WorldWideScience

Sample records for cerevisiae checkpoint mutants

  1. The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway

    International Nuclear Information System (INIS)

    Cohen-Fix, O.; Koshland, D.

    1997-01-01

    Inhibition of DNA replication and physical DNA damage induce checkpoint responses that arrest cell cycle progression at two different stages. In Saccharomyces cerevisiae, the execution of both checkpoint responses requires the Mec1 and Rad53 proteins. This observation led to the suggestion that these checkpoint responses are mediated through a common signal transduction pathway. However, because the checkpoint-induced arrests occur at different cell cycle stages, the downstream effectors mediating these arrests are likely to be distinct. We have previously shown that the S. cerevisiae protein Pds1p is an anaphase inhibitor and is essential for cell cycle arrest in mitosis in the presence DNA damage. Herein we show that DNA damage, but not inhibition of DNA replication, induces the phosphorylation of Pds1p. Analyses of Pds1p phosphorylation in different checkpoint mutants reveal that in the presence of DNA damage, Pds1p is phosphorylated in a Mec1p- and Rad9p-dependent hut Rad53p-independent manner. Our data place Pds1p and Rad53p on parallel branches of the DNA damage checkpoint pathway. We suggest that Pds1p is a downstream target of the DNA damage checkpoint pathway and that it is involved in implementing the DNA damage checkpoint arrest specifically in mitosis

  2. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.

    Science.gov (United States)

    Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J

    2009-12-01

    Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.

  3. Interactions of checkpoint-genes RAD9, RAD17, RAD24 and RAD53 determining radioresistance of Yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Koltovaya, N.A.; Nikulushkina, Yu.V.; Roshchina, M.P.; Devin, A.B.

    2007-01-01

    The mechanisms of genetic control of progress through the division cell cycle (checkpoint-control) in yeast Saccharomyces cerevisiae have been studied intensively. To investigate the role of checkpoint-genes RAD9, RAD17, RAD24, RAD53 in cell radioresistance we have investigated cell sensitivity of double mutants to γ-ray. Double mutants involving various combinations with rad9Δ show epistatic interactions, i.e. the sensitivity of the double mutants to γ-ray was no greater than that of more sensitive of the two single mutants. This suggests that all these genes govern the same pathway. This group of genes was named RAD9-epistasis group. It is interesting to note that the genes RAD9 and RAD53 have positive effect but RAD17 and RAD24 have negative effect on radiosensitivity of yeast cells. Interactions between mutations may differ depending on the agent γ-ray or UV-light, for example mutations rad9Δ and rad24Δ show additive effect for γ-ray and epistatic effect for UV-light

  4. Dpb11/TopBP1 plays distinct roles in DNA replication, checkpoint response and homologous recombination

    DEFF Research Database (Denmark)

    Germann, Susanne Manuela; Østergaard, Vibe Hallundbæk; Haas, Caroline

    2011-01-01

    DPB11/TopBP1 is an essential evolutionarily conserved gene involved in initiation of DNA replication and checkpoint signaling. Here, we show that Saccharomyces cerevisiae Dpb11 forms nuclear foci that localize to sites of DNA damage in G1, S and G2 phase, a recruitment that is conserved for its...... and Tel1, and of the checkpoint mediator Rad9. In a site-directed mutagenesis screen, we identify a separation-of-function mutant, dpb11-PF, that is sensitive to DSB-inducing agents yet remains proficient for DNA replication and the S-phase checkpoint at the permissive temperature. The dpb11-PF mutant...... homologue TopBP1 in Gallus gallus. Damage-induced Dpb11 foci are distinct from Sld3 replication initiation foci. Further, Dpb11 foci are dependent on the checkpoint proteins Mec3 (9-1-1 complex) and Rad24, and require the C-terminal domain of Dpb11. Dpb11 foci are independent of the checkpoint kinases Mec1...

  5. Characterization of a putative spindle assembly checkpoint kinase Mps1, suggests its involvement in cell division, morphogenesis and oxidative stress tolerance in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Mohan Kamthan

    Full Text Available In Saccharomyces cerevisiae MPS1 is one of the major protein kinase that governs the spindle checkpoint pathway. The S. cerevisiae structural homolog of opportunistic pathogen Candida albicans CaMPS1, is indispensable for the cell viability. The essentiality of Mps1 was confirmed by Homozygote Trisome test. To determine its biological function in this pathogen conditional mutant was generated through regulatable MET3 promoter. Examination of heterozygous and conditional (+Met/Cys mps1 mutants revealed a mitosis specific arrest phenotype, where mutants showed large buds with undivided nuclei. Flowcytometry analysis revealed abnormal ploidy levels in mps1 mutant. In presence of anti-microtubule drug Nocodazole, mps1 mutant showed a dramatic loss of viability suggesting a role of Mps1 in Spindle Assembly Checkpoint (SAC activation. These mutants were also defective in microtubule organization. Moreover, heterozygous mutant showed defective in-vitro yeast to hyphae morphological transition. Growth defect in heterozygous mutant suggest haploinsufficiency of this gene. qRT PCR analysis showed around 3 fold upregulation of MPS1 in presence of serum. This expression of MPS1 is dependent on Efg1 and is independent of other hyphal regulators like Ras1 and Tpk2. Furthermore, mps1 mutants were also sensitive to oxidative stress. Heterozygous mps1 mutant did not undergo morphological transition and showed 5-Fold reduction in colony forming units in response to macrophage. Thus, the vital checkpoint kinase, Mps1 besides cell division also has a role in morphogenesis and oxidative stress tolerance, in this pathogenic fungus.

  6. Participation of SRM5/CDC28, SRM8/NET1 and SRM12/HF11 genes in activation of checkpoints of Yeast Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Kadyshevskaya, E.Yu.; Koltovaya, N.A.

    2007-01-01

    It is known that there are about twenty checkpoint genes in yeast Saccharomyces cerevisiae. We study participation of SRM genes selected as genes affecting genetic stability and radiosensitivity. It has been shown that srm5/cdc28-srm, srm8/net1-srm, srm12/hfil-srm mutations prevent checkpoint activation by DNA damage, particularly G0/S-checkpoint (srm5, srm8), G1/S-checkpoint (srm5, srm8, srm12), S-checkpoint (srm5, srm12) and G2-checkpoint (srm5). These data indicate, at least in budding yeast, CDC28/SRM5, HF11/ADA1/SRM12 and NET1/SRM8 genes mediate cellular response induced by DNA damage including checkpoint control

  7. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    The simple eukaryote Saccharomyces cerevisiae has proved to be a useful organism for elucidating the mechanisms that govern cell cycle progression in eukaryotic cells. The excellent in vivo system permits a cell cycle study using temperature sensitive mutants. In addition, it is possible to study...... many genes and gene products from higher eukaryotes in Saccharomyces cerevisiae because many genes and biological processes are homologous or similar in lower and in higher eukaryotes. The highly developed methods of genetics and molecular biology greatly facilitates studies of higher eukaryotic...... processes.Programmmed cell death with apoptosis plays a major role in development and homeostatis in most, if not all, animal cells. Apoptosis is a morphologically distinct form of death, that requires the activation of a highly regulated suicide program. Saccharomyces cerevisiae provides a new system...

  8. Isolation of glutathione-deficient mutants of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kistler, M.; Eckardt, F.; Summer, K.-H.

    1986-01-01

    Glutathione-deficient (gsh - ) mutants of the yeast Saccharomyces cerevisiae were isolated after UV treatment using MNNG as selective agent. For genetic and biochemical characterization 5 mutant strains were chosen which exhibited considerably decreased residual GSH contents varying from 2 to 6% of the wild-type levels. All 5 isolates showed a 2:2 segregation of the gsh - :GSH + phenotypes alluding to a monogenic recessive mutation. Complementation analysis indicates that all gsh - mutants belong to one complementation group. (Auth.)

  9. Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.; Prakash, S.

    1977-01-01

    We have isolated mutants sensitive to methyl methanesulfonate (MMS) in Saccharomyces cerevisiae. Alleles of rad1, rad4, rad6, rad52, rad55 and rad57 were found among these mms mutants. Twenty-nine of the mms mutants which complement the existing radiation-sensitive (rad and rev) mutants belong to 22 new complementation groups. Mutants from five complementation groups are sensitive only to MMS. Mutants of 11 complementation groups are sensitive to uv or x rays in addition to MMS, mutants of six complementation groups are sensitive to all three agents. The cross-sensitivities of these mms mutants to uv and x rays are discussed in terms of their possible involvement in DNA repair. Sporulation is reduced or absent in homozygous diploids of mms mutants from nine complementation groups

  10. CDC28, NETI, and HFII are required for checkpoints in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Koltovaya, N.A.; Kadyshevskaya, E.Yu.; Roshina, M.P.; Devin, A.B.

    2009-01-01

    The involvement of SRM genes selected as genes affecting genetic stability and radiosensitivity in a cell cycle arrest under the action of damaging agents was studied. It was shown that the srm5/cdc28-srm, srm8/netI-srm, and srmI2/hfiI-srm mutations prevent checkpoint activation by DNA damage, particularly the G 0 /S (srm5, srm8), G 1 /S (srm5, srm8, srm12), S (srm8, srm12) and S/G 2 (srm5) checkpoints. It seems that in budding yeast the CDC28, HFII/ADAI, and NETI genes mediate cellular response induced by DNA damage with checkpoint control. The well-known checkpoint-genes RAD9, RAD17, RAD24, and RAD53, and the genes CDC28, and NETI have been found to belong to one epistasis group named RAD9-group as regards cell sensitivity to γ radiation. An analysis of the radiosensitivity of double mutants has revealed that the mutation cdc-28-srm is hypostatic to each of mutations rad9Δ, and rad24Δ, and additive to rad17Δ. The mutation netI-srm is hypostatic to the mutations rad9Δ but additive to rad17Δ, rad24Δ, and rad53. The mutation hfiI-srm has an additive effect in compound with the mutations rad24Δ and rad9Δ. So, investigations of epistatic interactions have demonstrated a branched RAD9-dependent pathway. The analyzed genes can also participate in a minor mechanism involved in determining cell radiation sensitivity independently of the mentioned RAD9-dependent pathway

  11. Kinetics of formation of induced mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chepurnoj, A.I.; Levkovich, N.V.; Mikhova-Tsenova, N.; Mel'nikova, L.A.

    1990-01-01

    UV and γ-radiation mutagenic effect an various strains of Saccharomyces cerevisiae was studied by analyzing formation kinetics of induced mutants at the period of postirradiation incubation. Mechanisms of induced reverse formation was suggested. The presented analysis is considered to be differential taking account of more subtle aspects of induced mutagenesis. 8 refs.; 10 figs.; 3 tabs

  12. Increased spontaneous mitotic segregation in MMS-sensitive mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.

    1977-01-01

    Methyl methanesulfonate (MMS)-sensitive mutants of Saccharomyces cerevisiae belonging to four different complementation groups, when homozygous, increase the rate of spontaneous mitotic segregation to canavanine resistance from heterozygous sensitive (can/sup r//+) diploids by 13- to 170-fold. The mms8-1 mutant is MMS and x-ray sensitive and increases the rate of spontaneous mitotic segregation 170-fold. The mms9-1 and mms13-1 mutants are sensitive to x rays and uv, respectively, in addition to MMS, and increase the rate of spontaneous mitotic segregation by 13-fold and 85-fold, respectively. The mutant mms21-1 is sensitive to MMS, x rays and uv and increases the rate of spontaneous mitotic segregation 23-fold

  13. Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae.

    Science.gov (United States)

    Nijland, Jeroen G; Shin, Hyun Yong; Boender, Leonie G M; de Waal, Paul P; Klaassen, Paul; Driessen, Arnold J M

    2017-06-01

    Engineering Saccharomyces cerevisiae for the utilization of pentose sugars is an important goal for the production of second-generation bioethanol and biochemicals. However, S. cerevisiae lacks specific pentose transporters, and in the presence of glucose, pentoses enter the cell inefficiently via endogenous hexose transporters (HXTs). By means of in vivo engineering, we have developed a quadruple hexokinase deletion mutant of S. cerevisiae that evolved into a strain that efficiently utilizes d-xylose in the presence of high d-glucose concentrations. A genome sequence analysis revealed a mutation (Y353C) in the general corepressor CYC8 , or SSN6 , which was found to be responsible for the phenotype when introduced individually in the nonevolved strain. A transcriptome analysis revealed altered expression of 95 genes in total, including genes involved in (i) hexose transport, (ii) maltose metabolism, (iii) cell wall function (mannoprotein family), and (iv) unknown functions (seripauperin multigene family). Of the 18 known HXTs, genes for 9 were upregulated, especially the low or nonexpressed HXT10 , HXT13 , HXT15 , and HXT16 Mutant cells showed increased uptake rates of d-xylose in the presence of d-glucose, as well as elevated maximum rates of metabolism ( V max ) for both d-glucose and d-xylose transport. The data suggest that the increased expression of multiple hexose transporters renders d-xylose metabolism less sensitive to d-glucose inhibition due to an elevated transport rate of d-xylose into the cell. IMPORTANCE The yeast Saccharomyces cerevisiae is used for second-generation bioethanol formation. However, growth on xylose is limited by pentose transport through the endogenous hexose transporters (HXTs), as uptake is outcompeted by the preferred substrate, glucose. Mutant strains were obtained with improved growth characteristics on xylose in the presence of glucose, and the mutations mapped to the regulator Cyc8. The inactivation of Cyc8 caused increased

  14. Screening and identification of respiration deficiency mutants of yeasts (Saccharomyces Cerevisiae) induced by heavy ion irradiation

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Zhang Hong

    2006-01-01

    A screen of respiration deficiency mutants of Saccharomyces Cerevisiae induced by 5.19 MeV/u 22 Ne 5- ion irradiation is studied. Some respiration deficiency mutants, which are white colony phenotype in the selective culture of TTC medium, are obtained. The mutants are effectively identified by means of a new and simplified restriction analysis method. (authors)

  15. Checkpoint independence of most DNA replication origins in fission yeast.

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-12-19

    In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (approximately 3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint-mutant

  16. Checkpoint independence of most DNA replication origins in fission yeast

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in

  17. Checkpoint independence of most DNA replication origins in fission yeast

    Directory of Open Access Journals (Sweden)

    Scott Donna

    2007-12-01

    Full Text Available Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU, which limits the pool of deoxyribonucleoside triphosphates (dNTPs and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR or cds1 (which encodes the fission yeast homologue of Chk2. Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3% behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild

  18. The DNA repair capability of cdc9, the saccharomyces cerevisiae mutant defective in DNA ligase

    International Nuclear Information System (INIS)

    Johnston, L.H.

    1979-01-01

    The cell cycle mutant, cdc9, in the yeast Saccharomyces cerevisiae is defective in DNA ligase with the consequence to be deficient in the repair of DNA damaged by methyl methane sulphonate. On the other hand survival of cdc9 after irradiation by γ-rays is little different from that of the wild-type, even after a period of stress at the restrictive temperature. The mutant cdc9 is not allelic with any known rad or mms mutants. (orig./AJ) [de

  19. Repair of UV-irradiated plasmid DNA in excision repair deficient mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ikai, K.; Tano, K.; Ohnishi, T.; Nozu, K.

    1985-01-01

    The repair of UV-irradiated DNA of plasmid YEp13 was studied in the incision defective strains by measurement of cell transformation frequency. In Saccharomyces cerevisiae, rad1,2,3 and 4 mutants could repair UV-damaged plasmid DNA. In Escherichia coli, uvrA mutant was unable to repair UV-damaged plasmid DNA; however, pretreatment of the plasmid with Micrococcus luteus endonuclease increased repair. It was concluded that all the mutations of yeast were probably limited only to the nuclear DNA. (author)

  20. Crystallization and preliminary X-ray diffraction analysis of motif N from Saccharomyces cerevisiae Dbf4

    International Nuclear Information System (INIS)

    Matthews, Lindsay A.; Duong, Andrew; Prasad, Ajai A.; Duncker, Bernard P.; Guarné, Alba

    2009-01-01

    To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. The Cdc7–Dbf4 complex plays an instrumental role in the initiation of DNA replication and is a target of replication-checkpoint responses in Saccharomyces cerevisiae. Cdc7 is a conserved serine/threonine kinase whose activity depends on association with its regulatory subunit, Dbf4. A conserved sequence near the N-terminus of Dbf4 (motif N) is necessary for the interaction of Cdc7–Dbf4 with the checkpoint kinase Rad53. To understand the role of the Cdc7–Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. A complete native data set was collected at 100 K from crystals that diffracted X-rays to 2.75 Å resolution and structure determination is currently under way

  1. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Tatsunori; Taguchi, Hisataka; Fujimori, Kazuhiro E; Sahara, Takehiko; Ohgiya, Satoru; Kamagata, Yoichi; Akamatsu, Takashi

    2016-10-01

    To clarify the mechanisms of xylitol utilization, three xylitol-assimilating mutants were isolated from recombinant Saccharomyces cerevisiae strains showing highly efficient xylose-utilization. The nucleotide sequences of the mutant genomes were analyzed and compared with those of the wild-type strains and the mutation sites were identified. gal80 mutations were common to all the mutants, and recessive to the wild-type allele. Hence we constructed a gal80Δ mutant and confirmed that the gal80Δ mutant showed a xylitol-assimilation phenotype. When the constructed gal80Δ mutant was crossed with the three isolated mutants, all diploid hybrids showed xylitol assimilation, indicating that the mutations were all located in the GAL80. We analyzed the role of the galactose permease Gal2, controlled by the regulatory protein Gal80, in assimilating xylitol. A gal2Δ gal80Δ double mutant did not show xylitol assimilation, whereas expression of GAL2 under the control of the TDH3 promoter in the GAL80 strain did result in assimilation. These data indicate that Gal2 was needed for xylitol assimilation in the wild-type strain. When the gal80 mutant with an initial cell concentration of A660 = 20 was used for batch fermentation in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C under oxygen limitation, the gal80 mutant consumed 100% of the xylose within 12 h, but xylitol within 100 h, indicating that xylose reductase is required for xylitol consumption in oxygen-limited conditions. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Mutant p53 perturbs DNA replication checkpoint control through TopBP1 and Treslin.

    Science.gov (United States)

    Liu, Kang; Lin, Fang-Tsyr; Graves, Joshua D; Lee, Yu-Ju; Lin, Weei-Chin

    2017-05-09

    Accumulating evidence supports the gain-of-function of mutant forms of p53 (mutp53s). However, whether mutp53 directly perturbs the DNA replication checkpoint remains unclear. Previously, we have demonstrated that TopBP1 forms a complex with mutp53s and mediates their gain-of-function through NF-Y and p63/p73. Akt phosphorylates TopBP1 and induces its oligomerization, which inhibits its ATR-activating function. Here we show that various contact and conformational mutp53s bypass Akt to induce TopBP1 oligomerization and attenuate ATR checkpoint response during replication stress. The effect on ATR response caused by mutp53 can be exploited in a synthetic lethality strategy, as depletion of another ATR activator, DNA2, in mutp53-R273H-expressing cancer cells renders cells hypersensitive to cisplatin. Expression of mutp53-R273H also makes cancer cells more sensitive to DNA2 depletion or DNA2 inhibitors. In addition to ATR-activating function during replication stress, TopBP1 interacts with Treslin in a Cdk-dependent manner to initiate DNA replication during normal growth. We find that mutp53 also interferes with TopBP1 replication function. Several contact, but not conformational, mutp53s enhance the interaction between TopBP1 and Treslin and promote DNA replication despite the presence of a Cdk2 inhibitor. Together, these data uncover two distinct mechanisms by which mutp53 enhances DNA replication: ( i ) Both contact and conformational mutp53s can bind TopBP1 and attenuate the checkpoint response to replication stress, and ( ii ) during normal growth, contact (but not conformational) mutp53s can override the Cdk2 requirement to promote replication by facilitating the TopBP1/Treslin interaction.

  3. Phenotypic characterization of glucose repression mutants of Saccharomyce cerevisiae usinge experiments with C-13-labelled glucose

    DEFF Research Database (Denmark)

    Vijayendran, Raghevendran; Gombert, A.K.; Christensen, B.

    2004-01-01

    techniques, which do not provide information about the integrated response a specific genetic modification has on the cellular function. In this study we have performed phenotypic characterization of several mutants of the yeast Saccharomyces cerevisiae through the use of experiments with C-13-labelled...

  4. Ultraviolet-endonuclease activity in cell extracts of Saccharomyces cerevisiae mutants defective in excision of pyrimidine dimers

    International Nuclear Information System (INIS)

    Bekker, M.L.; Kaboev, O.K.; Akhmedov, A.T.; Luchkina, L.A.

    1980-01-01

    Cell-free extracts of ultraviolet-sensitive mutants of Saccharomyces cerevisiae defective in excision of pyrimidine dimers, rad1, rad2, rad3, rad4, rad10, and rad16, as well as the extracts of the wild-type strain RAD+, display ultraviolet-endonuclease activity

  5. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Mihoko; Wang, Teresa S.-F

    2003-11-27

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Pol{kappa}). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.

  6. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    International Nuclear Information System (INIS)

    Kai, Mihoko; Wang, Teresa S.-F.

    2003-01-01

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polκ). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development

  7. Screening of respiration deficiency mutants of yeasts (Saccharomyces cerevisiae) induced by ion irradiation and the mtDNA restriction analysis

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Ma Qiufeng; Gu Ying

    2005-01-01

    Screening of the respiration deficiency mutants of Saccharomyces cerevisiae induced by 5.19 MeV/u 22 Ne 5+ ion irradiation is reported in this paper. Some respiration deficiency mutants of white colony phenotype, in a condition of selective culture of TTC medium, were obtained. A new and simplified method based on mtDNA restriction analysis is described. The authors found that there are many obvious differences in mtDNAs between wild yeasts and the respiration deficiency mutants. The mechanism of obtaining the respiration deficiency mutants induced by heavy ion irradiation is briefly discussed. (authors)

  8. Anaphase onset before complete DNA replication with intact checkpoint responses

    DEFF Research Database (Denmark)

    Torres-Rosell, Jordi; De Piccoli, Giacomo; Cordon-Preciado, Violeta

    2007-01-01

    Cellular checkpoints prevent mitosis in the presence of stalled replication forks. Whether checkpoints also ensure the completion of DNA replication before mitosis is unknown. Here, we show that in yeast smc5-smc6 mutants, which are related to cohesin and condensin, replication is delayed, most...

  9. Regularities of ''rapid'' repair in radiosensitive mutants of diploid yeasts Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Glazunov, A.V.; Kapul'tsevich, Yu.G.

    1982-01-01

    A study was made of ''rapid'' repair in radiosensitive mutants of diploid yeast Saccharomyces cerevisiae after irradiation with ν-quanta and α-particles. It was shown that the capacity of ''rapid'' repair does not always correlate with the ability of ''slow'' postirradiation repair of viability of yeast cells. A conclusion is made that ''rapid'' and ''slow'' repair are independent processes. It was found that ''rapid'' repair of the studied strains of diploid yeast is more effective after exposure to ν-quanta than α-particles

  10. Top3 processes recombination intermediates and modulates checkpoint activity after DNA damage

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Hickson, Ian D

    2006-01-01

    Mutation of TOP3 in Saccharomyces cerevisiae causes poor growth, hyperrecombination, and a failure to fully activate DNA damage checkpoints in S phase. Here, we report that overexpression of a dominant-negative allele of TOP3, TOP3(Y356F), which lacks the catalytic (decatenation) activity of Top3......, the catalytic activity of Top3 is not required for DNA damage checkpoint activation, but it is required for normal S-phase progression after DNA damage. We also present evidence that the checkpoint-mediated cell cycle delay and persistence of X-shaped DNA molecules resulting from overexpression of TOP3(Y356F......) are downstream of Rad51 function. We propose that Top3 functions in S phase to both process homologous recombination intermediates and modulate checkpoint activity....

  11. Checkpoint independence of most DNA replication origins in fission yeast

    OpenAIRE

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleo...

  12. Characterization of an MMS sensitive mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Martin, P.S.

    1979-01-01

    We have characterized a methyl methanesulfonate sensitive mutant of the yeast Saccharomyces cerevisiae in order to learn more about DNA repair and mutagenesis in this organism. The mutation, designated mms3-1, also confers sensitivity to ultraviolet light and to ethyl methanesulfonate in both haploids and homozygous diploids. Its effect on γ-ray sensitivity, however, is a function of the ploidy of the cell and its effect on induced mutation is a function of both the ploidy of the cell and the nature of the inducing agent. Our major findings are discussed. Our data indicate that: (1) Saccharomyces cerevisiae has an error prone pathway for the repair of uv damage controlled by the MMS3 gene product operating in and only in, and possibly induced by conditions present only in, a/α diploids; (2) in diploids, at least, there exists at least one step in the error prone repair of uv induced damage which is different from a step in the error prone repair of EMS induced damage; (3) a/α mms3-1/mms3-1 diploids may be defective in a step common to the repair of mutagenic lesions following uv irradiation and lethal lesions following γ irradiation; and (4) there are steps in the repair of MMS induced lethal damage that are different from steps in the repair of EMS induced lethal damage

  13. Saccharomyces cerevisiae mutants with enhanced induced mutation and altered mitotic gene conversion.

    Science.gov (United States)

    Ivanov, E L; Kovaltzova, S V; Korolev, V G

    1989-08-01

    We have developed a method to isolate yeast (Saccharomyces cerevisiae) mutants with enhanced induced mutagenesis based on nitrous acid-induced reversion of the ade2-42 allele. Six mutants have been isolated and designated him (high induced mutagenesis), and 4 of them were studied in more detail. The him mutants displayed enhanced reversion of the ade2-42 allele, either spontaneous or induced by nitrous acid, UV light, and the base analog 6-N-hydroxylaminopurine, but not by gamma-irradiation. It is worth noting that the him mutants turned out not to be sensitive to the lethal effects of the mutagens used. The enhancement in mutation induced by nitrous acid, UV light, and 6-N-hydroxylaminopurine has been confirmed in a forward-mutation assay (induction of mutations in the ADE1, ADE2 genes). The latter agent revealed the most apparent differences between the him mutants and the wild-type strain and was, therefore, chosen for the genetic analysis of mutants, him mutations analyzed behaved as a single Mendelian trait; complementation tests indicated 3 complementation groups (HIM1, HIM2, and HIM3), each containing 1 mutant allele. Uracil-DNA glycosylase activity was determined in crude cell extracts, and no significant differences between the wild-type and him strains were detected. Spontaneous mitotic gene conversion at the ADE2 locus is altered in him1 strains, either increased or decreased, depending on the particular heteroallelic combination. Genetic evidence strongly suggests him mutations to be involved in a process of mismatch correction of molecular heteroduplexes.

  14. The SFP1 gene product of Saccharomyces cerevisiae regulates G2/M transitions during the mitotic cell cycle and DNA-damage response

    International Nuclear Information System (INIS)

    Xu, Z.; Norris, D.

    1998-01-01

    In eukaryotic cells, checkpoint pathways arrest cell-cycle progression if a particular event has failed to complete appropriately or if an important intracellular structure is defective or damaged. Saccharomyces cerevisiae strains that lack the SFP1 gene fail to arrest at the G2 DNA-damage checkpoint in response to genomic injury, but maintain their ability to arrest at the replication and spindle-assembly checkpoints. sfp1D mutants are characterized by a premature entrance into mitosis during a normal (undamaged) cell cycle, while strains that overexpress Sfp1p exhibit delays in G2. Sfp1p therefore acts as a repressor of the G2/M transition, both in the normal cell cycle and in the G2 checkpoint pathway. Sfp1 is a nuclear protein with two Cys2His2 zinc-finger domains commonly found in transcription factors. We propose that Sfp1p regulates the expression of gene products involved in the G2/M transition during the mitotic cell cycle and the DNA-damage response. In support of this model, overexpression of Sfp1p induces the expression of the PDS1 gene, which is known to encode a protein that regulates the G2 checkpoint. (author)

  15. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Midori [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Yamamoto, Ayumu [Department of Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka 422-8529 (Japan); Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aiba, Hirofumi [Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Japan); Murakami, Hiroshi, E-mail: hmura@med.nagoya-cu.ac.jp [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2009-10-23

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2{sup +}. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  16. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    International Nuclear Information System (INIS)

    Shimada, Midori; Yamamoto, Ayumu; Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi; Aiba, Hirofumi; Murakami, Hiroshi

    2009-01-01

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2 + . The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  17. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    Science.gov (United States)

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Induction and isolation of DNA transformation mutants in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Hegerich, P.A.; Bruschi, C.V.

    1987-01-01

    The objective of this research was to induce and isolate mutants of the yeast Saccharomyces cerevisiae which have become transformable by purified plasmid DNA. Non-transformable yeast cells were mutagenized by ultraviolet light using a 65% lethal dose (480 ergs/mm 2 ). After a period of overnight liquid holding recovery, the irradiated cells were subjected to DNA transformation using our CaCl 2 protocol with the multi-marker shuttle plasmid pBB carrying the LEU 2 leucine gene. Following transformation the colonies that grew on selective leucineless medium were identified and subjected to further genetic analysis. From a total of 1 x 10 9 cells the authors have isolated 7 colonies deriving from putative mutants that have acquired the capability to uptake plasmid DNA. The transformants were cured from the plasmid by its mitotic loss on non-selective medium, then re-transformed to verify their genetic competence to give rise to a number of transformants comparable to transformable strains. We have identified and isolated one mutant, coded trs-1, which is able to reproduce a frequency of transformation comparable with the tranformable control. They, therefore, conclude that this mutant is specific for plasmid DNA transformation and that the mutation is mitotically stable

  19. Stress Tolerance in Doughs of Saccharomyces cerevisiae Trehalase Mutants Derived from Commercial Baker’s Yeast

    Science.gov (United States)

    Shima, Jun; Hino, Akihiro; Yamada-Iyo, Chie; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Mori, Katsumi; Takano, Hiroyuki

    1999-01-01

    Accumulation of trehalose is widely believed to be a critical determinant in improving the stress tolerance of the yeast Saccharomyces cerevisiae, which is commonly used in commercial bread dough. To retain the accumulation of trehalose in yeast cells, we constructed, for the first time, diploid homozygous neutral trehalase mutants (Δnth1), acid trehalase mutants (Δath1), and double mutants (Δnth1 ath1) by using commercial baker’s yeast strains as the parent strains and the gene disruption method. During fermentation in a liquid fermentation medium, degradation of intracellular trehalose was inhibited with all of the trehalase mutants. The gassing power of frozen doughs made with these mutants was greater than the gassing power of doughs made with the parent strains. The Δnth1 and Δath1 strains also exhibited higher levels of tolerance of dry conditions than the parent strains exhibited; however, the Δnth1 ath1 strain exhibited lower tolerance of dry conditions than the parent strain exhibited. The improved freeze tolerance exhibited by all of the trehalase mutants may make these strains useful in frozen dough. PMID:10388673

  20. Vph6 Mutants of Saccharomyces Cerevisiae Require Calcineurin for Growth and Are Defective in Vacuolar H(+)-Atpase Assembly

    OpenAIRE

    Hemenway, C. S.; Dolinski, K.; Cardenas, M. E.; Hiller, M. A.; Jones, E. W.; Heitman, J.

    1995-01-01

    We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demo...

  1. Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response

    Directory of Open Access Journals (Sweden)

    Nicole A. Najor

    2016-12-01

    Full Text Available In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control.

  2. Repair of pyrimidine dimers in radiation-sensitive mutants rad3, rad4, rad6, and rad9 of Saccharomyces cerevisiae. [nicking

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L [Rochester Univ., N.Y. (USA). Dept. of Radiation Biology and Biophysics; Rochester Univ., N.Y. (USA). School of Medicine and Dentistry)

    1977-10-01

    The ability to remove ultraviolet-induced pyrimidine dimers was examined in four radiation-sensitive mutants of Saccharomyces cerevisiae. The susceptibility of DNA from irradiated cells to nicking by either the T4 uv-endonuclease or an endonuclease activity found in crude extracts of Micrococcus luteus was used to measure the presence of dimers in DNA. The rad3 and rad4 mutants are shown to be defective in dimer excision whereas the rad6 and rad9 mutants are proficient in dimer excision.

  3. RAD9, RAD17; RAD24, and RAD53 control one pathway of resistance to γ irradiation in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Koltovaya, N.A.; Nikulushkina, Yu.V.; Roshina, M.P.; Devin, A.B.

    2009-01-01

    Mechanisms for the genetic control of the cell cycle transition (checkpoint control) have been studied in more detail in yeast Saccharomyces cerevisiae. To clarify tho role of the RAD9, RAD17, RAD24, and RAD53 checkpoint genes in cell radioresistance, diploid double mutants were analyzed for cell sensitivity to ionizing radiation. All mutations in combination with rad9Δ were shown to manifest the epistatic type of interaction. Our results suggest that the RAD9, RAD17, RAD24, and RAD53 checkpoint genes belong to a single epistasis group called the RAD9 group and participate in the same pathway. RAD9 and RAD53 have a positive effect on sensitivity to γ irradiation, whereas RAD17 and RAD24 have a negative effect. For haploid interactions between mutations may differ in the case of γ or UV irradiation, mutations - for example, rad9Δ and rad24Δ - were shown to have an additive effect in the first case and epistatic - in the second. The analyzed genes can also participate in minor mechanisms of radioresistance that are relatively independent of the above major mechanism

  4. Cenp-meta is required for sustained spindle checkpoint

    Directory of Open Access Journals (Sweden)

    Thomas Rubin

    2014-05-01

    Full Text Available Cenp-E is a kinesin-like motor protein required for efficient end-on attachment of kinetochores to the spindle microtubules. Cenp-E immunodepletion in Xenopus mitotic extracts results in the loss of mitotic arrest and massive chromosome missegregation, whereas its depletion in mammalian cells leads to chromosome segregation defects despite the presence of a functional spindle assembly checkpoint (SAC. Cenp-meta has previously been reported to be the Drosophila homolog of vertebrate Cenp-E. In this study, we show that cenp-metaΔ mutant neuroblasts arrest in mitosis when treated with colchicine. cenp-metaΔ mutant cells display a mitotic delay. Yet, despite the persistence of the two checkpoint proteins Mad2 and BubR1 on unattached kinetochores, these cells eventually enter anaphase and give rise to highly aneuploid daughter cells. Indeed, we find that cenp-metaΔ mutant cells display a slow but continuous degradation of cyclin B, which eventually triggers the mitotic exit observed. Thus, our data provide evidence for a role of Cenp-meta in sustaining the SAC response.

  5. A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants

    International Nuclear Information System (INIS)

    Feng Hongqing; Wang Ruixue; Sun Peng; Wu Haiyan; Liu Qi; Li Fangting; Fang Jing; Zhang Jue; Zhu Weidong

    2010-01-01

    The mechanisms of eukaryotic cell response to cold plasma are studied. A series of single gene mutants of eukaryotic model organism Saccharomyces cerevisiae are used to compare their sensitivity to plasma treatment with the wild type. We examined 12 mutants in the oxidative stress pathway and the cell cycle pathway, in which 8 are found to be hypersensitive to plasma processing. The mutated genes' roles in the two pathways are analyzed to understand the biological response mechanisms of plasma treatment. The results demonstrate that genes from both pathways are needed for the eukaryotic cells to survive the complex plasma treatment.

  6. Comparative analysis on inactivation kinetics of between piezotolerant and piezosensitive mutant strains of Saccharomyces cerevisiae under combinations of high hydrostatic pressure and temperature.

    Science.gov (United States)

    Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru

    2017-12-01

    We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Checkpoint-dependent RNR induction promotes fork restart after replicative stress.

    Science.gov (United States)

    Morafraile, Esther C; Diffley, John F X; Tercero, José Antonio; Segurado, Mónica

    2015-01-20

    The checkpoint kinase Rad53 is crucial to regulate DNA replication in the presence of replicative stress. Under conditions that interfere with the progression of replication forks, Rad53 prevents Exo1-dependent fork degradation. However, although EXO1 deletion avoids fork degradation in rad53 mutants, it does not suppress their sensitivity to the ribonucleotide reductase (RNR) inhibitor hydroxyurea (HU). In this case, the inability to restart stalled forks is likely to account for the lethality of rad53 mutant cells after replication blocks. Here we show that Rad53 regulates replication restart through the checkpoint-dependent transcriptional response, and more specifically, through RNR induction. Thus, in addition to preventing fork degradation, Rad53 prevents cell death in the presence of HU by regulating RNR-expression and localization. When RNR is induced in the absence of Exo1 and RNR negative regulators, cell viability of rad53 mutants treated with HU is increased and the ability of replication forks to restart after replicative stress is restored.

  8. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    International Nuclear Information System (INIS)

    Feng Shi-Fu; Yang Ling; Yan Jie; Liu Zeng-Rong

    2012-01-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point

  9. Cellular radiation effects and hyperthermia cell cycle kinetics of radiation sensitive mutants of saccharomyces cerevisiae after x-irradiation and hyperthermia

    International Nuclear Information System (INIS)

    Fingerhut, R.; Kiefer, J.; Otto, F.

    1983-01-01

    Radiosensitive mutants rad2, rad9, and rad51 of Saccharomyces cerevisiae were X-irradiated with 120 Gy or 60 Gy, heated at 50 0 C for 30 min or treated with a combination of both and incubated in nutrient medium at 30 0 C. Cell number, percentage of budding cells, and cell cycle progression were determined in 45-min intervals. Cell cycle kinetics were investigated by flow cytofluorometry. Hyperthermia leads mainly to a lengthening of G1, whereas X-rays arrest cells of the rad2 and rad9 mutant in G2 and the rad51 - mutant additionaly in a state with DNA contents above G2. Cell division dealy is influenced by oxygen in all strains but to a lesser extent in the rad2 mutant. The effect of the combined treatment appears to be merely additive in the rad2 and rad9 mutant while the rad51 mutant is sensitized to X-irradiation by hyperthermia. No selective action of hyperthermia on hypoxic cells was found. (orig.)

  10. The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence.

    Science.gov (United States)

    Uzunova, Sonya Dimitrova; Zarkov, Alexander Stefanov; Ivanova, Anna Marianova; Stoynov, Stoyno Stefanov; Nedelcheva-Veleva, Marina Nedelcheva

    2014-01-01

    The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle.

  11. Crystallization and preliminary X-ray analysis of a decameric form of cytosolic thioredoxin peroxidase 1 (Tsa1), C47S mutant, from Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcos Antonio de, E-mail: scaff@lnls.br; Genu, Victor; Discola, Karen Fulan; Alves, Simone Vidigal; Netto, Luis Eduardo Soares [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo-SP (Brazil); Guimarães, Beatriz Gomes, E-mail: scaff@lnls.br [Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, 13084-971 Campinas-SP (Brazil); Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo-SP (Brazil)

    2007-08-01

    A recombinant mutant (C47S) of cytosolic thioredoxin peroxidase 1 from S. cerevisiae was expressed, purified and crystallized by the hanging-drop vapour-diffusion method from protein previously treated with 1,4-dithiothreitol. The crystals belong to the monoclinic space group C2 and diffraction data were collected to 2.8 Å resolution using a synchrotron-radiation source. Saccharomyces cerevisiae cytosolic thioredoxin peroxidase 1 (cTPxI or Tsa1) is a bifunctional enzyme with protective roles in cellular defence against oxidative and thermal stress that exhibits both peroxidase and chaperone activities. Protein overoxidation and/or high temperatures induce great changes in its quaternary structure and lead to its assembly into large complexes that possess chaperone activity. A recombinant mutant of Tsa1 from S. cerevisiae, with Cys47 substituted by serine, was overexpressed in Escherichia coli as a His{sub 6}-tagged fusion protein and purified by nickel-affinity chromatography. Crystals were obtained from protein previously treated with 1,4-dithiothreitol by the hanging-drop vapour-diffusion method using PEG 3000 as precipitant and sodium fluoride as an additive. Diffraction data were collected to 2.8 Å resolution using a synchrotron-radiation source. The crystal structure was solved by molecular-replacement methods and structure refinement is currently in progress.

  12. [Intragenic mitotic recombination induced by ultraviolet and gamma rays in radiosensitive mutants of Saccharomyces cerevisiae yeasts].

    Science.gov (United States)

    Zakharov, I A; Kasinova, G V; Koval'tsova, S V

    1983-01-01

    The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.

  13. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects.

    Science.gov (United States)

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A

    2016-09-19

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Basis for slow growth on non-fermentable substrates by a saccharomyces cerevisiae mutant UV-sensitive for rho- production

    International Nuclear Information System (INIS)

    Crosby, B.; Colson, A.M.; Briquet, M.; Goffeau, A.; Moustacchi, E.

    1978-01-01

    The mutant uvsp 72 of Saccharomyces cerevisiae UV-sensitive for rho - production displays slower growth on media containing non-fermentable carbon sources such as glycerol or lactate. The slower growth on glycerol is not due to any deficiency in glycerol catabolism or mitochondrial oxidative phosphorylation. No modifications of the sensitivity to ethidium bromide of the mitochondrial ATPase activity could be detected. A mathematical model is presented which accounts for slower growth of uvsp 72 on the sole basis of the continuous and elevated rho - production in the mutant strain. This model, which estimates the rate of mutation from the rate of growth and vice versa, has been verified experimentally in the case of uvsp 72. The model has been generalised, so that it can be used for any microbial population subject to constant and high rates of any type of mutation providing that the mutant is stable, and either unable to grow or able to grow at this own rate different from that of the parental strain. (orig.) [de

  15. Chemical Genomic Screening of a Saccharomyces cerevisiae Genomewide Mutant Collection Reveals Genes Required for Defense against Four Antimicrobial Peptides Derived from Proteins Found in Human Saliva

    Science.gov (United States)

    Bhatt, Sanjay; Schoenly, Nathan E.; Lee, Anna Y.; Nislow, Corey; Bobek, Libuse A.

    2013-01-01

    To compare the effects of four antimicrobial peptides (MUC7 12-mer, histatin 12-mer, cathelicidin KR20, and a peptide containing lactoferricin amino acids 1 to 11) on the yeast Saccharomyces cerevisiae, we employed a genomewide fitness screen of combined collections of mutants with homozygous deletions of nonessential genes and heterozygous deletions of essential genes. When an arbitrary fitness score cutoffs of 1 (indicating a fitness defect, or hypersensitivity) and −1 (indicating a fitness gain, or resistance) was used, 425 of the 5,902 mutants tested exhibited altered fitness when treated with at least one peptide. Functional analysis of the 425 strains revealed enrichment among the identified deletions in gene groups associated with the Gene Ontology (GO) terms “ribosomal subunit,” “ribosome biogenesis,” “protein glycosylation,” “vacuolar transport,” “Golgi vesicle transport,” “negative regulation of transcription,” and others. Fitness profiles of all four tested peptides were highly similar, particularly among mutant strains exhibiting the greatest fitness defects. The latter group included deletions in several genes involved in induction of the RIM101 signaling pathway, including several components of the ESCRT sorting machinery. The RIM101 signaling regulates response of yeasts to alkaline and neutral pH and high salts, and our data indicate that this pathway also plays a prominent role in regulating protective measures against all four tested peptides. In summary, the results of the chemical genomic screens of S. cerevisiae mutant collection suggest that the four antimicrobial peptides, despite their differences in structure and physical properties, share many interactions with S. cerevisiae cells and consequently a high degree of similarity between their modes of action. PMID:23208710

  16. vph6 mutants of Saccharomyces cerevisiae require calcineurin for growth and are defective in vacuolar H(+)-ATPase assembly.

    Science.gov (United States)

    Hemenway, C S; Dolinski, K; Cardenas, M E; Hiller, M A; Jones, E W; Heitman, J

    1995-11-01

    We have characterized a Saccharomyces cerevisiae mutant strain that is hypersensitive to cyclosporin A (CsA) and FK506, immunosuppressants that inhibit calcineurin, a serine-threonine-specific phosphatase (PP2B). A single nuclear mutation, designated cev1 for calcineurin essential for viability, is responsible for the CsA-FK506-sensitive phenotype. The peptidyl-prolyl cis-trans isomerases cyclophilin A and FKBP12, respectively, mediate CsA and FK506 toxicity in the cev1 mutant strain. We demonstrate that cev1 is an allele of the VPH6 gene and that vph6 mutant strains fail to assemble the vacuolar H(+)-ATPase (V-ATPase). The VPH6 gene was mapped on chromosome VIII and is predicted to encode a 181-amino acid (21 kD) protein with no identity to other known proteins. We find that calcineurin is essential for viability in many mutant strains with defects in V-ATPase function or vacuolar acidification. In addition, we find that calcineurin modulates extracellular acidification in response to glucose, which we propose occurs via calcineurin regulation of the plasma membrane H(+)-ATPase PMA1. Taken together, our findings suggest calcineurin plays a general role in the regulation of cation transport and homeostasis.

  17. In vitro analysis of the role of replication protein A (RPA) and RPA phosphorylation in ATR-mediated checkpoint signaling.

    Science.gov (United States)

    Lindsey-Boltz, Laura A; Reardon, Joyce T; Wold, Marc S; Sancar, Aziz

    2012-10-19

    Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair.

  18. In Vitro Analysis of the Role of Replication Protein A (RPA) and RPA Phosphorylation in ATR-mediated Checkpoint Signaling*

    Science.gov (United States)

    Lindsey-Boltz, Laura A.; Reardon, Joyce T.; Wold, Marc S.; Sancar, Aziz

    2012-01-01

    Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair. PMID:22948311

  19. Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae.

    Science.gov (United States)

    Navon, G; Shulman, R G; Yamane, T; Eccleshall, T R; Lam, K B; Baronofsky, J J; Marmur, J

    1979-10-16

    High-resolution phosphorus-31 nuclear magnetic resonance (31P NMR) spectra of wild-type and mutant strains of Saccharomyces cerevisiae were observed at a frequency of 145.7 MHz. Levels of various phosphorus metabolites were investigated upon addition of glucose under both aerobic and anaerobic conditions. Three mutant strains were isolated and their biochemical defects characterized: pfk lacked phosphofructokinase activity; pgi lacked phosphoglucose isomerase activity; and cif had no glucose catabolite repression of the fructose bisphosphatase activity. Each mutant strain was found to accumulate characteristic sugar phosphates when glucose was added to the cell suspension. In the case of the phosphofructokinase deficient mutant, the appearance of a pentose shunt metabolite was observed. 31P NMR peak assignments were made by a pH titration of the acid extract of the cells. Separate signals for terminal, penultimate, and central phosphorus atoms in intracellular polyphosphates allowed the estimation of their average molecular weight. Signals for glycero(3)phosphochline, glycero(3)phosphoserine, and glycero(3) phosphoethanolamine as well as three types of nucleotide diphosphate sugars could be observed. The intracellular pH in resting and anaerobic cells was in the range 6.5--6.8 and the level of adenosine 5'-triphosphate (ATP) low. Upon introduction of oxygen, the ATP level increased considerably and the intracellular pH reached a value of pH 7.2--7.3, irrespective of the external medium pH, indicating active proton transport in these cells. A new peak representing the inorganic phosphate of one of the cellular organelles, whose pH differed from the cytoplasmic pH, could be detected under appropriate conditions.

  20. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance.

    Science.gov (United States)

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-04-24

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%-86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  1. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    Science.gov (United States)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  2. Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants

    International Nuclear Information System (INIS)

    Lawrence, C.W.; Christensen, R.B.

    1979-01-01

    Dominant mutations at two newly identified loci, designated SRS1 and SRS2, that metabolically suppress the trimethoprim sensitivity of rad6 and rad18 strains, have been isolated from trimethorprim-resistant mutants arising spontaneously in rad6-1 rad18-2 strains of the yeast Saccharomyces cerevisiae. The SRS2 mutations also efficiently suppress the ultraviolet light sensitivity of the parent strains. They do not, however, suppress their sensitivity to ionizing radiation or their deficiency with respect to induced mutagenesis and sporulation. Such observations support the hypothesis that RAD6-dependent activities can be separated into two functionally distinct groups: a group of error-free repair activities that are responsible for a large amount of the radiation resistance of wild-type strains and also for their resistance to trimethoprim, and a group of error-prone activities that are responsible for induced mutagenesis and are also important in sporulation, but which account at best for only a very small amount of wild-type recovery

  3. Ethanol Production Kinetics by a Thermo-Tolerant Mutant of Saccharomyces Cerevisiae from Starch Industry Waste (Hydrol

    Directory of Open Access Journals (Sweden)

    Farman Ali Shah

    2010-06-01

    Full Text Available A thermo-tolerant and deoxyglucose-resistant mutant of Saccharomyces cerevisiae was developed and employed to convert them to fuel ethanol in a 150 litre fermenter. Maximum ethanol production was achieved when fermentation of dextrozyme- treated hydrol was carried out for about 36 hours under optimized fermenting conditions. The maximum specific ethanol production rate (qP, and overall ethanol yield (YP/S were found to be 2.82 g L-1 h-1 and 0.49 g/g respectively. Determination of activation energy for cell growth (Ea= 20.8 kJ/mol and death (Ed = 19.1 kJ/mol and product formation and inactivation (EP=35.8 kJ/mol and Edp = 33.5 kJ/mol revealed the thermo-stability of the organism for up to 47°C.

  4. Ethanol production kinetics by a thermo-tolerant mutant of saccharomyces cerevisiae from starch industry waste (hydrol)

    International Nuclear Information System (INIS)

    Shah, F.A.; Aziz, S.

    2010-01-01

    A thermo-tolerant and deoxyglucose-resistant mutant of Saccharomyces cerevisiae was developed and employed to convert them to fuel ethanol in a 150 litre fermenter. Maximum ethanol production was achieved when fermentation of dextrozyme- treated hydrol was carried out for about 36 hours under optimized fermenting conditions. The maximum specific ethanol production rate (qP), and overall ethanol yield (YP/S) were found to be 2.82 g L/sup -1/ h/sup -1/ and 0.49 g/g respectively. Determination of activation energy for cell growth (Ea= 20.8 kJ/mol) and death (Ed = 19.1 kJ/mol) and product formation and inactivation (EP=35.8 kJ/mol and Edp = 33.5 kJ/mol) revealed the thermo-stability of the organism for up to 47 deg. C. (author)

  5. Evidence against a photoprotective component of photoreactivation in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    MacQuillan, A.M.; Green, G.; Perry, W.G.

    1981-01-01

    Photoreactivation-deficient (phr - ) mutants of Saccharomyces cerevisiae were shown to lack in vitro DNA-photolyase activity. A phr - mutant was then compared with a phr + strain for near-UV induced photoprotection from far-UV irradiation. Neither strain exhibited a photoprotective effect. (author)

  6. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  7. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid : Growth profiles and catalase activities in relation to microbody proliferation

    NARCIS (Netherlands)

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two

  8. A Genetics Laboratory Module Involving Selection and Identification of Lysine Synthesis Mutants in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Jill B. Keeney

    2009-12-01

    Full Text Available We have developed a laboratory exercise, currently being used with college sophomores, which uses the yeast Saccharomyces cerevisiae to convey the concepts of amino acid biosynthesis, mutation, and gene complementation. In brief, selective medium is used to isolate yeast cells carrying a mutation in the lysine biosynthesis pathway. A spontaneous mutation in any one of three separate genetic loci will allow for growth on selective media; however, the frequency of mutations isolated from each locus differs. Following isolation of a mutated strain, students use complementation analysis to identify which gene contains the mutation. Since the yeast genome has been mapped and sequenced, students with access to the Internet can then research and develop hypotheses to explain the differences in frequencies of mutant genes obtained.

  9. Increased Rrm2 gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice

    DEFF Research Database (Denmark)

    Lopez-Contreras, Andres J; Specks, Julia; Barlow, Jacqueline H

    2015-01-01

    In Saccharomyces cerevisiae, absence of the checkpoint kinase Mec1 (ATR) is viable upon mutations that increase the activity of the ribonucleotide reductase (RNR) complex. Whether this pathway is conserved in mammals remains unknown. Here we show that cells from mice carrying extra alleles of the...

  10. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Anthony Arlia-Ciommo

    2014-05-01

    Full Text Available A body of evidence supports the view that the signaling pathways governing cellular aging – as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae. Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific ′′master regulator′′ proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest, the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  11. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Arlia-Ciommo, Anthony; Leonov, Anna; Piano, Amanda; Svistkova, Veronika; Titorenko, Vladimir I

    2014-05-27

    A body of evidence supports the view that the signaling pathways governing cellular aging - as well as mechanisms of their modulation by longevity-extending genetic, dietary and pharmacological interventions - are conserved across species. The scope of this review is to critically analyze recent advances in our understanding of cell-autonomous mechanisms of chronological aging in the budding yeast Saccharomyces cerevisiae . Based on our analysis, we propose a concept of a biomolecular network underlying the chronology of cellular aging in yeast. The concept posits that such network progresses through a series of lifespan checkpoints. At each of these checkpoints, the intracellular concentrations of some key intermediates and products of certain metabolic pathways - as well as the rates of coordinated flow of such metabolites within an intricate network of intercompartmental communications - are monitored by some checkpoint-specific "master regulator" proteins. The concept envisions that a synergistic action of these master regulator proteins at certain early-life and late-life checkpoints modulates the rates and efficiencies of progression of such processes as cell metabolism, growth, proliferation, stress resistance, macromolecular homeostasis, survival and death. The concept predicts that, by modulating these vital cellular processes throughout lifespan (i.e., prior to an arrest of cell growth and division, and following such arrest), the checkpoint-specific master regulator proteins orchestrate the development and maintenance of a pro- or anti-aging cellular pattern and, thus, define longevity of chronologically aging yeast.

  12. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway.

    Science.gov (United States)

    Fang, Su-Chiung; de los Reyes, Chris; Umen, James G

    2006-10-13

    Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB) tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription.

  13. The Expression of Millettia pinnata Chalcone Isomerase in Saccharomyces cerevisiae Salt-Sensitive Mutants Enhances Salt-Tolerance

    Directory of Open Access Journals (Sweden)

    Baiqu Huang

    2013-04-01

    Full Text Available The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR analyses. Its full length cDNA (666 bp was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE. The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%–86%. Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa, whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1 showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  14. Deficiency of the Arabidopsis helicase RTEL1 triggers a SOG1-dependent replication checkpoint in response to DNA cross-links.

    Science.gov (United States)

    Hu, Zhubing; Cools, Toon; Kalhorzadeh, Pooneh; Heyman, Jefri; De Veylder, Lieven

    2015-01-01

    To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint. © 2015 American Society of Plant Biologists. All rights reserved.

  15. Asynchronous Checkpoint Migration with MRNet in the Scalable Checkpoint / Restart Library

    Energy Technology Data Exchange (ETDEWEB)

    Mohror, K; Moody, A; de Supinski, B R

    2012-03-20

    Applications running on today's supercomputers tolerate failures by periodically saving their state in checkpoint files on stable storage, such as a parallel file system. Although this approach is simple, the overhead of writing the checkpoints can be prohibitive, especially for large-scale jobs. In this paper, we present initial results of an enhancement to our Scalable Checkpoint/Restart Library (SCR). We employ MRNet, a tree-based overlay network library, to transfer checkpoints from the compute nodes to the parallel file system asynchronously. This enhancement increases application efficiency by removing the need for an application to block while checkpoints are transferred to the parallel file system. We show that the integration of SCR with MRNet can reduce the time spent in I/O operations by as much as 15x. However, our experiments exposed new scalability issues with our initial implementation. We discuss the sources of the scalability problems and our plans to address them.

  16. Genomic reconstruction to improve bioethanol and ergosterol production of industrial yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Tong, Mengmeng; Gao, Kehui; Di, Yanan; Wang, Pinmei; Zhang, Chunfang; Wu, Xuechang; Zheng, Daoqiong

    2015-02-01

    Baker's yeast (Saccharomyces cerevisiae) is the common yeast used in the fields of bread making, brewing, and bioethanol production. Growth rate, stress tolerance, ethanol titer, and byproducts yields are some of the most important agronomic traits of S. cerevisiae for industrial applications. Here, we developed a novel method of constructing S. cerevisiae strains for co-producing bioethanol and ergosterol. The genome of an industrial S. cerevisiae strain, ZTW1, was first reconstructed through treatment with an antimitotic drug followed by sporulation and hybridization. A total of 140 mutants were selected for ethanol fermentation testing, and a significant positive correlation between ergosterol content and ethanol production was observed. The highest performing mutant, ZG27, produced 7.9 % more ethanol and 43.2 % more ergosterol than ZTW1 at the end of fermentation. Chromosomal karyotyping and proteome analysis of ZG27 and ZTW1 suggested that this breeding strategy caused large-scale genome structural variations and global gene expression diversities in the mutants. Genetic manipulation further demonstrated that the altered expression activity of some genes (such as ERG1, ERG9, and ERG11) involved in ergosterol synthesis partly explained the trait improvement in ZG27.

  17. The tumor suppressor homolog in fission yeast, myh1+, displays a strong interaction with the checkpoint gene rad1+

    International Nuclear Information System (INIS)

    Jansson, Kristina; Warringer, Jonas; Farewell, Anne; Park, Han-Oh; Hoe, Kwang-Lae; Kim, Dong-Uk; Hayles, Jacqueline; Sunnerhagen, Per

    2008-01-01

    The DNA glycosylase MutY is strongly conserved in evolution, and homologs are found in most eukaryotes and prokaryotes examined. This protein is implicated in repair of oxidative DNA damage, in particular adenine mispaired opposite 7,8-dihydro-8-oxoguanine. Previous investigations in Escherichia coli, fission yeast, and mammalian cells show an association of mutations in MutY homologs with a mutator phenotype and carcinogenesis. Eukaryotic MutY homologs physically associate with several proteins with a role in replication, DNA repair, and checkpoint signaling, specifically the trimeric 9-1-1 complex. In a genetic investigation of the fission yeast MutY homolog, myh1 + , we show that the myh1 mutation confers a moderately increased UV sensitivity alone and in combination with mutations in several DNA repair genes. The myh1 rad1, and to a lesser degree myh1 rad9, double mutants display a synthetic interaction resulting in enhanced sensitivity to DNA damaging agents and hydroxyurea. UV irradiation of myh1 rad1 double mutants results in severe chromosome segregation defects and visible DNA fragmentation, and a failure to activate the checkpoint. Additionally, myh1 rad1 double mutants exhibit morphological defects in the absence of DNA damaging agents. We also found a moderate suppression of the slow growth and UV sensitivity of rhp51 mutants by the myh1 mutation. Our results implicate fission yeast Myh1 in repair of a wider range of DNA damage than previously thought, and functionally link it to the checkpoint pathway

  18. Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast.

    Directory of Open Access Journals (Sweden)

    Bilge Argunhan

    Full Text Available Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs. The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI whereas no significant reduction was found in smaller chromosomes (III and VI. On the other hand, the absence of Rad17 (a critical component of the ATR pathway lead to an increase in DSB formation (chromosomes VII and II were tested. We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation.

  19. Rsp5 ubiquitin ligase is required for protein trafficking in Saccharomyces cerevisiae COPI mutants.

    Directory of Open Access Journals (Sweden)

    Katarzyna Jarmoszewicz

    Full Text Available Retrograde trafficking from the Golgi to the endoplasmic reticulum (ER depends on the formation of vesicles coated with the multiprotein complex COPI. In Saccharomyces cerevisiae ubiquitinated derivatives of several COPI subunits have been identified. The importance of this modification of COPI proteins is unknown. With the exception of the Sec27 protein (β'COP neither the ubiquitin ligase responsible for ubiquitination of COPI subunits nor the importance of this modification are known. Here we find that the ubiquitin ligase mutation, rsp5-1, has a negative effect that is additive with ret1-1 and sec28Δ mutations, in genes encoding α- and ε-COP, respectively. The double ret1-1 rsp5-1 mutant is also more severely defective in the Golgi-to-ER trafficking compared to the single ret1-1, secreting more of the ER chaperone Kar2p, localizing Rer1p mostly to the vacuole, and increasing sensitivity to neomycin. Overexpression of ubiquitin in ret1-1 rsp5-1 mutant suppresses vacuolar accumulation of Rer1p. We found that the effect of rsp5 mutation on the Golgi-to-ER trafficking is similar to that of sla1Δ mutation in a gene encoding actin cytoskeleton proteins, an Rsp5p substrate. Additionally, Rsp5 and Sla1 proteins were found by co-immunoprecipitation in a complex containing COPI subunits. Together, our results show that Rsp5 ligase plays a role in regulating retrograde Golgi-to-ER trafficking.

  20. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Tetsushi, E-mail: tiida@nig.ac.jp [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Iida, Naoko [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Tsutsui, Yasuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda-cho, Midori-ku, Yokohama 226-8501 (Japan); Yamao, Fumiaki [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Kobayashi, Takehiko [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  1. Saccharomyces cerevisiae GTPase complex: Gtr1p-Gtr2p regulates cell-proliferation through Saccharomyces cerevisiae Ran-binding protein, Yrb2p

    International Nuclear Information System (INIS)

    Wang Yonggang; Nakashima, Nobutaka; Sekiguchi, Takeshi; Nishimoto, Takeharu

    2005-01-01

    A Gtr1p GTPase, the GDP mutant of which suppresses both temperature-sensitive mutants of Saccharomyces cerevisiae RanGEF/Prp20p and RanGAP/Rna1p, was presently found to interact with Yrb2p, the S. cerevisiae homologue of mammalian Ran-binding protein 3. Gtr1p bound the Ran-binding domain of Yrb2p. In contrast, Gtr2p, a partner of Gtr1p, did not bind Yrb2p, although it bound Gtr1p. A triple mutant: yrb2Δ gtr1Δ gtr2Δ was lethal, while a double mutant: gtr1Δ gtr2Δ survived well, indicating that Yrb2p protected cells from the killing effect of gtr1Δ gtr2Δ. Recombinant Gtr1p and Gtr2p were purified as a complex from Escherichia coli. The resulting Gtr1p-Gtr2p complex was comprised of an equal amount of Gtr1p and Gtr2p, which inhibited the Rna1p/Yrb2 dependent RanGAP activity. Thus, the Gtr1p-Gtr2p cycle was suggested to regulate the Ran cycle through Yrb2p

  2. Fission Yeast Apc15 Stabilizes MCC-Cdc20-APC/C Complexes, Ensuring Efficient Cdc20 Ubiquitination and Checkpoint Arrest.

    Science.gov (United States)

    May, Karen M; Paldi, Flora; Hardwick, Kevin G

    2017-04-24

    During mitosis, cells must segregate the replicated copies of their genome to their daughter cells with extremely high fidelity. Segregation errors lead to an abnormal chromosome number (aneuploidy), which typically results in disease or cell death [1]. Chromosome segregation and anaphase onset are initiated through the action of the multi-subunit E3 ubiquitin ligase known as the anaphase-promoting complex or cyclosome (APC/C [2]). The APC/C is inhibited by the spindle checkpoint in the presence of kinetochore attachment defects [3, 4]. Here we demonstrate that two non-essential APC/C subunits (Apc14 and Apc15) regulate association of spindle checkpoint proteins, in the form of the mitotic checkpoint complex (MCC), with the APC/C. apc14Δ mutants display increased MCC association with the APC/C and are unable to silence the checkpoint efficiently. Conversely, apc15Δ mutants display reduced association between the MCC and APC/C, are defective in poly-ubiquitination of Cdc20, and are checkpoint defective. In vitro reconstitution studies have shown that human MCC-APC/C can contain two molecules of Cdc20 [5-7]. Using a yeast strain expressing two Cdc20 genes with different epitope tags, we show by co-immunoprecipitation that this is true in vivo. MCC binding to the second molecule of Cdc20 is mediated via the C-terminal KEN box in Mad3. Somewhat surprisingly, complexes containing both molecules of Cdc20 accumulate in apc15Δ cells, and the implications of this observation are discussed. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. The tumor suppressor homolog in fission yeast, myh1{sup +}, displays a strong interaction with the checkpoint gene rad1{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Kristina; Warringer, Jonas; Farewell, Anne [Department of Cell and Molecular Biology, Lundberg Laboratory, Goeteborg University, P.O. Box 462, Goeteborg SE-405 30 (Sweden); Park, Han-Oh [Bioneer Corporation, 49-3, Munpyeong-dong, Daedeok-gu, Daejon 306-220 (Korea, Republic of); Hoe, Kwang-Lae; Kim, Dong-Uk [Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yusong, Daejeon (Korea, Republic of); Hayles, Jacqueline [Cell Cycle Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln' s Inn Fields, London WC2A 3PX (United Kingdom); Sunnerhagen, Per [Department of Cell and Molecular Biology, Lundberg Laboratory, Goeteborg University, P.O. Box 462, Goeteborg SE-405 30 (Sweden)], E-mail: per.sunnerhagen@cmb.gu.se

    2008-09-26

    The DNA glycosylase MutY is strongly conserved in evolution, and homologs are found in most eukaryotes and prokaryotes examined. This protein is implicated in repair of oxidative DNA damage, in particular adenine mispaired opposite 7,8-dihydro-8-oxoguanine. Previous investigations in Escherichia coli, fission yeast, and mammalian cells show an association of mutations in MutY homologs with a mutator phenotype and carcinogenesis. Eukaryotic MutY homologs physically associate with several proteins with a role in replication, DNA repair, and checkpoint signaling, specifically the trimeric 9-1-1 complex. In a genetic investigation of the fission yeast MutY homolog, myh1{sup +}, we show that the myh1 mutation confers a moderately increased UV sensitivity alone and in combination with mutations in several DNA repair genes. The myh1 rad1, and to a lesser degree myh1 rad9, double mutants display a synthetic interaction resulting in enhanced sensitivity to DNA damaging agents and hydroxyurea. UV irradiation of myh1 rad1 double mutants results in severe chromosome segregation defects and visible DNA fragmentation, and a failure to activate the checkpoint. Additionally, myh1 rad1 double mutants exhibit morphological defects in the absence of DNA damaging agents. We also found a moderate suppression of the slow growth and UV sensitivity of rhp51 mutants by the myh1 mutation. Our results implicate fission yeast Myh1 in repair of a wider range of DNA damage than previously thought, and functionally link it to the checkpoint pathway.

  4. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  5. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    Directory of Open Access Journals (Sweden)

    Pushpavalli Sreerangam NCVL

    2013-01-01

    Full Text Available Abstract Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using

  6. Nek2A destruction marks APC/C activation at the prophase-to-prometaphase transition by spindle-checkpoint-restricted Cdc20.

    Science.gov (United States)

    Boekhout, Michiel; Wolthuis, Rob

    2015-04-15

    Nek2 isoform A (Nek2A) is a presumed substrate of the anaphase-promoting complex/cyclosome containing Cdc20 (APC/C(Cdc20)). Nek2A, like cyclin A, is degraded in mitosis while the spindle checkpoint is active. Cyclin A prevents spindle checkpoint proteins from binding to Cdc20 and is recruited to the APC/C in prometaphase. We found that Nek2A and cyclin A avoid being stabilized by the spindle checkpoint in different ways. First, enhancing mitotic checkpoint complex (MCC) formation by nocodazole treatment inhibited the degradation of geminin and cyclin A, whereas Nek2A disappeared at a normal rate. Second, depleting Cdc20 effectively stabilized cyclin A but not Nek2A. Nevertheless, Nek2A destruction crucially depended on Cdc20 binding to the APC/C. Third, in contrast to cyclin A, Nek2A was recruited to the APC/C before the start of mitosis. Interestingly, the spindle checkpoint very effectively stabilized an APC/C-binding mutant of Nek2A, which required the Nek2A KEN box. Apparently, in cells, the spindle checkpoint primarily prevents Cdc20 from binding destruction motifs. Nek2A disappearance marks the prophase-to-prometaphase transition, when Cdc20, regardless of the spindle checkpoint, activates the APC/C. However, Mad2 depletion accelerated Nek2A destruction, showing that spindle checkpoint release further increases APC/C(Cdc20) catalytic activity. © 2015. Published by The Company of Biologists Ltd.

  7. The Neurospora crassa UVS-3 epistasis group encodes homologues of the ATR/ATRIP checkpoint control system.

    Science.gov (United States)

    Kazama, Yusuke; Ishii, Chizu; Schroeder, Alice L; Shimada, Hisao; Wakabayashi, Michiyoshi; Inoue, Hirokazu

    2008-02-01

    The mutagen sensitive uvs-3 and mus-9 mutants of Neurospora show mutagen and hydroxyurea sensitivity, mutator effects and duplication instability typical of recombination repair and DNA damage checkpoint defective mutants. To determine the nature of these genes we used cosmids from a genomic library to clone the uvs-3 gene by complementation for MMS sensitivity. Mutation induction by transposon insertion and RIP defined the coding sequence. RFLP analysis confirmed that this sequence maps in the area of uvs-3 at the left telomere of LG IV. Analysis of the cDNA showed that the UVS-3 protein contains an ORF of 969 amino acids with one intron. It is homologous to UvsD of Aspergillus nidulans, a member of the ATRIP family of checkpoint proteins. It retains the N' terminal coiled-coil motif followed by four basic amino acids typical of these proteins and shows the highest homology in this region. The uvsD cDNA partially complements the defects of the uvs-3 mutation. The uvs-3 mutant shows a higher level of micronuclei in conidia and failure to halt germination and nuclear division in the presence of hydroxyurea than wild type, suggesting checkpoint defects. ATRIP proteins bind tightly to ATR PI-3 kinase (phosphatidylinositol 3-kinase) proteins. Therefore, we searched the Neurospora genome sequence for homologues of the Aspergillus nidulans ATR, UvsB. A uvsB homologous sequence was present in the right arm of chromosome I where the mus-9 gene maps. A cosmid containing this genomic DNA complemented the mus-9 mutation. The putative MUS-9 protein is 2484 amino acids long with eight introns. Homology is especially high in the C-terminal 350 amino acids that correspond to the PI-3 kinase domain. In wild type a low level of constitutive mRNA is present for both genes. It is transiently induced upon UV exposure.

  8. Checkpointing for a hybrid computing node

    Science.gov (United States)

    Cher, Chen-Yong

    2016-03-08

    According to an aspect, a method for checkpointing in a hybrid computing node includes executing a task in a processing accelerator of the hybrid computing node. A checkpoint is created in a local memory of the processing accelerator. The checkpoint includes state data to restart execution of the task in the processing accelerator upon a restart operation. Execution of the task is resumed in the processing accelerator after creating the checkpoint. The state data of the checkpoint are transferred from the processing accelerator to a main processor of the hybrid computing node while the processing accelerator is executing the task.

  9. Regulators of ribonucleotide reductase inhibit Ty1 mobility in saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    O'Donnell John P

    2010-11-01

    Full Text Available Abstract Background Ty1 is a long terminal repeat retrotransposon of Saccharomyces cerevisiae, with a replication cycle similar to retrovirus replication. Structurally, Ty1 contains long terminal repeat (LTR regions flanking the gag and pol genes that encode for the proteins that enable Ty1 mobility. Reverse transcriptase produces Ty1 complementary (cDNA that can either be integrated back into the genome by integrase or recombined into the yeast genome through homologous recombination. The frequency of Ty1 mobility is temperature sensitive, with optimum activity occurring at 24-26°C. Results In this study, we identified two host genes that when deleted allow for high temperature Ty1 mobility: RFX1 and SML1. The protein products of these genes are both negative regulators of the enzyme ribonucleotide reductase, a key enzyme in regulating deoxyribonucleotide triphosphate (dNTP levels in the cell. Processing of Ty1 proteins is defective at high temperature, and processing is not improved in either rfx1 or sml1 deletion strains. Ty1 mobility at high temperature is mediated by homologous recombination of Ty1 cDNA to Ty1 elements within the yeast genome. We quantified cDNA levels in wild type, rfx1 and sml1 deletion background strains at different temperatures. Southern blot analysis demonstrated that cDNA levels were not markedly different between the wild type and mutant strains as temperatures increased, indicating that the increased Ty1 mobility is not a result of increased cDNA synthesis in the mutant strains. Homologous recombination efficiency was increased in both rfx1 and sml1 deletion strains at high temperatures; the rfx1 deletion strain also had heightened homologous recombination efficiency at permissive temperatures. In the presence of the dNTP reducing agent hydroxyurea at permissive temperatures, Ty1 mobility was stimulated in the wild type and sml1 deletion strains but not in the rfx1 deletion strain. Mobility frequency was greatly

  10. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase.

    Science.gov (United States)

    Guo, Xiao; Niemi, Natalie M; Coon, Joshua J; Pagliarini, David J

    2017-07-14

    The pyruvate dehydrogenase complex (PDC) is the primary metabolic checkpoint connecting glycolysis and mitochondrial oxidative phosphorylation and is important for maintaining cellular and organismal glucose homeostasis. Phosphorylation of the PDC E1 subunit was identified as a key inhibitory modification in bovine tissue ∼50 years ago, and this regulatory process is now known to be conserved throughout evolution. Although Saccharomyces cerevisiae is a pervasive model organism for investigating cellular metabolism and its regulation by signaling processes, the phosphatase(s) responsible for activating the PDC in S. cerevisiae has not been conclusively defined. Here, using comparative mitochondrial phosphoproteomics, analyses of protein-protein interactions by affinity enrichment-mass spectrometry, and in vitro biochemistry, we define Ptc6p as the primary PDC phosphatase in S. cerevisiae Our analyses further suggest additional substrates for related S. cerevisiae phosphatases and describe the overall phosphoproteomic changes that accompany mitochondrial respiratory dysfunction. In summary, our quantitative proteomics and biochemical analyses have identified Ptc6p as the primary-and likely sole- S. cerevisiae PDC phosphatase, closing a key knowledge gap about the regulation of yeast mitochondrial metabolism. Our findings highlight the power of integrative omics and biochemical analyses for annotating the functions of poorly characterized signaling proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Network support for system initiated checkpoints

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip

    2013-01-29

    A system, method and computer program product for supporting system initiated checkpoints in parallel computing systems. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity.

  12. UV-induced lethal sectoring and pure mutant clones in yeast.

    Science.gov (United States)

    Hannan, M A; Duck, P; Nasim, A

    1976-08-01

    The induction of lethal sectoring and pure mutant clones by ultraviolet light has been studied in a homogeneous G1 population of Saccharomyces cerevisiae grown in a normal growth medium. At the lowest UV dose of 250 ergs, which corresponds to a shoulder in the survival curve, all mutants appeared as pure clones. At higher doses the frequency of mosaic mutants progressively increased. These results indicate a relationship between the highest frequency of complete mutants and the maximum repair activity. In addition, the frequency of lethal sectoring at all doses tested was too low to account for the origin of pure mutant clones.

  13. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains.

    Science.gov (United States)

    Zheng, Dao-Qiong; Jin, Xin-Na; Zhang, Ke; Fang, Ya-Hong; Wu, Xue-Chang

    2017-05-01

    The aim of this work was to develop a novel strategy for improving the vanillin tolerance and ethanol fermentation performances of Saccharomyces cerevisiae strains. Isogeneic diploid, triploid, and tetraploid S. cerevisiae strains were generated by genome duplication of haploid strain CEN.PK2-1C. Ploidy increments improved vanillin tolerance and diminished proliferation capability. Antimitotic drug methyl benzimidazol-2-ylcarbamate (MBC) was used to introduce chromosomal aberrations into the tetraploid S. cerevisiae strain. Interestingly, aneuploid mutants with DNA contents between triploid and tetraploid were more resistant to vanillin and showed faster ethanol fermentation rates than all euploid strains. The physiological characteristics of these mutants suggest that higher bioconversion capacities of vanillin and ergosterol contents might contribute to improved vanillin tolerance. This study demonstrates that genome duplication and MBC treatment is a powerful strategy to improve the vanillin tolerance of yeast strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild-type or mutant form.

    Science.gov (United States)

    Pratter, S M; Eixelsberger, T; Nidetzky, B

    2015-12-01

    A novel Saccharomyces cerevisiae whole-cell biocatalyst for xylitol production based on Candida tenuis xylose reductase (CtXR) is presented. Six recombinant strains expressing wild-type CtXR or an NADH-specific mutant were constructed and evaluated regarding effects of expression mode, promoter strength, biocatalyst concentration and medium composition. Intracellular XR activities ranged from 0.09 U mgProt(-1) to 1.05 U mgProt(-1) but did not correlate with the strains' xylitol productivities, indicating that other factors limited xylose conversion in the high-activity strains. The CtXR mutant decreased the biocatalyst's performance, suggesting use of the NADPH-preferring wild-type enzyme when (semi-)aerobic conditions are applied. In a bioreactor process, the best-performing strain converted 40 g L(-1) xylose with an initial productivity of 1.16 g L(-1)h(-1) and a xylitol yield of 100%. The obtained results underline the potential of CtXR wild-type for xylose reduction and point out parameters to improve "green" xylitol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Genetic Basis for Saccharomyces cerevisiae Biofilm in Liquid Medium

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz; Bojsen, Rasmus Kenneth; Gro Rejkjær Sørensen, Laura

    2014-01-01

    than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the S1278b background and found 71 genes that were essential for biofilm development. Quantitative...

  16. Enhanced stimulation of chromosomal translocations and sister chromatid exchanges by either HO-induced double-strand breaks or ionizing radiation in Saccharomyces cerevisiae yku70 mutants

    International Nuclear Information System (INIS)

    Fasullo, Michael; St Amour, Courtney; Zeng Li

    2005-01-01

    DNA double-strand break (DSB) repair occurs by homologous recombination (HR) or non-homologous endjoining (NHEJ). In Saccharomyces cerevisiae, expression of both MAT a and MATα inhibits NHEJ and facilitates DSB-initiated HR. We previously observed that DSB-initiated recombination between two his3 fragments, his3-Δ5' and his3-Δ3'::HOcs is enhanced in haploids and diploids expressing both MAT a and MATα genes, regardless of the position or orientation of the his3 fragments. Herein, we measured frequencies of DNA damage-associated translocations and sister chromatid exchanges (SCEs) in yku70 haploid mutants, defective in NHEJ. Translocation and SCE frequencies were measured in strains containing the same his3 fragments after DSBs were made directly at trp1::his3-Δ3'::HOcs. Wild type and yku70 cells were also exposed to ionizing radiation and radiomimetic agents methyl methanesulfonate (MMS), phleomycin, and 4-nitroquinolone-1-oxide (4-NQO). Frequencies of X-ray-associated and DSB-initiated translocations were five-fold higher in yku70 mutants compared to wild type; however, frequencies of phleomycin-associated translocations were lower in the yku70 haploid mutant. Frequencies of DSB-initiated SCEs were 1.8-fold higher in the yku70 mutant, compared to wild type. Thus, DSB-initiated HR between repeated sequences on non-homologous chromosomes and sister chromatids occurs at higher frequencies in yku70 haploid mutants; however, higher frequencies of DNA damage-associated HR in yku70 mutants depend on the DNA damaging agent

  17. The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Van Rossom, Sofie; Op de Beeck, Ken; Franssens, Vanessa; Swinnen, Erwin; Schepers, Anne; Ghillebert, Ruben; Caldara, Marina; Van Camp, Guy; Winderickx, Joris

    2012-01-01

    DFNA5 was first identified as a gene responsible for autosomal dominant deafness. Different mutations were found, but they all resulted in exon 8 skipping during splicing and premature termination of the protein. Later, it became clear that the protein also has a tumor suppression function and that it can induce apoptosis. Epigenetic silencing of the DFNA5 gene is associated with different types of cancers, including gastric and colorectal cancers as well as breast tumors. We introduced the wild-type and mutant DFNA5 allele in the yeast Saccharomyces cerevisiae. The expression of the wild-type protein was well tolerated by the yeast cells, although the protein was subject of degradation and often deposited in distinct foci when cells entered the diauxic shift. In contrast, cells had problems to cope with mutant DFNA5 and despite an apparent compensatory reduction in expression levels, the mutant protein still triggered a marked growth defect, which in part can be ascribed to its interaction with mitochondria. Consistently, cells with mutant DFNA5 displayed significantly increased levels of ROS and signs of programmed cell death. The latter occurred independently of the yeast caspase, Mca1, but involved the mitochondrial fission protein, Fis1, the voltage-dependent anion channel protein, Por1 and the mitochondrial adenine nucleotide translocators, Aac1 and Aac3. Recent data proposed DFNA5 toxicity to be associated to a globular domain encoded by exon 2–6. We confirmed these data by showing that expression of solely this domain confers a strong growth phenotype. In addition, we identified a point mutant in this domain that completely abrogated its cytotoxicity in yeast as well as human Human Embryonic Kidney 293T cells (HEK293T). Combined, our data underscore that the yeast system offers a valuable tool to further dissect the apoptotic properties of DFNA5.

  18. The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Van Rossom, Sofie [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Op de Beeck, Ken [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Franssens, Vanessa; Swinnen, Erwin [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Schepers, Anne [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Ghillebert, Ruben; Caldara, Marina [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Van Camp, Guy [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Winderickx, Joris, E-mail: guy.vancamp@ua.ac.be, E-mail: joris.winderickx@bio.kuleuven.be [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium)

    2012-07-25

    DFNA5 was first identified as a gene responsible for autosomal dominant deafness. Different mutations were found, but they all resulted in exon 8 skipping during splicing and premature termination of the protein. Later, it became clear that the protein also has a tumor suppression function and that it can induce apoptosis. Epigenetic silencing of the DFNA5 gene is associated with different types of cancers, including gastric and colorectal cancers as well as breast tumors. We introduced the wild-type and mutant DFNA5 allele in the yeast Saccharomyces cerevisiae. The expression of the wild-type protein was well tolerated by the yeast cells, although the protein was subject of degradation and often deposited in distinct foci when cells entered the diauxic shift. In contrast, cells had problems to cope with mutant DFNA5 and despite an apparent compensatory reduction in expression levels, the mutant protein still triggered a marked growth defect, which in part can be ascribed to its interaction with mitochondria. Consistently, cells with mutant DFNA5 displayed significantly increased levels of ROS and signs of programmed cell death. The latter occurred independently of the yeast caspase, Mca1, but involved the mitochondrial fission protein, Fis1, the voltage-dependent anion channel protein, Por1 and the mitochondrial adenine nucleotide translocators, Aac1 and Aac3. Recent data proposed DFNA5 toxicity to be associated to a globular domain encoded by exon 2–6. We confirmed these data by showing that expression of solely this domain confers a strong growth phenotype. In addition, we identified a point mutant in this domain that completely abrogated its cytotoxicity in yeast as well as human Human Embryonic Kidney 293T cells (HEK293T). Combined, our data underscore that the yeast system offers a valuable tool to further dissect the apoptotic properties of DFNA5.

  19. Kin3 protein, a NIMA-related kinase of Saccharomyces cerevisiae, is involved in DNA adduct damage response.

    Science.gov (United States)

    Moura, Dinara J; Castilhos, Bruna; Immich, Bruna F; Cañedo, Andrés D; Henriques, João A P; Lenz, Guido; Saffi, Jenifer

    2010-06-01

    Kin3 is a nonessential serine/threonine protein kinase of the budding yeast Saccharomyces cerevisiae with unknown cellular role. It is an ortholog of the Aspergillus nidulans protein kinase NIMA (Never-In Mitosis, gene A), which is involved in the regulation of G2/M phase progression, DNA damage response and mitosis. The aim of this study was to determine whether Kin3 is required for proper checkpoint activation and DNA repair. Here we show that KIN3 gene deficient cells present sensitivity and fail to arrest properly at G2/M-phase checkpoint in response to the DNA damage inducing agents MMS, cisplatin, doxorubicin and nitrogen mustard, suggesting that Kin3 can be involved in DNA strand breaks recognition or signaling. In addition, there is an increase in KIN3 gene expression in response to the mutagenic treatment, which was confirmed by the increase of Kin3 protein. We also showed that co-treatment with caffeine induces a slight increase in the susceptibility to genotoxic agents in kin3 cells and abolishes KIN3 gene expression in wild-type strain, suggesting that Kin3p can play a role in Tel1/Mec1-dependent pathway activation induced after genotoxic stress. These data provide the first evidence of the involvement of S. cerevisiae Kin3 in the DNA damage response.

  20. Growth of catalase A and catalase T deficient mutant strains of Saccharomyces cerevisiae on ethanol and oleic acid: Growth profiles and catalase activities in relation to microbody proliferation

    OpenAIRE

    Klei, Ida J. van der; Rytka, Joanna; Kunau, Wolf H.; Veenhuis, Marten

    1990-01-01

    The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T-), catalase A (A-T+) or both catalases (A-T-), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two oleic acid-grown A+-strains (A+T+ and A+T-) high catalase activities were found; catalase activity invariably remained low in the A-T+ strain and was never detected in the A-T- strain. The levels of β-...

  1. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.

    Science.gov (United States)

    Lee, Won-Heong; Jin, Yong-Su

    2017-09-28

    In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular β-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular β-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

  2. Multiple functions of the S-phase checkpoint mediator.

    Science.gov (United States)

    Tanaka, Katsunori

    2010-01-01

    There is mounting evidence that replication defects are the major source of spontaneous genomic instability in cells, and that S-phase checkpoints are the principal defense against such instability. The S-phase checkpoint mediator protein Mrc1/Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of effector kinase by a sensor kinase. In this review, the multiple functions and the regulation of the S-phase checkpoint mediator are discussed.

  3. Detailed Modeling and Evaluation of a Scalable Multilevel Checkpointing System

    Energy Technology Data Exchange (ETDEWEB)

    Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moody, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bronevetsky, Greg [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); de Supinski, Bronis R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-01

    High-performance computing (HPC) systems are growing more powerful by utilizing more components. As the system mean time before failure correspondingly drops, applications must checkpoint frequently to make progress. But, at scale, the cost of checkpointing becomes prohibitive. A solution to this problem is multilevel checkpointing, which employs multiple types of checkpoints in a single run. Moreover, lightweight checkpoints can handle the most common failure modes, while more expensive checkpoints can handle severe failures. We designed a multilevel checkpointing library, the Scalable Checkpoint/Restart (SCR) library, that writes lightweight checkpoints to node-local storage in addition to the parallel file system. We present probabilistic Markov models of SCR's performance. We show that on future large-scale systems, SCR can lead to a gain in machine efficiency of up to 35 percent, and reduce the load on the parallel file system by a factor of two. In addition, we predict that checkpoint scavenging, or only writing checkpoints to the parallel file system on application termination, can reduce the load on the parallel file system by 20 × on today's systems and still maintain high application efficiency.

  4. Efficient Incremental Checkpointing of Java Programs

    DEFF Research Database (Denmark)

    Lawall, Julia Laetitia; Muller, Gilles

    2000-01-01

    This paper investigates the optimization of language-level checkpointing of Java programs. First, we describe how to systematically associate incremental checkpoints with Java classes. While being safe, the genericness of this solution induces substantial execution overhead. Second, to solve...

  5. Nonselective enrichment for yeast adenine mutants by flow cytometry

    Science.gov (United States)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  6. Keeping checkpoint/restart viable for exascale systems.

    Energy Technology Data Exchange (ETDEWEB)

    Riesen, Rolf E.; Bridges, Patrick G. (IBM Research, Ireland, Mulhuddart, Dublin); Stearley, Jon R.; Laros, James H., III; Oldfield, Ron A.; Arnold, Dorian (University of New Mexico, Albuquerque, NM); Pedretti, Kevin Thomas Tauke; Ferreira, Kurt Brian; Brightwell, Ronald Brian

    2011-09-01

    Next-generation exascale systems, those capable of performing a quintillion (10{sup 18}) operations per second, are expected to be delivered in the next 8-10 years. These systems, which will be 1,000 times faster than current systems, will be of unprecedented scale. As these systems continue to grow in size, faults will become increasingly common, even over the course of small calculations. Therefore, issues such as fault tolerance and reliability will limit application scalability. Current techniques to ensure progress across faults like checkpoint/restart, the dominant fault tolerance mechanism for the last 25 years, are increasingly problematic at the scales of future systems due to their excessive overheads. In this work, we evaluate a number of techniques to decrease the overhead of checkpoint/restart and keep this method viable for future exascale systems. More specifically, this work evaluates state-machine replication to dramatically increase the checkpoint interval (the time between successive checkpoint) and hash-based, probabilistic incremental checkpointing using graphics processing units to decrease the checkpoint commit time (the time to save one checkpoint). Using a combination of empirical analysis, modeling, and simulation, we study the costs and benefits of these approaches on a wide range of parameters. These results, which cover of number of high-performance computing capability workloads, different failure distributions, hardware mean time to failures, and I/O bandwidths, show the potential benefits of these techniques for meeting the reliability demands of future exascale platforms.

  7. Advances of Immune Checkpoint Inhibitors in Tumor Immunotherapy

    Science.gov (United States)

    Guo, Qiao

    2018-01-01

    Immune checkpoints are cell surface molecules that can fine-tune the immune responses, they are crucial for modulating the duration and amplitude of immune reactions while maintaining self-tolerance in order to minimize autoimmune responses. Numerous studies have demonstrated that tumors cells can directly express immune-checkpoint molecules, or induce many inhibitory molecules expression in the tumor microenvironment to inhibit the anti-tumor immunity. Releasing these brakes has emerged as an exciting strategy to cure cancer. In the past few years, clinical trials with therapeutic antibodies targeting to the checkpoint molecules CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. In contrast to the conventional treatment, checkpoint inhibitors induce broad and durable antitumor responses. In the future, treatment may involve combination therapy to target different checkpoint molecules and stages of the adaptive immune responses. In this review, we summarized the recent advances of the study and development of other checkpoint molecules in tumor immunotherapy.

  8. Mutant power: using mutant allele collections for yeast functional genomics.

    Science.gov (United States)

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Checkpointing and Recovery in Distributed and Database Systems

    Science.gov (United States)

    Wu, Jiang

    2011-01-01

    A transaction-consistent global checkpoint of a database records a state of the database which reflects the effect of only completed transactions and not the results of any partially executed transactions. This thesis establishes the necessary and sufficient conditions for a checkpoint of a data item (or the checkpoints of a set of data items) to…

  10. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis

    DEFF Research Database (Denmark)

    Nissen, Torben Lauesgaard; Hamann, Claus Wendelboe; Kielland-Brandt, M. C.

    2000-01-01

    Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass...

  11. Cellular responses of Saccharomyces cerevisiae to DNA damage

    International Nuclear Information System (INIS)

    Ciesla, Z.; Sledziewska-Gojska, E.; Nowicka, A.; Mieczkowski, P.; Fikus, M.U.; Koprowski, P.

    1998-01-01

    Full text. Several experimental strategies have been used to study responses of S. cerevisiae cells to DNA damage. One approach was based on the isolation of novel genes, the expression of which is induced by lesions in DNA. One of these genes, DIN7, was cloned and partially characterized previously. The product of DIN7 belongs to a large family of proteins involved in DNA repair and mutagenesis. This family includes Rad2, Rad27 and ExoI proteins of S. cerevisiae and their respective human homologues, all of which are endowed with DNA nuclease activity. To study cellular function of Din7 we constructed the pPK3 plasmid carrying DIN7 fused to the GAL1 promoter. Effects of DIN7 overproduction on the phenotypes of wild-type cells and of rad27 and exoI mutants were examined. Overproduction of Din7 does not seem to affect the proficiency of wild-type S. cerevisiae cells in recombination and mutagenesis. Also, overexpression of DIN7 does not suppress the deficiency of the EXOI gene product, the closest homologue of Din7, both in recombination and in controlling the fidelity of DNA replication. Unexpectedly, we found that elevated levels of Din7 result in a very high frequency of mitochondrial rho - mutants. A high frequency of production of rho - mutants wa s also observed in strains defective in the functioning of the Dun1 protein kinase involved in signal transmission in cells exposed to DNA damaging agents. Interestingly, deficiency of Dun1 results also in a significant derepression of the DIN7 gene. Experiments are under way to distinguish whether a high cellular level of Din7 specifically decreases stability of mitochondrial DNA or affects stability of chromosomal DNA as well. Analysis of previously constructed S. cerevisiae strains carrying random geno mic fusions with reporter lacZ gene, allowed us to identify the reading frame YBR173c, on chromosome II as a novel damage inducible gene - DIN8. We have shown that DIN8-lacZ fusion is induced in yeast cells treated

  12. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Wang, Z.; Wu, X.; Friedberg, E.C.

    1993-01-01

    A wide spectrum of DNA lesions are repaired by the nucleotide-excision repair (NER) pathway in both eukaryotic and prokaryotic cells. We have developed a cell-free system in Saccharomyces cerevisiae that supports NER. NER was monitored by measuring repair synthesis in DNA treated with cisplatin or with UV radiation. Repair synthesis in vitro was defective in extracts of rad1, rad2, and rad10 mutant cells, all of which have mutations in genes whose products are known to be required for NER in vivo. Additionally, repair synthesis was complemented by mixing different mutant extracts, or by adding purified Rad1 or Rad10 protein to rad1 or rad10 mutant extracts, respectively. The latter observation demonstrates that the Rad1 and Rad10 proteins directly participate in the biochemical pathway of NER. NER supported by nuclear extracts requires ATP and Mg 2+ and is stimulated by polyethylene glycol and by small amounts of whole cell extract containing overexpressed Rad2 protein. The nuclear extracts also contain base-excision repair activity that is present at wild-type levels in rad mutant extracts. This cell-free system is expected to facilitate studies on the biochemical pathway of NER in S. cerevisiae

  13. Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae.

    Science.gov (United States)

    Galván Márquez, Imelda; Ghiyasvand, Mergan; Massarsky, Andrey; Babu, Mohan; Samanfar, Bahram; Omidi, Katayoun; Moon, Thomas W; Smith, Myron L; Golshani, Ashkan

    2018-01-01

    Engineered nanomaterials (ENMs) are increasingly incorporated into a variety of commercial applications and consumer products; however, ENMs may possess cytotoxic properties due to their small size. This study assessed the effects of two commonly used ENMs, zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs), in the model eukaryote Saccharomyces cerevisiae. A collection of ≈4600 S. cerevisiae deletion mutant strains was used to deduce the genes, whose absence makes S. cerevisiae more prone to the cytotoxic effects of ZnONPs or AgNPs. We demonstrate that S. cerevisiae strains that lack genes involved in transmembrane and membrane transport, cellular ion homeostasis, and cell wall organization or biogenesis exhibited the highest sensitivity to ZnONPs. In contrast, strains that lack genes involved in transcription and RNA processing, cellular respiration, and endocytosis and vesicular transport exhibited the highest sensitivity to AgNPs. Secondary assays confirmed that ZnONPs affected cell wall function and integrity, whereas AgNPs exposure decreased transcription, reduced endocytosis, and led to a dysfunctional electron transport system. This study supports the use of S. cerevisiae Gene Deletion Array as an effective high-throughput technique to determine cellular targets of ENM toxicity.

  14. Phosphorylation of Minichromosome Maintenance 3 (MCM3) by Checkpoint Kinase 1 (Chk1) Negatively Regulates DNA Replication and Checkpoint Activation.

    Science.gov (United States)

    Han, Xiangzi; Mayca Pozo, Franklin; Wisotsky, Jacob N; Wang, Benlian; Jacobberger, James W; Zhang, Youwei

    2015-05-08

    Mechanisms controlling DNA replication and replication checkpoint are critical for the maintenance of genome stability and the prevention or treatment of human cancers. Checkpoint kinase 1 (Chk1) is a key effector protein kinase that regulates the DNA damage response and replication checkpoint. The heterohexameric minichromosome maintenance (MCM) complex is the core component of mammalian DNA helicase and has been implicated in replication checkpoint activation. Here we report that Chk1 phosphorylates the MCM3 subunit of the MCM complex at Ser-205 under normal growth conditions. Mutating the Ser-205 of MCM3 to Ala increased the length of DNA replication track and shortened the S phase duration, indicating that Ser-205 phosphorylation negatively controls normal DNA replication. Upon replicative stress treatment, the inhibitory phosphorylation of MCM3 at Ser-205 was reduced, and this reduction was accompanied with the generation of single strand DNA, the key platform for ataxia telangiectasia mutated and Rad3-related (ATR) activation. As a result, the replication checkpoint is activated. Together, these data provide significant insights into the regulation of both normal DNA replication and replication checkpoint activation through the novel phosphorylation of MCM3 by Chk1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Transparent checkpointing and process migration in a distributed system

    OpenAIRE

    2004-01-01

    A distributed system for creating a checkpoint for a plurality of processes running on the distributed system. The distributed system includes a plurality of compute nodes with an operating system executing on each compute node. A checkpoint library resides at the user level on each of the compute nodes, and the checkpoint library is transparent to the operating system residing on the same compute node and to the other compute nodes. Each checkpoint library uses a windowed messaging logging p...

  16. Complementation of Saccharomyces cerevisiae mutations in genes involved in translation and protein folding (EFB1 and SSB1) with Candida albicans cloned genes.

    Science.gov (United States)

    Maneu, V; Roig, P; Gozalbo, D

    2000-11-01

    We have demonstrated that the expression of Candida albicans genes involved in translation and protein folding (EFB1 and SSB1) complements the phenotype of Saccharomyces cerevisiae mutants. The elongation factor 1beta (EF-1beta) is essential for growth and efb1 S. cerevisiae null mutant cells are not viable; however, viable haploid cells, carrying the disrupted chromosomal allele of the S. cerevisiae EFB1 gene and pEFB1, were isolated upon sporulation of a diploid strain which was heterozygous at the EFB1 locus and transformed with pEFB1 (a pEMBLYe23 derivative plasmid containing an 8-kb DNA fragment from the C. albicans genome which contains the EFB1 gene). This indicates that the C. albicans EFB1 gene encodes a functional EF-1beta. Expression of the SSB1 gene from C. albicans, which codes for a member of the 70-kDa heat shock protein family, in S. cerevisiae ssb1 ssb2 double mutant complements the mutant phenotype (poor growth particularly at low temperature, and sensitivity to certain protein synthesis inhibitors, such as paromomycin). This complementation indicates that C. albicans Ssbl may function as a molecular chaperone on the translating ribosomes, as described in S. cerevisiae. Northern blot analysis showed that SSB mRNA levels increased after mild cold shift (28 degrees C to 23 degrees C) and rapidly decreased after mild heat shift (from 28 degrees C to 37 degrees C, and particularly to 42 degrees C), indicating that SSB1 expression is regulated by temperature. Therefore, Ssb1 may be considered as a molecular chaperone whose pattern of expression is similar to that found in ribosomal proteins, according to its common role in translation.

  17. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls.

    Science.gov (United States)

    Kitagaki, Hiroshi; Ito, Kiyoshi; Shimoi, Hitoshi

    2004-10-01

    Dcw1p and Dfg5p in Saccharomyces cerevisiae are homologous proteins that were previously shown to be involved in cell wall biogenesis and to be essential for growth. Dcw1p was found to be a glycosylphosphatidylinositol-anchored membrane protein. To investigate the roles of these proteins in cell wall biogenesis and cell growth, we constructed mutant alleles of DCW1 by random mutagenesis, introduced them into a Deltadcw1 Deltadfg5 background, and isolated a temperature-sensitive mutant, DC61 (dcw1-3 Deltadfg5). When DC61 cells were incubated at 37 degrees C, most cells had small buds, with areas less than 20% of those of the mother cells. This result indicates that DC61 cells arrest growth with small buds at 37 degrees C. At 37 degrees C, fewer DC61 cells had 1N DNA content and most of them still had a single nucleus located apart from the bud neck. In addition, in DC61 cells incubated at 37 degrees C, bipolar spindles were not formed. These results indicate that DC61 cells, when incubated at 37 degrees C, are cell cycle arrested after DNA replication and prior to the separation of spindle pole bodies. The small buds of DC61 accumulated chitin in the bud cortex, and some of them were lysed, which indicates that they had aberrant cell walls. A temperature-sensitive dfg5 mutant, DF66 (Deltadcw1 dfg5-29), showed similar phenotypes. DCW1 and DFG5 mRNA levels peaked in the G1 and S phases, respectively. These results indicate that Dcw1p and Dfg5p are involved in bud formation through their involvement in biogenesis of the bud cell wall.

  18. Role of the Checkpoint Clamp in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Mihoko Kai

    2013-01-01

    Full Text Available DNA damage occurs during DNA replication, spontaneous chemical reactions, and assaults by external or metabolism-derived agents. Therefore, all living cells must constantly contend with DNA damage. Cells protect themselves from these genotoxic stresses by activating the DNA damage checkpoint and DNA repair pathways. Coordination of these pathways requires tight regulation in order to prevent genomic instability. The checkpoint clamp complex consists of Rad9, Rad1 and Hus1 proteins, and is often called the 9-1-1 complex. This PCNA (proliferating cell nuclear antigen-like donut-shaped protein complex is a checkpoint sensor protein that is recruited to DNA damage sites during the early stage of the response, and is required for checkpoint activation. As PCNA is required for multiple pathways of DNA metabolism, the checkpoint clamp has also been implicated in direct roles in DNA repair, as well as in coordination of the pathways. Here we discuss roles of the checkpoint clamp in DNA damage response (DDR.

  19. Growth study of radio-mutant saccharomyce cerevisiae K 1,5 on irradiated molases media

    International Nuclear Information System (INIS)

    Siagian, E.G.; Lina, M.R.; Sisiana.

    1988-01-01

    The application of the radiopasteurization method for alcoholic fermentation of molases media have been studied which compared to heat pasteurization. The molases samples were obtained from sugar industry in Cirebon, Yogyakarta, and Lawang, used as a samples for gamma irradiation, doses of 3 kGy, 6 kGy and heat pasteurization 80 Celcius centigrade for 30 minutes, which compared to untreated molases. Innculum yeast was S. Cerevisiae K 1.5 which was resulted by irradiation mutation. The results showed that gamma irradiation dose of 3 kGy have pasteurization effect better than 6 kGy and heat pasteurization 80 Celcius centigrade, 30 minutes. Total cells count of microflora per gram samples (% survivors) on molasses media which has been heat pasteurized, decreased to be 70%, 10% for irradiated molasses 3 kGy; and 1% for molasses irradiated 6 kGy, but it did not have significant effect on the growth capacity of S. cerevisiae K 1.5 on that molasses media. Microflora isolated from molasses samples obtained from Cirebon, Yogyakarta, and Lawang, generally from Bacillus subtilis, Lactobacillus sp., Corynebacterium sp., and Rhizopus oligosporus, although was detected but not grows well on molasses media. The growth of S. cerevisiae K 1.5 on fermentation media suplemented with trace elements nitrogen and phosphor resulted difference on fermentation rate i.e.: in irradiated molasses 3 kGy and 6 kGy showed a higher rate, which compared to heat pasteurization and controle. In the environment condition study on molasses media shows the yeast S. cerevisiae K 1.5 have optimal growth at the pH 5.5, specific growth rate 0.3-0.5 per hour, the saturation constant 0.5 - 0.60 g/l, temperature 30 +/- 2 Celcius centigrade with sugar : nitrogen : phosphor ratio = 100 : 5 : 1. The nitrogen and phosphor sources are ammonium sulphate and sodium hidrogen phosphate respectively. (author). 6 refs, 2 figs, 2 tabs

  20. Photodynamic DNA damage induced by phycocyanin and its repair in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    M. Pádula

    1999-09-01

    Full Text Available In the present study, we analyzed DNA damage induced by phycocyanin (PHY in the presence of visible light (VL using a set of repair endonucleases purified from Escherichia coli. We demonstrated that the profile of DNA damage induced by PHY is clearly different from that induced by molecules that exert deleterious effects on DNA involving solely singlet oxygen as reactive species. Most of PHY-induced lesions are single strand breaks and, to a lesser extent, base oxidized sites, which are recognized by Nth, Nfo and Fpg enzymes. High pressure liquid chromatography coupled to electrochemical detection revealed that PHY photosensitization did not induce 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo at detectable levels. DNA repair after PHY photosensitization was also investigated. Plasmid DNA damaged by PHY photosensitization was used to transform a series of Saccharomyces cerevisiae DNA repair mutants. The results revealed that plasmid survival was greatly reduced in rad14 mutants, while the ogg1 mutation did not modify the plasmid survival when compared to that in the wild type. Furthermore, plasmid survival in the ogg1 rad14 double mutant was not different from that in the rad14 single mutant. The results reported here indicate that lethal lesions induced by PHY plus VL are repaired differently by prokaryotic and eukaryotic cells. Morever, nucleotide excision repair seems to play a major role in the recognition and repair of these lesions in Saccharomyces cerevisiae.

  1. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae.

    Science.gov (United States)

    Oud, Bart; Guadalupe-Medina, Victor; Nijkamp, Jurgen F; de Ridder, Dick; Pronk, Jack T; van Maris, Antonius J A; Daran, Jean-Marc

    2013-11-05

    Laboratory evolution of the yeast Saccharomyces cerevisiae in bioreactor batch cultures yielded variants that grow as multicellular, fast-sedimenting clusters. Knowledge of the molecular basis of this phenomenon may contribute to the understanding of natural evolution of multicellularity and to manipulating cell sedimentation in laboratory and industrial applications of S. cerevisiae. Multicellular, fast-sedimenting lineages obtained from a haploid S. cerevisiae strain in two independent evolution experiments were analyzed by whole genome resequencing. The two evolved cell lines showed different frameshift mutations in a stretch of eight adenosines in ACE2, which encodes a transcriptional regulator involved in cell cycle control and mother-daughter cell separation. Introduction of the two ace2 mutant alleles into the haploid parental strain led to slow-sedimenting cell clusters that consisted of just a few cells, thus representing only a partial reconstruction of the evolved phenotype. In addition to single-nucleotide mutations, a whole-genome duplication event had occurred in both evolved multicellular strains. Construction of a diploid reference strain with two mutant ace2 alleles led to complete reconstruction of the multicellular-fast sedimenting phenotype. This study shows that whole-genome duplication and a frameshift mutation in ACE2 are sufficient to generate a fast-sedimenting, multicellular phenotype in S. cerevisiae. The nature of the ace2 mutations and their occurrence in two independent evolution experiments encompassing fewer than 500 generations of selective growth suggest that switching between unicellular and multicellular phenotypes may be relevant for competitiveness of S. cerevisiae in natural environments.

  2. Enhancing Immune Checkpoint Inhibitor Therapy in Kidney Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0141 TITLE: Enhancing Immune Checkpoint Inhibitor therapy in Kidney Cancer PRINCIPAL INVESTIGATOR: Hans-Joerg Hammers...SUBTITLE Enhancing Immune Checkpoint Inhibitor therapy in Kidney Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 15-1-0141 5c. PROGRAM ELEMENT NUMBER...immune checkpoint inhibition in kidney cancer . The work is designed to test different strategies to induce or enhance the abscopal in a kidney cancer

  3. Roles of nibrin and ATM/ATR kinases on the G2 checkpoint under endogenous or radio-induced DNA damage

    Directory of Open Access Journals (Sweden)

    Katherine Marcelain

    2005-01-01

    Full Text Available Checkpoint response to DNA damage involves the activation of DNA repair and G2 lengthening subpathways. The roles of nibrin (NBS1 and the ATM/ATR kinases in the G2 DNA damage checkpoint, evoked by endogenous and radio-induced DNA damage, were analyzed in control, A-T and NBS lymphoblast cell lines. Short-term responses to G2 treatments were evaluated by recording changes in the yield of chromosomal aberrations in the ensuing mitosis, due to G2 checkpoint adaptation, and also in the duration of G2 itself. The role of ATM/ATR in the G2 checkpoint pathway repairing chromosomal aberrations was unveiled by caffeine inhibition of both kinases in G2. In the control cell lines, nibrin and ATM cooperated to provide optimum G2 repair for endogenous DNA damage. In the A-T cells, ATR kinase substituted successfully for ATM, even though no G2 lengthening occurred. X-ray irradiation (0.4 Gy in G2 increased chromosomal aberrations and lengthened G2, in both mutant and control cells. However, the repair of radio-induced DNA damage took place only in the controls. It was associated with nibrin-ATM interaction, and ATR did not substitute for ATM. The absence of nibrin prevented the repair of both endogenous and radio-induced DNA damage in the NBS cells and partially affected the induction of G2 lengthening.

  4. Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kawai, Shigeyuki; Urban, Jörg; Piccolis, Manuele; Panchaud, Nicolas; De Virgilio, Claudio; Loewith, Robbie

    2011-10-01

    TORC1-dependent phosphorylation of Saccharomyces cerevisiae Sch9 was dramatically reduced upon exposure to a protonophore or in respiration-incompetent ρ(0) cells but not in respiration-incompetent pet mutants, providing important insight into the molecular mechanisms governing interorganellar signaling in general and retrograde signaling in particular.

  5. Decreased uv mutagenesis in cdc8, a DNA replication mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.; Hinkle, D.; Prakash, S.

    1978-01-01

    A DNA replication mutant of yeast, cdc8, was found to decrease uv-induced reversion of lys2-1, arg4-17, tryl and ural. This effect was observed with all three alleles of cdc8 tested. Survival curves obtained following uv irradiation in cdc8 rad double mutants show that cdc8 is epistatic to rad6, as well as to rad1; cdc8 rad51 double mutants seem to be more sensitive than the single mutants. Since uv-induced reversion in cdc8 rad1 and cdc8 rad51 double mutants is like that of the cdc8 single mutants, we conclude that CDC8 plays a direct role in error-prone repair. To test whether CDC8 codes for a DNA polymerase, we have purified both DNA polymerase I and DNA polymerase II from cdc8 and CDC+ cells. The purified DNA polymerases from cdc8 were no more heat labile than those from CDC+, suggesting that CDC8 is not a structural gene for either enzyme

  6. Template based parallel checkpointing in a massively parallel computer system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Inglett, Todd Alan [Rochester, MN

    2009-01-13

    A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.

  7. Hypoxia‐induced alterations of G2 checkpoint regulators

    OpenAIRE

    Hasvold, Grete; Lund-Andersen, Christin; Lando, Malin; Patzke, Sebastian; Hauge, Sissel; Suo, ZhenHe; Lyng, Heidi; Syljuåsen, Randi G.

    2016-01-01

    Hypoxia promotes an aggressive tumor phenotype with increased genomic instability, partially due to downregulation of DNA repair pathways. However, genome stability is also surveilled by cell cycle checkpoints. An important issue is therefore whether hypoxia also can influence the DNA damage‐induced cell cycle checkpoints. Here, we show that hypoxia (24 h 0.2% O2) alters the expression of several G2 checkpoint regulators, as examined by microarray gene expression analysis and immunoblotting o...

  8. The effect of tributyltin chloride on Caenorhabditis elegans germline is mediated by a conserved DNA damage checkpoint pathway.

    Science.gov (United States)

    Cheng, Zhe; Tian, Huimin; Chu, Hongran; Wu, Jianjian; Li, Yingying; Wang, Yanhai

    2014-03-21

    Tributyltin (TBT), one of the environmental pollutants, has been shown to impact the reproduction of animals. However, due to the lack of appropriate animal model, analysis of the affected molecular pathways in germ cells is lagging and has been particularly challenging. In the present study, we investigated the effects of tributyltin chloride (TBTCL) on the nematode Caenorhabditis elegans germline. We show that exposure of C. elegans to TBTCL causes significantly elevated level of sterility and embryonic lethality. TBTCL exposure results in an increased number of meiotic DNA double-strand breaks in germ cells, subsequently leading to activated DNA damage checkpoint. Exposing C. elegans to TBTCL causes dose- and time-dependent germline apoptosis. This apoptotic response was blocked in loss-of-function mutants of hus-1 (op241), mrt-2 (e2663) and p53/cep-1 (gk138), indicating that checkpoints and p53 are essential for mediating TBTCL-induced germ cell apoptosis. Moreover, TBTCL exposure can inhibit germ cell proliferation, which is also mediated by the conserved checkpoint pathway. We thereby propose that TBT exhibits its effects on the germline by inducing DNA damage and impaired maintenance of genomic integrity. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    International Nuclear Information System (INIS)

    Hargrove, Paul H; Duell, Jason C

    2006-01-01

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to ''fault precursors'' (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instance reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters

  10. Physiology of inactivation of microbial cells by near-ultraviolet light: mode of action and application for the enrichment of mutants of Escherichia coli and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Peters, J.

    1976-01-01

    The mode of action of near-ultraviolet (NUV) light was studied in Escherichia coli. NUV light (maximum emission at 365 nm) caused the photodestruction of ribonucleoside diphosphate (RDP) reductase activity in vivo. Evidence was presented for a model suggesting that the loss of RDP-reductase resulted in a metabolic state analogous to that produced during starvation for thymine. Some important properties of cells irradiated by NUV light, cell death, loss of the ability to support the replication of DNA phages and a delay in the onset of cell division in sublethally irradiated cells, were accounted for in terms of photoinactivation of RDP-reductase. Conditions were described under which NUV light was an effective counterselective agent for the enrichment of mutants of Escherichia coli and Saccharomyces cerevisiae

  11. Characterization of Saccharomyces cerevisiae suppressor mutants devoid of the membrane lipid phosphatidylcholine

    NARCIS (Netherlands)

    Bao, X.

    2018-01-01

    Phosphatidylcholine (PC) is the most abundant membrane lipid in most eukaryotes and considered essential. The yeast double deletion mutant cho2opi3 lacks the methyltransferases converting phosphatidylethanolamine (PE) to PC. As a consequence, the cho2opi3 mutant is a choline auxotroph that relies on

  12. Molecular Mechanism of Terbinafine Resistance in Saccharomyces cerevisiae

    Science.gov (United States)

    Leber, Regina; Fuchsbichler, Sandra; Klobučníková, Vlasta; Schweighofer, Natascha; Pitters, Eva; Wohlfarter, Kathrin; Lederer, Mojca; Landl, Karina; Ruckenstuhl, Christoph; Hapala, Ivan; Turnowsky, Friederike

    2003-01-01

    Ten mutants of the yeast Saccharomyces cerevisiae resistant to the antimycotic terbinafine were isolated after chemical or UV mutagenesis. Molecular analysis of these mutants revealed single base pair exchanges in the ERG1 gene coding for squalene epoxidase, the target of terbinafine. The mutants did not show cross-resistance to any of the substrates of various pleiotropic drug resistance efflux pumps tested. The ERG1 mRNA levels in the mutants did not differ from those in the wild-type parent strains. Terbinafine resistance was transmitted with the mutated alleles in gene replacement experiments, proving that single amino acid substitutions in the Erg1 protein were sufficient to confer the resistance phenotype. The amino acid changes caused by the point mutations were clustered in two regions of the Erg1 protein. Seven mutants carried the amino acid substitutions F402L (one mutant), F420L (one mutant), and P430S (five mutants) in the C-terminal part of the protein; and three mutants carried an L251F exchange in the central part of the protein. Interestingly, all exchanges identified involved amino acids which are conserved in the squalene epoxidases of yeasts and mammals. Two mutations that were generated by PCR mutagenesis of the ERG1 gene and that conferred terbinafine resistance mapped in the same regions of the Erg1 protein, with one resulting in an L251F exchange and the other resulting in an F433S exchange. The results strongly indicate that these regions are responsible for the interaction of yeast squalene epoxidase with terbinafine. PMID:14638499

  13. Identification of amino acids involved in the Flo11p-mediated adhesion of Saccharomyces cerevisiae to a polystyrene surface using phage display with competitive elution

    DEFF Research Database (Denmark)

    Mortensen, Henrik Dam; Dupont, Kitt; Jespersen, Lene

    2007-01-01

    . cerevisiae FLO11 wild-type (TBR1) cells had a higher consensus than those from competitive panning with S. cerevisiae flo11¿ mutant (TBR5) cells, suggesting that the wild-type cells interact with the plastic surface in a stronger and more similar way than the mutant cells. Tryptophan and proline were more...... a phage with a hydrophobic peptide containing no tryptophan and only two proline residues. Conclusions: Our results suggest a key role of tryptophan and proline in the hydrophobic interactions between Flo11p on the S. cerevisiae cell surface and the PolySorp surface. Significance and Impact of the Study......: Our study may contribute to the development of novel strategies to limit yeast infections in hospitals and other medical environments....

  14. Oxidant resistance in a yeast mutant deficient in the Sit4 phosphatase

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R; Kielland-Brandt, Morten C

    2008-01-01

    Resistance to thiol oxidation can arise from mutations altering redox homeostasis. A Saccharomyces cerevisiae sit4-110 mutant is here described, which was isolated as resistant to the thiol-specific oxidant dipyridyl disulfide (DPS) and which contains a single-residue substitution in the SIT4 gene...

  15. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ajimura, M.; Lee, S.H.; Ogawa, H.

    1993-01-01

    Mutants defective in meiotic recombination were isolated from a disomic haploid strain of Saccharomyces cerevisiae by examining recombination within the leu2 and his4 heteroalleles located on chromosome III. The mutants were classified into two new complementation groups (MRE2 and MRE11) and eight previously identified groups, which include SPO11, HOP1, REC114, MRE4/MEK1 and genes in the RAD52 epistasis group. All of the mutants, in which the mutations in the new complementation groups are homozygous and diploid, can undergo premeiotic DNA synthesis and produce spores. The spores are, however, not viable. The mre2 and mre11 mutants produce viable spores in a spo13 background, in which meiosis I is bypassed, suggesting that these mutants are blocked at an early step in meiotic recombination. The mre2 mutant does not exhibit any unusual phenotype during mitosis and it is, thus, considered to have a mutation in a meiosis-specific gene. By contrast, the mre11 mutant is sensitive to damage to DNA by methyl methanesulfonate and exhibits a hyperrecombination phenotype in mitosis. Among six alleles of HOP1 that were isolated, an unusual pattern of intragenic complementation was observed

  16. Preferential radiosensitization of G1 checkpoint--deficient cells by methylxanthines

    International Nuclear Information System (INIS)

    Russell, Kenneth J.; Wiens, Linda W.; Demers, G. William; Galloway, Denise A.; Le, Tiep; Rice, Glenn C.; Bianco, James A.; Singer, Jack W.; Groudine, Mark

    1996-01-01

    Purpose: To develop a checkpoint-based strategy for preferential radiosensitization of human tumors with deficient and/or mutant p53. Methods and Materials: A549 human lung adenocarcinoma cell lines differing in their expression of the p53 tumor suppressor gene were produced by transduction with the E6 oncogene from human papilloma virus type 16. The cells expressing E6 (E6+) lack a G1 arrest in response to ionizing radiation, are deficient in p53 and p21 expression, and exhibit a fivefold greater clonogenic survival following 10 Gy radiation. Results: Postirradiation incubation with millimolar concentrations of the methylxanthine pentoxifylline (PTX) results in preferential radiosensitization of the E6+ cells compared to the LXSN+ vector transduced controls. There is a threefold sensitization of the LXSN+ cells and a 15-fold sensitization of the E6+ cells, which results in equal clonogenic survival of the two lines. Flow cytometry reveals PTX abrogation of the radiation induced G2 arrest for both cell lines. PTX also prolongs G1 transit for both cell lines. Preliminary results are presented using a novel methylxanthine, lisofylline (LSF), which has similar cell cycle effects on G1 and G2 and achieves differential radiosensitization at micromolar concentrations that are sustainable in humans. Conclusions: This checkpoint-based strategy is a promising approach for achieving preferential radiosensitization of p53- tumors relative to p53+ normal tissues

  17. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Quarterman, Josh; Skerker, Jeffrey M; Feng, Xueyang; Liu, Ian Y; Zhao, Huimin; Arkin, Adam P; Jin, Yong-Su

    2016-07-10

    In the important industrial yeast Saccharomyces cerevisiae, galactose metabolism requires energy production by respiration; therefore, this yeast cannot metabolize galactose under strict anaerobic conditions. While the respiratory dependence of galactose metabolism provides benefits in terms of cell growth and population stability, it is not advantageous for producing fuels and chemicals since a substantial fraction of consumed galactose is converted to carbon dioxide. In order to force S. cerevisiae to use galactose without respiration, a subunit (COX9) of a respiratory enzyme was deleted, but the resulting deletion mutant (Δcox9) was impaired in terms of galactose assimilation. Interestingly, after serial sub-cultures on galactose, the mutant evolved rapidly and was able to use galactose via fermentation only. The evolved strain (JQ-G1) produced ethanol from galactose with a 94% increase in yield and 6.9-fold improvement in specific productivity as compared to the wild-type strain. (13)C-metabolic flux analysis demonstrated a three-fold reduction in carbon flux through the TCA cycle of the evolved mutant with redirection of flux toward the fermentation pathway. Genome sequencing of the JQ-G1 strain revealed a loss of function mutation in a master negative regulator of the Leloir pathway (Gal80p). The mutation (Glu348*) in Gal80p was found to act synergistically with deletion of COX9 for efficient galactose fermentation, and thus the double deletion mutant Δcox9Δgal80 produced ethanol 2.4 times faster and with 35% higher yield than a single knockout mutant with deletion of GAL80 alone. When we introduced a functional COX9 cassette back into the JQ-G1 strain, the JQ-G1-COX9 strain showed a 33% reduction in specific galactose uptake rate and a 49% reduction in specific ethanol production rate as compared to JQ-G1. The wild-type strain was also subjected to serial sub-cultures on galactose but we failed to isolate a mutant capable of utilizing galactose without

  18. Antimutators of mitochodrial and nuclear DNA in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Bianchi, L.; Foury, F.

    1982-01-01

    In Saccharomyces cerevisiae ten antimutator mutants have been isolated. The spontaneous occurrence of mitochondrial mutants resistant to erythromycin, oligomycin, and diuron is decreased 2-60-fold in these strains. The rate of forward and reverse spontaneous mutations of the nuclear genome is also reduced. The meiotic progenies arising from the crosses of seven mutants (LB 1 , LB 2 , LB 4 , LB 5 , LB 6 , LB 7 , LB 10 ) with an isogenic parental strain exhibit 2:2 segregations and therefore are the result of mutations in a single nuclear gene. The six mutants LB 1 , LB 2 , LB 4 , LB 6 , LB 7 , LB 10 are semidominant and determine six complementation groups. The mutant LB 5 is dominant and therefore cannot be assigned to any complementation group. The mutants. LB 1 , LB 4 and LB 1 0 are gamma-ray sensitive and, by tetrad analysis, it has been shown that gamma-ray sensitivity and spontaneous antimutability are the result of a single nuclear gene mutation. The other three mutants LB 3 , LB 8 and LB 9 exhibit complex tetrad segregations, typical of cytoplasmic inheritance and do not complement each other. However, although the mutations are semidominant, it has not been possible to detect any antimutator cytoductant among some 500 cytoductants carrying the karl 1-1 nucleus. (orig./AJ)

  19. "Isogaba Maware": quality control of genome DNA by checkpoints.

    Science.gov (United States)

    Kitazono, A; Matsumoto, T

    1998-05-01

    Checkpoints maintain the interdependency of cell cycle events by permitting the onset of an event only after the completion of the preceding event. The DNA replication checkpoint induces a cell cycle arrest until the completion of the DNA replication. Similarly, the DNA damage checkpoint arrests cell cycle progression if DNA repair is incomplete. A number of genes that play a role in the two checkpoints have been identified through genetic studies in yeasts, and their homologues have been found in fly, mouse, and human. They form signaling cascades activated by a DNA replication block or DNA damage and subsequently generate the negative constraints on cell cycle regulators. The failure of these signaling cascades results in producing offspring that carry mutations or that lack a portion of the genome. In humans, defects in the checkpoints are often associated with cancer-prone diseases. Focusing mainly on the studies in budding and fission yeasts, we summarize the recent progress.

  20. Newly Emerging Immune Checkpoints: Promises for Future Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Robert J. Torphy

    2017-12-01

    Full Text Available Cancer immunotherapy has been a great breakthrough, with immune checkpoint inhibitors leading the way. Despite the clinical effectiveness of certain immune checkpoint inhibitors, the overall response rate remains low, and the effectiveness of immunotherapies for many tumors has been disappointing. There is substantial interest in looking for additional immune checkpoint molecules that may act as therapeutic targets for cancer. Recent advances during the last decade have identified several novel immune checkpoint targets, including lymphocyte activation gene-3 (LAG-3, B and T lymphocyte attenuator (BTLA, programmed death-1 homolog (PD-1H, T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIM-3/carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1, and the poliovirus receptor (PVR-like receptors. The investigations into these molecules have generated promising results in preclinical studies. Herein, we will summarize our current progress and understanding of these newly-characterized immune checkpoints and their potential application in cancer immunotherapy.

  1. High-content screening of yeast mutant libraries by shotgun lipidomics

    DEFF Research Database (Denmark)

    Tarasov, Kirill; Stefanko, Adam; Casanovas, Albert

    2014-01-01

    To identify proteins with a functional role in lipid metabolism and homeostasis we designed a high-throughput platform for high-content lipidomic screening of yeast mutant libraries. To this end, we combined culturing and lipid extraction in 96-well format, automated direct infusion...... factor KAR4 precipitated distinct lipid metabolic phenotypes. These results demonstrate that the high-throughput shotgun lipidomics platform is a valid and complementary proxy for high-content screening of yeast mutant libraries....... nanoelectrospray ionization, high-resolution Orbitrap mass spectrometry, and a dedicated data processing framework to support lipid phenotyping across hundreds of Saccharomyces cerevisiae mutants. Our novel approach revealed that the absence of genes with unknown function YBR141C and YJR015W, and the transcription...

  2. Radiotherapy and immune checkpoint blockades: a snapshot in 2016

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Tae Yool [Dept. of Radiation Oncology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon (Korea, Republic of); Kim, In Ah [Dept. of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Immune checkpoint blockades including monoclonal antibodies (mAbs) of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) have been emerged as a promising anticancer therapy. Several immune checkpoint blockades have been approved by US Food and Drug Administration (FDA), and have shown notable success in clinical trials for patients with advanced melanoma and non-small cell lung cancer. Radiotherapy is a promising combination partner of immune checkpoint blockades due to its potent pro-immune effect. This review will cover the current issue and the future perspectives for combined with radiotherapy and immune checkpoint blockades based upon the available preclinical and clinical data.

  3. The DNA replication checkpoint directly regulates MBF-dependent G1/S transcription.

    Science.gov (United States)

    Dutta, Chaitali; Patel, Prasanta K; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-10-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G(1)/S transcriptional program by directly regulating MBF, the G(1)/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G(1)/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G(1)/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes.

  4. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    Science.gov (United States)

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G1/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes. PMID:18662996

  5. Control of Saccharomyces cerevisiae catalase T gene (CTT1) expression by nutrient supply via the RAS-cyclic AMP pathway.

    Science.gov (United States)

    Bissinger, P H; Wieser, R; Hamilton, B; Ruis, H

    1989-03-01

    In Saccharomyces cerevisiae, lack of nutrients triggers a pleiotropic response characterized by accumulation of storage carbohydrates, early G1 arrest, and sporulation of a/alpha diploids. This response is thought to be mediated by RAS proteins, adenylate cyclase, and cyclic AMP (cAMP)-dependent protein kinases. This study shows that expression of the S. cerevisiae gene coding for a cytoplasmic catalase T (CTT1) is controlled by this pathway: it is regulated by the availability of nutrients. Lack of a nitrogen, sulfur, or phosphorus source causes a high-level expression of the gene. Studies with strains with mutations in the RAS-cAMP pathway and supplementation of a rca1 mutant with cAMP show that CTT1 expression is under negative control by a cAMP-dependent protein kinase and that nutrient control of CTT1 gene expression is mediated by this pathway. Strains containing a CTT1-Escherichia coli lacZ fusion gene have been used to isolate mutants with mutations in the pathway. Mutants characterized in this investigation fall into five complementation groups. Both cdc25 and ras2 alleles were identified among these mutants.

  6. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY) production.

    Science.gov (United States)

    Zheng, Daoqiong; Zhang, Ke; Gao, Kehui; Liu, Zewei; Zhang, Xing; Li, Ou; Sun, Jianguo; Zhang, Xiaoyang; Du, Fengguang; Sun, Peiyong; Qu, Aimin; Wu, Xuechang

    2013-01-01

    The application of active dry yeast (ADY) in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS) process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  7. Construction of novel Saccharomyces cerevisiae strains for bioethanol active dry yeast (ADY production.

    Directory of Open Access Journals (Sweden)

    Daoqiong Zheng

    Full Text Available The application of active dry yeast (ADY in bioethanol production simplifies operation processes and reduces the risk of bacterial contamination. In the present study, we constructed a novel ADY strain with improved stress tolerance and ethanol fermentation performances under stressful conditions. The industrial Saccharomyces cerevisiae strain ZTW1 showed excellent properties and thus subjected to a modified whole-genome shuffling (WGS process to improve its ethanol titer, proliferation capability, and multiple stress tolerance for ADY production. The best-performing mutant, Z3-86, was obtained after three rounds of WGS, producing 4.4% more ethanol and retaining 2.15-fold higher viability than ZTW1 after drying. Proteomics and physiological analyses indicated that the altered expression patterns of genes involved in protein metabolism, plasma membrane composition, trehalose metabolism, and oxidative responses contribute to the trait improvement of Z3-86. This work not only successfully developed a novel S. cerevisiae mutant for application in commercial bioethanol production, but also enriched the current understanding of how WGS improves the complex traits of microbes.

  8. Phenylalanine 445 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences C-Ring cyclization and deprotonation reactions.

    Science.gov (United States)

    Wu, Tung-Kung; Liu, Yuan-Ting; Chiu, Feng-Hsuan; Chang, Cheng-Hsiang

    2006-10-12

    [reaction: see text] We describe the Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase Phe445 site-saturated mutants that generate truncated tricyclic and altered deprotonation product profiles. Among these mutants, only polar side-chain group substitutions genetically complemented yeast viability and produced spatially related product diversity, supporting the Johnson model that cation-pi interactions between a carbocationic intermediate and an enzyme can be replaced by an electrostatic or polar side chain to stabilize the cationic intermediate, but with product differentiation.

  9. Photoreactivity in Saccharomyces cerevisiae cells after irradiation with 25 MeV electrons

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Seleva, N.G.; Myasnik, M.N.; Kabakova, N.M.

    1986-01-01

    Significant photoreactivation was noted in radio- and UV-sensitive rad-mutants of Saccharomyces cerevisiae cells exposed to 25 MeV electrons. In order to make the photoreactivable damage be manifest anoxic conditions of irradiation should be chosen as optimal ones. It was shown that the low oxygen effect was partially associated with the photoreactivable damage involved in the lethal effect of ionizing radiation

  10. Three additional genes involved in pyrimidine dimer removal in Saccharomyces cerevisiae: RAD7, RAD14, and MMS19

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L; Prakash, S

    1979-01-01

    The ability to remove ultraviolet (uv)-induced pyrimidine dimers from the nuclear DNA of yeast was examined in two radiation-sensitive (rad) mutants and one methyl methanesulfonate-sensitive (mms) mutant of the yeast Saccharomyces cerevisiae. The susceptibility of DNA from irradiated cells to nicking by an endonuclease activity prepared from crude extracts of Micrococcus luteus was used to measure the presence of dimers in DNA. The rad7, rad14, and mms19 mutants were found to be defective in their ability to remove uv-induced dimers from nuclear DNA. All three mutants belong to the same episatic group as the other mutants involved in excision-repair. All three mutants show enhanced uv-induced mutations. The rad 14 mutant also shows epistatic interactions with genes in the other two uv repair pathways.

  11. Molecular Mechanisms of DNA Replication Checkpoint Activation

    Directory of Open Access Journals (Sweden)

    Bénédicte Recolin

    2014-03-01

    Full Text Available The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability.

  12. Immune mediated neuropathy following checkpoint immunotherapy.

    Science.gov (United States)

    Gu, Yufan; Menzies, Alexander M; Long, Georgina V; Fernando, S L; Herkes, G

    2017-11-01

    Checkpoint immunotherapy has revolutionised cancer therapy and is now standard treatment for many malignancies including metastatic melanoma. Acute inflammatory neuropathies, often labelled as Guillain-Barre syndrome, are an uncommon but potentially severe complication of checkpoint immunotherapy with individual cases described but never characterised as a group. We describe a case of acute sensorimotor and autonomic neuropathy following a single dose of combination ipilimumab and nivolumab for metastatic melanoma. A literature search was performed, identifying 14 other cases of acute neuropathy following checkpoint immunotherapy, with the clinical, electrophysiological and laboratory features summarised. Most cases described an acute sensorimotor neuropathy (92%) with hyporeflexia (92%) that could occur from induction up till many weeks after the final dose of therapy. In contrast to Guillain-Barre syndrome, the cerebrospinal fluid (CSF) analysis often shows a lymphocytic picture (50%) and the electrophysiology showed an axonal pattern (55%). Treatment was variable and often in combination. 11 cases received steroid therapy with only 1 death within this group, whereas of the 4 patients who did not receive steroid therapy there were 3 deaths. In conclusion checkpoint immunotherapy - induced acute neuropathies are distinct from and progress differently to Guillain-Barre syndrome. As with other immunotherapy related adverse events corticosteroid therapy should be initiated in addition to usual therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Ngo, Hien-Ping; Hickson, Ian D

    2009-01-01

    , the accumulation of these structures in esc2 (but not sgs1) mutants is entirely dependent on Mph1, a protein that shows structural similarity to the Fanconi anemia group M protein (FANCM). In the absence of both Esc2 and Sgs1, the intra-S-phase DNA damage checkpoint response is compromised after exposure to MMS...

  14. Hyper- and hyporesponsive mutant forms of the Saccharomyces cerevisiae Ssy1 amino acid sensor

    DEFF Research Database (Denmark)

    Poulsen, Peter; Gaber, Richard F.; Kielland-Brandt, Morten

    2008-01-01

    The Saccharomyces cerevisiae integral membrane protein Ssy1p functions with Ssy5p and Ptr3p to sense extracellular amino acids. Signal transduction leads to processing and nuclear localization of Stp1p and Stp2p, transcriptional activators of many amino acid transporter genes. Ssy1p is structural...

  15. Trehalose, glycogen and ethanol metabolism in the gcr1 mutant of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Seker, Tamay; Hamamci, H.

    2003-01-01

    Since Gcr1p is pivotal in controlling the transcription of glycolytic enzymes and trehalose metabolism seems to be one of the control points of glycolysis, we examined trehalose and glycogen synthesis in response to 2 % glucose pulse during batch growth in gcr1 (glucose regulation-1) mutant lacking...... fully functional glycolytic pathway and in the wild-type strain. An increase in both trehalose and glycogen stores was observed 1 and 2 h after the pulse followed by a steady decrease in both the wild-type and the gcr1 mutant. The accumulation was faster while the following degradation was slower in gcr......1 cells compared to wild-type ones. Although there was no distinct glucose consumption in the mutant cells it seemed that the glucose repression mechanism is similar in gcr1 mutant and in wild-type strain at least with respect to trehalose and glycogen metabolism....

  16. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  17. Genome-wide screening of Saccharomyces cerevisiae genes regulated by vanillin.

    Science.gov (United States)

    Park, Eun-Hee; Kim, Myoung-Dong

    2015-01-01

    During pretreatment of lignocellulosic biomass, a variety of fermentation inhibitors, including acetic acid and vanillin, are released. Using DNA microarray analysis, this study explored genes of the budding yeast Saccharomyces cerevisiae that respond to vanillin-induced stress. The expression of 273 genes was upregulated and that of 205 genes was downregulated under vanillin stress. Significantly induced genes included MCH2, SNG1, GPH1, and TMA10, whereas NOP2, UTP18, FUR1, and SPR1 were down regulated. Sequence analysis of the 5'-flanking region of upregulated genes suggested that vanillin might regulate gene expression in a stress response element (STRE)-dependent manner, in addition to a pathway that involved the transcription factor Yap1p. Retardation in the cell growth of mutant strains indicated that MCH2, SNG1, and GPH1 are intimately involved in vanillin stress response. Deletion of the genes whose expression levels were decreased under vanillin stress did not result in a notable change in S. cerevisiae growth under vanillin stress. This study will provide the basis for a better understanding of the stress response of the yeast S. cerevisiae to fermentation inhibitors.

  18. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    OpenAIRE

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program du...

  19. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose

    Science.gov (United States)

    Haiying Ni; Jose M. Laplaza; Thomas W. Jeffries

    2007-01-01

    Saccharomyces cerevisiae L2612 transformed with genes for xylose reductase and xylitol dehydrogenase (XYL1 and XYL2) grows well on glucose but very poorly on D-xylose. When a gene for D-xylulokinase (XYL3 or XKS1) is overexpressed, growth on glucose is unaffected, but growth on xylose is blocked. Spontaneous or chemically induced mutants of this engineered yeast that...

  20. [Mutants of the yeast Saccharomyces cerevisiae characterized by enhanced induced mutagenesis. III. Effect of the him mutation on the effectiveness and specificity of UF-induced mutagenesis].

    Science.gov (United States)

    Ivanov, E L; Koval'tsova, S V; Korolev, V G

    1987-09-01

    We have studied the influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adenine-dependent mutations (ade1, ade2) were induced more frequently (1.5--2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed that him1-1, him2-1 and himX mutations increase specifically the yield of transitions (AT----GC and GC----AT), whereas in the him3-1 strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction.

  1. Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.

    Science.gov (United States)

    Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A; Grant, Gavin D; Chao, Hui Yan; Cook, Jeanette G; Purvis, Jeremy E

    2017-11-22

    Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Checkpointing for graceful degradation in distributed embedded systems

    Science.gov (United States)

    Sababha, Belal Hussein

    Graceful degradation is an approach to developing dependable safety-critical embedded applications, where redundant active or standby resources are used to cope with faults through a system reconfiguration at run-time. Compared to traditional hardware and software redundancy, it is a promising technique that may achieve dependability with a significant reduction in cost, size, weight, and power requirements. Reconfiguration at run-time necessitates using proper checkpointing protocols to support state reservation to ensure correct task restarts after a system reconfiguration. One of the most common checkpointing protocols are communication induced checkpointing (CIC) protocols, which are well developed and understood for large parallel and information systems, but not much has been done for resource limited embedded systems. This work implements and evaluates some of the most common CIC protocols in a periodic resource constrained distributed embedded system for graceful degradation purposes. A test-bed has been developed and used for the evaluation of the various protocols. The implemented protocols are thoroughly studied and performances are contrasted. Specifically the periodicity property and how it benefits checkpointing in embedded systems is investigated. This work introduces a unique effort of CIC protocol implementation and evaluation in the field of distributed embedded systems. Other than providing a test-bed for graceful degradation support, this work shows that some checkpointing protocols that are not efficient in large information systems and supercomputers perform well in embedded systems. We show that a simple index-based CIC protocol, such as the BCS protocol, is more appropriate in embedded system applications compared to other protocols that piggyback a significant amount of information to reduce the number of forced checkpoints. Finally, this work proposes a whole graceful degradation approach to achieve fault tolerance in resource constrained

  3. Comparisons of radiosensitivity and damage repair potential between mutants from the Saccharomyces cerevisiae strain of yeast and laboratory-bred wild yeasts with particular attention being given to giant cell formation after X-radiation

    International Nuclear Information System (INIS)

    Heinen, A.

    1988-01-01

    Yeast cells were exposed to X-rays at dose levels up to 10 kGy to induce damage to the DNA and investigate its effects on cellular growth patterns. For this purpose, comparisons were carried out between one diploid strain and six haploid strains of the Saccharomyces uvarum and Saccharomyces cerevisiae species, which permitted the individual recovery and damage repair pathways to be described in more detail. The laboratory-bred wild strains ATCC 9080, 211 and 706 were judged to have unimpaired repair mechanisms as compared to the auxotrophs, which fact was evident from the higher radiosensitivity of the latter. A further parameter in this evaluation of growth behaviours was giant cell formation. The results here provided evidence in confirmation of deviations between wild strains and mutants. Even though the ceiling values for the formation of giant cells were similarly high in all strains, impairments of cell division and initial development were observed for the mutants already at considerably lower dose levels. (orig./MG) [de

  4. Combination approaches with immune checkpoint blockade in cancer therapy

    Directory of Open Access Journals (Sweden)

    Maarten Swart

    2016-11-01

    Full Text Available In healthy individuals, immune checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune checkpoint blockade of cytotoxic T lymphocyte antigen-4 (CTLA-4 and programmed death-1 (PD-1 emerged as promising strategies to activate anti-tumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune checkpoint blockade, aimed at increasing response-rates to the single treatments.

  5. Space Reclamation for Uncoordinated Checkpointing in Message-Passing Systems. Ph.D. Thesis

    Science.gov (United States)

    Wang, Yi-Min

    1993-01-01

    Checkpointing and rollback recovery are techniques that can provide efficient recovery from transient process failures. In a message-passing system, the rollback of a message sender may cause the rollback of the corresponding receiver, and the system needs to roll back to a consistent set of checkpoints called recovery line. If the processes are allowed to take uncoordinated checkpoints, the above rollback propagation may result in the domino effect which prevents recovery line progression. Traditionally, only obsolete checkpoints before the global recovery line can be discarded, and the necessary and sufficient condition for identifying all garbage checkpoints has remained an open problem. A necessary and sufficient condition for achieving optimal garbage collection is derived and it is proved that the number of useful checkpoints is bounded by N(N+1)/2, where N is the number of processes. The approach is based on the maximum-sized antichain model of consistent global checkpoints and the technique of recovery line transformation and decomposition. It is also shown that, for systems requiring message logging to record in-transit messages, the same approach can be used to achieve optimal message log reclamation. As a final topic, a unifying framework is described by considering checkpoint coordination and exploiting piecewise determinism as mechanisms for bounding rollback propagation, and the applicability of the optimal garbage collection algorithm to domino-free recovery protocols is demonstrated.

  6. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Österlund, Tobias; Liu, Zihe

    2013-01-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular...... stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent...... the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high...

  7. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae.

    OpenAIRE

    Enyenihi, Akon H; Saunders, William S

    2003-01-01

    We have used a single-gene deletion mutant bank to identify the genes required for meiosis and sporulation among 4323 nonessential Saccharomyces cerevisiae annotated open reading frames (ORFs). Three hundred thirty-four sporulation-essential genes were identified, including 78 novel ORFs and 115 known genes without previously described sporulation defects in the comprehensive Saccharomyces Genome (SGD) or Yeast Proteome (YPD) phenotype databases. We have further divided the uncharacterized sp...

  8. [Cloning of cDNA for RNA polymerase subunit from the fission yeast Schizosaccharomyces pombe by heterospecific complementation in Saccharomyces cerevisiae].

    Science.gov (United States)

    Shpakovskiĭ, G V; Lebedenko, E N; Thuriaux, P

    1997-02-01

    The rpb10 cDNA of the fission yeast Schizosaccharomyces pombe, encoding one of the five small subunits common to all three nuclear DNA-dependent RNA polymerases, was isolated from an expression cDNA library by two independent approaches: PCR-based screening and direct suppression by means of heterospecific complementation of a temperature-sensitive mutant defective in the corresponding gene of Saccharomyces cerevisiae. The cloned Sz. pombe cDNA encodes a protein Rpb10 of 71 amino acids with an M of 8,275 Da, sharing 51 amino acids (71% identity) with the subunit ABC10 beta of RNA polymerases I-III from S. cerevisiae. All eukaryotic members of this protein family have the same general organization featuring two highly conserved motifs (RCFT/SCGK and RYCCRRM) around an atypical zinc finger and an additional invariant HVDLIEK motif toward the C-terminal end. The last motif is only characteristics for homologs from eukaryotes. In keeping with this remarkable structural conservation, the Sz. pombe cDNA also fully complemented a S. cerevisiae deletion mutant lacking subunit ABC10 beta (null allele rpb10-delta 1::HIS3).

  9. Association of methionine requirement with methyl mercury resistant mutants of yeast

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Sherman, F.

    1974-01-25

    It has been known for several years that strains resistant to mercury can be obtained in several bacterial species. Soon after the correlation between resistance to antibiotics and to mercury was recognized, it was established that genetic elements conferring resistance to antibiotics, mercury and other heavy metals in Escherichia coli and Samonella typhimurium and Staphylococcus aureus reside on extrachromosomal resistance transfer factors or plasmids. Among fungi, mercury resistant strains of Botrytis cinerea, Penicillium notatum, Sclerotinia fructicola, Stemphylium sarcinaeforme, and Saccharomyces cerevisiae have been reported. In most cases, this was accomplished by training the normal strains for growth on media supplemented with successively increasing concentrations of mercury compounds, and in some cases the resistance was lost when subcultured on mercury-free media. It is noteworthy that in none of the mercury-adapted strains of fungi has the genetic basis of resistance been determined. In this report we describe a method of isolation and characterization of methyl mercury resistant mutants of S. cerevisiae. This study was undertaken with the view that the examination of physiological changes associated with genetically defined resistant mutants will be useful in studying the mechanisms of cellular detoxification of organic mercurials.

  10. Genome-wide RNAi screen reveals the E3 SUMO-protein ligase gene SIZ1 as a novel determinant of furfural tolerance in Saccharomyces cerevisiae

    OpenAIRE

    Xiao, Han; Zhao, Huimin

    2014-01-01

    Background Furfural is a major growth inhibitor in lignocellulosic hydrolysates and improving furfural tolerance of microorganisms is critical for rapid and efficient fermentation of lignocellulosic biomass. In this study, we used the RNAi-Assisted Genome Evolution (RAGE) method to select for furfural resistant mutants of Saccharomyces cerevisiae, and identified a new determinant of furfural tolerance. Results By using a genome-wide RNAi (RNA-interference) screen in S. cerevisiae for genes in...

  11. Sobriety checkpoints in Thailand: a review of effectiveness and developments over time.

    Science.gov (United States)

    Ditsuwan, Vallop; Veerman, J Lennert; Bertram, Melanie; Vos, Theo

    2015-03-01

    This review describes the legal basis for and implementation of sobriety checkpoints in Thailand and identifies factors that influenced their historical development and effectiveness. The first alcohol and traffic injury control law in Thailand was implemented in 1934. The 0.05 g/100 mL blood alcohol concentration limit was set in 1994. Currently, 3 types of sobriety checkpoints are used: general police checkpoints, selective breath testing, and special event sobriety checkpoints. The authors found few reports on the strategies, frequencies, and outcomes for any of these types of checkpoints, despite Thailand having devoted many resources to their implementation. In Thailand and other low-middle income countries, it is necessary to address the country-specific barriers to successful enforcement (including political and logistical issues, lack of equipment, and absence of other supportive alcohol harm reduction measures) before sobriety checkpoints can be expected to be as effective as reported in high-income countries. © 2011 APJPH.

  12. Study of the plant COPII vesicle coat subunits by functional complementation of yeast Saccharomyces cerevisiae mutants.

    Directory of Open Access Journals (Sweden)

    Johan-Owen De Craene

    Full Text Available The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor attachment protein receptor Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

  13. The cellular Mre11 protein interferes with adenovirus E4 mutant DNA replication

    International Nuclear Information System (INIS)

    Mathew, Shomita S.; Bridge, Eileen

    2007-01-01

    Adenovirus type 5 (Ad5) relocalizes and degrades the host DNA repair protein Mre11, and efficiently initiates viral DNA replication. Mre11 associates with Ad E4 mutant DNA replication centers and is important for concatenating viral genomes. We have investigated the role of Mre11 in the E4 mutant DNA replication defect. RNAi-mediated knockdown of Mre11 dramatically rescues E4 mutant DNA replication in cells that do or do not concatenate viral genomes, suggesting that Mre11 inhibits DNA replication independent of genome concatenation. The mediator of DNA damage checkpoint 1 (Mdc1) protein is involved in recruiting and sustaining Mre11 at sites of DNA damage following ionizing radiation. We observe foci formation by Mdc1 in response to viral infection, indicating that this damage response protein is activated. However, knockdown of Mdc1 does not prevent Mre11 from localizing at viral DNA replication foci or rescue E4 mutant DNA replication. Our results are consistent with a model in which Mre11 interferes with DNA replication when it is localized at viral DNA replication foci

  14. ATM and checkpoint responses to DNA double strand breaks

    International Nuclear Information System (INIS)

    Khanna, K.K.

    2003-01-01

    DNA damage checkpoints can be classified into G1/S, intra-S and G2/M checkpoints, so named according to the cell cycle transitions that they regulate. DNA damage incurred during the G1 or G2 phase of the cell cycle leads to growth arrest at the G1/S and G2/M phase boundaries, respectively, whereas genotoxic stress during S phase results in the transient suppression of DNA synthesis. In mammals, ATM (ataxia-telangiectasia mutated) is a protein kinase that controls all checkpoint responses to DNA damage. ATM is a versatile kinase which uses various means to regulate a given checkpoint pathway. It has been shown to act upon several proteins within the same pathway, many times controlling several different modifications of the same protein or using several different targets to arrive at the same end point. Some of the ATM targets act as adaptors by recruiting additional substrates for ATM. ATM controls two types of responses in G1. The p53-dependent responses inhibit Cyclin/Cdk activity by transcriptional induction of p21, whereas p53-independent responses inhibit CDKs through degradation of Cdc25A to maintain CdK2 inhibitory phosphorylation. In regulating p53, ATM directly phosphorylates p53 on Ser15, which likely causes p53 transcriptional activation, concurrently activating other kinases that phosphorylate p53 at other sites such as Ser20, which reduces the ability of MDM2 to bind p53, thus promoting its stability. ATM further ensures p53 stability by phosphorylating MDM2. At least six ATM targets, namely CHK2, CHK1, NBS1, BRCA1, SMC1 and FANCD2, have been implicated in the control of S-phase checkpoint. Cdc25A is the downstream effector of CHK1 and CHK2, though the underlying mechanism for control of intra S-phase checkpoint by other targets remain obscure. G2 checkpoint prevents mitotic entry solely through inhibitory phosphorylation of Cdc2/Cdk1. Several ATM targets including CHK1, CHK2, BRCA1, MDC1 and p53BP1 have been implicated in the control of G2/M

  15. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Science.gov (United States)

    2010-04-01

    ...) antibody (ASCA) test systems. 866.5785 Section 866.5785 Food and Drugs FOOD AND DRUG ADMINISTRATION... Immunological Test Systems § 866.5785 Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems. (a) Identification. The Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test system is...

  16. Action-oriented use of ergonomic checkpoints for healthy work design in different settings.

    Science.gov (United States)

    Kogi, Kazutaka

    2007-12-01

    Recent experiences in the action-oriented use of ergonomic checkpoints in different work settings are reviewed. The purpose is to know what features are useful for healthy work design adjusted to each local situation. Based on the review results, common features of ergonomic checkpoints used in participatory training programs for improving workplace conditions in small enterprises, construction sites, home work and agriculture in industrially developing countries in Asia are discussed. These checkpoints generally compile practical improvement options in a broad range of technical areas, such as materials handling, workstation design, physical environment and work organization. Usually, "action checklists" comprising the tiles of the checkpoints are used together. A clear focus is placed on readily applicable low-cost options. Three common features of these various checkpoints appear to be important. First, the checkpoints represent typical good practices in multiple areas. Second, each how-to section of these checkpoints presents simple improvements reflecting basic ergonomic principles. Examples of these principles include easy reach, fewer and faster transport, elbow-level work, coded displays, isolated or screened hazards and shared teamwork. Third, the illustrated checkpoints accompanied by corresponding checklists are used as group work tools in short-term training courses. Many practical improvements achieved are displayed in websites for inter-country work improvement networks. It is suggested to promote the use of locally adjusted checkpoints in various forms of participatory action-oriented training in small-scale workplaces and in agriculture particularly in industrially developing countries.

  17. Secondary metabolites of the grapevine pathogen Eutypa lata inhibit mitochondrial respiration, based on a model bioassay using the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Jong H; Mahoney, Noreen; Chan, Kathleen L; Molyneux, Russell J; Campbell, Bruce C

    2004-10-01

    Acetylenic phenols and a chromene isolated from the grapevine fungal pathogen Eutypa lata were examined for mode of toxicity. The compounds included eutypine (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl aldehyde), eutypinol (4-hydroxy-3-[3-methyl-3-butene-1-ynyl] benzyl alcohol), eulatachromene, 2- isoprenyl-5-formyl-benzofuran, siccayne, and eulatinol. A bioassay using the yeast Saccharomyces cerevisiae showed that all compounds were either lethal or inhibited growth. A respiratory assay using 2,3,5-triphenyltetrazolium (TTC) indicated that eutypinol and eulatachromene inhibited mitochondrial respiration in wild-type yeast. Bioassays also showed that 2- isoprenyl-5-formyl-benzofuran and siccayne inhibited mitochondrial respiration in the S. cerevisiae deletion mutant vph2Delta, lacking a vacuolar type H (+) ATPase (V-ATPase) assembly protein. Cell growth of tsa1Delta, a deletion mutant of S. cerevisiae lacking a thioredoxin peroxidase (cTPx I), was greatly reduced when grown on media containing eutypinol or eulatachromene and exposed to hydrogen peroxide (H(2)O(2)) as an oxidative stress. This reduction in growth establishes the toxic mode of action of these compounds through inhibition of mitochondrial respiration.

  18. Development of cell-cycle checkpoint therapy for solid tumors.

    Science.gov (United States)

    Tamura, Kenji

    2015-12-01

    Cellular proliferation is tightly controlled by several cell-cycle checkpoint proteins. In cancer, the genes encoding these proteins are often disrupted and cause unrestrained cancer growth. The proteins are over-expressed in many malignancies; thus, they are potential targets for anti-cancer therapies. These proteins include cyclin-dependent kinase, checkpoint kinase, WEE1 kinase, aurora kinase and polo-like kinase. Cyclin-dependent kinase inhibitors are the most advanced cell-cycle checkpoint therapeutics available. For instance, palbociclib (PD0332991) is a first-in-class, oral, highly selective inhibitor of CDK4/6 and, in combination with letrozole (Phase II; PALOMA-1) or with fulvestrant (Phase III; PALOMA-3), it has significantly prolonged progression-free survival, in patients with metastatic estrogen receptor-positive, HER2-negative breast cancer, in comparison with that observed in patients using letrozole, or fulvestrant alone, respectively. In this review, we provide an overview of the current compounds available for cell-cycle checkpoint protein-directed therapy for solid tumors. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. A checkpoint compression study for high-performance computing systems

    Energy Technology Data Exchange (ETDEWEB)

    Ibtesham, Dewan [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Computer Science; Ferreira, Kurt B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Scalable System Software Dept.; Arnold, Dorian [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Computer Science

    2015-02-17

    As high-performance computing systems continue to increase in size and complexity, higher failure rates and increased overheads for checkpoint/restart (CR) protocols have raised concerns about the practical viability of CR protocols for future systems. Previously, compression has proven to be a viable approach for reducing checkpoint data volumes and, thereby, reducing CR protocol overhead leading to improved application performance. In this article, we further explore compression-based CR optimization by exploring its baseline performance and scaling properties, evaluating whether improved compression algorithms might lead to even better application performance and comparing checkpoint compression against and alongside other software- and hardware-based optimizations. Our results highlights are: (1) compression is a very viable CR optimization; (2) generic, text-based compression algorithms appear to perform near optimally for checkpoint data compression and faster compression algorithms will not lead to better application performance; (3) compression-based optimizations fare well against and alongside other software-based optimizations; and (4) while hardware-based optimizations outperform software-based ones, they are not as cost effective.

  20. Improvement of Lead Tolerance of Saccharomyces cerevisiae by Random Mutagenesis of Transcription Regulator SPT3.

    Science.gov (United States)

    Zhu, Liying; Gao, Shan; Zhang, Hongman; Huang, He; Jiang, Ling

    2018-01-01

    Bioremediation of heavy metal pollution with biomaterials such as bacteria and fungi usually suffer from limitations because of microbial sensitivity to high concentration of heavy metals. Herein, we adopted a novel random mutagenesis technique called RAISE to manipulate the transcription regulator SPT3 of Saccharomyces cerevisiae to improve cell lead tolerance. The best strain Mutant VI was selected from the random mutagenesis libraries on account of the growth performance, with higher specific growth rate than the control strain (0.068 vs. 0.040 h -1 ) at lead concentration as high as 1.8 g/L. Combined with the transcriptome analysis of S. cerevisiae, expressing the SPT3 protein was performed to make better sense of the global regulatory effects of SPT3. The data analysis revealed that 57 of S. cerevisiae genes were induced and 113 genes were suppressed, ranging from those for trehalose synthesis, carbon metabolism, and nucleotide synthesis to lead resistance. Especially, the accumulation of intracellular trehalose in S. cerevisiae under certain conditions of stress is considered important to lead resistance. The above results represented that SPT3 was acted as global transcription regulator in the exponential phase of strain and accordingly improved heavy metal tolerance in the heterologous host S. cerevisiae. The present study provides a route to complex phenotypes that are not readily accessible by traditional methods.

  1. Photorepair mutants of Arabidopsis

    International Nuclear Information System (INIS)

    Jiang, C.Z.; Yee, J.; Mitchell, D.L.; Britt, A.B.

    1997-01-01

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  2. An ATM-independent S-phase checkpoint response involves CHK1 pathway

    Science.gov (United States)

    Zhou, Xiang-Yang; Wang, Xiang; Hu, Baocheng; Guan, Jun; Iliakis, George; Wang, Ya

    2002-01-01

    After exposure to genotoxic stress, proliferating cells actively slow down the DNA replication through a S-phase checkpoint to provide time for repair. We report that in addition to the ataxia-telangiectasia mutated (ATM)-dependent pathway that controls the fast response, there is an ATM-independent pathway that controls the slow response to regulate the S-phase checkpoint after ionizing radiation in mammalian cells. The slow response of S-phase checkpoint, which is resistant to wortmannin, sensitive to caffeine and UCN-01, and related to cyclin-dependent kinase phosphorylation, is much stronger in CHK1 overexpressed cells, and it could be abolished by Chk1 antisense oligonucleotides. These results provide evidence that the ATM-independent slow response of S-phase checkpoint involves CHK1 pathway.

  3. An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint.

    Science.gov (United States)

    van Brabant, A J; Buchanan, C D; Charboneau, E; Fangman, W L; Brewer, B J

    2001-04-01

    Checkpoint controls coordinate entry into mitosis with the completion of DNA replication. Depletion of nucleotide precursors by treatment with the drug hydroxyurea triggers such a checkpoint response. However, it is not clear whether the signal for this hydroxyurea-induced checkpoint pathway is the presence of unreplicated DNA, or rather the persistence of single-stranded or damaged DNA. In a yeast artificial chromosome (YAC) we have engineered an approximately 170 kb region lacking efficient replication origins that allows us to explore the specific effects of unreplicated DNA on cell cycle progression. Replication of this YAC extends the length of S phase and causes cells to engage an S/M checkpoint. In the absence of Rad9 the YAC becomes unstable, undergoing deletions within the origin-free region.

  4. Identification of Putative Mek1 Substrates during Meiosis in Saccharomyces cerevisiae Using Quantitative Phosphoproteomics.

    Directory of Open Access Journals (Sweden)

    Raymond T Suhandynata

    Full Text Available Meiotic recombination plays a key role in sexual reproduction as it generates crossovers that, in combination with sister chromatid cohesion, physically connect homologous chromosomes, thereby promoting their proper segregation at the first meiotic division. Meiotic recombination is initiated by programmed double strand breaks (DSBs catalyzed by the evolutionarily conserved, topoisomerase-like protein Spo11. Repair of these DSBs is highly regulated to create crossovers between homologs that are distributed throughout the genome. This repair requires the presence of the mitotic recombinase, Rad51, as well as the strand exchange activity of the meiosis-specific recombinase, Dmc1. A key regulator of meiotic DSB repair in Saccharomyces cerevisiae is the meiosis-specific kinase Mek1, which promotes interhomolog strand invasion and is required for the meiotic recombination checkpoint and the crossover/noncrossover decision. Understanding how Mek1 regulates meiotic recombination requires the identification of its substrates. Towards that end, an unbiased phosphoproteomic approach utilizing Stable Isotope Labeling by Amino Acids in Cells (SILAC was utilized to generate a list of potential Mek1 substrates, as well as proteins containing consensus phosphorylation sites for cyclin-dependent kinase, the checkpoint kinases, Mec1/Tel1, and the polo-like kinase, Cdc5. These experiments represent the first global phosphoproteomic dataset for proteins in meiotic budding yeast.

  5. The CRO-1 gene of Saccharomyces cerevisiae controls mitotic crossing over, chromosomal stability and sporulation

    International Nuclear Information System (INIS)

    Esposito, M.S.; Maleas, D.T.; Bjornstad, K.A.; Holbrook, L.L.

    1987-01-01

    The properties of a novel temperature-sensitive recombination-defective mutant of Saccharomyces cerevisiae, cro1-1 is described. The cro1-1 mutant is the first instance of a rec mutation that reduces drastically the rates of spontaneous mitotic crossing-over events but not those of gene conversional events. The cro1-1 mutation thus provides evidence that mitotic crossing-over is dependent upon gene products that are not essential for gene conversional events. The cro1-1 mutation also results in enhanced mitotic-chromosomal instability and MATa/MATα cro1-1/cro1-1 mutants are sporulation deficient. These phenotypes indicate that the CRO1 gene modulates mitotic chromosomal integrity and is essential for normal meiosis. The cro1-1 mutant possesses Holliday junction resolvase activity, hence its recombinational defect does not involve failure to execute this putative final recombinational step. 7 refs., 1 fig., 5 tabs

  6. The bacterial cell cycle checkpoint protein Obg and its role in programmed cell death

    Directory of Open Access Journals (Sweden)

    Liselot Dewachter

    2016-03-01

    Full Text Available The phenomenon of programmed cell death (PCD, in which cells initiate their own demise, is not restricted to multicellular organisms. Unicellular organisms, both eukaryotes and prokaryotes, also possess pathways that mediate PCD. We recently identified a PCD mechanism in Escherichia coli that is triggered by a mutant isoform of the essential GTPase ObgE (Obg of E. coli. Importantly, the PCD pathway mediated by mutant Obg (Obg* differs fundamentally from other previously described bacterial PCD pathways and thus constitutes a new mode of PCD. ObgE was previously proposed to act as a cell cycle checkpoint protein able to halt cell division. The implication of ObgE in the regulation of PCD further increases the similarity between this protein and eukaryotic cell cycle regulators that are capable of doing both. Moreover, since Obg is conserved in eukaryotes, the elucidation of this cell death mechanism might contribute to the understanding of PCD in higher organisms. Additionally, if Obg*-mediated PCD is conserved among different bacterial species, it will be a prime target for the development of innovative antibacterials that artificially induce this pathway.

  7. Pathways of ultraviolet mutability in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Lemontt, J.F.

    1977-01-01

    Non-allelic mutants of Saccharomyces cerevisiae with reduced capacity for ultraviolet light (UV)-induced forward mutation from CAN1 to can1 were assigned to seven distinct genetic loci, each with allele designations umr1-1, umr2-1, ..., umr7-1 to indicate UV mutation resistance. None conferred a great deal of UV sensitivity. When assayed on yeast extract-peptone-dextrose complex growth agar, umr1, umr3, and umr7 were the most UV-sensitive. When assayed on synthetic agar lacking arginine, however, umr3 was the most UV-sensitive. All strains carrying each of the seven umr genes exhibited varying degrees of defective UV mutability, compact with wild types. Normal UV revertibility of three different alleles was observed in strains carrying either umr4, umr5, umr6, or umr7. Five a/α homozygous umr diploids failed to sporulate. One of these, umr7, blocked normal secretion of alpha hormone in α segregants and could not conjugate with a strains. The phenotypes of umr mutants are consistent with the existence of branched UV mutation pathways of different specificity

  8. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Fujita, Ken-Ichi; Tatsumi, Miki; Ogita, Akira; Kubo, Isao; Tanaka, Toshio

    2014-02-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum, and antimicrobial activity that is weaker than that of other antibiotics on the market. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to possess significant synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the antifungal mechanism of anethole has not been completely determined. We found that anethole stimulated cell death of a human opportunistic pathogenic fungus, Aspergillus fumigatus, in addition to S. cerevisiae. The anethole-induced cell death was accompanied by reactive oxygen species production, metacaspase activation, and DNA fragmentation. Several mutants of S. cerevisiae, in which genes related to the apoptosis-initiating execution signals from mitochondria were deleted, were resistant to anethole. These results suggest that anethole-induced cell death could be explained by oxidative stress-dependent apoptosis via typical mitochondrial death cascades in fungi, including A. fumigatus and S. cerevisiae. © 2014 FEBS.

  9. Upregulated ATM gene expression and activated DNA crosslink-induced damage response checkpoint in Fanconi anemia: implications for carcinogenesis.

    Science.gov (United States)

    Yamamoto, Kazuhiko; Nihrane, Abdallah; Aglipay, Jason; Sironi, Juan; Arkin, Steven; Lipton, Jeffrey M; Ouchi, Toru; Liu, Johnson M

    2008-01-01

    Fanconi anemia (FA) predisposes to hematopoietic failure, birth defects, leukemia, and squamous cell carcinoma of the head and neck (HNSCC) and cervix. The FA/BRCA pathway includes 8 members of a core complex and 5 downstream gene products closely linked with BRCA1 or BRCA2. Precancerous lesions are believed to trigger the DNA damage response (DDR), and we focused on the DDR in FA and its putative role as a checkpoint barrier to cancer. In primary fibroblasts with mutations in the core complex FANCA protein, we discovered that basal expression and phosphorylation of ATM (ataxia telangiectasia mutated) and p53 induced by irradiation (IR) or mitomycin C (MMC) were upregulated. This heightened response appeared to be due to increased basal levels of ATM in cultured FANCA-mutant cells, highlighting the new observation that ATM can be regulated at the transcriptional level in addition to its well-established activation by autophosphorylation. Functional analysis of this response using gamma-H2AX foci as markers of DNA double-stranded breaks (DSBs) demonstrated abnormal persistence of only MMC- and not IR-induced foci. Thus, we describe a processing defect that leads to general DDR upregulation but specific persistence of DNA crosslinker-induced damage response foci. Underscoring the significance of these findings, we found resistance to DNA crosslinker-induced cell cycle arrest and apoptosis in a TP53-mutant, patient-derived HNSCC cell line, whereas a lymphoblastoid cell line derived from this same individual was not mutated at TP53 and retained DNA crosslinker sensitivity. Our results suggest that cancer in FA may arise from selection for cells that escape from a chronically activated DDR checkpoint.

  10. RAD24 (=R1/sup S/) gene product of Saccharomyces cerevisiae participates in two different pathways of DNA repair

    International Nuclear Information System (INIS)

    Eckardt-Schupp, F.; Siede, W.; Game, J.C.

    1987-01-01

    The moderately UV- and X-ray-sensitive mutant of Saccharomyces cerevisiae originally designated r 1 /sup s/ complements all rad and mms mutants available. Therefore, the new nomination rad24-1 according to the RAD nomenclature is suggested. RAD24 maps on chromosome V, close to RAD3 (1.3 cM). In order to associate the RAD24 gene with one of the three repair pathways, double mutants of rad24 and various representative genes of each pathway were constructed. The UV and X-ray sensitivities of the double mutants compared to the single mutants indicate that RAD24 is involved in excision repair of UV damage (RAD3 epistasis group), as well as in recombination repair of UV and X-ray damage (RAD52 epistasis group). Properties of the mutant are discussed which hint at the control of late steps in the pathways

  11. A New Adaptive Checkpointing Strategy for Mobile Computing

    Institute of Scientific and Technical Information of China (English)

    MENChaoguang; ZUODecheng; YANGXiaozong

    2005-01-01

    Adaptive checkpointing strategy is an efficient recovery scheme, which is suitable for mobile computing system. However, all existing adaptive checkpointing schemes are not correct to recover system when failure occurs in some special period. In this paper, the issues that will lead to system inconsistency are first discussed and then a new adaptive strategy that can recover system to correct consistent state is proposed. Our algorithm improves system recovery performance because only failure process needs rollback through logging.

  12. Radioimmunoassay for yeast killer toxin from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Siddiqui, F.A.; Bussey, H.

    1981-01-01

    A radioimmunoassay was developed for the K1 killer toxin from strain T158C/S14a of Saccharomyces cerevisiae. Iodine 125-labelled toxin was made to a specific activity of 100 μCi/mg of protein. Antibody to purified toxin was prepared in rabbits using toxin cross-linked to itself. These antibodies, partially purified by 50 percent ammonium sulfate precipitation and Sepharose CL-6B column chromatography, produced one precipitation band with killer toxin and bound 125 I-labelled toxin in a radioimmunoassay. The antibody preparation also bound with the toxins from another K1 killer, A364A, and three chromosomal superkiller mutants derived from it. (auth)

  13. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1992-01-01

    in signal transduction in budding yeast. Expression of the S. cerevisiae STE11 gene in S. pombe ste8 mutants restores the ability to transcribe mat1-Pm in response to pheromone. Also, such cells become capable of conjugation and sporulation. When mat1-Pm is artifically expressed from a heterologous promoter...

  14. Implication of the G2 checkpoint in the maintenance of genome integrity

    International Nuclear Information System (INIS)

    Piette, J.; Munoz, P.

    2000-01-01

    Checkpoints are surveillance mechanisms that block transitions, for instance in response to DNA damage. We summarize here here recent progress in the molecular characterization of the G 2 checkpoint which controls the entry into mitosis, and review new evidence which implicates de-regulated expression of checkpoint proteins and proteins involved in DNA damage repair in cancer development. These now exists good evidence that individuals who inherited mutations in genes involved in G 2 checkpoint and DNA damage repair are predisposed to the development of various types of cancer, their cells having a strong tendency to accumulate additional mutations. However, the occurrence of mutations of most of these genes in sporadic tumors has yet to be analysed more accurately. (authors)

  15. Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bojsen, Rasmus K; Andersen, Kaj Scherz; Regenberg, Birgitte

    2012-01-01

    Microbial biofilms can be defined as multi-cellular aggregates adhering to a surface and embedded in an extracellular matrix (ECM). The nonpathogenic yeast, Saccharomyces cerevisiae, follows the common traits of microbial biofilms with cell-cell and cell-surface adhesion. S. cerevisiae is shown t...

  16. Checkpoint inhibitors in advanced melanoma: effect on the field of immunotherapy.

    Science.gov (United States)

    O'reilly, Aine; Larkin, James

    2017-07-01

    The success of the immune checkpoint inhibitors in melanoma has reinvigorated the field of immunotherapy. Immune checkpoint inhibitors are now the standard of care in multiple cancer types including lung cancer, head and neck cancer, urothelial cancer and renal cell cancer. The field of immunotherapy is currently expanding rapidly and will be a focus of research and development for decades to come. Areas covered: This review covers the early development of immune checkpoint inhibitors and the changes that occurred in the drug development paradigm to facilitate the development of immunotherapy. The review will summarise the areas into which immune checkpoint inhibitors have been adopted and will review the data that supported this. Furthermore, we will discuss future developments in immunotherapy and the current landscape regarding maximising the potential of immunotherapy in clinical practice. Expert commentary: In the author's opinion, the potential of immunotherapy is vast. To date immune checkpoint inhibition has already delivered durable responses in a proportion of patients with cancer types which were previously universally lethal. The future of immunotherapy will rely upon the intelligent application of translational research to clinical practice, such that immunotherapy can be effective for a wider population and maintain its current growth.

  17. Rad9 contribution to radiosensitivity and the G2 checkpoint in a DT40 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Tomoyasu [Kanazawa Univ. (Japan). Graduate School of Medical Science

    2002-12-01

    In fission yeast, the rad9 (radiation sensitive) gene was cloned from a mutant that is sensitive to ionizing radiation, ultraviolet and hydroxyurea. This gene has also been shown to be required for a DNA damage checkpoint. Orthologues of the rad9 gene have recently been identified in higher eukaryote cells including human. Here we generated Rad9 knockout (Rad9-/-) cells from the chicken B lymphocyte line DT40 to examine the role of Rad9 in higher eukaryotes. First we isolated a part of the chicken Rad9 gene which was 54% identical with human Rad9 at the amino acid sequence level. Next we isolated genomic clones, determined exons and introns, and constructed targeting vectors designed to disrupt exon 1-3 of the chicken Rad9 gene by replacement with a drug-resistant gene. Successful targeted integration was verified by Southern blot analysis and the disruption of the Rad9 gene was confirmed by reverse transcription polymerase chain reaction (RT-PCR). To analyze the radiosensitivity of these Rad9-/- cells, we monitored the clonogenic survival after various degrees of X-ray irradiation. Rad9-/- cells were more sensitive to X-rays than wild type cells at all dosages. However, these cells were less sensitive than ATM knockout (ATM-/-) cells that are known to be X-ray sensitive and that showed a defective checkpoint control. In contrast, Rad9-/- cells were markedly more sensitive to ultraviolet and hydroxyruea. In addition, we assessed the G2 checkpoint by measurement of the mitotic index that is the fraction of the accumulating number of cells in mitosis at various times after X-ray irradiation. While the number of mitotic wild type cells did not increase until 2 hrs after X-ray irradiation, the number of mitotic Rad9-/- cells showed an increase similar to that of ATM-/- cells. These results suggest that just as in fission yeast, in higher eukaryotes Rad9 also contributes to X-ray, ultraviolet and hydroxyurea sensitivity, and plays an important role in the G2 checkpoint

  18. Rad9 contribution to radiosensitivity and the G2 checkpoint in a DT40 cell line

    International Nuclear Information System (INIS)

    Kumano, Tomoyasu

    2002-01-01

    In fission yeast, the rad9 (radiation sensitive) gene was cloned from a mutant that is sensitive to ionizing radiation, ultraviolet and hydroxyurea. This gene has also been shown to be required for a DNA damage checkpoint. Orthologues of the rad9 gene have recently been identified in higher eukaryote cells including human. Here we generated Rad9 knockout (Rad9-/-) cells from the chicken B lymphocyte line DT40 to examine the role of Rad9 in higher eukaryotes. First we isolated a part of the chicken Rad9 gene which was 54% identical with human Rad9 at the amino acid sequence level. Next we isolated genomic clones, determined exons and introns, and constructed targeting vectors designed to disrupt exon 1-3 of the chicken Rad9 gene by replacement with a drug-resistant gene. Successful targeted integration was verified by Southern blot analysis and the disruption of the Rad9 gene was confirmed by reverse transcription polymerase chain reaction (RT-PCR). To analyze the radiosensitivity of these Rad9-/- cells, we monitored the clonogenic survival after various degrees of X-ray irradiation. Rad9-/- cells were more sensitive to X-rays than wild type cells at all dosages. However, these cells were less sensitive than ATM knockout (ATM-/-) cells that are known to be X-ray sensitive and that showed a defective checkpoint control. In contrast, Rad9-/- cells were markedly more sensitive to ultraviolet and hydroxyruea. In addition, we assessed the G2 checkpoint by measurement of the mitotic index that is the fraction of the accumulating number of cells in mitosis at various times after X-ray irradiation. While the number of mitotic wild type cells did not increase until 2 hrs after X-ray irradiation, the number of mitotic Rad9-/- cells showed an increase similar to that of ATM-/- cells. These results suggest that just as in fission yeast, in higher eukaryotes Rad9 also contributes to X-ray, ultraviolet and hydroxyurea sensitivity, and plays an important role in the G2 checkpoint

  19. Akt Kinase-Mediated Checkpoint of cGAS DNA Sensing Pathway

    Directory of Open Access Journals (Sweden)

    Gil Ju Seo

    2015-10-01

    Full Text Available Upon DNA stimulation, cyclic GMP-AMP synthase (cGAS synthesizes the second messenger cyclic GMP-AMP (cGAMP that binds to the STING, triggering antiviral interferon-β (IFN-β production. However, it has remained undetermined how hosts regulate cGAS enzymatic activity after the resolution of DNA immunogen. Here, we show that Akt kinase plays a negative role in cGAS-mediated anti-viral immune response. Akt phosphorylated the S291 or S305 residue of the enzymatic domain of mouse or human cGAS, respectively, and this phosphorylation robustly suppressed its enzymatic activity. Consequently, expression of activated Akt led to the reduction of cGAMP and IFN-β production and the increase of herpes simplex virus 1 replication, whereas treatment with Akt inhibitor augmented cGAS-mediated IFN-β production. Furthermore, expression of the phosphorylation-resistant cGAS S291A mutant enhanced IFN-β production upon DNA stimulation, HSV-1 infection, and vaccinia virus infection. Our study identifies an Akt kinase-mediated checkpoint to fine-tune hosts’ immune responses to DNA stimulation.

  20. Loss of yeast peroxiredoxin Tsa1p induces genome instability through activation of the DNA damage checkpoint and elevation of dNTP levels.

    Directory of Open Access Journals (Sweden)

    Hei-Man Vincent Tang

    2009-10-01

    Full Text Available Peroxiredoxins are a family of antioxidant enzymes critically involved in cellular defense and signaling. Particularly, yeast peroxiredoxin Tsa1p is thought to play a role in the maintenance of genome integrity, but the underlying mechanism is not understood. In this study, we took a genetic approach to investigate the cause of genome instability in tsa1Delta cells. Strong genetic interactions of TSA1 with DNA damage checkpoint components DUN1, SML1, and CRT1 were found when mutant cells were analyzed for either sensitivity to DNA damage or rate of spontaneous base substitutions. An elevation in intracellular dNTP production was observed in tsa1Delta cells. This was associated with constitutive activation of the DNA damage checkpoint as indicated by phosphorylation of Rad9/Rad53p, reduced steady-state amount of Sml1p, and induction of RNR and HUG1 genes. In addition, defects in the DNA damage checkpoint did not modulate intracellular level of reactive oxygen species, but suppressed the mutator phenotype of tsa1Delta cells. On the contrary, overexpression of RNR1 exacerbated this phenotype by increasing dNTP levels. Taken together, our findings uncover a new role of TSA1 in preventing the overproduction of dNTPs, which is a root cause of genome instability.

  1. Endonuclease α from Saccharomyces cerevisiae shows increased activity on ultraviolet irradiated native DNA

    International Nuclear Information System (INIS)

    Bryant, D.W.; Haynes, R.H.

    1978-01-01

    Endonuclease α isolated from the nucleus of the yeast Saccharomyces cerevisiae is a DNA endonuclease which has been shown to act preferentially on denatured T7 DNA. The purified enzyme is more active with UV-irradiated native T7 DNA than with unirradiated substrate. The relation between damage, measured by pyrimidine dimer concentration, and excess endonuclease activity is most readily explained by local denaturation caused by the presence of pyrimidine dimers. When three radiation sensitive mutants of yeast were tested for the level of endonuclease α present, none were found lacking the enzyme. However, nuclei of strain rad 1-1, a mutant that may be defective in heteroduplex repair as well as excision repair, were found to contain reduced levels of the endonuclease. (orig./AJ) [de

  2. Asynchronous Two-Level Checkpointing Scheme for Large-Scale Adjoints in the Spectral-Element Solver Nek5000

    Energy Technology Data Exchange (ETDEWEB)

    Schanen, Michel; Marin, Oana; Zhang, Hong; Anitescu, Mihai

    2016-01-01

    Adjoints are an important computational tool for large-scale sensitivity evaluation, uncertainty quantification, and derivative-based optimization. An essential component of their performance is the storage/recomputation balance in which efficient checkpointing methods play a key role. We introduce a novel asynchronous two-level adjoint checkpointing scheme for multistep numerical time discretizations targeted at large-scale numerical simulations. The checkpointing scheme combines bandwidth-limited disk checkpointing and binomial memory checkpointing. Based on assumptions about the target petascale systems, which we later demonstrate to be realistic on the IBM Blue Gene/Q system Mira, we create a model of the expected performance of our checkpointing approach and validate it using the highly scalable Navier-Stokes spectralelement solver Nek5000 on small to moderate subsystems of the Mira supercomputer. In turn, this allows us to predict optimal algorithmic choices when using all of Mira. We also demonstrate that two-level checkpointing is significantly superior to single-level checkpointing when adjoining a large number of time integration steps. To our knowledge, this is the first time two-level checkpointing had been designed, implemented, tuned, and demonstrated on fluid dynamics codes at large scale of 50k+ cores.

  3. Roles of Catalase and Trehalose in the Protection from Hydrogen Peroxide Toxicity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nishimoto, Takuto; Watanabe, Takeru; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao

    2016-01-01

    The roles of catalase and trehalose in Saccharomyces cerevisiae subject to hydrogen peroxide (H2O2) treatment were examined by measuring the catalase activity and intracellular trehalose levels in mutants lacking catalase or trehalose synthetase. Intracellular trehalose was elevated but the survival rate after H2O2 treatment remained low in mutants with deletion of the Catalase T gene. On the other hand, deletion of the trehalose synthetase gene increased the catalase activity in mutated yeast to levels higher than those in the wild-type strain, and these mutants exhibited some degree of tolerance to H2O2 treatment. These results suggest that Catalase T is critical in the yeast response to oxidative damage caused by H2O2 treatment, but trehalose also plays a role in protection against H2O2 treatment.

  4. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J. P. [NIH, Bethesda, MD. (United States); Levine, A. S.; Woodgate, R.

    1997-12-15

    Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1 genes, in UV resistance and UV-induced mutagenesis. Similar to its prokaryotic homologues, RAD30 was found to be damage inducible. Like many S. cerevisiae genes involved in error-prone DNA repair, epistasis analysis clearly places RAD30 in the RAD6 group and rad30 mutants display moderate UV sensitivity reminiscent of rev mutants. However, unlike rev mutants, no defect in UV-induced reversion was seen in rad30 strains. While rad6 and rad18 are both epistatic to rad30, no epistasis was observed with rev1, rev3, rev7 or rad5, all of which are members of the RAD6 epistasis group. These findings suggest that RD30 participates in a novel error-free repair pathway dependent on RAD6 and RAD18, but independent of REV1, REV3, REV7 and RAD5. (author)

  5. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    International Nuclear Information System (INIS)

    Ahn, Brian J.; Pollack, Ian F.; Okada, Hideho

    2013-01-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas

  6. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  7. Immune checkpoint inhibitors for nonsmall cell lung cancer treatment

    Directory of Open Access Journals (Sweden)

    Yuh-Min Chen

    2017-01-01

    Full Text Available Immune checkpoint inhibition with blocking antibodies that target cytotoxic T-lymphocyte antigen-4 (CTLA-4 and the programmed cell death protein 1 (PD-1 pathway [PD-1/programmed death-ligand 1 (PD-L1] have demonstrated promise in a variety of malignancies. While ipilimumab has been approved as a CTLA-4 blocking antibody by the US Food and Drug Administration for the treatment of advanced melanoma, it is still not approved for lung cancer treatment. In contrast, nivolumab and pembrolizumab, both PD-1 blocking antibodies, have been approved for second-line treatment of nonsmall cell lung cancer in 2015 because of their high potency and long-lasting effects in some patient subgroups. Other PD-1 and PD-L1 monoclonal antibodies are also in active development phase. Treatment with such immune checkpoint inhibitors is associated with a unique pattern of immune-related adverse events or side effects. Combination approaches involving CTLA-4 and PD-1/PD-L1 blockade or checkpoint inhibitors with chemotherapy or radiotherapy are being investigated to determine whether they may enhance the efficacy of treatment. Despite many challenges ahead, immunotherapy with checkpoint inhibitors has already become a new and important treatment modality for lung cancer in the last decade following the discovery of targeted therapy.

  8. The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility.

    Science.gov (United States)

    Li, X C; Barringer, B C; Barbash, D A

    2009-01-01

    Sterility is a commonly observed phenotype in interspecific hybrids. Sterility may result from chromosomal or genic incompatibilities, and much progress has been made toward understanding the genetic basis of hybrid sterility in various taxa. The underlying mechanisms causing hybrid sterility, however, are less well known. The pachytene checkpoint is a meiotic surveillance system that many organisms use to detect aberrant meiotic products, in order to prevent the production of defective gametes. We suggest that activation of the pachytene checkpoint may be an important mechanism contributing to two types of hybrid sterility. First, the pachytene checkpoint may form the mechanistic basis of some gene-based hybrid sterility phenotypes. Second, the pachytene checkpoint may be an important mechanism that mediates chromosomal-based hybrid sterility phenotypes involving gametes with non-haploid (either non-reduced or aneuploid) chromosome sets. Studies in several species suggest that the strength of the pachytene checkpoint is sexually dimorphic, observations that warrant future investigation into whether such variation may contribute to differences in patterns of sterility between male and female interspecific hybrids. In addition, plants seem to lack the pachytene checkpoint, which correlates with increased production of unreduced gametes and a higher incidence of polyploid species in plants versus animals. Although the pachytene checkpoint occurs in many animals and in fungi, at least some of the genes that execute the pachytene checkpoint are different among organisms. This finding suggests that the penetrance of the pachytene checkpoint, and even its presence or absence can evolve rapidly. The surprising degree of evolutionary flexibility in this meiotic surveillance system may contribute to the observed variation in patterns of hybrid sterility and in rates of polyploidization.

  9. Defective thymine dimer excision in radiation-sensitive mutants rad10 and rad16 of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L [Rochester Univ., N.Y. (USA). School of Medicine and Dentistry

    1977-04-01

    Two rad mutants of yeast, rad10 and rad16, are shown to be defective in the removal of UV-induced pyrimidine dimers since DNAs obtained from irradiated cells following a post-irradiation incubation in the dark still retain UV-endonuclease-sensitive sites. Both rad10 and rad16 mutants are in the same pathway of excision-repair as the rad1, rad2, rad3, and rad4 mutants.

  10. Immune-checkpoint inhibitors in the era of precision medicine: What radiologists should know

    Energy Technology Data Exchange (ETDEWEB)

    Braschi-Amirfarzan, Marta; Tirumani, Sree Harsha; Hodi, Frank Stephan Jr; Nishno, Mizuki [Dept. of Radiology, Brigham and Women' s Hospital and Dana Farber Cancer Institute, Boston (United States)

    2017-01-15

    Over the past five years immune-checkpoint inhibitors have dramatically changed the therapeutic landscape of advanced solid and hematologic malignancies. The currently approved immune-checkpoint inhibitors include antibodies to cytotoxic T-lymphocyte antigen-4, programmed cell death (PD-1), and programmed cell death ligand (PD-L1 and PD-L2). Response to immune-checkpoint inhibitors is evaluated on imaging using the immune-related response criteria. Activation of immune system results in a unique toxicity profile termed immune-related adverse events. This article will review the molecular mechanism, clinical applications, imaging of immune-related response patterns and adverse events associated with immune-checkpoint inhibitors.

  11. Immune-checkpoint inhibitors in the era of precision medicine: What radiologists should know

    International Nuclear Information System (INIS)

    Braschi-Amirfarzan, Marta; Tirumani, Sree Harsha; Hodi, Frank Stephan Jr; Nishno, Mizuki

    2017-01-01

    Over the past five years immune-checkpoint inhibitors have dramatically changed the therapeutic landscape of advanced solid and hematologic malignancies. The currently approved immune-checkpoint inhibitors include antibodies to cytotoxic T-lymphocyte antigen-4, programmed cell death (PD-1), and programmed cell death ligand (PD-L1 and PD-L2). Response to immune-checkpoint inhibitors is evaluated on imaging using the immune-related response criteria. Activation of immune system results in a unique toxicity profile termed immune-related adverse events. This article will review the molecular mechanism, clinical applications, imaging of immune-related response patterns and adverse events associated with immune-checkpoint inhibitors

  12. The spindle assembly checkpoint: More than just keeping track of the spindle.

    OpenAIRE

    Lawrence, KS; Engebrecht, J

    2015-01-01

    Genome stability is essential for cell proliferation and survival. Consequently, genome integrity is monitored by two major checkpoints, the DNA damage response (DDR) and the spindle assembly checkpoint (SAC). The DDR monitors DNA lesions in G1, S, and G2 stages of the cell cycle and the SAC ensures proper chromosome segregation in M phase. There have been extensive studies characterizing the roles of these checkpoints in response to the processes for which they are named; however, emerging e...

  13. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.

    Science.gov (United States)

    Watanabe, Seiya; Abu Saleh, Ahmed; Pack, Seung Pil; Annaluru, Narayana; Kodaki, Tsutomu; Makino, Keisuke

    2007-09-01

    A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis (PsXR and PsXDH, respectively) has the ability to convert xylose to ethanol together with the unfavourable excretion of xylitol, which may be due to intercellular redox imbalance caused by the different coenzyme specificity between NADPH-preferring XR and NAD(+)-dependent XDH. In this study, we focused on the effect(s) of mutated NADH-preferring PsXR in fermentation. The R276H and K270R/N272D mutants were improved 52- and 146-fold, respectively, in the ratio of NADH/NADPH in catalytic efficiency [(k(cat)/K(m) with NADH)/(k(cat)/K(m) with NADPH)] compared with the wild-type (WT), which was due to decrease of k(cat) with NADPH in the R276H mutant and increase of K(m) with NADPH in the K270R/N272D mutant. Furthermore, R276H mutation led to significant thermostabilization in PsXR. The most positive effect on xylose fermentation to ethanol was found by using the Y-R276H strain, expressing PsXR R276H mutant and PsXDH WT: 20 % increase of ethanol production and 52 % decrease of xylitol excretion, compared with the Y-WT strain expressing PsXR WT and PsXDH WT. Measurement of intracellular coenzyme concentrations suggested that maintenance of the of NADPH/NADP(+) and NADH/NAD(+) ratios is important for efficient ethanol fermentation from xylose by recombinant S. cerevisiae.

  14. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.

    Science.gov (United States)

    Matlung, Hanke L; Szilagyi, Katka; Barclay, Neil A; van den Berg, Timo K

    2017-03-01

    Immune checkpoint inhibitors, including those targeting CTLA-4/B7 and the PD-1/PD-L1 inhibitory pathways, are now available for clinical use in cancer patients, with other interesting checkpoint inhibitors being currently in development. Most of these have the purpose to promote adaptive T cell-mediated immunity against cancer. Here, we review another checkpoint acting to potentiate the activity of innate immune cells towards cancer. This innate immune checkpoint is composed of what has become known as the 'don't-eat me' signal CD47, which is a protein broadly expressed on normal cells and often overexpressed on cancer cells, and its counter-receptor, the myeloid inhibitory immunoreceptor SIRPα. Blocking CD47-SIRPα interactions has been shown to promote the destruction of cancer cells by phagocytes, including macrophages and neutrophils. Furthermore, there is growing evidence that targeting of the CD47-SIRPα axis may also promote antigen-presenting cell function and thereby stimulate adaptive T cell-mediated anti-cancer immunity. The development of CD47-SIRPα checkpoint inhibitors and the potential side effects that these may have are discussed. Collectively, this identifies the CD47-SIRPα axis as a promising innate immune checkpoint in cancer, and with data of the first clinical studies with CD47-SIRPα checkpoint inhibitors expected within the coming years, this is an exciting and rapidly developing field. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. UV- and gamma-radiation sensitive mutants of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Jiang, C.Z.; Yen, C.N.; Cronin, K.; Mitchell, D.; Britt, A.B.

    1997-01-01

    Arabidopsis seedlings repair UV-induced DNA damage via light-dependent and -independent pathways. The mechanism of the ''dark repair'' pathway is still unknown. To determine the number of genes required for dark repair and to investigate the substrate-specificity of this process we isolated mutants with enhanced sensitivity to UV radiation in the absence of photoreactivating light. Seven independently derived UV sensitive mutants were isolated from an EMS-mutagenized population. These fell into six complementation groups, two of which (UVR1 and UVH1) have previously been defined. Four of these mutants are defective in the dark repair of UV-induced pyrimidine [6-4] pyrimidinone dimers. These four mutant lines are sensitive to the growth-inhibitory effects of gamma radiation, suggesting that this repair pathway is also involved in the repair of some type of gamma-induced DNA damage product. The requirement for the coordinate action of several different gene products for effective repair of pyrimidine dimers, as well as the nonspecific nature of the repair activity, is consistent with nucleotide excision repair mechanisms previously described in Saccharomyces cerevisiae and nonplant higher eukaryotes and inconsistent with substrate-specific base excision repair mechanisms found in some bacteria, bacteriophage, and fungi. (author)

  16. Myasthenia triggered by immune checkpoint inhibitors: New case and literature review.

    Science.gov (United States)

    Gonzalez, Natalia L; Puwanant, Araya; Lu, Angela; Marks, Stanley M; Živković, Saša A

    2017-03-01

    Immune checkpoint molecules are potent regulators of immunologic homeostasis that prevent the development of autoimmunity while maintaining self-tolerance. Inhibitors of immune checkpoint molecules are used as immunotherapy in the treatment of melanoma and different types of refractory cancer, and can trigger various autoimmune complications including myositis and myasthenia gravis. We describe a case of generalized myasthenia gravis induced by pembrolizumab and review 11 other cases. Five patients also had elevated serum CK levels ranging from 1200 to 8729 IU/L, and biopsy showed myositis in one. Severity was highly variable as symptoms normalized spontaneously in one patient, but three others developed myasthenic crisis (including two with fatal outcomes). Steroids have been recommended as a preferred treatment of autoimmune complications of immune-checkpoint inhibitors. Myasthenia gravis should be considered when weakness, diplopia or bulbar symptoms are seen after treatment with immune checkpoint inhibitors, and additional studies are needed to characterize association with hyperCKemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Radiosensitivity of Saccharomyces cerevisiae W303-1A and BY4741 Strains

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Young; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2011-05-15

    Saccharomyces cerevisiae, a simple eukaryotic cell, has been widely used as a model for all eukaryotes including humans for the study of fundamental cellular processes such as DNA replication, DNA recombination, cell cycle, cell division and metabolism. Numerous laboratory strains are used in yeast research. Most of the mutants have been derived from the two widely used laboratory strains W303-1A and BY4741. While BY4741 is a derivative of S288C, used in the systematic sequencing of the S. cerevisiae genome, strains with a W303 background serve in many physiological and biochemical studies. It was found in a recent study that W303-1A contains a mutant allele of YBP1, ybp1-1, encoding four amino acid substitutions, that results in increased peroxide sensitivity. Mutation of ybp1-1 is not a complete loss of function allele as it is more resistant to peroxides than the knock-out mutant. Ybp1 is required for oxidation of specific cysteine residues of the transcription factor Yap1p resulting in the nuclear localization of Yap1p in response to stress. Ionizing radiation (IR) can produce highly reactive hydroxyl radicals through the decomposition of cellular water, such as superoxide anion radical, hydrogen peroxide, hydroxyl radical. These reactive oxygen species (ROS) can cause wide-ranging cellular damage, including DNA double-strand breaks (DSBs), lipid peroxidation, and protein modification. Also, ROS produced by IR cause oxidative stress. Detoxification enzymes are activated for ROS scavenging against oxidative stress. Also, antioxidants are used for detoxification of ROS and reduction of oxidative damage. NAC, one of the antioxidants, is a precursor for glutathione (GSH). The aim of the present study was to compare the differences in radiosensitivity associated cell viability between the two strains. Also, effect of NAC against IR on cell protection was investigated

  18. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Spencer, F.; Gerring, S.L.; Connelly, C.; Hieter, P.

    1990-01-01

    The authors have isolated 136 independent EMS-induced mutations in haploid yeast strains that exhibit decreased chromosome transmission fidelity in mitosis. Eight-five percent of the mutations are recessive and 15% are partially dominant. Complementation analysis between MATa and MATα isolates identifies 11 chromosome transmission fidelity (CTF) complementation groups, the largest of which is identical to CHL1. For 49 independent mutations, no corresponding allele has been recovered in the opposite mating type. The initial screen monitored the stability of a centromere-linked color marker on a nonessential yeast chromosome fragment; the mitotic inheritance of natural yeast chromosome III is also affected by the ctf mutations. Of the 136 isolates identified, seven were inviable at 37 degree and five were inviable at 11 degree. In all cases tested, these temperature conditional lethalities cosegregated with the chromosome instability phenotype. Five additional complementation groups (ctf12 through ctf16) have been defined by complementation analysis of the mutations causing inviability at 37 degree. All of the mutant strains showed normal sensitivity to ultraviolet and γ-irradiation

  19. Chronic action of gamma-radiation on growing cell population of the yeast Saccharomyces cerevisiae at various dose rates

    International Nuclear Information System (INIS)

    Zyuzikov, N.A.; Petin, V.G.

    1996-01-01

    Experimental data on the processes of division and death of haploid and diploid yeast Saccharomyces cerevisiae of wild type and of their radiosensitive mutants exposed under optimal for reproduction conditions to chronic gamma-radiation at various dose rates are presented. It is shown that the dependence of the integral division/death process in time was exponential for all the studied strains. With dose rate increasing, the duration of the lag period and the probability of cell inactivation increased, while the multiplication rate decreased. These processes, for equal dose rates, were more expressed for the radiosensitive mutants

  20. Evaluation of Brachypodium distachyon L-Tyrosine Decarboxylase Using L-Tyrosine Over-Producing Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Shuhei Noda

    Full Text Available To demonstrate that herbaceous biomass is a versatile gene resource, we focused on the model plant Brachypodium distachyon, and screened the B. distachyon for homologs of tyrosine decarboxylase (TDC, which is involved in the modification of aromatic compounds. A total of 5 candidate genes were identified in cDNA libraries of B. distachyon and were introduced into Saccharomyces cerevisiae to evaluate TDC expression and tyramine production. It is suggested that two TDCs encoded in the transcripts Bradi2g51120.1 and Bradi2g51170.1 have L-tyrosine decarboxylation activity. Bradi2g51170.1 was introduced into the L-tyrosine over-producing strain of S. cerevisiae that was constructed by the introduction of mutant genes that promote deregulated feedback inhibition. The amount of tyramine produced by the resulting transformant was 6.6-fold higher (approximately 200 mg/L than the control strain, indicating that B. distachyon TDC effectively converts L-tyrosine to tyramine. Our results suggest that B. distachyon possesses enzymes that are capable of modifying aromatic residues, and that S. cerevisiae is a suitable host for the production of L-tyrosine derivatives.

  1. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Flis, Vid V; Fankl, Ariane; Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity.

  2. Lack of chemically induced mutation in repair-deficient mutants of yeast

    International Nuclear Information System (INIS)

    Prakash, L.

    1974-01-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), β-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents. (auth)

  3. Lack of chemically induced mutation in repair-deficient mutants of yeast.

    Science.gov (United States)

    Prakash, L

    1974-12-01

    Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.

  4. Immune checkpoint inhibitors for metastatic bladder cancer.

    Science.gov (United States)

    Massari, Francesco; Di Nunno, Vincenzo; Cubelli, Marta; Santoni, Matteo; Fiorentino, Michelangelo; Montironi, Rodolfo; Cheng, Liang; Lopez-Beltran, Anto; Battelli, Nicola; Ardizzoni, Andrea

    2018-03-01

    Chemotherapy has represented the standard therapy for unresectable or metastatic urothelial carcinoma for more than 20 years. The growing knowledge of the interaction between tumour and immune system has led to the advent of new classes of drugs, the immune-checkpoints inhibitors, which are intended to change the current scenario. To date, immunotherapy is able to improve the overall responses and survival. Moreover, thanks to its safety profile immune-checkpoint inhibitors could be proposed also to patients unfit for standard chemotherapy. No doubts that these agents have started a revolution expected for years, but despite this encouraging results it appears clear that not all subjects respond to these agents and requiring the development of reliable predictive response factors able to isolate patients who can more benefit from these treatments as well as new strategies aimed to improve immunotherapy clinical outcome. In this review we describe the active or ongoing clinical trials involving Programmed Death Ligand 1 (PD-L1), Programmed Death receptor 1 (PD-1) and Cytotoxic-T Lymphocyte Antigen 4 (CTLA 4) inhibitors in urothelial carcinoma focusing our attention on the developing new immune-agents and combination strategies with immune-checkpoint inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hu, Kejin; Guo, Shuguang; Yan, Gonghong; Yuan, Wenjie; Zheng, Yin; Jiang, Yu

    2016-04-01

    In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth-related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2(W2041R) ) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non-covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization. © 2016 John Wiley & Sons Ltd.

  6. Checkpoint inhibitors in endometrial cancer: preclinical rationale and clinical activity.

    Science.gov (United States)

    Mittica, Gloria; Ghisoni, Eleonora; Giannone, Gaia; Aglietta, Massimo; Genta, Sofia; Valabrega, Giorgio

    2017-10-27

    Treatment of advanced and recurrent endometrial cancer (EC) is still an unmet need for oncologists and gynecologic oncologists. The Cancer Genome Atlas Research Network (TCGA) recently provided a new genomic classification, dividing EC in four subgroups. Two types of EC, the polymerase epsilon (POLE)-ultra-mutated and the microsatellite instability-hyper-mutated (MSI-H), are characterized by a high mutation rate providing the rationale for a potential activity of checkpoint inhibitors. We analyzed all available evidence supporting the role of tumor microenvironment (TME) in EC development and the therapeutic implications offered by immune checkpoint inhibitors in this setting. We performed a review on Pubmed with Mesh keywords 'endometrial cancer' and the name of each checkpoint inhibitor discussed in the article. The same search was operated on clinicaltrial.gov to identify ongoing clinical trials exploring PD-1/PD-L1 and CTLA-4 axis in EC, particularly focusing on POLE-ultra-muted and MSI-H cancer types. POLE-ultra-mutated and MSI-H ECs showed an active TME expressing high number of neo-antigens and an elevated amount of tumor infiltrating lymphocytes (TILs). Preliminary results from a phase-1 clinical trial (KEYNOTE-028) demonstrated antitumor activity of Pembrolizumab in EC. Moreover, both Pembrolizumab and Nivolumab reported durable clinical responses in POLE-ultra-mutated patients. Immune checkpoint inhibitors are an attractive option in POLE-ultra-mutated and MSI-H ECs. Future investigations in these subgroups include combinations of checkpoints inhibitors with chemotherapy and small tyrosine kinase inhibitors (TKIs) to enhance a more robust intra-tumoral immune response.

  7. Genetic control of diploid recovery after γ-irradiation in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Saeki, T.; Machida, I.; Nakai, S.

    1980-01-01

    Genetic mechanism(s) of γ-ray resistance of the diploid and budding haploid cells of S. cerevisiae were investigated, with special reference to mitotic recombination, by examining 11 rad mutant strains. The radiosentivity of the diploid was markedly enhanced in certain γ-ray-sensitive rad mutants, whereas the sensitivity of the haploid was not so enhanced in these rad mutants. These enhanced sensitivities of diploids were irrespective of their own haploid sensitivities. From these results, the existence of a mechanism of diploid-specific recovery was postulated. The magnitude of diploid radioresistance in rad mutants was positively correlated with the ability for the induction of mitotic recombinational events which were controlled by RAD genes belonging to the RAD-51 genetic pathway. The genetic mechanism(s) of the diploid recovery after γ-irradiation are probably related to recombinational processes between the homologous chromosomes leading to reciprocal recombination or non-reciprocal gene conversion. Furthermore, the higher radioresistance of budding cells in comparison with the non-budding cells was also correlated to the diploid radioresistance with a few exceptions. Consequently, the mechanism(s) of budding radioresistance similar to the diploid recovery seems to be related to mitotic recombinational processes. (orig.)

  8. Influence of α sex factor on the biosynthesis of the cell wall from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Diaz, S.; Zinker, S.; Ruiz-Herrera, J.

    1984-01-01

    Cells of Saccharomyces cerevisiae produce peptide hormones (a and α) which dramatically affect the physiology, structure, and behavior of cells from the opposite mating type, presumably in preparation for conjugation. Some cell division cycle mutants mimick several of the changes induced by α factor. Accordingly, conditional mutants cdc 28, cdc 36, cdc 37, and cdc 39 undergo arrest in G1, exhibit shmoo morphology and are able to mate when they are transferred to the restrictive temperature. Formation of shmoo cells would require increased synthesis of glycosyl transferases involved in the biosynthesis of cell wall polysaccharides. Accordingly, the authors investigated the effect of G1 arrest on the chemical composition of the cell wall and on the levels of glycosyl transferases. Arrest in G1 was obtained by two methods: addition of α factor, and transfer of a cdc 28 mutant to the restrictive temperature

  9. IMP2, a nuclear gene controlling the mitochondrial dependence of galactose, maltose and raffinose utilization in Saccharomyces cerevisiae.

    Science.gov (United States)

    Donnini, C; Lodi, T; Ferrero, I; Puglisi, P P

    1992-02-01

    The IMP2 gene of Saccharomyces cerevisiae is involved in the nucleo-mitochondrial control of maltose, galactose and raffinose utilization as shown by the inability of imp2 mutants to grow on these carbon sources in respiratory-deficient conditions or in the presence of ethidium bromide and erythromycin. The negative phenotype cannot be scored in the presence of inhibitors of respiration and oxidative phosphorylation, indicating that the role of the mitochondria in the utilization of the above-mentioned carbon sources in imp2 mutants is not at the energetical level. Mutations in the IMP2 gene also confer many phenotypic alterations in respiratory-sufficient conditions, e.g. leaky phenotype on oxidizable carbon sources, sensitivity to heat shock and sporulation deficiency. The IMP2 gene has been cloned, sequenced and disrupted. The phenotype of null imp2 mutants is indistinguishable from that of the originally isolated mutant.

  10. Immune checkpoint inhibitors for non-small-cell lung cancer: does that represent a 'new frontier'?

    Science.gov (United States)

    Pilotto, Sara; Kinspergher, Stefania; Peretti, Umberto; Calio, Anna; Carbognin, Luisa; Ferrara, Roberto; Brunelli, Matteo; Chilosi, Marco; Tortora, Giampaolo; Bria, Emilio

    2015-01-01

    Advances in the interpretation and understanding of cancer behaviour, particularly of its ability to evade the host immunosurveillance, deregulating the balance between inhibitory and stimulatory factors, led to the development of an innovative category of immunotherapeutic agents, currently under investigation. Although the disappointing data deriving from the employment of vaccines in non-small cell lung cancer (NSCLC), more promising results have been obtained in the early phase trials with immune checkpoint inhibitors, such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PD-L1) inhibitors. This review delineates the main features of the available immunotherapeutic agents, focusing the discussion on immune checkpoint inhibitors, those that have already demonstrated a relevant clinical activity (such as Ipilimumab and Nivolumab) and those molecules still in early development phase. Moreover, we underline the possible emerging issues deriving from the progressive diffusion of Immuno-Oncology into the standard clinical practice. The careful and accurate identification and management of immune-related toxicities, the validation of more reliable immune response criteria and the increasing research of potential predictive biomarkers are key points of discussion. The perspective is that immunotherapy might represent an effective 'magic bullet', able to change the treatment paradigm of NSCLC, particularly of those subgroups featured by a heavily mutant cancer (squamous histology and smokers), where the immunologic agents contribute in cancer development and progression seems to be strong and, concurrently, the efficacy of standard therapies particularly limited.

  11. Liquid holding recovery kinetics in wild-type and radiosensitive mutants of the yeast Saccharomyces exposed to low- and high-LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Petin, Vladislav G. [Biophysical Laboratory, Medical Radiological Research Center, 249036 Obninsk (Russian Federation); Kim, Jin Kyu [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)]. E-mail: jkkim@kaeri.re.kr

    2005-02-15

    Three wild-type diploid yeast strains Saccharomyces ellipsoideus and Saccharomyces cerevisiae and five radiosensitive mutants of S. cerevisiae in the diploid state were irradiated with {gamma}-rays from {sup 60}Co and {alpha}-particles from {sup 239}Pu in the stationary phase of growth. Survival curves and the kinetics of the liquid holding recovery were measured. It was shown that the irreversible component was enhanced for the densely ionizing radiation in comparison to the low-LET radiation while the probability of the recovery was identical for both the low- and high-LET radiations for all the strains investigated. It means that the recovery process itself is not damaged after densely ionizing radiation and the enhanced RBE of the high-LET radiation may be caused by the increased yield of the irreversible damage. A parent diploid strain and all its radiosensitive mutants showed the same probability for recovery from radiation damage. Thus, the mechanism of the enhanced radiosensitivity of the mutant cells might not be related to the damage of the repair systems themselves but with the production of some kind of radiation damage from which cells are incapable to recover.

  12. Mutations in RCA1 and AFG3 inhibit F1-ATPase assembly in Saccharomyces cerevisiae.

    Science.gov (United States)

    Paul, M F; Tzagoloff, A

    1995-10-02

    The RCA1 (YTA12) and AFG3 (YTA10) genes of Saccharomyces cerevisiae code for homologous mitochondrial proteins that belong to the recently described AAA protein-family [Kunau et al. (1993) Biochimie 75,209-224]. Mutations in either gene have been shown to induce a respiratory defect. In the case of rca1 mutants this phenotype has been ascribed to defective assembly of cytochrome oxidase and ubiquinol-cytochrome c reductase. In the present study we show that the respiratory defect of afg3 mutants, like that of rca1 mutants, is also caused by an arrest in assembly of cytochrome oxidase and ubiquinol-cytochrome c reductase. In addition to the absence of the respiratory complexes, rca1 and afg3 mutants exhibit reduced mitochondrial ATPase activity. As a first step to an understanding of the biochemical basis for the ATPase defect we have examined the assembly of the F1 and F0 constituents of the ATPase complex. We present evidence that the ATPase lesion stems at least in part from the failure of rca1 and afg3 mutants to assemble F1. Although the mutants also display lower steady-state concentrations of some F0 subunits, this could be a secondary effect of defective F1 assembly.

  13. Characterization of the Viable but Nonculturable (VBNC State in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Mohammad Salma

    Full Text Available The Viable But Non Culturable (VBNC state has been thoroughly studied in bacteria. In contrast, it has received much less attention in other microorganisms. However, it has been suggested that various yeast species occurring in wine may enter in VBNC following sulfite stress.In order to provide conclusive evidences for the existence of a VBNC state in yeast, the ability of Saccharomyces cerevisiae to enter into a VBNC state by applying sulfite stress was investigated. Viable populations were monitored by flow cytometry while culturable populations were followed by plating on culture medium. Twenty-four hours after the application of the stress, the comparison between the culturable population and the viable population demonstrated the presence of viable cells that were non culturable. In addition, removal of the stress by increasing the pH of the medium at different time intervals into the VBNC state allowed the VBNC S. cerevisiae cells to "resuscitate". The similarity between the cell cycle profiles of VBNC cells and cells exiting the VBNC state together with the generation rate of cells exiting VBNC state demonstrated the absence of cellular multiplication during the exit from the VBNC state. This provides evidence of a true VBNC state. To get further insight into the molecular mechanism pertaining to the VBNC state, we studied the involvement of the SSU1 gene, encoding a sulfite pump in S. cerevisiae. The physiological behavior of wild-type S. cerevisiae was compared to those of a recombinant strain overexpressing SSU1 and null Δssu1 mutant. Our results demonstrated that the SSU1 gene is only implicated in the first stages of sulfite resistance but not per se in the VBNC phenotype. Our study clearly demonstrated the existence of an SO2-induced VBNC state in S. cerevisiae and that the stress removal allows the "resuscitation" of VBNC cells during the VBNC state.

  14. The point of no return: The poly(A)-associated elongation checkpoint.

    Science.gov (United States)

    Tellier, Michael; Ferrer-Vicens, Ivan; Murphy, Shona

    2016-01-01

    Cyclin-dependent kinases play critical roles in transcription by RNA polymerase II (pol II) and processing of the transcripts. For example, CDK9 regulates transcription of protein-coding genes, splicing, and 3' end formation of the transcripts. Accordingly, CDK9 inhibitors have a drastic effect on the production of mRNA in human cells. Recent analyses indicate that CDK9 regulates transcription at the early-elongation checkpoint of the vast majority of pol II-transcribed genes. Our recent discovery of an additional CDK9-regulated elongation checkpoint close to poly(A) sites adds a new layer to the control of transcription by this critical cellular kinase. This novel poly(A)-associated checkpoint has the potential to powerfully regulate gene expression just before a functional polyadenylated mRNA is produced: the point of no return. However, many questions remain to be answered before the role of this checkpoint becomes clear. Here we speculate on the possible biological significance of this novel mechanism of gene regulation and the players that may be involved.

  15. The point of no return: The poly(A)-associated elongation checkpoint

    Science.gov (United States)

    Tellier, Michael; Ferrer-Vicens, Ivan; Murphy, Shona

    2016-01-01

    abstract Cyclin-dependent kinases play critical roles in transcription by RNA polymerase II (pol II) and processing of the transcripts. For example, CDK9 regulates transcription of protein-coding genes, splicing, and 3′ end formation of the transcripts. Accordingly, CDK9 inhibitors have a drastic effect on the production of mRNA in human cells. Recent analyses indicate that CDK9 regulates transcription at the early-elongation checkpoint of the vast majority of pol II-transcribed genes. Our recent discovery of an additional CDK9-regulated elongation checkpoint close to poly(A) sites adds a new layer to the control of transcription by this critical cellular kinase. This novel poly(A)-associated checkpoint has the potential to powerfully regulate gene expression just before a functional polyadenylated mRNA is produced: the point of no return. However, many questions remain to be answered before the role of this checkpoint becomes clear. Here we speculate on the possible biological significance of this novel mechanism of gene regulation and the players that may be involved. PMID:26853452

  16. Deletion map of CYC1 mutants and its correspondence to mutationally altered iso-1-cytochromes c of yeast

    International Nuclear Information System (INIS)

    Sherman, F.; Jackson, M.; Liebman, S.W.; Schweingruber, A.M.; Stewart, J.W.

    1975-01-01

    Mutants arising spontaneously from sporulated cultures of certain strains of yeast, Saccharomyces cerevisiae, contained deletions of the CYC1 gene which controls the primary structure of iso-1-cytochrome c. At least 60 different kinds of deletions were uncovered among the 104 deletions examined and these ranged in length from those encompassing only two adjacent point mutants to those encompassing at least the entire CYC1 gene. X-ray-induced recombination rates of crosses involving these deletions and cyc1 point mutants resulted in the assignment of 211 point mutants to 47 mutational sites and made it possible to unambiguously order 40 of these 47 sites. Except for one mutant, cyc1-15, there was a strict colinear relationship between the deletion map and the positions of 13 sites that were previously determined by amino acid alterations in iso-1-cytochromes c from intragenic revertants

  17. COCOA (Theobroma cacao) Polyphenol-Rich Extract Increases the Chronological Lifespan of Saccharomyces cerevisiae.

    Science.gov (United States)

    Baiges, I; Arola, L

    2016-01-01

    BACKGROUND: Saccharomyces cerevisiae is a model organism with conserved aging pathways. Yeast chronological lifespan experiments mimic the processes involved in human non-dividing tissues, such as the nervous system or skeletal muscle, and can speed up the search for biomolecules with potential anti-aging effects before proceeding to animal studies. OBJECTIVE: To test the effectiveness of a cocoa polyphenol-rich extract (CPE) in expanding the S. cerevisiae chronological lifespan in two conditions: in the stationary phase reached after glucose depletion and under severe caloric restriction. MEASUREMENTS: Using a high-throughput method, wild-type S. cerevisiae and its mitochondrial manganese-dependent superoxide dismutase null mutant (sod2Δ) were cultured in synthetic complete dextrose medium. After 2 days, 0, 5 and 20 mg/ml of CPE were added, and viability was measured throughout the stationary phase. The effects of the major components of CPE were also evaluated. To determine yeast lifespan under severe caloric restriction conditions, cultures were washed with water 24 h after the addition of 0 and 20 mg/ml of CPE, and viability was followed over time. RESULTS : CPE increased the chronological lifespan of S. cerevisiae during the stationary phase in a dose-dependent manner. A similar increase was also observed in (sod2Δ). None of the major CPE components (theobromine, caffeine, maltodextrin, (-)-epicatechin, (+)-catechin and procyanidin B2) was able to increase the yeast lifespan. CPE further increased the yeast lifespan under severe caloric restriction. CONCLUSION: CPE increases the chronological lifespan of S. cerevisiae through a SOD2-independent mechanism. The extract also extends yeast lifespan under severe caloric restriction conditions. The high-throughput assay used makes it possible to simply and rapidly test the efficacy of a large number of compounds on yeast aging, requiring only small amounts, and is thus a convenient screening assay to accelerate

  18. A genetic screen identifies BRCA2 and PALB2 as key regulators of G2 checkpoint maintenance

    DEFF Research Database (Denmark)

    Menzel, Tobias; Nähse-Kumpf, Viola; Kousholt, Arne Nedergaard

    2011-01-01

    To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2......, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A-PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main...

  19. Role of glutathione metabolism status in the definition of some cellular parameters and oxidative stress tolerance of Saccharomyces cerevisiae cells growing as biofilms.

    Science.gov (United States)

    Gales, Grégoire; Penninckx, Michel; Block, Jean-Claude; Leroy, Pierre

    2008-08-01

    The resistance of Saccharomyces cerevisiae to oxidative stress (H(2)O(2) and Cd(2+)) was compared in biofilms and planktonic cells, with the help of yeast mutants deleted of genes related to glutathione metabolism and oxidative stress. Biofilm-forming cells were found predominantly in the G1 stage of the cell cycle. This might explain their higher tolerance to oxidative stress and the young replicative age of these cells in an old culture. The reduced glutathione status of S. cerevisiae was affected by the growth phase and apparently plays an important role in oxidative stress tolerance in cells growing as a biofilm.

  20. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2012-08-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.

  1. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wang, Meng; Li, Sijin; Zhao, Huimin

    2016-01-01

    The development of high-throughput phenotyping tools is lagging far behind the rapid advances of genotype generation methods. To bridge this gap, we report a new strategy for design, construction, and fine-tuning of intracellular-metabolite-sensing/regulation gene circuits by repurposing bacterial transcription factors and eukaryotic promoters. As proof of concept, we systematically investigated the design and engineering of bacterial repressor-based xylose-sensing/regulation gene circuits in Saccharomyces cerevisiae. We demonstrated that numerous properties, such as induction ratio and dose-response curve, can be fine-tuned at three different nodes, including repressor expression level, operator position, and operator sequence. By applying these gene circuits, we developed a cell sorting based, rapid and robust high-throughput screening method for xylose transporter engineering and obtained a sugar transporter HXT14 mutant with 6.5-fold improvement in xylose transportation capacity. This strategy should be generally applicable and highly useful for evolutionary engineering of proteins, pathways, and genomes in S. cerevisiae. © 2015 Wiley Periodicals, Inc.

  2. Akt Kinase-Mediated Checkpoint of cGAS DNA Sensing Pathway.

    Science.gov (United States)

    Seo, Gil Ju; Yang, Aerin; Tan, Brandon; Kim, Sungyoon; Liang, Qiming; Choi, Younho; Yuan, Weiming; Feng, Pinghui; Park, Hee-Sung; Jung, Jae U

    2015-10-13

    Upon DNA stimulation, cyclic GMP-AMP synthase (cGAS) synthesizes the second messenger cyclic GMP-AMP (cGAMP) that binds to the STING, triggering antiviral interferon-β (IFN-β) production. However, it has remained undetermined how hosts regulate cGAS enzymatic activity after the resolution of DNA immunogen. Here, we show that Akt kinase plays a negative role in cGAS-mediated anti-viral immune response. Akt phosphorylated the S291 or S305 residue of the enzymatic domain of mouse or human cGAS, respectively, and this phosphorylation robustly suppressed its enzymatic activity. Consequently, expression of activated Akt led to the reduction of cGAMP and IFN-β production and the increase of herpes simplex virus 1 replication, whereas treatment with Akt inhibitor augmented cGAS-mediated IFN-β production. Furthermore, expression of the phosphorylation-resistant cGAS S291A mutant enhanced IFN-β production upon DNA stimulation, HSV-1 infection, and vaccinia virus infection. Our study identifies an Akt kinase-mediated checkpoint to fine-tune hosts' immune responses to DNA stimulation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Biosynthesis of diphthamide in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chen, J.Y.C.

    1985-01-01

    Inactivation of EF-2 by diphtheria toxin requires the presence of a posttranslationally synthesized amino acid residue, diphthamide. The present work was undertaken to study the biosynthetic mechanism of diphthamide synthesis in the yeast Saccharomyces cerevisiae in order to gain better understanding of the biological roles of this unique amino acid residue. Thirty-one haploid ADP-ribosylation-negative mutants, comprising 5 complementation groups, were obtained. One of these mutants contains a toxin-resistant form of EF-2 which can be converted to a toxin-sensitive form through the methylation reaction catalyzed by a S-AdoMet:EF-2 methyltransferase enzyme which is present in other yeast strains. The [ 3 He]methylated residue in the EF-2 modified by the methyltransferase in the presence of S-Ado-L-[ 3 H-methyl]-Met has been analyzed chromatographically following both acid and enzymatic hydrolysis. At the conclusion of the reaction, all of the radiolabel was recovered as diphthine (the unamidated form of diphthamide). The authors conclude that the S-AdoMet:EF-2-methyltransferase is specific for the addition of at least the last two of the three methyl groups present in diphthine

  4. Parallel reorganization of protein function in the spindle checkpoint pathway through evolutionary paths in the fitness landscape that appear neutral in laboratory experiments.

    Directory of Open Access Journals (Sweden)

    Alex N Nguyen Ba

    2017-04-01

    Full Text Available Regulatory networks often increase in complexity during evolution through gene duplication and divergence of component proteins. Two models that explain this increase in complexity are: 1 adaptive changes after gene duplication, such as resolution of adaptive conflicts, and 2 non-adaptive processes such as duplication, degeneration and complementation. Both of these models predict complementary changes in the retained duplicates, but they can be distinguished by direct fitness measurements in organisms with short generation times. Previously, it has been observed that repeated duplication of an essential protein in the spindle checkpoint pathway has occurred multiple times over the eukaryotic tree of life, leading to convergent protein domain organization in its duplicates. Here, we replace the paralog pair in S. cerevisiae with a single-copy protein from a species that did not undergo gene duplication. Surprisingly, using quantitative fitness measurements in laboratory conditions stressful for the spindle-checkpoint pathway, we find no evidence that reorganization of protein function after gene duplication is beneficial. We then reconstruct several evolutionary intermediates from the inferred ancestral network to the extant one, and find that, at the resolution of our assay, there exist stepwise mutational paths from the single protein to the divergent pair of extant proteins with no apparent fitness defects. Parallel evolution has been taken as strong evidence for natural selection, but our results suggest that even in these cases, reorganization of protein function after gene duplication may be explained by neutral processes.

  5. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sung-Haeng; Kodaki, Tsutomu; Park, Yong-Cheol; Seo, Jin-Ho

    2012-04-30

    Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XR(MUT)) and NAD⁺-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XR(MUT), XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XR(MUT) along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XR(MUT) and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6(MUT)) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6(MUT) resulted in 0.64 g l⁻¹ h⁻¹ xylose consumption rate, 0.25 g l⁻¹ h⁻¹ ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XR(MUT), XDH and XK only. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Bir1 Deletion Causes Malfunction of the Spindle Assembly Checkpoint and Apoptosis in Yeast

    International Nuclear Information System (INIS)

    Ren, Qun; Liou, Liang-Chun; Gao, Qiuqiang; Bao, Xiaoming; Zhang, Zhaojie

    2012-01-01

    Cell division in yeast is a highly regulated and well studied event. Various checkpoints are placed throughout the cell cycle to ensure faithful segregation of sister chromatids. Unexpected events, such as DNA damage or oxidative stress, cause the activation of checkpoint(s) and cell cycle arrest. Malfunction of the checkpoints may induce cell death. We previously showed that under oxidative stress, the budding yeast cohesin Mcd1, a homolog of human Rad21, was cleaved by the caspase-like protease Esp1. The cleaved Mcd1 C-terminal fragment was then translocated to mitochondria, causing apoptotic cell death. In the present study, we demonstrated that Bir1 plays an important role in spindle assembly checkpoint and cell death. Similar to H 2 O 2 treatment, deletion of BIR1 using a BIR1-degron strain caused degradation of the securin Pds1, which binds and inactivates Esp1 until metaphase-anaphase transition in a normal cell cycle. BIR1 deletion caused an increase level of ROS and mis-location of Bub1, a major protein for spindle assembly checkpoint. In wild type, Bub1 was located at the kinetochores, but was primarily in the cytoplasm in bir1 deletion strain. When BIR1 was deleted, addition of nocodazole was unable to retain the Bub1 localization on kinetochores, further suggesting that Bir1 is required to activate and maintain the spindle assembly checkpoint. Our study suggests that the BIR1 function in cell cycle regulation works in concert with its anti-apoptosis function.

  7. High-throughput measurement of recombination rates and genetic interference in Saccharomyces cerevisiae.

    Science.gov (United States)

    Raffoux, Xavier; Bourge, Mickael; Dumas, Fabrice; Martin, Olivier C; Falque, Matthieu

    2018-06-01

    Allelic recombination owing to meiotic crossovers is a major driver of genome evolution, as well as a key player for the selection of high-performing genotypes in economically important species. Therefore, we developed a high-throughput and low-cost method to measure recombination rates and crossover patterning (including interference) in large populations of the budding yeast Saccharomyces cerevisiae. Recombination and interference were analysed by flow cytometry, which allows time-consuming steps such as tetrad microdissection or spore growth to be avoided. Moreover, our method can also be used to compare recombination in wild-type vs. mutant individuals or in different environmental conditions, even if the changes in recombination rates are small. Furthermore, meiotic mutants often present recombination and/or pairing defects affecting spore viability but our method does not involve growth steps and thus avoids filtering out non-viable spores. Copyright © 2018 John Wiley & Sons, Ltd.

  8. The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast

    International Nuclear Information System (INIS)

    Brush, G.S.; Morrow, D.M.; Hieter, P.; Kelly, T.J.

    1996-01-01

    Replication protein A (RPA) is a highly conserved single-stranded DNA-binding protein, required for cellular DNA replication, repair, and recombination. In human cells, RPA is phosphorylated during the S and G2 phases of the cell cycle and also in response to ionizing or ultraviolet radiation. Saccharomyces cerevisiae exhibits a similar pattern of cell cycle-regulated RPA phosphorylation, and our studies indicate that the radiation-induced reactions occur in yeast as well. We have examined yeast RPA phosphorylation during the normal cell cycle and in response to environmental insult, and have demonstrated that the checkpoint gene MEC1 is required for the reaction under all conditions tested. Through examination of several checkpoint mutants, we have placed RPA phosphorylation in a novel pathway of the DNA damage response. MEC1 is similar in sequence to human ATM, the gene mutated in patients with ataxia-telangiectasia (A-T). A-T cells are deficient in multiple checkpoint pathways and are hypersensitive to killing by ionizing radiation. Because A-T cells exhibit a delay in ionizing radiation-induced RPA phosphorylation, our results indicate a functional similarity between MEC1 and ATM, and suggest that RPA phosphorylation is involved in a conserved eukaryotic DNA damage-response pathway defective in A-T

  9. Characterization of substrate preference for Slc1p and Cst26p in Saccharomyces cerevisiae using lipidomic approaches and an LPAAT activity assay.

    Directory of Open Access Journals (Sweden)

    Guanghou Shui

    Full Text Available BACKGROUND: Phosphatidic acid (PA is a key regulated intermediate and precursor for de novo biosynthesis of all glycerophospholipids. PA can be synthesized through the acylation of lysophosphatidic acid (LPA by 1-acyl-3-phosphate acyltransferase (also called lysophosphatidic acid acyltransferase, LPAAT. Recent findings have substantiated the essential roles of acyltransferases in various biological functions. METHODOLOGIES/PRINCIPAL FINDINGS: We used a flow-injection-based lipidomic approach with approximately 200 multiple reaction monitoring (MRM transitions to pre-screen fatty acyl composition of phospholipids in the yeast Saccharomyces cerevisiae mutants. Dramatic changes were observed in fatty acyl composition in some yeast mutants including Slc1p, a well-characterized LPAAT, and Cst26p, a recently characterized phosphatidylinositol stearoyl incorporating 1 protein and putative LPAAT in S. cerevisiae. A comprehensive high-performance liquid chromatography-based multi-stage MRM approach (more than 500 MRM transitions was developed and further applied to quantify individual phospholipids in both strains to confirm these changes. Our data suggest potential fatty acyl substrates as well as fatty acyls that compensate for defects in both Cst26p and Slc1p mutants. These results were consistent with those from a non-radioactive LPAAT enzymatic assay using C17-LPA and acyl-CoA donors as substrates. CONCLUSIONS: We found that Slc1p utilized fatty acid (FA 18:1 and FA 14:0 as substrates to synthesize corresponding PAs; moreover, it was probably the only acyltransferase responsible for acylation of saturated short-chain fatty acyls (12:0 and 10:0 in S. cerevisiae. We also identified FA 18:0, FA 16:0, FA 14:0 and exogenous FA 17:0 as preferred substrates for Cst26p because transformation with a GFP-tagged CST26 restored the phospholipid profile of a CST26 mutant. Our current findings expand the enzymes and existing scope of acyl-CoA donors for

  10. The role of RNase H2 in processing ribonucleotides incorporated during DNA replication.

    Science.gov (United States)

    Williams, Jessica S; Gehle, Daniel B; Kunkel, Thomas A

    2017-05-01

    Saccharomyces cerevisiae RNase H2 resolves RNA-DNA hybrids formed during transcription and it incises DNA at single ribonucleotides incorporated during nuclear DNA replication. To distinguish between the roles of these two activities in maintenance of genome stability, here we investigate the phenotypes of a mutant of yeast RNase H2 (rnh201-RED; ribonucleotide excision defective) that retains activity on RNA-DNA hybrids but is unable to cleave single ribonucleotides that are stably incorporated into the genome. The rnh201-RED mutant was expressed in wild type yeast or in a strain that also encodes a mutant allele of DNA polymerase ε (pol2-M644G) that enhances ribonucleotide incorporation during DNA replication. Similar to a strain that completely lacks RNase H2 (rnh201Δ), the pol2-M644G rnh201-RED strain exhibits replication stress and checkpoint activation. Moreover, like its null mutant counterpart, the double mutant pol2-M644G rnh201-RED strain and the single mutant rnh201-RED strain delete 2-5 base pairs in repetitive sequences at a high rate that is topoisomerase 1-dependent. The results highlight an important role for RNase H2 in maintaining genome integrity by removing single ribonucleotides incorporated during DNA replication. Published by Elsevier B.V.

  11. CHECKPOINT INHIBITOR IMMUNE THERAPY: Systemic Indications and Ophthalmic Side Effects.

    Science.gov (United States)

    Dalvin, Lauren A; Shields, Carol L; Orloff, Marlana; Sato, Takami; Shields, Jerry A

    2018-06-01

    To review immune checkpoint inhibitor indications and ophthalmic side effects. A literature review was performed using a PubMed search for publications between 1990 and 2017. Immune checkpoint inhibitors are designed to treat system malignancies by targeting one of three ligands, leading to T-cell activation for attack against malignant cells. These ligands (and targeted drug) include cytotoxic T-lymphocyte antigen-4 (CTLA-4, ipilimumab), programmed death protein 1 (PD-1, pembrolizumab, nivolumab), and programmed death ligand-1 (PD-L1, atezolizumab, avelumab, durvalumab). These medications upregulate the immune system and cause autoimmune-like side effects. Ophthalmic side effects most frequently manifest as uveitis (1%) and dry eye (1-24%). Other side effects include myasthenia gravis (n = 19 reports), inflammatory orbitopathy (n = 11), keratitis (n = 3), cranial nerve palsy (n = 3), optic neuropathy (n = 2), serous retinal detachment (n = 2), extraocular muscle myopathy (n = 1), atypical chorioretinal lesions (n = 1), immune retinopathy (n = 1), and neuroretinitis (n = 1). Most inflammatory side effects are managed with topical or periocular corticosteroids, but advanced cases require systemic corticosteroids and cessation of checkpoint inhibitor therapy. Checkpoint inhibitors enhance the immune system by releasing inhibition on T cells, with risk of autoimmune-like side effects. Ophthalmologists should include immune-related adverse events in their differential when examining cancer patients with new ocular symptoms.

  12. Developmental checkpoints and feedback circuits time insect maturation

    DEFF Research Database (Denmark)

    Rewitz, Kim Furbo; Yamanaka, Naoki; O'Connor, Michael B.

    2013-01-01

    as external cues, to time production and release of ecdysone. Based on results discussed here, we suggest that developmental progression to adulthood is controlled by checkpoints that regulate the genetic timing program enabling it to adapt to different environmental conditions. These checkpoints utilize...... a number of signaling pathways to modulate ecdysone production in the prothoracic gland. Release of ecdysone activates an autonomous cascade of both feedforward and feedback signals that determine the duration of the ecdysone pulse at each developmental transitions. Conservation of the genetic mechanisms...... that coordinate the juvenile-adult transition suggests that insights from the fruit fly Drosophila will provide a framework for future investigation of developmental timing in metazoans....

  13. KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms.

    Science.gov (United States)

    Aguilar, Claudio; Vlamakis, Hera; Guzman, Alejandra; Losick, Richard; Kolter, Roberto

    2010-05-18

    Bacillus subtilis cells form multicellular biofilm communities in which spatiotemporal regulation of gene expression occurs, leading to differentiation of multiple coexisting cell types. These cell types include matrix-producing and sporulating cells. Extracellular matrix production and sporulation are linked in that a mutant unable to produce matrix is delayed for sporulation. Here, we show that the delay in sporulation is not due to a growth advantage of the matrix-deficient mutant under these conditions. Instead, we show that the link between matrix production and sporulation is through the Spo0A signaling pathway. Both processes are regulated by the phosphorylated form of the master transcriptional regulator Spo0A. When cells have low levels of phosphorylated Spo0A (Spo0A~P), matrix genes are expressed; however, at higher levels of Spo0A~P, sporulation commences. We have found that Spo0A~P levels are maintained at low levels in the matrix-deficient mutant, thereby delaying expression of sporulation-specific genes. This is due to the activity of one of the components of the Spo0A phosphotransfer network, KinD. A deletion of kinD suppresses the sporulation defect of matrix mutants, while its overproduction delays sporulation. Our data indicate that KinD displays a dual role as a phosphatase or a kinase and that its activity is linked to the presence of extracellular matrix in the biofilms. We propose a novel role for KinD in biofilms as a checkpoint protein that regulates the onset of sporulation by inhibiting the activity of Spo0A until matrix, or a component therein, is sensed.

  14. Conformation-specific anti-Mad2 monoclonal antibodies for the dissection of checkpoint signaling

    DEFF Research Database (Denmark)

    Sedgwick, Garry G; Larsen, Marie Sofie Yoo; Lischetti, Tiziana

    2016-01-01

    The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation during mitosis by delaying the activation of the anaphase-promoting complex/cyclosome (APC/C) in response to unattached kinetochores. The Mad2 protein is essential for a functional checkpoint because it binds directly t...

  15. Saccharomyces cerevisiae KTR4, KTR5 and KTR7 encode mannosyltransferases differentially involved in the N- and O-linked glycosylation pathways.

    Science.gov (United States)

    Hernández, Nahúm V; López-Ramírez, Luz A; Díaz-Jiménez, Diana F; Mellado-Mojica, Erika; Martínez-Duncker, Iván; López, Mercedes G; Mora-Montes, Héctor M

    2017-10-01

    Saccharomyces cerevisiae is a model to understand basic aspects of protein glycosylation pathways. Although these metabolic routes have been thoroughly studied, there are still knowledge gaps; among them, the role of the MNT1/KRE2 gene family. This family is composed of nine members, with only six functionally characterized. The enzymes Ktr1, Ktr3, and Mnt1/Kre2 have overlapping activities in both O-linked and N-linked glycan synthesis; while Ktr2 and Yur1 participate exclusively in the elongation of the N-linked glycan outer chain. KTR6 encodes for a phosphomannosyltransferase that synthesizes the cell wall phosphomannan. Here, we aimed to establish the functional role of KTR4, KTR5 and KTR7 in the protein glycosylation pathways, by using heterologous complementation in Candida albicans null mutants lacking members of the MNT1/KRE2 gene family. The three S. cerevisiae genes restored defects in the C. albicans N-linked glycosylation pathway. KTR5 and KTR7 partially complemented a C. albicans null mutant with defects in the synthesis of O-linked glycans, and only KTR4 fully elongated the O-linked glycans like wild-type cells. Therefore, our results suggest that the three genes have a redundant activity in the S. cerevisiae N-linked glycosylation pathway, but KTR4 plays a major role in O-linked glycan synthesis. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...... infections in humans. Biofilm is also interesting from an evolutionary standpoint, as an example of primitive multicellularity. By using a genome-wide screen of yeast deletion mutants, I show that 71 genes are essential for biofilm formation. Two-thirds of these genes are required for transcription of FLO11......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  17. The amount of DNA damage needed to activate the radiation-induced G2 checkpoint varies between single cells

    International Nuclear Information System (INIS)

    Tkacz-Stachowska, Kinga; Lund-Andersen, Christin; Velissarou, Angeliki; Myklebust, June H.; Stokke, Trond; Syljuåsen, Randi G.

    2011-01-01

    Background and purpose: The radiation-induced G2 checkpoint helps facilitate DNA repair before cell division. However, recent work has revealed that human cells often escape the G2 checkpoint with unrepaired DNA breaks. The purpose was to explore whether G2 checkpoint activation occurs according to a threshold level of DNA damage. Materials and methods: G2 checkpoint activation was assayed at 75–90 min and 24–48 h after X-ray irradiation of BJ diploid fibroblasts and U2OS osteosarcoma cells. Multiparameter flow cytometry with pacific blue barcoding, and flow cytometry-based sorting of phospho-H3 positive cells to microscope slides, were used to examine the DNA damage marker γ-H2AX in individual mitotic cells that had escaped the G2 checkpoint. Results: For all radiation doses and times tested, the number of γ-H2AX foci varied between individual mitotic cells. At 75 min the median levels of γ-H2AX in mitotic cells increased with higher radiation doses. At 24–48 h, following a prolonged G2 checkpoint, cells were more resistant to checkpoint re-activation by a second dose of radiation. Conclusion: Our results suggest that different amounts of DNA damage are needed to activate the G2 checkpoint in individual cells. Such single cell variation in checkpoint activation may potentially contribute to radiation-induced genomic instability.

  18. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  19. Targeting the Checkpoint to Kill Cancer Cells

    Czech Academy of Sciences Publication Activity Database

    Benada, Jan; Macůrek, Libor

    2015-01-01

    Roč. 6, č. 3 (2015), s. 1912-1937 ISSN 2218-273X R&D Projects: GA ČR(CZ) GA14-34264S Institutional support: RVO:68378050 Keywords : checkpoint * DNA damage response * cancer Subject RIV: EB - Genetics ; Molecular Biology

  20. Expression of Human CTP Synthetase in Saccharomyces cerevisiae Reveals Phosphorylation by Protein Kinase A*

    Science.gov (United States)

    Han, Gil-Soo; Sreenivas, Avula; Choi, Mal-Gi; Chang, Yu-Fang; Martin, Shelley S.; Baldwin, Enoch P.; Carman, George M.

    2005-01-01

    CTP synthetase (EC 6.3.4.2, UTP: ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Δ ura8Δ mutant lacking CTP synthetase activity. The expression of the CTPS1-and CTPS2-encoded human CTP synthetase enzymes in the ura7Δ ura8Δ mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from 32Pi-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation. PMID:16179339

  1. Emodnet Med Sea Check-Point - Indicators for decision- maker

    Science.gov (United States)

    Besnard, Sophie; Claverie, Vincent; Blanc, Frédérique

    2015-04-01

    The Emodnet Checkpoint projects aim is to assess the cost-effectiveness, reliability and utility of the existing monitoring at the sea basin level. This involves the development of monitoring system indicators and a GIS Platform to perform the assessment and make it available. Assessment or production of Check-Point information is made by developing targeted products based on the monitoring data and determining whether the products are meeting the needs of industry and public authorities. Check-point users are the research community, the 'institutional' policy makers for IMP and MSFD implementation, the 'intermediate users', i.e., users capable to understand basic raw data but that benefit from seeing the Checkpoint targeted products and the assessment of the fitness for purpose. We define assessment criteria aimed to characterize/depict the input datasets in terms of 3 territories capable to show performance and gaps of the present monitoring system, appropriateness, availability and fitness for purpose. • Appropriateness: What is made available to users? What motivate/decide them to select this observation rather than this one. • Availability: How this is made available to the user? Place to understand the readiness and service performance of the EU infrastructure • Fitness for use / fitness for purpose: Ability for non-expert user to appreciate the data exploitability (feedback on efficiency & reliability of marine data) For each territory (appropriateness, Availability and Fitness for purpose / for use), we define several indicators. For example, for Availability we define Visibility, Accessibility and Performance. And Visibility is itself defined by "Easily found" and "EU service". So these indicators can be classified according to their territory and sub-territory as seen above, but also according to the complexity to build them. Indicators are built from raw descriptors in 3 stages:  Stage 1: to give a neutral and basic status directly computed from

  2. Spindle assembly checkpoint acquisition at the mid-blastula transition.

    Directory of Open Access Journals (Sweden)

    Maomao Zhang

    Full Text Available The spindle assembly checkpoint (SAC maintains the fidelity of chromosome segregation during mitosis. Nonpathogenic cells lacking the SAC are typically only found in cleavage stage metazoan embryos, which do not acquire functional checkpoints until the mid-blastula transition (MBT. It is unclear how proper SAC function is acquired at the MBT, though several models exist. First, SAC acquisition could rely on transcriptional activity, which increases dramatically at the MBT. Embryogenesis prior to the MBT relies primarily on maternally loaded transcripts, and if SAC signaling components are not maternally supplied, the SAC would depend on zygotic transcription at the MBT. Second, checkpoint acquisition could depend on the Chk1 kinase, which is activated at the MBT to elongate cell cycles and is required for the SAC in somatic cells. Third, SAC function could depend on a threshold nuclear to cytoplasmic (N:C ratio, which increases during pre-MBT cleavage cycles and dictates several MBT events like zygotic transcription and cell cycle remodeling. Finally, the SAC could by regulated by a timer mechanism that coincides with other MBT events but is independent of them. Using zebrafish embryos we show that SAC acquisition at the MBT is independent of zygotic transcription, indicating that the checkpoint program is maternally supplied. Additionally, by precociously lengthening cleavage cycles with exogenous Chk1 activity, we show that cell cycle lengthening and Chk1 activity are not sufficient for SAC acquisition. Furthermore, we find that SAC acquisition can be uncoupled from the N:C ratio. Together, our findings indicate that SAC acquisition is regulated by a maternally programmed developmental timer.

  3. Analysis of Drug Development Paradigms for Immune Checkpoint Inhibitors.

    Science.gov (United States)

    Jardim, Denis L; de Melo Gagliato, Débora; Giles, Francis J; Kurzrock, Razelle

    2018-04-15

    Immune checkpoint inhibitors have unique toxicities and response kinetics compared with cytotoxic and gene-targeted anticancer agents. We investigated the impact of innovative/accelerated immunotherapy drug development/approval models on the accuracy of safety and efficacy assessments by searching the FDA website. Initial phase I trials for each agent were reviewed and safety and efficacy data compared with that found in later trials leading to regulatory approvals of the same agents. As of June 2017, the FDA approved six checkpoint inhibitors for a variety of cancer types. All checkpoint inhibitors received a priority review status and access to at least two additional FDA special access programs, more often breakthrough therapy designation and accelerated approval. Median clinical development time (investigational new drug application to approval) was 60.77 months [avelumab had the shortest timeline (52.33 months)]. Response rates during early phase I trials (median = 16%) are higher than for phase I trials of other agents (with the exception of gene-targeted agents tested with a biomarker). Doses approved were usually not identical to doses recommended on phase I trials. Approximately 50% of types of immune-related and 43% of types of clinically relevant toxicities from later trials were identified in early-phase trials. Even so, treatment-related mortality remains exceedingly low in later studies (0.33% of patients). In conclusion, efficacy and safety of immune checkpoint inhibitors appear to be reasonably predicted from the dose-finding portion of phase I trials, indicating that the fast-track development of these agents is safe and justified. Clin Cancer Res; 24(8); 1785-94. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Smurf2 as a novel mitotic regulator: From the spindle assembly checkpoint to tumorigenesis

    Directory of Open Access Journals (Sweden)

    Moore Finola E

    2009-07-01

    Full Text Available Abstract The execution of the mitotic program with high fidelity is dependent upon precise spatiotemporal regulation of posttranslational protein modifications. For example, the timely polyubiquitination of critical mitotic regulators by Anaphase Promoting Complex/Cyclosome (APC/C is essential for the metaphase to anaphase transition and mitotic exit. The spindle assembly checkpoint prevents unscheduled activity of APC/C-Cdc20 in early mitosis, allowing bipolar attachment of kinetochores to mitotic spindle and facilitating equal segregation of sister chromatids. The critical effector of the spindle checkpoint, Mitotic arrest deficient 2 (Mad2, is recruited to unattached kinetochores forming a complex with other regulatory proteins to efficiently and cooperatively inhibit APC/C-Cdc20. A weakened and/or dysfunctional spindle checkpoint has been linked to the development of genomic instability in both cell culture and animal models, and evidence suggests that aberrant regulation of the spindle checkpoint plays a critical role in human carcinogenesis. Recent studies have illuminated a network of both degradative and non-degradative ubiquitination events that regulate the metaphase to anaphase transition and mitotic exit. Within this context, our recent work showed that the HECT (Homologous to E6-AP C-terminus-family E3 ligase Smurf2 (Smad specific ubiquitin regulatory factor 2, known as a negative regulator of transforming growth factor-beta (TGF-β signaling, is required for a functional spindle checkpoint by promoting the functional localization and stability of Mad2. Here we discuss putative models explaining the role of Smurf2 as a new regulator in the spindle checkpoint. The dynamic mitotic localization of Smurf2 to the centrosome and other critical mitotic structures provides implications about mitotic checkpoint control dependent on various ubiquitination events. Finally, deregulated Smurf2 activity may contribute to carcinogenesis by

  5. Improved ethanol fermentation of a yeast mutant by C-12 ion beam irradiation

    International Nuclear Information System (INIS)

    Lu Dong; Liu Qingfang; Wu Xin; Wang Ying; Wang Jufang; Ma Shuang; Li Wenjian

    2010-01-01

    The yeast Saccharomyces cerevisiae YY was irradiated with 100 MeV/u 12 C 6+ ion beams. After screening,we obtained the mutant strain C03A of high ethanol yield. The influence of fermentation temperature, pH and concentration of sugar on ethanol fermentation were studied. The range analysis and analysis of variance were applied for the result of orthogonal experiments. The optimal ethanol fermentation conditions are: fermentation temperature 35 degree C, pH value 5.0, and sugar concentration 24%. The results of fermentation in the 10 L bioreactor showed that the ethanol fermentation of the mutant strain could be completed in 36 hours, the production of ethanol was to 13.2%(V/V), which means 12 hours faster and 1.6%(V /V) ethanol yield higher than original strain. (authors)

  6. Diversification of Transcriptional Regulation Determines Subfunctionalization of Paralogous Branched Chain Aminotransferases in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    González, James; López, Geovani; Argueta, Stefany; Escalera-Fanjul, Ximena; El Hafidi, Mohammed; Campero-Basaldua, Carlos; Strauss, Joseph; Riego-Ruiz, Lina; González, Alicia

    2017-11-01

    Saccharomyces cerevisiae harbors BAT1 and BAT2 paralogous genes that encode branched chain aminotransferases and have opposed expression profiles and physiological roles . Accordingly, in primary nitrogen sources such as glutamine, BAT1 expression is induced, supporting Bat1-dependent valine-isoleucine-leucine (VIL) biosynthesis, while BAT2 expression is repressed. Conversely, in the presence of VIL as the sole nitrogen source, BAT1 expression is hindered while that of BAT2 is activated, resulting in Bat2-dependent VIL catabolism. The presented results confirm that BAT1 expression is determined by transcriptional activation through the action of the Leu3-α-isopropylmalate (α-IPM) active isoform, and uncovers the existence of a novel α-IPM biosynthetic pathway operating in a put3 Δ mutant grown on VIL, through Bat2-Leu2-Leu1 consecutive action. The classic α-IPM biosynthetic route operates in glutamine through the action of the leucine-sensitive α-IPM synthases. The presented results also show that BAT2 repression in glutamine can be alleviated in a ure2 Δ mutant or through Gcn4-dependent transcriptional activation. Thus, when S. cerevisiae is grown on glutamine, VIL biosynthesis is predominant and is preferentially achieved through BAT1 ; while on VIL as the sole nitrogen source, catabolism prevails and is mainly afforded by BAT2 . Copyright © 2017 by the Genetics Society of America.

  7. The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

    Directory of Open Access Journals (Sweden)

    Soriano-Carot María

    2012-02-01

    Full Text Available Abstract Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU, methylmetanosulfonate (MMS, phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses. Conclusions Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt

  8. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function.

    Science.gov (United States)

    Shiroma, Shodai; Jayakody, Lahiru Niroshan; Horie, Kenta; Okamoto, Koji; Kitagaki, Hiroshi

    2014-02-01

    Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.

  9. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene

    Directory of Open Access Journals (Sweden)

    Sônia C. Melo

    2015-06-01

    Full Text Available Heterologous expression of a putative manganese superoxide dismutase gene (SOD2 of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs located the protein of M. perniciosa (MpSod2p in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.

  10. Telomerase and Tel1p Preferentially Associate with Short Telomeres in S. cerevisiae

    Science.gov (United States)

    Sabourin, Michelle; Tuzon, Creighton T.; Zakian, Virginia A.

    2009-01-01

    SUMMARY In diverse organisms, telomerase preferentially elongates short telomeres. We generated a single short telomere in otherwise wild-type (WT) S. cerevisiae cells. The binding of the positive regulators Ku and Cdc13p was similar at short and WT-length telomeres. The negative regulators Rif1p and Rif2p were present at the short telomere, although Rif2p levels were reduced. Two telomerase holoenzyme components, Est1p and Est2p, were preferentially enriched at short telomeres in late S/G2 phase, the time of telomerase action. Tel1p, the yeast ATM-like checkpoint kinase, was highly enriched at short telomeres from early S through G2 phase and even into the next cell cycle. Nonetheless, induction of a single short telomere did not elicit a cell-cycle arrest. Tel1p binding was dependent on Xrs2p and required for preferential binding of telomerase to short telomeres. These data suggest that Tel1p targets telomerase to the DNA ends most in need of extension. PMID:17656141

  11. Localization of spindle checkpoint proteins in cells undergoing mitosis with unreplicated genomes.

    Science.gov (United States)

    Johnson, Mary Kathrine; Cooksey, Amanda M; Wise, Dwayne A

    2008-11-01

    CHO cells can be arrested with hydoxyurea at the beginning of the DNA synthesis phase of the cell cycle. Subsequent treatment with the xanthine, caffeine, induces cells to bypass the S-phase checkpoint and enter unscheduled mitosis [Schlegel and Pardee,1986, Science 232:1264-1266]. These treated cells build a normal spindle and distribute kinetochores, unattached to chromosomes, to their daughter cells [Brinkley et al.,1988, Nature 336:251-254; Zinkowski et al.,1991, J Cell Biol 113:1091-1110; Wise and Brinkley,1997, Cell Motil Cytoskeleton 36:291-302; Balczon et al.,2003, Chromosoma 112:96-102]. To investigate how these cells distribute kinetochores to daughter cells, we analyzed the spindle checkpoint components, Mad2, CENP-E, and the 3F3 phosphoepitope, using immunofluorescence and digital microscopy. Even though the kinetochores were unpaired and DNA was fragmented, the tension, alignment, and motor components of the checkpoint were found to be present and localized as predicted in prometaphase and metaphase. This unusual mitosis proves that a cell can successfully localize checkpoint proteins and divide even when kinetochores are unpaired and fragmented. (c) 2008 Wiley-Liss, Inc.

  12. Reactions of the intracellular NADpool in the yeast S. cerevisiae after UV-C- or X-ray irradiation

    International Nuclear Information System (INIS)

    Winckler, K.; Herfurth, E.

    1988-01-01

    The reaction of the intracellular NADpool after irradiation of cells either with UV-C light or with X-rays was studied in four different strains of the yeast S. cerevisiae. We found neither in wildtype strains nor in radiation sensitive mutants remarkable changes in the NADpool within 2 h after irradiation. Preculture of cells in medium enriched with nicotinic acid, a precursor of NAD, influenced the intracellular NAD concentration only to a small extent in all strains, but enhanced the radiation resistance against UV-C significantly in one rad6 mutant strain. The uptake of NAD and NAC by all strains before and after irradiation with UV-C and X-ray was tested also. NAD generally is taken up by the cells to a very low extent before and after irradiation without irradiation-dose dependency. NAC is taken up by all strains before and after irradiation. Only the rad6 mutant exhibited an irradiation-dose dependent NAC-uptake after UV-C irradiation. (orig.)

  13. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis.

    Science.gov (United States)

    Wright, Robin; Parrish, Mark L; Cadera, Emily; Larson, Lynnelle; Matson, Clinton K; Garrett-Engele, Philip; Armour, Chris; Lum, Pek Yee; Shoemaker, Daniel D

    2003-07-30

    Increased levels of HMG-CoA reductase induce cell type- and isozyme-specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear-associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1,557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non-overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutant's sensitivity to elevated HMG-CoA reductase and inability to assemble normal karmellae. The largest class of HMG-CoA reductase-sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright 2003 John Wiley & Sons, Ltd.

  14. Transcriptional response to deletion of the phosphatidylserine decarboxylase Psd1p in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gsell, Martina; Mascher, Gerald; Schuiki, Irmgard; Ploier, Birgit; Hrastnik, Claudia; Daum, Günther

    2013-01-01

    In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.

  15. Decarbonylated cyclophilin A Cpr1 protein protects Saccharomyces cerevisiae KNU5377Y when exposed to stress induced by menadione.

    Science.gov (United States)

    Kim, Il-Sup; Jin, Ingnyol; Yoon, Ho-Sung

    2011-01-01

    Cyclophilins are conserved cis-trans peptidyl-prolyl isomerase that are implicated in protein folding and function as molecular chaperones. The accumulation of Cpr1 protein to menadione in Saccharomyces cerevisiae KNU5377Y suggests a possibility that this protein may participate in the mechanism of stress tolerance. Stress response of S. cerevisiae KNU5377Y cpr1Δ mutant strain was investigated in the presence of menadione (MD). The growth ability of the strain was confirmed in an oxidant-supplemented medium, and a relationship was established between diminishing levels of cell rescue enzymes and MD sensitivity. The results demonstrate the significant effect of CPR1 disruption in the cellular growth rate, cell viability and morphology, and redox state in the presence of MD and suggest the possible role of Cpr1p in acquiring sensitivity to MD and its physiological role in cellular stress tolerance. The in vivo importance of Cpr1p for antioxidant-mediated reactive oxygen species (ROS) neutralization and chaperone-mediated protein folding was confirmed by analyzing the expression changes of a variety of cell rescue proteins in a CPR1-disrupted strain. The cpr1Δ to the exogenous MD showed reduced expression level of antioxidant enzymes, molecular chaperones, and metabolic enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH)- or adenosine triphosphate (ATP)-generating systems. More importantly, it was shown that cpr1Δ mutant caused imbalance in the cellular redox homeostasis and increased ROS levels in the cytosol as well as mitochondria and elevated iron concentrations. As a result of excess ROS production, the cpr1Δ mutant provoked an increase in oxidative damage and a reduction in antioxidant activity and free radical scavenger ability. However, there was no difference in the stress responses between the wild-type and the cpr1Δ mutant strains derived from S. cerevisiae BY4741 as a control strain under the same stress. Unlike BY4741, KNU5377Y Cpr1

  16. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Immune Checkpoint Inhibitors in the Treatment of Patients with Neuroendocrine Neoplasia.

    Science.gov (United States)

    Weber, Matthias M; Fottner, Christian

    2018-01-01

    Well-differentiated neuroendocrine neoplasms (NENs) are usually controlled by antiproliferative, local ablative and/or radionuclide therapies, whereas poorly differentiated NENs generally require cytotoxic chemotherapy. However, treatment options for patients with advanced/metastatic high-grade NENs remain limited. Review of the literature and international congress abstracts on the efficacy and safety of immunotherapy by checkpoint inhibition in advanced/metastatic NENs. Evidence points to an important role of immune phenomena in the pathogenesis and treatment of neuroendocrine tumors (NETs). Programmed cell death 1 (PD-1) protein and its ligand are mainly expressed in poorly differentiated NENs. Microsatellite instability and high mutational load are more pronounced in high-grade NENs and may predict response to immunotherapy. Clinical experience of immune checkpoint blockade mainly exists for Merkel cell carcinoma, a high-grade cutaneous neuroendocrine carcinoma (NEC), which has led to approval of the anti-PD-1 antibody avelumab. In addition, there is anecdotal evidence for the efficacy of checkpoint inhibitors in large-cell lung NECs, ovarian NECs and others, including gastroenteropancreatic NENs. Currently, phase II studies investigate PDR001, pembrolizumab, combined durvalumab and tremelimumab, and avelumab treatment in patients with advanced/metastatic NENs. Immune checkpoint inhibitors are a promising therapeutic option, especially in progressive NECs or high-grade NETs with high tumor burden, microsatellite instability, and/or mutational load. © 2018 S. Karger GmbH, Freiburg.

  18. Determination of antioxidant activity of Hibiscus sabdariffa and Croton caudatus in Saccharomyces cerevisiae model system.

    Science.gov (United States)

    Subhaswaraj, Pattnaik; Sowmya, M; Bhavana, V; Dyavaiah, Madhu; Siddhardha, Busi

    2017-08-01

    From ancient times, plants and plant derived products are exploited as a prominent source of folkloric medicines with tremendous therapeutic potential for an array of health disorders. In the present study, ethanolic leaf extract of Hibiscus sabdariffa and Croton caudatus were evaluated for free radical scavenging activity in Saccharomyces cerevisiae model system. H. sabdariffa and C. caudatus showed tremendous DPPH free radical scavenging potential with an IC 50 value of 184.88 and 305.39 µg/mL respectively at a concentration of 500 µg/mL. The ethanolic leaf extract of H. sabdariffa and C. caudatus also showed significant hydoxyl radical scavenging and total antioxidant activity. Ascorbic acid was used as positive control. The in vitro antioxidant activity was further supported by in vivo studies using radical scavenging mechanism in S. cerevisiae wild type and its isogenic deletion strains sod1∆ and tsa1∆ . The mutant yeast cells substantially scavenged the stress generated by H 2 O 2 when supplemented with ethanolic leaf extract of H. sabdariffa and C. caudatus as evident from spot assays followed by fluorescence assay (DCF-DA) using fluorescence microscopic and intensity studies. H. sabdariffa and C.caudatus significantly neutralize the ROS level in yeast mutants with concomitant decrease in fluorescence intensity as compared to the untreated yeast cells. The results suggested the efficacy of H. sabdariffa and C. caudatus as potent antioxidants in yeast system and thus their futuristic applications in therapeutics.

  19. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators.

    Science.gov (United States)

    Le Mercier, Isabelle; Lines, J Louise; Noelle, Randolph J

    2015-01-01

    In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.

  20. Blocking CHK1 Expression Induces Apoptosis and Abrogates the G2 Checkpoint Mechanism

    Directory of Open Access Journals (Sweden)

    Yan Luo

    2001-01-01

    Full Text Available Checkpoint kinase 1 (Chki is a checkpoint gene that is activated after DNA damage. It phosphorylates and inactivates the Cdc2 activating phosphatase Cdc25C. This in turn inactivates Cdc2, which leads to G2/M arrest. We report that blocking Chki expression by antisense or ribozymes in mammalian cells induces apoptosis and interferes with the G2/M arrest induced by adriamycin. The Chki inhibitor UCN-01 also blocks the G2 arrest after DNA damage and renders cells more susceptible to adriamycin. These results indicate that Chki is an essential gene for the checkpoint mechanism during normal cell proliferation as well as in the DNA damage response.

  1. New phenotypes generated by the G57R mutation of BUD23 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lin, Jyun-Liang; Yu, Hui-Chia; Chao, Ju-Lan; Wang, Chung; Cheng, Ming-Yuan

    2012-12-01

    BUD23 in Saccharomyces cerevisiae encodes for a class I methyltransferase, and deletion of the gene results in slow growth and random budding phenotypes. Herein, two BUD23 mutants defective in methyltransferase activity were generated to investigate whether the phenotypes of the null mutant might be correlated with a loss in enzymatic activity. Expression at the physiological level of both D77A and G57R mutants was able to rescue the phenotypes of the bud23-null mutant. The result implied that the methyltransferase activity of the protein was not necessary for supporting normal growth and bud site selection of the cells. High-level expression of Bud23 (G57R), but not Bud23 or Bud23 (D77A), in BUD23 deletion cells failed to complement these phenotypes. However, just like Bud23, Bud23 (G57R) was localized in a DAPI-poor region in the nucleus. Distinct behaviour in Bud23 (G57R) could not be originated from a mislocalization of the protein. Over-expression of Bud23 (G57R) in null cells also produced changes in actin organization and additional septin mutant-like phenotypes. Therefore, the absence of Bud23, Bud23 (G57R) at a high level might affect the cell division of yeast cells through an as yet unidentified mechanism. Copyright © 2012 John Wiley & Sons, Ltd.

  2. CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance.

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    Full Text Available Salt-sensitive yeast mutants were deployed to characterize a gene encoding a C2H2 zinc finger protein (CaZF that is differentially expressed in a drought-tolerant variety of chickpea (Cicer arietinum and provides salinity-tolerance in transgenic tobacco. In Saccharomyces cerevisiae most of the cellular responses to hyper-osmotic stress is regulated by two interconnected pathways involving high osmolarity glycerol mitogen-activated protein kinase (Hog1p and Calcineurin (CAN, a Ca(2+/calmodulin-regulated protein phosphatase 2B. In this study, we report that heterologous expression of CaZF provides osmotolerance in S. cerevisiae through Hog1p and Calcineurin dependent as well as independent pathways. CaZF partially suppresses salt-hypersensitive phenotypes of hog1, can and hog1can mutants and in conjunction, stimulates HOG and CAN pathway genes with subsequent accumulation of glycerol in absence of Hog1p and CAN. CaZF directly binds to stress response element (STRE to activate STRE-containing promoter in yeast. Transactivation and salt tolerance assays of CaZF deletion mutants showed that other than the transactivation domain a C-terminal domain composed of acidic and basic amino acids is also required for its function. Altogether, results from this study suggests that CaZF is a potential plant salt-tolerance determinant and also provide evidence that in budding yeast expression of HOG and CAN pathway genes can be stimulated in absence of their regulatory enzymes to provide osmotolerance.

  3. Extending the Binomial Checkpointing Technique for Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Andrea; Narayanan, Sri Hari Krishna

    2016-10-10

    In terms of computing time, adjoint methods offer a very attractive alternative to compute gradient information, re- quired, e.g., for optimization purposes. However, together with this very favorable temporal complexity result comes a memory requirement that is in essence proportional with the operation count of the underlying function, e.g., if algo- rithmic differentiation is used to provide the adjoints. For this reason, checkpointing approaches in many variants have become popular. This paper analyzes an extension of the so-called binomial approach to cover also possible failures of the computing systems. Such a measure of precaution is of special interest for massive parallel simulations and adjoint calculations where the mean time between failure of the large scale computing system is smaller than the time needed to complete the calculation of the adjoint information. We de- scribe the extensions of standard checkpointing approaches required for such resilience, provide a corresponding imple- mentation and discuss numerical results.

  4. PD-1 Checkpoint Inhibitor Associated Autoimmune Encephalitis

    Directory of Open Access Journals (Sweden)

    Stephanie Schneider

    2017-05-01

    Full Text Available Objective: To report first-hand narrative experience of autoimmune encephalitis and to briefly review currently available evidence of autoimmune encephalitis in cancer patients treated with immune checkpoint inhibitors. Setting: A case study is presented on the management of a patient who developed autoimmune encephalitis during nivolumab monotherapy occurring after 28 weeks on anti-PD-1 monotherapy (nivolumab 3 mg/kg every 2 weeks for non-small cell lung cancer. Results: No substantial improvement was observed by antiepileptic treatment. After administration of 80 mg methylprednisolone, neurologic symptoms disappeared within 24 h and the patient fully recovered. Conclusions: Immune checkpoint inhibitor treatment can lead to autoimmune encephalitis. Clinical trial data indicate a frequency of autoimmune encephalitis of ≥0.1 to <1% with a higher probability during combined or sequential anti-CTLA-4/anti-PD-1 therapy than during anti-PD-1 or anti-PD-L1 monotherapy. Further collection of evidence and translational research is warranted.

  5. [Mechanism of mutant induction in the ade2 gene of diploid Saccharomyces cerevisiae yeasts by ultraviolet rays].

    Science.gov (United States)

    Gordenin, D A; Inge-Vechtomov, S G

    1981-01-01

    Ultraviolet light (UV) at 3000 ergs/mm-2 induces ade2 mutants with a frequency about 10(-4) in wild-type haploid strains of yeast and about 10(-5) in diploid wild-type strains. UV irradiation effectively induced mitotic segregation of ade2 in the heterozygous diploid (the frequency of segregation is 6%). Interallelic complementation and localization spectra are similar for mutations induced both in haploids and diploids. The occurrence of ade2 mutants in diploids correlated with mitotic segregation of the marker his8 which is situated in the same arm of XY chromosome as ade2 is, distal to the centromere. Our data about the frequency of ade2 mutants in diploids and haploids, the frequency of ade2 mitotic segregation, mitotic segregation of other markers and genetic characteristics of ade2 mutations confirm the suggestion that the major mechanism of diploid ade2 mutants appearance is mutation in one of the two ADE2 alleles and consequent mitotic homozygotisation of mutation as a result of mitotic crossingover between ade2 and the centromere.

  6. Construction of an Unmarked Zymomonas mobilis Mutant Using a Site-Specific FLP Recombinase

    Directory of Open Access Journals (Sweden)

    Shao-Lan Zou

    2012-01-01

    Full Text Available Flippase expression was carried out in Zymomonas mobilis strain ZM4. The FRT-flanked selection marker gene was first integrated into the ZM4 chromosome by homologous recombination. The Saccharomyces cerevisiae flp gene was then introduced under the control of the ZM4 gap gene promoter (Pgap, encoding glyceraldehyde-3-phosphate dehydrogenase or the λ bacteriophage cI857-pR contained in the broad-host-range cloning vector pBBR1-MCS-2. This study demonstrated that flp was expressed and that the deletion frequency of the FRT-flanked marker gene was very high (approx. 100 %. In addition, the flp gene expression vector could be conveniently removed from the resulting unmarked Z. mobilis mutants by serially transferring the cells three times into antibiotic-free medium, thereby establishing an efficient method for constructing unmarked Z. mobilis mutants.

  7. Compositions and methods for modeling Saccharomyces cerevisiae metabolism

    DEFF Research Database (Denmark)

    2012-01-01

    The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S. cerevisiae reactants to a plurality of S. cerevisiae reactions, a constraint set for the plurality of S. cerevisiae reactions, and comma...

  8. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.

    Science.gov (United States)

    Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E

    2016-08-23

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production.

  9. EVALUATION OF BIOETHANOL PRODUCTION FROM Eucalyptus WOOD WITH Saccharomyces cerevisiae AND SACSV-10 1

    Directory of Open Access Journals (Sweden)

    Sylvia Enid Vazquez

    2018-04-01

    Full Text Available ABSTRACT Eucalyptus spp. residues of paper industry are a potential lignocellulosic raw material for production of second-generation bioethanol as an alternative to conventional production from cereal crops. Studying the behavior at 40 ºC of a commercial cellulase (Sunson, Eucalyptus sawdust saccharification was carried out under two pH conditions. With the aim to evaluate the bioethanol production from Eucalyptus wood, a strategy combining saccharification and Simultaneous Saccharification and Fermentation (SSF was undertaken at 40 ºC with a thermotolerant Saccharomyces cerevisiae with different substrate and inoculum concentrations, and different nitrogen sources. At last, the process was carried out in optimal conditions with Saccharomyces cerevisiae M522 and SacSV-10. Saccharification produced more free glucose at pH 5, reaching a maximum of 1.5 g/L. Encouraging results were obtained with 500 mg/L of ammonium sulphate as a nitrogen source and 10 % v/v initial inoculum at 106 cfu/mL concentration. Yeast SacSV-10 was not inhibited by phenols present in the culture media using a wood concentration of 10 g/L, but when the solids concentration was increased, the bioprocess yield was compromised. When the process was carried out in optimal conditions the bioethanol production, expressed as the conversion percentage of cellulose to ethanol, was 71.5 % and 73.6 % for M522 and the mutant strain respectively. The studied properties of the mutant strain provide added value to it, which pose new challenges to national companies dedicated to the production and sale of inputs for bioethanol industry.

  10. Caracterización fenotípica y transcripcional de mutantes afectados en la N-glicosilación de proteínas en el patógeno Candida albicans

    OpenAIRE

    Cívicos Villa, Carlos

    2014-01-01

    [ES]Candida albicans es un organismo eucariota diploide que presenta reproducción asexual por gemación y un uso de codones diferente al de Saccharomyces cerevisiae (el codón CUG es traducido por serina en lugar de leucina). A pesar de no ser tan sencilla de manipular como S. cerevisiae, se han desarrollado en los últimos años las herramientas que permiten llevar a cabo en C. albicans estudios a nivel de Biología Molecular. Nuestro estudio se centra en mutantes de Candida albicans afectados...

  11. Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators.

    Directory of Open Access Journals (Sweden)

    Isabelle eLe Mercier

    2015-08-01

    Full Text Available In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.

  12. NEK11: linking CHK1 and CDC25A in DNA damage checkpoint signaling

    DEFF Research Database (Denmark)

    Sørensen, Claus Storgaard; Melixetian, Marina; Klein, Ditte Kjaersgaard

    2010-01-01

    The DNA damage induced G(2)/M checkpoint is an important guardian of the genome that prevents cell division when DNA lesions are present. The checkpoint prevents cells from entering mitosis by degrading CDC25A, a key CDK activator. CDC25A proteolysis is controlled by direct phosphorylation events...... is required for beta-TrCP mediated CDC25A polyubiquitylation and degradation. The activity of NEK11 is in turn controlled by CHK1 that activates NEK11 via phosphorylation on serine 273. Since inhibition of NEK11 activity forces checkpoint-arrested cells into mitosis and cell death, NEK11 is, like CHK1...

  13. Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol.

    Science.gov (United States)

    Lee, Hye-Jin; Kim, Soo-Jung; Yoon, Jeong-Jun; Kim, Kyoung Heon; Seo, Jin-Ho; Park, Yong-Cheol

    2015-09-01

    The aim of this work was to apply the evolutionary engineering to construct a mutant Saccharomyces cerevisiae HJ7-14 resistant on 2-deoxy-D-glucose and with an enhanced ability of bioethanol production from galactose, a mono-sugar in red algae. In batch and repeated-batch fermentations, HJ7-14 metabolized 5-fold more galactose and produced ethanol 2.1-fold faster than the parental D452-2 strain. Transcriptional analysis of genes involved in the galactose metabolism revealed that moderate relief from the glucose-mediated repression of the transcription of the GAL genes might enable HJ7-14 to metabolize galactose rapidly. HJ7-14 produced 7.4 g/L ethanol from hydrolysates of the red alga Gelidium amansii within 12 h, which was 1.5-times faster than that observed with D452-2. We demonstrate conclusively that evolutionary engineering is a promising tool to manipulate the complex galactose metabolism in S. cerevisiae to produce bioethanol from red alga. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains.

    Science.gov (United States)

    van der Aa Kühle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-05-01

    The probiotic potential of 18 Saccharomyces cerevisiae strains used for production of foods or beverages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Oxgall. Adhesion to the nontumorigenic porcine jejunal epithelial cell line (IPEC-J2) was investigated by incorporation of 3H-methionine into the yeast cells and use of liquid scintillation counting. Only few of the food-borne S. cerevisiae strains exhibited noteworthy adhesiveness with the strongest levels of adhesion (13.6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1alpha decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar effects hence indicating that food-borne strains of S. cerevisiae may possess probiotic properties in spite of low adhesiveness.

  15. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Lydie Michaillat

    Full Text Available The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property.

  16. [Saccharomyces cerevisiae infections].

    Science.gov (United States)

    Souza Goebel, Cristine; de Mattos Oliveira, Flávio; Severo, Luiz Carlos

    2013-01-01

    Saccharomyces cerevisiae is an ubiquitous yeast widely used in industry and it is also a common colonizer of the human mucosae. However, the incidence of invasive infection by these fungi has significantly increased in the last decades. To evaluate the infection by S. cerevisiae in a hospital in southern Brazil during a period of 10 years (2000-2010). Review of medical records of patients infected by this fungus. In this period, 6 patients were found to be infected by S. cerevisiae. The age range of the patients was from 10 years to 84. Urine, blood, ascitic fluid, peritoneal dialysis fluid, and esophageal biopsy samples were analyzed. The predisposing factors were cancer, transplant, surgical procedures, renal failure, use of venous catheters, mechanical ventilation, hospitalization in Intensive Care Unit, diabetes mellitus, chemotherapy, corticosteroid use, and parenteral nutrition. Amphotericin B and fluconazole were the treatments of choice. Three of the patients died and the other 3 were discharged from hospital. We must take special precautions in emerging infections, especially when there are predisposing conditions such as immunosuppression or patients with serious illnesses. The rapid and specific diagnosis of S. cerevisiae infections is important for therapeutic decision. Furthermore, epidemiological and efficacy studies of antifungal agents are necessary for a better therapeutic approach. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  17. Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Matsuoka, Hiroyuki; Hashimoto, Kazuya; Saijo, Aki; Takada, Yuki; Kondo, Akihiko; Ueda, Mitsuyoshi; Ooshima, Hiroshi; Tachibana, Taro; Azuma, Masayuki

    2014-02-01

    A display system for adding new protein functions to the cell surfaces of microorganisms has been developed, and applications of the system to various fields have been proposed. With the aim of constructing a cell surface environment suitable for protein display in Saccharomyces cerevisiae, the cell surface structures of cell wall mutants were investigated. Four cell wall mutant strains were selected by analyses using a GFP display system via a GPI anchor. β-Glucosidase and endoglucanase II were displayed on the cell surface in the four mutants, and their activities were evaluated. mnn2 deletion strain exhibited the highest activity for both the enzymes. In particular, endoglucanase II activity using carboxymethylcellulose as a substrate in the mutant strain was 1.9-fold higher than that of the wild-type strain. In addition, the activity of endoglucanase II released from the mnn2 deletion strain by Zymolyase 20T treatment was higher than that from the wild-type strain. The results of green fluorescent protein (GFP) and endoglucanase displays suggest that the amounts of enzyme displayed on the cell surface were increased by the mnn2 deletion. The enzyme activity of the mnn2 deletion strain was compared with that of the wild-type strain. The relative value (mnn2 deletion mutant/wild-type strain) of endoglucanase II activity using carboxymethylcellulose as a substrate was higher than that of β-glucosidase activity using p-nitrophenyl-β-glucopyranoside as a substrate, suggesting that the cell surface environment of the mnn2 deletion strain facilitates the binding of high-molecular-weight substrates to the active sites of the displayed enzymes. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Effects of fermentation by Saccharomyces cerevisiae and ...

    African Journals Online (AJOL)

    yassine

    2013-02-13

    Feb 13, 2013 ... Effect of Saccharomyces cerevisiae fermentation on the ... beetroot, fermentation, Saccharomyces cerevisiae, betalain compounds. ... by Saccharomyces cerevisiae strains (González et al., .... Both red and yellow pigments were influenced during S. .... in beverages such as white wine, grape fruit, and green.

  19. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    van der Aa Kuhle, Alis; Skovgaard, Kerstin; Jespersen, Lene

    2005-01-01

    .6-16.8%) recorded for two isolates from blue veined cheeses. Merely 25% of the S. cerevisiae var. boulardii strains displayed good adhesive properties (16.2-28.0%). The expression of the proinflammatory cytokine IL-1α decreased strikingly in IPEC-J2 cells exposed to a Shiga-like toxin 2e producing Escherichia coli...... strain when the cells were pre- and coincubated with S. cerevisiae var. boulardii even though this yeast strain was low adhesive (5.4%), suggesting that adhesion is not a mandatory prerequisite for such a probiotic effect. A strain of S. cerevisiae isolated from West African sorghum beer exerted similar......The probiotic potential of IS Saccharomyces cerevisiae strains used for production of foods or bevel-ages or isolated from such, and eight strains of Saccharomyces cerevisiae var. boulardii, was investigated. All strains included were able to withstand pH 2.5 and 0.3% Ox-all. Adhesion...

  20. The emerging role of immune checkpoint based approaches in AML and MDS.

    Science.gov (United States)

    Boddu, Prajwal; Kantarjian, Hagop; Garcia-Manero, Guillermo; Allison, James; Sharma, Padmanee; Daver, Naval

    2018-04-01

    The development of immune checkpoint inhibitors represents a major breakthrough in the field of cancer therapeutics. Pursuant to their success in melanoma and numerous solid tumor malignancies, these agents are being investigated in hematological malignancies including acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS). Although AML/MDS have traditionally been considered to be less immunogenic than solid tumor malignancies, recent pre-clinical models suggest a therapeutic role for immune checkpoint inhibition in these diseases. CTLA-4 inhibition may be especially effective in treating late post-allogeneic stem cell transplant relapse of AML in patients with limited or no graft versus host disease. Immune checkpoint inhibition, specifically PD-1 inhibition, demonstrated limited single agent efficacy in patients with relapsed AML and with MDS post-hypomethylating therapy. Rationally designed combinations of PD-1 inhibitors with standard anti-leukemic therapy are needed. Hypomethylating agents such as azacitidine, up-regulate PD-1, PD-L1, and PD-L2 in patients with AML/MDS and up-regulation of these genes was associated with the emergence of resistance. The combination of azacitidine and PD-1/PD-L1 inhibition may be a potential mechanism to prevent or overcome resistance to 5-azacitidine. A number of such combinations are being evaluated in clinical trials with early encouraging results. Immune checkpoint inhibition is also an attractive option to improve relapse-free survival or eliminate minimal residual disease post induction and consolidation by enhancing T-cell surveillance in patients with high-risk AML. The ongoing clinical trials with checkpoint inhibitors in AML/MDS will improve our understanding of the immunobiology of these diseases and guide us to the most appropriate application of these agents in the therapy of AML/MDS.

  1. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.

    Science.gov (United States)

    Tsolmonbaatar, Ariunzaya; Hashida, Keisuke; Sugimoto, Yukiko; Watanabe, Daisuke; Furukawa, Shuhei; Takagi, Hiroshi

    2016-12-05

    During bread-making processes, yeast cells are exposed to baking-associated stresses such as freeze-thaw, air-drying, and high-sucrose concentrations. Previously, we reported that self-cloning diploid baker's yeast strains that accumulate proline retained higher-level fermentation abilities in both frozen and sweet doughs than the wild-type strain. Although self-cloning yeasts do not have to be treated as genetically modified yeasts, the conventional methods for breeding baker's yeasts are more acceptable to consumers than the use of self-cloning yeasts. In this study, we isolated mutants resistant to the proline analogue azetidine-2-carboxylate (AZC) derived from diploid baker's yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular proline, and among them, 5 mutants showed higher cell viability than that observed in the parent wild-type strain under freezing or high-sucrose stress conditions. Two of them carried novel mutations in the PRO1 gene encoding the Pro247Ser or Glu415Lys variant of γ-glutamyl kinase (GK), which is a key enzyme in proline biosynthesis in S. cerevisiae. Interestingly, we found that these mutations resulted in AZC resistance of yeast cells and desensitization to proline feedback inhibition of GK, leading to intracellular proline accumulation. Moreover, baker's yeast cells expressing the PRO1 P247S and PRO1 E415K gene were more tolerant to freezing stress than cells expressing the wild-type PRO1 gene. The approach described here could be a practical method for the breeding of proline-accumulating baker's yeasts with higher tolerance to baking-associated stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Amino acid substitutions in subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Sequence analysis of a series of revertants of an oli1 mit- mutant carrying an amino acid substitution in the hydrophilic loop of subunit 9.

    Science.gov (United States)

    Willson, T A; Nagley, P

    1987-09-01

    This work concerns a biochemical genetic study of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Subunit 9, encoded by the mitochondrial oli1 gene, contains a hydrophilic loop connecting two transmembrane stems. In one particular oli1 mit- mutant 2422, the substitution of a positively charged amino acid in this loop (Arg39----Met) renders the ATPase complex non-functional. A series of 20 revertants, selected for their ability to grow on nonfermentable substrates, has been isolated from mutant 2422. The results of DNA sequence analysis of the oli1 gene in each revertant have led to the recognition of three groups of revertants. Class I revertants have undergone a same-site reversion event: the mutant Met39 is replaced either by arginine (as in wild-type) or lysine. Class II revertants maintain the mutant Met39 residue, but have undergone a second-site reversion event (Asn35----Lys). Two revertants showing an oligomycin-resistant phenotype carry this same second-site reversion in the loop region together with a further amino acid substitution in either of the two membrane-spanning segments of subunit 9 (either Gly23----Ser or Leu53----Phe). Class III revertants contain subunit 9 with the original mutant 2422 sequence, and additionally carry a recessive nuclear suppressor, demonstrated to represent a single gene. The results on the revertants in classes I and II indicate that there is a strict requirement for a positively charged residue in the hydrophilic loop close to the boundary of the lipid bilayer. The precise location of this positive charge is less stringent; in functional ATPase complexes it can be found at either residue 39 or 35. This charged residue is possibly required to interact with some other component of the mitochondrial ATPase complex. These findings, together with hydropathy plots of subunit 9 polypeptides from normal, mutant and revertant strains, led to the conclusion that the hydrophilic loop in normal subunit 9

  3. Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants

    International Nuclear Information System (INIS)

    Kelly, R.; Miller, S.M.; Kurtz, M.B.; Kirsch, D.R.

    1987-01-01

    A method for introducing specific mutations into the diploid Candida albicans by one-step gene disruption and subsequent UV-induced recombination was developed. The cloned C. albicans URA3 gene was disrupted with the C. albicans ADE2 gene, and the linearized DNA was used for transformation of two ade2 mutants, SGY-129 and A81-Pu. Both an insertional inactivation of the URA3 gene and a disruption which results in a 4.0-kilobase deletion were made. Southern hybridization analyses demonstrated that the URA3 gene was disrupted on one of the chromosomal homologs in 15 of the 18 transformants analyzed. These analyses also revealed restriction site dimorphism of EcoRI at the URA3 locus which provides a unique marker to distinguish between chromosomal homologs. This enabled us to show that either homolog could be disrupted and that disrupted transformants of SGY-129 contained more than two copies of the URA3 locus. The A81-Pu transformants heterozygous for the ura3 mutations were rendered homozygous and Ura- by UV-induced recombination. The homozygosity of a deletion mutant and an insertion mutant was confirmed by Southern hybridization. Both mutants were transformed to Ura+ with plasmids containing the URA3 gene and in addition, were resistant to 5-fluoro-orotic acid, a characteristic of Saccharomyces cerevisiae ura3 mutants as well as of orotidine-5'-phosphate decarboxylase mutants of other organisms

  4. A novel ATM-dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma.

    Science.gov (United States)

    Spoerri, Loredana; Brooks, Kelly; Chia, KeeMing; Grossman, Gavriel; Ellis, Jonathan J; Dahmer-Heath, Mareike; Škalamera, Dubravka; Pavey, Sandra; Burmeister, Bryan; Gabrielli, Brian

    2016-05-01

    Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM-dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM-dependent checkpoint arrest, and over-expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM-dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over-express PLK1, and a significant proportion of melanomas have high levels of PLK1 over-expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM-dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Flux control-based design of furfural-resistance strains of Saccharomyces cerevisiae for lignocellulosic biorefinery.

    Science.gov (United States)

    Unrean, Pornkamol

    2017-04-01

    We have previously developed a dynamic flux balance analysis of Saccharomyces cerevisiae for elucidation of genome-wide flux response to furfural perturbation (Unrean and Franzen, Biotechnol J 10(8):1248-1258, 2015). Herein, the dynamic flux distributions were analyzed by flux control analysis to identify target overexpressed genes for improved yeast robustness against furfural. The flux control coefficient (FCC) identified overexpressing isocitrate dehydrogenase (IDH1), a rate-controlling flux for ethanol fermentation, and dicarboxylate carrier (DIC1), a limiting flux for cell growth, as keys of furfural-resistance phenotype. Consistent with the model prediction, strain characterization showed 1.2- and 2.0-fold improvement in ethanol synthesis and furfural detoxification rates, respectively, by IDH1 overexpressed mutant compared to the control. DIC1 overexpressed mutant grew at 1.3-fold faster and reduced furfural at 1.4-fold faster than the control under the furfural challenge. This study hence demonstrated the FCC-based approach as an effective tool for guiding the design of robust yeast strains.

  6. PD-1 checkpoint inhibition: Toxicities and management.

    Science.gov (United States)

    Hahn, Andrew W; Gill, David M; Agarwal, Neeraj; Maughan, Benjamin L

    2017-12-01

    With the recent approval of 5 PD-1/PD-L1 inhibitors for a number of malignancies, PD-1 axis inhibition is drastically changing the treatment landscape of immunotherapy in cancer. As PD-1/PD-L1 are involved in peripheral immune tolerance, inhibition of this immune checkpoint has led to novel immune-related adverse events including colitis, hepatitis, pneumonitis, rash, and endocrinopathies among many others. In this seminar, we will analyze the incidence of immune-related adverse events for nivolumab, pembrolizumab, atezolizumab, durvalumab, and avelumab. Then, we will discuss the specific management of the most common immune-mediated adverse events including colitis, hepatitis, pneumonitis, rash, endocrinopathies, nephritis, and neurologic toxicities. Immune-related adverse events are frequently treated with immunosuppressive medication such as steroids and mycofenolate mofetil. There are specific immune-related adverse events which are frequently seen by the treating oncologist from checkpoint inhibitors. It is essential to understand the recommended treatment options to minimize toxicity and mortality from this important class of anti-neoplastic therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effect of 905 MHz microwave radiation on colony growth of the yeast Saccharomyces cerevisiae strains FF18733, FF1481 and D7

    International Nuclear Information System (INIS)

    Vrhovac, Ivana; Hrascan, Reno; Franekic, Jasna

    2010-01-01

    The aim of this study was to evaluate the effect of weak radiofrequency microwave (RF/MW) radiation emitted by mobile phones on colony growth of the yeast Saccharomyces cerevisiae. S. cerevisiae strains FF18733 (wild-type), FF1481 (rad1 mutant) and D7 (commonly used to detect reciprocal and nonreciprocal mitotic recombinations) were exposed to a 905 MHz electromagnetic field that closely matched the Global System for Mobile Communication (GSM) pulse modulation signals for mobile phones at a specific absorption rate (SAR) of 0.12 W/kg. Following 15-, 30- and 60-minutes exposure to RF/MW radiation, strain FF18733 did not show statistically significant changes in colony growth compared to the control sample. The irradiated strains FF1481 and D7 demonstrated statistically significant reduction of colony growth compared to non-irradiated strains after all exposure times. Furthermore, strain FF1481 was more sensitive to RF/MW radiation than strain D7. The findings indicate that pulsed RF/MW radiation at a low SAR level can affect the rate of colony growth of different S. cerevisiae strains

  8. [Control levels of Sin3 histone deacetylase for spontaneous and UV-induced mutagenesis in yeasts Saccharomyces cerevisiae].

    Science.gov (United States)

    Lebovka, I Iu; Kozhina, T N; Fedorova, I V; Peshekhonov, V T; Evstiukhina, T A; Chernenkov, A Iu; Korolev, V G

    2014-01-01

    SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shownthat RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion ofthe SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to themalfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.

  9. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.

    Directory of Open Access Journals (Sweden)

    José Manuel Otero

    Full Text Available Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol, and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the α-keto-glutarate dehydrogenase catalyzed conversion of α-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2(nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we

  10. Jeast (Saccharomyces cerevisial) mutants with enhanced induced mutagenesis

    International Nuclear Information System (INIS)

    Ivanov, E.L.; Koval'tsova, S.V.; Korolev, V.G.

    1987-01-01

    The influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae has been. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adeine-dependent mutations (ade, ade2) were induced more frequently (1.5-2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed than him1-1, him2-1, and himX mutations increase specifically the yield of transitions (AT-GC and GC→AT), whereas in the him3-1, strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction

  11. Covering Resilience: A Recent Development for Binomial Checkpointing

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Andrea; Narayanan, Sri Hari Krishna

    2016-09-12

    In terms of computing time, adjoint methods offer a very attractive alternative to compute gradient information, required, e.g., for optimization purposes. However, together with this very favorable temporal complexity result comes a memory requirement that is in essence proportional with the operation count of the underlying function, e.g., if algorithmic differentiation is used to provide the adjoints. For this reason, checkpointing approaches in many variants have become popular. This paper analyzes an extension of the so-called binomial approach to cover also possible failures of the computing systems. Such a measure of precaution is of special interest for massive parallel simulations and adjoint calculations where the mean time between failure of the large scale computing system is smaller than the time needed to complete the calculation of the adjoint information. We describe the extensions of standard checkpointing approaches required for such resilience, provide a corresponding implementation and discuss first numerical results.

  12. Lyn tyrosine kinase promotes silencing of ATM-dependent checkpoint signaling during recovery from DNA double-strand breaks

    International Nuclear Information System (INIS)

    Fukumoto, Yasunori; Kuki, Kazumasa; Morii, Mariko; Miura, Takahito; Honda, Takuya; Ishibashi, Kenichi; Hasegawa, Hitomi; Kubota, Sho; Ide, Yudai; Yamaguchi, Noritaka; Nakayama, Yuji; Yamaguchi, Naoto

    2014-01-01

    Highlights: • Inhibition of Src family kinases decreased γ-H2AX signal. • Inhibition of Src family increased ATM-dependent phosphorylation of Chk2 and Kap1. • shRNA-mediated knockdown of Lyn increased phosphorylation of Kap1 by ATM. • Ectopic expression of Src family kinase suppressed ATM-mediated Kap1 phosphorylation. • Src is involved in upstream signaling for inactivation of ATM signaling. - Abstract: DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint

  13. Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Christopher L Brett

    Full Text Available Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pH(v in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pH(v (5.27±0.13 was resistant to acid stress (5.28±0.14 but shifted significantly in response to alkali stress (5.83±0.13. Of 107 mutants that displayed aberrant pH(v under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pH(v dysregulation in a neo1(ts mutant restored viability whereas cholesterol accumulation in human NPC1(-/- fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation.

  14. Genes regulation encoding ADP/ATP carrier in yeasts Saccharomyces cerevisiae and Candida parapsilosis

    International Nuclear Information System (INIS)

    Nebohacova, M.

    2000-01-01

    Genes encoding a mitochondrial ADP/ATP carrier (AAC) in yeast Saccharomyces cerevisiae and Candida parapsilosis were investigated. AAC2 is coding for the major AAC isoform in S. cerevisiae. We suggest that AAC2 is a member of a syn-expression group of genes encoding oxidative phosphorylation proteins. Within our previous studies on the regulation of the AAC2 transcription an UAS (-393/-268) was identified that is essential for the expression of this gene. Two functional regulatory cis-elements are located within this UAS -binding sites for an ABFl factor and for HAP2/3/4/5 heteromeric complex. We examined relative contributions and mutual interactions of the ABFl and HAP2/3/4/5 factors in the activation of transcription from the UAS of the AAC2 gene. The whole UAS was dissected into smaller sub-fragments and tested for (i) the ability to form DNA-protein complexes with cellular proteins in vitro, (ii) the ability to confer heterologous expression using AAC3 gene lacking its own promoter, and (iii) the expression of AAC3-lacZ fusion instead of intact AAC3 gene. The obtained results demonstrated that: a) The whole UAS as well as sub-fragment containing only ABF1-binding site are able to form DNA-protein complexes with cellular proteins in oxygen- and heme- dependent manner. The experiments with antibody against the ABF1 showed that the ABF1 factor is one of the proteins binding to AAC2 promoter. We have been unsuccessful to prove the binding of cellular proteins to the HAP2/3/4/5-binding site. However, the presence of HAP2/3/4/5-binding site is necessary to drive a binding of cellular proteins to the ABF1-binding site in carbon source-dependent manner. b) The presence of both ABF1- and HAP2/3/4/5-binding sites and original spacing between them is necessary to confer the growth of Aaac2 mutant strain on non- fermentable carbon source when put in front of AAC3 gene introduced on centromeric vector to Aaac2 mutant strain. c) For the activation of AAC3-lacZ expression on

  15. The effect of the fungicide captan on Saccharomyces cerevisiae and wine fermentation

    Directory of Open Access Journals (Sweden)

    Scariot Fernando J.

    2016-01-01

    Full Text Available Fungicides, particularly those used during grape maturation, as captan, can affect the natural yeast population of grapes, and can reach grape must affecting wine fermentation. The objective of the present work was to study the effect of captan on the viability and fermentative behavior of S. cerevisiae. S. cerevisiae (BY4741 on exponential phase was treated with captan (0 to 40 μM for different periods, and their cell viability analyzed. Cell membrane integrity, thiols concentration, and reactive oxygen species (ROS accumulation was determined. The fermentation experiments were conducted in synthetic must using wine yeast strain Y904. The results showed that under aerobic conditions, 20 μM of captan reduce 90% of yeast viability in 6 hours. Captan treated cells exhibited alteration of membrane integrity, reduction of thiol compounds and increase in intracellular ROS concentration, suggesting a necrotic and pro-oxidant activity of the fungicide. Fermentative experiments showed that concentrations above 2.5 μM captan completely inhibited fermentation, while a dose dependent fermentation delay associated with the reduction of yeast viability was detected in sub-inhibitory concentrations. Petit mutants increase was also observed. In conclusion, the captan induces yeast necrotic cell death on both aerobic and anaerobic conditions causing fermentation delay and/or sucking fermentations.

  16. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  17. Immune checkpoint blockade therapy: The 2014 Tang prize in biopharmaceutical science

    Directory of Open Access Journals (Sweden)

    Ya-Shan Chen

    2015-02-01

    Full Text Available The first Tang Prize for Biopharmaceutical Science has been awarded to Prof. James P. Allison and Prof. Tasuku Honjo for their contributions leading to an entirely new way to treat cancer by blocking the molecules cytotoxic T lymphocyte-associated antigen 4 (CTLA-4 and programmed cell death protein 1 (PD-1 that turn off immune response. The treatment, called "immune checkpoint blockade therapy," has opened a new therapeutic era. Here the discoveries of the immune checkpoints and how they contribute to the maintenance of self-tolerance, as well as how to protect tissues from the excess immune responses causing damage are reviewed. The efforts made by Prof. Allison and Prof. Honjo for developing the most promising approaches to activate therapeutic antitumor immunity are also summarized. Since these certain immune checkpoint pathways appear to be one of the major mechanisms resulting in immune escape of tumors, the presence of anti-CTLA-4 and/or anti-PD-1 should contribute to removal of the inhibition signals for T cell activation. Subsequently, it will enhance specific T cell activation and, therefore, strengthen antitumor immunity.

  18. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint.

    Directory of Open Access Journals (Sweden)

    Sagar P Mahale

    Full Text Available The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC. However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division.

  19. Metabolic engineering applications of in vivo 31P and 13C NMR studies of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Shanks, J.V.

    1989-01-01

    With intent to quantify NMR measurements as much as possible, analysis techniques of the in vivo 31 P NMR spectrum are developed. A systematic procedure is formulated for estimating the relative intracellular concentrations of the sugar phosphates in S. cerevisiae from the 31 P NMR spectrum. In addition, in vivo correlation of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, β-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate are determined. Also, a method was developed for elucidation of the cytoplasmic and vacuolar components of inorganic phosphate in the 31 P NMR spectrum of S. cerevisiae. An in vivo correlation relating the inorganic phosphate chemical shift of the vacuole with the chemical shift of the resonance for pyrophosphate and the terminal phosphate of polyphosphate (PP 1 ) is established. Transient measurements provided by 31 P NMR are applied to reg1 mutant and standard strains. 31 P and 13 C NMR measurements are used to analyze the performance of recombinant strains in which the glucose phosphorylation step had been altered

  20. The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants.

    Directory of Open Access Journals (Sweden)

    Sven Vilain

    2012-01-01

    Full Text Available Pink1 is a mitochondrial kinase involved in Parkinson's disease, and loss of Pink1 function affects mitochondrial morphology via a pathway involving Parkin and components of the mitochondrial remodeling machinery. Pink1 loss also affects the enzymatic activity of isolated Complex I of the electron transport chain (ETC; however, the primary defect in pink1 mutants is unclear. We tested the hypothesis that ETC deficiency is upstream of other pink1-associated phenotypes. We expressed Saccaromyces cerevisiae Ndi1p, an enzyme that bypasses ETC Complex I, or sea squirt Ciona intestinalis AOX, an enzyme that bypasses ETC Complex III and IV, in pink1 mutant Drosophila and find that expression of Ndi1p, but not of AOX, rescues pink1-associated defects. Likewise, loss of function of subunits that encode for Complex I-associated proteins displays many of the pink1-associated phenotypes, and these defects are rescued by Ndi1p expression. Conversely, expression of Ndi1p fails to rescue any of the parkin mutant phenotypes. Additionally, unlike pink1 mutants, fly parkin mutants do not show reduced enzymatic activity of Complex I, indicating that Ndi1p acts downstream or parallel to Pink1, but upstream or independent of Parkin. Furthermore, while increasing mitochondrial fission or decreasing mitochondrial fusion rescues mitochondrial morphological defects in pink1 mutants, these manipulations fail to significantly rescue the reduced enzymatic activity of Complex I, indicating that functional defects observed at the level of Complex I enzymatic activity in pink1 mutant mitochondria do not arise from morphological defects. Our data indicate a central role for Complex I dysfunction in pink1-associated defects, and our genetic analyses with heterologous ETC enzymes suggest that Ndi1p-dependent NADH dehydrogenase activity largely acts downstream of, or in parallel to, Pink1 but upstream of Parkin and mitochondrial remodeling.

  1. Immunogenic Chemotherapy Sensitizes Renal Cancer to Immune Checkpoint Blockade Therapy in Preclinical Models.

    Science.gov (United States)

    Cui, Shujin

    2017-07-11

    BACKGROUND Renal cell carcinoma (RCC) is among the most common malignant cancers of males worldwide. For advanced RCC patients, there still is no effective therapy. Immune checkpoint blockade therapies have shown benefits for many cancers, but previous clinical trials of immune checkpoint blockade therapies in RCC patients achieved only modest results. MATERIAL AND METHODS We explored the effects of combining chemotherapy with immune checkpoint blockade therapy in RCC xenograft mouse models. We also studied the potential mechanisms by which chemotherapy might enhance the efficacy of immune checkpoint blockade therapy, both in vitro and in vivo. RESULTS Our results showed that many commonly used chemotherapy agents can induce immunogenic marker release in RCC cell lines. Importantly, the RCC xenograft mouse model mice who received the combination treatment of 5-fluorouracil (5-FU) and anti-programmed cell death-ligand 1 (PD-L1) antibodies (Abs) had longer survival times compared to those who received 5-FU or anti-PD-L1 Abs alone. Also, increased key cytokines that promote tumor immunity, such as IL-2, IFN-γ, and TNF-α, as well as tumor-infiltrating cytotoxic T cells, were also increased after the combination treatment. CONCLUSIONS We conclude that 5-FU can sensitize RCC to anti-PD-L1 treatment by releasing the immune suppression in the tumor microenvironment.

  2. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.

    Science.gov (United States)

    Molon, Mateusz; Szajwaj, Monika; Tchorzewski, Marek; Skoczowski, Andrzej; Niewiadomska, Ewa; Zadrag-Tecza, Renata

    2016-02-01

    Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.

  3. [Dot1 and Set2 Histone Methylases Control the Spontaneous and UV-Induced Mutagenesis Levels in the Saccharomyces cerevisiae Yeasts].

    Science.gov (United States)

    Kozhina, T N; Evstiukhina, T A; Peshekhonov, V T; Chernenkov, A Yu; Korolev, V G

    2016-03-01

    In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of hi- stone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-in- duced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the sponta- neous mutagenesis rate in both single and d ouble mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the ho- mologous-recombination-based and the postreplicative DNA repair.

  4. A dominant-negative mutant inhibits multiple prion variants through a common mechanism.

    Directory of Open Access Journals (Sweden)

    Fen Pei

    2017-10-01

    Full Text Available Prions adopt alternative, self-replicating protein conformations and thereby determine novel phenotypes that are often irreversible. Nevertheless, dominant-negative prion mutants can revert phenotypes associated with some conformations. These observations suggest that, while intervention is possible, distinct inhibitors must be developed to overcome the conformational plasticity of prions. To understand the basis of this specificity, we determined the impact of the G58D mutant of the Sup35 prion on three of its conformational variants, which form amyloids in S. cerevisiae. G58D had been previously proposed to have unique effects on these variants, but our studies suggest a common mechanism. All variants, including those reported to be resistant, are inhibited by G58D but at distinct doses. G58D lowers the kinetic stability of the associated amyloid, enhancing its fragmentation by molecular chaperones, promoting Sup35 resolubilization, and leading to amyloid clearance particularly in daughter cells. Reducing the availability or activity of the chaperone Hsp104, even transiently, reverses curing. Thus, the specificity of inhibition is determined by the sensitivity of variants to the mutant dosage rather than mode of action, challenging the view that a unique inhibitor must be developed to combat each variant.

  5. Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K-Ras mutant cancer cells to cytotoxic drugs.

    Science.gov (United States)

    Saqcena, M; Mukhopadhyay, S; Hosny, C; Alhamed, A; Chatterjee, A; Foster, D A

    2015-05-14

    Cancer cells undergo a metabolic transformation that allows for increased anabolic demands, wherein glycolytic and tricarboxylic acid (TCA) cycle intermediates are shunted away for the synthesis of biological molecules required for cell growth and division. One of the key shunts is the exit of citrate from the mitochondria and the TCA cycle for the generation of cytosolic acetyl-coenzyme A that can be used for fatty acid and cholesterol biosynthesis. With the loss of mitochondrial citrate, cancer cells rely on the 'conditionally essential' amino acid glutamine (Q) as an anaplerotic carbon source for TCA cycle intermediates. Although Q deprivation causes G1 cell cycle arrest in non-transformed cells, its impact on the cancer cell cycle is not well characterized. We report here a correlation between bypass of the Q-dependent G1 checkpoint and cancer cells harboring K-Ras mutations. Instead of arresting in G1 in response to Q-deprivation, K-Ras-driven cancer cells arrest in either S- or G2/M-phase. Inhibition of K-Ras effector pathways was able to revert cells to G1 arrest upon Q deprivation. Blocking anaplerotic utilization of Q mimicked Q deprivation--causing S- and G2/M-phase arrest in K-Ras mutant cancer cells. Significantly, Q deprivation or suppression of anaplerotic Q utilization created synthetic lethality to the cell cycle phase-specific cytotoxic drugs, capecitabine and paclitaxel. These data suggest that disabling of the G1 Q checkpoint could represent a novel vulnerability of cancer cells harboring K-Ras and possibly other mutations that disable the Q-dependent checkpoint.

  6. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe

    Science.gov (United States)

    2012-01-01

    Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches. PMID:22554201

  7. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Chen Bo-Ruei

    2012-05-01

    Full Text Available Abstract Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning

  8. Cellular and genetic effects and recovery of heat-damaged cells of Saccharomyces cerevisiae by low intensity electromagnetic radiation at 915 MHz

    International Nuclear Information System (INIS)

    Sheikh, I.H.

    1984-01-01

    Studies were conducted on two genetically well known strains of Saccharomyces cerevisiae (Wild Type) and repair deficient mutant (UVS). Results obtained showed clear genetic difference between normal and mutants based on UV sensitivity, percent survival at elevated temperatures and high intensity electromagnetic radiation. At the cellular level, both strains showed a consistent increase in the recovery rate of heat damaged cells when exposed to low intensity FMR as compared to sham (non irradiated cells) at 915 MHz. The percent recovery of wild type was higher than mutant. At the molecular level, the uptake of tritiated uridine into thermally damaged cells which were recovered by low level EMR was significantly higher than sham. Total RNA isolated from irradiated cells and sham showed visible differences in the intensity of RNA bands. Gross quantitative analyses suggest more RNA production in radiation recovered cells as compared to sham. Results presented in this dissertation provide conclusive evidence that low level microwave radiation can be used in the recovery of heat damaged cells

  9. Apoptosis - Triggering Effects: UVB-irradiation and Saccharomyces cerevisiae.

    Science.gov (United States)

    Behzadi, Payam; Behzadi, Elham

    2012-12-01

    The pathogenic disturbance of Saccharomyces cerevisiae is known as a rare but invasive nosocomial fungal infection. This survey is focused on the evaluation of apoptosis-triggering effects of UVB-irradiation in Saccharomyces cerevisiae. The well-growth colonies of Saccharomyces cerevisiae on Sabouraud Dextrose Agar (SDA) were irradiated within an interval of 10 minutes by UVB-light (302 nm). Subsequently, the harvested DNA molecules of control and UV-exposed yeast colonies were run through the 1% agarose gel electrophoresis comprising the luminescent dye of ethidium bromide. No unusual patterns including DNA laddering bands or smears were detected. The applied procedure for UV exposure was not effective for inducing apoptosis in Saccharomyces cerevisiae. So, it needs another UV-radiation protocol for inducing apoptosis phenomenon in Saccharomyces cerevisiae.

  10. Evidence that a recombinationless strain, rad 51, of Saccharomyces cerevisiae lacks the budding cell resistance to γ-rays

    International Nuclear Information System (INIS)

    Hama-Inaba, Hiroko; Saeki, Tetsuya

    1975-01-01

    The radiosensitivities of a wild-type and x-ray sensitive mutant, rad 51 (defective in genetic recombination) of Saccharomyces cerevisiae to γ-rays were compared, using non-synchronized and partially synchronized cultures. The rad 51 cells, either haploid or diploid, showed only very small changes in radiosensitivity during cell growth, whereas the wild-type cells, especially haploid, showed the well-known budding resistance. The heterozygous (wild/rad 51) diploid cells showed in a survival curve a remarkable budding resistance and sigmoidal inactivation kinetics similar to those of wild-type homozygous diploid cells. (author)

  11. SPARC: Demonstrate burst-buffer-based checkpoint/restart on ATS-1.

    Energy Technology Data Exchange (ETDEWEB)

    Oldfield, Ron A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulmer, Craig D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Widener, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, H. Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    Recent high-performance computing (HPC) platforms such as the Trinity Advanced Technology System (ATS-1) feature burst buffer resources that can have a dramatic impact on an application’s I/O performance. While these non-volatile memory (NVM) resources provide a new tier in the storage hierarchy, developers must find the right way to incorporate the technology into their applications in order to reap the benefits. Similar to other laboratories, Sandia is actively investigating ways in which these resources can be incorporated into our existing libraries and workflows without burdening our application developers with excessive, platform-specific details. This FY18Q1 milestone summaries our progress in adapting the Sandia Parallel Aerodynamics and Reentry Code (SPARC) in Sandia’s ATDM program to leverage Trinity’s burst buffers for checkpoint/restart operations. We investigated four different approaches with varying tradeoffs in this work: (1) simply updating job script to use stage-in/stage out burst buffer directives, (2) modifying SPARC to use LANL’s hierarchical I/O (HIO) library to store/retrieve checkpoints, (3) updating Sandia’s IOSS library to incorporate the burst buffer in all meshing I/O operations, and (4) modifying SPARC to use our Kelpie distributed memory library to store/retrieve checkpoints. Team members were successful in generating initial implementation for all four approaches, but were unable to obtain performance numbers in time for this report (reasons: initial problem sizes were not large enough to stress I/O, and SPARC refactor will require changes to our code). When we presented our work to the SPARC team, they expressed the most interest in the second and third approaches. The HIO work was favored because it is lightweight, unobtrusive, and should be portable to ATS-2. The IOSS work is seen as a long-term solution, and is favored because all I/O work (including checkpoints) can be deferred to a single library.

  12. The final checkpoint. Cancer as an adaptive evolutionary mechanism

    Directory of Open Access Journals (Sweden)

    Rumena Petkova

    2016-05-01

    Full Text Available The mechanisms for identification of DNA damage and repair usually manage DNA damage very efficiently. If damaged cells manage to bypass the checkpoints where the integrity of the genome is assessed and the decisions whether to proceed with the cell cycle are made, they may evade the imperative to stop dividing and to die. As a result, cancer may develop. Warding off the potential sequence-altering effects of DNA damage during the life of the individual or the existence span of the species is controlled by a set of larger checkpoints acting on a progressively increasing scale, from systematic removal of damaged cells from the proliferative pool by means of repair of DNA damage/programmed cell death through ageing to, finally, cancer. They serve different purposes and act at different levels of the life cycle, safeguarding the integrity of the genetic backup of the individual, the genetic diversity of the population, and, finally, the survival of the species and of life on Earth. In the light of the theory that cancer is the final checkpoint or the nature's manner to prevent complex organisms from living forever at the expense of genetic stagnation, the eventual failure of modern anti-cancer treatments is only to be expected. Nevertheless, the medicine of today and the near future has enough potential to slow down the progression to terminal cancer so that the life expectancy and the quality of life of cancer-affected individuals may be comparable to those of healthy aged individuals.

  13. Caffeine stabilizes Cdc25 independently of Rad3 in S chizosaccharomyces pombe contributing to checkpoint override

    Science.gov (United States)

    Alao, John P; Sjölander, Johanna J; Baar, Juliane; Özbaki-Yagan, Nejla; Kakoschky, Bianca; Sunnerhagen, Per

    2014-01-01

    Cdc25 is required for Cdc2 dephosphorylation and is thus essential for cell cycle progression. Checkpoint activation requires dual inhibition of Cdc25 and Cdc2 in a Rad3-dependent manner. Caffeine is believed to override activation of the replication and DNA damage checkpoints by inhibiting Rad3-related proteins in both S chizosaccharomyces pombe and mammalian cells. In this study, we have investigated the impact of caffeine on Cdc25 stability, cell cycle progression and checkpoint override. Caffeine induced Cdc25 accumulation in S . pombe independently of Rad3. Caffeine delayed cell cycle progression under normal conditions but advanced mitosis in cells treated with replication inhibitors and DNA-damaging agents. In the absence of Cdc25, caffeine inhibited cell cycle progression even in the presence of hydroxyurea or phleomycin. Caffeine induces Cdc25 accumulation in S . pombe by suppressing its degradation independently of Rad3. The induction of Cdc25 accumulation was not associated with accelerated progression through mitosis, but rather with delayed progression through cytokinesis. Caffeine-induced Cdc25 accumulation appears to underlie its ability to override cell cycle checkpoints. The impact of Cdc25 accumulation on cell cycle progression is attenuated by Srk1 and Mad2. Together our findings suggest that caffeine overrides checkpoint enforcement by inducing the inappropriate nuclear localization of Cdc25. PMID:24666325

  14. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1β in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy

    Directory of Open Access Journals (Sweden)

    Zueco Jesus

    2009-12-01

    Full Text Available Abstract Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β, using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain. Results Our results show that the concentrations of ACA in the feeding solution, corresponding to those routinely used in the literature, are limiting for the growth of S. cerevisiae BY4741 [PIR4-IL1β] in fed-batch reactor. Even in the presence of a proper ACA supplementation, S. cerevisiae BY4741 [PIR4-IL1β] did not achieve a high cell density. The Δyca1 deletion did not have a beneficial effect on the overall performance of the strain, but it had a clear effect on its viability, which was not impaired during fed-batch operations, as shown by the kd value (0.0045 h-1, negligible if compared to that of the parental strain (0.028 h-1. However, independently of their robustness, both the parental and the Δyca1 mutant ceased to grow early during fed-batch runs, both strains using most of the

  15. Hydroquinone, a benzene metabolite, induces Hog1-dependent stress response signaling and causes aneuploidy in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Shiga, Takeki; Suzuki, Hiroyuki; Yamamoto, Hiroaki; Yamamoto, Kazuo; Yamamoto, Ayumi

    2010-01-01

    Previously, we have shown that phenyl hydroquinone, a hepatic metabolite of the Ames test-negative carcinogen o-phenylphenol, efficiently induced aneuploidy in Saccharomyces cerevisiae by arresting the cell cycle at the G2/M transition as a result of the activation of the Hog1 (p38 MAPK homolog)-Swe1 (Wee1 homolog) pathway. In this experiment, we examined the aneuploidy forming effects of hydroquinone, a benzene metabolite, since both phenyl hydroquinone and hydroquinone are Ames-test negative carcinogens and share similar molecular structures. As was seen in phenyl hydroquinone, hydroquinone induced aneuploidy in yeast by delaying the cell cycle at the G2/M transition. Deficiencies in SWE1 and HOG1 abolished the hydroquinone-induced delay at the G2/M transition and aneuploidy formation. Furthermore, Hog1 was phosphorylated by hydroquinone, which may stabilize Swe1. These data indicate that the hydroquinone-induced G2/M transition checkpoint, which is activated by the Hog1-Swe1 pathway, plays a role in the formation of aneuploidy. (author)

  16. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Muzaffar, Suhail; Chattoo, Bharat B

    2017-03-01

    Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

  17. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    International Nuclear Information System (INIS)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando; Ferreira-Junior, Jose Ribamar; Tzagoloff, Alexander; Barros, Mario H.

    2010-01-01

    Research highlights: → COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 , a synthetic diffusible ubiquinone. → The significance that purified Coq10p contains bound Q 6 was examined by testing over-expression of Coq10p on respiration. → Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. → Respiratory deficiency caused by more Coq10p was specific and restored by Q 2 in mitochondria or by Coq8p in cells. → Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q 2 . Rescue of respiration by Q 2 is a characteristic of mutants blocked in coenzyme Q 6 synthesis. Unlike Q 6 deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q 6 . The physiological significance of earlier observations that purified Coq10p contains bound Q 6 was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q 2 . This suggests that in vivo binding of Q 6 by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p.

  18. Over-expression of COQ10 in Saccharomyces cerevisiae inhibits mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Zampol, Mariana A.; Busso, Cleverson; Gomes, Fernando [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil); Ferreira-Junior, Jose Ribamar [Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, Sao Paulo (Brazil); Tzagoloff, Alexander [Department of Biological Sciences, Columbia University, NY (United States); Barros, Mario H., E-mail: mariohb@usp.br [Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-11-05

    Research highlights: {yields} COQ10 deletion elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}, a synthetic diffusible ubiquinone. {yields} The significance that purified Coq10p contains bound Q{sub 6} was examined by testing over-expression of Coq10p on respiration. {yields} Inhibition of CoQ function due to Coq10p excess strength our hypothesis of Coq10p function in CoQ delivery. {yields} Respiratory deficiency caused by more Coq10p was specific and restored by Q{sub 2} in mitochondria or by Coq8p in cells. {yields} Coq8p over-production on other coq mutants revealed a surprisingly higher stability of other Coq proteins. -- Abstract: COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q{sub 2}. Rescue of respiration by Q{sub 2} is a characteristic of mutants blocked in coenzyme Q{sub 6} synthesis. Unlike Q{sub 6} deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q{sub 6}. The physiological significance of earlier observations that purified Coq10p contains bound Q{sub 6} was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q{sub 2}. This suggests that in vivo binding of Q{sub 6} by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains

  19. PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions.

    Science.gov (United States)

    Wang, Ludi; Clarke, Lisa A; Eason, Russell J; Parker, Christopher C; Qi, Baoxiu; Scott, Rod J; Doughty, James

    2017-01-01

    The establishment of pollen-pistil compatibility is strictly regulated by factors derived from both male and female reproductive structures. Highly diverse small cysteine-rich proteins (CRPs) have been found to play multiple roles in plant reproduction, including the earliest stages of the pollen-stigma interaction. Secreted CRPs found in the pollen coat of members of the Brassicaceae, the pollen coat proteins (PCPs), are emerging as important signalling molecules that regulate the pollen-stigma interaction. Using a combination of protein characterization, expression and phylogenetic analyses we identified a novel class of Arabidopsis thaliana pollen-borne CRPs, the PCP-Bs (for pollen coat protein B-class) that are related to embryo surrounding factor (ESF1) developmental regulators. Single and multiple PCP-B mutant lines were utilized in bioassays to assess effects on pollen hydration, adhesion and pollen tube growth. Our results revealed that pollen hydration is severely impaired when multiple PCP-Bs are lost from the pollen coat. The hydration defect also resulted in reduced pollen adhesion and delayed pollen tube growth in all mutants studied. These results demonstrate that AtPCP-Bs are key regulators of the hydration 'checkpoint' in establishment of pollen-stigma compatibility. In addition, we propose that interspecies diversity of PCP-Bs may contribute to reproductive barriers in the Brassicaceae. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Paula M Checchi

    2011-09-01

    Full Text Available Meiosis is a specialized form of cellular division that results in the precise halving of the genome to produce gametes for sexual reproduction. Checkpoints function during meiosis to detect errors and subsequently to activate a signaling cascade that prevents the formation of aneuploid gametes. Indeed, asynapsis of a homologous chromosome pair elicits a checkpoint response that can in turn trigger germline apoptosis. In a heterogametic germ line, however, sex chromosomes proceed through meiosis with unsynapsed regions and are not recognized by checkpoint machinery. We conducted a directed RNAi screen in Caenorhabditis elegans to identify regulatory factors that prevent recognition of heteromorphic sex chromosomes as unpaired and uncovered a role for the SET domain histone H3 lysine 9 histone methyltransferase (HMTase MET-2 and two additional HMTases in shielding the male X from checkpoint machinery. We found that MET-2 also mediates the transcriptional silencing program of meiotic sex chromosome inactivation (MSCI but not meiotic silencing of unsynapsed chromatin (MSUC, suggesting that these processes are distinct. Further, MSCI and checkpoint shielding can be uncoupled, as double-strand breaks targeted to an unpaired, transcriptionally silenced extra-chromosomal array induce checkpoint activation in germ lines depleted for met-2. In summary, our data uncover a mechanism by which repressive chromatin architecture enables checkpoint proteins to distinguish between the partnerless male X chromosome and asynapsed chromosomes thereby shielding the lone X from inappropriate activation of an apoptotic program.

  1. X-ray survival characteristics and genetic analysis for nineSaccharomyces deletion mutants that affect radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2006-07-21

    We examine ionizing radiation (IR) sensitivity and epistasisrelationships of several Saccharomyces mutants affectingpost-translational modifications of histones H2B and H3. Mutantsbre1delta, lge1delta, and rtf1delta, defective in histone H2B lysine 123ubiquitination, show IR sensitivity equivalent to that of the dot1deltamutant that we reported on earlier, consistent with published findingsthat Dot1p requires H2B K123 ubiquitination to fully methylate histone H3K79. This implicates progressive K79 methylation rather thanmono-methylation in IR resistance. The set2delta mutant, defective in H3K36 methylation, shows mild IR sensitivity whereas mutants that abolishH3 K4 methylation resemble wild type. The dot1delta, bre1delta, andlge1delta mutants show epistasis for IR sensitivity. The paf1deltamutant, also reportedly defective in H2B K123 ubiquitination, confers nosensitivity. The rad6delta, rad51null, rad50delta, and rad9deltamutations are epistatic to bre1? and dot1delta, but rad18delta andrad5delta show additivity with bre1delta, dot1delta, and each other. Thebre1delta rad18delta double mutant resembles rad6delta in sensitivity;thus the role of Rad6p in ubiquitinating H2B accounts for its extrasensitivity compared to rad18delta. We conclude that IR resistanceconferred by BRE1 and DOT1 is mediated through homologous recombinationalrepair, not postreplication repair, and confirm findings of a G1checkpoint role for the RAD6/BRE1/DOT1 pathway.

  2. Differential impact of diverse anticancer chemotherapeutics on the Cdc25A-degradation checkpoint pathway

    International Nuclear Information System (INIS)

    Agner, Jeppe; Falck, Jacob; Lukas, Jiri; Bartek, Jiri

    2005-01-01

    When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression

  3. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme.

    Directory of Open Access Journals (Sweden)

    Maritrini Colón

    Full Text Available BACKGROUND: Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. PRINCIPAL FINDINGS: Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs. This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1, while catabolic substrates are accumulated in the cytosol (Bat2. Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. CONCLUSIONS: Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the

  4. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis

    Science.gov (United States)

    Marston, Adele L.; Wassmann, Katja

    2017-01-01

    Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC) controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3), and Aurora B and C (Ipl1) will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid. PMID:29322045

  5. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis

    Directory of Open Access Journals (Sweden)

    Adele L. Marston

    2017-12-01

    Full Text Available Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3, and Aurora B and C (Ipl1 will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid.

  6. Immuno-oncologic Approaches: CAR-T Cells and Checkpoint Inhibitors.

    Science.gov (United States)

    Gay, Francesca; D'Agostino, Mattia; Giaccone, Luisa; Genuardi, Mariella; Festuccia, Moreno; Boccadoro, Mario; Bruno, Benedetto

    2017-08-01

    Advances in understanding myeloma biology have shown that disease progression is not only the consequence of intrinsic tumor changes but also of interactions between the tumor and the microenvironment in which the cancer grows. The immune system is an important component of the tumor microenvironment in myeloma, and acting on the immune system is an appealing new treatment strategy. There are 2 ways to act toward immune cells and boost antitumor immunity: (1) to increase antitumor activity (acting on T and NK cytotoxic cells), and (2) to reduce immunosuppression (acting on myeloid-derived stem cells and T regulatory cells). Checkpoint inhibitors and adoptive cell therapy (ACT) are 2 of the main actors, together with monoclonal antibodies and immunomodulatory agents, in the immune-oncologic approach. The aim of checkpoint inhibitors is to release the brakes that block the action of the immune system against the tumor. Anti-programmed death-1 (PD-1) and PD-1-Ligand, as well as anti-CTLA4 and KIR are currently under evaluation, as single agents or in combination, with the best results achieved so far with combination of anti-PD-1 and immunomodulatory agents. The aim of ACT is to create an immune effector specific against the tumor. Preliminary results on chimeric antigen receptor (CAR) T cells, first against CD19, and more recently against B-cell maturation antigen, have shown to induce durable responses in heavily pretreated patients. This review focuses on the most recent clinical results available on the use of checkpoint inhibitors and CAR-T cells in myeloma, in the context of the new immune-oncologic approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress

    Directory of Open Access Journals (Sweden)

    Rafael A. de Sá

    2013-09-01

    Full Text Available Propolis is a natural product widely used for humans. Due to its complex composition, a number of applications (antimicrobial, antiinflammatory, anesthetic, cytostatic and antioxidant have been attributed to this substance. Using Saccharomyces cerevisiae as a eukaryotic model we investigated the mechanisms underlying the antioxidant effect of propolis from Guarapari against oxidative stress. Submitting a wild type (BY4741 and antioxidant deficient strains (ctt1∆, sod1∆, gsh1∆, gtt1∆ and gtt2∆ either to 15 mM menadione or to 2 mM hydrogen peroxide during 60 min, we observed that all strains, except the mutant sod1∆, acquired tolerance when previously treated with 25 µg/mL of alcoholic propolis extract. Such a treatment reduced the levels of ROS generation and of lipid peroxidation, after oxidative stress. The increase in Cu/Zn-Sod activity by propolis suggests that the protection might be acting synergistically with Cu/Zn-Sod.

  8. Measures to detect and control radioactive contaminated metallurgical scrap at border checkpoints in Poland

    International Nuclear Information System (INIS)

    Smagala, G.

    1999-01-01

    The issue of radioactive contaminated metallurgical scrap has never received a high priority in Poland and in the international community. Since the dissolution of the former Soviet Union a higher attention has been given to the problem. Poland which is located between the West and East Europe has the obligation to develop and implement an effective prevention and detection system. The reasons to increase national control and detection system at the border checkpoints in Poland are to avoid the following risks: post Chernobyl contamination transports of commodities; transport of contaminated metal scrap; transfer of radioactive waste for their disposal or utilization; high risk of becoming a transit country of illicit trafficking of nuclear materials and radioactive sources. In order to avoid the above-mentioned risks, Poland initiated in 1990, a deployment of the portable radiation devices at the border checkpoints and, as of 1998, the number of installed instruments exceeded a hundred. This paper presents Poland's activities to detect contaminated scrap at its border checkpoints. (author)

  9. A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition

    Science.gov (United States)

    Moutinho-Santos, Tatiana

    2013-01-01

    Most solid tumors contain aneuploid cells, indicating that the mitotic checkpoint is permissive to the proliferation of chromosomally aberrant cells. However, mutated or altered expression of mitotic checkpoint genes accounts for a minor proportion of human tumors. We describe a Drosophila melanogaster tumorigenesis model derived from knocking down spindle assembly checkpoint (SAC) genes and preventing apoptosis in wing imaginal discs. Bub3-deficient tumors that were also deficient in apoptosis displayed neoplastic growth, chromosomal aneuploidy, and high proliferative potential after transplantation into adult flies. Inducing aneuploidy by knocking down CENP-E and preventing apoptosis does not induce tumorigenesis, indicating that aneuploidy is not sufficient for hyperplasia. In this system, the aneuploidy caused by a deficient SAC is not driving tumorigenesis because preventing Bub3 from binding to the kinetochore does not cause hyperproliferation. Our data suggest that Bub3 has a nonkinetochore-dependent function that is consistent with its role as a tumor suppressor. PMID:23609535

  10. Inorganic polyphosphate in the yeast Saccharomyces cerevisiae with a mutation disturbing the function of vacuolar ATPase.

    Science.gov (United States)

    Tomaschevsky, A A; Ryasanova, L P; Kulakovskaya, T V; Kulaev, I S

    2010-08-01

    A mutation in the vma2 gene disturbing V-ATPase function in the yeast Saccharomyces cerevisiae results in a five- and threefold decrease in inorganic polyphosphate content in the stationary and active phases of growth on glucose, respectively. The average polyphosphate chain length in the mutant cells is decreased. The mutation does not prevent polyphosphate utilization during cultivation in a phosphate-deficient medium and recovery of its level on reinoculation in complete medium after phosphate deficiency. The content of short chain acid-soluble polyphosphates is recovered first. It is supposed that these polyphosphates are less dependent on the electrochemical gradient on the vacuolar membrane.

  11. Ultraviolet mutagenesis studies of [psi], a cytoplasmic determinant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Tuite, M.F.; Cox, B.S.

    1980-01-01

    uv mutagenesis was used to probe the molecular nature of [psi], a nonmitochondrial cytoplasmic determinant of Saccharomyces cerevisiae involved in the control of nonsense suppression. The uv-induced mutation from [psi + ] to [psi - ] showed characteristics of forward nuclear gene mutation in terms of frequency, induction kinetics, occurrence of whole and sectored mutant clones and the effect of the stage in the growth cycle on mutation frequency. The involvement of pyrimidine dimers in the premutational lesion giving the [psi - ] mutation was demonstrated by photoreactivation. uv-induced damage to the [psi] genetic determinant was shown to be repaired by nuclear-coded repair enzymes that are responsible for the repair of nuclear DNA damage. uv-induced damage to mitochondrial DNA appeared to be, at least partly, under the control of different repair processes. The evidence obtained suggests that the [psi] determinant is DNA

  12. Impaired Uptake and/or Utilization of Leucine by Saccharomyces cerevisiae Is Suppressed by the SPT15-300 Allele of the TATA-Binding Protein Gene

    DEFF Research Database (Denmark)

    Baerends, RJ; Qiu, Jin-Long; Rasmussen, Simon

    2009-01-01

    Successful fermentations to produce ethanol require microbial strains that have a high tolerance to glucose and ethanol. Enhanced glucose/ethanol tolerance of the laboratory yeast Saccharomyces cerevisiae strain BY4741 under certain growth conditions as a consequence of the expression of a dominant...... us to examine the effect of expression of the SPT15-300 allele in various yeast species of industrial importance. Expression of SPT15-300 in leucine-prototrophic strains of S. cerevisiae, Saccharomyces bayanus, or Saccharomyces pastorianus (lager brewing yeast), however, did not improve tolerance...... to ethanol on complex rich medium (yeast extract-peptone-dextrose). The enhanced growth of the laboratory yeast strain BY4741 expressing the SPT15-300 mutant allele was seen only on defined media with low concentrations of leucine, indicating that the apparent improved growth in the presence of ethanol...

  13. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast.

    Science.gov (United States)

    Eckardt, F; Haynes, R H

    1977-06-01

    We have found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 X 10(-3) mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis we conclude that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. As others have concluded for wild-type strains we find also in the rad2 strain that pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. We conclude that heteroduplex repair is a crucial step in pure mutant clone formation and we examine the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis.

  14. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast

    International Nuclear Information System (INIS)

    Eckardt, F.; Haynes, R.H.

    1977-01-01

    It was found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 x 10 -3 mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis it is concluded that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. In agreement with conclusions of others, it was also found that for wild-type strains in the rad2 strain pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. It is concluded that heteroduplex repair is a crucial step in pure mutant clone formation and the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis is examined

  15. Isolation of the thymidylate synthetase gene (TMP1) by complementation in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Taylor, G.R.; Barclay, B.J.; Storms, R.K.; Friesen, J.D.; Haynes, R.H.

    1982-01-01

    The structural gene (TMP1) for yeast thymidylate synthetase (thymidylate synthase; EC 2.1.1.45) was isolated from a chimeric plasmid bank by genetic complementation in Saccharomyces cerevisiae. Retransformation of the dTMP auxotroph GY712 and a temperature-sensitive mutant (cdc21) with purified plasmid (pTL1) yielded Tmp/sup +/ transformants at high frequency. In addition, the plasmid was tested for the ability to complement a bacterial thyA mutant that lacks functional thymidylate synthetase. Although it was not possible to select Thy/sup +/ transformants directly, it was found that all pTL1 transformants were phenotypically Thy/sup +/ after several generations of growth in nonselective conditions. Thus, yeast thymidylate synthetase is biologically active in Escherichia coli. Thymidylate synthetase was assayed in yeast cell lysates by high-pressure liquid chromatography to monitor the conversion of [6-/sup 3/H]dUMP to [6-/sup 3/H]dTMP. In protein extracts from the thymidylate auxotroph (tmpl-6) enzymatic conversion of dUMP to dTMP was barely detectable. Lysates of pTL1 transformants of this strain, however, had thymidylate synthetase activity that was comparable to that of the wild-type strain

  16. Cells bearing chromosome aberrations lacking one telomere are selectively blocked at the G2/M checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Pilar [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Barquinero, Joan Francesc [Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Duran, Assumpta [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Caballin, Maria Rosa [Unitat d' Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Ribas, Montserrat [Servei de Radiofisica i Radioproteccio de l' Hospital de la Santa Creu i Sant Pau, 08025 Barcelona (Spain); Barrios, Leonardo, E-mail: Lleonard.Barrios@uab.cat [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

    2009-11-02

    Cell cycle checkpoints are part of the cellular mechanisms to maintain genomic integrity. After ionizing radiation exposure, the cells can show delay or arrest in their progression through the cell cycle, as well as an activation of the DNA repair machinery in order to reduce the damage. The G2/M checkpoint prevents G2 cells entering mitosis until the DNA damage has been reduced. The present study evaluates which G0 radiation-induced chromosome aberrations are negatively selected in the G2/M checkpoint. For this purpose, peripheral blood samples were irradiated at 1 and 3 Gy of {gamma}-rays, and lymphocytes were cultured for 48 h. Calyculin-A and Colcemid were used to analyze, in the same slide, cells in G2 and M. Chromosome spreads were consecutively analyzed by solid stain, pancentromeric and pantelomeric FISH and mFISH. The results show that the frequency of incomplete chromosome elements, those lacking a telomeric signal at one end, decreases abruptly from G2 to M. This indicates that cells with incomplete chromosome elements can progress from G0 to G2, but at the G2/M checkpoint suffer a strong negative selection.

  17. Cells bearing chromosome aberrations lacking one telomere are selectively blocked at the G2/M checkpoint

    International Nuclear Information System (INIS)

    Rodriguez, Pilar; Barquinero, Joan Francesc; Duran, Assumpta; Caballin, Maria Rosa; Ribas, Montserrat; Barrios, Leonardo

    2009-01-01

    Cell cycle checkpoints are part of the cellular mechanisms to maintain genomic integrity. After ionizing radiation exposure, the cells can show delay or arrest in their progression through the cell cycle, as well as an activation of the DNA repair machinery in order to reduce the damage. The G2/M checkpoint prevents G2 cells entering mitosis until the DNA damage has been reduced. The present study evaluates which G0 radiation-induced chromosome aberrations are negatively selected in the G2/M checkpoint. For this purpose, peripheral blood samples were irradiated at 1 and 3 Gy of γ-rays, and lymphocytes were cultured for 48 h. Calyculin-A and Colcemid were used to analyze, in the same slide, cells in G2 and M. Chromosome spreads were consecutively analyzed by solid stain, pancentromeric and pantelomeric FISH and mFISH. The results show that the frequency of incomplete chromosome elements, those lacking a telomeric signal at one end, decreases abruptly from G2 to M. This indicates that cells with incomplete chromosome elements can progress from G0 to G2, but at the G2/M checkpoint suffer a strong negative selection.

  18. Use of common time base for checkpointing and rollback recovery in a distributed system

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.

    1993-01-01

    An approach to checkpointing and rollback recovery in a distributed computing system using a common time base is proposed. A common time base is established in the system using a hardware clock synchronization algorithm. This common time base is coupled with the idea of pseudo-recovery points to develop a checkpointing algorithm that has the following advantages: reduced wait for commitment for establishing recovery lines, fewer messages to be exchanged, and less memory requirement. These advantages are assessed quantitatively by developing a probabilistic model.

  19. Synthesis of Fault-Tolerant Embedded Systems with Checkpointing and Replication

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru

    2006-01-01

    We present an approach to the synthesis of fault-tolerant hard real-time systems for safety-critical applications. We use checkpointing with rollback recovery and active replication for tolerating transient faults. Processes are statically scheduled and communications are performed using the time...

  20. Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Soo [Ewha Womans Univ., Seoul (Korea, Republic of). Dept. of Life Sciences; Kim, Na-Rae [Ewha Womans Univ., Seoul (Korea, Republic of). Div. of Life and Pharmaceutical Sciences; Yang, Jungwoo [Ewha Womans Univ., Seoul (Korea, Republic of). Microbial Resources Research Center; Choi, Wonja [Ewha Womans Univ., Seoul (Korea, Republic of). Dept. of Life Sciences; Ewha Womans Univ., Seoul (Korea, Republic of). Div. of Life and Pharmaceutical Sciences; Ewha Womans Univ., Seoul (Korea, Republic of). Microbial Resources Research Center

    2011-08-15

    Saccharomyces cerevisiae strains tolerant to ethanol and heat stresses are important for industrial ethanol production. In this study, five strains (Tn 1-5) tolerant to up to 15% ethanol were isolated by screening a transposon-mediated mutant library. Two of them displayed tolerance to heat (42 C). The determination of transposon insertion sites and Northern blot analysis identified seven putative genes (CMP2, IMD4, SSK2, PPG1, DLD3, PAM1, and MSN2) and revealed simultaneous down-regulations of CMP2 and IMD4, and SSK2 and PPG1, down-regulation of DLD3, and disruptions of the open reading frame of PAM1 and MSN2, indicating that ethanol and/or heat tolerance can be conferred. Knockout mutants of these seven individual genes were ethanol tolerant and three of them (SSK2, PPG1, and PAM1) were tolerant to heat. Such tolerant phenotypes reverted to sensitive phenotypes by the autologous or overexpression of each gene. Five transposon mutants showed higher ethanol production and grew faster than the control strain when cultured in rich media containing 30% glucose and initial 6% ethanol at 30 C. Of those, two thermotolerant transposon mutants (Tn 2 and Tn 3) exhibited significantly enhanced growth and ethanol production compared to the control at 42 C. The genes identified in this study may provide a basis for the application in developing industrial yeast strains. (orig.)

  1. Cell cycle checkpoints: reversible when possible, irreversible when needed

    NARCIS (Netherlands)

    Krenning, L.

    2015-01-01

    Cell cycle checkpoints are reversible in nature, and can prevent progression into the next cell cycle phase if needed. In the case of DNA damage, cells can prevent progression from G1 into S phase, and from G2 into mitosis in the presence of DNA double strand breaks. Following DNA repair, these

  2. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gilon, T; Chomsky, O; Kulka, R G

    1998-01-01

    Combinations of different ubiquitin-conjugating (Ubc) enzymes and other factors constitute subsidiary pathways of the ubiquitin system, each of which ubiquitinates a specific subset of proteins. There is evidence that certain sequence elements or structural motifs of target proteins are degradation signals which mark them for ubiquitination by a particular branch of the ubiquitin system and for subsequent degradation. Our aim was to devise a way of searching systematically for degradation signals and to determine to which ubiquitin system subpathways they direct the proteins. We have constructed two reporter gene libraries based on the lacZ or URA3 genes which, in Saccharomyces cerevisiae, express fusion proteins with a wide variety of C-terminal extensions. From these, we have isolated clones producing unstable fusion proteins which are stabilized in various ubc mutants. Among these are 10 clones whose products are stabilized in ubc6, ubc7 or ubc6ubc7 double mutants. The C-terminal extensions of these clones, which vary in length from 16 to 50 amino acid residues, are presumed to contain degradation signals channeling proteins for degradation via the UBC6 and/or UBC7 subpathways of the ubiquitin system. Some of these C-terminal tails share similar sequence motifs, and a feature common to almost all of these sequences is a highly hydrophobic region such as is usually located inside globular proteins or inserted into membranes. PMID:9582269

  3. Implementing forward recovery using checkpointing in distributed systems

    Science.gov (United States)

    Long, Junsheng; Fuchs, W. K.; Abraham, Jacob A.

    1991-01-01

    The paper describes the implementation of a forward recovery scheme using checkpoints and replicated tasks. The implementation is based on the concept of lookahead execution and rollback validation. In the experiment, two tasks are selected for the normal execution and one for rollback validation. It is shown that the recovery strategy has nearly error-free execution time and an average redundancy lower than TMR.

  4. KONSTRUKSI MUTAN PROTEIN FOSFATASE ptc2D Saccharomyces cerevisiae DENGAN METODE PENGGANTIAN GEN TARGET DENGAN POLYMERASE CHAIN REACTION (PCR

    Directory of Open Access Journals (Sweden)

    Hermansyah

    2011-05-01

    Full Text Available Yeast Saccharomyces cerevisiae is an excellent model to studi genes function of eukarotic cells such as study of gene encoding protein phosphatase PTC2. Novel phenotypic caused by mutated gene is an important step to study function of gene. In this study constructed mutant of PTC2 gene encoding protein phosphatase. Method that used in this construction was replacement of target gene (PTC2 with auxotroph marker Candida albicans HIS3 by Polymer Chain Reaction (PCR or called by PCR-mediated disruption. Mutant colonies which grew in selective medium SC without histidine were confirmed by PCR amplification. By using 1% Agarose gel electrophoresis the result showed that size of ptc2D::CgHIS3 transformant was 3.52 kb while wild type strain was 2.9 kb, indicated that ptc2D::CgHIS3 has integrated on chromosome V replacing PTC2 wild type.

  5. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Laurent Chatre

    Full Text Available The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.

  6. Checkpoint inhibitors in breast cancer

    DEFF Research Database (Denmark)

    Polk, Anne; Svane, Inge-Marie; Andersson, Michael

    2018-01-01

    INTRODUCTION: An increasing number of compounds directed against immune checkpoints are currently under clinical development. In this review we summarize current research in breast cancer. MATERIAL AND METHODS: A computer-based literature search was carried out using PubMed and EMBASE; data...... reported at international meetings and clinicaltrials.gov were included as well. RESULTS: The obtained overall response rate of PD-1/PD-L1 monotherapy varied from 5 to 30% in heavily pretreated triple negative breast cancer (TNBC). The median duration of progression free survival and overall survival were...... and induce long standing anti-tumor immunity in a subgroup of breast cancer patients. However, the identification of predictive biomarkers is crucial for further development of this treatment modality....

  7. A new member of a family of ATPases is essential for assembly of mitochondrial respiratory chain and ATP synthetase complexes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tzagoloff, A; Yue, J; Jang, J; Paul, M F

    1994-10-21

    Respiration-defective pet mutants of Saccharomyces cerevisiae, assigned to complementation group G25, are grossly deficient in mitochondrial respiratory and ATPase complexes. This phenotype is usually found in strains impaired in mitochondrial protein synthesis. The G25 mutants, however, synthesize all of the proteins encoded by mitochondrial DNA. The mutants are also able to import and process cytoplasmically derived subunits of these enzymes. These results are most compatible with the idea that the gene defined by G25 mutants (RCA1) codes for a protein essential for the assembly of functional respiratory and ATPase complexes. The RCA1 gene has been cloned by complementation of an rca1 mutant with a yeast genomic library. The sequence of the encoded product shows Rca1 protein to be a new member of a recently described family of ATPases. The Rca1 protein is a mitochondrial membrane protein and is the third known member of this family implicated to function in the biogenesis of mitochondria. The primary structure of Rca1 protein indicates several distinct domains in addition to the common purine nucleotide binding region shared by all members of this protein family. One, located in the amino-terminal half, contains two hydrophobic stretches of sufficient length to span a membrane lipid bilayer.

  8. Reduced Production of Higher Alcohols by Saccharomyces cerevisiae in Red Wine Fermentation by Simultaneously Overexpressing BAT1 and Deleting BAT2.

    Science.gov (United States)

    Ma, Lijuan; Huang, Shiyong; Du, Liping; Tang, Ping; Xiao, Dongguang

    2017-08-16

    In red wine, the contents of higher alcohols and ethyl carbamate (EC) are two significant health concerns. To reduce the production of higher alcohols by wine yeast YZ22 with low production of EC, one BAT2 was replaced by a BAT1 expression cassette first and then another BAT2 was deleted to obtain the mutant SYBB3. Real-time quantitative PCR showed that the relative expression level of BAT1 in SYBB3 improved 28 times compared with that in YZ22. The yields of isobutanol and 3-methyl-1-butanol produced by mutant SYBB3 reduced by 39.41% and 37.18% compared to those by the original strain YZ22, and the total production of higher alcohols decreased from 463.82 mg/L to 292.83 mg/L in must fermentation of Cabernet Sauvignon. Meanwhile, there were no obvious differences on fermentation characteristics of the mutant and parental strain. This research has suggested an effective strategy for decreasing production of higher alcohols in Saccharomyces cerevisiae.

  9. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks

    Science.gov (United States)

    Schär, Primo; Herrmann, Gernot; Daly, Graham; Lindahl, Tomas

    1997-01-01

    Eukaryotic DNA ligases are ATP-dependent DNA strand-joining enzymes that participate in DNA replication, repair, and recombination. Whereas mammalian cells contain several different DNA ligases, encoded by at least three distinct genes, only one DNA ligase has been detected previously in either budding yeast or fission yeast. Here, we describe a newly identified nonessential Saccharomyces cerevisiae gene that encodes a DNA ligase distinct from the CDC9 gene product. This DNA ligase shares significant amino acid sequence homology with human DNA ligase IV; accordingly, we designate the yeast gene LIG4. Recombinant LIG4 protein forms a covalent enzyme-AMP complex and can join a DNA single-strand break in a DNA/RNA hybrid duplex, the preferred substrate in vitro. Disruption of the LIG4 gene causes only marginally increased cellular sensitivity to several DNA damaging agents, and does not further sensitize cdc9 or rad52 mutant cells. In contrast, lig4 mutant cells have a 1000-fold reduced capacity for correct recircularization of linearized plasmids by illegitimate end-joining after transformation. Moreover, homozygous lig4 mutant diploids sporulate less efficiently than isogenic wild-type cells, and show retarded progression through meiotic prophase I. Spore viability is normal, but lig4 mutants appear to produce a higher proportion of tetrads with only three viable spores. The mutant phenotypes are consistent with functions of LIG4 in an illegitimate DNA end-joining pathway and ensuring efficient meiosis. PMID:9271115

  10. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  11. Fatal Saccharomyces Cerevisiae Aortic Graft Infection

    Science.gov (United States)

    Meyer, Michael (Technical Monitor); Smith, Davey; Metzgar, David; Wills, Christopher; Fierer, Joshua

    2002-01-01

    Saccharomyces cerevisiae is a yeast commonly used in baking and a frequent colonizer of human mucosal surfaces. It is considered relatively nonpathogenic in immunocompetent adults. We present a case of S. cerevisiae fungemia and aortic graft infection in an immunocompetent adult. This is the first reported case of S. cerevisiue fungemia where the identity of the pathogen was confirmed by rRNA sequencing.

  12. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Bader Oliver

    2008-07-01

    Full Text Available Abstract Background Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the α-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates. Results In this study we have aimed at providing an improved assembly of Kex2 target proteins to explain the phenotypes observed in fungal kex2 deletion mutants by in vitro digestion of recombinant substrates from Candida albicans and C. glabrata. We identified CaEce1, CA0365, one member of the Pry protein family and CaOps4-homolog proteins as novel Kex2 substrates. Conclusion Statistical analysis of the cleavage sites revealed extended subsite recognition of negatively charged residues in the P1', P2' and P4' positions, which is also reflected in construction of the respective binding pockets in the ScKex2 enzyme. Additionally, we provide evidence for the existence of structural constrains in potential substrates prohibiting proteolysis. Furthermore, by using purified Kex2 proteinases from S. cerevisiae, P. pastoris, C. albicans and C. glabrata, we show that while the substrate specificity is generally conserved between organisms, the proteinases are still distinct from each other and are likely to have additional unique substrate recognition.

  13. [Sea urchin embryo, DNA-damaged cell cycle checkpoint and the mechanisms initiating cancer development].

    Science.gov (United States)

    Bellé, Robert; Le Bouffant, Ronan; Morales, Julia; Cosson, Bertrand; Cormier, Patrick; Mulner-Lorillon, Odile

    2007-01-01

    Cell division is an essential process for heredity, maintenance and evolution of the whole living kingdom. Sea urchin early development represents an excellent experimental model for the analysis of cell cycle checkpoint mechanisms since embryonic cells contain a functional DNA-damage checkpoint and since the whole sea urchin genome is sequenced. The DNA-damaged checkpoint is responsible for an arrest in the cell cycle when DNA is damaged or incorrectly replicated, for activation of the DNA repair mechanism, and for commitment to cell death by apoptosis in the case of failure to repair. New insights in cancer biology lead to two fundamental concepts about the very first origin of cancerogenesis. Cancers result from dysfunction of DNA-damaged checkpoints and cancers appear as a result of normal stem cell (NCS) transformation into a cancer stem cell (CSC). The second aspect suggests a new definition of "cancer", since CSC can be detected well before any clinical evidence. Since early development starts from the zygote, which is a primary stem cell, sea urchin early development allows analysis of the early steps of the cancerization process. Although sea urchins do not develop cancers, the model is alternative and complementary to stem cells which are not easy to isolate, do not divide in a short time and do not divide synchronously. In the field of toxicology and incidence on human health, the sea urchin experimental model allows assessment of cancer risk from single or combined molecules long before any epidemiologic evidence is available. Sea urchin embryos were used to test the worldwide used pesticide Roundup that contains glyphosate as the active herbicide agent; it was shown to activate the DNA-damage checkpoint of the first cell cycle of development. The model therefore allows considerable increase in risk evaluation of new products in the field of cancer and offers a tool for the discovery of molecular markers for early diagnostic in cancer biology

  14. Thermo tolerant and ethanol producing saccharomyces cerevisiae mutants using gamma radiation

    International Nuclear Information System (INIS)

    Karima, H.M.; Ismail, A.A.; El-Batal, A.I.

    1997-01-01

    Gene manipulation now plays the main role in fermentation industries. However, throughout ethanol production processes, it appeared the requirements for the selection of higher-producing isolate(s) associated, at the same time, with heat-resistant to overcome higher degrees above 30-35 degree, a step which, actually, will reduce final - producing costs. A total of 43 yeast isolates were selected, after exposure of the strain saccharomyces cervisiae to different doses of gamma radiation. Isolated varied in colony size from the original strain as well as among themselves. These isolates were screened for their ability to grow on glucose and supplemented cane molasses media at 30 degree and 40 degree. Out fo them, only 13 isolates proved to grow well on 40 degree. Furthermore, determination of ethanol production by each of these mutants revealed that yielded in general, 16 to 52.0% increase in alcohol production at 40 degree on cane molasses medium (17.5% w/v initial sugars), compared to the original strain. At 40 degree, maximum ethanol yield was 0.63 coupled with 9.5% ethanol concentration and 85.1% sugar conversion which represents 40, 46.2 and 3.4% increase, respectively from the parental strain

  15. Cdk2 is required for p53-independent G2/M checkpoint control.

    Directory of Open Access Journals (Sweden)

    Jon H Chung

    2010-02-01

    Full Text Available The activation of phase-specific cyclin-dependent kinases (Cdks is associated with ordered cell cycle transitions. Among the mammalian Cdks, only Cdk1 is essential for somatic cell proliferation. Cdk1 can apparently substitute for Cdk2, Cdk4, and Cdk6, which are individually dispensable in mice. It is unclear if all functions of non-essential Cdks are fully redundant with Cdk1. Using a genetic approach, we show that Cdk2, the S-phase Cdk, uniquely controls the G(2/M checkpoint that prevents cells with damaged DNA from initiating mitosis. CDK2-nullizygous human cells exposed to ionizing radiation failed to exclude Cdk1 from the nucleus and exhibited a marked defect in G(2/M arrest that was unmasked by the disruption of P53. The DNA replication licensing protein Cdc6, which is normally stabilized by Cdk2, was physically associated with the checkpoint regulator ATR and was required for efficient ATR-Chk1-Cdc25A signaling. These findings demonstrate that Cdk2 maintains a balance of S-phase regulatory proteins and thereby coordinates subsequent p53-independent G(2/M checkpoint activation.

  16. System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gresham, David; Boer, Viktor M; Caudy, Amy; Ziv, Naomi; Brandt, Nathan J; Storey, John D; Botstein, David

    2011-01-01

    An essential property of all cells is the ability to exit from active cell division and persist in a quiescent state. For single-celled microbes this primarily occurs in response to nutrient deprivation. We studied the genetic requirements for survival of Saccharomyces cerevisiae when starved for either of two nutrients: phosphate or leucine. We measured the survival of nearly all nonessential haploid null yeast mutants in mixed populations using a quantitative sequencing method that estimates the abundance of each mutant on the basis of frequency of unique molecular barcodes. Starvation for phosphate results in a population half-life of 337 hr whereas starvation for leucine results in a half-life of 27.7 hr. To measure survival of individual mutants in each population we developed a statistical framework that accounts for the multiple sources of experimental variation. From the identities of the genes in which mutations strongly affect survival, we identify genetic evidence for several cellular processes affecting survival during nutrient starvation, including autophagy, chromatin remodeling, mRNA processing, and cytoskeleton function. In addition, we found evidence that mitochondrial and peroxisome function is required for survival. Our experimental and analytical methods represent an efficient and quantitative approach to characterizing genetic functions and networks with unprecedented resolution and identified genotype-by-environment interactions that have important implications for interpretation of studies of aging and quiescence in yeast.

  17. Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine.

    Science.gov (United States)

    Luo, Zongli; Walkey, Christopher J; Madilao, Lufiani L; Measday, Vivien; Van Vuuren, Hennie J J

    2013-08-01

    Control of volatile acidity (VA) is a major issue for wine quality. In this study, we investigated the production of VA by a deletion mutant of the fermentation stress response gene AAF1 in the budding yeast Saccharomyces cerevisiae. Fermentations were carried out in commercial Chardonnay grape must to mimic industrial wine-making conditions. We demonstrated that a wine yeast strain deleted for AAF1 reduced acetic acid levels in wine by up to 39.2% without increasing the acetaldehyde levels, revealing a potential for industrial application. Deletion of the cytosolic aldehyde dehydrogenase gene ALD6 also reduced acetic acid levels dramatically, but increased the acetaldehyde levels by 41.4%, which is not desired by the wine industry. By comparison, ALD4 and the AAF1 paralog RSF2 had no effects on acetic acid production in wine. Deletion of AAF1 was detrimental to the growth of ald6Δ and ald4Δald6Δ mutants, but had no effect on acetic acid production. Overexpression of AAF1 dramatically increased acetic acid levels in wine in an Ald6p-dependent manner, indicating that Aaf1p regulates acetic acid production mainly via Ald6p. Overexpression of AAF1 in an ald4Δald6Δ strain produced significantly more acetic acid in wine than the ald4Δald6Δ mutant, suggesting that Aaf1p may also regulate acetic acid synthesis independently of Ald4p and Ald6p. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.

    Directory of Open Access Journals (Sweden)

    Lu Jin

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine and theobromine (3, 7-dimethylxanthine are the major purine alkaloids in plants, e.g., tea (Camellia sinensis and coffee (Coffea arabica. Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT and Camellia sinensis caffeine synthase (TCS in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.

  19. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.

    Science.gov (United States)

    Jin, Lu; Bhuiya, Mohammad Wadud; Li, Mengmeng; Liu, XiangQi; Han, Jixiang; Deng, WeiWei; Wang, Min; Yu, Oliver; Zhang, Zhengzhu

    2014-01-01

    Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g., tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L) by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT) and Camellia sinensis caffeine synthase (TCS) in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp) slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.

  20. Requirement for the Phospho-H2AX Binding Module of Crb2 in Double-Strand Break Targeting and Checkpoint Activation▿

    Science.gov (United States)

    Sanders, Steven L.; Arida, Ahmad R.; Phan, Funita P.

    2010-01-01

    Activation of DNA damage checkpoints requires the rapid accumulation of numerous factors to sites of genomic lesions, and deciphering the mechanisms of this targeting is central to our understanding of DNA damage response. Histone modification has recently emerged as a critical element for the correct localization of damage response proteins, and one key player in this context is the fission yeast checkpoint mediator Crb2. Accumulation of Crb2 at ionizing irradiation-induced double-strand breaks (DSBs) requires two distinct histone marks, dimethylated H4 lysine 20 (H4K20me2) and phosphorylated H2AX (pH2AX). A tandem tudor motif in Crb2 directly binds H4K20me2, and this interaction is required for DSB targeting and checkpoint activation. Similarly, pH2AX is required for Crb2 localization to DSBs and checkpoint control. Crb2 can directly bind pH2AX through a pair of C-terminal BRCT repeats, but the functional significance of this binding has been unclear. Here we demonstrate that loss of its pH2AX-binding activity severely impairs the ability of Crb2 to accumulate at ionizing irradiation-induced DSBs, compromises checkpoint signaling, and disrupts checkpoint-mediated cell cycle arrest. These impairments are similar to that reported for abolition of pH2AX or mutation of the H4K20me2-binding tudor motif of Crb2. Intriguingly, a combined ablation of its two histone modification binding modules yields a strikingly additive reduction in Crb2 activity. These observations argue that binding of the Crb2 BRCT repeats to pH2AX is critical for checkpoint activity and provide new insight into the mechanisms of chromatin-mediated genome stability. PMID:20679488

  1. Requirement for the phospho-H2AX binding module of Crb2 in double-strand break targeting and checkpoint activation.

    Science.gov (United States)

    Sanders, Steven L; Arida, Ahmad R; Phan, Funita P

    2010-10-01

    Activation of DNA damage checkpoints requires the rapid accumulation of numerous factors to sites of genomic lesions, and deciphering the mechanisms of this targeting is central to our understanding of DNA damage response. Histone modification has recently emerged as a critical element for the correct localization of damage response proteins, and one key player in this context is the fission yeast checkpoint mediator Crb2. Accumulation of Crb2 at ionizing irradiation-induced double-strand breaks (DSBs) requires two distinct histone marks, dimethylated H4 lysine 20 (H4K20me2) and phosphorylated H2AX (pH2AX). A tandem tudor motif in Crb2 directly binds H4K20me2, and this interaction is required for DSB targeting and checkpoint activation. Similarly, pH2AX is required for Crb2 localization to DSBs and checkpoint control. Crb2 can directly bind pH2AX through a pair of C-terminal BRCT repeats, but the functional significance of this binding has been unclear. Here we demonstrate that loss of its pH2AX-binding activity severely impairs the ability of Crb2 to accumulate at ionizing irradiation-induced DSBs, compromises checkpoint signaling, and disrupts checkpoint-mediated cell cycle arrest. These impairments are similar to that reported for abolition of pH2AX or mutation of the H4K20me2-binding tudor motif of Crb2. Intriguingly, a combined ablation of its two histone modification binding modules yields a strikingly additive reduction in Crb2 activity. These observations argue that binding of the Crb2 BRCT repeats to pH2AX is critical for checkpoint activity and provide new insight into the mechanisms of chromatin-mediated genome stability.

  2. Yeast caspase-dependent apoptosis in Saccharomyces cerevisiae BY4742 induced by antifungal and potential antitumor agent clotrimazole.

    Science.gov (United States)

    Kavakçıoğlu, Berna; Tarhan, Leman

    2018-01-01

    Clotrimazole is an antifungal medication commonly used in the treatment of fungal infections. There is also promising research on using clotrimazole against other diseases such as malaria, beriberi, tineapedis and cancer. It was aimed to investigate the apoptotic phenotype in Saccharomyces cerevisiae induced by clotrimazole. The exposure of S. cerevisiae to 10 µM clotrimazole for 3, 6 and 9 h caused to decrease in cell viability by 24.82 ± 0.81, 56.00 ± 1.54 and 77.59 ± 0.53%, respectively. It was shown by Annexin V-PI assay that 110 µM clotrimazole treatment caused to death by 35.5 ± 2.48% apoptotic and only 13.1 ± 0.08% necrotic pathway within 30 min. The occurrence of DNA strand breaks and condensation could be visualised by the TUNEL and DAPI stainings, respectively. Yeast caspase activity was induced 12.34 ± 0.71-fold after 110 µM clotrimazole treatment for 30 min compared to the control. The dependency of clotrimazole-induced apoptosis to caspase was also shown using Δyca1 mutant.

  3. Complementation of a threonine dehydratase-deficient Nicotiana plumbaginifolia mutant after Agrobacterium tumefaciens-mediated transfer of the Saccharomyces cerevisiae ILV1 gene.

    OpenAIRE

    Colau, D; Negrutiu, I; Van Montagu, M; Hernalsteens, J P

    1987-01-01

    The Saccharomyces cerevisiae ILV1 gene, encoding threonine dehydratase (EC 4.2.1.16) was fused to the transferred DNA nopaline synthase promoter and the 3' noncoding region of the octopine synthase gene. It was introduced, by Agrobacterium tumefaciens-mediated gene transfer, into an isoleucine-requiring Nicotiana plumbaginifolia auxotroph deficient in threonine dehydratase. Functional complementation by the ILV1 gene product was demonstrated by the selection of several transformed lines on a ...

  4. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Lu Dong; Li Wenjian; Wu Xin; Wang Jufang; Ma Shuang; Liu Qingfang; He Jinyu; Jing Xigang; Ding Nan; Dai Zhongying; Zhou Jianping

    2010-01-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20 Ne 10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  5. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    Science.gov (United States)

    Lu, Dong; Li, Wenjian; Wu, Xin; Wang, Jufang; Ma, Shuang; Liu, Qingfang; He, Jinyu; Jing, Xigang; Ding, Nan; Dai, Zhongying; Zhou, Jianping

    2010-12-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20Ne10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  6. Expression of a mutated SPT15 gene in Saccharomyces cerevisiae enhances both cell growth and ethanol production in microaerobic batch, fed-batch, and simultaneous saccharification and fermentations.

    Science.gov (United States)

    Seong, Yeong-Je; Park, Haeseong; Yang, Jungwoo; Kim, Soo-Jung; Choi, Wonja; Kim, Kyoung Heon; Park, Yong-Cheol

    2017-05-01

    The SPT15 gene encodes a Saccharomyces cerevisiae TATA-binding protein, which is able to globally control the transcription levels of various metabolic and regulatory genes. In this study, a SPT15 gene mutant (S42N, S78R, S163P, and I212N) was expressed in S. cerevisiae BY4741 (BSPT15-M3), of which effects on fermentative yeast properties were evaluated in a series of culture types. By applying different nitrogen sources and air supply conditions in batch culture, organic nitrogen sources and microaerobic condition were decided to be more favorable for both cell growth and ethanol production of the BSPT15-M3 strain than the control S. cerevisiae BY4741 strain expressing the SPT15 gene (BSPT15wt). Microaerobic fed-batch cultures of BSPT15-M3 with glucose shock in the presence of high ethanol content resulted in a 9.5-13.4% higher glucose consumption rate and ethanol productivity than those for the BSPT15wt strain. In addition, BSPT15-M3 showed 4.5 and 3.9% increases in ethanol productivity from cassava hydrolysates and corn starch in simultaneous saccharification and fermentation processes, respectively. It was concluded that overexpression of the mutated SPT15 gene would be a potent strategy to develop robust S. cerevisiae strains with enhanced cell growth and ethanol production abilities.

  7. Interprofessional Collaboration with Immune Checkpoint Inhibitor Therapy: the Roles of Gastroenterology, Endocrinology and Neurology.

    Science.gov (United States)

    Seery, Virginia

    2017-11-01

    To discuss immune checkpoint inhibitor therapy and identify opportunities for interprofessional collaboration in the management of toxicities in the areas of gastroenterology, endocrinology, and neurology. Published research and education articles in oncology, nursing, and various specialties. The use of immune checkpoint inhibitors is expanding; timely management of toxicity is critical for positive patient outcomes. There are many opportunities for interprofessional collaboration in the diagnosis and treatment of immune-related adverse events. Nurses play key roles in recognizing immune-related adverse events, providing patient education, and helping to facilitate interprofessional collaboration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluc......Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration...

  9. Targeting Tumor-Associated Macrophages as a Potential Strategy to Enhance the Response to Immune Checkpoint Inhibitors.

    Science.gov (United States)

    Cassetta, Luca; Kitamura, Takanori

    2018-01-01

    Inhibition of immune checkpoint pathways in CD8 + T cell is a promising therapeutic strategy for the treatment of solid tumors that has shown significant anti-tumor effects and is now approved by the FDA to treat patients with melanoma and lung cancer. However the response to this therapy is limited to a certain fraction of patients and tumor types, for reasons still unknown. To ensure success of this treatment, CD8 + T cells, the main target of the checkpoint inhibitors, should exert full cytotoxicity against tumor cells. However recent studies show that tumor-associated macrophages (TAM) can impede this process by different mechanisms. In this mini-review we will summarize recent studies showing the effect of TAM targeting on immune checkpoint inhibitors efficacy. We will also discuss on the limitations of the current strategies as well on the future scientific challenges for the progress of the tumor immunology field.

  10. EMODnet MedSea Checkpoint for sustainable Blue Growth

    Science.gov (United States)

    Moussat, Eric; Pinardi, Nadia; Manzella, Giuseppe; Blanc, Frederique

    2016-04-01

    The EMODNET checkpoint is a wide monitoring system assessment activity aiming to support the sustainable Blue Growth at the scale of the European Sea Basins by: 1) Clarifying the observation landscape of all compartments of the marine environment including Air, Water, Seabed, Biota and Human activities, pointing out to the existing programs, national, European and international 2) Evaluating fitness for use indicators that will show the accessibility and usability of observation and modeling data sets and their roles and synergies based upon selected applications by the European Marine Environment Strategy 3) Prioritizing the needs to optimize the overall monitoring Infrastructure (in situ and satellite data collection and assembling, data management and networking, modeling and forecasting, geo-infrastructure) and release recommendations for evolutions to better meet the application requirements in view of sustainable Blue Growth The assessment is designed for : - Institutional stakeholders for decision making on observation and monitoring systems - Data providers and producers to know how their data collected once for a given purpose could fit other user needs - End-users interested in a regional status and possible uses of existing monitoring data Selected end-user applications are of paramount importance for: (i) the blue economy sector (offshore industries, fisheries); (ii) marine environment variability and change (eutrophication, river inputs and ocean climate change impacts); (iii) emergency management (oil spills); and (iv) preservation of natural resources and biodiversity (Marine Protected Areas). End-user applications generate innovative products based on the existing observation landscape. The fitness for use assessment is made thanks to the comparison of the expected product specifications with the quality of the product derived from the selected data. This involves the development of checkpoint information and indicators based on Data quality and

  11. Local isolate of Saccharomyces cerevisiae as biocompetitive agent of Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Eni Kusumaningtyas

    2006-12-01

    Full Text Available Aspergillus flavus is a toxigenic fungus that contaminates feed and influences the animal health. Saccharomyces cerevisiae can be used as a biocompetitive agent to control the contamination. The ability of local isolate of S. cerevisiae as a biocompetitive agent for A. flavus was evaluated. A. flavus (30ml was swept on Sabouraud dextrose agar (SDA, while S. cerevisiae was swept on its left and right. Plates were incubated at 28oC for nine days. Lytic activity of S. cerevisiae was detected by pouring its suspension on the centre of the cross streaks of A. flavus. Plates were incubated at 28oC for five days. Growth inhibition of A. flavus by S. cerevisiae was determined by mixing the two fungi on Potato dextrose broth and incubated at 28oC for 24 hours. Total colony of A. flavus were then observed at incubation time of 2, 4, 6 and 24 hours by pour plates method on the SDA plates and incubated on 28oC for two days. Growth of hyphae of A. flavus sweep were inhibited with the swept of S. cerevisiae. The width of A. flavus colony treated with S. cerevisiae is narrower (3,02 cm than that of control ( 4,60 cm. The growth of A. flavus was also inhibited on the centre of cross streak where the S. cerevisiae poured. S. cerevisiae gradually reduced the colony number of A. flavus in the mixed culture of broth fungi ie. 14 x 103 CFU/ml while colony number of control is 80 x 103 CFU/ml. Results showed that S. cerevisiae could be used as biocompetitive agent of A. flavus.

  12. Immunotherapy targeting immune check-point(s) in brain metastases.

    Science.gov (United States)

    Di Giacomo, Anna Maria; Valente, Monica; Covre, Alessia; Danielli, Riccardo; Maio, Michele

    2017-08-01

    Immunotherapy with monoclonal antibodies (mAb) directed to different immune check-point(s) is showing a significant clinical impact in a growing number of human tumors of different histotype, both in terms of disease response and long-term survival patients. In this rapidly changing scenario, treatment of brain metastases remains an high unmeet medical need, and the efficacy of immunotherapy in these highly dismal clinical setting remains to be largely demonstrated. Nevertheless, up-coming observations are beginning to suggest a clinical potential of cancer immunotherapy also in brain metastases, regardless the underlying tumor histotype. These observations remain to be validated in larger clinical trials eventually designed also to address the efficacy of therapeutic mAb to immune check-point(s) within multimodality therapies for brain metastases. Noteworthy, the initial proofs of efficacy on immunotherapy in central nervous system metastases are already fostering clinical trials investigating its therapeutic potential also in primary brain tumors. We here review ongoing immunotherapeutic approaches to brain metastases and primary brain tumors, and the foreseeable strategies to overcome their main biologic hurdles and clinical challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6(MUT) expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6.

    Science.gov (United States)

    Jo, Sung-Eun; Seong, Yeong-Je; Lee, Hyun-Soo; Lee, Soo Min; Kim, Soo-Jung; Park, Kyungmoon; Park, Yong-Cheol

    2016-06-10

    Xylose is a major monosugar in cellulosic biomass and should be utilized for cost-effective ethanol production. In this study, xylose-converting ability of recombinant Saccharomyces cerevisiae SX6(MUT) expressing NADH-preferring xylose reductase mutant (R276H) and other xylose-metabolic enzymes, and deficient in aldehyde dehydrogenase 6 (Ald6p) were characterized at microaerobic conditions using various sugar mixtures. The reduction of air supply from 0.5vvm to 0.1vvm increased specific ethanol production rate by 75% and did not affect specific xylose consumption rate. In batch fermentations using various concentrations of xylose (50-104g/L), higher xylose concentration enhanced xylose consumption rate and ethanol productivity but reduced ethanol yield, owing to the accumulation of xylitol and glycerol from xylose. SX6(MUT) consumed monosugars in pitch pine hydrolysates and produced 23.1g/L ethanol from 58.7g/L sugars with 0.39g/g ethanol yield, which was 14% higher than the host strain of S. cerevisiae D452-2 without the xylose assimilating enzymes. In conclusion, S. cerevisiae SX6(MUT) was characterized to possess high xylose-consuming ability in microaerobic conditions and a potential for ethanol production from cellulosic biomass. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The Geography of Deterrence: Exploring the Small Area Effects of Sobriety Checkpoints on Alcohol-Impaired Collision Rates within a City

    Science.gov (United States)

    Nunn, Samuel; Newby, William

    2011-01-01

    This article examines alcohol-impaired collision metrics around nine sobriety checkpoint locations in Indianapolis, Indiana, before and after implementation of 22 checkpoints, using a pre/post examination, a pre/post nonequivalent comparison group analysis, and an interrupted time series approach. Traffic safety officials used geographical…

  15. Identification of Potential Calorie Restriction-Mimicking Yeast Mutants with Increased Mitochondrial Respiratory Chain and Nitric Oxide Levels

    Directory of Open Access Journals (Sweden)

    Bin Li

    2011-01-01

    Full Text Available Calorie restriction (CR induces a metabolic shift towards mitochondrial respiration; however, molecular mechanisms underlying CR remain unclear. Recent studies suggest that CR-induced mitochondrial activity is associated with nitric oxide (NO production. To understand the role of mitochondria in CR, we identify and study Saccharomyces cerevisiae mutants with increased NO levels as potential CR mimics. Analysis of the top 17 mutants demonstrates a correlation between increased NO, mitochondrial respiration, and longevity. Interestingly, treating yeast with NO donors such as GSNO (S-nitrosoglutathione is sufficient to partially mimic CR to extend lifespan. CR-increased NO is largely dependent on mitochondrial electron transport and cytochrome c oxidase (COX. Although COX normally produces NO under hypoxic conditions, CR-treated yeast cells are able to produce NO under normoxic conditions. Our results suggest that CR may derepress some hypoxic genes for mitochondrial proteins that function to promote the production of NO and the extension of lifespan.

  16. Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations.

    Science.gov (United States)

    Henricsson, C; de Jesus Ferreira, M C; Hedfalk, K; Elbing, K; Larsson, C; Bill, R M; Norbeck, J; Hohmann, S; Gustafsson, L

    2005-10-01

    The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*, encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Delta strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a non-ethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Delta strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain.

  17. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response

    Science.gov (United States)

    Yong-Su Jin; Jose M. Laplaza; Thomas W. Jeffries

    2004-01-01

    Native strains of Saccharomyces cerevisiae do not assimilate xylose. S. cerevisiae engineered for D-xylose utilization through the heterologous expression of genes for aldose reductase ( XYL1), xylitol dehydrogenase (XYL2), and D-xylulokinase ( XYL3 or XKS1) produce only limited amounts of ethanol in xylose medium. In recombinant S. cerevisiae expressing XYL1, XYL2,...

  18. Fission yeast cdc24(+) encodes a novel replication factor required for chromosome integrity.

    Science.gov (United States)

    Gould, K L; Burns, C G; Feoktistova, A; Hu, C P; Pasion, S G; Forsburg, S L

    1998-07-01

    A mutation within the Schizosaccharomyces pombe cdc24(+) gene was identified previously in a screen for cell division cycle mutants and the cdc24(+) gene was determined to be essential for S phase in this yeast. We have isolated the cdc24(+) gene by complementation of a new temperature-sensitive allele of the gene, cdc24-G1. The DNA sequence predicts the presence of an open reading frame punctuated by six introns which encodes a pioneer protein of 58 kD. A cdc24 null mutant was generated by homologous recombination. Haploid cells lacking cdc24(+) are inviable, indicating that cdc24(+) is an essential gene. The transcript of cdc24(+) is present at constant levels throughout the cell cycle. Cells lacking cdc24(+) function show a checkpoint-dependent arrest with a 2N DNA content, indicating a block late in S phase. Arrest is accompanied by a rapid loss of viability and chromosome breakage. An S. pombe homolog of the replicative DNA helicase DNA2 of S. cerevisiae suppresses cdc24. These results suggest that Cdc24p plays a role in the progression of normal DNA replication and is required to maintain genomic integrity.

  19. A/α-specific effect of the mms3 mutation on ultraviolet mutagenesis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Martin, P.; Prakash, L.; Prakash, S.

    1981-01-01

    A new gene involved in error-prone repair of ultraviolet (uv) damage has been identified in Saccharomyces cerevisiae by the mms3-1 mutation. Uv-induced reversion is reduced in diploids that are homozygous for mms3-1, only if they are also heterozygous (MATa/MATα) at the mating type locus. The mms3-1 mutation has no effect on uv-induced reversion either in haploids or MATa/MATα or MATα/MATα diploids. The mutation confers sensitivity to uv and methyl methane sulfonate in both haploids and diploids. Even though mutation induction by uv is restored to wild-type levels in MATa/MATa mms3-1/mms3-1 or MATα/MATα mms3-1/mms3-1 diploids, such strains still retain sensitivity to the lethal effects of uv. Survival after uv irradiation in mms3-1 rad double mutant combinations indicates that mms3-1 is epistatic to rad6-1 whereas non-epistatic interactions are observed with rad3 and rad52 mutants. When present in the homozygous state in MATa/MATα his1-1/his1-315 heteroallelic diploids, mms3-1 was found to lower uv-induced mitotic recombination

  20. Effect of Temperature on the Prevalence of Saccharomyces Non cerevisiae Species against a S. cerevisiae Wine Strain in Wine Fermentation: Competition, Physiological Fitness, and Influence in Final Wine Composition

    Science.gov (United States)

    Alonso-del-Real, Javier; Lairón-Peris, María; Barrio, Eladio; Querol, Amparo

    2017-01-01

    Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae, there were fermentation

  1. Parallelization and checkpointing of GPU applications through program transformation

    Energy Technology Data Exchange (ETDEWEB)

    Solano-Quinde, Lizandro Damian [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    GPUs have emerged as a powerful tool for accelerating general-purpose applications. The availability of programming languages that makes writing general-purpose applications for running on GPUs tractable have consolidated GPUs as an alternative for accelerating general purpose applications. Among the areas that have benefited from GPU acceleration are: signal and image processing, computational fluid dynamics, quantum chemistry, and, in general, the High Performance Computing (HPC) Industry. In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems are gaining popularity. In this context, single-GPU applications are parallelized for running in multi-GPU systems. Furthermore, multi-GPU systems help to solve the GPU memory limitation for applications with large application memory footprint. Parallelizing single-GPU applications has been approached by libraries that distribute the workload at runtime, however, they impose execution overhead and are not portable. On the other hand, on traditional CPU systems, parallelization has been approached through application transformation at pre-compile time, which enhances the application to distribute the workload at application level and does not have the issues of library-based approaches. Hence, a parallelization scheme for GPU systems based on application transformation is needed. Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vulnerable to transient and permanent failures. Current checkpoint/restart techniques are not suitable for systems with GPUs. Checkpointing for GPU systems present new and interesting challenges, primarily due to the natural differences imposed by the hardware design, the memory subsystem architecture, the massive number of threads, and the limited amount of synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU systems is needed. The goal of this work is to exploit higher levels of parallelism and

  2. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy.

    Science.gov (United States)

    Akalu, Yemsratch T; Rothlin, Carla V; Ghosh, Sourav

    2017-03-01

    Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The induction of rho'- mutants by UV or γ-rays is independent of the nuclear recombinational repair pethway in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Heude, M

    1988-01-01

    In order to discover whether the nuclear recombinational repair pathway also acts on lesions induced in mitochondrial DNA (mtDNA), the possible role of the RAD50, -51, -55 and -56 genes on the induction of rho - mutants by radiations was studied. Such induction appeared to be independent of this pathway. Nevertheless, an efficient induction of respiration-deficient mutants was observed in γ-irradiated rad52 diploids. We demonstrate that these mutants do not result from a lack of mtDNA repair, but from chromosome losses induced by γ-rays. Such an impairment of the respiratory ability of diploids by chromosome lossed was effectively observed in the aneuploid progeny of unirradiated RAD + cdc6 diploids incubated at the restrictive temperature. (author). 60 refs.; 3 figs.; 6 tabs

  4. Genetic analysis of the spindle checkpoint genes san-1, mdf-2, bub-3 and the CENP-F homologues hcp-1 and hcp-2 in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Moore Landon L

    2008-02-01

    Full Text Available Abstract Background The spindle checkpoint delays the onset of anaphase until all sister chromatids are aligned properly at the metaphase plate. To investigate the role san-1, the MAD3 homologue, has in Caenorhabditis elegans embryos we used RNA interference (RNAi to identify genes synthetic lethal with the viable san-1(ok1580 deletion mutant. Results The san-1(ok1580 animal has low penetrating phenotypes including an increased incidence of males, larvae arrest, slow growth, protruding vulva, and defects in vulva morphogenesis. We found that the viability of san-1(ok1580 embryos is significantly reduced when HCP-1 (CENP-F homologue, MDF-1 (MAD-1 homologue, MDF-2 (MAD-2 homologue or BUB-3 (predicted BUB-3 homologue are reduced by RNAi. Interestingly, the viability of san-1(ok1580 embryos is not significantly reduced when the paralog of HCP-1, HCP-2, is reduced. The phenotype of san-1(ok1580;hcp-1(RNAi embryos includes embryonic and larval lethality, abnormal organ development, and an increase in abnormal chromosome segregation (aberrant mitotic nuclei, anaphase bridging. Several of the san-1(ok1580;hcp-1(RNAi animals displayed abnormal kinetochore (detected by MPM-2 and microtubule structure. The survival of mdf-2(RNAi;hcp-1(RNAi embryos but not bub-3(RNAi;hcp-1(RNAi embryos was also compromised. Finally, we found that san-1(ok1580 and bub-3(RNAi, but not hcp-1(RNAi embryos, were sensitive to anoxia, suggesting that like SAN-1, BUB-3 has a functional role as a spindle checkpoint protein. Conclusion Together, these data suggest that in the C. elegans embryo, HCP-1 interacts with a subset of the spindle checkpoint pathway. Furthermore, the fact that san-1(ok1580;hcp-1(RNAi animals had a severe viability defect whereas in the san-1(ok1580;hcp-2(RNAi and san-1(ok1580;hcp-2(ok1757 animals the viability defect was not as severe suggesting that hcp-1 and hcp-2 are not completely redundant.

  5. Amino acid transporter genes are essential for FLO11-dependent and FLO11-independent biofilm formation and invasive growth in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rasmus Torbensen

    Full Text Available Amino acids can induce yeast cell adhesion but how amino acids are sensed and signal the modulation of the FLO adhesion genes is not clear. We discovered that the budding yeast Saccharomyces cerevisiae CEN.PK evolved invasive growth ability under prolonged nitrogen limitation. Such invasive mutants were used to identify amino acid transporters as regulators of FLO11 and invasive growth. One invasive mutant had elevated levels of FLO11 mRNA and a Q320STOP mutation in the SFL1 gene that encodes a protein kinase A pathway regulated repressor of FLO11. Glutamine-transporter genes DIP5 and GNP1 were essential for FLO11 expression, invasive growth and biofilm formation in this mutant. Invasive growth relied on known regulators of FLO11 and the Ssy1-Ptr3-Ssy5 complex that controls DIP5 and GNP1, suggesting that Dip5 and Gnp1 operates downstream of the Ssy1-Ptr3-Ssy5 complex for regulation of FLO11 expression in a protein kinase A dependent manner. The role of Dip5 and Gnp1 appears to be conserved in the S. cerevisiae strain ∑1278b since the dip5 gnp1 ∑1278b mutant showed no invasive phenotype. Secondly, the amino acid transporter gene GAP1 was found to influence invasive growth through FLO11 as well as other FLO genes. Cells carrying a dominant loss-of-function PTR3(647::CWNKNPLSSIN allele had increased transcription of the adhesion genes FLO1, 5, 9, 10, 11 and the amino acid transporter gene GAP1. Deletion of GAP1 caused loss of FLO11 expression and invasive growth. However, deletions of FLO11 and genes encoding components of the mitogen-activated protein kinase pathway or the protein kinase A pathway were not sufficient to abolish invasive growth, suggesting involvement of other FLO genes and alternative pathways. Increased intracellular amino acid pools in the PTR3(647::CWNKNPLSSIN-containing strain opens the possibility that Gap1 regulates the FLO genes through alteration of the amino acid pool sizes.

  6. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    Science.gov (United States)

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  7. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant.

    Science.gov (United States)

    Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi; Ledesma-Amaro, Rodrigo

    2016-09-01

    We previously created an oleaginous Saccharomyces cerevisiae transformant as a dga1 mutant overexpressing Dga1p lacking 29 amino acids at the N-terminal (Dga1∆Np). Because we have already shown that dga1 disruption decreases the expression of ESA1, which encodes histone acetyltransferase, the present study was aimed at exploring how Esa1p was involved in lipid accumulation. We based our work on the previous observation that Esa1p acetylates and activates phosphoenolpyruvate carboxykinase (PEPCK) encoded by PCK1, a rate-limiting enzyme in gluconeogenesis, and subsequently evaluated the activation of Pck1p by yeast growth with non-fermentable carbon sources, thus dependent on gluconeogenesis. This assay revealed that the ∆dga1 mutant overexpressing Dga1∆Np had much lower growth in a glycerol-lactate (GL) medium than the wild-type strain overexpressing Dga1∆Np. Moreover, overexpression of Esa1p or Pck1p in mutants improved the growth, indicating that the ∆dga1 mutant overexpressing Dga1∆Np had lower activities of Pck1p and gluconeogenesis due to lower expression of ESA1. In vitro PEPCK assay showed the same trend in the culture of the ∆dga1 mutant overexpressing Dga1∆Np with 10 % glucose medium, indicating that Pck1p-mediated gluconeogenesis decreased in this oleaginous transformant under the lipid-accumulating conditions introduced by the glucose medium. The growth of the ∆dga1 mutant overexpressing Dga1∆Np in the GL medium was also improved by overexpression of acetyl-CoA synthetase, Acs1p or Acs2p, indicating that supply of acetyl-CoA was crucial for Pck1p acetylation by Esa1p. In addition, the ∆dga1 mutant without Dga1∆Np also showed better growth in the GL medium, indicating that decreased lipid accumulation was enhancing Pck1p-mediated gluconeogenesis. Finally, we found that overexpression of Ole1p, a fatty acid ∆9-desaturase, in the ∆dga1 mutant overexpressing Dga1∆Np improved its growth in the GL medium. Although the exact

  8. Rational Design of Glycomimetic Compounds Targeting the Saccharomyces cerevisiae Transglycosylase Gas2.

    Science.gov (United States)

    Delso, Ignacio; Valero-González, Jessika; Marca, Eduardo; Tejero, Tomás; Hurtado-Guerrero, Ramón; Merino, Pedro

    2016-02-01

    The transglycosylase Saccharomyces cerevisiae Gas2 (ScGas2) belongs to a large family of enzymes that are key players in yeast cell wall remodeling. Despite its biologic importance, no studies on the synthesis of substrate-based compounds as potential inhibitors have been reported. We have synthesized a series of docking-guided glycomimetics that were evaluated by fluorescence spectroscopy and saturation-transfer difference (STD) NMR experiments, revealing that a minimum of three glucose units linked via a β-(1,3) linkage are required for achieving molecular recognition at the binding donor site. The binding mode of our compounds is further supported by STD-NMR experiments using the active site-mutants Y107Q and Y244Q. Our results are important for both understanding of ScGas2-substrate interactions and setting up the basis for future design of glycomimetics as new antifungal agents. © 2015 John Wiley & Sons A/S.

  9. Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of PMS1-1 and PMS1-2

    International Nuclear Information System (INIS)

    Williamson, M.S.; Game, J.C.; Fogel, S.

    1985-01-01

    The PMS1 mutants, isolated on the basis of sharply elevated meiotic prototroph frequencies for two closely linked HIS4 alleles, display pleiotropic phenotypes in meiotic and mitotic cells. Two isolates carrying recessive mutations in PMS1 were characterized. They identify a function required to maintain low postmeiotic segregation (PMS) frequencies at many heterozygous sites. In addition, they are mitotic mutators. In mutant diploids, spore viability is reduced, and among survivors, gene conversion and postmeiotic segregation frequencies are increased, but reciprocal exchange frequencies are not affected. The conversion event pattern is also dramatically changed in multiply marked regions in PMS1 homozygotes. The PMS1 locus maps near MET4 on chromosome XIV. The PMS1 gene may identify an excision-resynthesis long patch mismatch correction function or a function that facilitates correction tract elongation. The PMS1 gene product may also play an important role in spontaneous mitotic mutation avoidance and correction of mismatches in heteroduplex DNA formed during spontaneous and UV-induced mitotic recombination. Based on meiotic recombination models emphasizing mismatch correction in heteroduplex DNA intermediates, this interpretation is favored, but alternative interpretations involving longer recombination intermediates in the mutants are also considered

  10. Cloud object store for checkpoints of high performance computing applications using decoupling middleware

    Science.gov (United States)

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2016-04-19

    Cloud object storage is enabled for checkpoints of high performance computing applications using a middleware process. A plurality of files, such as checkpoint files, generated by a plurality of processes in a parallel computing system are stored by obtaining said plurality of files from said parallel computing system; converting said plurality of files to objects using a log structured file system middleware process; and providing said objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.

  11. The fission yeast spindle orientation checkpoint: a model that generates tension?

    Science.gov (United States)

    Gachet, Yannick; Reyes, Céline; Goldstone, Sherilyn; Tournier, Sylvie

    2006-10-15

    In all eukaryotes, the alignment of the mitotic spindle with the axis of cell polarity is essential for accurate chromosome segregation as well as for the establishment of cell fate, and thus morphogenesis, during development. Studies in invertebrates, higher eukaryotes and yeast suggest that astral microtubules interact with the cell cortex to position the spindle. These microtubules are thought to impose pushing or pulling forces on the spindle poles to affect the rotation or movement of the spindle. In the fission yeast model, where cell division is symmetrical, spindle rotation is dependent on the interaction of astral microtubules with the cortical actin cytoskeleton. In these cells, a bub1-dependent mitotic checkpoint, the spindle orientation checkpoint (SOC), is activated when the spindles fail to align with the cell polarity axis. In this paper we review the mechanism that orientates the spindle during mitosis in fission yeast, and discuss the consequences of misorientation on metaphase progression. Copyright 2006 John Wiley & Sons, Ltd.

  12. Possible oxidative effects of isotretinoin and modulatory effects of ...

    African Journals Online (AJOL)

    KATIA

    2016-02-10

    Feb 10, 2016 ... In vivo study conducted on S. cerevisiae cells was carried out with ITN. 20 µg/ml taking hydrogen ... single mutants and two double mutants Saccharomyces cerevisiae strains. ..... cytoplasma and mitochondria. The enzyme ...

  13. Amino acid residues important for substrate specificity of the amino acid permeases Can I p and Gnp I p in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Kielland-Brandt, M.C.

    2001-01-01

    Deletion of the general amino acid permease gene GAP1 abolishes uptake of L-citrulline in Saccharomyces cerevisiae, resulting in the inability to grow on L-citrulline as sole nitrogen source. Selection for suppressor mutants that restored growth on L-citrulline led to isolation of 21 mutations...... in the arginine permease gene CAN1. One similar mutation was found in the glutamine-asparagine permease gene GNP1. L-[C-14]citrulline uptake measurements confirmed that suppressor mutations in CAN1 conferred uptake of this amino acid, while none of the mutant permeases had lost the ability to transport L-[C-14......]arginine. Substrate specificity seemed to remain narrow in most cases, and broad substrate specificity was only observed in the cases where mutations affect two proline residues (P148 and P313) that are both conserved in the amino acid-polyamine-choline (APC) transporter superfamily. We found mutations...

  14. Kar5p is required for multiple functions in both inner and outer nuclear envelope fusion in Saccharomyces cerevisiae.

    Science.gov (United States)

    Rogers, Jason V; Rose, Mark D

    2014-12-02

    During mating in the budding yeast Saccharomyces cerevisiae, two haploid nuclei fuse via two sequential membrane fusion steps. SNAREs (i.e., soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and Prm3p mediate outer nuclear membrane fusion, but the inner membrane fusogen remains unknown. Kar5p is a highly conserved transmembrane protein that localizes adjacent to the spindle pole body (SPB), mediates nuclear envelope fusion, and recruits Prm3p adjacent to the SPB. To separate Kar5p's functions, we tested localization, Prm3p recruitment, and nuclear fusion efficiency in various kar5 mutants. All domains and the conserved cysteine residues were essential for nuclear fusion. Several kar5 mutant proteins localized properly but did not mediate Prm3p recruitment; other kar5 mutant proteins localized and recruited Prm3p but were nevertheless defective for nuclear fusion, demonstrating additional functions beyond Prm3p recruitment. We identified one Kar5p domain required for SPB localization, which is dependent on the half-bridge protein Mps3p. Electron microscopy revealed a kar5 mutant that arrests with expanded nuclear envelope bridges, suggesting that Kar5p is required after outer nuclear envelope fusion. Finally, a split-GFP assay demonstrated that Kar5p localizes to both the inner and outer nuclear envelope. These insights suggest a mechanism by which Kar5p mediates inner nuclear membrane fusion. Copyright © 2015 Rogers and Rose.

  15. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae.

    Science.gov (United States)

    Salvadó, Zoel; Ramos-Alonso, Lucía; Tronchoni, Jordi; Penacho, Vanessa; García-Ríos, Estéfani; Morales, Pilar; Gonzalez, Ramon; Guillamón, José Manuel

    2016-11-07

    Fermentation at low temperatures is one of the most popular current winemaking practices because of its reported positive impact on the aromatic profile of wines. However, low temperature is an additional hurdle to develop Saccharomyces cerevisiae wine yeasts, which are already stressed by high osmotic pressure, low pH and poor availability of nitrogen sources in grape must. Understanding the mechanisms of adaptation of S. cerevisiae to fermentation at low temperature would help to design strategies for process management, and to select and improve wine yeast strains specifically adapted to this winemaking practice. The problem has been addressed by several approaches in recent years, including transcriptomic and other high-throughput strategies. In this work we used a genome-wide screening of S. cerevisiae diploid mutant strain collections to identify genes that potentially contribute to adaptation to low temperature fermentation conditions. Candidate genes, impaired for growth at low temperatures (12°C and 18°C), but not at a permissive temperature (28°C), were deleted in an industrial homozygous genetic background, wine yeast strain FX10, in both heterozygosis and homozygosis. Some candidate genes were required for growth at low temperatures only in the laboratory yeast genetic background, but not in FX10 (namely the genes involved in aromatic amino acid biosynthesis). Other genes related to ribosome biosynthesis (SNU66 and PAP2) were required for low-temperature fermentation of synthetic must (SM) in the industrial genetic background. This result coincides with our previous findings about translation efficiency with the fitness of different wine yeast strains at low temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Immune checkpoint inhibitors: the new frontier in non–small cell lung cancer treatment

    Directory of Open Access Journals (Sweden)

    El-Osta HE

    2016-08-01

    Full Text Available Hazem El-Osta, Kamran Shahid, Glenn M Mills, Prakash Peddi Department of Medicine, Division of Hematology-Oncology, Louisiana State University Health Sciences Center, Shreveport, LA, USA Abstract: Lung cancer is the major cause for cancer-related death in the US. Although advances in chemotherapy and targeted therapy have improved the outcome of metastatic non-small-cell lung cancer, its prognosis remains dismal. A deeper understanding of the complex interaction between the immune system and tumor microenvironment has identified immune checkpoint inhibitors as new avenue of immunotherapy. Rather than acting directly on the tumor, these therapies work by removing the inhibition exerted by tumor cell or other immune cells on the immune system, promoting antitumoral immune response. To date, two programmed death-1 inhibitors, namely nivolumab and pembrolizumab, have received the US Food and Drug Administration approval for the treatment of advanced non-small-cell lung cancer that failed platinum-based chemotherapy. This manuscript provides a brief overview of the pathophysiology of cancer immune evasion, summarizes pertinent data on completed and ongoing clinical trials involving checkpoint inhibitors, discusses the different strategies to optimize their function, and outlines various challenges that are faced in this promising yet evolving field. Keywords: checkpoint inhibitors, immunotherapy, nivolumab, non-small-cell lung cancer, pembrolizumab, programmed death-1, programmed death ligand-1

  17. The resistance of the yeast Saccharomyces cerevisiae to the biocide polyhexamethylene biguanide: involvement of cell wall integrity pathway and emerging role for YAP1

    Directory of Open Access Journals (Sweden)

    de Morais Marcos A

    2011-08-01

    Full Text Available Abstract Background Polyhexamethylene biguanide (PHMB is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.

  18. Persistence of the cell-cycle checkpoint kinase Wee1 in SadA- and SadB-deficient neurons disrupts neuronal polarity.

    Science.gov (United States)

    Müller, Myriam; Lutter, Daniela; Püschel, Andreas W

    2010-01-15

    Wee1 is well characterized as a cell-cycle checkpoint kinase that regulates the entry into mitosis in dividing cells. Here we identify a novel function of Wee1 in postmitotic neurons during the establishment of distinct axonal and dendritic compartments, which is an essential step during neuronal development. Wee1 is expressed in unpolarized neurons but is downregulated after neurons have extended an axon. Suppression of Wee1 impairs the formation of minor neurites but does not interfere with axon formation. However, neuronal polarity is disrupted when neurons fail to downregulate Wee1. The kinases SadA and SadB (Sad kinases) phosphorylate Wee1 and are required to initiate its downregulation in polarized neurons. Wee1 expression persists in neurons that are deficient in SadA and SadB and disrupts neuronal polarity. Knockdown of Wee1 rescues the Sada(-/-);Sadb(-/-) mutant phenotype and restores normal polarity in these neurons. Our results demonstrate that the regulation of Wee1 by SadA and SadB kinases is essential for the differentiation of polarized neurons.

  19. Unique cytologic features of thyroiditis caused by immune checkpoint inhibitor therapy for malignant melanoma

    Directory of Open Access Journals (Sweden)

    Trevor E. Angell

    2018-03-01

    Full Text Available Blockade of immune checkpoint molecules to reverse cancer-induced immune suppression can improve anti-tumor immune responses in cancer patients. Monoclonal antibodies targeting two such molecules, Programmed cell death protein 1 (PD-1 and cytotoxic T-lymphocyte associated protein 4 (CTLA-4 have shown clinical benefit in the treatment of advanced malignancies, including metastatic melanoma. Adverse effects of these immune checkpoint inhibitors include immune-related adverse events (irAE, of which one of the most common is autoimmune thyroiditis. Though thyroiditis is increasingly recognized, there are no reports of the pathological findings that occur in immunotherapy-induced thyroiditis. We present a case of immunotherapy-induced thyroiditis demonstrating its unique cytopathologic features. A 51-year-old woman with metastatic melanoma was found to have a suppressed TSH and elevated free thyroxine concentration 14 days after starting treatment with nivolumab (PD-1 antagonist plus ipilimumab (CTLA-4 antagonist therapy. A thyroid biopsy was performed based on ultrasound findings and cytopathology revealed unique features including abundant clusters of necrotic cells, lymphocytes and CD163-positive histiocytes. This case reports cytopathologic features found in immune checkpoint inhibitor related thyroiditis. These appear to be unique findings and may help inform future research regarding the pathophysiology and mechanisms of this condition.

  20. [Saccharomyces cerevisiae invasive infection: The first reported case in Morocco].

    Science.gov (United States)

    Maleb, A; Sebbar, E; Frikh, M; Boubker, S; Moussaoui, A; El Mekkaoui, A; Khannoussi, W; Kharrasse, G; Belefquih, B; Lemnouer, A; Ismaili, Z; Elouennass, M

    2017-06-01

    Saccharomyces cerevisiae is a cosmopolitan yeast, widely used in agro-alimentary and pharmaceutical industry. Its impact in human pathology is rare, but maybe still underestimated compared to the real situation. This yeast is currently considered as an emerging and opportunistic pathogen. Risk factors are immunosuppression and intravascular device carrying. Fungemias are the most frequent clinical forms. We report the first case of S. cerevisiae invasive infection described in Morocco, and to propose a review of the literature cases of S. cerevisiae infections described worldwide. A 77-year-old patient, with no notable medical history, who was hospitalized for a upper gastrointestinal stenosis secondary to impassable metastatic gastric tumor. Its history was marked by the onset of septic shock, with S. cerevisiae in his urine and in his blood, with arguments for confirmation of invasion: the presence of several risk factors in the patient, positive direct microbiological examination, abundant and exclusive culture of S. cerevisiae from clinical samples. Species identification was confirmed by the study of biochemical characteristics of the isolated yeast. Confirmation of S. cerevisiae infection requires a clinical suspicion in patients with risk factors, but also a correct microbiological diagnosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. A Comprehensive Review of US FDA-Approved Immune Checkpoint Inhibitors in Urothelial Carcinoma

    Directory of Open Access Journals (Sweden)

    Fu-Shun Hsu

    2017-01-01

    Full Text Available Few effective treatment options are available for patients with advanced or metastatic urothelial carcinoma (UC after unsuccessful first-line platinum-based chemotherapy. To date, immune checkpoint inhibitors are novel therapeutic agents for UC treatment. From May 2016 to May 2017, five anti-PD-1/PD-L1 monoclonal antibodies received accelerated or regular approval from the US Food and Drug Administration (FDA for the treatment of patients with locally advanced or metastatic UC. The present comprehensive review presents the background information of these five US FDA-approved anticancer agents to provide a basic but concise understanding of these agents for advanced studies. We summarize their immune checkpoint mechanisms, clinical efficacy, recommended usage protocols, adverse events, and the limitations of the PD-L1 biomarker assays.

  2. Central Tolerance Blockade to Augment Checkpoint Immunotherapy in Melanoma

    Science.gov (United States)

    2017-09-01

    expressed at higher levels in medullary thymic epithelial cells (mTECs) than in cortical thymic epithelial cells (cTECs), addition of anti-RANKL antibody...relative Aire expression by quantitative RT-PCR in cultured thymic tissue . 12-15 90% Subtask 3. Culture human thymus sections with OPG-Fc or vehicle...PCR in cultured thymic tissue . 15-18 90% ACURO approval 13-14 100% Major Task 1. Effect of concurrent anti-RANKL and checkpoint inhibitor

  3. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae.

    Science.gov (United States)

    Heyland, Jan; Fu, Jianan; Blank, Lars M

    2009-12-01

    Glucose repression of the tricarboxylic acid (TCA) cycle in Saccharomyces cerevisiae was investigated under different environmental conditions using (13)C-tracer experiments. Real-time quantification of the volatile metabolites ethanol and CO(2) allowed accurate carbon balancing. In all experiments with the wild-type, a strong correlation between the rates of growth and glucose uptake was observed, indicating a constant yield of biomass. In contrast, glycerol and acetate production rates were less dependent on the rate of glucose uptake, but were affected by environmental conditions. The glycerol production rate was highest during growth in high-osmolarity medium (2.9 mmol g(-1) h(-1)), while the highest acetate production rate of 2.1 mmol g(-1) h(-1) was observed in alkaline medium of pH 6.9. Under standard growth conditions (25 g glucose l(-1) , pH 5.0, 30 degrees C) S. cerevisiae had low fluxes through the pentose phosphate pathway and the TCA cycle. A significant increase in TCA cycle activity from 0.03 mmol g(-1) h(-1) to about 1.7 mmol g(-1) h(-1) was observed when S. cerevisiae grew more slowly as a result of environmental perturbations, including unfavourable pH values and sodium chloride stress. Compared to experiments with high glucose uptake rates, the ratio of CO(2) to ethanol increased more than 50 %, indicating an increase in flux through the TCA cycle. Although glycolysis and the ethanol production pathway still exhibited the highest fluxes, the net flux through the TCA cycle increased significantly with decreasing glucose uptake rates. Results from experiments with single gene deletion mutants partially impaired in glucose repression (hxk2, grr1) indicated that the rate of glucose uptake correlates with this increase in TCA cycle flux. These findings are discussed in the context of regulation of glucose repression.

  4. Prevalence and susceptibility of Saccharomyces cerevisiae causing vaginitis in Greek women.

    Science.gov (United States)

    Papaemmanouil, V; Georgogiannis, N; Plega, M; Lalaki, J; Lydakis, D; Dimitriou, M; Papadimitriou, A

    2011-12-01

    Saccharomyces cerevisiae is an ascomycetous yeast, that is traditionally used in wine bread and beer production. Vaginitis caused by S. cerevisiae is rare. The aim of this study was to evaluate the frequency of S. cerevisiae isolation from the vagina in two groups of women and determined the in vitro susceptibility of this fungus. Vaginal samples were collected from a total of 262 (asymptomatic and symptomatic) women with vaginitis attending the centre of family planning of General hospital of Piraeus. All blastomycetes that isolated from the vaginal samples were examined for microscopic morphological tests and identified by conventional methods: By API 20 C AUX and ID 32 C (Biomerieux). Antifungal susceptibility testing for amphotericin B,fluconazole itraconazole,voriconazole, posaconazole and caspofungin was performed by E -test (Ab BIODIKS SWEDEN) against S. cerevisiae. A total of 16 isolates of S. cerevisiae derived from vaginal sample of the referred women, average 6.10%. Susceptibility of 16 isolates of S. cerevisiae to a variety of antimycotic agents were obtained. So all isolates of S. cerevisiae were resistant to fluconazole, posaconazole and intraconazole, but they were sensitive to voriconazole caspofungin and Amphotericin B which were found sensitive (except 1/16 strains). None of the 16 patients had a history of occupational domestic use of baker's yeast. Vaginitis caused by S. cerevisiae occur, is rising and cannot be ignored. Treatment of Saccharomyces vaginitis constitutes a major challenge and may require selected and often prolonged therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Histone dosage regulates DNA damage sensitivity in a checkpoint-independent manner by the homologous recombination pathway

    Science.gov (United States)

    Liang, Dun; Burkhart, Sarah Lyn; Singh, Rakesh Kumar; Kabbaj, Marie-Helene Miquel; Gunjan, Akash

    2012-01-01

    In eukaryotes, multiple genes encode histone proteins that package genomic deoxyribonucleic acid (DNA) and regulate its accessibility. Because of their positive charge, ‘free’ (non-chromatin associated) histones can bind non-specifically to the negatively charged DNA and affect its metabolism, including DNA repair. We have investigated the effect of altering histone dosage on DNA repair in budding yeast. An increase in histone gene dosage resulted in enhanced DNA damage sensitivity, whereas deletion of a H3–H4 gene pair resulted in reduced levels of free H3 and H4 concomitant with resistance to DNA damaging agents, even in mutants defective in the DNA damage checkpoint. Studies involving the repair of a HO endonuclease-mediated DNA double-strand break (DSB) at the MAT locus show enhanced repair efficiency by the homologous recombination (HR) pathway on a reduction in histone dosage. Cells with reduced histone dosage experience greater histone loss around a DSB, whereas the recruitment of HR factors is concomitantly enhanced. Further, free histones compete with the HR machinery for binding to DNA and associate with certain HR factors, potentially interfering with HR-mediated repair. Our findings may have important implications for DNA repair, genomic stability, carcinogenesis and aging in human cells that have dozens of histone genes. PMID:22850743

  6. Tousled-like kinase-dependent phosphorylation of Rad9 plays a role in cell cycle progression and G2/M checkpoint exit.

    Directory of Open Access Journals (Sweden)

    Ryan Kelly

    Full Text Available Genomic integrity is preserved by checkpoints, which act to delay cell cycle progression in the presence of DNA damage or replication stress. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1 complex is a PCNA-like clamp that is loaded onto DNA at structures resulting from damage and is important for initiating and maintaining the checkpoint response. Rad9 possesses a C-terminal tail that is phosphorylated constitutively and in response to cell cycle position and DNA damage. Previous studies have identified tousled-like kinase 1 (TLK1 as a kinase that may modify Rad9. Here we show that Rad9 is phosphorylated in a TLK-dependent manner in vitro and in vivo, and that T355 within the C-terminal tail is the primary targeted residue. Phosphorylation of Rad9 at T355 is quickly reduced upon exposure to ionizing radiation before returning to baseline later in the damage response. We also show that TLK1 and Rad9 interact constitutively, and that this interaction is enhanced in chromatin-bound Rad9 at later stages of the damage response. Furthermore, we demonstrate via siRNA-mediated depletion that TLK1 is required for progression through S-phase in normally cycling cells, and that cells lacking TLK1 display a prolonged G2/M arrest upon exposure to ionizing radiation, a phenotype that is mimicked by over-expression of a Rad9-T355A mutant. Given that TLK1 has previously been shown to be transiently inactivated upon phosphorylation by Chk1 in response to DNA damage, we propose that TLK1 and Chk1 act in concert to modulate the phosphorylation status of Rad9, which in turn serves to regulate the DNA damage response.

  7. Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Jessie Fernandez

    2014-09-01

    Full Text Available The blast fungus Magnaporthe oryzae threatens global food security through the widespread destruction of cultivated rice. Foliar infection requires a specialized cell called an appressorium that generates turgor to force a thin penetration hypha through the rice cuticle and into the underlying epidermal cells, where the fungus grows for the first days of infection as a symptomless biotroph. Understanding what controls biotrophic growth could open new avenues for developing sustainable blast intervention programs. Here, using molecular genetics and live-cell imaging, we dismantled M. oryzae glucose-metabolizing pathways to reveal that the transketolase enzyme, encoded by TKL1, plays an essential role in facilitating host colonization during rice blast disease. In the absence of transketolase, Δtkl1 mutant strains formed functional appressoria that penetrated rice cuticles successfully and developed invasive hyphae (IH in rice cells from primary hyphae. However, Δtkl1 could not undertake sustained biotrophic growth or cell-to-cell movement. Transcript data and observations using fluorescently labeled histone H1:RFP fusion proteins indicated Δtkl1 mutant strains were alive in host cells but were delayed in mitosis. Mitotic delay could be reversed and IH growth restored by the addition of exogenous ATP, a metabolite depleted in Δtkl1 mutant strains. We show that ATP might act via the TOR signaling pathway, and TOR is likely a downstream target of activation for TKL1. TKL1 is also involved in controlling the migration of appressorial nuclei into primary hyphae in host cells. When taken together, our results indicate transketolase has a novel role in mediating--via ATP and TOR signaling--an in planta-specific metabolic checkpoint that controls nuclear migration from appressoria into primary hyphae, prevents mitotic delay in early IH and promotes biotrophic growth. This work thus provides new information about the metabolic strategies employed by M

  8. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    Science.gov (United States)

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. The Saccharomyces cerevisiae MUM2 gene interacts with the DNA replication machinery and is required for meiotic levels of double strand breaks.

    Science.gov (United States)

    Davis, L; Barbera, M; McDonnell, A; McIntyre, K; Sternglanz, R; Jin , Q; Loidl, J; Engebrecht, J

    2001-01-01

    The Saccharomyces cerevisiae MUM2 gene is essential for meiotic, but not mitotic, DNA replication and thus sporulation. Genetic interactions between MUM2 and a component of the origin recognition complex and polymerase alpha-primase suggest that MUM2 influences the function of the DNA replication machinery. Early meiotic gene expression is induced to a much greater extent in mum2 cells than in meiotic cells treated with the DNA synthesis inhibitor hydroxyurea. This result indicates that the mum2 meiotic arrest is downstream of the arrest induced by hydroxyurea and suggests that DNA synthesis is initiated in the mutant. Genetic analyses indicate that the recombination that occurs in mum2 mutants is dependent on the normal recombination machinery and on synaptonemal complex components and therefore is not a consequence of lesions created by incompletely replicated DNA. Both meiotic ectopic and allelic recombination are similarly reduced in the mum2 mutant, and the levels are consistent with the levels of meiosis-specific DSBs that are generated. Cytological analyses of mum2 mutants show that chromosome pairing and synapsis occur, although at reduced levels compared to wild type. Given the near-wild-type levels of meiotic gene expression, pairing, and synapsis, we suggest that the reduction in DNA replication is directly responsible for the reduced level of DSBs and meiotic recombination. PMID:11238403

  10. UV-induced reversion of his4 frameshift mutations in rad6, rev1, and rev3 mutants of yeast.

    Science.gov (United States)

    Lawrence, C W; O'Brien, T; Bond, J

    1984-01-01

    The UV-induced reversion of two his4 frameshift alleles was much reduced in rad6 mutants of Saccharomyces cerevisiae, an observation that is consistent with the hypothesis that RAD6 function is required for the induction of all types of genetic alteration in misrepair mutagenesis. The reversion of these his4 alleles, together with two others of the same type, was also reduced in rev1 and rev3 mutant strains; in these, however, the extent of the reduction varied considerably with test allele used, in a manner analogous to the results in these strains for base repair substitution test alleles. The general features of UV-induced frameshift and substitution mutagenesis therefore appear quite similar, indicating that they may depend on related processes. If this conclusion is correct, greater attention must be given to integrating models which account for the production of nucleotide additions and deletions into those concerning misrepair mutagenesis.

  11. Mutants induced in winter rye (Secale cereale L.): Short straw-mutant No. 2714 and late-senescence mutant

    Energy Technology Data Exchange (ETDEWEB)

    Muszynski, S; Darlewska, M [Department of Plant Breeding and Seed Science, Warsaw Agricultural University, Warsaw (Poland)

    1990-01-01

    Full text: Mutants were induced by treating dormant seeds with ionizing radiation (fast neutrons) or chemicals (N-nitroso-N-ethyl urea or sodium azide). Among several mutants obtained, of special value is the short-straw mutant No. 2714 and a late senescent mutant. (author)

  12. Grp/DChk1 is required for G(2)-M checkpoint activation in Drosophila S2 cells, whereas Dmnk/DChk2 is dispensable

    NARCIS (Netherlands)

    de Vries, HI; Uyetake, L; Lemstra, W; Brunsting, JF; Su, TT; Kampinga, HH; Sibon, OCM

    2005-01-01

    Cell-cycle checkpoints are signal-transduction pathways required to maintain genomic stability in dividing cells. Previously, it was reported that two kinases essential for checkpoint signalling, Chk1 and Chk2 are structurally conserved. In contrast to yeast, Xenopus and mammals, the Chk1- and

  13. Comparative Analysis of Immune Checkpoint Molecules and Their Potential Role in the Transmissible Tasmanian Devil Facial Tumor Disease

    Directory of Open Access Journals (Sweden)

    Andrew S. Flies

    2017-05-01

    Full Text Available Immune checkpoint molecules function as a system of checks and balances that enhance or inhibit immune responses to infectious agents, foreign tissues, and cancerous cells. Immunotherapies that target immune checkpoint molecules, particularly the inhibitory molecules programmed cell death 1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4, have revolutionized human oncology in recent years, yet little is known about these key immune signaling molecules in species other than primates and rodents. The Tasmanian devil facial tumor disease is caused by transmissible cancers that have resulted in a massive decline in the wild Tasmanian devil population. We have recently demonstrated that the inhibitory checkpoint molecule PD-L1 is upregulated on Tasmanian devil (Sarcophilus harrisii facial tumor cells in response to the interferon-gamma cytokine. As this could play a role in immune evasion by tumor cells, we performed a thorough comparative analysis of checkpoint molecule protein sequences among Tasmanian devils and eight other species. We report that many of the key signaling motifs and ligand-binding sites in the checkpoint molecules are highly conserved across the estimated 162 million years of evolution since the last common ancestor of placental and non-placental mammals. Specifically, we discovered that the CTLA-4 (MYPPPY ligand-binding motif and the CTLA-4 (GVYVKM inhibitory domain are completely conserved across all nine species used in our comparative analysis, suggesting that the function of CTLA-4 is likely conserved in these species. We also found that cysteine residues for intra- and intermolecular disulfide bonds were also highly conserved. For instance, all 20 cysteine residues involved in disulfide bonds in the human 4-1BB molecule were also present in devil 4-1BB. Although many key sequences were conserved, we have also identified immunoreceptor tyrosine-based inhibitory motifs (ITIMs and immunoreceptor tyrosine-based switch

  14. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Trey K Sato

    2016-10-01

    Full Text Available The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3, a component of MAP Kinase (MAPK signaling (HOG1, a regulator of Protein Kinase A (PKA signaling (IRA2, and a scaffolding protein for mitochondrial iron-sulfur (Fe-S cluster biogenesis (ISU1. Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  15. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    Science.gov (United States)

    Sato, Trey K; Tremaine, Mary; Parreiras, Lucas S; Hebert, Alexander S; Myers, Kevin S; Higbee, Alan J; Sardi, Maria; McIlwain, Sean J; Ong, Irene M; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; McGee, Mick A; Dickinson, Quinn; La Reau, Alex; Xie, Dan; Tian, Mingyuan; Reed, Jennifer L; Zhang, Yaoping; Coon, Joshua J; Hittinger, Chris Todd; Gasch, Audrey P; Landick, Robert

    2016-10-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  16. 2018-03-25T18:09:40Z https://www.ajol.info/index.php/all/oai oai:ojs ...

    African Journals Online (AJOL)

    Alcohol production; fermentation; induced mutants; Saccharomyces cerevisiae; viability Brewing yeast, Saccharomyces. Cerevisiae cultured on malt extract agar was UV-irradiated. Eighteen mutant yeasts (SCM 01 – SCM 18) selected (after visual examination) were tested for fermentation, alcohol production and viability by ...

  17. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress.

    Science.gov (United States)

    Liu, Jidong; Zhu, Yibo; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2013-07-01

    In the present study, we investigated the mode of cell response induced by D-limonene in Saccharomyces cerevisiae. D-limonene treatment was found to be accompanied by intracellular accumulation of reactive oxygen species (ROS). Since ROS impair cell membranes, an engineered strain with enhanced membrane biosynthesis exhibited a higher tolerance to D-limonene. Subsequent addition of an ROS scavenger significantly reduced the ROS level and alleviated cell growth inhibition. Thus, D-limonene-induced ROS accumulation plays an important role in cell death in S. cerevisiae. In D-limonene-treated S. cerevisiae strains, higher levels of antioxidants, antioxidant enzymes, and nicotinamide adenine dinucleotide phosphate (NADPH) were synthesized. Quantitative real-time PCR results also verified that D-limonene treatment triggered upregulation of genes involved in the antioxidant system and the regeneration of NADPH at the transcription level in S. cerevisiae. These data indicate that D-limonene treatment results in intracellular ROS accumulation, an important factor in cell death, and several antioxidant mechanisms in S. cerevisiae were enhanced in response to D-limonene treatment.

  18. The impact of aviation checkpoint queues on optimizing security screening effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Adrian J., E-mail: ajlee@citeri.or [Central Illinois Technology and Education Research Institute, 2312 Connie Drive, Springfield, IL 62704-8722 (United States); Jacobson, Sheldon H., E-mail: shj@illinois.ed [Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N. Goodwin Ave. M/C 258, Urbana, IL 61801-2302 (United States)

    2011-08-15

    Passenger screening at aviation security checkpoints is a critical component in protecting airports and aircraft from terrorist threats. Recent developments in screening device technology have increased the ability to detect these threats; however, the average amount of time it takes to screen a passenger still remains a concern. This paper models the queueing process for a multi-level airport checkpoint security system, where multiple security classes are formed through subsets of specialized screening devices. An optimal static assignment policy is obtained which minimizes the steady-state expected amount of time a passenger spends in the security system. Then, an optimal dynamic assignment policy is obtained through a transient analysis that balances the expected number of true alarms with the expected amount of time a passenger spends in the security system. Performance of a two-class system is compared to that of a selective security system containing primary and secondary levels of screening. The key contribution is that the resulting optimal assignment policies increase security and passenger throughput by efficiently and effectively utilizing available screening resources.

  19. The impact of aviation checkpoint queues on optimizing security screening effectiveness

    International Nuclear Information System (INIS)

    Lee, Adrian J.; Jacobson, Sheldon H.

    2011-01-01

    Passenger screening at aviation security checkpoints is a critical component in protecting airports and aircraft from terrorist threats. Recent developments in screening device technology have increased the ability to detect these threats; however, the average amount of time it takes to screen a passenger still remains a concern. This paper models the queueing process for a multi-level airport checkpoint security system, where multiple security classes are formed through subsets of specialized screening devices. An optimal static assignment policy is obtained which minimizes the steady-state expected amount of time a passenger spends in the security system. Then, an optimal dynamic assignment policy is obtained through a transient analysis that balances the expected number of true alarms with the expected amount of time a passenger spends in the security system. Performance of a two-class system is compared to that of a selective security system containing primary and secondary levels of screening. The key contribution is that the resulting optimal assignment policies increase security and passenger throughput by efficiently and effectively utilizing available screening resources.

  20. A phospho-proteomic screen identifies substrates of the checkpoint kinase Chk1

    DEFF Research Database (Denmark)

    Blasius, Melanie; Forment, Josep V; Thakkar, Neha

    2011-01-01

    BACKGROUND: The cell-cycle checkpoint kinase Chk1 is essential in mammalian cells due to its roles in controlling processes such as DNA replication, mitosis and DNA-damage responses. Despite its paramount importance, how Chk1 controls these functions remains unclear, mainly because very few Chk1...

  1. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. Pt. 3

    International Nuclear Information System (INIS)

    Siede, W.; Eckardt, F.

    1986-01-01

    Recent studies regarding the influence of cycloheximide on the temperature-dependent increase in survival and mutation frequencies of a thermoconditional rev2 mutant lead to the suggestion that the REV2-coded mutagenic repair function is UV-inducible. In the present study we show that stationary-phase rev2sup(ts) cells are characterized by a biphasic linear-quadratic dose-dependence of mutation induction ('mutation kinetics') of ochre alleles at 23 0 C (permissive temperature) but linear kinetics at the restrictive temperature of 36 0 C. Mathematical analysis using a model based on Poisson statistics and a further mathematical procedure, the calculation of 'apparent survival', support the assumption kinetics investigated can be attributed to a UV-inducible component of mutagenic DNA repair controlled by the REV2 gene. (orig.)

  2. Immune Checkpoint Inhibitors: A New Opportunity in the Treatment of Ovarian Cancer?

    Directory of Open Access Journals (Sweden)

    Gloria Mittica

    2016-07-01

    Full Text Available Epithelial ovarian cancer (EOC is the leading cause of death for gynecological cancer. The standard treatment for advanced stage is the combination of optimal debulking surgery and platinum-based chemotherapy. Nevertheless, recurrence is frequent (around 70% and prognosis is globally poor. New therapeutic agents are needed to improve survival. Since EOC is strongly immunogenic, immune checkpoint inhibitors are under evaluation for their capacity to contrast the “turn off” signals expressed by the tumor to escape the immune system and usually responsible for self-tolerance maintenance. This article reviews the literature on anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4, anti-PD-1, anti-PD-L1, and anti-PD-L2 antibodies in EOC and highlights their possible lines of development. Further studies are needed to better define the prognostic role of the immune checkpoint inhibitors, to identify predictors of response and the optimal clinical setting in EOC.

  3. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations

    International Nuclear Information System (INIS)

    Flores-Rozas, H.; Kolodner, R.D.

    1998-01-01

    The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of NLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3-10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3-10 reversion rate, whereas the hom3-10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex

  4. Identification of proteins whose synthesis in Saccharomyces cerevisiae is induced by DNA damage and heat shock

    International Nuclear Information System (INIS)

    Gailit, James

    1990-01-01

    Protein synthesis in Saccharomyces cerevisiae after exposure to ultraviolet light (UV) was examined by two-dimensional gel electrophoresis of pulse-labelled proteins. The synthesis of 12 distinct proteins was induced by treatment with UV doses of 10-200 J/m 2 . The induced proteins differed in minimum dose necessary for induction, maximum dose at which induction still occurred and constitutive level present in unirradiated cells. A chemical mutagen, 4-nitroquinoline-1-oxide, induced synthesis of the same proteins. Induction after UV treatment was observed in seven different yeast strains, including three mutants deficient in DNA repair. Synthesis of five of the proteins was also induced by brief heat shock treatment. These five may be members of a family of proteins whose synthesis is regulated by two different pathways responding to different types of stress. (author)

  5. Investigation of autonomous cell cycle oscillation in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, Morten Skov

    2007-01-01

    Autonome Oscillationer i kontinuert kultivering af Saccharomyces cerevisiae Udgangspunktet for dette Ph.d. projekt var at søge at forstå, hvad der gør det muligt at opnå multiple statiske tilstande ved kontinuert kultivering af Saccharomyces cerevisiae med glukose som begrænsende substrat...

  6. Avelumab: combining immune checkpoint inhibition and antibody-dependent cytotoxicity.

    Science.gov (United States)

    Hamilton, Gerhard; Rath, Barbara

    2017-04-01

    Immune checkpoint inhibition holds great promise for selected tumors. The human monoclonal antibody (mAB) avelumab is directed to programmed death ligand-1 (PD-L1) and is supposed to inhibit the immunosuppressive PD-L1/PD-1 interaction and, furthermore, effect antibody-dependent cytotoxicity (ADCC) lysis of tumor cells. Areas covered: This article presents an overview of the current means to activate the antitumor immune defense by targeting PD-1 or PD-L1 with mABs and their possible role in ADCC-mediated tumor cell elimination. Expert opinion: Avelumab contains a Fc region which can bind cognate receptors on immune effector cells and induce ADCC-mediated tumor cell lysis, in contrast to other mABs directed to PD-1/PD-L1 which lack the ability to trigger ADCC due to belonging to the IgG4 subclass or possessing a mutated Fc region. Preclinical and clinical data indicate that avelumab can be safely administered to cancer patients with a toxicity profile comparable to other mABs and without lysis of PD-L1-positive activated immune cells. This antibody yielded durable responses in a phase II trial in advanced Merkel cell carcinoma patients. Tumor cell lysis by avelumab prevents cells from resorting to alternative checkpoints as shown by targeting PD-1 and the upregulation of TIM-3.

  7. Interactions between Lactobacillus kefiranofaciens and Saccharomyces cerevisiae in mixed culture for kefiran production.

    Science.gov (United States)

    Cheirsilp, Benjamas; Shoji, Hirofumi; Shimizu, Hiroshi; Shioya, Suteaki

    2003-01-01

    Since a positive effect on the growth and kefiran production of Lactobacillus kefiranofaciens was observed in a mixed culture with Saccharomyces cerevisiae, the elucidation of the interactions between L. kefiranofaciens and S. cerevisiae may lead to higher productivity. Hence, the microbial interaction of each strain was investigated. Apart from the positive effect of a reduction in the amount of lactic acid by S. cerevisiae, a positive effect of S. cerevisiae on the growth and kefiran production of L. kefiranofaciens in a mixed culture was observed. Various experiments were carried out to study this effect. In this study, the observed increase in capsular kefiran in a mixed culture with inactivated S. cerevisiae correlated well to that in an anaerobic mixed culture. Differences in capsular kefiran production were observed for different initial S. cerevisiae concentrations under anaerobic conditions. From these fermentation results, it was concluded that the physical contact with S. cerevisiae mainly enhanced the capsular kefiran production of L. kefiranofaciens in a mixed culture. Therefore, in an anaerobic mixed culture, this direct contact resulted in higher capsular kefiran production than that in pure culture.

  8. Secretory Overexpression of Bacillus thermocatenulatus Lipase in Saccharomyces cerevisiae Using Combinatorial Library Strategy.

    Science.gov (United States)

    Kajiwara, Shota; Yamada, Ryosuke; Ogino, Hiroyasu

    2018-04-10

    Simple and cost-effective lipase expression host microorganisms are highly desirable. A combinatorial library strategy is used to improve the secretory expression of lipase from Bacillus thermocatenulatus (BTL2) in the culture supernatant of Saccharomyces cerevisiae. A plasmid library including expression cassettes composed of sequences encoding one of each 15 promoters, 15 secretion signals, and 15 terminators derived from yeast species, S. cerevisiae, Pichia pastoris, and Hansenula polymorpha, is constructed. The S. cerevisiae transformant YPH499/D4, comprising H. polymorpha GAP promoter, S. cerevisiae SAG1 secretion signal, and P. pastoris AOX1 terminator, is selected by high-throughput screening. This transformant expresses BTL2 extra-cellularly with a 130-fold higher than the control strain, comprising S. cerevisiae PGK1 promoter, S. cerevisiae α-factor secretion signal, and S. cerevisiae PGK1 terminator, after cultivation for 72 h. This combinatorial library strategy holds promising potential for application in the optimization of the secretory expression of proteins in yeast. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.

    Science.gov (United States)

    Endo, Ayako; Nakamura, Toshihide; Ando, Akira; Tokuyasu, Ken; Shima, Jun

    2008-04-15

    Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes. Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors. Our analysis predicts that vanillin tolerance in Saccharomyces cerevisiae is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.

  10. Oral administration of myostatin-specific recombinant Saccharomyces cerevisiae vaccine in rabbit.

    Science.gov (United States)

    Liu, Zhongtian; Zhou, Gang; Ren, Chonghua; Xu, Kun; Yan, Qiang; Li, Xinyi; Zhang, Tingting; Zhang, Zhiying

    2016-04-29

    Yeast is considered as a simple and cost-effective host for protein expression, and our previous studies have proved that Saccharomyces cerevisiae can deliver recombinant protein and DNA into mouse dendritic cells and can further induce immune responses as novel vaccines. In order to know whether similar immune responses can be induced in rabbit by oral administration of such recombinant S. cerevisiae vaccine, we orally fed the rabbits with heat-inactivated myostatin-recombinant S. cerevisiae for 5 weeks, and then myostatin-specific antibody in serum was detected successfully by western blotting and ELISA assay. The rabbits treated with myostatin-recombinant S. cerevisiae vaccine grew faster and their muscles were much heavier than that of the control group. As a common experimental animal and a meat livestock with great economic value, rabbit was proved to be the second animal species that have been successfully orally immunized by recombinant S. cerevisiae vaccine after mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Saccharomyces cerevisiae var. boulardii fungemia following probiotic treatment

    OpenAIRE

    Appel-da-Silva, Marcelo C.; Narvaez, Gabriel A.; Perez, Leandro R.R.; Drehmer, Laura; Lewgoy, Jairo

    2017-01-01

    Probiotics are commonly prescribed as an adjuvant in the treatment of antibiotic-associated diarrhea caused by Clostridium difficile. We report the case of an immunocompromised 73-year-old patient on chemotherapy who developed Saccharomyces cerevisiae var. boulardii fungemia in a central venous catheter during treatment of antibiotic-associated pseudomembranous colitis with the probiotic Saccharomyces cerevisiae var. boulardii. Fungemia was resolved after interruption of probiotic administrat...

  12. The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing

    DEFF Research Database (Denmark)

    Lischetti, Tiziana; Zhang, Gang; Sedgwick, Garry G

    2014-01-01

    Improperly attached kinetochores activate the spindle assembly checkpoint (SAC) and by an unknown mechanism catalyse the binding of two checkpoint proteins, Mad2 and BubR1, to Cdc20 forming the mitotic checkpoint complex (MCC). Here, to address the functional role of Cdc20 kinetochore localization...... in the SAC, we delineate the molecular details of its interaction with kinetochores. We find that BubR1 recruits the bulk of Cdc20 to kinetochores through its internal Cdc20 binding domain (IC20BD). We show that preventing Cdc20 kinetochore localization by removal of the IC20BD has a limited effect...... on the SAC because the IC20BD is also required for efficient SAC silencing. Indeed, the IC20BD can disrupt the MCC providing a mechanism for its role in SAC silencing. We thus uncover an unexpected dual function of the second Cdc20 binding site in BubR1 in promoting both efficient SAC signalling and SAC...

  13. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in saccharomyces cerevisiae: application and validation of high-content, image-based profiling.

    Science.gov (United States)

    Iwaki, Aya; Ohnuki, Shinsuke; Suga, Yohei; Izawa, Shingo; Ohya, Yoshikazu

    2013-01-01

    Vanillin, generated by acid hydrolysis of lignocellulose, acts as a potent inhibitor of the growth of the yeast Saccharomyces cerevisiae. Here, we investigated the cellular processes affected by vanillin using high-content, image-based profiling. Among 4,718 non-essential yeast deletion mutants, the morphology of those defective in the large ribosomal subunit showed significant similarity to that of vanillin-treated cells. The defects in these mutants were clustered in three domains of the ribosome: the mRNA tunnel entrance, exit and backbone required for small subunit attachment. To confirm that vanillin inhibited ribosomal function, we assessed polysome and messenger ribonucleoprotein granule formation after treatment with vanillin. Analysis of polysome profiles showed disassembly of the polysomes in the presence of vanillin. Processing bodies and stress granules, which are composed of non-translating mRNAs and various proteins, were formed after treatment with vanillin. These results suggest that vanillin represses translation in yeast cells.

  14. Disruption of spindle checkpoint function in rats following 28 days of repeated administration of renal carcinogens.

    Science.gov (United States)

    Kimura, Masayuki; Mizukami, Sayaka; Watanabe, Yousuke; Hasegawa-Baba, Yasuko; Onda, Nobuhiko; Yoshida, Toshinori; Shibutani, Makoto

    2016-02-01

    We previously reported that 28-day exposure to hepatocarcinogens that facilitate cell proliferation specifically alters the expression of G1/S checkpoint-related genes and proteins, induces aberrant early expression of ubiquitin D (UBD) at the G2 phase, and increases apoptosis in the rat liver, indicating G1/S and spindle checkpoint dysfunction. The present study aimed to determine the time of onset of carcinogen-specific cell-cycle disruption after repeated administration of renal carcinogens for up to 28 days. Rats were orally administered the renal carcinogens nitrofurantoin (NFT), 1-amino-2,4-dibromoantraquinone (ADAQ), and 1,2,3-trichloropropane (TCP) or the non-carcinogenic renal toxicants 1-chloro-2-propanol, triamterene, and carboxin for 3, 7 or 28 days. Both immunohistochemical single-molecule analysis and real-time RT-PCR analysis revealed that carcinogen-specific expression changes were not observed after 28 days of administration. However, the renal carcinogens ADAQ and TCP specifically reduced the number of cells expressing phosphorylated-histone H3 at Ser10 in both UBD(+) cells and proliferating cells, suggestive of insufficient UBD expression at the M phase and early transition of proliferating cells from the M phase, without increasing apoptosis, after 28 days of administration. In contrast, NFT, which has marginal carcinogenic potential, did not induce such cellular responses. These results suggest that it may take 28 days to induce spindle checkpoint dysfunction by renal carcinogens; however, induction of apoptosis may not be essential. Thus, induction of spindle checkpoint dysfunction may be dependent on carcinogenic potential of carcinogen examined, and marginal carcinogens may not exert sufficient responses even after 28 days of administration.

  15. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hana Šuranská

    2016-03-01

    Full Text Available Abstract In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.

  16. Cell lines derived from a Medaka radiation-sensitive mutant have defects in DNA double-strand break responses

    International Nuclear Information System (INIS)

    Hidaka, Masayuki; Oda, Shoji; Mitani, Hiroshi; Kuwahara, Yoshikazu; Fukumoto, Manabu

    2010-01-01

    It was reported that the radiation-sensitive Medaka mutant 'ric1' has a defect in the repair of DNA double-strand breaks (DSBs) induced by γ-rays during early embryogenesis. To study the cellular response of a ric1 mutant to ionizing radiation (IR), we established the mutant embryonic cell lines RIC1-e9, RIC1-e42, RIC1-e43. Following exposure to γ-irradiation, the DSBs in wild-type cells were repaired within 1 h, while those in RIC1 cells were not rejoined even after 2 h. Cell death was induced in the wild-type cells with cell fragmentation, but only a small proportion of the RIC1 cells underwent cell death, and without cell fragmentation. Although both wild-type and RIC1 cells showed mitotic inhibition immediately after γ-irradiation, cell division was much slower to resume in the wild-type cells (20 h versus 12 h). In both wild-type and RIC1 cells, Ser139 phosphorylated H2AX (γH2AX) foci were formed after γ-irradiation, however, the γH2AX foci disappeared more quickly in the RIC1 cell lines. These results suggest that the instability of γH2AX foci in RIC1 cells cause an aberration of the DNA damage response. As RIC1 cultured cells showed similar defective DNA repair as ric1 embryos and RIC1 cells revealed defective cell death and cell cycle checkpoint, they are useful for investigating DNA damage responses in vitro. (author)

  17. Engineering Cofactor Preference of Ketone Reducing Biocatalysts: A Mutagenesis Study on a γ-Diketone Reductase from the Yeast Saccharomyces cerevisiae Serving as an Example

    Directory of Open Access Journals (Sweden)

    Michael Katzberg

    2010-04-01

    Full Text Available The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the γ-diketone 2,5-hexanedione furnishing the diol (2S,5S-hexanediol and the γ-hydroxyketone (5S-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%. This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants.

  18. REC46 gene of Saccharomyces cerevisiae controls mitotic chromosomal stability, recombination and sporulation: cell-type and life cycle stage specific expression of the rec46-1 mutation

    International Nuclear Information System (INIS)

    Maleas, D.T.; Bjornstad, K.A.; Holbrook, L.L.; Esposito, M.S.

    1986-01-01

    Studies of chromosomal recombination during mitosis and meiosis of Saccharomyces cerevisiae have demonstrated that recombination at these two distinct stages of the yeast life cycle proceeds by mechanisms that appear similar but involve discrete mitosis-specific and meiosis-specific properties. UV radiation induced REC mutants are being employed as a genetic tool to identify the partial reactions comprising recombination and the involvement of individual REC gene products in mitotic and meiotic recombination. The sequence of molecular events that results in genetic recombination in eukaryotes is presently ill-defined. Genetic characterization of REC gene mutants and biochemical analyses of them for discrete defects in DNA metabolic proteins and enzymes (in collaboration with the laboratory of Junko Hosoda) are beginning to remedy this gap in the authors knowledge. This report summarizes the genetic properties of the rec46-1 mutation

  19. Biosorption of the strontium ion by irradiated Saccharomyces cerevisiae under culture conditions.

    Science.gov (United States)

    Qiu, Liang; Feng, Jundong; Dai, Yaodong; Chang, Shuquan

    2017-06-01

    As a new-emerging method for strontium disposal, biosorption has shown advantages such as high sorption capacity; low cost. In this study, we investigated the potential of Saccharomyces cerevisiae (S. cerevisiae) in strontium disposal under culture conditions and the effects of irradiation on their biosorption capabilities. We found that S. cerevisiae can survive irradiation and grow. Pre-exposure to irradiation rendered S. cerevisiae resistant to further irradiation. Surprisingly, the pre-exposure to irradiation can increase the biosorption capability of S. cerevisiae. We further investigated the factors that influenced the biosorption efficiency, which were (strongest to weakest): pH > strontium concentration > time > temperature. In our orthogonal experiment, the optimal conditions for strontium biosorption by irradiated S. cerevisiae were: pH 7, 150 mg L -1 strontium at the temperature of 32 °C with 30 h. The equilibrium of strontium biosorption was analyzed by Langmuir and Freundlich models, from which the formal model is found to provide a better fit for the experimental results. The kinetics of strontium biosorption by living irradiated S. cerevisiae was found to be comprised of three phases: dramatically increased during 0-9 h, decreased during 12-24 h, and increased during 30-50 h. These results provide a systematic understanding of the biosorption capabilities of irradiated S. cerevisiae, which can contribute to the development of remediating nuclear waste water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Efficient screening of environmental isolates for Saccharomyces cerevisiae strains that are suitable for brewing.

    Science.gov (United States)

    Fujihara, Hidehiko; Hino, Mika; Takashita, Hideharu; Kajiwara, Yasuhiro; Okamoto, Keiko; Furukawa, Kensuke

    2014-01-01

    We developed an efficient screening method for Saccharomyces cerevisiae strains from environmental isolates. MultiPlex PCR was performed targeting four brewing S. cerevisiae genes (SSU1, AWA1, BIO6, and FLO1). At least three genes among the four were amplified from all S. cerevisiae strains. The use of this method allowed us to successfully obtain S. cerevisiae strains.

  1. Menadione stress in Saccharomyces cerevisiae strains deficient in the glutathione transferases.

    Science.gov (United States)

    Castro, F A V; Herdeiro, R S; Panek, A D; Eleutherio, E C A; Pereira, M D

    2007-02-01

    Using S. cerevisiae as a eukaryotic cell model we have analyzed the involvement of both glutathione transferase isoforms, Gtt1 and Gtt2, in constitutive resistance and adaptive response to menadione, a quinone which can exert its toxicity as redox cycling and/or electrophiles. The detoxification properties, of these enzymes, have also been analyzed by the appearance of S-conjugates in the media. Direct exposure to menadione (20 mM/60 min) showed to be lethal for cells deficient on both Gtt1 and Gtt2 isoforms. However, after pre-treatment with a low menadione concentration, cells deficient in Gtt2 displayed reduced ability to acquire tolerance when compared with the control and the Gtt1 deficient strains. Analyzing the toxic effects of menadione we observed that the gtt2 mutant showed no reduction in lipid peroxidation levels. Moreover, measuring the levels of intracellular oxidation during menadione stress we have shown that the increase of this oxidative stress parameter was due to the capacity menadione possesses in generating reactive oxygen species (ROS) and that both GSH and Gtt2 isoform were required to enhance ROS production. Furthermore, the efflux of the menadione-GSH conjugate, which is related with detoxification of xenobiotic pathways, was not detected in the gtt2 mutant. Taken together, these results suggest that acquisition of tolerance against stress generated by menadione and the process of detoxification through S-conjugates are dependent upon Gtt2 activity. This assessment was corroborated by the increase of GTT2 expression, and not of GTT1, after menadione treatment.

  2. Construction and functional characterization of double and triple mutants of parallel beta-bulge of ubiquitin.

    Science.gov (United States)

    Sharma, Mrinal; Prabha, C Ratna

    2011-12-01

    Ubiquitin, a small eukaryotic protein serving as a post-translational modification on many important proteins, plays central role in cellular homeostasis and cell cycle regulation. Ubiquitin features two beta-bulges, the second beta-bulge, located at the C-terminal region of the protein along with type II turn, holds 3 residues Glu64(1), Ser65(2) and Gln2(X). Percent frequency of occurrence of such a sequence in parallel beta-bulge is very low. However, the sequence and structure have been conserved in ubiquitin through out the evolution. Present study involves replacement of residues in unusual beta-bulge of ubiquitin by introducing mutations in combination through site directed mutagenesis, generating double and triple mutants and their functional characterization. Mutant ubiquitins cloned in yeast expression vector YEp96 tested for growth profile, viability assay and heat stress complementation study have revealed significant decrease in growth rate, loss of viability and non-complementation of heat sensitive phenotype with UbE64G-S65D and UbQ2N-E64G-S65D mutations. However, UbQ2N-S65D did not show any negative effects in the above assays. Present results show that, replacement of residues in beta-bulge of ubiquitin exerts severe effects on growth and viability in Saccharomyces cerevisiae due to functional failure of the mutant ubiquitins UbE64G-S65D and UbQ2N-E64G-S65D.

  3. The PGM3 gene encodes the major phosphoribomutase in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Walther, Thomas; Baylac, Audrey; Alkim, Ceren; Vax, Amélie; Cordier, Hélène; François, Jean Marie

    2012-11-30

    The phosphoglucomutases (PGM) Pgm1, Pgm2, and Pgm3 of the yeast Saccharomyces cerevisiae were tested for their ability to interconvert ribose-1-phosphate and ribose-5-phosphate. The purified proteins were studied in vitro with regard to their kinetic properties on glucose-1-phosphate and ribose-1-phosphate. All tested enzymes were active on both substrates with Pgm1 exhibiting only residual activity on ribose-1-phosphate. The Pgm2 and Pgm3 proteins had almost equal kinetic properties on ribose-1-phosphate, but Pgm2 had a 2000 times higher preference for glucose-1-phosphate when compared to Pgm3. The in vivo function of the PGMs was characterized by monitoring ribose-1-phosphate kinetics following a perturbation of the purine nucleotide balance. Only mutants with a deletion of PGM3 hyper-accumulated ribose-1-phosphate. We conclude that Pgm3 functions as the major phosphoribomutase in vivo. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nguyen, Trinh Thi My; Iwaki, Aya; Ohya, Yoshikazu; Izawa, Shingo

    2014-01-01

    Vanillin and furfural are derived from lignocellulosic biomass and inhibit yeast growth and fermentation as biomass conversion inhibitors. Furfural has been shown to induce oxidative stress in Saccharomyces cerevisiae. Since there has been no report on the relationship between vanillin and oxidative stress, we investigated whether vanillin caused oxidative stress in yeast cells. We showed that vanillin caused the nuclear accumulation of Yap1, an oxidative stress responsive transcription factor, and subsequent transcriptional activation of Yap1-target genes. The growth of the null mutant of the YAP1 gene (yap1Δ) was delayed in the presence of vanillin, which indicated that Yap1 plays a role in the acquisition of tolerance to vanillin. We also demonstrated that vanillin facilitated the fragmentation of mitochondria. These findings suggest that the toxicity of vanillin involves damage induced by oxidative stress. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. The essential DNA polymerases δ and ε are involved in repair of UV-damaged DNA in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Halas, A.; Policinska, Z.; Baranowska, H.; Jachymczyk, W.J.

    1999-01-01

    We have studied the ability of yeast DNA polymerases to carry out repair of lesions caused by UV irradiation in Saccharomyces cerevisiae. By the analysis of postirradiation relative molecular mass changes in cellular DNA of different DNA polymerases mutant strains, it was established that mutations in DNA polymerases δ and ε showed accumulation of single-strand breaks indicating defective repair. Mutations in other DNA polymerase genes exhibited no defects in DNA repair. Thus, the data obtained suggest that DNA polymerases δ and ε are both necessary for DNA replication and for repair of lesions caused by UV irradiation. The results are discussed in the light of current concepts concerning the specificity of DNA polymerases in DNA repair. (author)

  6. A genome-wide immunodetection screen in S. cerevisiae uncovers novel genes involved in lysosomal vacuole function and morphology.

    Directory of Open Access Journals (Sweden)

    Florante Ricarte

    Full Text Available Vacuoles of yeast Saccharomyces cerevisiae are functionally analogous to mammalian lysosomes. Both are cellular organelles responsible for macromolecular degradation, ion/pH homeostasis, and stress survival. We hypothesized that undefined gene functions remain at post-endosomal stage of vacuolar events and performed a genome-wide screen directed at such functions at the late endosome and vacuole interface - ENV genes. The immunodetection screen was designed to identify mutants that internally accumulate precursor form of the vacuolar hydrolase carboxypeptidase Y (CPY. Here, we report the uncovering and initial characterizations of twelve ENV genes. The small size of the collection and the lack of genes previously identified with vacuolar events are suggestive of the intended exclusive functional interface of the screen. Most notably, the collection includes four novel genes ENV7, ENV9, ENV10, and ENV11, and three genes previously linked to mitochondrial processes - MAM3, PCP1, PPE1. In all env mutants, vesicular trafficking stages were undisturbed in live cells as assessed by invertase and active α-factor secretion, as well as by localization of the endocytic fluorescent marker FM4-64 to the vacuole. Several mutants exhibit defects in stress survival functions associated with vacuoles. Confocal fluorescence microscopy revealed the collection to be significantly enriched in vacuolar morphologies suggestive of fusion and fission defects. These include the unique phenotype of lumenal vesicles within vacuoles in the novel env9Δ mutant and severely fragmented vacuoles upon deletion of GET4, a gene recently implicated in tail anchored membrane protein insertion. Thus, our results establish new gene functions in vacuolar function and morphology, and suggest a link between vacuolar and mitochondrial events.

  7. Structural and functional mapping of Rtg2p determinants involved in retrograde signaling and aging of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rafaela Maria Rios-Anjos

    Full Text Available In Saccharomyces cerevisiae mitochondrial dysfunction induces retrograde signaling, a pathway of communication from mitochondria to the nucleus that promotes a metabolic remodeling to ensure sufficient biosynthetic precursors for replication. Rtg2p is a positive modulator of this pathway that is also required for cellular longevity. This protein belongs to the ASKHA superfamily, and contains a putative N-terminal ATP-binding domain, but there is no detailed structural and functional map of the residues in this domain that accounts for their contribution to retrograde signaling and aging. Here we use Decomposition of Residue Correlation Networks and site-directed mutagenesis to identify Rtg2p structural determinants of retrograde signaling and longevity. We found that most of the residues involved in retrograde signaling surround the ATP-binding loops, and that Rtg2p N-terminus is divided in three regions whose mutants have different aging phenotypes. We also identified E137, D158 and S163 as possible residues involved in stabilization of ATP at the active site. The mutants shown here may be used to map other Rtg2p activities that crosstalk to other pathways of the cell related to genomic stability and aging.

  8. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  9. Creation of a synthetic xylose-inducible promoter for Saccharomyces cerevisiae

    Science.gov (United States)

    Saccharomyces cerevisiae is currently used to produce ethanol from glucose, but it cannot utilize five-carbon sugars contained in the hemicellulose component of biomass feedstocks. S. cerevisiae strains engineered for xylose fermentation have been made using constitutive promoters to express the req...

  10. Sucrose and Saccharomyces cerevisiae: a relationship most sweet.

    Science.gov (United States)

    Marques, Wesley Leoricy; Raghavendran, Vijayendran; Stambuk, Boris Ugarte; Gombert, Andreas Karoly

    2016-02-01

    Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is focused on sucrose metabolism in S. cerevisiae, a rather unexplored subject in the scientific literature. An analysis of sucrose availability in nature and yeast sugar metabolism was performed, in order to understand the molecular background that makes S. cerevisiae consume this sugar efficiently. A historical overview on the use of sucrose and S. cerevisiae by humans is also presented considering sugarcane and sugarbeet as the main sources of this carbohydrate. Physiological aspects of sucrose consumption are compared with those concerning other economically relevant sugars. Also, metabolic engineering efforts to alter sucrose catabolism are presented in a chronological manner. In spite of its extensive use in yeast-based industries, a lot of basic and applied research on sucrose metabolism is imperative, mainly in fields such as genetics, physiology and metabolic engineering. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Checkpoint inhibitors in cancer immunotherapy: Cross reactivity of a CTLA-4 antibody and IDO-inhibitor L-1MT in pigs

    DEFF Research Database (Denmark)

    Al-Shatrawi, Zina Adil; Frøsig, Thomas Mørch; Jungersen, Gregers

    a non-specific activation of porcine T cells. This will be further investigated to provide the basis for in vivo studies investigating checkpoint inhibitor blockade in combination with other cancer immunotherapies. Eventually our goal is to establish pigs as an alternative large animal model......Blockade of checkpoint inhibitors has recently shown very convincing results in the treatment of cancer. One key target is CTLA-4, which has been demonstrated to be a potent negative regulator of lymphocyte activation. The treatment with the FDA-approved fully human CTLA-4 monoclonal antibody...... Ipilimumab increases anticancer T-cell reactivity and overall survival of metastatic cancer patients. Indole-amine 2,3-dioxygenase (IDO) is another checkpoint inhibitor which suppresses T-cell immunity by the depletion of tryptophan in the T-cell microenvironment, and also inhibition of IDO by L-1...

  12. Removal of Strontium Ions by Immobilized Saccharomyces Cerevisiae in Magnetic Chitosan Microspheres

    Directory of Open Access Journals (Sweden)

    Yanan Yin

    2017-02-01

    Full Text Available A novel biosorbent, immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres was prepared, characterized, and used for the removal of Sr2+ from aqueous solution. The structure and morphology of immobilized S. cerevisiae before and after Sr2+adsorption were observed using scanning electron microscopy with energy dispersive X-ray spectroscopy. The experimental results showed that the Langmuir and Freundlich isotherm models could be used to describe the Sr2+ adsorption onto immobilized S. cerevisiae microspheres. The maximal adsorption capacity (qm was calculated to be 81.96 mg/g by the Langmuir model. Immobilized S. cerevisiae was an effective adsorbent for the Sr2+ removal from aqueous solution.

  13. Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Viranga Tilakaratna

    2017-09-01

    Full Text Available Genetic admixture can provide material for populations to adapt to local environments, and this process has played a crucial role in the domestication of plants and animals. The model yeast, Saccharomyces cerevisiae, has been domesticated multiple times for the production of wine, sake, beer, and bread, but the high rate of admixture between yeast lineages has so far been treated as a complication for population genomic analysis. Here, we make use of the low recombination rate at centromeres to investigate admixture in yeast using a classic Bayesian approach and a locus-by-locus phylogenetic approach. Using both approaches, we find that S. cerevisiae from stable oak woodland habitats are less likely to show recent genetic admixture compared with those isolated from transient habitats such as fruits, wine, or human infections. When woodland yeast strains do show recent genetic admixture, the degree of admixture is lower than in strains from other habitats. Furthermore, S. cerevisiae populations from oak woodlands are genetically isolated from each other, with only occasional migration between woodlands and local fruit habitats. Application of the phylogenetic approach suggests that there is a previously undetected population in North Africa that is the closest outgroup to the European S. cerevisiae, including the domesticated Wine population. Careful testing for admixture in S. cerevisiae leads to a better understanding of the underlying population structure of the species and will be important for understanding the selective processes underlying domestication in this economically important species.

  14. Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tilakaratna, Viranga; Bensasson, Douda

    2017-09-07

    Genetic admixture can provide material for populations to adapt to local environments, and this process has played a crucial role in the domestication of plants and animals. The model yeast, Saccharomyces cerevisiae , has been domesticated multiple times for the production of wine, sake, beer, and bread, but the high rate of admixture between yeast lineages has so far been treated as a complication for population genomic analysis. Here, we make use of the low recombination rate at centromeres to investigate admixture in yeast using a classic Bayesian approach and a locus-by-locus phylogenetic approach. Using both approaches, we find that S. cerevisiae from stable oak woodland habitats are less likely to show recent genetic admixture compared with those isolated from transient habitats such as fruits, wine, or human infections. When woodland yeast strains do show recent genetic admixture, the degree of admixture is lower than in strains from other habitats. Furthermore, S. cerevisiae populations from oak woodlands are genetically isolated from each other, with only occasional migration between woodlands and local fruit habitats. Application of the phylogenetic approach suggests that there is a previously undetected population in North Africa that is the closest outgroup to the European S. cerevisiae , including the domesticated Wine population. Careful testing for admixture in S. cerevisiae leads to a better understanding of the underlying population structure of the species and will be important for understanding the selective processes underlying domestication in this economically important species. Copyright © 2017 Tilakaratna and Bensasson.

  15. DNA polymerase I is required for premeiotic DNA replication and sporulation but not for X-ray repair in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Budd, M.E.; Wittrup, K.D.; Bailey, J.E.; Campbell, J.L.

    1989-01-01

    We have used a set of seven temperature-sensitive mutants in the DNA polymerase I gene of Saccharomyces cerevisiae to investigate the role of DNA polymerase I in various aspects of DNA synthesis in vivo. Previously, we showed that DNA polymerase I is required for mitotic DNA replication. Here we extend our studies to several stages of meiosis and repair of X-ray-induced damage. We find that sporulation is blocked in all of the DNA polymerase temperature-sensitive mutants and that premeiotic DNA replication does not occur. Commitment to meiotic recombination is only 2% of wild-type levels. Thus, DNA polymerase I is essential for these steps. However, repair of X-ray-induced single-strand breaks is not defective in the DNA polymerase temperature-sensitive mutants, and DNA polymerase I is therefore not essential for repair of such lesions. These results suggest that DNA polymerase II or III or both, the two other nuclear yeast DNA polymerases for which roles have not yet been established, carry out repair in the absence of DNA polymerase I, but that DNA polymerase II and III cannot compensate for loss of DNA polymerase I in meiotic replication and recombination. These results do not, however, rule out essential roles for DNA polymerase II or III or both in addition to that for DNA polymerase I

  16. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Guoqiang Xu

    Full Text Available Fumaric acid (FA is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1 was selected as the target gene on the basis of extensive literature mining. Flux balance analysis (FBA revealed that FUM1 deletion can lead to FA production and slightly lower growth of S. cerevisiae. The engineered S. cerevisiae strain obtained by deleting FUM1 can produce FA up to a concentration of 610±31 mg L(-1 without any apparent change in growth in fed-batch culture. FT-IR and (1H and (13C NMR spectra confirmed that FA was synthesized by the engineered S. cerevisiae strain. FBA identified pyruvate carboxylase as one of the factors limiting higher FA production. When the RoPYC gene was introduced, S. cerevisiae produced 1134±48 mg L(-1 FA. Furthermore, the final engineered S. cerevisiae strain was able to produce 1675±52 mg L(-1 FA in batch culture when the SFC1 gene encoding a succinate-fumarate transporter was introduced. These results demonstrate that the model shows great predictive capability for metabolic engineering. Moreover, FA production in S. cerevisiae can be efficiently developed with the aid of in silico metabolic engineering.

  17. Loss of p53 induces M-phase retardation following G2 DNA damage checkpoint abrogation.

    Science.gov (United States)

    Minemoto, Yuzuru; Uchida, Sanae; Ohtsubo, Motoaki; Shimura, Mari; Sasagawa, Toshiyuki; Hirata, Masato; Nakagama, Hitoshi; Ishizaka, Yukihito; Yamashita, Katsumi

    2003-04-01

    Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.

  18. The effect of ultrasound and its combination with radiation on the genetic material of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Silhankova, L.; Malkova-Kadlecova, Z.; Studlarova, Z.

    1978-01-01

    Ultrasonic radiation at 20 kHz with intensity 35 W/cm 2 and amplitude 15 to 25 μm applied to a diploid strain of Saccharomyces cerevisiae was found to act as a weak mutagen with maximum efficiency at the 20% survival of the cells. Under these conditions, the frequency of reversion of the suppressible allele ilv1-92 increased ten times, the frequency of mitotic gene conversion four times. Doses leading to survivals lower than 20% led to a slight increase in the frequency of cytoplasmic respiration-deficient mutants. Submutagenic doses applied immediately after γ or UV irradiation did not substantially increase the effect of these physical agents on the genetic material of the yeast strain investigated. Application of ultrasound prior to UV radiation did not considerably influence the effect of the UV radiation either. (author)

  19. A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions.

    Science.gov (United States)

    Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A

    2002-08-22

    A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.

  20. Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Tokuyasu Ken

    2008-04-01

    Full Text Available Abstract Background Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes. Results Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors. Conclusion Our analysis predicts that vanillin tolerance in Saccharomyces cerevisiae is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.

  1. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  2. Removal of strontium ions by immobilized saccharomyces cerevisiae in magnetic chitosan microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yanan; Wang, Jian Long; Yang, Xiao Yong; Li, Weihua [Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China)

    2017-02-15

    A novel biosorbent, immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres was prepared, characterized, and used for the removal of Sr{sup 2+} from aqueous solution. The structure and morphology of immobilized S. cerevisiae before and after Sr{sup 2+}adsorption were observed using scanning electron microscopy with energy dispersive X-ray spectroscopy. The experimental results showed that the Langmuir and Freundlich isotherm models could be used to describe the Sr{sup 2+} adsorption onto immobilized S. cerevisiae microspheres. The maximal adsorption capacity (q{sub m}) was calculated to be 81.96 mg/g by the Langmuir model. Immobilized S. cerevisiae was an effective adsorbent for the Sr{sup 2+} removal from aqueous solution.

  3. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  4. Expression of protein engineered NADP{sup +}-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matsushika, Akinori; Inoue, Hiroyuki; Murakami, Katsuji; Takimura, Osamu; Sawayama, Shigeki [National Institute of Advanced Industrial Science and Technology, Hiroshima (Japan). Biomass Technology Research Center; Watanabe, Seiya; Kodaki, Tsutomu; Makino, Keisuke [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2008-11-15

    A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD{sup +}-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP{sup +}. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP{sup +}-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP{sup +}-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain. (orig.)

  5. Clinical features, predictive correlates, and pathophysiology of immune-related adverse events in immune checkpoint inhibitor treatments in cancer: a short review

    OpenAIRE

    Yoest, Jennifer M

    2017-01-01

    Jennifer M Yoest Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA Abstract: Identification and characterization of T-cell regulatory mechanisms, or checkpoints, have led to a wave of drug development aimed at inhibiting these targets to “remove the brakes” of the immune system. This class of anticancer therapeutics, termed immune checkpoint inhibitors (ICIs), has harnessed the potential of the body’s own immune system to reco...

  6. The Transcriptional Response of Diverse Saccharomyces cerevisiae Strains to Simulated Microgravity

    Science.gov (United States)

    Neff, Lily S.; Fleury, Samantha T.; Galazka, Jonathan M.

    2018-01-01

    Spaceflight imposes multiple stresses on biological systems resulting in genome-scale adaptations. Understanding these adaptations and their underlying molecular mechanisms is important to clarifying and reducing the risks associated with spaceflight. One such risk is infection by microbes present in spacecraft and their associated systems and inhabitants. This risk is compounded by results suggesting that some microbes may exhibit increased virulence after exposure to spaceflight conditions. The yeast, S. cerevisiae, is a powerful microbial model system, and its response to spaceflight has been studied for decades. However, to date, these studies have utilized common lab strains. Yet studies on trait variation in S. cerevisiae demonstrate that these lab strains are not representative of wild yeast and instead respond to environmental stimuli in an atypical manner. Thus, it is not clear how transferable these results are to the wild S. cerevisiae strains likely to be encountered during spaceflight. To determine if diverse S. cerevisiae strains exhibit a conserved response to simulated microgravity, we will utilize a collection of 100 S. cerevisiae strains isolated from clinical, environmental and industrial settings. We will place selected S. cerevisiae strains in simulated microgravity using a high-aspect rotating vessel (HARV) and document their transcriptional response by RNA-sequencing and quantify similarities and differences between strains. Our research will have a strong impact on the understanding of how genetic diversity of microorganisms effects their response to spaceflight, and will serve as a platform for further studies.

  7. A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae.

    Science.gov (United States)

    Allan, Christopher M; Hill, Shauna; Morvaridi, Susan; Saiki, Ryoichi; Johnson, Jarrett S; Liau, Wei-Siang; Hirano, Kathleen; Kawashima, Tadashi; Ji, Ziming; Loo, Joseph A; Shepherd, Jennifer N; Clarke, Catherine F

    2013-04-01

    Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1-coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Guidelines for the naming of genes, gene products, and mutants in the opportunistic protists.

    Science.gov (United States)

    Limper, Andrew H; Weiss, Louis M

    2011-01-01

    The opportunistic protists encompass a wide diversity of organisms including Pneumocystis, Toxoplasma, cryptosporidia, microsporidia, and related genera. Recent advances in the molecular biology and cellular biochemistry of these organisms have led to the identification of an ever growing numbers of key genes and their cognate proteins. Until now, these molecules have not been designated using any consistent nomenclature system, leading to considerable confusion. The participants of the 11th International Workshop on Opportunistic Protists met on August 3, 2010 to reach consensus of a nomenclature system for genes, gene products, and mutants in the opportunistic protists. The following summary reports the consensus agreement to move toward a unified nomenclature system for these organisms. The system is adapted from that used for Saccharomyces cerevisiae. © 2011 The Author(s). Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  9. Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Garaiová, Martina; Zambojová, Veronika; Simová, Zuzana; Griač, Peter; Hapala, Ivan

    2014-03-01

    Squalene is a valuable natural substance with several biotechnological applications. In the yeast Saccharomyces cerevisiae, it is produced in the isoprenoid pathway as the first precursor dedicated to ergosterol biosynthesis. The aim of this study was to explore the potential of squalene epoxidase encoded by the ERG1 gene as the target for manipulating squalene levels in yeast. Highest squalene levels (over 1000 μg squalene per 10(9)  cells) were induced by specific point mutations in ERG1 gene that reduced activity of squalene epoxidase and caused hypersensitivity to terbinafine. This accumulation of squalene in erg1 mutants did not significantly disturb their growth. Treatment with squalene epoxidase inhibitor terbinafine revealed a limit in squalene accumulation at 700 μg squalene per 10(9)  cells which was associated with pronounced growth defects. Inhibition of squalene epoxidase activity by anaerobiosis or heme deficiency resulted in relatively low squalene levels. These levels were significantly increased by ergosterol depletion in anaerobic cells which indicated feedback inhibition of squalene production by ergosterol. Accumulation of squalene in erg1 mutants and terbinafine-treated cells were associated with increased cellular content and aggregation of lipid droplets. Our results prove that targeted genetic manipulation of the ERG1 gene is a promising tool for increasing squalene production in yeast. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd.

  10. N-acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiaoyi [Fukui Prefectural Univ., Fukui (Japan). Dept. of Bioscience; Takagi, Hiroshi [Nara Inst. of Science and Technology, Ikoma, Nara (Japan). Graduate School of Biological Sciences

    2007-07-15

    N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H{sub 2}O{sub 2}, heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H{sub 2}O{sub 2} or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H{sub 2}O{sub 2}. Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains. (orig.)

  11. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...

  12. Homing at an extragenic locus mediated by VDE (PI-SceI) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Nogami, Satoru; Fukuda, Tomoyuki; Nagai, Yuri; Yabe, Shizu; Sugiura, Masako; Mizutani, Ryuta; Satow, Yoshinori; Anraku, Yasuhiro; Ohya, Yoshikazu

    2002-06-30

    PI-SceI (VDE), a homing endonuclease with protein splicing activity, is a genomic parasite in the VMA1 gene of Saccharomyces cerevisiae. In a heterozygous diploid of the VDE-less VMA1 allele and a VDE-containing VMA1 allele, VDE specifically cleaves its recognition sequence (VRS) in the VDE-less VMA1 allele at meiosis, followed by 'homing', i.e. a conversion to a VDE-containing allele. We found that upon VDE expression, homing of a marker gene at an extragenic locus occurs only when a 45 bp element containing the VRS is inserted at its allelic site, while mutants of VDE with no endonuclease activity lack authentic extragenic homing activity. Thus, both the VRS and VDE are required for homing. Insertion of the VRS in a homozygous diploid significantly lowered the spore germination ability, indicating that a template for gene repair at its allelic locus is essential for efficient homing and survival of yeast cells. Copyright 2002 John Wiley & Sons, Ltd.

  13. Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1.

    Science.gov (United States)

    Ghislain, Michel; Talla, Emmanuel; François, Jean M

    2002-02-01

    Nicotinamidase (NAMase) from the budding yeast, Saccharomyces cerevisiae, was purified by Ni(2+) affinity chromatography and gel filtration. N-terminal microsequencing revealed sequence identity with a hypothetical polypeptide encoded by the yeast YGL037C open reading frame sharing 30% sequence identity with Escherichia coli pyrazinamidase/nicotinamidase. A yeast strain in which the NAMase gene, hereafter named PNC1, was deleted shows a decreased intracellular NAD(+) concentration, consistent with the loss of NAMase activity in the null mutant. In wild-type strains, NAMase activity is stimulated during the stationary phase of growth, by various hyperosmotic shocks or by ethanol treatment. Using a P(PNC1)::lacZ gene fusion, we have shown that this stimulation of NAMase activity results from increased levels of the protein and requires stress response elements in the 5'non-coding region of PNC1. These results suggest that NAMase helps yeast cells to adapt to various stress conditions and nutrient depletion, most likely via the activation of NAD-dependent biological processes. Copyright 2002 John Wiley & Sons, Ltd.

  14. Rituximab does not reset defective early B cell tolerance checkpoints

    Science.gov (United States)

    Chamberlain, Nicolas; Massad, Christopher; Oe, Tyler; Cantaert, Tineke; Herold, Kevan C.; Meffre, Eric

    2015-01-01

    Type 1 diabetes (T1D) patients show abnormalities in early B cell tolerance checkpoints, resulting in the accumulation of large numbers of autoreactive B cells in their blood. Treatment with rituximab, an anti-CD20 mAb that depletes B cells, has been shown to preserve β cell function in T1D patients and improve other autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. However, it remains largely unknown how anti–B cell therapy thwarts autoimmunity in these pathologies. Here, we analyzed the reactivity of Abs expressed by single, mature naive B cells from 4 patients with T1D before and 52 weeks after treatment to determine whether rituximab resets early B cell tolerance checkpoints. We found that anti–B cell therapy did not alter the frequencies of autoreactive and polyreactive B cells, which remained elevated in the blood of all patients after rituximab treatment. Moreover, the limited proliferative history of autoreactive B cells after treatment revealed that these clones were newly generated B cells and not self-reactive B cells that had escaped depletion and repopulated the periphery through homeostatic expansion. We conclude that anti–B cell therapy may provide a temporary dampening of autoimmune processes through B cell depletion. However, repletion with autoreactive B cells may explain the relapse that occurs in many autoimmune patients after anti–B cell therapy. PMID:26642366

  15. Construction of killer industrial yeast Saccharomyces cerevisiae HAU-1 and its fermentation performance

    Directory of Open Access Journals (Sweden)

    Bijender K. Bajaj

    2010-06-01

    Full Text Available Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling.

  16. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Franken, Jaco; Brandt, Bianca A; Tai, Siew L; Bauer, Florian F

    2013-01-01

    Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast.

  17. Impact of the reg1 mutation glycocen accumulation and glucose consumption rates in Saccharomyces cerevisiae cells based on a macrokinetic model

    Directory of Open Access Journals (Sweden)

    Rocha-Leão M.H.M.

    2003-01-01

    Full Text Available In S. cerevisiae, catabolite repression controls glycogen accumulation and glucose consumption. Glycogen is responsible for stress resistance, and its accumulation in derepression conditions results in a yeast with good quality. In yeast cells, catabolite repression also named glucose effect takes place at the transcriptional levels, decreasing enzyme respiration and causing the cells to enter a fermentative metabolism, low cell mass yield and yeast with poor quality. Since glucose is always present in molasses the glucose effect occurs in industrial media. A quantitative characterization of cell growth, substrate consumption and glycogen formation was undertaken based on an unstructured macrokinetic model for a reg1/hex2 mutant, capable of the respiration while growing on glucose, and its isogenic repressible strain (REG1/HEX2. The results show that the estimated value to maximum specific glycogen accumulation rate (muG,MAX is eight times greater in the reg1/hex2 mutant than its isogenic strain, and the glucose affinity constant (K SS is fifth times greater in reg1/hex2 mutant than in its isogenic strain with less glucose uptake by the former channeling glucose into cell mass growth and glycogen accumulation simultaneously. This approach may be one more tool to improve the glucose removal in yeast production. Thus, disruption of the REG1/HEX2 gene may constitute an important strategy for producing commercial yeast.

  18. Directed Evolution towards Increased Isoprenoid Production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Carlsen, Simon; Nielsen, Michael Lynge; Kielland-Brandt, Morten

    production can easily be scaled to meet current demands and it is also an environmental benign production method compared to organic synthesis. Thus it would be attractive to engineer a microorganism to produce high amounts of IPP and other immediate prenyl precursors such as geranyl pyrophosphate, farnesyl...... for discovering new genetic perturbations, which would results in and increased production of isoprenoids by S. cerevisiae has been very limited. This project is focus on creating diversity within a lycopene producing S. cerevisiae strain by construction of gDNA-, cDNA-, and transposon-libraries. The diversified...... coloration which is the result of higher amount of lycopene is being produced and hence high amount of isoprenoid precursor being available. This will elucidate novel genetic targets for increasing isoprenoid production in S. cerevisiae...

  19. A genetic screen for increasing metabolic flux in the isoprenoid pathway of Saccharomyces cerevisiae: Isolation of SPT15 mutants using the screen

    Directory of Open Access Journals (Sweden)

    M. Wadhwa

    2016-12-01

    Full Text Available A genetic screen to identify mutants that can increase flux in the isoprenoid pathway of yeast has been lacking. We describe a carotenoid-based visual screen built with the core carotenogenic enzymes from the red yeast Rhodosporidium toruloides. Enzymes from this yeast displayed the required, higher capacity in the carotenoid pathway. The development also included the identification of the metabolic bottlenecks, primarily phytoene dehydrogenase, that was subjected to a directed evolution strategy to yield more active mutants. To further limit phytoene pools, a less efficient version of GGPP synthase was employed. The screen was validated with a known flux increasing gene, tHMG1. New mutants in the TATA binding protein SPT15 were isolated using this screen that increased the yield of carotenoids, and an alternate isoprenoid, α-Farnesene confirming increase in overall flux. The findings indicate the presence of previously unknown links to the isoprenoid pathway that can be uncovered using this screen. Keywords: Metabolic engineering, Carotenoids, Isoprenoids, α-Farnesene, Rhodosporidium toruloides, SPT15

  20. UV-induced mitotic recombination and its dependence on photoreactivation and liquid holding in the rad6-1 mutant of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Haladus, E.; Zuk, J.

    1980-01-01

    Spontaneous and UV-induced mitotic recombination was compared in diploids homozygous for rad6-1 mutation and in the wild-type strain carrying heterozygous markers for detecting gene conversion (hom 2-1, hom 2-2) and crossing over (ade 1, ade 2). Diploids homozygous for rad6-1 mutation were characterised by an elevated level of spontaneous and UV-induced mitotic recombination, particularly the intergenic events. Exposure of UV-irradiated strains to visible light resulted in an increased survival and decreased level of mitotic recombination. Liquid holding (LH) differentially affected frequency of mitotic intergenic and intragenic recombination in mutant and wild-type strains, being without any significant effect on cell survival. In a mutant strain intragenic recombination is significantly increased, intergenic only slightly. In the wild-type strain intragenic recombination is slightly decreased but intergenic is not changed by LH. Visible light applied after LH had no effect on survival and mitotic recombination in the wild type, while in the mutant strain photoreactivability of survival was fully preserved and accompanied by a decrease in the frequency of intragenic and intergenic recombination. The results suggest that metabolic pathways responsible for restoring cell survival are independent of or only partly overlapping with those concerning recombination events. (orig.) [de