and RAD10 were found to interact in msh3 msh6 and mlh1 pms1 double mutants, suggesting a direct interaction with MSH2. Mutations in MSH2 increased the UV sensitivity of NER-deficient yeast strains, and msh2 mutations were epistatic to the mutator phenotype observed in NER-deficient strains. These data suggest that MSH2 and possibly other components of DNA mismatch repair exist in a complex with NER proteins, providing a biochemical and genetical basis for these proteins to function in common processes

  4. Unc-51 controls active zone density and protein composition by downregulating ERK signaling.

    Science.gov (United States)

    Wairkar, Yogesh P; Toda, Hirofumi; Mochizuki, Hiroaki; Furukubo-Tokunaga, Katsuo; Tomoda, Toshifumi; Diantonio, Aaron

    2009-01-14

    Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosophila to demonstrate that the serine threonine kinase Unc-51 acts in the presynaptic motoneuron to regulate the localization of the active zone protein Bruchpilot opposite to glutamate receptors at each synapse. In the absence of Unc-51, many glutamate receptor clusters are unapposed to Bruchpilot, and ultrastructural analysis demonstrates that fewer active zones contain dense body T-bars. In addition to the presence of these aberrant synapses, there is also a decrease in the density of all synapses. This decrease in synaptic density and abnormal active zone composition is associated with impaired evoked transmitter release. Mechanistically, Unc-51 inhibits the activity of the MAP kinase ERK to promote synaptic development. In the unc-51 mutant, increased ERK activity leads to the decrease in synaptic density and the absence of Bruchpilot from many synapses. Hence, activated ERK negatively regulates synapse formation, resulting in either the absence of active zones or the formation of active zones without their proper complement of proteins. The Unc-51-dependent inhibition of ERK activity provides a potential mechanism for synapse-specific control of active zone protein composition and release probability.

  5. Yeast ribosomal proteins

    International Nuclear Information System (INIS)

    Otaka, E.; Kobata, K.

    1978-01-01

    The cytoplasmic 80s ribosomal proteins from the cells of yeast Saccharomyces cerevisiae were analyzed by SDS two-dimensional polyacrylamide gel electrophoresis. Seventyfour proteins were identified and consecutively numbered from 1 to 74. Upon oxidation of the 80s proteins with performic acid, ten proteins (no. 15, 20, 35, 40, 44, 46, 49, 51, 54 and 55) were dislocated on the gel without change of the total number of protein spots. Five proteins (no. 8, 14, 16, 36 and 74) were phosphorylated in vivo as seen in 32 P-labelling experiments. The large and small subunits separated in low magnesium medium were analyzed by the above gel electrophoresis. At least forty-five and twenty-eight proteins were assumed to be in the large and small subunits, respectively. All proteins found in the 80s ribosomes, except for no. 3, were detected in either subunit without appearance of new spots. The acidic protein no. 3 seems to be lost during subunit dissociation. (orig.) [de

  6. Kin3 protein, a NIMA-related kinase of Saccharomyces cerevisiae, is involved in DNA adduct damage response.

    Science.gov (United States)

    Moura, Dinara J; Castilhos, Bruna; Immich, Bruna F; Cañedo, Andrés D; Henriques, João A P; Lenz, Guido; Saffi, Jenifer

    2010-06-01

    Kin3 is a nonessential serine/threonine protein kinase of the budding yeast Saccharomyces cerevisiae with unknown cellular role. It is an ortholog of the Aspergillus nidulans protein kinase NIMA (Never-In Mitosis, gene A), which is involved in the regulation of G2/M phase progression, DNA damage response and mitosis. The aim of this study was to determine whether Kin3 is required for proper checkpoint activation and DNA repair. Here we show that KIN3 gene deficient cells present sensitivity and fail to arrest properly at G2/M-phase checkpoint in response to the DNA damage inducing agents MMS, cisplatin, doxorubicin and nitrogen mustard, suggesting that Kin3 can be involved in DNA strand breaks recognition or signaling. In addition, there is an increase in KIN3 gene expression in response to the mutagenic treatment, which was confirmed by the increase of Kin3 protein. We also showed that co-treatment with caffeine induces a slight increase in the susceptibility to genotoxic agents in kin3 cells and abolishes KIN3 gene expression in wild-type strain, suggesting that Kin3p can play a role in Tel1/Mec1-dependent pathway activation induced after genotoxic stress. These data provide the first evidence of the involvement of S. cerevisiae Kin3 in the DNA damage response.

  7. MMS2, Encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway

    International Nuclear Information System (INIS)

    Broomfield, S.; Chow, B.L.; Xiao, W.

    1998-01-01

    Among the three Saccharomyces cerevisiae DNA repair epistasis groups, the RAD6 group is the most complicated and least characterized, primarily because it consists of two separate repair pathways: an error-free postreplication repair pathway, and a mutagenesis pathway. The rad6 and rad18 mutants are defective in both pathways, and the rev3 mutant affects only the mutagenesis pathway, but a yeast gene that is involved only in error-free postreplication repair has not been reported. We cloned the MMS2 gene from a yeast genomic library by functional complementation of the mms2-1 mutant [Prakash, L. and Prakash, S. (1977) Genetics 86, 33-55]. MMS2 encodes a 137-amino acid, 15.2-kDa protein with significant sequence homology to a conserved family of ubiquitin-conjugating (Ubc) proteins. However, Mms2 does not appear to possess Ubc activity. Genetic analyses indicate that the mms2 mutation is hypostatic to rad6 and rad18 but is synergistic with the rev3 mutation, and the mms2 mutant is proficient in UV-induced mutagenesis. These phenotypes are reminiscent of a pol30-46 mutant known to be impaired in postreplication repair. The mms2 mutant also displayed a REV3-dependent mutator phenotype, strongly suggesting that the MMS2 gene functions in the error-free postreplication repair pathway, parallel to the REV3 mutagenesis pathway. Furthermore, with respect to UV sensitivity, mms2 was found to be hypostatic to the rad6 delta 1-9 mutation, which results in the absence of the first nine amino acids of Rad6. On the basis of these collective results, we propose that the mms2 null mutation and two other allele-specific mutations, rad6 delta 1-9 and pol30-46, define the error-free mode of DNA postreplication repair, and that these mutations may enhance both spontaneous and DNA damage-induced mutagenesis

  8. Decarbonylated cyclophilin A Cpr1 protein protects Saccharomyces cerevisiae KNU5377Y when exposed to stress induced by menadione.

    Science.gov (United States)

    Kim, Il-Sup; Jin, Ingnyol; Yoon, Ho-Sung

    2011-01-01

    Cyclophilins are conserved cis-trans peptidyl-prolyl isomerase that are implicated in protein folding and function as molecular chaperones. The accumulation of Cpr1 protein to menadione in Saccharomyces cerevisiae KNU5377Y suggests a possibility that this protein may participate in the mechanism of stress tolerance. Stress response of S. cerevisiae KNU5377Y cpr1Δ mutant strain was investigated in the presence of menadione (MD). The growth ability of the strain was confirmed in an oxidant-supplemented medium, and a relationship was established between diminishing levels of cell rescue enzymes and MD sensitivity. The results demonstrate the significant effect of CPR1 disruption in the cellular growth rate, cell viability and morphology, and redox state in the presence of MD and suggest the possible role of Cpr1p in acquiring sensitivity to MD and its physiological role in cellular stress tolerance. The in vivo importance of Cpr1p for antioxidant-mediated reactive oxygen species (ROS) neutralization and chaperone-mediated protein folding was confirmed by analyzing the expression changes of a variety of cell rescue proteins in a CPR1-disrupted strain. The cpr1Δ to the exogenous MD showed reduced expression level of antioxidant enzymes, molecular chaperones, and metabolic enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH)- or adenosine triphosphate (ATP)-generating systems. More importantly, it was shown that cpr1Δ mutant caused imbalance in the cellular redox homeostasis and increased ROS levels in the cytosol as well as mitochondria and elevated iron concentrations. As a result of excess ROS production, the cpr1Δ mutant provoked an increase in oxidative damage and a reduction in antioxidant activity and free radical scavenger ability. However, there was no difference in the stress responses between the wild-type and the cpr1Δ mutant strains derived from S. cerevisiae BY4741 as a control strain under the same stress. Unlike BY4741, KNU5377Y Cpr1

  9. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins.

    Science.gov (United States)

    Palmieri, Ferdinando; Agrimi, Gennaro; Blanco, Emanuela; Castegna, Alessandra; Di Noia, Maria A; Iacobazzi, Vito; Lasorsa, Francesco M; Marobbio, Carlo M T; Palmieri, Luigi; Scarcia, Pasquale; Todisco, Simona; Vozza, Angelo; Walker, John

    2006-01-01

    The inner membranes of mitochondria contain a family of carrier proteins that are responsible for the transport in and out of the mitochondrial matrix of substrates, products, co-factors and biosynthetic precursors that are essential for the function and activities of the organelle. This family of proteins is characterized by containing three tandem homologous sequence repeats of approximately 100 amino acids, each folded into two transmembrane alpha-helices linked by an extensive polar loop. Each repeat contains a characteristic conserved sequence. These features have been used to determine the extent of the family in genome sequences. The genome of Saccharomyces cerevisiae contains 34 members of the family. The identity of five of them was known before the determination of the genome sequence, but the functions of the remaining family members were not. This review describes how the functions of 15 of these previously unknown transport proteins have been determined by a strategy that consists of expressing the genes in Escherichia coli or Saccharomyces cerevisiae, reconstituting the gene products into liposomes and establishing their functions by transport assay. Genetic and biochemical evidence as well as phylogenetic considerations have guided the choice of substrates that were tested in the transport assays. The physiological roles of these carriers have been verified by genetic experiments. Various pieces of evidence point to the functions of six additional members of the family, but these proposals await confirmation by transport assay. The sequences of many of the newly identified yeast carriers have been used to characterize orthologs in other species, and in man five diseases are presently known to be caused by defects in specific mitochondrial carrier genes. The roles of eight yeast mitochondrial carriers remain to be established.

  10. The Fanconi anemia group A protein modulates homologous repair of DNA double-strand breaks in mammalian cells.

    Science.gov (United States)

    Yang, Yun-Gui; Herceg, Zdenko; Nakanishi, Koji; Demuth, Ilja; Piccoli, Colette; Michelon, Jocelyne; Hildebrand, Gabriele; Jasin, Maria; Digweed, Martin; Wang, Zhao-Qi

    2005-10-01

    Fanconi anemia (FA) cells exhibit hypersensitivity to DNA interstrand cross-links (ICLs) and high levels of chromosome instability. FA gene products have been shown to functionally or physically interact with BRCA1, RAD51 and the MRE11/RAD50/NBS1 complex, suggesting that the FA complex may be involved in the repair of DNA double-strand breaks (DSBs). Here, we have investigated specifically the function of the FA group A protein (FANCA) in the repair of DSBs in mammalian cells. We show that the targeted deletion of Fanca exons 37-39 generates a null for Fanca in mice and abolishes ubiquitination of Fancd2, the downstream effector of the FA complex. Cells lacking Fanca exhibit increased chromosomal aberrations and attenuated accumulation of Brca1 and Rad51 foci in response to DNA damage. The absence of Fanca greatly reduces gene-targeting efficiency in mouse embryonic stem (ES) cells and compromises the survival of fibroblast cells in response to ICL agent treatment. Fanca-null cells exhibit compromised homology-directed repair (HDR) of DSBs, particularly affecting the single-strand annealing pathway. These data identify the Fanca protein as an integral component in the early step of HDR of DSBs and thereby minimizing the genomic instability.

  11. Human RAD18 interacts with ubiquitylated chromatin components and facilitates RAD9 recruitment to DNA double strand breaks.

    Directory of Open Access Journals (Sweden)

    Akiko Inagaki

    Full Text Available RAD18 is an ubiquitin ligase involved in replicative damage bypass and DNA double-strand break (DSB repair processes. We found that RPA is required for the dynamic pattern of RAD18 localization during the cell cycle, and for accumulation of RAD18 at sites of γ-irradiation-induced DNA damage. In addition, RAD18 colocalizes with chromatin-associated conjugated ubiquitin and ubiquitylated H2A throughout the cell cycle and following irradiation. This localization pattern depends on the presence of an intact, ubiquitin-binding Zinc finger domain. Using a biochemical approach, we show that RAD18 directly binds to ubiquitylated H2A and several other unknown ubiquitylated chromatin components. This interaction also depends on the RAD18 Zinc finger, and increases upon the induction of DSBs by γ-irradiation. Intriguingly, RAD18 does not always colocalize with regions that show enhanced H2A ubiquitylation. In human female primary fibroblasts, where one of the two X chromosomes is inactivated to equalize X-chromosomal gene expression between male (XY and female (XX cells, this inactive X is enriched for ubiquitylated H2A, but only rarely accumulates RAD18. This indicates that the binding of RAD18 to ubiquitylated H2A is context-dependent. Regarding the functional relevance of RAD18 localization at DSBs, we found that RAD18 is required for recruitment of RAD9, one of the components of the 9-1-1 checkpoint complex, to these sites. Recruitment of RAD9 requires the functions of the RING and Zinc finger domains of RAD18. Together, our data indicate that association of RAD18 with DSBs through ubiquitylated H2A and other ubiquitylated chromatin components allows recruitment of RAD9, which may function directly in DSB repair, independent of downstream activation of the checkpoint kinases CHK1 and CHK2.

  12. Sensitization of Tumor to {sup 212}Pb Radioimmunotherapy by Gemcitabine Involves Initial Abrogation of G2 Arrest and Blocked DNA Damage Repair by Interference With Rad51

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E. [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Brechbiel, Martin W., E-mail: martinwb@mail.nih.gov [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2013-03-15

    Purpose: To elucidate the mechanism of the therapeutic efficacy of targeted α-particle radiation therapy using {sup 212}Pb-TCMC-trastuzumab together with gemcitabine for treatment of disseminated peritoneal cancers. Methods and Materials: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pretreated with gemcitabine, followed by {sup 212}Pb-TCMC-trastuzumab and compared with controls. Results: Treatment with {sup 212}Pb-TCMC-trastuzumab increased the apoptotic rate in the S-phase-arrested tumors induced by gemcitabine at earlier time points (6 to 24 hours). {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment abrogated G2/M arrest at the same time points, which may be associated with the inhibition of Chk1 phosphorylation and, in turn, cell cycle perturbation, resulting in apoptosis. {sup 212}Pb-TCMC-trastuzumab treatment after gemcitabine pretreatment caused depression of DNA synthesis, DNA double-strand breaks, accumulation of unrepaired DNA, and down-regulation of Rad51 protein, indicating that DNA damage repair was blocked. In addition, modification in the chromatin structure of p21 may be associated with transcriptionally repressed chromatin states, indicating that the open structure was delayed at earlier time points. Conclusion: These findings suggest that the cell-killing efficacy of {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment may be associated with abrogation of the G2/M checkpoint, inhibition of DNA damage repair, and chromatin remodeling.

  13. RadConEd: A Graphical Data Editor for the Radiological Consequences Model, RadCon

    International Nuclear Information System (INIS)

    Crawford, J.; Domel, R.U.

    2000-05-01

    This document describes the application, RadConEd, which has been designed and implemented to enable users of the RadCon system to update these parameter files. The RadCon system is written in the Java programming language, and as such provides portability across computer platforms. The software described in this report was developed in line with the portability requirements of RadCon, thus providing a uniform user interface across computer platforms and bypassing the need of using system editors. In addition a number of data integrity measures were implemented

  14. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Henriksen, Peter; Wagner, Sebastian Alexander; Weinert, Brian Tate

    2012-01-01

    Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine...... acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S....... cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved...

  15. Helical filaments of human Dmc1 protein on single-stranded DNA: a cautionary tale

    Science.gov (United States)

    Yu, Xiong; Egelman, Edward H.

    2010-01-01

    Proteins in the RecA/Rad51/RadA family form nucleoprotein filaments on DNA that catalyze a strand exchange reaction as part of homologous genetic recombination. Because of the centrality of this system to many aspects of DNA repair, the generation of genetic diversity, and cancer when this system fails or is not properly regulated, these filaments have been the object of many biochemical and biophysical studies. A recent paper has argued that the human Dmc1 protein, a meiotic homolog of bacterial RecA and human Rad51, forms filaments on single stranded DNA with ∼ 9 subunits per turn in contrast to the filaments formed on double stranded DNA with ∼ 6.4 subunits per turn, and that the stoichiometry of DNA binding is different between these two filaments. We show using scanning transmission electron microscopy (STEM) that the Dmc1 filament formed on single stranded DNA has a mass per unit length expected from ∼ 6.5 subunits per turn. More generally, we show how ambiguities in helical symmetry determination can generate incorrect solutions, and why one sometimes must use other techniques, such as biochemistry, metal shadowing, or STEM to resolve these ambiguities. While three-dimensional reconstruction of helical filaments from EM images is a powerful tool, the intrinsic ambiguities that may be present with limited resolution are not sufficiently appreciated. PMID:20600108

  16. The Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibility.

    Science.gov (United States)

    Rey, Thomas; Bonhomme, Maxime; Chatterjee, Abhishek; Gavrin, Aleksandr; Toulotte, Justine; Yang, Weibing; André, Olivier; Jacquet, Christophe; Schornack, Sebastian

    2017-12-16

    The roots of most land plants are colonized by symbiotic arbuscular mycorrhiza (AM) fungi. To facilitate this symbiosis, plant genomes encode a set of genes required for microbial perception and accommodation. However, the extent to which infection by filamentous root pathogens also relies on some of these genes remains an open question. Here, we used genome-wide association mapping to identify genes contributing to colonization of Medicago truncatula roots by the pathogenic oomycete Phytophthora palmivora. Single-nucleotide polymorphism (SNP) markers most significantly associated with plant colonization response were identified upstream of RAD1, which encodes a GRAS transcription regulator first negatively implicated in root nodule symbiosis and recently identified as a positive regulator of AM symbiosis. RAD1 transcript levels are up-regulated both in response to AM fungus and, to a lower extent, in infected tissues by P. palmivora where its expression is restricted to root cortex cells proximal to pathogen hyphae. Reverse genetics showed that reduction of RAD1 transcript levels as well as a rad1 mutant are impaired in their full colonization by AM fungi as well as by P. palmivora. Thus, the importance of RAD1 extends beyond symbiotic interactions, suggesting a general involvement in M. truncatula microbe-induced root development and interactions with unrelated beneficial and detrimental filamentous microbes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Germline Mutations in PALB2, BRCA1, and RAD51C, Which Regulate DNA Recombination Repair, in Patients with Gastric Cancer

    Science.gov (United States)

    Sahasrabudhe, Ruta; Lott, Paul; Bohorquez, Mabel; Toal, Ted; Estrada, Ana P.; Suarez, John J.; Brea-Fernández, Alejandro; Cameselle-Teijeiro, José; Pinto, Carla; Ramos, Irma; Mantilla, Alejandra; Prieto, Rodrigo; Corvalan, Alejandro; Norero, Enrique; Alvarez, Carolina; Tapia, Teresa; Carvallo, Pilar; Gonzalez, Luz M.; Cock-Rada, Alicia; Solano, Angela; Neffa, Florencia; Valle, Adriana Della; Yau, Chris; Soares, Gabriela; Borowsky, Alexander; Hu, Nan; He, Li-Ji; Han, Xiao-You; Taylor, Philip R.; Goldstein, Alisa M.; Torres, Javier; Echeverry, Magdalena; Ruiz-Ponte, Clara; Teixeira, Manuel R.; Carvajal Carmona, Luis G.

    2016-01-01

    Up to 10% of cases of gastric cancer are familial, but so far, only mutations in CDH1 have been associated with gastric cancer risk. To identify genetic variants that affect risk for gastric cancer, we collected blood samples from 28 patients with hereditary diffuse gastric cancer (HDGC) not associated with mutations in CDH1 and performed whole-exome sequence analysis. We then analyzed sequences of candidate genes in 333 independent HDGC and non-HDGC cases. We identified 11 cases with mutations in PALB2, BRCA1, or RAD51C genes, which regulate homologous DNA recombination. We found these mutations in 2 of 31 patients with HDGC (6.5%) and 9 of 331 patients with sporadic gastric cancer (2.8%). Most of these mutations had been previously associated with other types of tumors and partially co-segregated with gastric cancer in our study. Tumors that developed in patients with these mutations had a mutation signature associated with somatic homologous recombination deficiency. Our findings indicate that defects in homologous recombination increase risk for gastric cancer. PMID:28024868

  18. Heterologous Expression of Membrane and Soluble Proteins Derepresses GCN4 mRNA Translation in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Steffensen, L.; Pedersen, P. A.

    2006-01-01

    -ATPase also induced GCN4 translation. Derepression of GCN4 translation required phosphorylation of eIF-2 , the tRNA binding domain of Gcn2p, and the ribosome-associated proteins Gcn1p and Gcn20p. The increase in Gcn4p density in response to heterologous expression did not induce transcription from the HIS4...... promoter, a traditional Gcn4p target.......This paper describes the first physiological response at the translational level towards heterologous protein production in Saccharomyces cerevisiae. In yeast, the phosphorylation of eukaryotic initiation factor 2 (eIF-2 ) by Gcn2p protein kinase mediates derepression of GCN4 mRNA translation. Gcn4...

  19. Comparative proteomics analysis of engineered Saccharomyces cerevisiae with enhanced biofuel precursor production.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    Full Text Available The yeast Saccharomyces cerevisiae was metabolically modified for enhanced biofuel precursor production by knocking out genes encoding mitochondrial isocitrate dehydrogenase and over-expression of a heterologous ATP-citrate lyase. A comparative iTRAQ-coupled 2D LC-MS/MS analysis was performed to obtain a global overview of ubiquitous protein expression changes in S. cerevisiae engineered strains. More than 300 proteins were identified. Among these proteins, 37 were found differentially expressed in engineered strains and they were classified into specific categories based on their enzyme functions. Most of the proteins involved in glycolytic and pyruvate branch-point pathways were found to be up-regulated and the proteins involved in respiration and glyoxylate pathway were however found to be down-regulated in engineered strains. Moreover, the metabolic modification of S. cerevisiae cells resulted in a number of up-regulated proteins involved in stress response and differentially expressed proteins involved in amino acid metabolism and protein biosynthesis pathways. These LC-MS/MS based proteomics analysis results not only offered extensive information in identifying potential protein-protein interactions, signal pathways and ubiquitous cellular changes elicited by the engineered pathways, but also provided a meaningful biological information platform serving further modification of yeast cells for enhanced biofuel production.

  20. UV-induced reversion of his4 frameshift mutations in rad6, rev1, and rev3 mutants of yeast.

    Science.gov (United States)

    Lawrence, C W; O'Brien, T; Bond, J

    1984-01-01

    The UV-induced reversion of two his4 frameshift alleles was much reduced in rad6 mutants of Saccharomyces cerevisiae, an observation that is consistent with the hypothesis that RAD6 function is required for the induction of all types of genetic alteration in misrepair mutagenesis. The reversion of these his4 alleles, together with two others of the same type, was also reduced in rev1 and rev3 mutant strains; in these, however, the extent of the reduction varied considerably with test allele used, in a manner analogous to the results in these strains for base repair substitution test alleles. The general features of UV-induced frameshift and substitution mutagenesis therefore appear quite similar, indicating that they may depend on related processes. If this conclusion is correct, greater attention must be given to integrating models which account for the production of nucleotide additions and deletions into those concerning misrepair mutagenesis.

  1. Two pathways of DNA double-strand break repair in G1 cells of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Glazunov, A.V.

    1988-01-01

    The G1 cells of the diploid yeast Saccharomyces cerevislae are known to be capable of a slow repair of DNA double-strand breaks (DSB) during holding the cells in a non-nutrient medium. In the present paper, it has been shown that S. cerevislae cells γ-irradiated in the G1 phase of cell cycle are capable of fast repair of DNA DSB; this process is completed within 30-40 min of holding the cells in water at 28 deg C. For this reason, the kinetics of DNA DSB repair during holding the cells in a non-nutrient medium are biphasic, i.e., the first, ''fast'' phase is completed within 30-40 min; wheras the second, ''slow'' one, within 48 h. Mutations rad51, rad52, rad54 and rad55 inhibit the fast repair of DNA DSB, whereas mutations rad50, rad53 and rad57 do not practically influence this process. It has been shown that the observed fast and slow repair of DNA DSB in the G1 diploid cells of S, cerevislae are separate pathways of DNA DSB repair in yeast

  2. Intraobserver interpretation of breast ultrasonography following the BI-RADS classification

    International Nuclear Information System (INIS)

    Calas, M.J.G.; Almeida, R.M.V.R.; Gutfilen, B.; Pereira, W.C.A.

    2010-01-01

    Purpose: To use the BI-RADS ultrasound classification in an intraobserver retrospective study of the interpretation of breast images. Materials and Methods: The study used 40 breast ultrasound images recorded in orthogonal planes, obtained from patients with an indication for surgery. Eight professionals experienced in breast imaging analysis retrospectively reviewed these lesions, in three rounds of image interpretation (with a 3-6 months interval between rounds). Observers had no access to information from medical records or histopathological results, and, without their knowledge, in each new round were assigned the same images previously interpreted by them. Fleiss-modified Kappa measures were the study main concordance index. Besides the BI-RADS, a scale grouping its categories 2-3 and 4-5 was also used. The statistical analysis concerned the intraobserver agreement. Results: Kappa values ranged from 0.37 to 0.75 (original categories) and from 0.73 to 0.87 (grouped categories). Overall, out of the 8 observers, 7 presented moderate to substantial concordance (Kappa values 0.51 to 0.74). Conclusion: The BI-RADS is a reporting tool that provides a standardized terminology for US exams. In this study, moderate to substantial concordance in Kappa values was found, in agreement with other studies of the literature.

  3. Processing and fatty acid acylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Fujiyama, A.; Tamanoi, F.

    1986-01-01

    The authors demonstrate the pathway for the biosynthesis of RAS1 and RAS2 gene products of Saccharomyces cerevisiae leading to their localization in membranes. The primary translation products of these genes are detected in a soluble fraction. Shortly after synthesis, these precursor molecules are converted to forms that migrate slightly faster than the precursor forms on a NaDodSO 4 /polyacrylamide gel. These processed proteins are further modified by fatty acid acylation, which is detected by [ 3 H]palmitic acid labeling. The acylated derivatives are found exclusively in cell membranes, indicating the translocation of the RAS proteins from cytosol to membranes during maturation process. The attached fatty acids can be released by mild alkaline hydrolysis, suggesting that the linkage between the fatty acid and the protein is an ester bond. The site of the modification by fatty acid is presumably localized to the COOH-terminal portion of the RAS proteins. Fraction of the membranes by sucrose gradient demonstrates that a majority of the fatty-acylated RAS proteins are localized in plasma membrane

  4. Analysis list: RAD21 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ncedbc.jp/kyushu-u/hg19/target/RAD21.1.tsv http://dbarchive.biosciencedbc.jp/kyushu...-u/hg19/target/RAD21.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/RAD21.10.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/colo/RAD21.Blood.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/hg19/colo/RAD21.Breast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/RAD21.Dige...stive_tract.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/RAD21.Liver.tsv,http://dbarchive.bioscience

  5. Multi-level machine learning prediction of protein–protein interactions in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Julian Zubek

    2015-07-01

    Full Text Available Accurate identification of protein–protein interactions (PPI is the key step in understanding proteins’ biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein–protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein–protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC. Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent.

  6. Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1.

    Science.gov (United States)

    Hussain, Shobbir; Witt, Emily; Huber, Pia A J; Medhurst, Annette L; Ashworth, Alan; Mathew, Christopher G

    2003-10-01

    Fanconi anaemia (FA) is an autosomal recessive genetic disorder characterized by progressive bone marrow failure, multiple congenital abnormalities, and an increased risk of cancer. FA cells are characterized by chromosomal instability and hypersensitivity to DNA interstrand crosslinking agents. At least eight complementation groups exist (FA-A to G), and the genes for all of these except FA-B have been cloned. Functional linkage between the FA pathway and genes involved in susceptibility to breast cancer has been demonstrated by the interaction of the FANCA and FANCD2 proteins with BRCA1, and the discovery that the FANCD1 gene is identical to BRCA2. Here we have used the yeast two-hybrid system to test for direct interaction between BRCA2 or its effector RAD51 and the FANCA, FANCC and FANCG proteins. We found that FANCG was capable of binding to two separate sites in the BRCA2 protein, located either side of the BRC repeats. Furthermore, FANCG could be co-immunoprecipitated with BRCA2 from human cells, and FANCG co-localized in nuclear foci with both BRCA2 and RAD51 following DNA damage with mitomycin C. These results demonstrate that BRCA2 is directly connected to a pathway that is deficient in interstrand crosslink repair, and that at least one other FA protein is closely associated with the homologous recombination DNA repair machinery.

  7. Adsorption and Interfacial Electron Transfer of Saccharomyces Cerevisiae

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Boisen, Anja; Nielsen, Jens Ulrik

    2003-01-01

    We have studied the adsorption and electron-transfer dynamics of Saccharomyces cerevisiae (yeast) iso-l-cytochrome c adsorbed on Au(lll) electrodes in aqueous phosphate buffer media. This cytochrome possesses a thiol group dos e to the protein surface (Cysl02) suitable for linking the protein...

  8. Incorporating Protein Biosynthesis into the Saccharomyces cerevisiae Genome-scale Metabolic Model

    DEFF Research Database (Denmark)

    Olivares Hernandez, Roberto

    Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been construc......Based on stoichiometric biochemical equations that occur into the cell, the genome-scale metabolic models can quantify the metabolic fluxes, which are regarded as the final representation of the physiological state of the cell. For Saccharomyces Cerevisiae the genome scale model has been...

  9. The RadAssessor manual

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Sharon L.

    2007-02-01

    THIS manual will describe the functions and capabilities that are available from the RadAssessor database and will demonstrate how to retrieve and view its information. You’ll learn how to start the database application, how to log in, how to use the common commands, and how to use the online help if you have a question or need extra guidance. RadAssessor can be viewed from any standard web browser. Therefore, you will not need to install any special software before using RadAssessor.

  10. The receptor tyrosine kinase inhibitor amuvatinib (MP470) sensitizes tumor cells to radio- and chemo-therapies in part by inhibiting homologous recombination

    International Nuclear Information System (INIS)

    Zhao, Helen; Luoto, Kaisa R.; Meng, Alice X.; Bristow, Robert G.

    2011-01-01

    Background and purpose: RAD51 is a key protein involved in homologous recombination (HR) and a potential target for radiation- and chemotherapies. Amuvatinib (formerly known as MP470) is a novel receptor tyrosine kinase inhibitor that targets c-KIT and PDGFRα and can sensitize tumor cells to ionizing radiation (IR). Here, we studied amuvatinib mechanism on RAD51 and functional HR. Materials and methods: Protein and RNA analyses, direct repeat green fluorescent protein (DR-GFP) assay and polysomal fractioning were used to measure HR efficiency and global translation in amuvatinib-treated H1299 lung carcinoma cells. Synergy of amuvatinib with IR or mitomycin c (MMC) was assessed by clonogenic survival assay. Results: Amuvaninib inhibited RAD51 protein expression and HR. This was associated with reduced ribosomal protein S6 phosphorylation and inhibition of global translation. Amuvatinib sensitized cells to IR and MMC, agents that are selectively toxic to HR-deficient cells. Conclusions: Amuvatinib is a promising agent that may be used to decrease tumor cell resistance. Our work suggests that this is associated with decreased RAD51 expression and function and supports the further study of amuvatinib in combination with chemotherapy and radiotherapy.

  11. Building biochips: a protein production pipeline

    Science.gov (United States)

    de Carvalho-Kavanagh, Marianne G. S.; Albala, Joanna S.

    2004-06-01

    Protein arrays are emerging as a practical format in which to study proteins in high-throughput using many of the same techniques as that of the DNA microarray. The key advantage to array-based methods for protein study is the potential for parallel analysis of thousands of samples in an automated, high-throughput fashion. Building protein arrays capable of this analysis capacity requires a robust expression and purification system capable of generating hundreds to thousands of purified recombinant proteins. We have developed a method to utilize LLNL-I.M.A.G.E. cDNAs to generate recombinant protein libraries using a baculovirus-insect cell expression system. We have used this strategy to produce proteins for analysis of protein/DNA and protein/protein interactions using protein microarrays in order to understand the complex interactions of proteins involved in homologous recombination and DNA repair. Using protein array techniques, a novel interaction between the DNA repair protein, Rad51B, and histones has been identified.

  12. Features analysis for identification of date and party hubs in protein interaction network of Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Araabi Babak N

    2010-12-01

    Full Text Available Abstract Background It has been understood that biological networks have modular organizations which are the sources of their observed complexity. Analysis of networks and motifs has shown that two types of hubs, party hubs and date hubs, are responsible for this complexity. Party hubs are local coordinators because of their high co-expressions with their partners, whereas date hubs display low co-expressions and are assumed as global connectors. However there is no mutual agreement on these concepts in related literature with different studies reporting their results on different data sets. We investigated whether there is a relation between the biological features of Saccharomyces Cerevisiae's proteins and their roles as non-hubs, intermediately connected, party hubs, and date hubs. We propose a classifier that separates these four classes. Results We extracted different biological characteristics including amino acid sequences, domain contents, repeated domains, functional categories, biological processes, cellular compartments, disordered regions, and position specific scoring matrix from various sources. Several classifiers are examined and the best feature-sets based on average correct classification rate and correlation coefficients of the results are selected. We show that fusion of five feature-sets including domains, Position Specific Scoring Matrix-400, cellular compartments level one, and composition pairs with two and one gaps provide the best discrimination with an average correct classification rate of 77%. Conclusions We study a variety of known biological feature-sets of the proteins and show that there is a relation between domains, Position Specific Scoring Matrix-400, cellular compartments level one, composition pairs with two and one gaps of Saccharomyces Cerevisiae's proteins, and their roles in the protein interaction network as non-hubs, intermediately connected, party hubs and date hubs. This study also confirms the

  13. Regeneration of CFUs in the marrow of mice exposed to 300 rads after having recovered from 950 rads

    International Nuclear Information System (INIS)

    Kedo, A.; Barone, J.; Fried, W.

    1976-01-01

    Exposure to 950 rads 60 Co radiation has been reported to cause long-lasting damage to the hematopoietic stroma (HS), although the size of the CFUs population recovers to pre-irradiation levels. In these studies HS damage was detected only after subcutaneously implanting the femurs of the irradiated mice into syngeneic hosts. To exclude the possibility that what was considered to be HS damage was merely caused by artifacts due to the process of implantation in a new host, the rate of regeneration of CFUs in mice which had recovered from 950 rads prior to receiving 300 rads 60 Co radiation (950 + 300 rads group) was compared with that of mice which received only 300 rads (0 + 300 rads group). The CFUs population in the 950 + 300 rads group grew exponentially for 2 weeks at a rate which did not differ significantly from that of CFUs in the 0 + 300 rads group. However, the rate of CFUs growth reached a plateau before full recovery was achieved in contrast to that in the 0 + 300 rads mice. It was therefore concluded that the incomplete regeneration of CFUs in the marrows of 950 + 300 rads mice was most likely caused by X-irradiation-induced damage to the HS rather than damage to the inherent repopulation potential of the CFUs per se. (author)

  14. Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae.

    Science.gov (United States)

    Ohba, M

    1997-06-09

    In prokaryotes, DnaK-DnaJ chaperon is involved in the protein degradation catalyzed by proteases La and ClpA/B complex as shown in E. coli. To extend this into eukaryotic cells, we examined the effects of hsp70 genes, SSA1 and SSB1, and DnaJ genes, SIS1 and YDJ1, on the growth of proteasome subunit mutants of the yeast S. cerevisiae. The results identified SSB1 and SIS1 as a pair of chaperon genes specifically involved in efficient protein turnover in the yeast, whose overexpression suppressed the growth defects caused by the proteasome mutations. Moreover, a single amino acid substitution in the putative peptide-binding site of SSB1 protein profoundly enhanced the suppression activity, indicating that the activity is mediated by the peptide-binding activity of this chaperon. Thus SSB1, with its partner DnaJ, SIS1, modulates the efficiency of protein turnover through its chaperon activity.

  15. Rad and Mubad in Shahnameh of Ferdowsi

    Directory of Open Access Journals (Sweden)

    z Delpazir

    2011-09-01

    However, the important points overlooked by explicators are the relationship between Rad and Mubad (Zoroastrian priest and the reason why these two words have co-occurred so frequently in Shahnameh, the most famous Persian national epic. It seems that Rad in Shahnameh, based on Avesta and Pahlavi texts, is often construed as Sadane or Dastoor that was a high position in ancient Iran’s religious hierarchy. Thus, Rads and Mubads were both considered members of religious communities. This study tries to investigate the role and position of Rads and Mubads and their relationship with one another, based on Shahnameh of Ferdowsi, in three chapters: The etymology of Rad Rad in Shahnameh The relationship between Rads and Mubads.

  16. RAD50 germline mutations are associated with poor survival in BRCA1/2-negative breast cancer patients.

    Science.gov (United States)

    Fan, Cong; Zhang, Juan; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2018-05-04

    RAD50 is a highly conserved DNA double-strand break (DSB) repair gene. However, the associations between RAD50 germline mutations and the survival and risk of breast cancer have not been fully elucidated. Here, we aimed to investigate the clinical impact of RAD50 germline mutations in a large cohort of unselected breast cancer patients. In this study, RAD50 germline mutations were determined using next-generation sequencing in 7657 consecutive unselected breast cancer patients without BRCA1/2 mutations. We also screened for RAD50 recurrent mutations (L719fs, K994fs, and H1269fs) in 5000 healthy controls using Sanger sequencing. We found that 26 out of 7657 (0.34%) patients had RAD50 pathogenic mutations, and 16 patients carried one of the three recurrent mutations (L719fs, n=6 cases; K994fs, n=5 cases; and H1269fs, n=5 cases); the recurrent mutation rate was 0.21%. The frequency of the three recurrent mutations in the 5000 healthy controls was 0.18% (9/5000). These mutations did not confer an increased risk of breast cancer in the studied patients [odds ratios (OR), 1.16; 95% confidence interval (CI), 0.51-2.63; P = 0.72]. Nevertheless, multivariate analysis revealed that RAD50 pathogenic mutations were an independent unfavourable predictor of recurrence-free survival (RFS) [adjusted hazard ratio (HR) 2.66; 95% CI, 1.18-5.98; P=0.018] and disease-specific survival (DSS) (adjusted HR 4.36; 95% CI, 1.58-12.03; P=0.004) in the entire study cohort. Our study suggested that RAD50 germline mutations are not associated with an increased risk of breast cancer, but patients with RAD50 germline mutations have unfavourable survival compared with patients without these mutations. This article is protected by copyright. All rights reserved. © 2018 UICC.

  17. Split dose recovery studies using homologous recombination deficient gene knockout chicken B lymphocyte cells

    International Nuclear Information System (INIS)

    Rao, B.S.S.; Tano, Kaori; Utsumi, Hiroshi; Takeda, Shunichi

    2007-01-01

    To understand the role of proteins involved in double strand breaks (DSB) repair modulating sublethal damage (SLD) recovery, chicken B lymphoma (DT 40) cell lines either proficient or deficient in RAD52, XRCC2, XRCC3, RAD51C and RAD51D were subjected to fractionated irradiation and their survival curves charted. Survival curves of both WT DT40 and RAD52 -/- cells had a big shoulder while all the other cells exhibited small shoulders. However, at the higher doses of radiation, RAD51C -/- cells displayed hypersensitivity comparable to the data obtained for the homologous recombination deficient RAD54 -/- cells. Repair of SLD was measured as an increase in survival after a split dose irradiation with an interval of incubation between the radiation doses. All the cell lines (parental DT40 and genetic knockout cell lines viz., RAD52 -/- , XRCC2 -/- XRCC3 -/- RAD51C -/- and RAD51D -/- ) used in this study demonstrated a typical split-dose recovery capacity with a specific peak, which varied depending on the cell type. The maximum survival of WT DT40 and RAD52 -/- was reached at about 1-2 hours after the first dose of radiation and then decreased to a minimum thereafter (5 h). The increase in the survival peaked once again by about 8 hours. The survival trends observed in XRCC2 -/- , XRCC3 -/- , RAD51C -/- and RAD51D -/- knockout cells were also similar, except for the difference in the initial delay of a peak survival for RAD51D -/- and lower survival ratios. The second phase of increase in the survival in these cell lines was much slower in XRCC2 -/- , XRCC3 -/- , RAD51C -/- nd RAD51D -/- and further delayed when compared with that of RAD52 -/- and parental DT40 cells suggesting a dependence on their cell cycle kinetics. This study demonstrates that the participation of RAD52, XRCC2, XRCC3, RAD51C and RAD51D in the DSB repair via homologous recombination is of less importance in comparison to RAD54, as RAD54 deficient cells demonstrated complete absence of SLD recovery

  18. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.

    Science.gov (United States)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia; Evangelou, Konstantinos; Da-Ré, Caterina; Huber, Florian; Padayachy, Laura; Tardy, Sebastien; Nicati, Noemie L; Barriot, Samia; Ochs, Fena; Lukas, Claudia; Lukas, Jiri; Gorgoulis, Vassilis G; Scapozza, Leonardo; Halazonetis, Thanos D

    2016-12-15

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Plate assay for chemical- and radiation-induced mutagenesis of CAN1 in yeast as a function of post-treatment DNA replication: The effect of rad6-1

    International Nuclear Information System (INIS)

    Lemontt, J.F.; Lair, S.V.

    1982-01-01

    An agar post-treatment method was used to monitor levels of ultraviolet light- and hydrazine-induced mutagenesis at CAN1 in Saccharomyces cerevisiae as a function of post-treatment cell division prior to selection for canavanine-resistant mutants with a top-agar overlay containing canavanine. The advantage of this method is that its permits reliable measurements of mutation induction during the early period before, during, and after the first round of post-treatment DNA replication. In strains that are wild-type for DNA repair, ultraviolet light mutagenesis appears to be a pre-replicative phenomenon, while mutation by hydrazine involves a replicative or post-replicative mechanism. Most chemical mutagenesis in yeast requires a functional RAD6 gene. Hydrazine mutability is also reduced by rad6-1, suggesting a possible misrepair mechanism. (orig.)

  20. Anti-oxidant effects of pomegranate juice on Saccharomyces cerevisiae cell growth.

    Science.gov (United States)

    Aslan, Abdullah; Can, Muhammed İsmail; Boydak, Didem

    2014-01-01

    Pomegranate juice has a number of positive effects on both human and animal subjects. Four groups were used in this study. i: Control group, ii: H2O2 group, iii: Pomegranate juice (PJ) group and iv: PJ + H2O2 group. Following the sterilization method for pomegranate juice (10%) and H2O2 (6% v/v), Saccharomyces cerevisiae cultures were added and the cultivation incubated at 35°C for 72 hours. Fatty acids and vitamin concentrations were measured using HPLC and GC and the total protein bands profile were determined by SDS-PAGE. According to our results statistically significant differences have been determined among the study groups in terms of fatty acids and vitamin (pPomegranate juice increased vitamins, fatty acids and total protein expression in Saccharomyces cerevisiae in comparison with the control. Pomegranate juice has a positive effect on fatty acid, vitamin and protein synthesis by Saccharomyces cerevisiae. Accordingly, we believe that it has significantly decreased oxidative damage thereby making a positive impact on yeast development.

  1. Early Postoperative Low Expression of RAD50 in Rectal Cancer Patients Associates with Disease-Free Survival

    Directory of Open Access Journals (Sweden)

    Vincent Ho

    2017-11-01

    Full Text Available Background: Molecular biomarkers have the potential to predict response to the treatment of rectal cancer. In this study, we aimed to evaluate the prognostic and clinicopathological implication of RAD50 (DNA repair protein RAD50 homolog expression in rectal cancer. Methods: A total of 266 rectal cancer patients who underwent surgery and received chemo- and radiotherapy between 2000 and 2011 were involved in the study. Postoperative RAD50 expression was determined by immunohistochemistry in surgical samples (n = 266. Results: Using Kaplan–Meier survival analysis, we found that low RAD50 expression in postoperative samples was associated with worse disease free survival (p = 0.001 and overall survival (p < 0.001 in early stage/low-grade tumors. In a comparison of patients with low vs. high RAD50 expression, we found that low levels of postoperative RAD50 expression in rectal cancer tissues were significantly associated with perineural invasion (p = 0.002. Conclusion: Expression of RAD50 in rectal cancer may serve as a prognostic biomarker for long-term survival of patients with perineural invasion-positive tumors and for potential use in early stage and low-grade rectal cancer assessment.

  2. Impact of protein uptake and degradation on recombinant protein secretion in yeast

    DEFF Research Database (Denmark)

    Tyo, Keith E. J.; Liu, Zihe; Magnusson, Ylva

    2014-01-01

    Protein titers, a key bioprocessing metric, depend both on the synthesis of protein and the degradation of protein. Secreted recombinant protein production in Saccharomyces cerevisiae is an attractive platform as minimal media can be used for cultivation, thus reducing fermentation costs...... and transcriptomics, we identify metabolic and regulatory markers that are consistent with uptake of whole proteins by endocytosis, followed by intracellular degradation and catabolism of substituent amino acids. Uptake and degradation of recombinant protein products may be common in S. cerevisiae protein secretion...... and simplifying downstream purification, compared to other systems that require complex media. As such, engineering S. cerevisiae to improve titers has been then the subject of significant attention, but the majority of previous efforts have been focused on improving protein synthesis. Here, we characterize...

  3. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  4. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae

    Science.gov (United States)

    Zhang, S.; Lockshin, C.; Herbert, A.; Winter, E.; Rich, A.

    1992-01-01

    A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype.

  5. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.

    Science.gov (United States)

    Browning, Cynthia L; Qin, Qin; Kelly, Deborah F; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria; Wise, John Pierce

    2016-09-01

    Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Reactions of the intracellular NADpool in the yeast S. cerevisiae after UV-C- or X-ray irradiation

    International Nuclear Information System (INIS)

    Winckler, K.; Herfurth, E.

    1988-01-01

    The reaction of the intracellular NADpool after irradiation of cells either with UV-C light or with X-rays was studied in four different strains of the yeast S. cerevisiae. We found neither in wildtype strains nor in radiation sensitive mutants remarkable changes in the NADpool within 2 h after irradiation. Preculture of cells in medium enriched with nicotinic acid, a precursor of NAD, influenced the intracellular NAD concentration only to a small extent in all strains, but enhanced the radiation resistance against UV-C significantly in one rad6 mutant strain. The uptake of NAD and NAC by all strains before and after irradiation with UV-C and X-ray was tested also. NAD generally is taken up by the cells to a very low extent before and after irradiation without irradiation-dose dependency. NAC is taken up by all strains before and after irradiation. Only the rad6 mutant exhibited an irradiation-dose dependent NAC-uptake after UV-C irradiation. (orig.)

  7. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Compensatory role for Rad52 during recombinational repair in Ustilago maydis

    DEFF Research Database (Denmark)

    Kojic, Milorad; Mao, Ninghui; Zhou, Qingwen

    2008-01-01

    A single Rad52-related protein is evident by blast analysis of the Ustilago maydis genome database. Mutants created by disruption of the structural gene exhibited few discernible defects in resistance to UV, ionizing radiation, chemical alkylating or cross-linking agents. No deficiency was noted...

  9. Three new genetic loci (R1210C in CFH, variants in COL8A1 and RAD51B are independently related to progression to advanced macular degeneration.

    Directory of Open Access Journals (Sweden)

    Johanna M Seddon

    Full Text Available To assess the independent impact of new genetic variants on conversion to advanced stages of AMD, controlling for established risk factors, and to determine the contribution of genes in predictive models.In this prospective longitudinal study of 2765 individuals, 777 subjects progressed to neovascular disease (NV or geographic atrophy (GA in either eye over 12 years. Recently reported genetic loci were assessed for their independent effects on incident advanced AMD after controlling for 6 established loci in 5 genes, and demographic, behavioral, and macular characteristics. New variants which remained significantly related to progression were then added to a final multivariate model to assess their independent effects. The contribution of genes to risk models was assessed using reclassification tables by determining risk within cross-classified quintiles for alternative models.THREE NEW GENETIC VARIANTS WERE SIGNIFICANTLY RELATED TO PROGRESSION: rare variant R1210C in CFH (hazard ratio (HR 2.5, 95% confidence interval [CI] 1.2-5.3, P = 0.01, and common variants in genes COL8A1 (HR 2.0, 95% CI 1.1-3.5, P = 0.02 and RAD51B (HR 0.8, 95% CI 0.60-0.97, P = 0.03. The area under the curve statistic (AUC was significantly higher for the 9 gene model (.884 vs the 0 gene model (.873, P = .01. AUC's for the 9 vs 6 gene models were not significantly different, but reclassification analyses indicated significant added information for more genes, with adjusted odds ratios (OR for progression within 5 years per one quintile increase in risk score of 2.7, P<0.001 for the 9 vs 6 loci model, and OR 3.5, P<0.001 for the 9 vs. 0 gene model. Similar results were seen for NV and GA.Rare variant CFH R1210C and common variants in COL8A1 and RAD51B plus six genes in previous models contribute additional predictive information for advanced AMD beyond macular and behavioral phenotypes.

  10. Effect of 905 MHz microwave radiation on colony growth of the yeast Saccharomyces cerevisiae strains FF18733, FF1481 and D7

    International Nuclear Information System (INIS)

    Vrhovac, Ivana; Hrascan, Reno; Franekic, Jasna

    2010-01-01

    The aim of this study was to evaluate the effect of weak radiofrequency microwave (RF/MW) radiation emitted by mobile phones on colony growth of the yeast Saccharomyces cerevisiae. S. cerevisiae strains FF18733 (wild-type), FF1481 (rad1 mutant) and D7 (commonly used to detect reciprocal and nonreciprocal mitotic recombinations) were exposed to a 905 MHz electromagnetic field that closely matched the Global System for Mobile Communication (GSM) pulse modulation signals for mobile phones at a specific absorption rate (SAR) of 0.12 W/kg. Following 15-, 30- and 60-minutes exposure to RF/MW radiation, strain FF18733 did not show statistically significant changes in colony growth compared to the control sample. The irradiated strains FF1481 and D7 demonstrated statistically significant reduction of colony growth compared to non-irradiated strains after all exposure times. Furthermore, strain FF1481 was more sensitive to RF/MW radiation than strain D7. The findings indicate that pulsed RF/MW radiation at a low SAR level can affect the rate of colony growth of different S. cerevisiae strains

  11. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Science.gov (United States)

    2010-04-01

    ...) antibody (ASCA) test systems. 866.5785 Section 866.5785 Food and Drugs FOOD AND DRUG ADMINISTRATION... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  12. Recruitment kinetics of DNA repair proteins Mdc1 and Rad52 but not 53BP1 depend on damage complexity.

    Directory of Open Access Journals (Sweden)

    Volker Hable

    Full Text Available The recruitment kinetics of double-strand break (DSB signaling and repair proteins Mdc1, 53BP1 and Rad52 into radiation-induced foci was studied by live-cell fluorescence microscopy after ion microirradiation. To investigate the influence of damage density and complexity on recruitment kinetics, which cannot be done by UV laser irradiation used in former studies, we utilized 43 MeV carbon ions with high linear energy transfer per ion (LET = 370 keV/µm to create a large fraction of clustered DSBs, thus forming complex DNA damage, and 20 MeV protons with low LET (LET = 2.6 keV/µm to create mainly isolated DSBs. Kinetics for all three proteins was characterized by a time lag period T(0 after irradiation, during which no foci are formed. Subsequently, the proteins accumulate into foci with characteristic mean recruitment times τ(1. Mdc1 accumulates faster (T(0 = 17 ± 2 s, τ(1 = 98 ± 11 s than 53BP1 (T(0 = 77 ± 7 s, τ(1 = 310 ± 60 s after high LET irradiation. However, recruitment of Mdc1 slows down (T(0 = 73 ± 16 s, τ(1 = 1050 ± 270 s after low LET irradiation. The recruitment kinetics of Rad52 is slower than that of Mdc1, but exhibits the same dependence on LET. In contrast, the mean recruitment time τ(1 of 53BP1 remains almost constant when varying LET. Comparison to literature data on Mdc1 recruitment after UV laser irradiation shows that this rather resembles recruitment after high than low LET ionizing radiation. So this work shows that damage quality has a large influence on repair processes and has to be considered when comparing different studies.

  13. Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae.

    Science.gov (United States)

    Gervasi, Teresa; Pellizzeri, Vito; Calabrese, Giorgio; Di Bella, Giuseppa; Cicero, Nicola; Dugo, Giacomo

    2018-03-01

    Food waste is the single-largest component of the waste stream, in order to protect and safeguard the public health, useful and innovative recycling methods are investigated. The conversion of food wastes in value-added products is becoming a more economically viable and interesting practice. Food waste, collected in the distribution sector and citrus industries, was characterised for its potential as a raw material to use in fermentation processes. In this study, the production of single-cell protein (SCP) using food waste as a substrate was investigated. The purpose of this study has been to produce SCP from mixtures of food waste using Saccharomyces cerevisiae. The main fermentation test was carried out using a 25 l bioreactor. The utilisation of food waste can allow us to not only to reduce environmental pollution, but also to obtain value-added products such as protein supply for animal feed.

  14. Secretory Overexpression of Bacillus thermocatenulatus Lipase in Saccharomyces cerevisiae Using Combinatorial Library Strategy.

    Science.gov (United States)

    Kajiwara, Shota; Yamada, Ryosuke; Ogino, Hiroyasu

    2018-04-10

    Simple and cost-effective lipase expression host microorganisms are highly desirable. A combinatorial library strategy is used to improve the secretory expression of lipase from Bacillus thermocatenulatus (BTL2) in the culture supernatant of Saccharomyces cerevisiae. A plasmid library including expression cassettes composed of sequences encoding one of each 15 promoters, 15 secretion signals, and 15 terminators derived from yeast species, S. cerevisiae, Pichia pastoris, and Hansenula polymorpha, is constructed. The S. cerevisiae transformant YPH499/D4, comprising H. polymorpha GAP promoter, S. cerevisiae SAG1 secretion signal, and P. pastoris AOX1 terminator, is selected by high-throughput screening. This transformant expresses BTL2 extra-cellularly with a 130-fold higher than the control strain, comprising S. cerevisiae PGK1 promoter, S. cerevisiae α-factor secretion signal, and S. cerevisiae PGK1 terminator, after cultivation for 72 h. This combinatorial library strategy holds promising potential for application in the optimization of the secretory expression of proteins in yeast. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Genomics and radical mediated DNA damage: major differences between ionizing radiation and DNA-cleaving enediynes

    International Nuclear Information System (INIS)

    Cosgrove, J.P.; Begley, T.J.; Samson, L.D.; Dedon, P.C.

    2003-01-01

    While the evidence is strong for radical-mediated oxidative processes in the pathophysiology of cancer and aging, the mechanisms by which cells respond to oxidative stress have eluded definition. To this end, we have undertaken genomic studies comparing the response of S. cerevisiae to DNA-specific oxidizing agents, the enediynes calicheamicin (CAL), esperamicin (ESP), and neocarzinostatin (NCS), and the non-specific gamma-radiation (RAD). While RAD results in relatively indiscriminate oxidation of cellular molecules, the enediynes are highly specific to DNA and produce damage by a common mechanism involving radical-mediated oxidation of deoxyribose. Transcriptional profiling in response to these agents (80% survival; 15 min exposure; Affymetrix) revealed unexpected differences between RAD and the enediynes and among the three enediynes. Only 2 genes responded in common to all agents, while 9 genes were regulated in common for the 3 enediynes (no DNA repair genes altered in common). The limited common gene expression changes for the 3 enediynes may result from differences in deoxyribose oxidation chemistry, DNA and chromatin targets or the proportions of single- and double-strand DNA lesions. RAD produced a more robust response than the enediynes, altering expression of 195 and 52 genes by more than 2- and 5-fold, respectively, compared to 16-44 and *2 genes, respectively, for the enediynes. This suggests that the transcriptional response varies in intensity according to the number of cellular features affected by the toxin. Genes showing the strongest up-regulation with RAD: ribonucleotide reductase, multidrug resistance, DS break repair/RAD51, GSH transferase; strongly reduced gene expression: TEL1 (damage signaling), NAT2 (acetyltransferase). Genomic phenotyping studies, using a subset of the Research Genetics deletion library, revealed that loss of apn1, the major AP endonuclease, caused resistance to NCS, possibly due to reduced formation of protein-DNA cross

  16. RadCat 2.0 User Guide.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas.; Weiner, Ruth F.; Mills, George Scott; Hamp, Steve C.; O' Donnell, Brandon, M.; Orcutt, David J.; Heames, Terence J.; Hinojosa, Daniel

    2005-01-01

    This document provides a detailed discussion and a guide for the use of the RadCat 2.0 Graphical User Interface input file generator for the RADTRAN 5.5 code. The differences between RadCat 2.0 and RadCat 1.0 can be attributed to the differences between RADTRAN 5 and RADTRAN 5.5 as well as clarification for some of the input parameters. 3

  17. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase.

    Science.gov (United States)

    Guo, Xiao; Niemi, Natalie M; Coon, Joshua J; Pagliarini, David J

    2017-07-14

    The pyruvate dehydrogenase complex (PDC) is the primary metabolic checkpoint connecting glycolysis and mitochondrial oxidative phosphorylation and is important for maintaining cellular and organismal glucose homeostasis. Phosphorylation of the PDC E1 subunit was identified as a key inhibitory modification in bovine tissue ∼50 years ago, and this regulatory process is now known to be conserved throughout evolution. Although Saccharomyces cerevisiae is a pervasive model organism for investigating cellular metabolism and its regulation by signaling processes, the phosphatase(s) responsible for activating the PDC in S. cerevisiae has not been conclusively defined. Here, using comparative mitochondrial phosphoproteomics, analyses of protein-protein interactions by affinity enrichment-mass spectrometry, and in vitro biochemistry, we define Ptc6p as the primary PDC phosphatase in S. cerevisiae Our analyses further suggest additional substrates for related S. cerevisiae phosphatases and describe the overall phosphoproteomic changes that accompany mitochondrial respiratory dysfunction. In summary, our quantitative proteomics and biochemical analyses have identified Ptc6p as the primary-and likely sole- S. cerevisiae PDC phosphatase, closing a key knowledge gap about the regulation of yeast mitochondrial metabolism. Our findings highlight the power of integrative omics and biochemical analyses for annotating the functions of poorly characterized signaling proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Mam33 promotes cytochrome c oxidase subunit I translation in Saccharomyces cerevisiae mitochondria.

    Science.gov (United States)

    Roloff, Gabrielle A; Henry, Michael F

    2015-08-15

    Three mitochondrial DNA-encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1. © 2015 Roloff and Henry. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2.

    Science.gov (United States)

    Hussain, Shobbir; Wilson, James B; Blom, Eric; Thompson, Larry H; Sung, Patrick; Gordon, Susan M; Kupfer, Gary M; Joenje, Hans; Mathew, Christopher G; Jones, Nigel J

    2006-05-10

    Fanconi anaemia is an inherited chromosomal instability disorder characterised by cellular sensitivity to DNA interstrand crosslinkers, bone-marrow failure and a high risk of cancer. Eleven FA genes have been identified, one of which, FANCD1, is the breast cancer susceptibility gene BRCA2. At least eight FA proteins form a nuclear core complex required for monoubiquitination of FANCD2. The BRCA2/FANCD1 protein is connected to the FA pathway by interactions with the FANCG and FANCD2 proteins, both of which co-localise with the RAD51 recombinase, which is regulated by BRCA2. These connections raise the question of whether any of the FANC proteins of the core complex might also participate in other complexes involved in homologous recombination repair. We therefore tested known FA proteins for direct interaction with RAD51 and its paralogs XRCC2 and XRCC3. FANCG was found to interact with XRCC3, and this interaction was disrupted by the FA-G patient derived mutation L71P. FANCG was co-immunoprecipitated with both XRCC3 and BRCA2 from extracts of human and hamster cells. The FANCG-XRCC3 and FANCG-BRCA2 interactions did not require the presence of other FA proteins from the core complex, suggesting that FANCG also participates in a DNA repair complex that is downstream and independent of FANCD2 monoubiquitination. Additionally, XRCC3 and BRCA2 proteins co-precipitate in both human and hamster cells and this interaction requires FANCG. The FANCG protein contains multiple tetratricopeptide repeat motifs (TPRs), which function as scaffolds to mediate protein-protein interactions. Mutation of one or more of these motifs disrupted all of the known interactions of FANCG. We propose that FANCG, in addition to stabilising the FA core complex, may have a role in building multiprotein complexes that facilitate homologous recombination repair.

  20. Differentiation of prostatitis and prostate cancer using the Prostate Imaging-Reporting and Data System (PI-RADS).

    Science.gov (United States)

    Meier-Schroers, Michael; Kukuk, Guido; Wolter, Karsten; Decker, Georges; Fischer, Stefan; Marx, Christian; Traeber, Frank; Sprinkart, Alois Martin; Block, Wolfgang; Schild, Hans Heinz; Willinek, Winfried

    2016-07-01

    To determine if prostate cancer (PCa) and prostatitis can be differentiated by using PI-RADS. 3T MR images of 68 patients with 85 cancer suspicious lesions were analyzed. The findings were correlated with histopathology. T2w imaging (T2WI), diffusion weighted imaging (DWI), dynamic contrast enhancement (DCE), and MR-Spectroscopy (MRS) were acquired. Every lesion was given a single PI-RADS score for each parameter, as well as a sum score and a PI-RADS v2 score. Furthermore, T2-morphology, ADC-value, perfusion type, citrate/choline-level, and localization were evaluated. 44 of 85 lesions showed PCa (51.8%), 21 chronic prostatitis (24.7%), and 20 other benign tissue such as hyperplasia or fibromuscular tissue (23.5%). The single PI-RADS score for T2WI, DWI, DCE, as well as the aggregated score including and not including MRS, and the PI-RADS v2-score were all significantly higher for PCa than for prostatitis or other tissue (pprostatitis than for other tissue (p=0.029 and p=0.020), whereas the other parameters were not different. Prostatitis usually presented borderline pathological PI-RADS scores, showed restricted diffusion with ADC≥900mm(2)/s in 100% of cases, was more often indistinctly hypointense on T2WI (66.7%), and localized in the transitional zone (57.1%). An ADC≥900mm(2)/s achieved the highest predictive value for prostatitis (AUC=0.859). Prostatitis can be differentiated from PCa using PI-RADS, since all available parameters are more distinct in cases of cancer. However, there is significant overlap between prostatitis and other benign findings, thus PI-RADS is only suitable to a limited extent for the primary assessment of prostatitis. Restricted diffusion with ADC≥900mm(2)/s is believed to be a good indicator for prostatitis. MRS can help to distinguish between prostatitis and other tissue. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Elevated Ras/protein kinase A activity in Saccharomyces cerevisiae reduces proliferation rate and lifespan by two different reactive oxygen species-dependent routes

    Czech Academy of Sciences Publication Activity Database

    Hlavatá, Lydie; Nachin, L.; Ježek, Petr; Nyström, T.

    2008-01-01

    Roč. 7, č. 2 (2008), s. 148-157 ISSN 1474-9718 R&D Projects: GA ČR GP303/05/P100; GA AV ČR IAA500110701 Institutional research plan: CEZ:AV0Z50110509 Keywords : Ras/protein kinase A activity * ROS * Saccharomyces cerevisiae Subject RIV: CE - Biochemistry Impact factor: 7.791, year: 2008

  2. Evaluation of recombinant multi-epitope proteins for diagnosis of goat schistosomiasis by enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Lv, Chao; Hong, Yang; Fu, Zhiqiang; Lu, Ke; Cao, Xiaodan; Wang, Tao; Zhu, Chuangang; Li, Hao; Xu, Rui; Jia, Bingguang; Han, Qian; Dou, Xuefeng; Shen, Yuanxi; Zhang, Zuhang; Zai, Jinli; Feng, Jintao; Lin, Jiaojiao

    2016-03-09

    Schistosomiasis is a huge threat to human and animal health. Apart from bovines, goats play an important role in the transmission of schistosomiasis in some endemic areas of China. An accessible, quality-assured goat schistosomiasis diagnostic technique is needed. Recently, our laboratory identified two recombinant diagnostic antigens, SjPGM and SjRAD23 via an immuno-proteomic method. The application of these two recombinant antigens to develop a higher sensitivity and specificity technique for the sheep schistosomiasis diagnosis is urgently needed. Epitopes of SjPGM and SjRAD23 were predicted and three polypeptides, two from SjRAD23 and one from SjPGM, were selected. Recombinant plasmids containing two to three DNA sequences encoding predicted polypeptides or large hydrophilic region of Sj23 (LHD-Sj23) were constructed and expressed. Eight recombinant schistosome antigens including four multi-epitope proteins and four recombinant single-molecule antigens as well as SEA, were assessed by ELISA in 91 sera from schistosome-infected goats, 44 sera from non-infected goats, 37 sera from Orientobilharzia-infected goats, and 12 from Haemonchus contortus-infected goats. ELISA tests showed that three multi-epitope proteins had higher sensitivity than the four single-molecule antigens (rSjRAD23, rSjPGM, rBSjRAD23-1, rBSj23) and the multi-epitope protein rBSjPGM-BSjRAD23-1-BSj23 had the highest sensitivity (97.8 %, 89/91) and maintained good specificity (100 %, 44/44) as well as low cross-reactivity with haemonchosis (8.33 %, 3/12) and orientobilharziasis (13.51 %, 5/37) in the diagnosis of goat schistosomiasis. In contrast, when SEA was applied as a diagnosis antigen, it had 100 % (91/91) sensitivity, 75 % (33/44) specificity, 25 and 83.78 % cross-reactivity with haemonchosis (3/12) and orientobilharziasis (31/37), respectively. The application of recombinant multi-epitope proteins may increase the sensitivity of diagnosis technique and retain high specificity of single

  3. RadCon: A Radiological Consequences Model

    International Nuclear Information System (INIS)

    Crawford, J.; Domel, R.U.

    2000-05-01

    RadCon estimates the dose received by user selected groups in the population from an accidental release of radionuclides to the environment. The exposure pathways considered are external exposure from the cloud and ground and internal exposure from inhalation and ingestion of contaminated food. Atmospheric dispersion modelling is carried out externally to RadCon.Given a two dimensional time varying air and ground concentration of radioactive elements, RadCon allows the user to: view the air and ground concentration over the affected area, select optional parameters and calculate the dose to people,display the results to the user, and change the parameter values. RadCon offers two user interfaces: 1) the standard graphical user interface which is started using Java DoseApp at the command line, or by setting up a shortcut to this command (particularly when RadCon is installed on a PC) and 2) the text based interface used to generate information for the model inter-comparison exercise . This is initiated using Java BIOMASS at the command line, or an equivalent shortcut. The text based interface was developed for research purposes and is not generally available. Appendices A, B and C provide a summary of instructions on setting up RadCon. This will generally be carried out by the computer support personnel

  4. Lymphoid irradiation in intractable rheumatoid arthritis. A double-blind, randomized study comparing 750-rad treatment with 2,000-rad treatment

    International Nuclear Information System (INIS)

    Hanly, J.G.; Hassan, J.; Moriarty, M.; Barry, C.; Molony, J.; Casey, E.; Whelan, A.; Feighery, C.; Bresnihan, B.

    1986-01-01

    Twenty patients with intractable rheumatoid arthritis were treated with 750-rad or 2,000-rad lymphoid irradiation in a randomized double-blind comparative study. Over a 12-month followup period, there was a significant improvement in 4 of 7 and 6 of 7 standard parameters of disease activity following treatment with 750 rads and 2,000 rads, respectively. Transient, short-term toxicity was less frequent with the lower dose. In both groups, there was a sustained peripheral blood lymphopenia, a selective depletion of T helper (Leu-3a+) lymphocytes, and reduced in vitro mitogen responses. These changes did not occur, however, in synovial fluid. These results suggest that 750-rad lymphoid irradiation is as effective as, but less toxic than, that with 2,000 rads in the management of patients with intractable rheumatoid arthritis

  5. PI-RADS v2: Current standing and future outlook.

    Science.gov (United States)

    Smith, Clayton P; Türkbey, Barış

    2018-05-01

    The Prostate Imaging-Reporting and Data System (PI-RADS) was created in 2012 to establish standardization in prostate multiparametric magnetic resonance imaging (mpMRI) acquisition, interpretation, and reporting. In hopes of improving upon some of the PI-RADS v1 shortcomings, the PI-RADS Steering Committee released PI-RADS v2 in 2015. This paper reviews the accuracy, interobserver agreement, and clinical outcomes of PI-RADS v2 and comments on the limitations of the current literature. Overall, PI-RADS v2 shows improved sensitivity and similar specificity compared to PI-RADS v1. However, concerns exist regarding interobserver agreement and the heterogeneity of the study methodology.

  6. Biosentinel: Improving Desiccation Tolerance of Yeast Biosensors for Deep-Space Missions

    Science.gov (United States)

    Dalal, Sawan; Santa Maria, Sergio R.; Liddell, Lauren; Bhattacharya, Sharmila

    2017-01-01

    BioSentinel is one of 13 secondary payloads to be deployed on Exploration Mission 1 (EM-1) in 2019. We will use the budding yeast Saccharomyces cerevisiae as a biosensor to determine how deep-space radiation affects living organisms and to potentially quantify radiation levels through radiation damage analysis. Radiation can damage DNA through double strand breaks (DSBs), which can normally be repaired by homologous recombination. Two yeast strains will be air-dried and stored in microfluidic cards within the payload: a wild-type control strain and a radiation sensitive rad51 mutant that is deficient in DSB repairs. Throughout the mission, the microfluidic cards will be rehydrated with growth medium and an indicator dye. Growth rates of each strain will be measured through LED detection of the reduction of the indicator dye, which correlates with DNA repair and the amount of radiation damage accumulated. Results from BioSentinel will be compared to analog experiments on the ISS and on Earth. It is well known that desiccation can damage yeast cells and decrease viability over time. We performed a screen for desiccation-tolerant rad51 strains. We selected 20 re-isolates of rad51 and ran a weekly screen for desiccation-tolerant mutants for five weeks. Our data shows that viability decreases over time, confirming previous research findings. Isolates L2, L5 and L14 indicate desiccation tolerance and are candidates for whole-genome sequencing. More time is needed to determine whether a specific strain is truly desiccation tolerant. Furthermore, we conducted an intracellular trehalose assay to test how intracellular trehalose concentrations affect or protect the mutant strains against desiccation stress. S. cerevisiae cell and reagent concentrations from a previously established intracellular trehalose protocol did not yield significant absorbance measurements, so we tested varying cell and reagent concentrations and determined proper concentrations for successful

  7. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Teixeira, Paulo Goncalves; Gossing, Michael

    2018-01-01

    Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although Saccharomyces cerevisiae is the favored microbial cell factory for industrial production of biochemicals, it does not produce...... large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy...... PXA1 led to accumulation of  254 mg∙gCDW−1. The TAG levels achieved here are the highest titer reported in S. cerevisiae, reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species...

  8. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    Science.gov (United States)

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  9. A novel RAD21 variant associated with intrafamilial phenotypic variation in Cornelia de Lange syndrome - review of the literature

    DEFF Research Database (Denmark)

    Boyle, M I; Jespersgaard, C; Nazaryan-Petersen, Lusine

    2017-01-01

    In a patient with CdLS (IV.16) we identifed a novel single basepair deletion (c.704delG) in RAD21, which encodes a cohesin pathway protein. The variant is predicted to result in a premature stop codon [p.(Ser235Ilefs*19)] and hereby would have a deleterious effect. RAD21 variants have previously ...

  10. RadVel: The Radial Velocity Modeling Toolkit

    Science.gov (United States)

    Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan

    2018-04-01

    RadVel is an open-source Python package for modeling Keplerian orbits in radial velocity (RV) timeseries. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented real-time MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.

  11. Study of gamma radiation induced damages and variation of oxygen enhancement ratio with radiation dose using Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Nairy, R.K.; Yerol Narayana; Bhat, N.N.; Anjaria, K.B.; Sreedevi, B.; Sapra, B.K.

    2014-01-01

    In the present study, an attempt has been made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52. The study confirms that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. A theoretical model has been formulated to estimate OER values. With the help of this model, OER value for any dose can be calculated in the exponential region of the survival curve without actually extending the experiment in that dose region. (author)

  12. The impact of phosphate scarcity on pharmaceutical protein production in S. cerevisiae: linking transcriptomic insights to phenotypic responses

    Directory of Open Access Journals (Sweden)

    Kazemi Seresht Ali

    2011-12-01

    Full Text Available Abstract Background The adaptation of unicellular organisms like Saccharomyces cerevisiae to alternating nutrient availability is of great fundamental and applied interest, as understanding how eukaryotic cells respond to variations in their nutrient supply has implications spanning from physiological insights to biotechnological applications. Results The impact of a step-wise restricted supply of phosphate on the physiological state of S. cerevisiae cells producing human Insulin was studied. The focus was to determine the changes within the global gene expression of cells being cultured to an industrially relevant high cell density of 33 g/l cell dry weight and under six distinct phosphate concentrations, ranging from 33 mM (unlimited to 2.6 mM (limited. An increased flux through the secretory pathway, being induced by the PHO circuit during low Pi supplementation, proved to enhance the secretory production of the heterologous protein. The re-distribution of the carbon flux from biomass formation towards increased glycerol production under low phosphate led to increased transcript levels of the insulin gene, which was under the regulation of the TPI1 promoter. Conclusions Our study underlines the dynamic character of adaptive responses of cells towards a change in their nutrient access. The gradual decrease of the phosphate supply resulted in a step-wise modulated phenotypic response, thereby alternating the specific productivity and the secretory flux. Our work emphasizes the importance of reduced phosphate supply for improved secretory production of heterologous proteins.

  13. Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bojsen, Rasmus K; Andersen, Kaj Scherz; Regenberg, Birgitte

    2012-01-01

    Microbial biofilms can be defined as multi-cellular aggregates adhering to a surface and embedded in an extracellular matrix (ECM). The nonpathogenic yeast, Saccharomyces cerevisiae, follows the common traits of microbial biofilms with cell-cell and cell-surface adhesion. S. cerevisiae is shown t...

  14. Endonuclease α from Saccharomyces cerevisiae shows increased activity on ultraviolet irradiated native DNA

    International Nuclear Information System (INIS)

    Bryant, D.W.; Haynes, R.H.

    1978-01-01

    Endonuclease α isolated from the nucleus of the yeast Saccharomyces cerevisiae is a DNA endonuclease which has been shown to act preferentially on denatured T7 DNA. The purified enzyme is more active with UV-irradiated native T7 DNA than with unirradiated substrate. The relation between damage, measured by pyrimidine dimer concentration, and excess endonuclease activity is most readily explained by local denaturation caused by the presence of pyrimidine dimers. When three radiation sensitive mutants of yeast were tested for the level of endonuclease α present, none were found lacking the enzyme. However, nuclei of strain rad 1-1, a mutant that may be defective in heteroduplex repair as well as excision repair, were found to contain reduced levels of the endonuclease. (orig./AJ) [de

  15. A novel member of the split betaalphabeta fold: Solution structure of the hypothetical protein YML108W from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Pineda-Lucena, Antonio; Liao, Jack; Cort, John R.; Yee, Adelinda; Kennedy, Michael A.; Edwards, Aled M.

    2003-05-01

    As part of the Northeast Structural Genomics Consortium pilot project focused on small eukaryotic proteins and protein domains, we have determined the NMR structure of the protein encoded by open reading frame YML108W from Saccharomyces cerevisiae. YML108W belongs to one of the numerous structural proteomics targets whose biological function is unknown. Moreover, this protein does not have sequence similarity to any other protein. The NMR structure of YML108W consists of a four-stranded b-sheet with strand order 2143 and two a-helices, with an overall topology of bbabba. Strand b1 runs parallel to b4, and b2:b1 and b4:b3 pairs are arranged in an antiparallel fashion. While this fold belongs to the split bab family, it appears to be unique among this family; it is a novel arrangement of secondary structure, thereby expanding the universe of protein folds

  16. Long Term RadNet Quality Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This RadNet Quality Data Asset includes all data since initiation and when ERAMS was expanded to become RadNet, name changed to reflect new mission. This includes...

  17. Molecular Pathways

    Science.gov (United States)

    Lok, Benjamin H.; Powell, Simon N.

    2012-01-01

    The Rad52 protein was largely ignored in humans and other mammals when the mouse knockout revealed a largely “no-effect” phenotype. However, using synthetic lethal approaches to investigate context dependent function, new studies have shown that Rad52 plays a key survival role in cells lacking the function of the BRCA1-BRCA2 pathway of homologous recombination. Biochemical studies also showed significant differences between yeast and human Rad52, in which yeast Rad52 can promote strand invasion of RPA-coated single-stranded DNA in the presence of Rad51, but human Rad52 cannot. This results in the paradox of how is human Rad52 providing Rad51 function: presumably there is something missing in the biochemical assays that exists in-vivo, but the nature of this missing factor is currently unknown. Recent studies have suggested that Rad52 provides back-up Rad51 function for all members of the BRCA1-BRCA2 pathway, suggesting that Rad52 may be a target for therapy in BRCA pathway deficient cancers. Screening for ways to inhibit Rad52 would potentially provide a complementary strategy for targeting BRCA-deficient cancers in addition to PARP inhibitors. PMID:23071261

  18. Viral interference with DNA repair by targeting of the single-stranded DNA binding protein RPA.

    Science.gov (United States)

    Banerjee, Pubali; DeJesus, Rowena; Gjoerup, Ole; Schaffhausen, Brian S

    2013-10-01

    Correct repair of damaged DNA is critical for genomic integrity. Deficiencies in DNA repair are linked with human cancer. Here we report a novel mechanism by which a virus manipulates DNA damage responses. Infection with murine polyomavirus sensitizes cells to DNA damage by UV and etoposide. Polyomavirus large T antigen (LT) alone is sufficient to sensitize cells 100 fold to UV and other kinds of DNA damage. This results in activated stress responses and apoptosis. Genetic analysis shows that LT sensitizes via the binding of its origin-binding domain (OBD) to the single-stranded DNA binding protein replication protein A (RPA). Overexpression of RPA protects cells expressing OBD from damage, and knockdown of RPA mimics the LT phenotype. LT prevents recruitment of RPA to nuclear foci after DNA damage. This leads to failure to recruit repair proteins such as Rad51 or Rad9, explaining why LT prevents repair of double strand DNA breaks by homologous recombination. A targeted intervention directed at RPA based on this viral mechanism could be useful in circumventing the resistance of cancer cells to therapy.

  19. Effects of Dietary Yeast (Saccharomyces cerevisia Supplementation in Practical Diets of Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    José E. P. Cyrino

    2012-01-01

    Full Text Available A 51-day feeding trial was carried out to determine the effects of various dietary levels of brewer’s yeast, Saccharomyces cerevisiae, in the growth performance, body composition and nutrient utilization in Nile tilapia, Oreochromis niloticus, juveniles. Fish (7.6 ± 0.3 g were stocked into eighteen 1,000-L tanks (100 fish per tank; n = 3 and fed to apparent satiation six isonitrogenous (27% crude protein and isoenergetic (19 kJ/g diets, formulated to contain different dried yeast levels (0%, 10%, 15%, 20%, 30% or 40% diet in substitution to fishmeal. Body weight tripled at the end of the feeding trial for fish fed up to 20% dietary yeast incorporation. Daily growth coefficient (DGC, % body weight/day decreased with increasing dietary yeast level (P < 0.0001. Voluntary feed intake (VFI, %BW/day did not vary significantly with increasing yeast level. Fish fed 40% yeast showed significant reduction in protein efficiency rate, protein retention and nitrogen gain. Increasing levels of dietary yeast did not significantly affect protein or lipid digestibility. Dietary dried yeast was seemingly palatable to tilapia juveniles and was suitable up to 15% inclusion to promote growth and efficient diet utilization, without affecting body composition.

  20. RadGenomics project

    Energy Technology Data Exchange (ETDEWEB)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu [National Inst. of Radiological Sciences, Chiba (Japan). Frontier Research Center] [and others

    2002-06-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  1. RadGenomics project

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu

    2002-01-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  2. Hybridization Capture Using RAD Probes (hyRAD, a New Tool for Performing Genomic Analyses on Collection Specimens.

    Directory of Open Access Journals (Sweden)

    Tomasz Suchan

    Full Text Available In the recent years, many protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been published. Among them, RAD-sequencing is one of the most widely used. It relies on digesting DNA with specific restriction enzymes and performing size selection on the resulting fragments. Despite its acknowledged utility, this method is of limited use with degraded DNA samples, such as those isolated from museum specimens, as these samples are less likely to harbor fragments long enough to comprise two restriction sites making possible ligation of the adapter sequences (in the case of double-digest RAD or performing size selection of the resulting fragments (in the case of single-digest RAD. Here, we address these limitations by presenting a novel method called hybridization RAD (hyRAD. In this approach, biotinylated RAD fragments, covering a random fraction of the genome, are used as baits for capturing homologous fragments from genomic shotgun sequencing libraries. This simple and cost-effective approach allows sequencing of orthologous loci even from highly degraded DNA samples, opening new avenues of research in the field of museum genomics. Not relying on the restriction site presence, it improves among-sample loci coverage. In a trial study, hyRAD allowed us to obtain a large set of orthologous loci from fresh and museum samples from a non-model butterfly species, with a high proportion of single nucleotide polymorphisms present in all eight analyzed specimens, including 58-year-old museum samples. The utility of the method was further validated using 49 museum and fresh samples of a Palearctic grasshopper species for which the spatial genetic structure was previously assessed using mtDNA amplicons. The application of the method is eventually discussed in a wider context. As it does not rely on the restriction site presence, it is therefore not sensitive to among-sample loci polymorphisms in the restriction sites

  3. Increased mannoprotein content in wines produced by Saccharomyces kudriavzevii×Saccharomyces cerevisiae hybrids.

    Science.gov (United States)

    Pérez-Través, Laura; Querol, Amparo; Pérez-Torrado, Roberto

    2016-11-21

    Several wine quality aspects are influenced by yeast mannoproteins on account of aroma compounds retention, lactic-acid bacterial growth stimulation, protection against protein haze and astringency reduction. Thus selecting a yeast strain that produces high levels of mannoproteins is important for the winemaking industry. In this work, we observed increased levels of mannoproteins in S. cerevisiae×S. kudriavzevii hybrids, compared to the S. cerevisiae strain, in wine fermentations. Furthermore, the expression of a key gene related to mannoproteins biosynthesis, PMT1, increased in the S. cerevisiae×S. kudriavzevii hybrid. We showed that artificially constructed S. cerevisiae×S. kudriavzevii hybrids also increased the levels of mannoproteins. This work demonstrates that either natural or artificial S. cerevisiae×S. kudriavzevii hybrids present mannoprotein overproducing capacity under winemaking conditions, a desirable physiological feature for this industry. These results suggest that genome interaction in hybrids generates a physiological environment that enhances the release of mannoproteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evidence for the involvement of a 66 kDa membrane protein in the synthesis of sterolglucoside in ''Saccharomyces cerevisiae''

    International Nuclear Information System (INIS)

    Lenart, U.; Palamarczyk, G.

    1995-01-01

    The membrane-bound sterolglucoside synthase from the yeast ''Saccharomyces cerevisiae'' has been solubilized by nonionic detergent, Nonidet P-40, Triton X-100, and partially purified by DEAE-cellulose column chromatography and ammonium sulfate fractionation. SDS/PAGE of the purified fraction revealed the presence of two protein bands of molecular mass 66 kDa and 54 kDa. In an attempt to identify further the polypeptide chain of sterolglucoside synthase, the partially purified enzyme was treated with [di- 125 I]-5-[3-(p-azidosalicylamide)]allyl-UDPglucose, a photoactive analogue of UDPglucose, which is a substrate for this enzyme. Upon photolysis the 125 I-labelled probe was shown to link covalently to the 66 kDa protein. The photoinsertion was competed out by the presence of unlabeled UDPglucose thus suggesting that this protein contains substrate binding site for UDPglucose. Since photoinsertion of the probe to protein of 66 kDa correlated with the molecular mass of the protein visualized upon enzyme purification we postulate that the 66 kDa protein is involved in sterolglucoside synthesis in yeast. (author). 10 refs, 5 figs, 1 tab

  5. Structured reporting platform improves CAD-RADS assessment.

    Science.gov (United States)

    Szilveszter, Bálint; Kolossváry, Márton; Karády, Júlia; Jermendy, Ádám L; Károlyi, Mihály; Panajotu, Alexisz; Bagyura, Zsolt; Vecsey-Nagy, Milán; Cury, Ricardo C; Leipsic, Jonathon A; Merkely, Béla; Maurovich-Horvat, Pál

    2017-11-01

    Structured reporting in cardiac imaging is strongly encouraged to improve quality through consistency. The Coronary Artery Disease - Reporting and Data System (CAD-RADS) was recently introduced to facilitate interdisciplinary communication of coronary CT angiography (CTA) results. We aimed to assess the agreement between manual and automated CAD-RADS classification using a structured reporting platform. Five readers prospectively interpreted 500 coronary CT angiographies using a structured reporting platform that automatically calculates the CAD-RADS score based on stenosis and plaque parameters manually entered by the reader. In addition, all readers manually assessed CAD-RADS blinded to the automatically derived results, which was used as the reference standard. We evaluated factors influencing reader performance including CAD-RADS training, clinical load, time of the day and level of expertise. Total agreement between manual and automated classification was 80.2%. Agreement in stenosis categories was 86.7%, whereas the agreement in modifiers was 95.8% for "N", 96.8% for "S", 95.6% for "V" and 99.4% for "G". Agreement for V improved after CAD-RADS training (p = 0.047). Time of the day and clinical load did not influence reader performance (p > 0.05 both). Less experienced readers had a higher total agreement as compared to more experienced readers (87.0% vs 78.0%, respectively; p = 0.011). Even though automated CAD-RADS classification uses data filled in by the readers, it outperforms manual classification by preventing human errors. Structured reporting platforms with automated calculation of the CAD-RADS score might improve data quality and support standardization of clinical decision making. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Intracellular Ca2+ Regulation in Calcium Sensitive Phenotype of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    HERMANSYAH

    2010-03-01

    Full Text Available Intracellular cytosolic Ca2+ concentration accumulation plays an essential information in Saccharomyces cerevisiae i.e. to explain cellular mechanism of Ca2+ sensitive phenotype. Disruption both S. cerevisiae PPase PTP2 and MSG5 genes showed an inhibited growth in the presence of Ca2+. On the other hand, by using Luminocounter with apoaequorin system, a method based upon luminescent photoprotein aequorin, intracellular Ca2+ concentration was accumulated as a consequence of calcium sensitive phenotype of S. cerevisiae. This fact indicated that PPase ptp2Δ and msg5Δ were involved in intracellular Ca2+ transport in addition their already known pathways i.e Mitogen Activated Protein Kinase cell wall integrity pathway, high osmolarity glycerol (HOG pathway, and pheromone response FUS3 pathway.

  7. Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia

    International Nuclear Information System (INIS)

    Mosor, Maria; Ziółkowska-Suchanek, Iwona; Nowicka, Karina; Dzikiewicz-Krawczyk, Agnieszka; Januszkiewicz–Lewandowska, Danuta; Nowak, Jerzy

    2013-01-01

    The MRE11, RAD50, and NBN genes encode proteins of the MRE11-RAD50-NBN (MRN) complex involved in cellular response to DNA damage and the maintenance of genome stability. In our previous study we showed that the germline p.I171V mutation in NBN may be considered as a risk factor in the development of childhood acute lymphoblastic leukemia (ALL) and some specific haplotypes of that gene may be associated with childhood leukemia. These findings raise important questions about the role of mutations in others genes of the MRN complex in childhood leukemia. The aim of this study was to answer the question whether MRE11 and RAD50 alterations may be associated with childhood ALL or AML. We estimated the frequency of constitutional mutations and polymorphisms in selected regions of MRE11, RAD50, and NBN in the group of 220 children diagnosed with childhood leukemias and controls (n=504/2200). The analysis was performed by specific amplification of region of interest by PCR and followed by multi-temperature single-strand conformation polymorphism (PCR-MSSCP) technique. We performed two molecular tests to examine any potential function of the detected the c.551+19G>A SNP in RAD50 gene. To our knowledge, this is the first analysis of the MRE11, RAD50 and NBN genes in childhood leukemia. The frequency of either the AA genotype or A allele of RAD50-rs17166050 were significantly different in controls compared to leukemia group (ALL+AML) (p<0.0019 and p<0.0019, respectively). The cDNA analysis of AA or GA genotypes carriers has not revealed evidence of splicing abnormality of RAD50 pre-mRNA. We measured the allelic-specific expression of G and A alleles at c.551+19G>A and the statistically significant overexpression of the G allele has been observed. Additionally we confirmed the higher incidence of the p.I171V mutation in the leukemia group (7/220) than among controls (12/2400) (p<0.0001). The formerly reported sequence variants in the RAD50 and MRE11 gene may not constitute a

  8. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Milne, N.; Luttik, M.A.H.; Cueto Rojas, H.F.; Wahl, A.; Van Maris, A.J.A.; Pronk, J.T.; Daran, J.G.

    2015-01-01

    In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential

  9. On the interconnection of stable protein complexes: inter-complex hubs and their conservation in Saccharomyces cerevisiae and Homo sapiens networks.

    Science.gov (United States)

    Guerra, Concettina

    2015-01-01

    Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.

  10. RAD9 deficiency enhances radiation induced bystander DNA damage and transcriptomal response

    International Nuclear Information System (INIS)

    Ghandhi, Shanaz A; Ponnaiya, Brian; Panigrahi, Sunil K; Hopkins, Kevin M; Cui, Qingping; Hei, Tom K; Amundson, Sally A; Lieberman, Howard B

    2014-01-01

    Radiation induced bystander effects are an important component of the overall response of cells to irradiation and are associated with human health risks. The mechanism responsible includes intra-cellular and inter-cellular signaling by which the bystander response is propagated. However, details of the signaling mechanism are not well defined. We measured the bystander response of Mrad9 +/+ and Mrad9 −/− mouse embryonic stem cells, as well as human H1299 cells with inherent or RNA interference-mediated reduced RAD9 levels after exposure to 1 Gy α particles, by scoring chromosomal aberrations and micronuclei formation, respectively. In addition, we used microarray gene expression analyses to profile the transcriptome of directly irradiated and bystander H1299 cells. We demonstrated that Mrad9 null enhances chromatid aberration frequency induced by radiation in bystander mouse embryonic stem cells. In addition, we found that H1299 cells with reduced RAD9 protein levels showed a higher frequency of radiation induced bystander micronuclei formation, compared with parental cells containing inherent levels of RAD9. The enhanced bystander response in human cells was associated with a unique transcriptomic profile. In unirradiated cells, RAD9 reduction broadly affected stress response pathways at the mRNA level; there was reduction in transcript levels corresponding to genes encoding multiple members of the UVA-MAPK and p38MAPK families, such as STAT1 and PARP1, suggesting that these signaling mechanisms may not function optimally when RAD9 is reduced. Using network analysis, we found that differential activation of the SP1 and NUPR1 transcriptional regulators was predicted in directly irradiated and bystander H1299 cells. Transcription factor prediction analysis also implied that HIF1α (Hypoxia induced factor 1 alpha) activation by protein stabilization in irradiated cells could be a negative predictor of the bystander response, suggesting that local hypoxic stress

  11. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae.

    Science.gov (United States)

    Milne, N; Luttik, M A H; Cueto Rojas, H F; Wahl, A; van Maris, A J A; Pronk, J T; Daran, J M

    2015-07-01

    In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing chemicals, uptake and assimilation of ammonium requires 1 ATP per incorporated NH3. Urea assimilation by this yeast is more energy efficient but still requires 0.5 ATP per NH3 produced. To decrease ATP costs for nitrogen assimilation, the S. cerevisiae gene encoding ATP-dependent urease (DUR1,2) was replaced by a Schizosaccharomyces pombe gene encoding ATP-independent urease (ure2), along with its accessory genes ureD, ureF and ureG. Since S. pombe ure2 is a Ni(2+)-dependent enzyme and Saccharomyces cerevisiae does not express native Ni(2+)-dependent enzymes, the S. pombe high-affinity nickel-transporter gene (nic1) was also expressed. Expression of the S. pombe genes into dur1,2Δ S. cerevisiae yielded an in vitro ATP-independent urease activity of 0.44±0.01 µmol min(-1) mg protein(-1) and restored growth on urea as sole nitrogen source. Functional expression of the Nic1 transporter was essential for growth on urea at low Ni(2+) concentrations. The maximum specific growth rates of the engineered strain on urea and ammonium were lower than those of a DUR1,2 reference strain. In glucose-limited chemostat cultures with urea as nitrogen source, the engineered strain exhibited an increased release of ammonia and reduced nitrogen content of the biomass. Our results indicate a new strategy for improving yeast-based production of nitrogen-containing chemicals and demonstrate that Ni(2+)-dependent enzymes can be functionally expressed in S. cerevisiae. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. RAD18 mediates resistance to ionizing radiation in human glioma cells

    International Nuclear Information System (INIS)

    Xie, Chen; Wang, Hongwei; Cheng, Hongbin; Li, Jianhua; Wang, Zhi; Yue, Wu

    2014-01-01

    Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18 in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM

  13. Phosphorylation of protein synthesis initiation factor 2 (elF-2) in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Romero, D.P.

    1986-01-01

    Initiation Factor 2 (elF-2) in the yeast Saccharomyces cerevisiae is comprised of 3 subunits. The control of protein synthesis in mammalian cells have been shown to involve the phosphorylation of the small (alpha) subunit by a specific protein kinase. Phosphorylation results in an inhibition of protein synthesis. In order to determine whether or not an analogous system is operative in yeast, the phosphorylation state of the alpha subunit of elF-2 in Saccharomyces was determined during various growth and nongrowth conditions. Cells were radiolabelled with 32 P and 35 S, and the whole cell lysates were analyzed by two dimensional gel electrophoresis. These experiments revealed that the smallest subunit (alpha, M/sub r/ = 31,000) is a phosphoprotein in vivo under a variety of growth and nongrowth conditions. This is in direct contrast to the pattern exhibited in mammalian cells. The fact that the small subunit of elF-2 in yeast is phosphorylated under a variety of physiological conditions indicates that such a covalent modification is important for some aspects of elF-2 function. In order to investigate this problem further, a protein kinase that specifically labels the alpha subunit of elF-2 in vitro was isolated. The kinase is not autophosphorylating, utilizes ATP as a phosphate donor, phosphorylates an exogenous protein, casein, modifies serine residues in elF-2, is cyclic nucleotide-independent, and is strongly inhibited by heparin

  14. Epidermal growth factor receptor (EGFR mutation status and Rad51 determine the response of glioblastoma (GBM to multimodality therapy with cetuximab, temozolomide and radiation

    Directory of Open Access Journals (Sweden)

    Phyllis Rachelle Wachsberger

    2013-02-01

    Full Text Available Purpose: EGFR amplification and mutation (i.e., EGFRvIII are found in 40% of primary GBM tumors and are believed to contribute to tumor development and therapeutic resistance. This study was designed to investigate how EGFR mutational status modulates response to multimodality treatment with cetuximab, an anti-EGFR inhibitor, the chemotherapeutic agent, temozolamide (TMZ and radiation therapy (RT Methods and Materials: In vitro and in vivo experiments were performed on two isogenic U87 GBM cell lines: one overexpressing wildtype EGFR (U87wtEGFR and the other overexpressing EGFRvIII (U87EGFRvIII. Results: Xenografts harboring EGFRvIII were more sensitive to TMZ alone and TMZ in combination with RT and/or cetuximab than xenografts expressing wtEGFR. In vitro experiments demonstrated that U87EGFRvIII-expressing tumors appear to harbor defective DNA homologous recombination repair in the form of Rad51 processing, Conclusions: The difference in sensitivity between EGFR-expressing and EGFRvIII-expressing tumors to combined modality treatment may help in the future tailoring of GBM therapy to subsets of patients expressing more or less of the EGFR mutant.

  15. Production of Saccharomyces cerevisiae biomass in papaya extract ...

    African Journals Online (AJOL)

    Extracts of papaya fruit were used as substrate for single cell protein (SCP) production using Saccharomyces cerevisiae. A 500 g of papaya fruit was extracted with different volumes of sterile distilled water. Extraction with 200 mL of sterile distilled water sustained highest cell growth. Biochemical analysis of dry biomass ...

  16. Phosphorylation of Rad9 at serine 328 by cyclin A-Cdk2 triggers apoptosis via interfering Bcl-xL.

    Directory of Open Access Journals (Sweden)

    Zhuo Zhan

    Full Text Available Cyclin A-Cdk2, a cell cycle regulated Ser/Thr kinase, plays important roles in a variety of apoptoticprocesses. However, the mechanism of cyclin A-Cdk2 regulated apoptosis remains unclear. Here, we demonstrated that Rad9, a member of the BH3-only subfamily of Bcl-2 proteins, could be phosphorylated by cyclin A-Cdk2 in vitro and in vivo. Cyclin A-Cdk2 catalyzed the phosphorylation of Rad9 at serine 328 in HeLa cells during apoptosis induced by etoposide, an inhibitor of topoisomeraseII. The phosphorylation of Rad9 resulted in its translocation from the nucleus to the mitochondria and its interaction with Bcl-xL. The forced activation of cyclin A-Cdk2 in these cells by the overexpression of cyclin A,triggered Rad9 phosphorylation at serine 328 and thereby promoted the interaction of Rad9 with Bcl-xL and the subsequent initiation of the apoptotic program. The pro-apoptotic effects regulated by the cyclin A-Cdk2 complex were significantly lower in cells transfected with Rad9S328A, an expression vector that encodes a Rad9 mutant that is resistant to cyclin A-Cdk2 phosphorylation. These findings suggest that cyclin A-Cdk2 regulates apoptosis through a mechanism that involves Rad9phosphorylation.

  17. Evaluation of GO-based functional similarity measures using S. cerevisiae protein interaction and expression profile data

    Directory of Open Access Journals (Sweden)

    Du LinFang

    2008-11-01

    Full Text Available Abstract Background Researchers interested in analysing the expression patterns of functionally related genes usually hope to improve the accuracy of their results beyond the boundaries of currently available experimental data. Gene ontology (GO data provides a novel way to measure the functional relationship between gene products. Many approaches have been reported for calculating the similarities between two GO terms, known as semantic similarities. However, biologists are more interested in the relationship between gene products than in the scores linking the GO terms. To highlight the relationships among genes, recent studies have focused on functional similarities. Results In this study, we evaluated five functional similarity methods using both protein-protein interaction (PPI and expression data of S. cerevisiae. The receiver operating characteristics (ROC and correlation coefficient analysis of these methods showed that the maximum method outperformed the other methods. Statistical comparison of multiple- and single-term annotated proteins in biological process ontology indicated that genes with multiple GO terms may be more reliable for separating true positives from noise. Conclusion This study demonstrated the reliability of current approaches that elevate the similarity of GO terms to the similarity of proteins. Suggestions for further improvements in functional similarity analysis are also provided.

  18. RadWorks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The RadWorks project's overarching objective is the maturation and demonstration of affordable, enabling solutions to the radiation-related challenges presented to...

  19. The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and Their Role in Human Tumorigenesis

    Science.gov (United States)

    Cazzanelli, Giulia; Francisco, Rita; Azevedo, Luísa; Carvalho, Patrícia Dias; Almeida, Ana; Côrte-Real, Manuela; Oliveira, Maria José; Lucas, Cândida; Sousa, Maria João

    2018-01-01

    The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy. PMID:29463063

  20. HiRadMat: materials under scrutiny

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    CERN's new facility, HiRadMat (High Radiation to Materials), which is designed to test materials for the world's future particle accelerators, should be operational and welcoming its first experiments by the end of the year.   The HiRadMat facility, located in the TNC tunnel. The materials used in the LHC and its experiments are exposed to very high-energy particles. The LHC machine experts obviously didn't wait for the first collisions in the world's most powerful accelerator to put the materials through their paces - the equipment was validated following a series of stringent tests. And these tests will get even tougher now, with the arrival of HiRadMat. The tunnel that formerly housed the West Area Neutrino Facility (WANF) has been completely revamped to make way for CERN's latest facility, HiRadMat. Supported by the Radioprotection service, a team from the Engineering (EN) Department handled the dismantling operations from October 2009 to December 2010. "We could only work on disman...

  1. Fast-acting and nearly gratuitous induction of gene expression and protein depletion in Saccharomyces cerevisiae

    Science.gov (United States)

    McIsaac, R. Scott; Silverman, Sanford J.; McClean, Megan N.; Gibney, Patrick A.; Macinskas, Joanna; Hickman, Mark J.; Petti, Allegra A.; Botstein, David

    2011-01-01

    We describe the development and characterization of a system that allows the rapid and specific induction of individual genes in the yeast Saccharomyces cerevisiae without changes in nutrients or temperature. The system is based on the chimeric transcriptional activator Gal4dbd.ER.VP16 (GEV). Upon addition of the hormone β-estradiol, cytoplasmic GEV localizes to the nucleus and binds to promoters containing Gal4p consensus binding sequences to activate transcription. With galactokinase Gal1p and transcriptional activator Gal4p absent, the system is fast-acting, resulting in readily detectable transcription within 5 min after addition of the inducer. β-Estradiol is nearly a gratuitous inducer, as indicated by genome-wide profiling that shows unintended induction (by GEV) of only a few dozen genes. Response to inducer is graded: intermediate concentrations of inducer result in production of intermediate levels of product protein in all cells. We present data illustrating several applications of this system, including a modification of the regulated degron method, which allows rapid and specific degradation of a specific protein upon addition of β-estradiol. These gene induction and protein degradation systems provide important tools for studying the dynamics and functional relationships of genes and their respective regulatory networks. PMID:21965290

  2. Characterization of Magnaporthe oryzae chrysovirus 1 structural proteins and their expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Urayama, Syunichi; Ohta, Tomoko; Onozuka, Nobuya; Sakoda, Hirofumi; Fukuhara, Toshiyuki; Arie, Tsutomu; Teraoka, Tohru; Moriyama, Hiromitsu

    2012-08-01

    Magnaporthe oryzae chrysovirus 1 (MoCV1), which is associated with an impaired growth phenotype of its host fungus, harbors four major proteins: P130 (130 kDa), P70 (70 kDa), P65 (65 kDa), and P58 (58 kDa). N-terminal sequence analysis of each protein revealed that P130 was encoded by double-stranded RNA1 (dsRNA1) (open reading frame 1 [ORF1] 1,127 amino acids [aa]), P70 by dsRNA4 (ORF4; 812 aa), and P58 by dsRNA3 (ORF3; 799 aa), although the molecular masses of P58 and P70 were significantly smaller than those deduced for ORF3 and ORF4, respectively. P65 was a degraded form of P70. Full-size proteins of ORF3 (84 kDa) and ORF4 (85 kDa) were produced in Escherichia coli. Antisera against these recombinant proteins detected full-size proteins encoded by ORF3 and ORF4 in mycelia cultured for 9, 15, and 28 days, and the antisera also detected smaller degraded proteins, namely, P58, P70, and P65, in mycelia cultured for 28 days. These full-size proteins and P58 and P70 were also components of viral particles, indicating that MoCV1 particles might have at least two forms during vegetative growth of the host fungus. Expression of the ORF4 protein in Saccharomyces cerevisiae resulted in cytological changes, with a large central vacuole associated with these growth defects. MoCV1 has five dsRNA segments, as do two Fusarium graminearum viruses (FgV-ch9 and FgV2), and forms a separate clade with FgV-ch9, FgV2, Aspergillus mycovirus 1816 (AsV1816), and Agaricus bisporus virus 1 (AbV1) in the Chrysoviridae family on the basis of their RdRp protein sequences.

  3. Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation.

    Science.gov (United States)

    Kim, Il-Sup; Kim, Young-Saeng; Kim, Hyun; Jin, Ingnyol; Yoon, Ho-Sung

    2013-03-01

    Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.

  4. Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsuoka, Hiroyuki; Hashimoto, Kazuya; Saijo, Aki; Takada, Yuki; Kondo, Akihiko; Ueda, Mitsuyoshi; Ooshima, Hiroshi; Tachibana, Taro; Azuma, Masayuki

    2014-02-01

    A display system for adding new protein functions to the cell surfaces of microorganisms has been developed, and applications of the system to various fields have been proposed. With the aim of constructing a cell surface environment suitable for protein display in Saccharomyces cerevisiae, the cell surface structures of cell wall mutants were investigated. Four cell wall mutant strains were selected by analyses using a GFP display system via a GPI anchor. β-Glucosidase and endoglucanase II were displayed on the cell surface in the four mutants, and their activities were evaluated. mnn2 deletion strain exhibited the highest activity for both the enzymes. In particular, endoglucanase II activity using carboxymethylcellulose as a substrate in the mutant strain was 1.9-fold higher than that of the wild-type strain. In addition, the activity of endoglucanase II released from the mnn2 deletion strain by Zymolyase 20T treatment was higher than that from the wild-type strain. The results of green fluorescent protein (GFP) and endoglucanase displays suggest that the amounts of enzyme displayed on the cell surface were increased by the mnn2 deletion. The enzyme activity of the mnn2 deletion strain was compared with that of the wild-type strain. The relative value (mnn2 deletion mutant/wild-type strain) of endoglucanase II activity using carboxymethylcellulose as a substrate was higher than that of β-glucosidase activity using p-nitrophenyl-β-glucopyranoside as a substrate, suggesting that the cell surface environment of the mnn2 deletion strain facilitates the binding of high-molecular-weight substrates to the active sites of the displayed enzymes. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Partial dispensability of Djp1's J domain in peroxisomal protein import in Saccharomyces cerevisiae results from genetic redundancy with another class II J protein, Caj1.

    Science.gov (United States)

    Dobriyal, Neha; Tripathi, Prerna; Sarkar, Susrita; Tak, Yogesh; Verma, Amit K; Sahi, Chandan

    2017-05-01

    J proteins are obligate co-chaperones of Hsp70s. Via their signature J domain, all J proteins interact with their partner Hsp70s and stimulate their weak ATPase activity, which is vital for Hsp70 functions. The dependency of J proteins on their J domain is such that mutations in critical amino acids in the J domain often results into a null phenotype for a particular J protein. Here, we show that the J domain of Djp1, a cytosolic J protein important for peroxisomal protein import in Saccharomyces cerevisiae, is partially dispensable. A complete deletion of Djp1 J domain resulted into only partial loss in peroxisomal protein import function. Instead, the C-terminal domain of Djp1 was found to be essential for proper localization of the peroxisomal targeted GFP-PTS1. Furthermore, we show that Caj1, another cytosolic J protein, also has some role in peroxisomal protein import. Caj1 was found to be partially redundant with Djp1 as cells lacking both Djp1 and Caj1 resulted into a much more severe defect in GFP-PTS1 localization. Based on these results, we propose that dispensability of J domains could be attributed to genetic redundancy between different J proteins sharing common structural topology and cellular localization.

  6. Engineering of aromatic amino acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Vuralhan, Z.

    2006-01-01

    Saccharomyces cerevisiae is a popular industrial microorganism. It has since long been used in bread, beer and wine making. More recently it is also being applied for heterologous protein production and as a target organism for metabolic engineering. The work presented in this thesis describes how

  7. RadNet Air Quality (Fixed Station) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet is a national network of monitoring stations that regularly collect air for analysis of radioactivity. The RadNet network, which has stations in each State,...

  8. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an

  9. RadNet Air Data From Sacramento, CA

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Sacramento, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Honolulu, HI

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Honolulu, HI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. RadNet Air Data From Houston, TX

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Houston, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  12. RadNet Air Data From Austin, TX

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Austin, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. RadNet Air Data From Orlando, FL

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Orlando, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. The herpes simplex virus 1 UL51 protein interacts with the UL7 protein and plays a role in its recruitment into the virion.

    Science.gov (United States)

    Roller, Richard J; Fetters, Rachel

    2015-03-01

    The alphaherpesvirus UL51 protein is a tegument component that interacts with the viral glycoprotein E and functions at multiple steps in virus assembly and spread in epithelial cells. We show here that pUL51 forms a complex in infected cells with another conserved tegument protein, pUL7. This complex can form in the absence of other viral proteins and is largely responsible for recruitment of pUL7 to cytoplasmic membranes and into the virion tegument. Incomplete colocalization of pUL51 and pUL7 in infected cells, however, suggests that a significant fraction of the population of each protein is not complexed with the other and that they may accomplish independent functions. The ability of herpesviruses to spread from cell to cell in the face of an immune response is critical for disease and shedding following reactivation from latency. Cell-to-cell spread is a conserved ability of herpesviruses, and the identification of conserved viral genes that mediate this process will aid in the design of attenuated vaccines and of novel therapeutics. The conserved UL51 gene of herpes simplex virus 1 plays important roles in cell-to-cell spread and in virus assembly in the cytoplasm, both of which likely depend on specific interactions with other viral and cellular proteins. Here we identify one of those interactions with the product of another conserved herpesvirus gene, UL7, and show that formation of this complex mediates recruitment of UL7 to membranes and to the virion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. The induction of rho'- mutants by UV or γ-rays is independent of the nuclear recombinational repair pethway in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Heude, M

    1988-01-01

    In order to discover whether the nuclear recombinational repair pathway also acts on lesions induced in mitochondrial DNA (mtDNA), the possible role of the RAD50, -51, -55 and -56 genes on the induction of rho - mutants by radiations was studied. Such induction appeared to be independent of this pathway. Nevertheless, an efficient induction of respiration-deficient mutants was observed in γ-irradiated rad52 diploids. We demonstrate that these mutants do not result from a lack of mtDNA repair, but from chromosome losses induced by γ-rays. Such an impairment of the respiratory ability of diploids by chromosome lossed was effectively observed in the aneuploid progeny of unirradiated RAD + cdc6 diploids incubated at the restrictive temperature. (author). 60 refs.; 3 figs.; 6 tabs

  16. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.

    Science.gov (United States)

    Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A; Chong, Jenny; Hare, Alissa A; Dervan, Peter B; DiMaio, Frank; Leschziner, Andres E; Wang, Dong

    2017-11-30

    Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.

  17. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ahlgren Simon

    2011-09-01

    Full Text Available Abstract Background The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP. Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases. Results We expressed various cellobiohydrolases to identify enzymes that were efficiently secreted by S. cerevisiae. For enhanced cellulose hydrolysis, we engineered bimodular derivatives of a well secreted enzyme that naturally lacks the carbohydrate-binding module, and constructed strains expressing combinations of cbh1 and cbh2 genes. Though there was significant variability in the enzyme levels produced, up to approximately 0.3 g/L CBH1 and approximately 1 g/L CBH2 could be produced in high cell density fermentations. Furthermore, we could show activation of the unfolded protein response as a result of cellobiohydrolase production. Finally, we report fermentation of microcrystalline cellulose (Avicel™ to ethanol by CBH-producing S. cerevisiae strains with the addition of beta-glucosidase. Conclusions Gene or protein specific features and compatibility with the host are important for efficient cellobiohydrolase secretion in yeast. The present work demonstrated that production of both CBH1 and CBH2 could be improved to levels where the barrier to CBH sufficiency in the hydrolysis of cellulose was overcome.

  18. Growth rate-regulated expression of the hexose transporter HXT5 in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Verwaal, René

    2003-01-01

    Glucose, which is the most preferred carbon source for the yeast Saccharomyces cerevisiae, is transported across the plasma membrane into cells by hexose transporter (Hxt) proteins. The Hxt proteins are encoded by a multigene family consisting of 20 members. It was shown previously that HXT1-4 and

  19. Accuracy of CESM versus conventional mammography and ultrasound in evaluation of BI-RADS 3 and 4 breast lesions with pathological correlation

    Directory of Open Access Journals (Sweden)

    Maha Helal

    2017-09-01

    Full Text Available Aim: Assess accuracy of contrast enhanced spectral mammography (CESM versus conventional mammography and ultrasound in evaluation of BI-RADS 3 and 4 breast lesions with pathological correlation. Patients and methods: Thirty female patients with 35 breast lesions diagnosed by conventional imaging as BI-RADS 3 and 4, presented to Women’s Imaging Unit of Radiology Department between January and December 2015, age ranged from 23 to 70 years. All patients underwent conventional mammography and ultrasound then CESM. Results: Patients divided into two groups, benign and malignant lesions group according to histological analysis. Mammography results that malignant lesions detected in 18/35 (51.4% while benign lesions 17/35 (48.6%. Ultrasound revealed 27/35 (77.1% lesions were malignant and 8/35 (22.9% lesions benign. But CESM, revealed 25/35 (71.4% lesions were malignant & 10/35 (28.6% lesions benign. Among 7 patients with multifocal/ multi-centric histologically proven malignant lesions, all detected by CESM 7/7 cases (100% versus 2/7 cases (28.6% and 6/7 cases (85.7% detected by mammography and ultrasound respectively. Based on, CESM had 95.2% sensitivity and 82.9% diagnostic accuracy. Conclusion: CESM has better diagnostic accuracy than mammography alone and mammography plus ultrasound. CESM has 82.9% diagnostic accuracy in comparison to 51.4% for mammography and 77.1% for ultrasound. Keywords: Breast lesions, CESM, BI-RADS lexicon

  20. Comparison of clastogen-induced gene expression profiles in wild-type and DNA repair-deficient Rad54/Rad54B cells

    Directory of Open Access Journals (Sweden)

    van Benthem Jan

    2010-01-01

    Full Text Available Abstract Background Previously we found that Rad54/Rad54B cells are more sensitive towards mitomycin C (MMC as compared to wild-type (WT cells. This difference in sensitivity was absent upon exposure to other clastogens like bleomycin (BLM and γ-radiation. In order to get further insight into possible underlying mechanisms, gene expression changes in WT and Rad54/Rad54B MEFs (mouse embryonic fibroblasts after exposure to the clastogens MMC and BLM were investigated. Exposures of these cells to mutagens (N-ac-AAF and ENU and vehicle were taken as controls. Results Most exposures resulted in an induction of DNA damage signaling and apoptosis genes and a reduced expression of cell division genes in cells of both genotypes. As expected, responses to N-ac-AAF were very similar in both genotypes. ENU exposure did not lead to significant gene expression changes in cells of both genotypes, presumably due to its short half-life. Gene expression responses to clastogens, however, showed a genotype-dependent effect for BLM and MMC. MMC treated Rad54/Rad54B MEFs showed no induction of p53-signaling, DNA damage response and apoptosis as seen for all the other treatments. Conclusion These data support our finding that different types of clastogens exist and that responses to these types depend on the DNA repair status of the cells.

  1. STAG2 and Rad21 mammalian mitotic cohesins are implicated in meiosis

    OpenAIRE

    Prieto, Ignacio; Pezzi, Nieves; Buesa, José M.; Kremer, Leonor; Barthelemy, Isabel; Carreiro, Candelas; Roncal, Fernando; Martínez, Alicia; Gómez, Lucio; Fernández, Raúl; Martínez-A, Carlos; Barbero, José L.

    2002-01-01

    STAG/SA proteins are specific cohesin complex subunits that maintain sister chromatid cohesion in mitosis and meiosis. Two members of this family, STAG1/SA1 and STAG2/SA2,‡ are classified as mitotic cohesins, as they are found in human somatic cells and in Xenopus laevis as components of the cohesinSA1 and cohesinSA2 complexes, in which the shared subunits are Rad21/SCC1, SMC1 and SMC3 proteins. A recently reported third family member, STAG3, is germinal cell-specific and is a subunit of the ...

  2. The PCNA interaction protein box sequence in Rad54 is an integral part of its ATPase domain and is required for efficient DNA repair and recombination

    DEFF Research Database (Denmark)

    Burgess, Rebecca C; Sebesta, Marek; Sisakova, Alexandra

    2013-01-01

    Rad54 is an ATP-driven translocase involved in the genome maintenance pathway of homologous recombination (HR). Although its activity has been implicated in several steps of HR, its exact role(s) at each step are still not fully understood. We have identified a new interaction between Rad54...... and the replicative DNA clamp, proliferating cell nuclear antigen (PCNA). This interaction was only mildly weakened by the mutation of two key hydrophobic residues in the highly-conserved PCNA interaction motif (PIP-box) of Rad54 (Rad54-AA). Intriguingly, the rad54-AA mutant cells displayed sensitivity to DNA damage...

  3. RPA mediates recombination repair during replication stress and is displaced from DNA by checkpoint signalling in human cells

    DEFF Research Database (Denmark)

    Sleeth, Kate M; Sørensen, Claus Storgaard; Issaeva, Natalia

    2007-01-01

    The replication protein A (RPA) is involved in most, if not all, nuclear metabolism involving single-stranded DNA. Here, we show that RPA is involved in genome maintenance at stalled replication forks by the homologous recombination repair system in humans. Depletion of the RPA protein inhibited...... the formation of RAD51 nuclear foci after hydroxyurea-induced replication stalling leading to persistent unrepaired DNA double-strand breaks (DSBs). We demonstrate a direct role of RPA in homology directed recombination repair. We find that RPA is dispensable for checkpoint kinase 1 (Chk1) activation...... and that RPA directly binds RAD52 upon replication stress, suggesting a direct role in recombination repair. In addition we show that inhibition of Chk1 with UCN-01 decreases dissociation of RPA from the chromatin and inhibits association of RAD51 and RAD52 with DNA. Altogether, our data suggest a direct role...

  4. Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fabian Machens

    2017-10-01

    Full Text Available Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems.

  5. The impact of respiration and oxidative stress response on recombinant α-amylase production by Saccharomyces cerevisiae.

    Science.gov (United States)

    Martínez, José L; Meza, Eugenio; Petranovic, Dina; Nielsen, Jens

    2016-12-01

    Studying protein production is important for fundamental research on cell biology and applied research for biotechnology. Yeast Saccharomyces cerevisiae is an attractive workhorse for production of recombinant proteins as it does not secrete many endogenous proteins and it is therefore easy to purify a secreted product. However, recombinant production at high rates represents a significant metabolic burden for the yeast cells, which results in oxidative stress and ultimately affects the protein production capacity. Here we describe a method to reduce the overall oxidative stress by overexpressing the endogenous HAP1 gene in a S. cerevisiae strain overproducing recombinant α-amylase. We demonstrate how Hap1p can activate a set of oxidative stress response genes and meanwhile contribute to increase the metabolic rate of the yeast strains, therefore mitigating the negative effect of the ROS accumulation associated to protein folding and hence increasing the production capacity during batch fermentations.

  6. Isolation of beta-glucan from the cell wall of Saccharomyces cerevisiae.

    Science.gov (United States)

    Shokri, Hojjatollah; Asadi, Farzad; Khosravi, Ali Reza

    2008-03-20

    Beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae (S. cerevisiae), has been found to enhance immune functions. At present study, we developed an optimal procedure to extract and purify beta-glucan. At first, yeast cells were grown in sabouraud dextrose agar and then cultured in yeast extract-peptone-glucose (YPG) broth. After incubation, cells were harvested, washed and disrupted by means of sonication method. The obtained cell walls were used to prepare alkali-soluble beta-glucan (glucan-S1). In this regard, 2% sodium hydroxide (NaOH) and 3% acetic acid were used in alkaline-acid extraction, respectively. This preparation contained 2.4% protein. In the next step, DEAE sephacel chromatography was used to remove remaining proteins (glucan-S2). Subsequently this preparation was applied into concanavalin-A sepharose column to remove manann. Finally, beta-glucan free of mannoprotein complexes was prepared (glucan-S3).

  7. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

    Science.gov (United States)

    Ramirez-Córdova, Jesús; Drnevich, Jenny; Madrigal-Pulido, Jaime Alberto; Arrizon, Javier; Allen, Kirk; Martínez-Velázquez, Moisés; Alvarez-Maya, Ikuri

    2012-08-01

    During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.

  8. UV-induced mitotic recombination and its dependence on photoreactivation and liquid holding in the rad6-1 mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Haladus, E.; Zuk, J.

    1980-01-01

    Spontaneous and UV-induced mitotic recombination was compared in diploids homozygous for rad6-1 mutation and in the wild-type strain carrying heterozygous markers for detecting gene conversion (hom 2-1, hom 2-2) and crossing over (ade 1, ade 2). Diploids homozygous for rad6-1 mutation were characterised by an elevated level of spontaneous and UV-induced mitotic recombination, particularly the intergenic events. Exposure of UV-irradiated strains to visible light resulted in an increased survival and decreased level of mitotic recombination. Liquid holding (LH) differentially affected frequency of mitotic intergenic and intragenic recombination in mutant and wild-type strains, being without any significant effect on cell survival. In a mutant strain intragenic recombination is significantly increased, intergenic only slightly. In the wild-type strain intragenic recombination is slightly decreased but intergenic is not changed by LH. Visible light applied after LH had no effect on survival and mitotic recombination in the wild type, while in the mutant strain photoreactivability of survival was fully preserved and accompanied by a decrease in the frequency of intragenic and intergenic recombination. The results suggest that metabolic pathways responsible for restoring cell survival are independent of or only partly overlapping with those concerning recombination events. (orig.) [de

  9. Mongoose: Creation of a Rad-Hard MIPS R3000

    Science.gov (United States)

    Lincoln, Dan; Smith, Brian

    1993-01-01

    This paper describes the development of a 32 Bit, full MIPS R3000 code-compatible Rad-Hard CPU, code named Mongoose. Mongoose progressed from contract award, through the design cycle, to operational silicon in 12 months to meet a space mission for NASA. The goal was the creation of a fully static device capable of operation to the maximum Mil-883 derated speed, worst-case post-rad exposure with full operational integrity. This included consideration of features for functional enhancements relating to mission compatibility and removal of commercial practices not supported by Rad-Hard technology. 'Mongoose' developed from an evolution of LSI Logic's MIPS-I embedded processor, LR33000, code named Cobra, to its Rad-Hard 'equivalent', Mongoose. The term 'equivalent' is used to infer that the core of the processor is functionally identical, allowing the same use and optimizations of the MIPS-I Instruction Set software tool suite for compilation, software program trace, etc. This activity was started in September of 1991 under a contract from NASA-Goddard Space Flight Center (GSFC)-Flight Data Systems. The approach affected a teaming of NASA-GSFC for program development, LSI Logic for system and ASIC design coupled with the Rad-Hard process technology, and Harris (GASD) for Rad-Hard microprocessor design expertise. The program culminated with the generation of Rad-Hard Mongoose prototypes one year later.

  10. Expression of protein engineered NADP{sup +}-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matsushika, Akinori; Inoue, Hiroyuki; Murakami, Katsuji; Takimura, Osamu; Sawayama, Shigeki [National Institute of Advanced Industrial Science and Technology, Hiroshima (Japan). Biomass Technology Research Center; Watanabe, Seiya; Kodaki, Tsutomu; Makino, Keisuke [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2008-11-15

    A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD{sup +}-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP{sup +}. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP{sup +}-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP{sup +}-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain. (orig.)

  11. Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly.

    Directory of Open Access Journals (Sweden)

    Oliver A Zill

    Full Text Available Co-evolution of transcriptional regulatory proteins and their sites of action has been often hypothesized but rarely demonstrated. Here we provide experimental evidence of such co-evolution in yeast silent chromatin, a finding that emerged from studies of hybrids formed between two closely related Saccharomyces species. A unidirectional silencing incompatibility between S. cerevisiae and S. bayanus led to a key discovery: asymmetrical complementation of divergent orthologs of the silent chromatin component Sir4. In S. cerevisiae/S. bayanus interspecies hybrids, ChIP-Seq analysis revealed a restriction against S. cerevisiae Sir4 associating with most S. bayanus silenced regions; in contrast, S. bayanus Sir4 associated with S. cerevisiae silenced loci to an even greater degree than did S. cerevisiae's own Sir4. Functional changes in silencer sequences paralleled changes in Sir4 sequence and a reduction in Sir1 family members in S. cerevisiae. Critically, species-specific silencing of the S. bayanus HMR locus could be reconstituted in S. cerevisiae by co-transfer of the S. bayanus Sir4 and Kos3 (the ancestral relative of Sir1 proteins. As Sir1/Kos3 and Sir4 bind conserved silencer-binding proteins, but not specific DNA sequences, these rapidly evolving proteins served to interpret differences in the two species' silencers presumably involving emergent features created by the regulatory proteins that bind sequences within silencers. The results presented here, and in particular the high resolution ChIP-Seq localization of the Sir4 protein, provided unanticipated insights into the mechanism of silent chromatin assembly in yeast.

  12. Induction of homologous recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  13. KONSTRUKSI MUTAN PROTEIN FOSFATASE ptc2D Saccharomyces cerevisiae DENGAN METODE PENGGANTIAN GEN TARGET DENGAN POLYMERASE CHAIN REACTION (PCR

    Directory of Open Access Journals (Sweden)

    Hermansyah

    2011-05-01

    Full Text Available Yeast Saccharomyces cerevisiae is an excellent model to studi genes function of eukarotic cells such as study of gene encoding protein phosphatase PTC2. Novel phenotypic caused by mutated gene is an important step to study function of gene. In this study constructed mutant of PTC2 gene encoding protein phosphatase. Method that used in this construction was replacement of target gene (PTC2 with auxotroph marker Candida albicans HIS3 by Polymer Chain Reaction (PCR or called by PCR-mediated disruption. Mutant colonies which grew in selective medium SC without histidine were confirmed by PCR amplification. By using 1% Agarose gel electrophoresis the result showed that size of ptc2D::CgHIS3 transformant was 3.52 kb while wild type strain was 2.9 kb, indicated that ptc2D::CgHIS3 has integrated on chromosome V replacing PTC2 wild type.

  14. Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9.

    Directory of Open Access Journals (Sweden)

    Hien-Ping Ngo

    2010-08-01

    Full Text Available Maintenance of telomere capping is absolutely essential to the survival of eukaryotic cells. Telomere capping proteins, such as Cdc13 and POT1, are essential for the viability of budding yeast and mammalian cells, respectively. Here we identify, for the first time, three genetic modifications that allow budding yeast cells to survive without telomere capping by Cdc13. We found that simultaneous inactivation of Sgs1, Exo1, and Rad9, three DNA damage response (DDR proteins, is sufficient to allow cell division in the absence of Cdc13. Quantitative amplification of ssDNA (QAOS was used to show that the RecQ helicase Sgs1 plays an important role in the resection of uncapped telomeres, especially in the absence of checkpoint protein Rad9. Strikingly, simultaneous deletion of SGS1 and the nuclease EXO1, further reduces resection at uncapped telomeres and together with deletion of RAD9 permits cell survival without CDC13. Pulsed-field gel electrophoresis studies show that cdc13-1 rad9Delta sgs1Delta exo1Delta strains can maintain linear chromosomes despite the absence of telomere capping by Cdc13. However, with continued passage, the telomeres of such strains eventually become short and are maintained by recombination-based mechanisms. Remarkably, cdc13Delta rad9Delta sgs1Delta exo1Delta strains, lacking any Cdc13 gene product, are viable and can grow indefinitely. Our work has uncovered a critical role for RecQ helicases in limiting the division of cells with uncapped telomeres, and this may provide one explanation for increased tumorigenesis in human diseases associated with mutations of RecQ helicases. Our results reveal the plasticity of the telomere cap and indicate that the essential role of telomere capping is to counteract specific aspects of the DDR.

  15. RadNet Air Data From Fort Smith, AR

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Fort Smith, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Little Rock, AR

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Little Rock, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Mason City, IA

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Mason City, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. Reach Address Database (RAD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reach Address Database (RAD) stores the reach address of each Water Program feature that has been linked to the underlying surface water features (streams,...

  19. Functional relevance of water and glycerol channels in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sabir, Farzana; Loureiro-Dias, Maria C; Soveral, Graça; Prista, Catarina

    2017-05-01

    Our understanding of the functional relevance of orthodox aquaporins and aquaglyceroporins in Saccharomyces cerevisiae is essentially based on phenotypic variations obtained by expression/overexpression/deletion of these major intrinsic proteins in selected strains. These water/glycerol channels are considered crucial during various life-cycle phases, such as sporulation and mating and in some life processes such as rapid freeze-thaw tolerance, osmoregulation and phenomena associated with cell surface. Despite their putative functional roles not only as channels but also as sensors, their underlying mechanisms and their regulation are still poorly understood. In the present review, we summarize and discuss the physiological relevance of S. cerevisiae aquaporins (Aqy1 and Aqy2) and aquaglyceroporins (Fps1 and Yfl054c). In particular, the fact that most S. cerevisiae laboratory strains harbor genes coding for non-functional aquaporins, while wild and industrial strains possess at least one functional aquaporin, suggests that aquaporin activity is required for cell survival under more harsh conditions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Conservation of the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in mammals

    International Nuclear Information System (INIS)

    McKay, Michael J.; Spek, Peter van der; Kanaar, Roland; Smit, Bep; Bootsma, Dirk; Hoeijmakers, Jan H. J.

    1996-01-01

    Purpose/Objective: Genetic factors are likely to be major determinants of human cellular ionizing radiation sensitivity. DNA double strand breaks (dsbs) are significant ionizing radiation-induced lesions; cellular DNA dsb processing is also important in a number of other contexts. To further the understanding of DNA dsb processing in mammalian cells, we cloned and sequenced mammalian homologs of the rad21 Schizosaccharomyces pombe DNA dsb repair gene. Materials and Methods: The genes were cloned by evolutionary walking, exploiting sequence homology between the yeast and mammalian genes. Results: No major motifs indicative of a particular function were present in the predicted amino acid sequences of the mammalian genes. Alignment of the Rad21 amino acid sequence with its putative homologs showed that similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21 sp (mouse homolog ofR ad21, S. pombe) and hHR21 sp (humanh omolog of Rad21, S. pombe) predicted proteins were 96% identical, whereas the human and S. pombe proteins were 25% identical and 47% similar. RNA blot analysis showed that mHR21 sp mRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1kb mRNA transcript in all tissues, an additional 2.2kb transcript was present at a high level in post-meiotic spermatids, white expression of the 3.1kb mRNA in testis was confined to the meiotic compartment. hHR21 sp mRNA was cell cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level of hHR21 sp transcripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation. In situ hybridization showed mHR21 sp resided on chromosome 15D3, whereashHR21 sp localized to the syntenic 8q24 region. Conclusion: Cloning these novel mammalian genes and characterization of their protein products should contribute to the understanding of cellular

  1. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

    Science.gov (United States)

    Wlodarski, Tomasz; Kutner, Jan; Towpik, Joanna; Knizewski, Lukasz; Rychlewski, Leszek; Kudlicki, Andrzej; Rowicka, Maga; Dziembowski, Andrzej; Ginalski, Krzysztof

    2011-01-01

    Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.

  2. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

    Directory of Open Access Journals (Sweden)

    Tomasz Wlodarski

    Full Text Available Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity. Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.

  3. [Molecular evolution of the sulphite efflux gene SSU1 in Saccharomyces cerevisiae].

    Science.gov (United States)

    Peng, Li-Xin; Sun, Fei-Fei; Huang, Yan-Yan; Li, Zhen-Chong

    2013-11-01

    The SSU1 gene encoding a membrane sulfite pump is a main facilitator invovled in sulfite efflux. In Saccharomyce cerevisiae, various range of resistance to sulfite was observed among strains. To explore the evolution traits of SSU1 gene, the population data of S. cerevisiae were collected and analyzed. The phylogenetic analysis indicated that S. cerevisiae population can be classified into three sub-populations, and the positive selection was detected in population by McDonald-Kreitman test. The anaylsis of Ka/Ks ratios further showed that S. cerevisiae sub-population was undergoing positive selection. This finding was also supported by PAML branch model. Nine potential positive selection sites were predicted by branch-site model, and four sites exclusively belong to the sub-population under positive seletion. The data from ssulp protein structure demonstrated that three sites are substitutions between polar and hydrophobic amino acids, and only one site of substitutaion from basic amino acid to basic amino acid (345R/K). Because amino acid pKa values are crucial for sulfite pump to maintain their routine function, positive selection of these amino acid substitutions might affect sulfite efflux efficient.

  4. A simple microfluidic platform to study age-dependent protein abundance and localization changes in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Margarita Cabrera

    2017-04-01

    Full Text Available The budding yeast Saccharomyces cerevisiae divides asymmetrically, with a smaller daughter cell emerging from its larger mother cell. While the daughter lineage is immortal, mother cells age with each cell division and have a finite lifespan. The replicative ageing of the yeast mother cell has been used as a model to study the ageing of mitotically active human cells. Several microfluidic platforms, which use fluid flow to selectively remove daughter cells, have recently been developed that can monitor cell physiology as mother cells age. However, these platforms are not trivial to set up and users often require many hours of training. In this study, we have developed a simple system, which combines a commercially available microfluidic platform (the CellASIC ONIX Microfluidic Platform and a genetic tool to prevent the proliferation of daughter cells (the Mother Enrichment Program, to monitor protein abundance and localization changes during approximately the first half of the yeast replicative lifespan. We validated our system by observing known age-dependent changes, such as decreased Sir2 abundance, and have identified a protein with a previously unknown age-dependent change in localization.

  5. Coordination of BRCA1/BARD1- and MRE11/RAD50/NBS1-Dependent DNA Transactions in Breast Tumor Suppression

    Science.gov (United States)

    2011-07-01

    human DNA repair proteins at a unique double-strand break in vivo, EMBO J 25, 222-231. 19. Berkovich, E., Monnat, R. J., Jr., and Kastan, M. B...structures around DNA as SMC complexes do. Rad50 exhibits ATPase activity in vitro, which is required for DNA repair and meiosis (3, 57). The rad50S...151). Exo1 expression is induced dur- ing meiosis , suggesting a role in meiotic DSB resection (149). Studies in the dmc1 mutant, which exhibits hyper

  6. Saccharomyces cerevisiae as a model organism: a comparative study.

    Directory of Open Access Journals (Sweden)

    Hiren Karathia

    Full Text Available BACKGROUND: Model organisms are used for research because they provide a framework on which to develop and optimize methods that facilitate and standardize analysis. Such organisms should be representative of the living beings for which they are to serve as proxy. However, in practice, a model organism is often selected ad hoc, and without considering its representativeness, because a systematic and rational method to include this consideration in the selection process is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: In this work we propose such a method and apply it in a pilot study of strengths and limitations of Saccharomyces cerevisiae as a model organism. The method relies on the functional classification of proteins into different biological pathways and processes and on full proteome comparisons between the putative model organism and other organisms for which we would like to extrapolate results. Here we compare S. cerevisiae to 704 other organisms from various phyla. For each organism, our results identify the pathways and processes for which S. cerevisiae is predicted to be a good model to extrapolate from. We find that animals in general and Homo sapiens in particular are some of the non-fungal organisms for which S. cerevisiae is likely to be a good model in which to study a significant fraction of common biological processes. We validate our approach by correctly predicting which organisms are phenotypically more distant from S. cerevisiae with respect to several different biological processes. CONCLUSIONS/SIGNIFICANCE: The method we propose could be used to choose appropriate substitute model organisms for the study of biological processes in other species that are harder to study. For example, one could identify appropriate models to study either pathologies in humans or specific biological processes in species with a long development time, such as plants.

  7. Characterization of iminothiosulfine-type ions [HNCS 2] rad +/ rad - and their neutral counterparts by mass spectrometry and computational chemistry

    Science.gov (United States)

    Vivekananda, S.; Raghunath, P.; Bhanuprakash, K.; Srinivas, R.; Trikoupis, Moschoula A.; Terlouw, Johan K.

    2000-12-01

    Electron ionization of rhodanine yields iminothiosulfine ions H- N C- S- Srad + , 1brad + , which readily communicate with the higher energy cyclic isomer H- N CS2rad + , 1arad + . CBS-QB3 and G AUSSIAN-2 model chemistries predict that one electron reduction reverses the stability order but that the (singlet) neutrals remain connected via a negligible energy barrier. Neutralization-reionization (NR) experiments demonstrate that singlet 1a and its heterocumulene isomer 1b are stable species in the gas-phase. However, the co-generated triplet species readily dissociate into 3S2rad + + HNC. Confirmatory experimental evidence comes from charge reversal (CR) and NR experiments on the cyclic anion H- N CS2rad - , 1arad - .

  8. Radiological information management system (RadIMS)

    International Nuclear Information System (INIS)

    Oesterling, R.G.; Marko, S.A.; Tschaeche, A.N.

    1991-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) is developing and implementing an information management system, known as RadIMS, to track and record personnel exposure to ionizing radiation. RadIMS has been designed to fulfill all the requirements of US Department of Energy (USDOE) Order 5480.11, ''Radiation Protection for Occupational Workers.'' This Order requires the contractor to maintain detailed radiation exposure records on all individuals who work at the facility. These records must be retrievable for the entire working life of the individual and be available to other USDOE contractors on request. To meet these general needs, RadIMS provides for retrieval of detailed, comprehensive individual exposure histories as well as the usual online interactions to accomplish day-today radiation protection operations. These two extremes of functionality require different approaches in the WINCO computing environment. The exposure histories include database text, paper, microfilm, and electronic bitmaps

  9. RadCat 3.0 user guide.

    Energy Technology Data Exchange (ETDEWEB)

    Hinojosa, Daniel; Penisten, Janelle J.; Dennis, Matthew L.; Osborn, Douglas M.; Weiner, Ruth F.; Heames, Terence John; Marincel, Michelle K.

    2009-05-01

    RADTRAN is an internationally accepted program and code for calculating the risks of transporting radioactive materials. The first versions of the program, RADTRAN I and II, were developed for NUREG-0170 (USNRC, 1977), the first environmental statement on transportation of radioactive materials. RADTRAN and its associated software have undergone a number of improvements and advances consistent with improvements in both available data and computer technology. The version of RADTRAN currently bundled with RadCat is RADTRAN 6.0. This document provides a detailed discussion and a guide for the use of the RadCat 3.0 Graphical User Interface input file generator for the RADTRAN code. RadCat 3.0 integrates the newest analysis capabilities of RADTRAN 6.0 which includes an economic model, updated loss-of-lead shielding model, and unit conversion. As of this writing, the RADTRAN version in use is RADTRAN 6.0.

  10. Radiological information management system (RadIMS)

    Energy Technology Data Exchange (ETDEWEB)

    Oesterling, R.G.; Marko, S.A.; Tschaeche, A.N.

    1991-08-19

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) is developing and implementing an information management system, known as RadIMS, to track and record personnel exposure to ionizing radiation. RadIMS has been designed to fulfill all the requirements of US Department of Energy (USDOE) Order 5480.11, Radiation Protection for Occupational Workers.'' This Order requires the contractor to maintain detailed radiation exposure records on all individuals who work at the facility. These records must be retrievable for the entire working life of the individual and be available to other USDOE contractors on request. To meet these general needs, RadIMS provides for retrieval of detailed, comprehensive individual exposure histories as well as the usual online interactions to accomplish day-today radiation protection operations. These two extremes of functionality require different approaches in the WINCO computing environment. The exposure histories include database text, paper, microfilm, and electronic bitmaps.

  11. Radiological information management system (RadIMS)

    Energy Technology Data Exchange (ETDEWEB)

    Oesterling, R.G.; Marko, S.A.; Tschaeche, A.N.

    1991-08-19

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) is developing and implementing an information management system, known as RadIMS, to track and record personnel exposure to ionizing radiation. RadIMS has been designed to fulfill all the requirements of US Department of Energy (USDOE) Order 5480.11, ``Radiation Protection for Occupational Workers.`` This Order requires the contractor to maintain detailed radiation exposure records on all individuals who work at the facility. These records must be retrievable for the entire working life of the individual and be available to other USDOE contractors on request. To meet these general needs, RadIMS provides for retrieval of detailed, comprehensive individual exposure histories as well as the usual online interactions to accomplish day-today radiation protection operations. These two extremes of functionality require different approaches in the WINCO computing environment. The exposure histories include database text, paper, microfilm, and electronic bitmaps.

  12. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Tran, Anh-Minh; Nguyen, Thanh-Thao; Nguyen, Cong-Thuan; Huynh-Thi, Xuan-Mai; Nguyen, Cao-Tri; Trinh, Minh-Thuong; Tran, Linh-Thuoc; Cartwright, Stephanie P; Bill, Roslyn M; Tran-Van, Hieu

    2017-04-04

    Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is a glycoprotein that has been approved by the FDA for the treatment of neutropenia and leukemia in combination with chemotherapies. Recombinant hGM-CSF is produced industrially using the baker's yeast, Saccharomyces cerevisiae, by large-scale fermentation. The methylotrophic yeast, Pichia pastoris, has emerged as an alternative host cell system due to its shorter and less immunogenic glycosylation pattern together with higher cell density growth and higher secreted protein yield than S. cerevisiae. In this study, we compared the pipeline from gene to recombinant protein in these two yeasts. Codon optimization in silico for both yeast species showed no difference in frequent codon usage. However, rhGM-CSF expressed from S. cerevisiae BY4742 showed a significant discrepancy in molecular weight from those of P. pastoris X33. Analysis showed purified rhGM-CSF species with molecular weights ranging from 30 to more than 60 kDa. Fed-batch fermentation over 72 h showed that rhGM-CSF was more highly secreted from P. pastoris than S. cerevisiae (285 and 64 mg total secreted protein/L, respectively). Ion exchange chromatography gave higher purity and recovery than hydrophobic interaction chromatography. Purified rhGM-CSF from P. pastoris was 327 times more potent than rhGM-CSF from S. cerevisiae in terms of proliferative stimulating capacity on the hGM-CSF-dependent cell line, TF-1. Our data support a view that the methylotrophic yeast P. pastoris is an effective recombinant host for heterologous rhGM-CSF production.

  13. RadNet Radiological Air Monitoring Network

    International Nuclear Information System (INIS)

    Scott Telofski, J.; Askren, D.R.; Petko, Ch.M.; Fraass, R.G.

    2010-01-01

    The United States Environmental Protection Agency operates a national environmental radiation monitoring program called RadNet. RadNet monitors airborne particulates, precipitation, milk, and drinking water for radiation levels. The primary purpose of the original program in the 1950's and 1960's was to collect and analyze samples in various media to assess the effects of radioactive fallout from above-ground nuclear weapon testing. As above-ground testing diminished in the 1970's, the program, especially the air network, became critical in evaluating effects of other types of nuclear incidents, such as the nuclear reactor accident at Chernobyl, as well as monitoring trends in environmental radioactive contamination. The value of rapid data collection subsequent to such incidents led to the consideration of developing air monitors with radiation detectors and telecommunication equipment for real-time radiation measurement. The strengthened United States homeland security posture after 2001 led to production and installation of the current real-time RadNet air monitors. There are now 118 stationary, continuously operating air monitoring stations and 40 mobile air monitors for site specific monitoring. The stationary air monitors include radiation detectors, meteorological sensors, a high-volume air sampler, and communication devices for hourly data transfers. When unusual levels are detected, scientists download a full sodium iodide detector spectrum for analysis. The real-time data collected by RadNet stationary systems permit rapid identification and quantification of airborne nuclides with sufficient sensitivity to provide critical information to help determine protective actions. The data also may help to rapidly refine long-range radioactive plume models and estimate exposure to the population. This paper provides an overview of the airborne particulate monitoring conducted during above-ground nuclear weapon testing, summarizes the uses of data from the program

  14. Structure and dimerization of the catalytic domain of the protein phosphatase Cdc14p, a key regulator of mitotic exit in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kobayashi, Junya; Matsuura, Yoshiyuki

    2017-10-01

    In the budding yeast Saccharomyces cerevisiae, the protein phosphatase Cdc14p orchestrates various events essential for mitotic exit. We have determined the X-ray crystal structures at 1.85 Å resolution of the catalytic domain of Cdc14p in both the apo state, and as a complex with S160-phosphorylated Swi6p peptide. Each asymmetric unit contains two Cdc14p chains arranged in an intimately associated homodimer, consistent with its oligomeric state in solution. The dimerization interface is located on the backside of the substrate-binding cleft. Structure-based mutational analyses indicate that the dimerization of Cdc14p is required for normal growth of yeast cells. © 2017 The Protein Society.

  15. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    Directory of Open Access Journals (Sweden)

    Anita Collavoli

    2011-01-01

    Full Text Available By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB. This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  16. Fission yeast shelterin regulates DNA polymerases and Rad3(ATR kinase to limit telomere extension.

    Directory of Open Access Journals (Sweden)

    Ya-Ting Chang

    2013-11-01

    Full Text Available Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3(ATR/Tel1(ATM-dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators of Thr93 phosphorylation and telomerase recruitment. However, it remained unclear how telomere maintenance is dynamically regulated during the cell cycle. Thus, we investigated how loss of Poz1, Rap1 and Taz1 affects cell cycle regulation of Ccq1 Thr93 phosphorylation and telomere association of telomerase (Trt1(TERT, DNA polymerases, Replication Protein A (RPA complex, Rad3(ATR-Rad26(ATRIP checkpoint kinase complex, Tel1(ATM kinase, shelterin subunits (Tpz1, Ccq1 and Poz1 and Stn1. We further investigated how telomere shortening, caused by trt1Δ or catalytically dead Trt1-D743A, affects cell cycle-regulated telomere association of telomerase and DNA polymerases. These analyses established that fission yeast shelterin maintains telomere length homeostasis by coordinating the differential arrival of leading (Polε and lagging (Polα strand DNA polymerases at telomeres to modulate Rad3(ATR association, Ccq1 Thr93 phosphorylation and telomerase recruitment.

  17. Yarrowia lipolytica vesicle-mediated protein transport pathways

    Directory of Open Access Journals (Sweden)

    Beckerich Jean-Marie

    2007-11-01

    Full Text Available Abstract Background Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. Results We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii. These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular

  18. Protective effect of the LevRad on treat of paracoccidioidomycosis

    International Nuclear Information System (INIS)

    Martins, Estefania M.N.; Andrade, Antero S.R.; Fernandes, Viviane Cristina; Morais, Elis Araujo; Goes, Alfredo M.; Resende, Maria Aparecida de

    2011-01-01

    Paracoccidioides brasiliensis is the agent of Paracoccidioidomycosis (PCM), the most prevalent deep mycosis of Latin America. The period of treat depend on the chemotherapeutic and the severity of disease and its administration not ensure the complete destruction of the fungus. The search for new alternatives is necessary. The aim of this study was to evaluate the protective effect of yeast cells of P. brasiliensis attenuated by gamma irradiation (LevRad) on therapeutic vaccination of BALB/c. The therapeutic potential of LevRad with or without fluconazole was assessed for the first time, intraperitoneally, in BALB/c, 60 days after intratracheal infection with a highly virulent non-irradiated P.brasiliensis isolate. The animals were divided in five experimental groups: uninfected (C-), infected (C+), infected treated with fluconazole (Inmed), infected treated with LevRad (InRad) and infected treated with fluconazole + LevRad (InRadMed). The organs (lungs, spleen and liver) were collected to analyze CFU (colony forming units) and histology. The sera were used to evaluate the immunization efficacy, and to assess IgG subtypes (IgG1, IgG2a, IgG2b, IgG3) and total IgG levels. There was significant decrease in the CFU counts of the lungs of InMed, InRadMed and InRad. No were visualized histopathological alterations in the organs of these groups, except in InRad there was granulomatous lesions unifocal, little and discrete. The levels of IgG and its subtypes IgG2a, IgG2b increased, probably due to the increase of cytokines that promote switching to these isotypes. These preliminary results can provide new prospect for immunotherapy of PCM, but it will be necessary new studies to evaluate administration dose and period treatment. (author)

  19. Yeast Srs2 Helicase Promotes Redistribution of Single-Stranded DNA-Bound RPA and Rad52 in Homologous Recombination Regulation

    Directory of Open Access Journals (Sweden)

    Luisina De Tullio

    2017-10-01

    Full Text Available Srs2 is a super-family 1 helicase that promotes genome stability by dismantling toxic DNA recombination intermediates. However, the mechanisms by which Srs2 remodels or resolves recombination intermediates remain poorly understood. Here, single-molecule imaging is used to visualize Srs2 in real time as it acts on single-stranded DNA (ssDNA bound by protein factors that function in recombination. We demonstrate that Srs2 is highly processive and translocates rapidly (∼170 nt per second in the 3′→5′ direction along ssDNA saturated with replication protein A (RPA. We show that RPA is evicted from DNA during the passage of Srs2. Remarkably, Srs2 also readily removes the recombination mediator Rad52 from RPA-ssDNA and, in doing so, promotes rapid redistribution of both Rad52 and RPA. These findings have important mechanistic implications for understanding how Srs2 and related nucleic acid motor proteins resolve potentially pathogenic nucleoprotein intermediates.

  20. Comparison of Danish dichotomous and BI-RADS classifications of mammographic density.

    Science.gov (United States)

    Hodge, Rebecca; Hellmann, Sophie Sell; von Euler-Chelpin, My; Vejborg, Ilse; Andersen, Zorana Jovanovic

    2014-06-01

    In the Copenhagen mammography screening program from 1991 to 2001, mammographic density was classified either as fatty or mixed/dense. This dichotomous mammographic density classification system is unique internationally, and has not been validated before. To compare the Danish dichotomous mammographic density classification system from 1991 to 2001 with the density BI-RADS classifications, in an attempt to validate the Danish classification system. The study sample consisted of 120 mammograms taken in Copenhagen in 1991-2001, which tested false positive, and which were in 2012 re-assessed and classified according to the BI-RADS classification system. We calculated inter-rater agreement between the Danish dichotomous mammographic classification as fatty or mixed/dense and the four-level BI-RADS classification by the linear weighted Kappa statistic. Of the 120 women, 32 (26.7%) were classified as having fatty and 88 (73.3%) as mixed/dense mammographic density, according to Danish dichotomous classification. According to BI-RADS density classification, 12 (10.0%) women were classified as having predominantly fatty (BI-RADS code 1), 46 (38.3%) as having scattered fibroglandular (BI-RADS code 2), 57 (47.5%) as having heterogeneously dense (BI-RADS 3), and five (4.2%) as having extremely dense (BI-RADS code 4) mammographic density. The inter-rater variability assessed by weighted kappa statistic showed a substantial agreement (0.75). The dichotomous mammographic density classification system utilized in early years of Copenhagen's mammographic screening program (1991-2001) agreed well with the BI-RADS density classification system.

  1. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA.

    Science.gov (United States)

    Ohmine, Yuta; Satoh, Yukari; Kiyokawa, Kazuya; Yamamoto, Shinji; Moriguchi, Kazuki; Suzuki, Katsunori

    2016-04-02

    Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high

  2. Data on dynamic study of cytoophidia in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-09-01

    Full Text Available The data in this paper are related to the research article entitled “Filamentation of metabolic enzymes in Saccharomyces cerevisiae” Q.J. Shen et al. (2016 [1]. Cytoophidia are filamentous structures discovered in fruit flies (doi:10.1016/S1673-8527(0960046-1 J.L. Liu (2010 [2], bacteria (doi:10.1038/ncb2087 M. Ingerson-Mahar et al. (2010 [3], yeast (doi:10.1083/jcb.201003001; doi:10.1242/bio.20149613 C. Noree et al. (2010 and J. Zhang, L. Hulme, J.L. Liu (2014 [4,5] and human cells (doi:10.1371/journal.pone.0029690; doi:10.1016/j.jgg.2011.08.004 K. Chen et al. (2011 and W.C. Carcamo et al. (2011 ( [6,7]. However, there is little research on the motility of the cytoophidia. Here we selected cytoophidia formed by 6 filament-forming proteins in the budding yeast S. cerevisiae, and performed living-cell imaging of cells expressing the proteins fused with GFP. The dynamic features of the six types of cytoophidia were analyzed. In the data, both raw movies and analysed results of the dynamics of cytoophidia are presented. Keywords: Saccharomyces cerevisiae, CTP synthase, Cytoophidium, Metabolism, Filamentation

  3. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  4. Compositions and methods for modeling Saccharomyces cerevisiae metabolism

    DEFF Research Database (Denmark)

    2012-01-01

    The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S. cerevisiae reactants to a plurality of S. cerevisiae reactions, a constraint set for the plurality of S. cerevisiae reactions, and comma...

  5. Deficiency of FK506-binding protein (FKBP) 51 alters sleep architecture and recovery sleep responses to stress in mice.

    Science.gov (United States)

    Albu, Stefana; Romanowski, Christoph P N; Letizia Curzi, M; Jakubcakova, Vladimira; Flachskamm, Cornelia; Gassen, Nils C; Hartmann, Jakob; Schmidt, Mathias V; Schmidt, Ulrike; Rein, Theo; Holsboer, Florian; Hausch, Felix; Paez-Pereda, Marcelo; Kimura, Mayumi

    2014-04-01

    FK506-binding protein 51 (FKBP51) is a co-chaperone of the glucocorticoid receptor, functionally linked to its activity via an ultra-short negative feedback loop. Thus, FKBP51 plays an important regulatory role in the hypothalamic-pituitary-adrenocortical (HPA) axis necessary for stress adaptation and recovery. Previous investigations illustrated that HPA functionality is influenced by polymorphisms in the gene encoding FKBP51, which are associated with both increased protein levels and depressive episodes. Because FKBP51 is a key molecule in stress responses, we hypothesized that its deletion impacts sleep. To study FKBP51-involved changes in sleep, polysomnograms of FKBP51 knockout (KO) mice and wild-type (WT) littermates were compared at baseline and in the recovery phase after 6-h sleep deprivation (SD) and 1-h restraint stress (RS). Using another set of animals, the 24-h profiles of hippocampal free corticosterone levels were also determined. The most dominant effect of FKBP51 deletion appeared as increased nocturnal wake, where the bout length was significantly extended while non-rapid eye movement sleep (NREMS) and rapid eye movement sleep were rather suppressed. After both SD and RS, FKBP51KO mice exhibited less recovery or rebound sleep than WTs, although slow-wave activity during NREMS was higher in KOs, particularly after SD. Sleep compositions of KOs were nearly opposite to sleep profiles observed in human depression. This might result from lower levels of free corticosterone in FKBP51KO mice, confirming reduced HPA reactivity. The results indicate that an FKBP51 deletion yields a pro-resilience sleep phenotype. FKBP51 could therefore be a therapeutic target for stress-induced mood and sleep disorders. © 2013 European Sleep Research Society.

  6. Purification of Arp2/3 complex from Saccharomyces cerevisiae

    Science.gov (United States)

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary Much of cellular control over actin dynamics comes through regulation of actin filament initiation. At the molecular level, this is accomplished through a collection of cellular protein machines, called actin nucleation factors, which position actin monomers to initiate a new actin filament. The Arp2/3 complex is a principal actin nucleation factor used throughout the eukaryotic family tree. The budding yeast Saccharomyces cerevisiae has proven to be not only an excellent genetic platform for the study of the Arp2/3 complex, but also an excellent source for the purification of endogenous Arp2/3 complex. Here we describe a protocol for the preparation of endogenous Arp2/3 complex from wild type Saccharomyces cerevisiae. This protocol produces material suitable for biochemical study, and yields milligram quantities of purified Arp2/3 complex. PMID:23868593

  7. A reliability-risk modelling of nuclear rad-waste facilities

    International Nuclear Information System (INIS)

    Lehmann, P.H.; El-Bassioni, A.A.

    1975-01-01

    Rad-waste disposal systems of nuclear power sites are designed and operated to collect, delay, contain, and concentrate radioactive wastes from reactor plant processes such that on-site and off-site exposures to radiation are well below permissible limits. To assist the designer in achieving minimum release/exposure goals, a computerized reliability-risk model has been developed to simulate the rad-waste system. The objectives of the model are to furnish a practical tool for quantifying the effects of changes in system configuration, operation, and equipment, and for the identification of weak segments in the system design. Primarily, the model comprises a marriage of system analysis, reliability analysis, and release-risk assessment. Provisions have been included in the model to permit the optimization of the system design subject to constraints on cost and rad-releases. The system analysis phase involves the preparation of a physical and functional description of the rad-waste facility accompanied by the formation of a system tree diagram. The reliability analysis phase embodies the formulation of appropriate reliability models and the collection of model parameters. Release-risk assessment constitutes the analytical basis whereupon further system and reliability analyses may be warranted. Release-risk represents the potential for release of radioactivity and is defined as the product of an element's unreliability at time, t, and the radioactivity available for release in time interval, Δt. A computer code (RARISK) has been written to simulate the tree diagram of the rad-waste system. Reliability and release-risk results have been generated for cases which examined the process flow paths of typical rad-waste systems, the effects of repair and standby, the variations of equipment failure and repair rates, and changes in system configurations. The essential feature of this model is that a complex system like the rad-waste facility can be easily decomposed into its

  8. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Sasnauskas Kęstutis

    2011-05-01

    Full Text Available Abstract Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN and measles hemagglutinin (MeH in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A and is closely associated with small heat shock proteins (sHsps that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of

  9. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains.

    Science.gov (United States)

    van der Aa Kühle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-05-01

    The probiotic potential of 18 Saccharomyces cerevisiae strains used for production of foods or beverages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Oxgall. Adhesion to the nontumorigenic porcine jejunal epithelial cell line (IPEC-J2) was investigated by incorporation of 3H-methionine into the yeast cells and use of liquid scintillation counting. Only few of the food-borne S. cerevisiae strains exhibited noteworthy adhesiveness with the strongest levels of adhesion (13.6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1alpha decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar effects hence indicating that food-borne strains of S. cerevisiae may possess probiotic properties in spite of low adhesiveness.

  10. Identification of novel human damage response proteins targeted through yeast orthology.

    Directory of Open Access Journals (Sweden)

    J Peter Svensson

    Full Text Available Studies in Saccharomyces cerevisiae show that many proteins influence cellular survival upon exposure to DNA damaging agents. We hypothesized that human orthologs of these S. cerevisiae proteins would also be required for cellular survival after treatment with DNA damaging agents. For this purpose, human homologs of S. cerevisiae proteins were identified and mapped onto the human protein-protein interaction network. The resulting human network was highly modular and a series of selection rules were implemented to identify 45 candidates for human toxicity-modulating proteins. The corresponding transcripts were targeted by RNA interference in human cells. The cell lines with depleted target expression were challenged with three DNA damaging agents: the alkylating agents MMS and 4-NQO, and the oxidizing agent t-BuOOH. A comparison of the survival revealed that the majority (74% of proteins conferred either sensitivity or resistance. The identified human toxicity-modulating proteins represent a variety of biological functions: autophagy, chromatin modifications, RNA and protein metabolism, and telomere maintenance. Further studies revealed that MMS-induced autophagy increase the survival of cells treated with DNA damaging agents. In summary, we show that damage recovery proteins in humans can be identified through homology to S. cerevisiae and that many of the same pathways are represented among the toxicity modulators.

  11. BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice.

    Directory of Open Access Journals (Sweden)

    Yulong Liang

    2010-01-01

    Full Text Available BRIT1 protein (also known as MCPH1 contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1(-/- mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1(-/- mice and mouse embryonic fibroblasts (MEFs were hypersensitive to gamma-irradiation. BRIT1(-/- MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1(-/- mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2's function and as a result leads to infertility and genomic instability in mice.

  12. [Saccharomyces cerevisiae infections].

    Science.gov (United States)

    Souza Goebel, Cristine; de Mattos Oliveira, Flávio; Severo, Luiz Carlos

    2013-01-01

    Saccharomyces cerevisiae is an ubiquitous yeast widely used in industry and it is also a common colonizer of the human mucosae. However, the incidence of invasive infection by these fungi has significantly increased in the last decades. To evaluate the infection by S. cerevisiae in a hospital in southern Brazil during a period of 10 years (2000-2010). Review of medical records of patients infected by this fungus. In this period, 6 patients were found to be infected by S. cerevisiae. The age range of the patients was from 10 years to 84. Urine, blood, ascitic fluid, peritoneal dialysis fluid, and esophageal biopsy samples were analyzed. The predisposing factors were cancer, transplant, surgical procedures, renal failure, use of venous catheters, mechanical ventilation, hospitalization in Intensive Care Unit, diabetes mellitus, chemotherapy, corticosteroid use, and parenteral nutrition. Amphotericin B and fluconazole were the treatments of choice. Three of the patients died and the other 3 were discharged from hospital. We must take special precautions in emerging infections, especially when there are predisposing conditions such as immunosuppression or patients with serious illnesses. The rapid and specific diagnosis of S. cerevisiae infections is important for therapeutic decision. Furthermore, epidemiological and efficacy studies of antifungal agents are necessary for a better therapeutic approach. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  13. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection.

    Science.gov (United States)

    Tan, Wei-Lian; Lee, Yean Kee; Ho, Yen Fong; Yusof, Rohana; Abdul Rahman, Noorsaadah; Karsani, Saiful Anuar

    2018-01-01

    Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV) infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda ) that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  14. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection

    Directory of Open Access Journals (Sweden)

    Wei-Lian Tan

    2018-01-01

    Full Text Available Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  15. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Letavayová, Lucia; Marková, Eva; Hermanská, Katarína; Vlcková, Viera; Vlasáková, Danusa; Chovanec, Miroslav; Brozmanová, Jela

    2006-05-10

    Oxidative damage to DNA seems to be an important factor in developing many human diseases including cancer. It involves base and sugar damage, base-free sites, DNA-protein cross-links and DNA single-strand (SSB) and double-strand (DSB) breaks. Oxidative DSB can be formed in various ways such as their direct induction by the drug or their generation either through attempted and aborted repair of primary DNA lesions or through DNA replication-dependent conversion of SSB. In general, two main pathways are responsible for repairing DSB, homologous recombination (HR) and non-homologous end-joining (NHEJ), with both of them being potential candidates for the repair of oxidative DSB. We have examined relative contribution of HR and NHEJ to cellular response after oxidative stress in Saccharomyces cerevisiae. Therefore, cell survival, mutagenesis and DSB induction and repair in the rad52, yku70 and rad52 yku70 mutants after hydrogen peroxide (H(2)O(2)), menadione (MD) or bleomycin (BLM) exposure were compared to those obtained for the corresponding wild type. We show that MD exposure does not lead to observable DSB induction in yeast, suggesting that the toxic effects of this agent are mediated by other types of DNA damage. Although H(2)O(2) treatment generates some DSB, their yield is relatively low and hence DSB may only partially be responsible for toxicity of H(2)O(2), particularly at high doses of the agent. On the other hand, the basis of the BLM toxicity resides primarily in DSB induction. Both HR and NHEJ act on BLM-induced DSB, although their relative participation in the process is not equal. Based on our results we suggest that the complexity and/or the quality of the BLM-induced DSB might represent an obstacle for the NHEJ pathway.

  16. Effects of fermentation by Saccharomyces cerevisiae and ...

    African Journals Online (AJOL)

    yassine

    2013-02-13

    Feb 13, 2013 ... Effect of Saccharomyces cerevisiae fermentation on the ... beetroot, fermentation, Saccharomyces cerevisiae, betalain compounds. ... by Saccharomyces cerevisiae strains (González et al., .... Both red and yellow pigments were influenced during S. .... in beverages such as white wine, grape fruit, and green.

  17. Caffeine stabilizes Cdc25 independently of Rad3 in S chizosaccharomyces pombe contributing to checkpoint override

    Science.gov (United States)

    Alao, John P; Sjölander, Johanna J; Baar, Juliane; Özbaki-Yagan, Nejla; Kakoschky, Bianca; Sunnerhagen, Per

    2014-01-01

    Cdc25 is required for Cdc2 dephosphorylation and is thus essential for cell cycle progression. Checkpoint activation requires dual inhibition of Cdc25 and Cdc2 in a Rad3-dependent manner. Caffeine is believed to override activation of the replication and DNA damage checkpoints by inhibiting Rad3-related proteins in both S chizosaccharomyces pombe and mammalian cells. In this study, we have investigated the impact of caffeine on Cdc25 stability, cell cycle progression and checkpoint override. Caffeine induced Cdc25 accumulation in S . pombe independently of Rad3. Caffeine delayed cell cycle progression under normal conditions but advanced mitosis in cells treated with replication inhibitors and DNA-damaging agents. In the absence of Cdc25, caffeine inhibited cell cycle progression even in the presence of hydroxyurea or phleomycin. Caffeine induces Cdc25 accumulation in S . pombe by suppressing its degradation independently of Rad3. The induction of Cdc25 accumulation was not associated with accelerated progression through mitosis, but rather with delayed progression through cytokinesis. Caffeine-induced Cdc25 accumulation appears to underlie its ability to override cell cycle checkpoints. The impact of Cdc25 accumulation on cell cycle progression is attenuated by Srk1 and Mad2. Together our findings suggest that caffeine overrides checkpoint enforcement by inducing the inappropriate nuclear localization of Cdc25. PMID:24666325

  18. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    van der Aa Kuhle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-01-01

    .6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1α decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli...... strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar......The probiotic potential of IS Saccharomyces cerevisiae strains used for production of foods or bevel-ages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Ox-all. Adhesion...

  19. CAD-RADS - a new clinical decision support tool for coronary computed tomography angiography.

    Science.gov (United States)

    Foldyna, Borek; Szilveszter, Bálint; Scholtz, Jan-Erik; Banerji, Dahlia; Maurovich-Horvat, Pál; Hoffmann, Udo

    2018-04-01

    Coronary computed tomography angiography (CTA) has been established as an accurate method to non-invasively assess coronary artery disease (CAD). The proposed 'Coronary Artery Disease Reporting and Data System' (CAD-RADS) may enable standardised reporting of the broad spectrum of coronary CTA findings related to the presence, extent and composition of coronary atherosclerosis. The CAD-RADS classification is a comprehensive tool for summarising findings on a per-patient-basis dependent on the highest-grade coronary artery lesion, ranging from CAD-RADS 0 (absence of CAD) to CAD-RADS 5 (total occlusion of a coronary artery). In addition, it provides suggestions for clinical management for each classification, including further testing and therapeutic options. Despite some limitations, CAD-RADS may facilitate improved communication between imagers and patient caregivers. As such, CAD-RADS may enable a more efficient use of coronary CTA leading to more accurate utilisation of invasive coronary angiograms. Furthermore, widespread use of CAD-RADS may facilitate registry-based research of diagnostic and prognostic aspects of CTA. • CAD-RADS is a tool for standardising coronary CTA reports. • CAD-RADS includes clinical treatment recommendations based on CTA findings. • CAD-RADS has the potential to reduce variability of CTA reports.

  20. MRI for the assessment of malignancy in BI-RADS 4 mammographic microcalcifications.

    Directory of Open Access Journals (Sweden)

    Barbara Bennani-Baiti

    Full Text Available Assess the performance of breast MRI to diagnose breast cancer in BI-RADS 4 microcalcifications detected by mammography.This retrospective, IRB-approved study included 248 consecutive contrast-enhanced breast MRI (1.5T, protocol in accordance with EUSOBI recommendations performed to further diagnose BI-RADS 4 microcalcifications detected at mammography during a 3-year period. Standard of reference had to be established by histopathology. Routine consensus reading results by two radiologists were dichotomized as positive or negative and compared with the reference standard (benign vs malignant to calculate diagnostic parameters.There were 107 malignant and 141 benign microcalcifications. Malignancy rates were 18.3% (23/126 BI-RADS 4a, 41.7% (25/60 BI-RADS 4b and 95% (59/62 BI-RADS 4c. There were 103 true-positive, 116 true-negative, 25 false-positive, and 4 false-negative (one invasive cancer, three DCIS; 2 BI-RADS 4c, 1 BI-RADS 4b on mammography breast MRI findings, effecting a sensitivity, specificity, PPV, and NPV of 96.3% (95%-CI 90.7-99.0%, 82.3% (95%-CI 75.0-88.2%, 80.5% (95%-CI 72.5-87.0% and 96.7% (95%-CI 91.7-99.1%, respectively.MRI is an accurate tool to further diagnose BI-RADS 4a and 4b microcalcifications and may be helpful to avoid unnecessary biopsies in BI-RADS 4a and 4b lesions. BI-RADS 4c microcalcifications should be biopsied irrespective of MRI findings.

  1. The effects of gamma irradiation on growth and expression of genes encoding DNA repair-related proteins in Lombardy poplar (Populus nigra var. italica).

    Science.gov (United States)

    Nishiguchi, Mitsuru; Nanjo, Tokihiko; Yoshida, Kazumasa

    2012-07-01

    In this study, to elucidate the mechanisms of adaptation and tolerance to ionizing radiation in woody plants, we investigated the various biological effects of γ-rays on the Lombardy poplar (Populus nigra L. var. italica Du Roi). We detected abnormal leaf shape and color, fusion, distorted venation, shortened internode, fasciation and increased axillary shoots in γ-irradiated poplar plants. Acute γ-irradiation with a dose of 100Gy greatly reduced the height, stem diameter and biomass of poplar plantlets. After receiving doses of 200 and 300Gy, all the plantlets stopped growing, and then most of them withered after 4-10 weeks of γ-irradiation. Comet assays showed that nuclear DNA in suspension-cultured poplar cells had been damaged by γ-rays. To determine whether DNA repair-related proteins are involved in the response to γ-rays in Lombardy poplars, we cloned the PnRAD51, PnLIG4, PnKU70, PnXRCC4, PnPCNA and PnOGG1 cDNAs and investigated their mRNA expression. The PnRAD51, PnLIG4, PnKU70, PnXRCC4 and PnPCNA mRNAs were increased by γ-rays, but the PnOGG1 mRNA was decreased. Moreover, the expression of PnLIG4, PnKU70 and PnRAD51 was also up-regulated by Zeocin known as a DNA cleavage agent. These observations suggest that the morphogenesis, growth and protective gene expression in Lombardy poplars are severely affected by the DNA damage and unknown cellular events caused by γ-irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress

    DEFF Research Database (Denmark)

    Bhowmick, Rahul; Minocherhomji, Sheroy; Hickson, Ian D

    2016-01-01

    Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis...... replication stress at CFS loci during S-phase. In contrast, MiDAS is RAD52 dependent, and RAD52 is required for the timely recruitment of MUS81 and POLD3 to CFSs in early mitosis. Our results provide further mechanistic insight into MiDAS and define a specific function for human RAD52. Furthermore, selective...

  3. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhao, Jianzhi; Bao, Xiaoming; Li, Chen; Shen, Yu; Hou, Jin

    2016-05-01

    Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae. We evaluated three geraniol synthases in S. cerevisiae, and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 (G) (ERG20 (K197G) ) and ERG20 (WW) (ERG20 (F96W-N127W) ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1, tHMG1, and UPC2-1. The results showed that overexpressing ERG20 (WW) and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.

  4. RADTRAN 6/RadCat 6 user guide.

    Energy Technology Data Exchange (ETDEWEB)

    Weiner, Ruth F.; Hinojosa, Daniel; Heames, Terence John; Farnum, Cathy Ottinger; Kalinina, Elena Arkadievna

    2013-09-01

    This document provides a detailed discussion and a guide for the use of the RadCat 6.0 Graphical User Interface input file generator for the RADTRAN code, Version 6. RadCat 6.0 integrates the newest analysis capabilities of RADTRAN 6.0, including an economic model, updated loss-of-lead shielding model, a new ingestion dose model, and unit conversion. As of this writing, the RADTRAN version in use is RADTRAN 6.02.

  5. Enriquecimento protéico da palma forrageira com Saccharomyces cerevisiae para alimentação de ruminantes Protein enrichment of cactus pear with Saccharomyces cerevisiae for ruminants feeding

    Directory of Open Access Journals (Sweden)

    L.F. Araújo

    2008-04-01

    Full Text Available Avaliou-se o processo de enriquecimento protéico da palma forrageira (Opuntia ficus-indica Mill com levedura Sacharomyces cerevisiae em cultivo semi-sólido, visando melhorar o valor nutritivo da palma para ser utilizada na alimentação de ruminantes. A levedura foi utilizada nas concentrações de 1, 2 e 3% em base úmida no substrato formado pela palma forrageira, incubada em biorreatores durante 6, 12, 24 e 36 horas de fermentação. O delineamento experimental foi inteiramente ao acaso, em arranjo de parcelas subdivididas com quatro repetições. O conteúdo de proteína bruta quando se utilizou concentração de 3% de inóculo, no período de seis horas, aumentou de 4,4% na forma in natura para 10,4% após o processamento. Os teores protéicos na concentração de 1% do inóculo foram de 6,1, 8,1, 8,1 e 9,2%; na concentração de 2%, 9,6, 9,7, 9,8 e 9,8% e na concentração de 3%, 10,4, 10,4 7,9 e 7,9%, nos períodos de 6, 12, 24 e 36 horas de fermentação, respectivamente. Uma fonte alternativa para arraçoamento de ruminantes, pode ser obtida pela bioconversão da palma forrageira.The process of protein enrichment of the forage palm (Opuntia ficus-indica Mill using the Saccharomyces cerevisiae yeast in a semi-solid culture to improve the nutritional value of forage palm for ruminants feeding was evaluated. The yeast concentrations of 1, 2 and 3% (wet basis in the forage palm substrate were used. The periods of incubation were of 6, 12, 24, and 36 hours. A complete randomized experimental design in a split plot arrangement with four replicates was used. The crude protein content increased from 4.4% (in natura to 10.4% when 3% of inoculums were used and the processing period was of 6 hours. The observed protein contents for 1% of the inoculum, used for the fermentation periods of 6, 12, 24, and 36 hours were 6.1, 8.1, 8.1, and 9.2%, respectively. These values were 9.6, 9.7, 9.8, and 9.8% for 2% of the inoculum, and 10.4, 10.4, 7.9, and 7

  6. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    Science.gov (United States)

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.

  7. Perbaikan Kualitas Pakan Ayam Broiler melalui Fermentasi Dua Tahap Menggunakan Trichoderma reseei dan Saccaromyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ibnu Hari Sulistyawan

    2015-04-01

    Full Text Available (Feedstuff Quality Improvement of Broiler Chicken with Two-Steps Fermentation by Trichoderma reseei and Saccaromyces cerevisiae ABSTRAK. The aim of this study was to improve the quality of animal feedstuff from agriculture waste product i.e. corn cob, tapioca solid waste and soy bean pulp by two-steps fermentation using Trichoderma reseei as cellulotlytic microorganisms and yeast Saccaromyces cerevisiae as protein source. This fermented product the was used in broiler chicken in vivo test. A Completely Randomized Design with four treatments: R0(100% basal feed/BF; R1(100% BF+10% fermented corn cob; R2 (100% BF+10% fermented tapioca solid waste; R3(100% BF+10% fermented soy bean pulp. Each treatments were replicated for 5 times. The variables response tested were quality of feedstuffs before and after fermentation of protein, NDF and ADF digestibilities on broiler chicken in vivo test. The result indicated that the protein content after fermentation has increased but reduced in NDF and ADF fiber. Two steps fermentation had not improved significantly to protein digestibility (P>0.05, but basic ration with fermented soybean pulp significantly improved (P<0.01 on protein digestibility.

  8. BI-RADS: Use in the French radiologic community

    International Nuclear Information System (INIS)

    Stines, Joseph

    2007-01-01

    In the United States, BI-RADS TM (Breast Imaging Reporting and Data System) has been set up as a quality assurance system for better communication between professionals and for the follow-up of breast screening programs. It has become a reference in the field of mammographic imaging and has been adopted by several countries throughout the world. It has been translated in French. The aim of this article is to discuss the difficulties in using it in the French radiologic communities. There are few problems with vocabulary excepted for microcalcifications. BI-RADS TM includes a guidance chapter giving some recommendations for using properly the lexicon. Classification of normal breast remains of concern, as it is difficult to evaluate precisely the content of fat and as the final image is also dependant of technical factors. The main difficulties are related to final classification in BI-RADS TM categories as the lexicon does not explicit which mammographic features should be included in the categories from three to five. In France, a table concerning the classification of mammographic abnormalities has been established by the HAS (former ANAES) which represents the highest scientific health authority in France. There are no major problems for using the BI-RADS TM for US and MRI. BI-RADS TM is suitable for different categories of women and for male and training has an important impact on acceptance and proper use of the lexicon

  9. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cohen, Aviv; Weindling, Esther; Rabinovich, Efrat; Nachman, Iftach; Fuchs, Shai; Chuartzman, Silvia; Gal, Lihi; Schuldiner, Maya; Bar-Nun, Shoshana

    2016-01-01

    Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.

  10. Cell ATP level of Saccharomyces cerevisiae sensitively responds to culture growth and drug-inflicted variations in membrane integrity and PDR pump activity

    Czech Academy of Sciences Publication Activity Database

    Krasowska, A.; Lukaszewicz, M.; Bartosiewicz, D.; Sigler, Karel

    2010-01-01

    Roč. 395, č. 1 (2010), s. 51-55 ISSN 0006-291X R&D Projects: GA MŠk 1M0570 Institutional research plan: CEZ:AV0Z50200510 Keywords : S. cerevisiae * ABC transporters * ATP level Subject RIV: EE - Microbiology, Virology Impact factor: 2.595, year: 2010

  11. Pathways for Holliday Junction Processing during Homologous Recombination in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Ashton, Thomas M; Mankouri, Hocine W; Heidenblut, Anna

    2011-01-01

    The Saccharomyces cerevisiae Rmi1 protein is a component of the highly conserved Sgs1-Top3-Rmi1 complex. Deletion of SGS1, TOP3, or RMI1 is synthetically lethal when combined with the loss of the Mus81-Mms4 or Slx1-Slx4 endonucleases, which have been implicated in Holliday junction (HJ) resolutio...

  12. Radiation response in vitro of fibroblasts from a Fanconi anemia patient with marked clinical radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Djuzenova, C.; Flentje, M. [Dept. of Radiotherapy, Univ. of Wuerzburg, Wuerzburg (Germany); Plowman, P.N. [Radiotherapy/Clinical Oncology, St. Bartholomew' s Hospital, London (United Kingdom)

    2004-12-01

    Background: fanconi anemia (FA) is an autosomal recessive chromosome instability disorder characterized by progressive pancytopenia and cancer susceptibility. The risks of radiation therapy in FA patients who have cancer remain to be investigated. Recently, Marcou et al. (2001) reported a case of severe clinical radiosensitivity in a female FA patient with a tonsillar squamous cell carcinoma treated by radiotherapy. By contrast, her in vitro irradiated skin fibroblasts revealed nearly normal radiosensitivity as determined by the colony survival assay. Material and methods: in view of this discrepancy, the radiation response of this particular FA fibroblast strain (designated 425BR) was further analyzed in the present study by means of the alkaline single-cell gel electrophoresis (Comet) assay, and also by the cytochalasin-blocked micronuclei (MN) test. In addition, the expression levels of DNA repair proteins, hMre11, Rad50, and Rad51, were investigated using Western blot and foci immunofluorescence staining. Results: the Comet assay revealed that the initial DNA fragmentation in irradiated FA cells was two times higher and the DNA rejoining process was three times slower than that in control (1BR3) fibroblasts. Moreover, although the baseline level of MNs was lower in FA cells than in controls, the FA fibroblasts were more prone (about two times) to MN production than control cells when irradiated with 2-4 Gy. Western blot analysis of the DNA repair proteins (hMre11, Rad50, and Rad51) did not reveal any abnormalities in protein expression levels or their migration patterns in the fibroblasts derived from an FA patient either before or after irradiation. At the same time, in vitro irradiated cells from the FA patient exhibited a significantly reduced number of nuclei with focally concentrated DNA repair Rad51 protein than in control cells. Conclusion: the increased DNA damage and MN induction in irradiated FA fibroblasts, and the reduction of the formation of DNA

  13. Radiation response in vitro of fibroblasts from a Fanconi anemia patient with marked clinical radiosensitivity

    International Nuclear Information System (INIS)

    Djuzenova, C.; Flentje, M.; Plowman, P.N.

    2004-01-01

    Background: fanconi anemia (FA) is an autosomal recessive chromosome instability disorder characterized by progressive pancytopenia and cancer susceptibility. The risks of radiation therapy in FA patients who have cancer remain to be investigated. Recently, Marcou et al. (2001) reported a case of severe clinical radiosensitivity in a female FA patient with a tonsillar squamous cell carcinoma treated by radiotherapy. By contrast, her in vitro irradiated skin fibroblasts revealed nearly normal radiosensitivity as determined by the colony survival assay. Material and methods: in view of this discrepancy, the radiation response of this particular FA fibroblast strain (designated 425BR) was further analyzed in the present study by means of the alkaline single-cell gel electrophoresis (Comet) assay, and also by the cytochalasin-blocked micronuclei (MN) test. In addition, the expression levels of DNA repair proteins, hMre11, Rad50, and Rad51, were investigated using Western blot and foci immunofluorescence staining. Results: the Comet assay revealed that the initial DNA fragmentation in irradiated FA cells was two times higher and the DNA rejoining process was three times slower than that in control (1BR3) fibroblasts. Moreover, although the baseline level of MNs was lower in FA cells than in controls, the FA fibroblasts were more prone (about two times) to MN production than control cells when irradiated with 2-4 Gy. Western blot analysis of the DNA repair proteins (hMre11, Rad50, and Rad51) did not reveal any abnormalities in protein expression levels or their migration patterns in the fibroblasts derived from an FA patient either before or after irradiation. At the same time, in vitro irradiated cells from the FA patient exhibited a significantly reduced number of nuclei with focally concentrated DNA repair Rad51 protein than in control cells. Conclusion: the increased DNA damage and MN induction in irradiated FA fibroblasts, and the reduction of the formation of DNA

  14. Yeast Srs2 Helicase Promotes Redistribution of Single-Stranded DNA-Bound RPA and Rad52 in Homologous Recombination Regulation.

    Science.gov (United States)

    De Tullio, Luisina; Kaniecki, Kyle; Kwon, Youngho; Crickard, J Brooks; Sung, Patrick; Greene, Eric C

    2017-10-17

    Srs2 is a super-family 1 helicase that promotes genome stability by dismantling toxic DNA recombination intermediates. However, the mechanisms by which Srs2 remodels or resolves recombination intermediates remain poorly understood. Here, single-molecule imaging is used to visualize Srs2 in real time as it acts on single-stranded DNA (ssDNA) bound by protein factors that function in recombination. We demonstrate that Srs2 is highly processive and translocates rapidly (∼170 nt per second) in the 3'→5' direction along ssDNA saturated with replication protein A (RPA). We show that RPA is evicted from DNA during the passage of Srs2. Remarkably, Srs2 also readily removes the recombination mediator Rad52 from RPA-ssDNA and, in doing so, promotes rapid redistribution of both Rad52 and RPA. These findings have important mechanistic implications for understanding how Srs2 and related nucleic acid motor proteins resolve potentially pathogenic nucleoprotein intermediates. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Positive Predictive Value of BI-RADS Categorization in an Asian Population

    Directory of Open Access Journals (Sweden)

    Yah-Yuen Tan

    2004-07-01

    Full Text Available The Breast Imaging Reporting And Data System (BI-RADS categorization of mammograms is useful in estimating the risk of malignancy, thereby guiding management decisions. However, in Asian women, in whom breast density is increased, the sensitivity of mammography is correspondingly lower. We sought to determine the positive predictive value of BI-RADS categorization for malignancy in our Asian population and, hence, its value in helping us to choose between the various modalities for breast biopsy. We retrospectively reviewed all patients with occult breast lesions detected on mammography or ultrasound who underwent needle-localization open breast biopsy (NLOB in our institution over a 6-year period. There were 470 biopsies in 427 patients; 16% of lesions were malignant. The positive predictive value of BI-RADS 4 and 5 lesions for cancer was 0.27 and 0.84, respectively. While most BI-RADS 5 mass lesions were invasive cancers, the majority of calcifications in this category were in situ carcinomas. We conclude that BI-RADS remains useful in aiding decision-making for biopsy in our Asian population. Based on positive predictive values, we recommend percutaneous breast biopsy for initial evaluation of lesions categorized as BI-RADS 4 or less. For BI-RADS 5 lesions with microcalcifications, open surgical biopsy as a diagnostic and therapeutic procedure may be more appropriate. In the case of a BI-RADS 5 lesion associated with a mass, initial percutaneous biopsy may be useful for diagnosis, followed by a planned single-stage surgical procedure as necessary.

  16. The Mycobacterium leprae antigen 85 complex gene family: identification of the genes for the 85A, 85C, and related MPT51 proteins

    NARCIS (Netherlands)

    Rinke de Wit, T. F.; Bekelie, S.; Osland, A.; Wieles, B.; Janson, A. A.; Thole, J. E.

    1993-01-01

    The genes for two novel members (designated 85A and 85C) of the Mycobacterium leprae antigen 85 complex family of proteins and the gene for the closely related M. leprae MPT51 protein were isolated. The complete DNA sequence of the M. leprae 85C gene and partial sequences of the 85A and MPT51 genes

  17. Crystallization and preliminary X-ray diffraction studies of the ubiquitin-like (UbL) domain of the human homologue A of Rad23 (hHR23A) protein.

    Science.gov (United States)

    Chen, Yu Wai; Tajima, Toshitaka; Rees, Martin; Garcia-Maya, Mitla

    2009-09-01

    Human homologue A of Rad23 (hHR23A) plays dual roles in DNA repair as well as serving as a shuttle vehicle targeting polyubiquitinated proteins for degradation. Its N-terminal ubiquitin-like (UbL) domain interacts with the 19S proteasomal cap and provides the docking mechanism for protein delivery. Pyramidal crystals of the UbL domain of hHR23A were obtained by the hanging-drop vapour-diffusion method with ammonium sulfate as the crystallizing agent. The crystals diffracted to beyond 2 A resolution and belonged to the hexagonal space group P6(5)22, with unit-cell parameters a = b = 78.48, c = 63.57 A. The structure was solved by molecular replacement using the UbL domain of yeast Dsk2 as the search model.

  18. Many Saccharomyces cerevisiae Cell Wall Protein Encoding Genes Are Coregulated by Mss11, but Cellular Adhesion Phenotypes Appear Only Flo Protein Dependent.

    Science.gov (United States)

    Bester, Michael C; Jacobson, Dan; Bauer, Florian F

    2012-01-01

    The outer cell wall of the yeast Saccharomyces cerevisiae serves as the interface with the surrounding environment and directly affects cell-cell and cell-surface interactions. Many of these interactions are facilitated by specific adhesins that belong to the Flo protein family. Flo mannoproteins have been implicated in phenotypes such as flocculation, substrate adhesion, biofilm formation, and pseudohyphal growth. Genetic data strongly suggest that individual Flo proteins are responsible for many specific cellular adhesion phenotypes. However, it remains unclear whether such phenotypes are determined solely by the nature of the expressed FLO genes or rather as the result of a combination of FLO gene expression and other cell wall properties and cell wall proteins. Mss11 has been shown to be a central element of FLO1 and FLO11 gene regulation and acts together with the cAMP-PKA-dependent transcription factor Flo8. Here we use genome-wide transcription analysis to identify genes that are directly or indirectly regulated by Mss11. Interestingly, many of these genes encode cell wall mannoproteins, in particular, members of the TIR and DAN families. To examine whether these genes play a role in the adhesion properties associated with Mss11 expression, we assessed deletion mutants of these genes in wild-type and flo11Δ genetic backgrounds. This analysis shows that only FLO genes, in particular FLO1/10/11, appear to significantly impact on such phenotypes. Thus adhesion-related phenotypes are primarily dependent on the balance of FLO gene expression.

  19. Interdependence of the rad50 hook and globular domain functions.

    Science.gov (United States)

    Hohl, Marcel; Kochańczyk, Tomasz; Tous, Cristina; Aguilera, Andrés; Krężel, Artur; Petrini, John H J

    2015-02-05

    Rad50 contains a conserved Zn(2+) coordination domain (the Rad50 hook) that functions as a homodimerization interface. Hook ablation phenocopies Rad50 deficiency in all respects. Here, we focused on rad50 mutations flanking the Zn(2+)-coordinating hook cysteines. These mutants impaired hook-mediated dimerization, but recombination between sister chromatids was largely unaffected. This may reflect that cohesin-mediated sister chromatid interactions are sufficient for double-strand break repair. However, Mre11 complex functions specified by the globular domain, including Tel1 (ATM) activation, nonhomologous end joining, and DNA double-strand break end resection were affected, suggesting that dimerization exerts a broad influence on Mre11 complex function. These phenotypes were suppressed by mutations within the coiled-coil and globular ATPase domains, suggesting a model in which conformational changes in the hook and globular domains are transmitted via the extended coils of Rad50. We propose that transmission of spatial information in this manner underlies the regulation of Mre11 complex functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E

    2000-01-01

    Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2...

  1. Single cell protein from mandarin orange peel

    Energy Technology Data Exchange (ETDEWEB)

    Mishio, M.; Magai, J.

    1981-01-01

    As the hydrolysis of mandarin orange peel with macerating enzyme (40 degrees C, 24 h) produced 0.59 g g-1 reducing sugar per dry peel compared to 0.36 by acid-hydrolysis (15 min at 120 degrees C with 0.8 N H2S04), the production of single cell protein (SCP) from orange peel was studied mostly using enzymatically hydrolyzed orange peel. When the enzymatically hydrolyzed peel media were used, the utilization efficiency of reducing sugars (%) and the growth yield from reducing sugars (g g-1) were: 63 and 0.51 for Saccharomyces cerevisiae; 56 and 0.48 for Candida utilis; 74 and 0.69 for Debaryomyces hansenii and 64 and 0.70 for Rhodotorula glutinis. SCP production from orange peel by D. hansenii and R. glutinis were further studied. Batch cultures for 24 h at 30 degrees C using 100g dried orange peel produced 45 g of dried cultivated peel (protein content, 33%) with D. hansenii and 34 g (protein content, 50%) with R. glutinis, and 38 g (protein content, 44%) with a mixture of both yeasts. (Refs. 12).

  2. Anti-Saccharomyces cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity.

    Science.gov (United States)

    Rinaldi, Maurizio; Perricone, Roberto; Blank, Miri; Perricone, Carlo; Shoenfeld, Yehuda

    2013-10-01

    Saccharomyces cerevisiae is best known as the baker's and brewer's yeast, but its residual traces are also frequent excipients in some vaccines. Although anti-S. cerevisiae autoantibodies (ASCAs) are considered specific for Crohn's disease, a growing number of studies have detected high levels of ASCAs in patients affected with autoimmune diseases as compared with healthy controls, including antiphospholipid syndrome, systemic lupus erythematosus, type 1 diabetes mellitus, and rheumatoid arthritis. Commensal microorganisms such as Saccharomyces are required for nutrition, proper development of Peyer's aggregated lymphoid tissue, and tissue healing. However, even the commensal nonclassically pathogenic microbiota can trigger autoimmunity when fine regulation of immune tolerance does not work properly. For our purposes, the protein database of the National Center for Biotechnology Information (NCBI) was consulted, comparing Saccharomyces mannan to several molecules with a pathogenetic role in autoimmune diseases. Thanks to the NCBI bioinformation technology tool, several overlaps in molecular structures (50-100 %) were identified when yeast mannan, and the most common autoantigens were compared. The autoantigen U2 snRNP B″ was found to conserve a superfamily protein domain that shares 83 % of the S. cerevisiae mannan sequence. Furthermore, ASCAs may be present years before the diagnosis of some associated autoimmune diseases as they were retrospectively found in the preserved blood samples of soldiers who became affected by Crohn's disease years later. Our results strongly suggest that ASCAs' role in clinical practice should be better addressed in order to evaluate their predictive or prognostic relevance.

  3. Production and Purification of the Native Saccharomyces cerevisiae Hsp12 in Escherichia coli.

    Science.gov (United States)

    Léger, Antoine; Hocquellet, Agnès; Dieryck, Wilfrid; Moine, Virginie; Marchal, Axel; Marullo, Philippe; Josseaume, Annabelle; Cabanne, Charlotte

    2017-09-20

    Hsp12 is a small heat shock protein produced in many organisms, including the yeast Saccharomyces cerevisiae. It has been described as an indicator of yeast stress rate and has also been linked to the sweetness sensation of wine. To obtain a sufficient amount of protein, we produced and purified Hsp12 without tag in Escherichia coli. A simple fast two-step process was developed using a microplate approach and a design of experiments. A capture step on an anion-exchange salt-tolerant resin was followed by size exclusion chromatography for polishing, leading to a purity of 97%. Thereafter, specific anti-Hsp12 antibodies were obtained by rabbit immunization. An ELISA was developed to quantify Hsp12 in various strains of Saccharomyces cerevisiae. The antibodies showed high specificity and allowed the quantitation of Hsp12 in the yeast. The quantities of Hsp12 measured in the strains differed in direct proportion to the level of expression found in previous studies.

  4. Production, purification and characterization of recombinant human antithrombin III by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maheswara Reddy Mallu

    2016-07-01

    Conclusions: The simple, cost-effective and economically viable nature of the process used in the present study for the production of rhAT will be highly beneficial for the healthcare sector. This may also be used to produce other value-added therapeutic recombinant proteins expressed in S. cerevisiae, with greater effectiveness and ease.

  5. Regulation of Homologous Recombination by SUMOylation

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina

    factors such as the homologous recombination (HR) machinery. HR constitutes the main DSB repair pathway in Saccharomyces cerevisiae and despite being largely considered an error-free process and essential for genome stability, uncontrolled recombination can lead to loss of heterozygosity, translocations......, deletions, and genome rearrangements that can lead to cell death or cancer in humans. The post-translational modification by SUMO (small ubiquitinlike modifier) has proven to be an important regulator of HR and genome integrity, but the molecular mechanisms responsible for these roles are still unclear....... In this study I present new insights for the role of SUMOylation in regulating HR by dissecting the role of SUMO in the interaction between the central HR-mediator protein Rad52 and its paralogue Rad59 and the outcome of recombination. This data provides evidence for the importance of SUMO in promoting protein...

  6. GRIP: A web-based system for constructing Gold Standard datasets for protein-protein interaction prediction

    Directory of Open Access Journals (Sweden)

    Zheng Huiru

    2009-01-01

    Full Text Available Abstract Background Information about protein interaction networks is fundamental to understanding protein function and cellular processes. Interaction patterns among proteins can suggest new drug targets and aid in the design of new therapeutic interventions. Efforts have been made to map interactions on a proteomic-wide scale using both experimental and computational techniques. Reference datasets that contain known interacting proteins (positive cases and non-interacting proteins (negative cases are essential to support computational prediction and validation of protein-protein interactions. Information on known interacting and non interacting proteins are usually stored within databases. Extraction of these data can be both complex and time consuming. Although, the automatic construction of reference datasets for classification is a useful resource for researchers no public resource currently exists to perform this task. Results GRIP (Gold Reference dataset constructor from Information on Protein complexes is a web-based system that provides researchers with the functionality to create reference datasets for protein-protein interaction prediction in Saccharomyces cerevisiae. Both positive and negative cases for a reference dataset can be extracted, organised and downloaded by the user. GRIP also provides an upload facility whereby users can submit proteins to determine protein complex membership. A search facility is provided where a user can search for protein complex information in Saccharomyces cerevisiae. Conclusion GRIP is developed to retrieve information on protein complex, cellular localisation, and physical and genetic interactions in Saccharomyces cerevisiae. Manual construction of reference datasets can be a time consuming process requiring programming knowledge. GRIP simplifies and speeds up this process by allowing users to automatically construct reference datasets. GRIP is free to access at http://rosalind.infj.ulst.ac.uk/GRIP/.

  7. New aspects of protein stability and turnover in the regulation of genome integrity

    DEFF Research Database (Denmark)

    Gallina, Irene

    of DNA repair is the control of protein abundance, both at a global cellular level, and locally at the site of damage. This is achieved through transcriptional regulation of protein synthesis and through the control of protein stability and turnover. In this study, we investigate the role of Rad56...... sensitivity when mutant. Prior to the work presented here,all these loci have been mapped to a specific gene except RAD56. We map the rad56-1 mutation to the NAT3 gene, which encodes the catalytic subunit of the NatB N-terminal acetyltransferase in yeast. Deletion of RAD56 causes sensitivity to X-rays, methyl......-scale studies investigating factors involved in DNA metabolism, but no specific function has been assigned to Cmr1. Taking advantage of a series of high-throughput screens we characterize Cmr1 as a chromatinassociated protein, involved in the regulation of fork progression in the presence of replication stress...

  8. γ radiation dosimetry in Mega rad range using sugar solution

    International Nuclear Information System (INIS)

    Venkataramani, R.; Mehta, S.K.; Soman, S.D.

    1976-01-01

    The formation of malonaldehyde under γ irradiation of solid sucrose and aqueous sucrose, fructose and arabinose solutions has been studied in the Mega rad range. Malonaldehyde (MA) concentration was estimated spectrophotometrically after complexing with 2-thio-barbituric acid. The effect of free radical scavengers (KI and N 2 O) on the yield of MA was investigated. Of the systems studied a 5% aqueous sucrose solution gave a proportional response of MA formation with dose in 0.2 to 5 Mega rad range. A 5% aqueous solution of sucrose prepared from sucrose irradiated in solid state also gave a smooth response of MA yield with dose from 8 to 30 Mega rad. The aqueous and solid sucrose systems together can be conveniently used for dosimetry in the range of 0.2 30 Mega rad. (author)

  9. gamma. radiation dosimetry in Mega rad range using sugar solution

    Energy Technology Data Exchange (ETDEWEB)

    Venkataramani, R; Mehta, S K; Soman, S D [Bhabha Atomic Research Centre, Bombay (India). Health Physics Div.

    1976-09-01

    The formation of malonaldehyde under ..gamma.. irradiation of solid sucrose and aqueous sucrose, fructose and arabinose solutions has been studied in the Mega rad range. Malonaldehyde (MA) concentration was estimated spectrophotometrically after complexing with 2-thio-barbituric acid. The effect of free radical scavengers (KI and N/sub 2/O) on the yield of MA was investigated. Of the systems studied a 5% aqueous sucrose solution gave a proportional response of MA formation with dose in 0.2 to 5 Mega rad range. A 5% aqueous solution of sucrose prepared from sucrose irradiated in solid state also gave a smooth response of MA yield with dose from 8 to 30 Mega rad. The aqueous and solid sucrose systems together can be conveniently used for dosimetry in the range of 0.2 30 Mega rad.

  10. Saccharomyces cerevisiae can secrete Sapp1p proteinase of Candida parapsilosis but cannot use it for efficient nitrogen acquisition

    Czech Academy of Sciences Publication Activity Database

    Vinterová, Zuzana; Bauerová, Václava; Dostál, Jiří; Sychrová, Hana; Hrušková-Heidingsfeldová, Olga; Pichová, Iva

    2013-01-01

    Roč. 51, č. 3 (2013), s. 336-344 ISSN 1225-8873 R&D Projects: GA ČR GA310/09/1945; GA ČR GAP302/12/1151 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : Candida parapsilosis * Saccharomyces cerevisiae * secreted aspartic proteinase * SAPP1 * nitrogen metabolism Subject RIV: EE - Microbiology, Virology; EE - Microbiology, Virology (FGU-C) Impact factor: 1.529, year: 2013

  11. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    International Nuclear Information System (INIS)

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity

  12. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-12-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.

  13. Characterization of new radiation-sensitive mutant, Escherichia coli K-12 radC102

    International Nuclear Information System (INIS)

    Felzenszwalb, I.; Sargentini, N.J.; Smith, K.C.

    1984-01-01

    A new radiation-sensitive mutant, radC, has been isolated. The radC gene is located at 81.0 min on the Escherichia coli K-12 linkage map. The radC mutation sensitized cells to uv radiation, but unlike most DNA repair mutations, sensitization to X rays was observed only for rich medium-grown cells. For cells grown in rich medium, the radC mutant was normal for γ radiation mutagenesis, but showed less uv-radiation mutagenesis than the wild-type strain; it showed normal amount of X- and uv-radiation-induced DNA degradation, and it wasapprox. =60% deficient in recombination ability. The radC strain was normal for host cell reactivation of γ and uv-irradiated bacteriophage the radC mutation did not sensitize a recA strain, but did sensitize a radA and a polA strain to X and uv radiation and a uvrA strain to uv radiation. Therefore, it is suggested that the radC gene product plays a role in the growth medium-dependent, recA gene-dependent repair of DNA single-strand breaks after X irradiation, and in postreplication repair after uv irradiation

  14. Enhancement of radiosensitivity in H1299 cancer cells by actin-associated protein cofilin

    International Nuclear Information System (INIS)

    Lee, Y.-J.; Sheu, T.-J.; Keng, Peter C.

    2005-01-01

    Cofilin is an actin-associated protein that belongs to the actin depolymerization factor/cofilin family and is important for regulation of actin dynamics. Cofilin can import actin monomers into the nucleus under certain stress conditions, however the biological effects of nuclear transport are unclear. In this study, we found that over-expression of cofilin led to increased radiation sensitivity in human non-small lung cancer H1299 cells. Cell survival as determined by colony forming assay showed that cells over-expressing cofilin were more sensitive to ionizing radiation (IR) than normal cells. To determine whether the DNA repair capacity was altered in cofilin over-expressing cells, comet assays were performed on irradiated cells. Repair of DNA damage caused by ionizing radiation was detected in cofilin over-expressing cells after 24 h of recovery. Consistent with this observation, the key components for repair of DNA double-strand breaks, including Rad51, Rad52, and Ku70/Ku80, were down-regulated in cofilin over-expressing cells after IR exposure. These findings suggest that cofilin can influence radiosensitivity by altering DNA repair capacity

  15. [Dot1 and Set2 Histone Methylases Control the Spontaneous and UV-Induced Mutagenesis Levels in the Saccharomyces cerevisiae Yeasts].

    Science.gov (United States)

    Kozhina, T N; Evstiukhina, T A; Peshekhonov, V T; Chernenkov, A Yu; Korolev, V G

    2016-03-01

    In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of hi- stone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-in- duced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the sponta- neous mutagenesis rate in both single and d ouble mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the ho- mologous-recombination-based and the postreplicative DNA repair.

  16. ATM signaling and 53BP1

    International Nuclear Information System (INIS)

    Zgheib, Omar; Huyen, Yentram; DiTullio, Richard A.; Snyder, Andrew; Venere, Monica; Stavridi, Elena S.; Halazonetis, Thanos D.

    2005-01-01

    The ATM (mutated in Ataxia-Telangiectasia) protein kinase is an important player in signaling the presence of DNA double strand breaks (DSBs) in higher eukaryotes. Recent studies suggest that ATM monitors the presence of DNA DSBs indirectly, through DNA DSB-induced changes in chromatin structure. One of the proteins that sense these chromatin structure changes is 53BP1, a DNA damage checkpoint protein conserved in all eukaryotes and the putative ortholog of the S. cerevisiae RAD9 protein. We review here the mechanisms by which ATM is activated in response to DNA DSBs, as well as key ATM substrates that control cell cycle progression, apoptosis and DNA repair

  17. Identification of a 450-bp region of human papillomavirus type 1 that promotes episomal replication in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chattopadhyay, Anasuya; Schmidt, Martin C.; Khan, Saleem A.

    2005-01-01

    Human papillomaviruses (HPVs) replicate as nuclear plasmids in infected cells. Since the DNA replication machinery is generally conserved between humans and Saccharomyces cerevisiae, we studied whether HPV-1 DNA can replicate in yeast. Plasmids containing a selectable marker (with or without a yeast centromere) and either the full-length HPV-1 genome or various regions of the viral long control region (LCR) and the 3' end of the L1 gene were introduced into S. cerevisiae and their ability to replicate episomally was investigated. Our results show that HPV-1 sequences promote episomal replication of plasmids although the yeast centromere is required for plasmid retention. We have mapped the autonomously replicating sequence activity of HPV-1 DNA to a 450 base-pair sequence (HPV-1 nt 6783-7232) that includes 293 nucleotides from the 5' region of the viral LCR and 157 nucleotides from the 3' end of the L1 gene. The HPV-1 ARS does not include the binding sites for the viral E1 and E2 proteins, and these proteins are dispensable for replication in S. cerevisiae

  18. Effect of sequential inoculation (Torulaspora delbrueckii/Saccharomyces cerevisiae in the first fermentation on the foam properties of sparkling wine (Cava

    Directory of Open Access Journals (Sweden)

    Medina-Trujillo Laura

    2016-01-01

    Full Text Available In a previous study we reported that sequential inoculation of Torulaspora delbrueckii and Saccharomyces cerevisiae during the first fermentation increased the protein concentration and improved the foaming properties of a base wine. Since effervescence and foam of sparkling wines are key quality factors, the interest of this practice for sparkling wine industry is obvious. In this paper we study whether the foaming properties of the sparkling wines produced from the base wines obtained by sequential inoculation with T. delbrueckii and S. cerevisiae remains better than those of their controls produced from base wines fermented only with S. cerevisiae. The obtained results confirmed that sequential inoculation in the production of the base wine originated sparkling wines with significantly higher maximum heights of foam than conventional inoculation, probably because autolysis of the T. delbrueckii cells in the base wine released higher amounts of proteins, especially of the low molecular weight fraction.

  19. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Nozomi Kawazoe

    2017-06-01

    Full Text Available Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER and unfolded protein response (UPR has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v. Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid and mild ethanol stress (5% ethanol induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.

  20. Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsuo, Ryo; Mizobuchi, Shogo; Nakashima, Maya; Miki, Kensuke; Ayusawa, Dai; Fujii, Michihiko

    2017-10-01

    Oxygen is essential for aerobic organisms but causes cytotoxicity probably through the generation of reactive oxygen species (ROS). In this study, we screened for the genes that regulate oxidative stress in the yeast Saccharomyces cerevisiae, and found that expression of CTH2/TIS11 caused an increased resistance to ROS. CTH2 is up-regulated upon iron starvation and functions to remodel metabolism to adapt to iron starvation. We showed here that increased resistance to ROS by CTH2 would likely be caused by the decreased ROS production due to the decreased activity of mitochondrial respiration, which observation is consistent with the fact that CTH2 down-regulates the mitochondrial respiratory proteins. We also found that expression of CTH1, a paralog of CTH2, also caused an increased resistance to ROS. This finding supported the above view, because mitochondrial respiratory proteins are the common targets of CTH1 and CTH2. We further showed that supplementation of iron in medium augmented the growth of S. cerevisiae under oxidative stress, and expression of CTH2 and supplementation of iron collectively enhanced its growth under oxidative stress. Since CTH2 is regulated by iron, these findings suggested that iron played crucial roles in the regulation of oxidative stress in S. cerevisiae.

  1. Improvement of Lead Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of Transcription Regulator SPT3.

    Science.gov (United States)

    Zhu, Liying; Gao, Shan; Zhang, Hongman; Huang, He; Jiang, Ling

    2018-01-01

    Bioremediation of heavy metal pollution with biomaterials such as bacteria and fungi usually suffer from limitations because of microbial sensitivity to high concentration of heavy metals. Herein, we adopted a novel random mutagenesis technique called RAISE to manipulate the transcription regulator SPT3 of Saccharomyces cerevisiae to improve cell lead tolerance. The best strain Mutant VI was selected from the random mutagenesis libraries on account of the growth performance, with higher specific growth rate than the control strain (0.068 vs. 0.040 h -1 ) at lead concentration as high as 1.8 g/L. Combined with the transcriptome analysis of S. cerevisiae, expressing the SPT3 protein was performed to make better sense of the global regulatory effects of SPT3. The data analysis revealed that 57 of S. cerevisiae genes were induced and 113 genes were suppressed, ranging from those for trehalose synthesis, carbon metabolism, and nucleotide synthesis to lead resistance. Especially, the accumulation of intracellular trehalose in S. cerevisiae under certain conditions of stress is considered important to lead resistance. The above results represented that SPT3 was acted as global transcription regulator in the exponential phase of strain and accordingly improved heavy metal tolerance in the heterologous host S. cerevisiae. The present study provides a route to complex phenotypes that are not readily accessible by traditional methods.

  2. A uniform system for mammographic reporting BI-RADS

    International Nuclear Information System (INIS)

    Masroor, I.; Ahmad, M. N.; Sheikh, M. Y.

    2001-01-01

    Breast image reporting and data system (BI-RADS) is a new system of categorizing and reporting mammographs and mammographic findings recommended by American College of Radiology. The importance of BI-RADS and final assessment categories are discussed. The purpose is to introduce the above-mentioned mammographic reporting system so that it becomes a standard terminology among the medical personnel, involved in the diagnosis and management of breast diseases. (author)

  3. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica; Limongi, Tania; Falqui, Andrea; Genovese, Alessandro; Allione, Marco; Moretti, Manola; Lopatin, Sergei; Tirinato, Luca; Das, Gobind; Torre, Bruno; Giugni, Andrea; Cesca, F.; Benfenati, F.; Di Fabrizio, Enzo M.

    2017-01-01

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  4. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica

    2017-01-17

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  5. Generation of Recombinant Porcine Parvovirus Virus-Like Particles in Saccharomyces cerevisiae and Development of Virus-Specific Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Paulius Lukas Tamošiūnas

    2014-01-01

    Full Text Available Porcine parvovirus (PPV is a widespread infectious virus that causes serious reproductive diseases of swine and death of piglets. The gene coding for the major capsid protein VP2 of PPV was amplified using viral nucleic acid extract from swine serum and inserted into yeast Saccharomyces cerevisiae expression plasmid. Recombinant PPV VP2 protein was efficiently expressed in yeast and purified using density gradient centrifugation. Electron microscopy analysis of purified PPV VP2 protein revealed the self-assembly of virus-like particles (VLPs. Nine monoclonal antibodies (MAbs against the recombinant PPV VP2 protein were generated. The specificity of the newly generated MAbs was proven by immunofluorescence analysis of PPV-infected cells. Indirect IgG ELISA based on the recombinant VLPs for detection of PPV-specific antibodies in swine sera was developed and evaluated. The sensitivity and specificity of the new assay were found to be 93.4% and 97.4%, respectively. In conclusion, yeast S. cerevisiae represents a promising expression system for generating recombinant PPV VP2 protein VLPs of diagnostic relevance.

  6. Validation of the fifth edition BI-RADS ultrasound lexicon with comparison of fourth and fifth edition diagnostic performance using video clips

    Directory of Open Access Journals (Sweden)

    Jung Hyun Yoon

    2016-10-01

    Full Text Available Purpose The aim of this study was to evaluate the positive predictive value (PPV and the diagnostic performance of the ultrasonographic descriptors in the fifth edition of BI-RADS, comparing with the fourth edition using video clips. Methods From September 2013 to July 2014, 80 breast masses in 74 women (mean age, 47.5±10.7 years from five institutions of the Korean Society of Breast Imaging were included. Two radiologists individually reviewed the static and video images and analyzed the images according to the fourth and fifth edition of BI-RADS. The PPV of each descriptor was calculated and diagnostic performances between the fourth and fifth editions were compared. Results Of the 80 breast masses, 51 (63.8% were benign and 29 (36.2% were malignant. Suspicious ultrasonographic features such as irregular shape, non-parallel orientation, angular or spiculated margins, and combined posterior features showed higher PPV in both editions (all P0.05. The area under the receiver operating characteristics curve was higher in the fourth edition (0.708 to 0.690, without significance (P=0.416. Conclusion The fifth edition of the BI-RADS ultrasound lexicon showed comparable performance to the fourth edition and can be useful in the differential diagnosis of breast masses using ultrasonography.

  7. Single cell protein production from mandarin