WorldWideScience

Sample records for cereus bacillus thuringiensis

  1. Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    Science.gov (United States)

    Wilson, Melissa K; Abergel, Rebecca J; Raymond, Kenneth N; Arceneaux, Jean E L; Byers, B Rowe

    2006-09-15

    Three Bacillus anthracis Sterne strains (USAMRIID, 7702, and 34F2) and Bacillus cereus ATCC 14579 excrete two catecholate siderophores, petrobactin (which contains 3,4-dihydroxybenzoyl moieties) and bacillibactin (which contains 2,3-dihydroxybenzoyl moieties). However, the insecticidal organism Bacillus thuringiensis ATCC 33679 makes only bacillibactin. Analyses of siderophore production by previously isolated [Cendrowski et al., Mol. Microbiol. 52 (2004) 407-417] B. anthracis mutant strains revealed that the B. anthracis bacACEBF operon codes for bacillibactin production and the asbAB gene region is required for petrobactin assembly. The two catecholate moieties also were synthesized by separate routes. PCR amplification identified both asbA and asbB genes in the petrobactin producing strains whereas B. thuringiensis ATCC 33679 retained only asbA. Petrobactin synthesis is not limited to the cluster of B. anthracis strains within the B. cereus sensu lato group (in which B. cereus, B. anthracis, and B. thuringiensis are classified), although petrobactin might be prevalent in strains with pathogenic potential for vertebrates.

  2. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis.

    Science.gov (United States)

    Han, Cliff S; Xie, Gary; Challacombe, Jean F; Altherr, Michael R; Bhotika, Smriti S; Brown, Nancy; Bruce, David; Campbell, Connie S; Campbell, Mary L; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic, Mira; Doggett, Norman A; Fawcett, John J; Glavina, Tijana; Goodwin, Lynne A; Green, Lance D; Hill, Karen K; Hitchcock, Penny; Jackson, Paul J; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti, Stephanie; McMurry, Kim; Meincke, Linda J; Misra, Monica; Moseman, Bernice L; Mundt, Mark; Munk, A Christine; Okinaka, Richard T; Parson-Quintana, B; Reilly, Lee Philip; Richardson, Paul; Robinson, Donna L; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G; Thayer, Nina; Thompson, Linda S; Tice, Hope; Ticknor, Lawrence O; Wills, Patti L; Brettin, Thomas S; Gilna, Paul

    2006-05-01

    Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis are closely related gram-positive, spore-forming bacteria of the B. cereus sensu lato group. While independently derived strains of B. anthracis reveal conspicuous sequence homogeneity, environmental isolates of B. cereus and B. thuringiensis exhibit extensive genetic diversity. Here we report the sequencing and comparative analysis of the genomes of two members of the B. cereus group, B. thuringiensis 97-27 subsp. konkukian serotype H34, isolated from a necrotic human wound, and B. cereus E33L, which was isolated from a swab of a zebra carcass in Namibia. These two strains, when analyzed by amplified fragment length polymorphism within a collection of over 300 of B. cereus, B. thuringiensis, and B. anthracis isolates, appear closely related to B. anthracis. The B. cereus E33L isolate appears to be the nearest relative to B. anthracis identified thus far. Whole-genome sequencing of B. thuringiensis 97-27and B. cereus E33L was undertaken to identify shared and unique genes among these isolates in comparison to the genomes of pathogenic strains B. anthracis Ames and B. cereus G9241 and nonpathogenic strains B. cereus ATCC 10987 and B. cereus ATCC 14579. Comparison of these genomes revealed differences in terms of virulence, metabolic competence, structural components, and regulatory mechanisms.

  3. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Science.gov (United States)

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  4. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Annika Gillis

    2014-07-01

    Full Text Available Many bacteriophages (phages have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.

  5. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food

    DEFF Research Database (Denmark)

    Rosenquist, Hanne; Ørum-Smidt, Lasse; Andersen, Sigrid R

    2005-01-01

    Among 48,901 samples of ready-to-eat food products at the Danish retail market, 0.5% had counts of Bacillus cereus-like bacteria above 10(4) cfu g(-1). The high counts were most frequently found in starchy, cooked products, but also in fresh cucumbers and tomatoes. Forty randomly selected strains...... had at least one gene or component involved in human diarrhoeal disease, while emetic toxin was related to only one B. cereus strain. A new observation was that 31 out of the 40 randomly selected B. cereus-like strains could be classified as Bacillus thuringiensis due to crystal production and...

  6. Occurrence of Toxigenic Bacillus cereus and Bacillus thuringiensis in Doenjang, a Korean Fermented Soybean Paste.

    Science.gov (United States)

    Park, Kyung Min; Kim, Hyun Jung; Jeong, Moon Cheol; Koo, Minseon

    2016-04-01

    This study determined the prevalence and toxin profile of Bacillus cereus and Bacillus thuringiensis in doenjang, a fermented soybean food, made using both traditional and commercial methods. The 51 doenjang samples tested were broadly contaminated with B. cereus; in contrast, only one sample was positive for B. thuringiensis. All B. cereus isolates from doenjang were positive for diarrheal toxin genes. The frequencies of nheABC and hblACD in traditional samples were 22.7 and 0%, respectively, whereas 5.1 and 5.1% of B. cereus isolates from commercial samples possessed nheABC and hblACD, respectively. The detection rate of ces gene was 10.8%. The predominant toxin profile among isolates from enterotoxigenic B. cereus in doenjang was profile 4 (entFM-bceT-cytK). The major enterotoxin genes in emetic B. cereus were cytK, entFM, and nheA genes. The B. thuringiensis isolate was of the diarrheagenic type. These results provide a better understanding of the epidemiology of the enterotoxigenic and emetic B. cereus groups in Korean fermented soybean products.

  7. Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Viviane Zahner

    2013-02-01

    Full Text Available Multiple locus sequence typing (MLST was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR. Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap, encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.

  8. [Septicaemia of chironomid larvae (Diptera: Chironomidae) promoted by Bacillus cereus and B. thuringiensis].

    Science.gov (United States)

    Khodyrev, V P

    2012-01-01

    Natural factors regulating the population of chironomids were studied. The bacteria Bacillus cereus were isolated from chironomids sampled from Kuyalnitskii Firth after epizooty of Chironomus sp., and bacteria Bacillus thuringiensis spp. israelensis (Bti) were isolated from dead larva of Chironomus plumosus sampled in the Sea of Azov (3-m depth). Bti were characterized by high insecticide activity on midges Anopheles messeae Fall., Aedes cireneus Mg., and Culex pipiens pipiens f. pipiens L.

  9. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices.

    Science.gov (United States)

    Hariram, Upasana; Labbé, Ronald

    2015-03-01

    Recent incidents of foodborne illness associated with spices as the vehicle of transmission prompted this examination of U.S. retail spices with regard to Bacillus cereus. This study focused on the levels of aerobic-mesophilic spore-forming bacteria and B cereus spores associated with 247 retail spices purchased from five states in the United States. Samples contained a wide range of aerobic-mesophilic bacterial spore counts ( 10(7) CFU/g). Using a novel chromogenic agar, B. cereus and B. thuringiensis spores were isolated from 77 (31%) and 11 (4%) samples, respectively. Levels of B. cereus were thuringiensis isolates possessed at least one type of enterotoxin gene: HBL (hemolysin BL) or nonhemolytic enterotoxin (NHE). None of the 88 isolates obtained in this study possessed the emetic toxin gene (ces). Using commercially available immunological toxin detection kits, the toxigenicity of the isolates was confirmed. The NHE enterotoxin was expressed in 98% of B. cereus and 91% of B. thuringiensis isolates that possessed the responsible gene. HBL enterotoxin was detected in 87% of B. cereus and 100% of B. thuringiensis PCR-positive isolates. Fifty-two percent of B. cereus and 54% of B. thuringiensis isolates produced both enterotoxins. Ninety-seven percent of B. cereus isolates grew at 12°C, although only two isolates grew well at 9°C. The ability of these spice isolates to form spores, produce diarrheal toxins, and grow at moderately abusive temperatures makes retail spices an important potential vehicle for foodborne illness caused by B. cereus strains, in particular those that produce diarrheal toxins.

  10. Diagnostic properties of three conventional selective plating media for selection of Bacillus cereus, B. thuringiensis and B. weihenstephanensis

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Hansen, Bjarne Munk

    2011-01-01

    The aim of this study was to assess the diagnostic properties of the two selective plating media and a chromogenic medium for identification of Bacillus cereus. The 324 isolates were B. cereus (37%), Bacillus weihenstephanensis (45%) or Bacillus thuringiensis (18%), as identified by a new...... combination of techniques. All isolates were growing on mannitol–egg yolk–polymyxin agar (MYP), and they did not form acid from mannitol. However, a significant lower number of B. thuringiensis isolates did not show lecithinase activity. All isolates were also growing on polymyxin–egg yolk...... recommended selective plating media MYP and PEMBA for detection of B. cereus group bacteria both have their limitations for identification of some B. cereus, B. weihenstephanensis or B. thuringiensis. However, MYP is preferable compared to PEMBA. The chromogenic medium has its own advantages and limitations...

  11. The Pathogenomic Sequence Analysis of B. cereus and B.thuringiensis Isolates Closely Related to Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Cliff S.; Xie, Gary; Challacombe, Jean F.; Altherr, MichaelR.; Smriti, B.; Bruce, David; Campbell, Connie S.; Campbell, Mary L.; Chen, Jin; Chertkov, Olga; Cleland, Cathy; Dimitrijevic-Bussod, M.; Doggett, Norman A.; Fawcett, John J.; Glavina, Tijana; Goodwin, Lynne A.; Hill, Karen K.; Hitchcock, Penny; Jackson, Paul J.; Keim, Paul; Kewalramani, Avinash Ramesh; Longmire, Jon; Lucas, Susan; Malfatti,Stephanie; McMurry, Kim; Meincke, Linda J.; Misra, Monica; Moseman,Bernice L.; Mundt, Mark; Munk, A. Christine; Okinaka, Richard T.; Parson-Quintana, B.; Reilly, Lee P.; Richardson, Paul; Robinson, DonnaL.; Rubin, Eddy; Saunders, Elizabeth; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Ticknor, Lawrence O.; Wills, Patti L.; Gilna, Payl; Brettin, Thomas S.

    2005-08-18

    The sequencing and analysis of two close relatives of Bacillus anthracis are reported. AFLP analysis of over 300 isolates of B.cereus, B. thuringiensis and B. anthracis identified two isolates as being very closely related to B. anthracis. One, a B. cereus, BcE33L, was isolated from a zebra carcass in Nambia; the second, a B. thuringiensis, 97-27, was isolated from a necrotic human wound. The B. cereus appears to be the closest anthracis relative sequenced to date. A core genome of over 3,900 genes was compiled for the Bacillus cereus group, including Banthracis. Comparative analysis of these two genomes with other members of the B. cereus group provides insight into the evolutionary relationships among these organisms. Evidence is presented that differential regulation modulates virulence, rather than simple acquisition of virulence factors. These genome sequences provide insight into the molecular mechanisms contributing to the host range and virulence of this group of organisms.

  12. Influence of multi-year Bacillus thuringiensis subsp. israelensis on the abundance of B. cereus group populations in Swedish riparian wetland soils

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Schneider, Salome; Tajrin, Tania

    Bacillus thuringiensis subsp. israelensis (Bti) is a soil-born bacterium affiliated to the B. cereus group (Bcg, a group including the pathogens B. cereus, B. thuringiensis, and B. anthracis) and used in biocontrol products against nematoceran larvae. However, knowledge is limited on how long...

  13. Bacillus cereus and Bacillus thuringiensis spores in Korean rice: prevalence and toxin production as affected by production area and degree of milling.

    Science.gov (United States)

    Kim, Booyoung; Bang, Jihyun; Kim, Hoikyung; Kim, Yoonsook; Kim, Byeong-Sam; Beuchat, Larry R; Ryu, Jee-Hoon

    2014-09-01

    We determined the prevalence of and toxin production by Bacillus cereus and Bacillus thuringiensis in Korean rice as affected by production area and degree of milling. Rough rice was collected from 64 farms in 22 agricultural areas and polished to produce brown and white rice. In total, rice samples were broadly contaminated with B. cereus spores, with no effect of production area. The prevalence and counts of B. cereus spores declined as milling progressed. Frequencies of hemolysin BL (HBL) production by isolates were significantly (P ≤ 0.01) reduced as milling progressed. This pattern corresponded with the presence of genes encoding the diarrheal enterotoxins. The frequency of B. cereus isolates positive for hblC, hblD, or nheB genes decreased as milling progressed. Because most B. cereus isolates from rice samples contained six enterotoxin genes, we concluded that B. cereus in rice produced in Korea is predominantly of the diarrheagenic type. The prevalence of B. thuringiensis in rice was significantly lower than that of B. cereus and not correlated with production area. All B. thuringiensis isolates were of the diarrheagenic type. This study provides information useful for predicting safety risks associated with B. cereus and B. thuringiensis in rough and processed Korean rice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Purification and characterization of a new Bacillus thuringiensis bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens.

    Science.gov (United States)

    Kamoun, Fakher; Fguira, Ines Ben; Hassen, Najeh Belguith Ben; Mejdoub, Hafedh; Lereclus, Didier; Jaoua, Samir

    2011-09-01

    This study reports on the identification, characterization and purification of a new bacteriocin, named Bacthuricin F103, from a Bacillus thuringiensis strain BUPM103. Bacthuricin F103 production began in the early exponential phase and reached a maximum in the middle of the same phase. Two chromatographic methods based on high performance liquid chromatography and fast protein liquid chromatography systems were used to purify Bacthuricin F103. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed that this bacteriocin had a molecular weight of approximately 11 kDa. It also showed a wide range of thermostability of up to 80 °C for 60 min and a broad spectrum of antimicrobial activity over a pH range of 3.0-10.0. This bacteriocin was noted, and for the first time, to exhibit potent antimicrobial activity against Agrobacterium subsp. strains, the major causal agents of crown gall disease in tomato and vineyard crops, and against several challenging organisms in food, such as Listeria monocytogenes and Bacillus cereus. Complete killing with immediate impact on cells was observed within a short period of time. The sequence obtained for Bacthuricin F103 by direct N-terminal sequencing shared considerable homology with hemolysin. Bacthuricin F103 was noted to act through the depletion of intracellular ions, which suggest that the cell membrane was a possible target to Bacthuricin F103.

  15. The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579.

    Science.gov (United States)

    Carlson, C R; Johansen, T; Kolstø, A B

    1996-08-01

    A physical map of the Bacillus thuringiensis subsp. canadensis HD224 chromosome based on AscI, NotI, and SfiI restriction sites has been established. The chromosome map of 4.3 Mb was similar to a revised map of the chromosome of the B. cereus type strain ATCC 14579, except that the B. thuringiensis subsp. canadensis HD224 chromosome lacked a NotI site and had two additional AscI sites. The positions of 27 probes were identical in the common macromap. A probe for the insecticidal toxin gene, cryIA, hybridized only to the B. thuringiensis subsp. canadensis HD224 chromosome. The BssHII ribotype patterns were almost identical confirming the similarity between the two strains.

  16. Bacillus thuringiensis

    Science.gov (United States)

    Hollensteiner, Jacqueline; Wemheuer, Franziska; Harting, Rebekka; Kolarzyk, Anna M; Diaz Valerio, Stefani M; Poehlein, Anja; Brzuszkiewicz, Elzbieta B; Nesemann, Kai; Braus-Stromeyer, Susanna A; Braus, Gerhard H; Daniel, Rolf; Liesegang, Heiko

    2016-01-01

    Verticillium wilt causes severe yield losses in a broad range of economically important crops worldwide. As many soil fumigants have a severe environmental impact, new biocontrol strategies are needed. Members of the genus Bacillus are known as plant growth-promoting bacteria (PGPB) as well as biocontrol agents of pests and diseases. In this study, we isolated 267 Bacillus strains from root-associated soil of field-grown tomato plants. We evaluated the antifungal potential of 20 phenotypically diverse strains according to their antagonistic activity against the two phytopathogenic fungi Verticillium dahliae and Verticillium longisporum . In addition, the 20 strains were sequenced and phylogenetically characterized by multi-locus sequence typing (MLST) resulting in 7 different Bacillus thuringiensis and 13 Bacillus weihenstephanensis strains. All B. thuringiensis isolates inhibited in vitro the tomato pathogen V. dahliae JR2, but had only low efficacy against the tomato-foreign pathogen V. longisporum 43. All B. weihenstephanensis isolates exhibited no fungicidal activity whereas three B. weihenstephanensis isolates showed antagonistic effects on both phytopathogens. These strains had a rhizoid colony morphology, which has not been described for B. weihenstephanensis strains previously. Genome analysis of all isolates revealed putative genes encoding fungicidal substances and resulted in identification of 304 secondary metabolite gene clusters including 101 non-ribosomal polypeptide synthetases and 203 ribosomal-synthesized and post-translationally modified peptides. All genomes encoded genes for the synthesis of the antifungal siderophore bacillibactin. In the genome of one B. thuringiensis strain, a gene cluster for zwittermicin A was detected. Isolates which either exhibited an inhibitory or an interfering effect on the growth of the phytopathogens carried one or two genes encoding putative mycolitic chitinases, which might contribute to antifungal activities

  17. Denitration of glycerol trinitrate by resting cells and cell extracts of Bacillus thuringiensis/cereus and Enterobacter agglomerans.

    Science.gov (United States)

    Meng, M; Sun, W Q; Geelhaar, L A; Kumar, G; Patel, A R; Payne, G F; Speedie, M K; Stacy, J R

    1995-07-01

    A number of microorganisms were selected from soil and sediment samples which were known to have been previously exposed to nitrate ester contaminants. The two most effective bacteria for transforming glycerol trinitrate (GTN) were identified as Bacillus thuringiensis/cereus and Enterobacter agglomerans. For both isolates, denitration activities were expressed constitutively and GTN was not required for induction. Dialysis of cell extracts from both isolates did not affect denitration, which indicates that dissociable and depletable cofactors are not required for denitration. With thin-layer chromatography and high-performance liquid chromatography, the denitration pathway for both isolates was shown to be a sequential denitration of GTN to glycerol dinitrate isomers, glycerol mononitrate isomers, and ultimately to glycerol. GTN was observed to be completely converted to glycerol during a long-term incubation of cell extracts.

  18. Novel motB as a potential predictive tool for identification of B. cereus, B. thuringiensis and differentiation from other Bacillus species by triplex real-time PCR.

    Science.gov (United States)

    Chelliah, Ramachandran; Wei, Shuai; Park, Byung-Jae; Kim, Se-Hun; Park, Dong-Suk; Kim, Soon Han; Hwan, Kim Seok; Oh, Deog-Hwan

    2017-10-01

    Quantitative triplex real-time PCR (qPCR) offers an alternative method for detection of bacterial contamination. It provides quantitation of the number of gene copies. In our study, we established a qPCR assay to detect and quantify the specificity towards Bacillus cereus and B. thuringiensis. The assay was designed to detect a 280 bp fragment of motB gene encoding the flagellar motor protein, specific for detection of B. cereus and B. thuringiensis, excluding other group species B. pseudomycoides, B. mycoides and B. weihenstephanensis. Specificity of the assay was confirmed with 111 strains belonging to Bacillus cereus group and performed against 58 B. cereus, 50 B. thuringiensis, 3 other Bacillus bacteria and 9 non-Bacillus bacteria. Detection limit was determined for each assay. Direct analysis of samples revealed the specificity towards identification and characterization of B. cereus group cultured in nutrient media. Based on results, it was observed that motB showed 97% specificity towards B. cereus strains, 98% for B. thuringiensis but other B. cereus group showed less sensitivity (0%), thus, provides an efficient tool to identify B. cereus and B. thuringiensis. Further, environmental and food samples do not require band isolation, re-amplification or sequence identification. Thus, reducing the time and cost of analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Bacillus Cereus

    African Journals Online (AJOL)

    Mannitol Egg Yolk Polymyxin B sulfate agar (MEYP) is widely used in Europe and the United States to isolate B. cereus from food products. MEYP is based on lecithin hydrolysis and ... typing, gas-liquid chromatography of ..... Passive Latex Agglutination kit (RPLA) and an Enzyme-Linked lmmunoSorbent Assay. (ELISA).

  20. Characterization of Bacillus cereus

    NARCIS (Netherlands)

    Wijnands LM; Dufrenne JB; Leusden FM; MGB

    2002-01-01

    Bacillus cereus is a ubiquitary microorganism that may cause food borne disease. Pathogenicity, however, depends on various characteristics such as the ability to form (entero)-toxin(s) that can not be detected by microbiological methods. Further characterization of pathogenic properties is not only

  1. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis.

    Science.gov (United States)

    Ivanova, Natalia; Sorokin, Alexei; Anderson, Iain; Galleron, Nathalie; Candelon, Benjamin; Kapatral, Vinayak; Bhattacharyya, Anamitra; Reznik, Gary; Mikhailova, Natalia; Lapidus, Alla; Chu, Lien; Mazur, Michael; Goltsman, Eugene; Larsen, Niels; D'Souza, Mark; Walunas, Theresa; Grechkin, Yuri; Pusch, Gordon; Haselkorn, Robert; Fonstein, Michael; Ehrlich, S Dusko; Overbeek, Ross; Kyrpides, Nikos

    2003-05-01

    Bacillus cereus is an opportunistic pathogen causing food poisoning manifested by diarrhoeal or emetic syndromes. It is closely related to the animal and human pathogen Bacillus anthracis and the insect pathogen Bacillus thuringiensis, the former being used as a biological weapon and the latter as a pesticide. B. anthracis and B. thuringiensis are readily distinguished from B. cereus by the presence of plasmid-borne specific toxins (B. anthracis and B. thuringiensis) and capsule (B. anthracis). But phylogenetic studies based on the analysis of chromosomal genes bring controversial results, and it is unclear whether B. cereus, B. anthracis and B. thuringiensis are varieties of the same species or different species. Here we report the sequencing and analysis of the type strain B. cereus ATCC 14579. The complete genome sequence of B. cereus ATCC 14579 together with the gapped genome of B. anthracis A2012 enables us to perform comparative analysis, and hence to identify the genes that are conserved between B. cereus and B. anthracis, and the genes that are unique for each species. We use the former to clarify the phylogeny of the cereus group, and the latter to determine plasmid-independent species-specific markers.

  2. Bacillus thuringiensis (Bt)

    Science.gov (United States)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  3. The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the Bacillus cereus group

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Jensen, Lars Bogø; Givskov, Michael Christian

    2002-01-01

    In order to investigate whether resistance genes present in bacteria in manure could transfer to indigenous soil bacteria, resistant isolates belonging to the Bacillus cereus group (Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis) were isolated from farm soil (72 isolates) and manure...

  4. Plasmid-associated sensitivity of Bacillus thuringiensis to UV light

    International Nuclear Information System (INIS)

    Benoit, T.G.; Wilson, G.R.; Bull, D.L.; Aronson, A.I.

    1990-01-01

    Spores and vegetative cells of Bacillus thuringiensis were more sensitive to UV light than were spores or cells of plasmid-cured B. thuringiensis strains or of the closely related Bacillus cereus. Introduction of B. thuringiensis plasmids into B. cereus by cell mating increased the UV sensitivity of the cells and spores. Protoxins encoded by one or more B. thuringiensis plasmids were not involved in spore sensitivity, since a B. thuringiensis strain conditional for protoxin accumulation was equally sensitive at the permissive and nonpermissive temperatures. In addition, introduction of either a cloned protoxin gene, the cloning vector, or another plasmid not containing a protoxin gene into a plasmid-cured strain of B. thuringiensis all increased the UV sensitivity of the spores. Although the variety of small, acid-soluble proteins was the same in the spores of all strains examined, the quantity of dipicolinic acid was about twice as high in the plasmid-containing strains, and this may account for the differences in UV sensitivity of the spores. The cells of some strains harboring only B. thuringiensis plasmids were much more sensitive than cells of any of the other strains, and the differences were much greater than observed with spores

  5. The putative drug efflux systems of the Bacillus cereus group.

    Science.gov (United States)

    Hassan, Karl A; Fagerlund, Annette; Elbourne, Liam D H; Vörös, Aniko; Kroeger, Jasmin K; Simm, Roger; Tourasse, Nicolas J; Finke, Sarah; Henderson, Peter J F; Økstad, Ole Andreas; Paulsen, Ian T; Kolstø, Anne-Brit

    2017-01-01

    The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70-80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current

  6. Population Structure and Evolution of the Bacillus cereus Group

    Science.gov (United States)

    2004-12-01

    B . cereus , in- cluding the type strain ATCC 14579 , were included in...M21 Finland 1998 B . cereus 40 ST-32 ATCC 10987 Canada 1930 B . cereus ATCC Cereus II (emetic) ST-26 F4810/72 United States 1972 B . cereus 55 ST-26...thuringiensis serovar galleriae IP ST-25 T05144 France 1985 B . thuringiensis serovar galleriae IP ST-33 ATCC 10876 1945 B . cereus ATCC ST-39 SPS 2 1999 B

  7. Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables

    DEFF Research Database (Denmark)

    Frederiksen, Kristine; Rosenquist, Hanne; Jørgensen, Kirsten

    2006-01-01

    A total of 128 Bacillus cereus-like strains isolated from fresh fruits and vegetables for sale in retail shops in Denmark were characterized. Of these strains, 39% (50/128) were classified as Bacillus thuringiensis on the basis of their content of cry genes determined by PCR or crystal proteins v...... isolated from fruits and vegetables. The same was seen for a third enterotoxin, CytK. In conclusion, the present study strongly indicates that residues of B. thuringiensis-based insecticides can be found on fresh fruits and vegetables and that these are potentially enterotoxigenic....

  8. 76 FR 14289 - Bacillus thuringiensis

    Science.gov (United States)

    2011-03-16

    ... a plant- incorporated protectant in accordance with the terms of Experimental Use Permit (EUP) No... chemistry data for eCry3.1Ab were required for a human health effects assessment. Even so, preliminary... EPA granting registrations or experimental use permits of Bacillus thuringiensis-based pesticides or...

  9. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  10. Multilocus sequence analysis of Bacillus thuringiensis serovars navarrensis, bolivia and vazensis and Bacillus weihenstephanensis reveals a common phylogeny.

    Science.gov (United States)

    Soufiane, Brahim; Baizet, Mathilde; Côté, Jean-Charles

    2013-01-01

    The Bacillus cereus group sensu lato includes six closely-related bacterial species: Bacillus cereus, Bacillus anthracis, Bacillus thuringiensis, Bacillus mycoides, Bacillus pseudomycoides and Bacillus weihenstephanensis. B. thuringiensis is distinguished from the other species mainly by the appearance of an inclusion body upon sporulation. B. weihenstephanensis is distinguished based on its psychrotolerance and the presence of specific signature sequences in the 16S rRNA gene and cspA genes. A total of seven housekeeping genes (glpF, gmK, ilvD, pta, purH, pycA and tpi) from different B. thuringiensis serovars and B. weihenstephanensis strains were amplified and their nucleotide sequences determined. A maximum likelihood phylogenetic tree was inferred from comparisons of the concatenated sequences. B. thuringiensis serovars navarrensis, bolivia and vazensis clustered not with the other B. thuringiensis serovars but rather with the B. weihenstephanensis strains, indicative of a common phylogeny. In addition, specific signature sequences and single nucleotide polymorphisms common to B. thuringiensis serovars navarrensis, bolivia and vazensis and the B. weihenstephanensis strains, and absent in the other B. thuringiensis serovars, were identified.

  11. The possibility of discriminating within the Bacillus cereus group using gyrB sequencing and PCR-RFLP

    DEFF Research Database (Denmark)

    Jensen, Gert B; Fisker, Niels; Sparsø, Thomas

    2005-01-01

    Based on a combination of PCR and restriction endonuclease (RE) digestion (PCR-RE digestion), we have examined the possibility of differentiating members of the Bacillus cereus group. Fragments of the gyrB gene (362 bp) from pure cultures of 12 B. cereus, 25 B. thuringiensis, 25 B. mycoides and t...

  12. Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA.

    OpenAIRE

    Macaluso, A; Mettus, A M

    1991-01-01

    The transformation efficiency of Bacillus thuringiensis depends upon the source of plasmid DNA. DNA isolated from B. thuringiensis, Bacillus megaterium, or a Dam- Dcm- Escherichia coli strain efficiently transformed several B. thuringiensis strains, B. thuringiensis strains were grouped according to which B. thuringiensis backgrounds were suitable sources of DNA for transformation of other B. thuringiensis strains, suggesting that B. thuringiensis strains differ in DNA modification and restri...

  13. Toxicity of Tolyltriazole to Bacillus Microorganisms.

    Science.gov (United States)

    2000-03-01

    Bacillus coagulans Microbacterium lacticum Jupiter Bacillus thuringiensis Bacillus thuringiensis Bacillus cereus Bacillus Bacillus thuringiensis...TOXICITY OF TOLYLTRIAZOLE TO BACILLUS MICROORGANISMS THESIS Christopher J. Leonard, First Lieutenant, USAF AFIT/GEE/ENV/OOM-12 Approved for...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE TOXICITY OF TOLYLTRIAZOLE TO BACILLUS MICROORGANISMS 6. AUTHOR(S) Christopher J

  14. Characterisation and profiling of Bacillus subtilis, Bacillus cereus and Bacillus licheniformis by MALDI-TOF mass fingerprinting.

    Science.gov (United States)

    Fernández-No, I C; Böhme, K; Díaz-Bao, M; Cepeda, A; Barros-Velázquez, J; Calo-Mata, P

    2013-04-01

    The Bacillus genus includes species such as Bacillus cereus, Bacillus licheniformis and Bacillus subtilis, some of which may be pathogenic or causative agents in the spoilage of food products. The main goal of this work was to apply matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass fingerprinting to the classification of these Bacillus species. Genetic analyses were also compared to phyloproteomic analyses. A collection of 57 Bacillus strains isolated from fresh and processed food and from culture collections were studied and their mass spectra compiled. The resulting mass fingerprints were compared and characteristic peaks at the strain and species levels were assigned. The results showed that MALDI-TOF was a good complementary approach to 16S rRNA sequencing and even a more powerful tool in the accurate classification of Bacillus species, especially for differentiating B. subtilis and B. cereus from Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. MALDI-TOF was also found to provide valuable information at both intra- and interspecies levels in the Bacillus species studied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. strains of pseudomonas aeruginosa and bacillus cereus

    African Journals Online (AJOL)

    DR. AMINU

    DETERMINATION OF THE GENETIC MARKER OF THE MUTAGENIZED. STRAINS OF PSEUDOMONAS AERUGINOSA AND BACILLUS CEREUS. ISOLATED FROM EFFLUENT OF PETROLEUM REFINERY. Idise, O. E.1, Ameh, J.B.2 Yakubu, S.E. 2, Okuofu, C.A. 3 and Ado, S.A.2. 1 Department of Microbiology, Delta ...

  16. CASE REPORT Uncommon Pathogen Bacillus Cereus Causing ...

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... Uncommon Pathogen Bacillus Cereus Causing Subdural Empyema in a Child. Prastiya Indra Gunawan1*, Leny Kartina1, Dwiyanti Puspitasari1, Erny Erny2. OPEN ACCESS ... secondary to middle ear infection, meningitis, brain surgery, ... classic clinical syndrome is an acute febrile illness punctuated by.

  17. CASE REPORT Uncommon Pathogen Bacillus Cereus Causing ...

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... A complete blood count showed white blood cell count of 13.800/mm3 and the CRP level was 8.3 mg/L. Craniotomy following burr hole drainage procedure was performed to decrease intracranial pressure. The liquor culture indicated Bacillus cereus. A meropenem injection and metronidazole infusion ...

  18. SinR controls enterotoxin expression in Bacillus thuringiensis biofilms.

    Directory of Open Access Journals (Sweden)

    Annette Fagerlund

    Full Text Available The entomopathogen Bacillus thuringiensis produces dense biofilms under various conditions. Here, we report that the transition phase regulators Spo0A, AbrB and SinR control biofilm formation and swimming motility in B. thuringiensis, just as they control biofilm formation and swarming motility in the closely related saprophyte species B. subtilis. However, microarray analysis indicated that in B. thuringiensis, in contrast to B. subtilis, SinR does not control an eps operon involved in exopolysaccharides production, but regulates genes involved in the biosynthesis of the lipopeptide kurstakin. This lipopeptide is required for biofilm formation and was previously shown to be important for survival in the host cadaver (necrotrophism. Microarray analysis also revealed that the SinR regulon contains genes coding for the Hbl enterotoxin. Transcriptional fusion assays, Western blots and hemolysis assays confirmed that SinR controls Hbl expression, together with PlcR, the main virulence regulator in B. thuringiensis. We show that Hbl is expressed in a sustained way in a small subpopulation of the biofilm, whereas almost all the planktonic population transiently expresses Hbl. The gene coding for SinI, an antagonist of SinR, is expressed in the same biofilm subpopulation as hbl, suggesting that hbl transcription heterogeneity is SinI-dependent. B. thuringiensis and B. cereus are enteric bacteria which possibly form biofilms lining the host intestinal epithelium. Toxins produced in biofilms could therefore be delivered directly to the target tissue.

  19. Emetic food poisoning caused by Bacillus cereus.

    Science.gov (United States)

    Holmes, J R; Plunkett, T; Pate, P; Roper, W L; Alexander, W J

    1981-05-01

    Symptoms of acute food poisoning developed in eight members of a group who ate lunch at a cafeteria. After brief incubation periods, all affected individuals complained of nausea and abdominal cramps. Four persons promptly experienced vomiting. None of those affected was found to have fever and all recovered with 48 hours. Epidemiologic investigation incriminated macaroni and cheese as a cause of the illness and samples of this food contained large numbers of Bacillus cereus. Previous outbreaks of B cereus emetic food poisoning have been associated with consumption of contaminated fried rice and may occur after ingestion of other foods.

  20. PCR detection of cytK gene in Bacillus cereus group strains isolated from food samples.

    Science.gov (United States)

    Oltuszak-Walczak, Elzbieta; Walczak, Piotr

    2013-11-01

    A method for detection of the cytotoxin K cytK structural gene and its active promoter preceded by the PlcR-binding box, controlling the expression level of this enterotoxin, was developed. The method was applied for the purpose of the analysis of 47 bacterial strains belonging to the Bacillus cereus group isolated from different food products. It was found that the majority of the analyzed strains carried the fully functional cytK gene with its PlcR regulated promoter. The cytK gene was not detected in four emetic strains of Bacillus cereus carrying the cesB gene and potentially producing an emetic toxin - cereulide. The cytotoxin K gene was detected in 4 isolates classified as Bacillus mycoides and one reference strain B. mycoides PCM 2024. The promoter region and the N-terminal part of the cytK gene from two strains of B. mycoides (5D and 19E) showed similarities to the corresponding sequences of Bacillus cereus W23 and Bacillus thuringiensis HD-789, respectively. It was shown for the first time that the cytK gene promoter region from strains 5D and 19E of Bacillus mycoides had a similar arrangement to the corresponding sequence of Bacillus cereus ATCC 14579. The presence of the cytK gene in Bacillus mycoides shows that this species, widely recognized as nonpathogenic, may pose potential biohazard to human beings. © 2013.

  1. Bacillus cereus infection in burns.

    Science.gov (United States)

    Attwood, A I; Evans, D M

    1983-05-01

    Two patients are reported in whom severe toxicity developed about 4 days after relatively minor burn injuries and in whom the burn areas then appeared to enlarge. In both patients, B. cereus and Staph. aureus were isolated and the affected burn areas had subcutaneous thrombosis and necrosis. The management is outlined and the dramatic rapidity of onset of toxicity emphasized, with special reference to increasing pain, lividity and extension of the burns.

  2. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells.

    Science.gov (United States)

    Celandroni, Francesco; Salvetti, Sara; Senesi, Sonia; Ghelardi, Emilia

    2014-12-01

    Bacillus thuringiensis is widely used as a biopesticide in forestry and agriculture, being able to produce potent species-specific insecticidal toxins and considered nonpathogenic to other animals. More recently, however, repeated observations are documenting the association of this microorganism with various infectious diseases in humans, such as food-poisoning-associated diarrheas, periodontitis, bacteremia, as well as ocular, burn, and wound infections. Similar to B. cereus, B. thuringiensis produces an array of virulence factors acting against mammalian cells, such as phosphatidylcholine- and phosphatidylinositol-specific phospholipase C (PC-PLC and PI-PLC), hemolysins, in particular hemolysin BL (HBL), and various enterotoxins. The contribution of some of these toxins to B. thuringiensis pathogenicity has been studied in animal models of infection, following intravitreous, intranasal, or intratracheal inoculation. These studies lead to the speculation that the activities of PC-PLC, PI-PLC, and HBL are responsible for most of the pathogenic properties of B. thuringiensis in nongastrointestinal infections in mammals. This review summarizes data regarding the biological activity, the genetic basis, and the structural features of these membrane-damaging toxins. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. BOOK REVIEW – BACILLUS THURINGIENSIS: A CORNERSTONE OF MODERN AGRICULTURE BACILLUS THURINGIENSIS

    Science.gov (United States)

    Are you interested in the technical issues surrounding the use of Bacillus thuringiensis pesticidal traits as sprays and as plant incorporated protectants (transgenic crops)? Should the dimensions of human health, ecology, entomology, risk assessment, resistance management, and d...

  4. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity

    NARCIS (Netherlands)

    Warda, Alicja K.; Siezen, Roland J.; Boekhorst, Jos; Wells-Bennik, Marjon H.J.; Jong, de Anne; Kuipers, Oscar P.; Nierop Groot, Masja N.; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with

  5. Linking Bacillus cereus genotypes and carbohydrate utilization capacity

    NARCIS (Netherlands)

    Warda, Alicja K.; Siezen, Roland J.; Boekhorst, Jos; Wells-Bennik, Marjon H.J.; Jong, de Anne; Kuipers, Oscar P.; Nierop Groot, Masja N.; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together

  6. Prevalence of enterotoxigenic Bacillus Cereus and Its enterotoxins ...

    African Journals Online (AJOL)

    Subjects: Ninety six milk samples including 36 raw milk, 42 pasteurised milk, 10 yogurt and eight fermented milk samples. Forty seven Bacillus cereus isolated from milk and milk products. Main outcome measures: Isolation of enterotoxigenic B. cereus from milk and milk products and detection of B. cereus hemolytic ...

  7. Bacillus cereus infection outbreak in captive psittacines.

    Science.gov (United States)

    Godoy, S N; Matushima, E R; Chaves, J Q; Cavados, C F G; Rabinovitch, L; Teixeira, R H F; Nunes, A L V; Melville, P; Gattamorta, M A; Vivoni, A M

    2012-12-28

    This study reports an uncommon epizootic outbreak of Bacillus cereus that caused the sudden death of 12 psittacines belonging to the species Anodorhynchus hyacinthinus (1 individual), Diopsittaca nobilis (1 individual), Ara severa (1 individual) and Ara ararauna (9 individuals) in a Brazilian zoo. Post-mortem examination of the animals reveled extensive areas of lung hemorrhage, hepatic congestion, hemorrhagic enteritis and cardiac congestion. Histopathological examination of the organs showed the presence of multiple foci of vegetative cells of Gram-positive bacilli associated with discrete and moderate mononuclear inflammatory cell infiltrate. Seventeen B. cereus strains isolated from blood and sterile organs of nine A. ararauna were analyzed in order to investigate the genetic diversity (assessed by Rep-PCR) and toxigenic profiles (presence of hblA, hblC and hblD; nheA, nheB and nheC as well as cytK, ces and entFM genes) of such strains. Amplification of genomic DNA by Rep-PCR of B. cereus strains generated two closely related profiles (Rep-PCR types A and B) with three bands of difference. All strains were classified as belonging to the toxigenic profile I which contained HBL and NHE gene complexes, entFM and cytK genes. Altogether, microbiological and histopathological findings and the evidence provided by the success of the antibiotic prophylaxis, corroborate that B. cereus was the causative agent of the infection that killed the birds. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Preliminary investigations reveal that Bacillus thuringiensis δ ...

    African Journals Online (AJOL)

    The imminent introduction of transgenic crops into Kenya requires a rigorous assessment of the potential risks involved. This study focused on the possible effect of Bacillus thuringiensisδ-endotoxin [CryIA(c)] on arbuscular mycorrhizal fungi (AMF) associated with sorghum. In green house experiments, sorghum seedlings ...

  9. Isolation and characterization of native Bacillus thuringiensis ...

    African Journals Online (AJOL)

    ... (<30% mortality) or non insecticidal activity. However, results of motility, hemolytic activity, antibiotic-susceptibility patterns, and crystal shape, seem to suggest that many of our Bt isolates may exhibit parasporins activity. Key words: Bacillus thuringiensis, parasporal crystal, isolation, biochemical type, insecticidal, cry gene, ...

  10. Purification And Characterization Of Marine Bacillus Thuringiensis ...

    African Journals Online (AJOL)

    Urease was purified to homogeneity from Bacillus thuringiensis N2 using different purification steps namely, 55% acetone precipitation, DEAE-Sephadex A50 anion exchange column and Sephadex G120-200 gel filtration chromatography. The enzyme was purified 95.27 fold and showed a final specific activity of 10.48 ...

  11. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium.

    Science.gov (United States)

    Todd, Sarah J; Moir, Arthur J G; Johnson, Matt J; Moir, Anne

    2003-06-01

    The exosporium is the outermost layer of spores of Bacillus cereus and its close relatives Bacillus anthracis and Bacillus thuringiensis. For these pathogens, it represents the surface layer that makes initial contact with the host. To date, only the BclA glycoprotein has been described as a component of the exosporium; this paper defines 10 more tightly associated proteins from the exosporium of B. cereus ATCC 10876, identified by N-terminal sequencing of proteins from purified, washed exosporium. Likely coding sequences were identified from the incomplete genome sequence of B. anthracis or B. cereus ATCC 14579, and the precise corresponding sequence from B. cereus ATCC 10876 was defined by PCR and sequencing. Eight genes encode likely structural components (exsB, exsC, exsD, exsE, exsF, exsG, exsJ, and cotE). Several proteins of the exosporium are related to morphogenetic and outer spore coat proteins of B. subtilis, but most do not have homologues in B. subtilis. ExsE is processed from a larger precursor, and the CotE homologue appears to have been C-terminally truncated. ExsJ contains a domain of GXX collagen-like repeats, like the BclA exosporium protein of B. anthracis. Although most of the exosporium genes are scattered on the genome, bclA and exsF are clustered in a region flanking the rhamnose biosynthesis operon; rhamnose is part of the sugar moiety of spore glycoproteins. Two enzymes, alanine racemase and nucleoside hydrolase, are tightly adsorbed to the exosporium layer; they could metabolize small molecule germinants and may reduce the sensitivity of spores to these, limiting premature germination.

  12. Induction of natural competence in Bacillus cereus ATCC14579

    OpenAIRE

    Mirończuk, Aleksandra M.; Kovács, Ákos T.; Kuipers, Oscar P.

    2008-01-01

    Summary Natural competence is the ability of certain microbes to take up exogenous DNA from the environment and integrate it in their genome. Competence development has been described for a variety of bacteria, but has so far not been shown to occur in Bacillus cereus. However, orthologues of most proteins involved in natural DNA uptake in Bacillus subtiliscould be identified in B. cereus. Here, we report that B. cereus ATCC14579 can become naturally competent. When expressing the B. subtilis...

  13. Germination of Bacillus cereus spores : the role of germination receptors

    NARCIS (Netherlands)

    Hornstra, L.M.

    2007-01-01

    The Bacillus cereus sensu lato group forms a highly homogeneous subdivision of the genus Bacillus and comprises several species that are relevant for humans. Notorious is Bacillus anthracis, the cause of the often-lethal disease anthrax, while the insect pathogen Bacillus

  14. Identification of Fatty Acids in Bacillus cereus.

    Science.gov (United States)

    Ginies, Christian; Brillard, Julien; Nguyen-The, Christophe

    2016-12-05

    The Bacillus species contain branched chain and unsaturated fatty acids (FAs) with diverse positions of the methyl branch (iso or anteiso) and of the double bond. Changes in FA composition play a crucial role in the adaptation of bacteria to their environment. These modifications entail a change in the ratio of iso versus anteiso branched FAs, and in the proportion of unsaturated FAs relative to saturated FAs, with double bonds created at specific positions. Precise identification of the FA profile is necessary to understand the adaptation mechanisms of Bacillus species. Many of the FAs from Bacillus are not commercially available. The strategy proposed herein identifies FAs by combining information on the retention time (by calculation of the equivalent chain length (ECL)) with the mass spectra of three types of FA derivatives: fatty acid methyl esters (FAMEs), 4,4-dimethyl oxazoline derivatives (DMOX), and 3-pyridylcarbinyl ester (picolinyl). This method can identify the FAs without the need to purify the unknown FAs. Comparing chromatographic profiles of FAME prepared from Bacillus cereus with a commercial mixture of standards allows for the identification of straight-chain saturated FAs, the calculation of the ECL, and hypotheses on the identity of the other FAs. FAMEs of branched saturated FAs, iso or anteiso, display a constant negative shift in the ECL, compared to linear saturated FAs with the same number of carbons. FAMEs of unsaturated FAs can be detected by the mass of their molecular ions, and result in a positive shift in the ECL compared to the corresponding saturated FAs. The branching position of FAs and the double bond position of unsaturated FAs can be identified by the electron ionization mass spectra of picolinyl and DMOX derivatives, respectively. This approach identifies all the unknown saturated branched FAs, unsaturated straight-chain FAs and unsaturated branched FAs from the B. cereus extract.

  15. Isolation of bacillus thuringiensis from different samples from Mansehra District

    International Nuclear Information System (INIS)

    Younis, F.; Lodhi, A.F.; Raza, G.

    2009-01-01

    The insecticidal activity of Bacillus thuringiensis has made it very interesting for the control of a variety of agricultural pests and human disease vectors. The present study is an attempt to explore the potential and diversity. of Bacillus thuringiensis. from the local environment for the control of cotton spotted bollworm (Earias sp.), a major pest of cotton. Two hundred and ninety eight samples of soil, grain dust, wild animal dung, birds dropping, decaying leaves and dead insects were collected from different ecological environments of Mansehra District yielding 438 Bacillus thuringiensis isolates that produce parasporal crystalline inclusions. In this study the soil samples were found to be the richest source for Bacillus thuringiensis. (author)

  16. Differentiation between Bacillus thuringiensis strains by gyrB PCR-Sau3AI fingerprinting.

    Science.gov (United States)

    Awad, Mireille Kallassy; Saadaoui, Imène; Rouis, Souad; Tounsi, Slim; Jaoua, Samir

    2007-02-01

    gyrB DNA fragments of seven Bacillus thuringiensis local collection family representatives were amplified by PCR and sequenced. Several differences in their corresponding sequences were evidenced. Both in silico and in vitro restriction maps of gyrB sequences and fragments respectively confirmed that EcoRI and Sau3AI could be used to differentiate between B. thuringiensis strains. However, the phylogeny analysis showed that only the gyrB PCR-Sau3AI allows a strains classification that correlates very well with that obtained on the basis of the sequences analysis. Thus, these finds show that gyrB PCR- Sau3AI digestion could be considered as an efficient, rapid, and easy method to make a distinction, not only between strains belonging to the Bacillus cereus group, but also between those belonging to B. thuringiensis.

  17. Impacts of Bacillus thuringiensis var. israelensis and Bacillus ...

    African Journals Online (AJOL)

    The study assessed the impact of bio-larvicides- Bacillus thuringiensis var. israelensis (Bti) and B. sphaericus (Bs) on anopheline mosquito larval densities in four selected areas of Lusaka urban district. Larval densities were determined using a standard WHO protocol at each study area prior to and after larviciding.

  18. Prevalence and Toxin Characteristics of Bacillus thuringiensis Isolated from Organic Vegetables.

    Science.gov (United States)

    Kim, Jung-Beom; Choi, Ok-Kyung; Kwon, Sun-Mok; Cho, Seung-Hak; Park, Byung-Jae; Jin, Na Young; Yu, Yong Man; Oh, Deog-Hwan

    2017-08-28

    The prevalence and toxin characteristics of Bacillus thuringiensis isolated from 39 organic vegetables were investigated. B. thuringiensis was detected in 30 out of the 39 organic vegetables (76.9%) with a mean value of 2.60 log CFU/g. Twenty-five out of the 30 B. thuringiensis isolates (83.3%) showed insecticidal toxicity against Spodoptera exigua . The hblCDA, nheABC , and entFM genes were found to be the major toxin genes, but the ces gene was not detected in any of the tested B. thuringiensis isolates. The hemolysin BL enterotoxin was detected in all 30 B. thuringiensis isolates (100%). The non-hemolytic enterotoxin complex was found in 27 out of 30 B. thuringiensis isolates (90.0%). The B. thuringiensis tested in this study had similar toxin gene characteristics to B. cereus , which possessed more than one toxin gene. B. thuringiensis could have the potential risk of foodborne illness based on the toxin genes and toxin-producing ability.

  19. Occurrence of Bacillus thuringiensis in faeces of herbivorous farm ...

    African Journals Online (AJOL)

    Bacillus thuringiensis (Berliner), the insect pathogen has been isolated from a variety of habitat. It is understood that the habitat of B. thuringiensis has always been associated with their biological activity. In the present study, B. thuringiensis was isolated from faeces of cows and goats. The phenotypic characterization ...

  20. A Bacillus thuringiensis S-Layer Protein Involved in Toxicity against Epilachna varivestis (Coleoptera: Coccinellidae)

    Science.gov (United States)

    Peña, Guadalupe; Miranda-Rios, Juan; de la Riva, Gustavo; Pardo-López, Liliana; Soberón, Mario; Bravo, Alejandra

    2006-01-01

    The use of Bacillus thuringiensis as a biopesticide is a viable alternative for insect control since the insecticidal Cry proteins produced by these bacteria are highly specific; harmless to humans, vertebrates, and plants; and completely biodegradable. In addition to Cry proteins, B. thuringiensis produces a number of extracellular compounds, including S-layer proteins (SLP), that contribute to virulence. The S layer is an ordered structure representing a proteinaceous paracrystalline array which completely covers the surfaces of many pathogenic bacteria. In this work, we report the identification of an S-layer protein by the screening of B. thuringiensis strains for activity against the coleopteran pest Epilachna varivestis (Mexican bean beetle; Coleoptera: Coccinellidae). We screened two B. thuringiensis strain collections containing unidentified Cry proteins and also strains isolated from dead insects. Some of the B. thuringiensis strains assayed against E. varivestis showed moderate toxicity. However, a B. thuringiensis strain (GP1) that was isolated from a dead insect showed a remarkably high insecticidal activity. The parasporal crystal produced by the GP1 strain was purified and shown to have insecticidal activity against E. varivestis but not against the lepidopteran Manduca sexta or Spodoptera frugiperda or against the dipteran Aedes aegypti. The gene encoding this protein was cloned and sequenced. It corresponded to an S-layer protein highly similar to previously described SLP in Bacillus anthracis (EA1) and Bacillus licheniformis (OlpA). The phylogenetic relationships among SLP from different bacteria showed that these proteins from Bacillus cereus, Bacillus sphaericus, B. anthracis, B. licheniformis, and B. thuringiensis are arranged in the same main group, suggesting similar origins. This is the first report that demonstrates that an S-layer protein is directly involved in toxicity to a coleopteran pest. PMID:16391064

  1. Necrotizing gastritis due to Bacillus cereus in an immunocompromised patient.

    Science.gov (United States)

    Le Scanff, J; Mohammedi, I; Thiebaut, A; Martin, O; Argaud, L; Robert, D

    2006-04-01

    Bacillus cereus is increasingly being acknowledged as a serious bacterial pathogen in immunocompromised patients. We present a case of acute necrotizing gastritis caused by B. cereus in a 37-year-old woman with acute myeloblastic leukemia, who recovered following total parenteral nutrition and treatment with imipenem and vancomycin. B. cereus was isolated from gastric mucosa and blood cultures. Up to now, no case of acute necrotizing gastritis due to this organism has been reported.

  2. Virulence of Bacillus cereus as natural facultative pathogen of ...

    African Journals Online (AJOL)

    Out of 4407 Anopheles subpictus larvae collected from submerged rice-fields and shallow ponds, 1412 were found to be unhealthy and 2.8% of unhealthy larvae were naturally infected by Bacillus cereus. B. cereus formed circular, white and flat colonies. Bacteria were gram positive, ellipsoidal/oval spore forming aerobic ...

  3. Isolation and characterization of Bacillus thuringiensis from soils in ...

    African Journals Online (AJOL)

    Of 110 Bacillus thuringiensis isolates analyzed for the presence of crystal protein genes, 7 tested positive for cry 4, cry 11, and cyt toxin genes. Sequencing of these genes in positive strains demonstrated 99–100 % homology to known mosquitocidal cry and cyt genes in Bacillus thuringiensis subsp. israelensis. The present ...

  4. by lipase from Bacillus thuringiensis and Lysinibacillus sphaericus

    African Journals Online (AJOL)

    This study reported production of lipase by Bacillus thuringiensis and Lysinibacillus sphaericus. Bacteria isolates were screened on Bushnell-Hass Mineral Salt medium containing 1% PMS for oil degradation. Two potent isolates were identified using 16S rRNA as Bacillus thuringiensis and Lysinibacillus sphaericus.

  5. Transferrin Impacts Bacillus thuringiensis Biofilm Levels

    Directory of Open Access Journals (Sweden)

    Bianca Garner

    2016-01-01

    Full Text Available The present study examined the impact of transferrin on Bacillus thuringiensis biofilms. Three commercial strains, an environmental strain (33679, the type strain (10792, and an isolate from a diseased insect (700872, were cultured in iron restricted minimal medium. All strains produced biofilm when grown in vinyl plates at 30°C. B. thuringiensis 33679 had a biofilm biomass more than twice the concentration exhibited by the other strains. The addition of transferrin resulted in slightly increased growth yields for 2 of the 3 strains tested, including 33679. In contrast, the addition of 50 μg/mL of transferrin resulted in an 80% decrease in biofilm levels for strain 33679. When the growth temperature was increased to 37°C, the addition of 50 μg/mL of transferrin increased culture turbidity for only strain 33679. Biofilm levels were again decreased in strain 33679 at 37°C. Growth of B. thuringiensis cultures in polystyrene resulted in a decrease in overall growth yields at 30°C, with biofilm levels significantly decreased for 33679 in the presence of transferrin. These findings demonstrate that transferrin impacts biofilm formation in select strains of B. thuringiensis. Identification of these differences in biofilm regulation may be beneficial in elucidating potential virulence mechanisms among the differing strains.

  6. BACILLUS THURINGIENSIS ELASTASES WITH INSECTICIDE ACTIVITY

    Directory of Open Access Journals (Sweden)

    E. V. Matseliukh

    2015-10-01

    Full Text Available The purpose of the research was a screening of proteases with elastase activity among Bacillus thuringiensis strains, their isolation, partially purification, study of physicochemical properties and insecticide activity in relation to the larvae of the Colorado beetle. The objects of the investigation were 18 strains of B. thuringiensis, isolated from different sources: sea water, dry biological product "Bitoksibatsillin" and also from natural populations of Colorado beetles of the Crimea, Kherson, Odesa, Mykolaiv and Zaporizhiia regions of Ukraine. Purification of enzymes with elastase activity isolated from above mentioned strains was performed by gel-chromatography and insecticide activity was studied on the 3–4 larvae instar of Colorado beetle. The ability of a number of B. thuringiensis strains to synthesize the proteases with elastase activity has been established. The most active were enzymes obtained from strains IMV B-7465, IMV B-7324 isolated from sea water, and strains 9, 902, Bt-H and 0-239 isolated from Colorado beetles. The study of the physicochemical properties of the partially purified proteases of these strains showed that they belonged to enzymes of the serine type. Peptidases of a number of B. thuringiensis strains (IMV B-7324, IMV B-7465, 902, 0-239, 9 are metal-dependent enzymes. Optimal conditions of action of all tested enzymes are the neutral and alkaline рН values and the temperatures of 30–40 °С. The studies of influence of the complex enzyme preparations and partially purified ones of B. thuringiensis strains on the larvae instar of Colorado beetles indicated that enzymes with elastase activity could be responsible for insecticide action of the tested strains.

  7. Eco-genetic structure of Bacillus cereus sensu lato populations from different environments in northeastern Poland.

    Science.gov (United States)

    Drewnowska, Justyna M; Swiecicka, Izabela

    2013-01-01

    The Bacillus cereus group, which includes entomopathogens and etiologic agents of foodborne illness or anthrax, persists in various environments. The basis of their ecological diversification remains largely undescribed. Here we present the genetic structure and phylogeny of 273 soil B. cereus s.l. isolates from diverse habitats in northeastern Poland, with samplings acquired from the last European natural forest (Białowieża National Park), the largest marshes in Europe (Biebrza National Park), and a farm. In multi-locus sequence typing (MLST), despite negative selection in seven housekeeping loci, the isolates exhibited high genetic diversity (325 alleles), mostly resulting from mutation events, and represented 148 sequencing types (131 STs new and 17 STs already described) grouped into 19 complexes corresponding with bacterial clones, and 80 singletons. Phylogenetic analyses showed that 74% of the isolates clustered with B. cereus s.l. environmental references (clade III), while only 11 and 15%, respectively, grouped with isolates of clinical origin (clade I), and B. cereus ATCC 14579 and reference B. thuringiensis (clade II). Predominantly within clade III, we found lineages adapted to low temperature (thermal ecotypes), while putative toxigenic isolates (cytK-positive) were scattered in all clades of the marsh and farm samplings. The occurrence of 92% of STs in bacilli originating from one habitat, and the description of new STs for 78% of the isolates, strongly indicate the existence of specific genotypes within the natural B. cereus s.l. populations. In contrast to the human-associated B. cereus s.l. that exhibit a significant level of similarity, the environmental isolates appear more complex. Thus we propose dividing B. cereus s.l. into two groups, the first including environmental isolates, and the second covering those that are of clinical relevance.

  8. Eco-genetic structure of Bacillus cereus sensu lato populations from different environments in northeastern Poland.

    Directory of Open Access Journals (Sweden)

    Justyna M Drewnowska

    Full Text Available The Bacillus cereus group, which includes entomopathogens and etiologic agents of foodborne illness or anthrax, persists in various environments. The basis of their ecological diversification remains largely undescribed. Here we present the genetic structure and phylogeny of 273 soil B. cereus s.l. isolates from diverse habitats in northeastern Poland, with samplings acquired from the last European natural forest (Białowieża National Park, the largest marshes in Europe (Biebrza National Park, and a farm. In multi-locus sequence typing (MLST, despite negative selection in seven housekeeping loci, the isolates exhibited high genetic diversity (325 alleles, mostly resulting from mutation events, and represented 148 sequencing types (131 STs new and 17 STs already described grouped into 19 complexes corresponding with bacterial clones, and 80 singletons. Phylogenetic analyses showed that 74% of the isolates clustered with B. cereus s.l. environmental references (clade III, while only 11 and 15%, respectively, grouped with isolates of clinical origin (clade I, and B. cereus ATCC 14579 and reference B. thuringiensis (clade II. Predominantly within clade III, we found lineages adapted to low temperature (thermal ecotypes, while putative toxigenic isolates (cytK-positive were scattered in all clades of the marsh and farm samplings. The occurrence of 92% of STs in bacilli originating from one habitat, and the description of new STs for 78% of the isolates, strongly indicate the existence of specific genotypes within the natural B. cereus s.l. populations. In contrast to the human-associated B. cereus s.l. that exhibit a significant level of similarity, the environmental isolates appear more complex. Thus we propose dividing B. cereus s.l. into two groups, the first including environmental isolates, and the second covering those that are of clinical relevance.

  9. Pan-genome and phylogeny of Bacillus cereus sensu lato

    OpenAIRE

    Bazinet, Adam

    2017-01-01

    Background: Bacillus cereus sensu lato ( s . l .) is an ecologically diverse bacterial group of medical and agricultural significance. In this study, I use publicly available genomes to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and population genetic analyses of this group to date in terms of the number of genes and taxa included. With these fundamental data in hand, I identify genes associated with particular phenotypic traits (i.e., "pan-GWAS" analysis...

  10. Pan-genome and phylogeny of Bacillus cereus sensu lato

    OpenAIRE

    Bazinet, Adam L.

    2017-01-01

    Background Bacillus cereus sensu lato (s. l.) is an ecologically diverse bacterial group of medical and agricultural significance. In this study, I use publicly available genomes and novel bioinformatic workflows to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and population genetic analyses of this group to date in terms of the number of genes and taxa included. With these fundamental data in hand, I identify genes associated with particular phenotypic tra...

  11. Bacillus cereus in Brazilian Ultra High Temperature milk Bacillus cereus em leite UHT brasileiro

    Directory of Open Access Journals (Sweden)

    Cristiana de Paula Pacheco-Sanchez

    2007-01-01

    Full Text Available Brazilian Ultra High Temperature (UHT milk consumption has increased during the last decade from 187 to 4,200 million liters. In the continuous UHT process, milk is submitted for 2-4 s to 130-150ºC, in a continuous flow system with immediate refrigeration and aseptical packing in hermetic packages. This research had the purpose to verify the incidence of B. cereus species from the B. cereus group, in UHT milk. In 1998 high indexes of these organisms were reported, reaching 34.14% of the analyzed samples. Beyond this fact, there was the need to establish methods and processes adjusted for correct identification of B. cereus. Thus, commercial sterility tests of 6,500 UHT milk packages were investigated in two assays, after ten days incubation at 37ºC and 7ºC to germinate all possible spores and/or to recuperate injured vegetative cells followed by pH measurement. Samples (1,300 packages each from five Brazilian UHT plants of whole UHT milk processed by direct steam injection, packaged in carton were investigated for the presence of Bacillus cereus through phenotypic and genetic (PCR tests. Values of pH were different for the samples, ranging between 6.57 and 6.73. After storage of the samples, only four packages with pH measurement below the lower limit of 6.5 were found and analyzed for the presence of B. cereus. This organism was not detected in any of the samples indicating that the five Brazilian UHT milk processors control pathogenic microorganisms and it can be said that the consumption of UHT milk does not present safety problems to consumers. Fourier Transform Infrared Spectroscopy (FTIR and PCR tests were efficient and must be adopted to confirm the biochemical series for B. cereus.O consumo de leite ultra-alta temperatura (UHT brasileiro aumentou, durante a última década, de 187 milhões de litros para 4,200 milhões de litros. No processo contínuo de leite UHT o leite é submetido por 2-4 seg a 130-150ºC, em sistemas de

  12. Isolation and Characterization of Bacillus thuringiensis strains from ...

    African Journals Online (AJOL)

    Twelve isolates of Bacillus thuringiensis were obtained from soil samples collected from farmers' fields in Kakamega and Machakos districts. Soil samples from Machakos yielded more B. thuringiensis isolates t han those from Kakamega. Three isolates K13-1, 12F-K and K10-2 were obtained from Kakamega soil samples.

  13. Characterization of Bacillus thuringiensis strains from Jordan and ...

    African Journals Online (AJOL)

    Eight serotypes with Bacillus thuringiensis israelensis being the most common. Out of the twenty-six isolated strains, five strains (serotype: kenyae, kurstaki, kurstaki HD1 and thuringiensis) that produced bipyramid crystal proteins were toxic to the lepidoptera larvae of Ephestia kuehniella Zeller. The SDS-PAGE protein ...

  14. Ecology and diversity of Bacillus thuringiensis in soil environment ...

    African Journals Online (AJOL)

    Bacillus thuringiensis populations ranged between 4.23 x 105, 6.52 x 105 cfu/g soil and consist of 11 types of isolates with 3 polymorphic, 7 spherical and 1 bipyramidal type of crystals. Polymorphic crystal containing isolates were further characterized. B. thuringiensis isolates were circular, white, flat and undulate or entire.

  15. BOOK REVIEW: BACILLUS THURINGIENSIS: A CORNERSTONE OF MODERN AGRICULTURE

    Science.gov (United States)

    Are you interested in the technical issues surrounding the use of Bacillus thuringiensis pesticidal traits as sprays and as plant incorporated protectants (transgenic crops)? Should the dimensions of human health, ecology, entomology, risk assessment, resistance management, and d...

  16. Cytotoxic effects of delfin insecticide ( Bacillus thuringiensis ) on cell ...

    African Journals Online (AJOL)

    Cytotoxic effects of delfin insecticide ( Bacillus thuringiensis ) on cell behaviour, phagocytosis, contractile vacuole activity and macronucleus in a protozoan ciliate Paramecium caudatum. ... macronucleus, fragmentation, vacuolization and complete diffusion of macronucleus were observed and were dose dependent.

  17. Ecological aspects of Bacillus thuringiensis in an Oxisol Ecologia do Bacillus thuringiensis num Latossolo

    Directory of Open Access Journals (Sweden)

    Lessandra Heck Paes Leme Ferreira

    2003-02-01

    Full Text Available Bacillus thuringiensis is a Gram positive, sporangial bacterium, known for its insecticidal habilities. Survival and conjugation ability of B. thuringiensis strains were investigated; vegetative cells were evaluated in non-sterile soil. Vegetative cells decreased rapidly in number, and after 48 hours the population was predominantly spores. No plasmid transfer was observed in non-sterile soil, probably because the cells died and the remaining cells sporulated quickly. Soil is not a favorable environment for B. thuringiensis multiplication and conjugation. The fate of purified B. thuringiensis toxin was analyzed by extractable toxin quantification using ELISA. The extractable toxin probably declined due to binding on surface-active particles in the soil.O comportamento de células vegetativas do Bacillus thuringiensis foi estudado em solo não esterilizado. Após o inóculo grande parte das células morrem e o restante esporula em 24 horas. Não foi observada conjugação provavelmente porque poucas células sobrevivem no solo e rapidamente esporulam, mostrando que este não é o ambiente propício para a multiplicação e conjugação desta bactéria. A toxina purificada, portanto livre de células, diminui rapidamente sua quantidade em solo não esterilizado. Provavelmente a ligação da toxina na fração argilosa do solo é a principal responsável por este fenômeno.

  18. Bacillus thuringiensis Conjugation in Simulated Microgravity

    Science.gov (United States)

    Beuls, Elise; van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques

    2009-10-01

    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0-g position (simulated microgravity) were compared to those obtained under 1-g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  19. Two distinct types of rRNA operons in the Bacillus cereus group.

    Science.gov (United States)

    Candelon, Benjamin; Guilloux, Kévin; Ehrlich, S Dusko; Sorokin, Alexei

    2004-03-01

    The Bacillus cereus group includes insecticidal bacteria (B. thuringiensis), food-borne pathogens (B. cereus and B. weihenstephanensis) and B. anthracis, the causative agent of anthrax. The precise number of rRNA operons in 12 strains of the B. cereus group was determined. Most of the tested strains possess 13 operons and the tested psychrotolerant strains contain 14 operons, the highest number ever found in bacteria. The separate clustering of the tested psychrotolerant strains was confirmed by partial sequencing of several genes distributed over the chromosomes. Analysis of regions downstream of the 23S rRNA genes in the type strain B. cereus ATCC 14579 indicates that the rRNA operons can be divided into two classes, I and II, consisting respectively of eight and five operons. Class II operons exhibit multiple tRNA genes downstream of the 5S rRNA gene and a putative promoter sequence in the 23S-5S intergenic region, suggesting that 5S rRNA and the downstream tRNA genes can be transcribed independently of the 16S and 23S genes. Similar observations were made in the recently sequenced genome of B. anthracis strain Ames. The existence of these distinct types of rRNA operons suggests an unknown mechanism for regulation of rRNA and tRNA synthesis potentially related to the pool of amino acids available for protein synthesis.

  20. Rapid, High-Throughput Identification of Anthrax-Causing and Emetic Bacillus cereus Group Genome Assemblies via BTyper, a Computational Tool for Virulence-Based Classification of Bacillus cereus Group Isolates by Using Nucleotide Sequencing Data

    Science.gov (United States)

    Carroll, Laura M.; Miller, Rachel A.; Wiedmann, Martin

    2017-01-01

    ABSTRACT The Bacillus cereus group comprises nine species, several of which are pathogenic. Differentiating between isolates that may cause disease and those that do not is a matter of public health and economic importance, but it can be particularly challenging due to the high genomic similarity within the group. To this end, we have developed BTyper, a computational tool that employs a combination of (i) virulence gene-based typing, (ii) multilocus sequence typing (MLST), (iii) panC clade typing, and (iv) rpoB allelic typing to rapidly classify B. cereus group isolates using nucleotide sequencing data. BTyper was applied to a set of 662 B. cereus group genome assemblies to (i) identify anthrax-associated genes in non-B. anthracis members of the B. cereus group, and (ii) identify assemblies from B. cereus group strains with emetic potential. With BTyper, the anthrax toxin genes cya, lef, and pagA were detected in 8 genomes classified by the NCBI as B. cereus that clustered into two distinct groups using k-medoids clustering, while either the B. anthracis poly-γ-d-glutamate capsule biosynthesis genes capABCDE or the hyaluronic acid capsule hasA gene was detected in an additional 16 assemblies classified as either B. cereus or Bacillus thuringiensis isolated from clinical, environmental, and food sources. The emetic toxin genes cesABCD were detected in 24 assemblies belonging to panC clades III and VI that had been isolated from food, clinical, and environmental settings. The command line version of BTyper is available at https://github.com/lmc297/BTyper. In addition, BMiner, a companion application for analyzing multiple BTyper output files in aggregate, can be found at https://github.com/lmc297/BMiner. IMPORTANCE Bacillus cereus is a foodborne pathogen that is estimated to cause tens of thousands of illnesses each year in the United States alone. Even with molecular methods, it can be difficult to distinguish nonpathogenic B. cereus group isolates from their

  1. Inhibition of Bacillus cereus in milk fermented with kefir grains.

    Science.gov (United States)

    Kakisu, Emiliano J; Abraham, Analía G; Pérez, Pablo F; De Antoni, Graciela L

    2007-11-01

    The effects of kefir-fermented milk were tested against a toxigenic strain of Bacillus cereus. The incubation of milk with B. cereus spores plus 5% kefir grains prevented spore germination and growth of vegetative forms. In contrast, when 1% kefir grains was used, no effects were observed. The presence of metabolically active kefir grains diminished titers of nonhemolytic enterotoxin A, as assessed by enzyme-linked immunosorbent assay. During fermentation, kefir microorganisms produce extracellular metabolites such as organic acids, which could play a role in the inhibition of spore germination and growth of B. cereus, although the effect of other factors cannot be ruled out. Results of the present study show that kefir-fermented milk is able to antagonize key mechanisms involved in the growth of B. cereus as well as interfere with the biological activity of this microorganism.

  2. Purification and characterization of protease from Bacillus cereus ...

    African Journals Online (AJOL)

    chitti

    2013-09-16

    Sep 16, 2013 ... Purification and characterization of protease from. Bacillus cereus SU12 isolated from oyster. Saccostrea cucullata. S. Umayaparvathi*, S. Meenakshi, M. Arumugam and T. Balasubramanian. Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai - 608.

  3. Germination of Bacillus cereus spores adhered to stainless steel

    NARCIS (Netherlands)

    Hornstra, L.M.; Leeuw, de P.P.L.A.; Moezelaar, R.; Wolbert, E.J.H.; Vries, de Y.P.; Vos, de W.M.; Abee, T.

    2007-01-01

    Adhered spores of Bacillus cereus represent a significant part of the surface-derived contamination in processing equipment used in the dairy industry. As germinated spores lose their resistance capacities instantaneously, efficient germination prior to a cleaning in place treatment could aid to the

  4. effluent by bacillus cereus and clostridium butyricum using

    African Journals Online (AJOL)

    user

    use of pure culture Bacillus cereus and Clostridium butyricum as inoculums in MFCs for simultaneous bioelectricity generation and ... to be used as inoculums for simultaneous bioelectricity generation and treatment of petroleum refinery effluent in MFCs. Keywords: ...... [10] Feng, Y., Wang, X., Logan, B. E., Lee, H. Brewery.

  5. Toxigenic Bacillus cereus isolated from Nunu and Wara, two ...

    African Journals Online (AJOL)

    Traditional fermented dairy foods are produced by small scale processors in different parts of West Africa without adequate attention to good manufacturing practices (GMPs), microbial contamination and ... Further enrichment using chromogenic selective agar medium detected Bacillus cereus in 95% of the tested samples.

  6. Characterization of germination receptors of Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    Hornstra, L.M.; Vries, de Y.P.; Wells-Bennik, M.H.J.; Vos, de W.M.; Abee, T.

    2006-01-01

    Specific amino acids, purine ribonucleosides, or a combination of the two is required for efficient germination of endospores of Bacillus cereus ATCC 14579. A survey including 20 different amino acids showed that L-alanine, L-cysteine, L-threonine, and L-glutamine are capable of initiating the

  7. Bioenergetic consequences of nisin combined with carvacrol towards Bacillus cereus

    NARCIS (Netherlands)

    Pol, I.E.; Krommer, J.; Smid, E.J.

    2002-01-01

    This paper describes the influence of a combination of nisin and carvacrol on the membrane potential, the pH gradient and the intracellular ATP pools of vegetative cells of Bacillus cereus. Both the membrane potential and the pH gradient were dissipated by nisin and carvacrol. The intracellular ATP

  8. Antimicrobial activity of carvacrol toward Bacillus cereus on rice

    NARCIS (Netherlands)

    Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J.

    2000-01-01

    The antimicrobial activity of carvacrol, a compound present in the essential oil fraction of oreganum and thyme, toward the foodborne pathogen Bacillus cereus on rice was studied. Carvacrol showed a dose-related inhibition of growth of the pathogen. Concentrations of 0.15 mg/g and higher inhibited

  9. The use of two biological formulations of Bacillus Thuringiensis and ...

    African Journals Online (AJOL)

    Two biological formulations of the microbial agents Bacillus thuringiensis and Bacillus sphaericus, known by their trade names Vectobac 12 AS and VectoLex CG (Corn Cob) granules, respectively, were obtained from Valent Biosciences Company (formerly Abbott Laboratories) of North Chicago, USA, and applied to control ...

  10. Antagonistic activity of selected strains of Bacillus thuringiensis ...

    African Journals Online (AJOL)

    The aim of this work was to determine, in vitro, the antagonistic effectiveness of 60 strains of Bacillus thuringiensis against damping-off and root and stem rot caused by Rhizoctonia solani. The strains were obtained from the International Collection of Entomopathogenic Bacillus at the FCB-UANL. During the in vitro dual ...

  11. SR450 and Superhawk XP Applications of Bacillus Thuringiensis Israelensis Against Culex Quinquefasciatus

    Science.gov (United States)

    2014-09-01

    SR450 AND SUPERHAWK XP APPLICATIONS OF BACILLUS THURINGIENSIS ISRAELENSIS AGAINST CULEX QUINQUEFASCIATUS1 JAMES C. DUNFORD,2 CRAIG A. STOOPS,3 ALDEN...thermal fogger applications of VectobacH WDG Bacillus thuringiensis israelensis (Bti) against Culex quinquefasciatus. Bacillus thuringiensis ...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE SR450 and Superhawk XP Applications of Bacillus Thuringiensis Israelensis

  12. Initial Study of Production of Bacillus thuringiensis israelensis Using Locally Obtained Substrates

    OpenAIRE

    Soesanto, Soesanto

    2015-01-01

    Bacillus thuringiensis israelensis diketahui sebagai entomopatogen nyamuk ades aegypti yang merupakan vektor penyakit demam berdarah.Telah dilakukan percobaan produksi Bacillus thuringiensis israelensis dengan menggunakan medium yang mengandung bahan lokal terasi udang, melase dan tepung kedelai. Hasil uji toksisitas (bioassay) terhadap Final Whole Culture (FWC) dengan bahan lokal yang murah menunjukkan potensi sebagai agensia bioinsektisida.Key Words: entomopathogen - Bacillus thuringiensis ...

  13. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... Bacillus thuringiensis Berliner; exemption from the requirement of a tolerance. 180.1011 Section 180.1011... microorganism Bacillus thuringiensis Berliner; exemption from the requirement of a tolerance. (a) For the... authentic strain of Bacillus thuringiensis Berliner conforming to the morphological and biochemical...

  14. Production of Alpha Amylase by Bacillus cereus in Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Helen H. Raplong

    2014-09-01

    Full Text Available Microorganisms have the ability to secrete enzymes when they are grown in the presence of certain substrates. Amylases are among the most important industrial enzymes and are of great significance in biotechnological studies. Bacteria belonging to the genus Bacillus were isolated using mannitol egg yolk polymyxin B (MYP agar a highly selective media for Bacillus cereus isolation. The isolates were tested for α-amylase production on nutrient agar supplemented with starch and in submerged fermentation. The bacteria isolated and identified (using the Microgen Bacillus identification kit were all Bacillus cereus and SB2 had the largest zone of hydrolysis of 12mm on nutrient agar supplemented with starch as well as the highest enzyme activity of 1.62U/ml. Amylase activity of 2.56U/ml was obtained after 24 hours incubation in submerged fermentation. When amylase enzyme production parameters where optimized, maximum amylase activity was obtained at a pH of 6.5, temperature of 350C, incubation time of 24 hours and 4% inoculums concentration. Bacillus cereus SB2 is a potential isolate for alpha-amylase production with soluble starch as the sole carbon source in submerged fermentation.

  15. The bcr1 DNA repeat element is specific to the Bacillus cereus group and exhibits mobile element characteristics.

    Science.gov (United States)

    Økstad, Ole Andreas; Tourasse, Nicolas J; Stabell, Fredrik B; Sundfaer, Cathrine K; Egge-Jacobsen, Wolfgang; Risøen, Per Arne; Read, Timothy D; Kolstø, Anne-Brit

    2004-11-01

    Bacillus cereus strains ATCC 10987 and ATCC 14579 harbor an approximately 155-bp repeated element, bcr1, which is conserved in B. cereus, B. anthracis, B. thuringiensis, and B. mycoides but not in B. subtilis and B. licheniformis. In this study, we show by Southern blot hybridizations that bcr1 is present in all 54 B. cereus group strains tested but absent in 11 Bacillus strains outside the group, suggesting that bcr1 may be specific and ubiquitous to the B. cereus group. By comparative analysis of the complete genome sequences of B. cereus ATCC 10987, B. cereus ATCC 14579, and B. anthracis Ames, we show that bcr1 is exclusively present in the chromosome but absent from large plasmids carried by these strains and that the numbers of full-length bcr1 repeats for these strains are 79, 54, and 12, respectively. Numerous copies of partial bcr1 elements are also present in the three genomes (91, 128, and 53, respectively). Furthermore, the genomic localization of bcr1 is not conserved between strains with respect to chromosomal position or organization of gene neighbors, as only six full-length bcr1 loci are common to at least two of the three strains. However, the intergenic sequence surrounding a specific bcr1 repeat in one of the three strains is generally strongly conserved in the other two, even in loci where bcr1 is found exclusively in one strain. This finding indicates that bcr1 either has evolved by differential deletion from a very high number of repeats in a common ancestor to the B. cereus group or is moving around the chromosome. The identification of bcr1 repeats interrupting genes in B. cereus ATCC 10987 and ATCC 14579 and the presence of a flanking TTTAT motif in each end show that bcr1 exhibits features characteristic of a mobile element.

  16. Bacillus cereus food poisoning: international and Indian perspective.

    Science.gov (United States)

    Tewari, Anita; Abdullah, Swaid

    2015-05-01

    Food borne illnesses result from eating food or drinking beverages that are contaminated with chemical matter, heavy metals, parasites, fungi, viruses and Bacteria. Bacillus cereus is one of the food-borne disease causing Bacteria. Species of Bacillus and related genera have long been troublesome to food producers on account of their resistant endospores. Their spores may be present on various types of raw and cooked foods, and their ability to survive high cooking temperatures requires that cooked foods be served hot or cooled rapidly to prevent the growth of this bacteria. Bacillus cereus is well known as a cause of food poisoning, and much more is now known about the toxins produced by various strains of this species, so that its significance in such episodes are clearer. However, it is still unclear why such cases are so rarely reported worldwide.

  17. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.

    Science.gov (United States)

    Warda, Alicja K; Siezen, Roland J; Boekhorst, Jos; Wells-Bennik, Marjon H J; de Jong, Anne; Kuipers, Oscar P; Nierop Groot, Masja N; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.

  18. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.

    Directory of Open Access Journals (Sweden)

    Alicja K Warda

    Full Text Available We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.

  19. Bacillus cereus panophthalmitis associated with intraocular gas bubble.

    Science.gov (United States)

    al-Hemidan, A; Byrne-Rhodes, K A; Tabbara, K F

    1989-01-01

    It has become increasingly apparent that Bacillus cereus can cause a severe and devastating form of endophthalmitis following penetrating trauma by a metallic object. B. cereus is an uncommon aetiological agent in non-clostridial gas-forming infections. The patient studied in this single case report showed evidence of intraocular gas mimicking gas gangrene infection. The physiology of non-clostridial bacteria producing gas from anaerobic metabolic conditions is reviewed. Further intraocular and systemic complications which may be avoided by accurate and early diagnosis and the use of recommended treatment with antibiotics such as clindamycin. Images PMID:2493262

  20. [Can industrial laundry remove Bacillus cereus from hospital linen?].

    Science.gov (United States)

    Yoh, Myonsun; Matsuyama, Junko; Shime, Akiko; Okayama, Kana; Sakamoto, Rei; Honda, Takeshi

    2010-09-01

    Contaminated hospital linen has caused some cases of Bacillus cereus bacteremia in Japan. We analyzed the disinfection efficacy of industrial washing of hospital towels and sheets by counting the number of B. cereus on linen before and after washing. That before washing averaged 7.6 cells/cm2 on unwashed sheets, decreasing to 1.2 cells/cm2 after washing. That on unwashed towels, however, averaged 10(6) cells/cm2 before washing and 1096 cells/cm2 after washing, which was very high and suggested the possibility of causing nosocomial infection.

  1. Invasive Bacillus cereus Infection in a Renal Transplant Patient: A Case Report and Review

    Directory of Open Access Journals (Sweden)

    Susan John

    2012-01-01

    Full Text Available Bacillus cereus is a common cause of gastrointestinal diseases. The majority of individuals with B cereus-related food poisoning recover without any specific treatment. It can, however, rarely cause invasive disease in immunocompromised patients.

  2. Low translocation of Bacillus thuringiensis israelensis to inner organs in mice after pulmonary exposure to commercial biopesticide

    DEFF Research Database (Denmark)

    Barfod, Kenneth Klingenberg; Ørum-Smidt, Lasse; Krogfelt, Karen A.

    2010-01-01

    Translocation of viable cells from a Bacillus thuringiensis israelensis-based biopesticide to inner organs in a mouse model was studied. Mice were exposed to the originally formulated product through the lungs and gastrointestinal tract by intratracheal instillation. Colony forming units (CFU) were...... grown from lungs, caecum, spleen and liver on Bacillus cereus-specific agar (BCSA) after 24 h and finally determined to be biopesticide strain B. t. israelensis by large plasmid profile. No CFU were found in spleen or liver of the control mice or in any aerosol background or material. We have shown...... biopesticides in the future....

  3. Ultra-violet-resistant mutants of Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Jones, D.R.; Karunakaran, V.; Hacking, A.J.

    1991-01-01

    One of the main disadvantages of using Bacillus thuringiensis as an insecticide is that the spore and crystal preparations applied to foliage are readily washed away by rain and are inactivated by sunlight. Spores from some strains of B. thuringiensis have been shown to be highly sensitive to u.v. light. This study has demonstrated how mutants with increased resistance to u.v., isolated by successive rounds of u.v. irradiation, and additionally with increased specific pathogenicity can be isolated. These techniques should be applied to strains that are frequently used in the industrial production of B.thuringiensis toxin. (author)

  4. Bacillus cereus in personal care products: risk to consumers.

    Science.gov (United States)

    Pitt, T L; McClure, J; Parker, M D; Amézquita, A; McClure, P J

    2015-04-01

    Bacillus cereus is ubiquitous in nature and thus occurs naturally in a wide range of raw materials and foodstuffs. B. cereus spores are resistant to desiccation and heat and able to survive dry storage and cooking. Vegetative cells produce several toxins which on ingestion in sufficient numbers can cause vomiting and/or diarrhoea depending on the toxins produced. Gastrointestinal disease is commonly associated with reheated or inadequately cooked foods. In addition to being a rare cause of several acute infections (e.g. pneumonia and septicaemia), B. cereus can also cause localized infection of post-surgical or trauma wounds and is a rare but significant pathogen of the eye where it may result in severe endophthalmitis often leading to loss of vision. Key risk factors in such cases are trauma to the eye and retained contaminated intraocular foreign bodies. In addition, rare cases of B. cereus-associated keratitis (inflammation of the cornea) have been linked to contact lens use. Bacillus cereus is therefore a microbial contaminant that could adversely affect product safety of cosmetic and facial toiletries and pose a threat to the user if other key risk factors are also present. The infective dose in the human eye is unknown, but as few as 100 cfu has been reported to initiate infection in a susceptible animal model. However, we are not aware of any reports in the literature of B. cereus infections in any body site linked with use of personal care products. Low levels of B. cereus spores may on occasion be present in near-eye cosmetics, and these products have been used by consumers for many years. In addition, exposure to B. cereus is more likely to occur through other routes (e.g. dustborne contamination) due to its ubiquity and resistance properties of spores. The organism has been recovered from the eyes of healthy individuals. Therefore, although there may be a perceived hazard, the risk of severe eye infections as a consequence of exposure through

  5. Dissemination of Bacillus cereus in an intensive care unit.

    Science.gov (United States)

    Bryce, E A; Smith, J A; Tweeddale, M; Andruschak, B J; Maxwell, M R

    1993-08-01

    To report the contamination of ventilator equipment with Bacillus cereus and to outline the measures taken to trace the source of the organism. A prospective survey of all intensive care unit patients who were culture-positive for B cereus and obtaining of environmental cultures of the cleaning and assembly area of the respiratory services division between October 1991 and September 1992. Ventilated patients from a 16-bed medical and surgical intensive care unit (ICU) in a 1,000-bed adult tertiary care hospital. From October 1991 to April 1992, B cereus colonized the ventilator circuitry of patients in the ICU. One of two washer/decontaminators in the cleaning and assembly area of the respiratory services division was found to yield the microorganism consistently from the water intake port. The design of the machine precluded easy decontamination of the port with 2% glutaraldehyde and a second outbreak occurred. Following the second outbreak, aqueous chlorhexidine in a final concentration of 0.05% was added to the first of two pasteurization cycles in an attempt to achieve sporicidal activity. This ended the outbreak. Sixty-two patients became colonized with the organism including two with nonfatal Bacillus sepsis and one death due to pneumonia associated with the organism. This experience emphasizes the importance of obtaining cultures of machine parts to identify the source of contamination and thereby direct control measures. Use of chlorhexidine gluconate at high temperatures effectively eradicated B cereus from ventilator circuitry in a practical and cost-effective manner.

  6. Global gene expression profile for swarming Bacillus cereus bacteria.

    Science.gov (United States)

    Salvetti, Sara; Faegri, Karoline; Ghelardi, Emilia; Kolstø, Anne-Brit; Senesi, Sonia

    2011-08-01

    Bacillus cereus can use swarming to move over and colonize solid surfaces in different environments. This kind of motility is a collective behavior accompanied by the production of long and hyperflagellate swarm cells. In this study, the genome-wide transcriptional response of B. cereus ATCC 14579 during swarming was analyzed. Swarming was shown to trigger the differential expression (>2-fold change) of 118 genes. Downregulated genes included those required for basic cellular metabolism. In accordance with the hyperflagellate phenotype of the swarm cell, genes encoding flagellin were overexpressed. Some genes associated with K(+) transport, phBC6A51 phage genes, and the binding component of the enterotoxin hemolysin BL (HBL) were also induced. Quantitative reverse transcription-PCR (qRT-PCR) experiments indicated an almost 2-fold upregulation of the entire hbl operon during swarming. Finally, BC1435 and BC1436, orthologs of liaI-liaH that are known to be involved in the resistance of Bacillus subtilis to daptomycin, were upregulated under swarming conditions. Accordingly, phenotypic assays showed reduced susceptibility of swarming B. cereus cells to daptomycin, and P(spac)-induced hyper-expression of these genes in liquid medium highlighted the role of BC1435 and BC1436 in the response of B. cereus to daptomycin.

  7. Characterization of a broad range antimicrobial substance from Bacillus cereus.

    Science.gov (United States)

    Risøen, P A; Rønning, P; Hegna, I K; Kolstø, A-B

    2004-01-01

    The aim of this research was to isolate and characterize an antimicrobial substance from the Bacillus cereus type strain ATCC 14579. A substance with antimicrobial activity was isolated from B. cereus ATCC 14579. The substance was produced during late exponential growth and well into the stationary phase with a maximum 9 h after inoculation. The inhibitory substance was purified by reverse-phase HPLC and shown to be highly active against closely related Bacillus spp. Clinically relevant species such as Staphylococcus aureus and Micrococcus luteus were also inhibited. The substance was characterized as a bacteriocin-like inhibitory substance (BLIS) with a molecular mass of ca 3.4 kDa. The BLIS was very heat stable, and sensitive only to pronase E and proteinase K. Antimicrobial activity was stable and high in the pH range of 2.0-9.0, and relatively unaffected by organic chemicals. An antimicrobial substance produced by the B. cereus type strain ATCC 14579 was characterized, with a wide spectrum of activity and the potential to be applied as a control agent against pathogenic bacteria. The present study is the first report of a substance with antimicrobial activity from the B. cereus type strain.

  8. Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN

    Energy Technology Data Exchange (ETDEWEB)

    Tuleva, B.; Christova, N. [Inst. of Microbiology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Jordanov, B.; Nikolova-Damyanova, B. [Inst. of Organic Chemistry, Sofia (Bulgaria); Petrov, P. [National Center of Infectious and Parasitic Diseases, Sofia (Bulgaria)

    2005-08-01

    Biosurfactant activity and naphthalene degradation by a new strain identified as Bacillus cereus 28BN were studied. The strain grew well and produced effective biosurfactants in the presence of n-alkanes, naphthalene, crude oil and vegetable oils. The biosurfactants were detected by the surface tension lowering of the medium, thin layer chromatography and infrared spectra analysis. With (2%) naphthalene as the sole carbon source, high levels of rhamnolipids at a concentration of 2.3 g l{sup -1} were determined in the stationary growth. After 20 d of incubation 72 {+-} 4% of the initial naphthalene was degraded. This is the first report for a Bacillus cereus rhamnolipid producing strain that utilized naphthalene under aerobic conditions. The strain looks promising for application in environmental technologies. (orig.)

  9. Effect of Ultrasonic Waves on the Heat Resistance of Bacillus cereus and Bacillus licheniformis Spores

    Science.gov (United States)

    Burgos, J.; Ordóñez, J. A.; Sala, F.

    1972-01-01

    Heat resistance of Bacillus cereus and Bacillus licheniformis spores in quarter-strength Ringer solution decreases markedly after ultrasonic treatments which are unable to kill a significant proportion of the spore population. This effect does not seem to be caused by a loss of Ca2+ or dipicolinic acid. The use of ultrasonics to eliminate vegetative cells or to break aggregates in Bacillus spore suspensions to be used subsequently in heat resistance experiments appears to be unadvisable. PMID:4627969

  10. The role of pili in Bacillus cereus intraocular infection.

    Science.gov (United States)

    Callegan, Michelle C; Parkunan, Salai Madhumathi; Randall, C Blake; Coburn, Phillip S; Miller, Frederick C; LaGrow, Austin L; Astley, Roger A; Land, Craig; Oh, So-Young; Schneewind, Olaf

    2017-06-01

    Bacterial endophthalmitis is a potentially blinding intraocular infection. The bacterium Bacillus cereus causes a devastating form of this disease which progresses rapidly, resulting in significant inflammation and loss of vision within a few days. The outer surface of B. cereus incites the intraocular inflammatory response, likely through interactions with innate immune receptors such as TLRs. This study analyzed the role of B. cereus pili, adhesion appendages located on the bacterial surface, in experimental endophthalmitis. To test the hypothesis that the presence of pili contributed to intraocular inflammation and virulence, we analyzed the progress of experimental endophthalmitis in mouse eyes infected with wild type B. cereus (ATCC 14579) or its isogenic pilus-deficient mutant (ΔbcpA-srtD-bcpB or ΔPil). One hundred CFU were injected into the mid-vitreous of one eye of each mouse. Infections were analyzed by quantifying intraocular bacilli and retinal function loss, and by histology from 0 to 12 h postinfection. In vitro growth and hemolytic phenotypes of the infecting strains were also compared. There was no difference in hemolytic activity (1:8 titer), motility, or in vitro growth (p > 0.05, every 2 h, 0-18 h) between wild type B. cereus and the ΔPil mutant. However, infected eyes contained greater numbers of wild type B. cereus than ΔPil during the infection course (p ≤ 0.05, 3-12 h). Eyes infected with wild type B. cereus experienced greater losses in retinal function than eyes infected with the ΔPil mutant, but the differences were not always significant. Eyes infected with ΔPil or wild type B. cereus achieved similar degrees of severe inflammation. The results indicated that the intraocular growth of pilus-deficient B. cereus may have been better controlled, leading to a trend of greater retinal function in eyes infected with the pilus-deficient strain. Although this difference was not enough to significantly alter the severity

  11. Cell Wall Carbohydrate Compositions of Strains from the Bacillus cereus Group of Species Correlate with Phylogenetic Relatedness▿

    Science.gov (United States)

    Leoff, Christine; Saile, Elke; Sue, David; Wilkins, Patricia; Quinn, Conrad P.; Carlson, Russell W.; Kannenberg, Elmar L.

    2008-01-01

    Members of the Bacillus cereus group contain cell wall carbohydrates that vary in their glycosyl compositions. Recent multilocus sequence typing (MLST) refined the relatedness of B. cereus group members by separating them into clades and lineages. Based on MLST, we selected several B. anthracis, B. cereus, and B. thuringiensis strains and compared their cell wall carbohydrates. The cell walls of different B. anthracis strains (clade 1/Anthracis) were composed of glucose (Glc), galactose (Gal), N-acetyl mannosamine (ManNAc), and N-acetylglucosamine (GlcNAc). In contrast, the cell walls from clade 2 strains (B. cereus type strain ATCC 14579 and B. thuringiensis strains) lacked Gal and contained N-acetylgalactosamine (GalNAc). The B. cereus clade 1 strains had cell walls that were similar in composition to B. anthracis in that they all contained Gal. However, the cell walls from some clade 1 strains also contained GalNAc, which was not present in B. anthracis cell walls. Three recently identified clade 1 strains of B. cereus that caused severe pneumonia, i.e., strains 03BB102, 03BB87, and G9241, had cell wall compositions that closely resembled those of the B. anthracis strains. It was also observed that B. anthracis strains cell wall glycosyl compositions differed from one another in a plasmid-dependent manner. When plasmid pXO2 was absent, the ManNAc/Gal ratio decreased, while the Glc/Gal ratio increased. Also, deletion of atxA, a global regulatory gene, from a pXO2− strain resulted in cell walls with an even greater level of Glc. PMID:17981984

  12. Cell wall carbohydrate compositions of strains from the Bacillus cereus group of species correlate with phylogenetic relatedness.

    Science.gov (United States)

    Leoff, Christine; Saile, Elke; Sue, David; Wilkins, Patricia; Quinn, Conrad P; Carlson, Russell W; Kannenberg, Elmar L

    2008-01-01

    Members of the Bacillus cereus group contain cell wall carbohydrates that vary in their glycosyl compositions. Recent multilocus sequence typing (MLST) refined the relatedness of B. cereus group members by separating them into clades and lineages. Based on MLST, we selected several B. anthracis, B. cereus, and B. thuringiensis strains and compared their cell wall carbohydrates. The cell walls of different B. anthracis strains (clade 1/Anthracis) were composed of glucose (Glc), galactose (Gal), N-acetyl mannosamine (ManNAc), and N-acetylglucosamine (GlcNAc). In contrast, the cell walls from clade 2 strains (B. cereus type strain ATCC 14579 and B. thuringiensis strains) lacked Gal and contained N-acetylgalactosamine (GalNAc). The B. cereus clade 1 strains had cell walls that were similar in composition to B. anthracis in that they all contained Gal. However, the cell walls from some clade 1 strains also contained GalNAc, which was not present in B. anthracis cell walls. Three recently identified clade 1 strains of B. cereus that caused severe pneumonia, i.e., strains 03BB102, 03BB87, and G9241, had cell wall compositions that closely resembled those of the B. anthracis strains. It was also observed that B. anthracis strains cell wall glycosyl compositions differed from one another in a plasmid-dependent manner. When plasmid pXO2 was absent, the ManNAc/Gal ratio decreased, while the Glc/Gal ratio increased. Also, deletion of atxA, a global regulatory gene, from a pXO2- strain resulted in cell walls with an even greater level of Glc.

  13. A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species.

    Directory of Open Access Journals (Sweden)

    Hirohito Ogawa

    Full Text Available Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis.

  14. Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis

    Science.gov (United States)

    Zheng, Cao; Ma, Yang; Wang, Xun; Xie, Yuqun; Ali, Maria K.; He, Jin

    2015-01-01

    Cyclic di-AMP (c-di-AMP) is a recently discovered bacterial secondary messenger molecule, which is associated with various physiological functions. In the genus Bacillus, the intracellular level and turnover of c-di-AMP are mainly regulated by three diadenylate cyclases (DACs), including DisA, CdaA and CdaS, and two c-di-AMP-specific phosphodiesterases (GdpP and PgpH). In this study, we demonstrated that CdaS protein from B. thuringiensis is a hexameric DAC protein that can convert ATP or ADP to c-di-AMP in vitro and the N-terminal YojJ domain is essential for the DAC activity. Based on the markerless gene knock-out method, we demonstrated that the transcription of cdaS was initiated by the sporulation-specific sigma factor σH and the deletion of cdaS significantly delayed sporulation and parasporal crystal formation. These findings contrast with similar experiments conducted using B. subtilis, wherein transcription of its cdaS was initiated by the sigma factor σG. Deletion of all the three DAC genes from a single strain was unsuccessful, suggesting that c-di-AMP is an indispensable molecule in B. thuringiensis. Phylogenetic analysis indicated increased diversity of CdaS in the B. cereus and B. subtilis Bacillus subgroups. In summary, this study identifies important aspects in the regulation of c-di-AMP in the genus Bacillus. PMID:26441857

  15. Response of Bacillus cereus ATCC 14579 to challenges with sublethal concentrations of enterocin AS-48.

    Science.gov (United States)

    Grande Burgos, María J; Kovács, Akos T; Mirończuk, Aleksandra M; Abriouel, Hikmate; Gálvez, Antonio; Kuipers, Oscar P

    2009-10-28

    Enterocin AS-48 is produced by Enterococcus faecalis S48 to compete with other bacteria in their environment. Due to its activity against various Gram positive and some Gram negative bacteria it has clear potential for use as a food preservative. Here, we studied the effect of enterocin AS-48 challenges on vegetative cells of Bacillus cereus ATCC 14579 by use of transcriptome analysis. Of the 5200 genes analysed, expression of 24 genes was found to change significantly after a 30 min treatment with a subinhibitory bacteriocin concentration of 0.5 microg/ml. Most of up-regulated genes encode membrane-associated or secreted proteins with putative transmembrane segments or signal sequences, respectively. One operon involved in arginine metabolism was significantly downregulated. The BC4206-BC4207 operon was found to be the most upregulated target in our experiments. BC4206 codes for a PadR type transcriptional regulator, while BC4207 codes for a hypothetical membrane protein. The operon structure and genes are conserved in B. cereus and B. thuringiensis species, but are not present in B. anthracis and B. subtilis. Using real-time qPCR, we show that these genes are upregulated when we treated the cells with AS-48, but not upon nisin treatment. Upon overexpression of BC4207 in B. cereus, we observed an increased resistance against AS-48. Expression of BC4207 in B. subtilis 168, which lacks this operon also showed increased resistance against AS-48. BC4207 membrane protein is involved in the resistance mechanism of B. cereus cells against AS-48.

  16. Response of Bacillus cereus ATCC 14579 to challenges with sublethal concentrations of enterocin AS-48

    Directory of Open Access Journals (Sweden)

    Gálvez Antonio

    2009-10-01

    Full Text Available Abstract Background Enterocin AS-48 is produced by Enterococcus faecalis S48 to compete with other bacteria in their environment. Due to its activity against various Gram positive and some Gram negative bacteria it has clear potential for use as a food preservative. Here, we studied the effect of enterocin AS-48 challenges on vegetative cells of Bacillus cereus ATCC 14579 by use of transcriptome analysis. Results Of the 5200 genes analysed, expression of 24 genes was found to change significantly after a 30 min treatment with a subinhibitory bacteriocin concentration of 0.5 μg/ml. Most of up-regulated genes encode membrane-associated or secreted proteins with putative transmembrane segments or signal sequences, respectively. One operon involved in arginine metabolism was significantly downregulated. The BC4206-BC4207 operon was found to be the most upregulated target in our experiments. BC4206 codes for a PadR type transcriptional regulator, while BC4207 codes for a hypothetical membrane protein. The operon structure and genes are conserved in B. cereus and B. thuringiensis species, but are not present in B. anthracis and B. subtilis. Using real-time qPCR, we show that these genes are upregulated when we treated the cells with AS-48, but not upon nisin treatment. Upon overexpression of BC4207 in B. cereus, we observed an increased resistance against AS-48. Expression of BC4207 in B. subtilis 168, which lacks this operon also showed increased resistance against AS-48. Conclusion BC4207 membrane protein is involved in the resistance mechanism of B. cereus cells against AS-48.

  17. The colonization of Bacillus thuringiensis strains in bryophytes

    Czech Academy of Sciences Publication Activity Database

    Lin, Q.; Zhu, P.; Carballar-Lejarazú, R.; Gelbič, Ivan; Guan, X.; Xu, L.; Zhang, L.

    2017-01-01

    Roč. 41, č. 1 (2017), s. 41-48 ISSN 1300-0152 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * GFP * plant colonization Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.038, year: 2016 http://journals.tubitak.gov.tr/biology/issues/biy-17-41-1/biy-41-1-5-1510-16.pdf

  18. Profile of cry from native Bacillus thuringiensis isolates and ...

    African Journals Online (AJOL)

    oyaide

    2013-05-29

    May 29, 2013 ... The characterization of 255 Bacillus thuringiensis isolates of Coorg, Sharavatti and BR hills, containing genes known to be active against coleopteran and lepidopteran insect species was done through PCR amplification using the specific and degenerate primers. The isolates were also tested for their.

  19. Effects of Ingesting Bacillus Thuringiensis (Berliner) Spores on ...

    African Journals Online (AJOL)

    Bacillus thuringiensis Berliner was isolated from dead Sesamia calamistis Hampson (Lepidoptera: Noctuidae) larvae collected from maize farms in Cape Coast, Ghana. Spores produced from the vegetative cells were incorporated into an artificial diet and fed to 2nd instar S. calamistis larvae. The duration of larval and pupal ...

  20. Laboratory evaluation of toxicity of Bacillus thuringiensis , neem oil ...

    African Journals Online (AJOL)

    Diamondback moth (DBM), Plutella xylostella (L.), remains a major pest of brassica crops worldwide. Chemical control of this pest remains difficult due to the rapid development of resistance to insecticides and to their effect on natural enemies. The objective of this study was to assess the toxicity of Bacillus thuringiensis (Bt), ...

  1. Bacillus thuringiensis and its application in agriculture | Ali | African ...

    African Journals Online (AJOL)

    Presently, a number of approaches to pest control via genetic engineering have been developed and genetically engineered crops expressing insecticidal characteristics are under cultivation for the last 15 years. Use of Bacillus thuringiensis genes encoding o̅ endotoxins with insecticidal characteristics is the major ...

  2. Evaluation of potency of native Bacillus thuringiensis against maize ...

    African Journals Online (AJOL)

    Bacillus thuringiensis is the most used biological control agent to date. Among major constraints to maize production, safety and hence food sufficiency in Kenya is infestation, damage and contamination by insect pests. Maize grains are adversely damaged by. Prostephanus truncatus which occasionally paves way for the ...

  3. Effects of Ingesting Bacillus Thuringiensis (Berliner) Spores on ...

    African Journals Online (AJOL)

    Effects of Ingesting Bacillus Thuringiensis (Berliner) Spores on Developmental Stages and Fecundity of Surviving Sesamia Calamistis (Hampson) (Lepidoptera: ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

  4. Screening of Local Bacillus thuringiensis Isolates for Toxicity to ...

    African Journals Online (AJOL)

    Stem borers are a major source of pre-harvest maize crop losses in Kenya and many Sub- Saharan African countries. This menace needs to be addressed if food security is to be realized in this region. Seven local isolates of Bacillus thuringiensis (Bt) strains were isolated from soils collected from Kakamega and Machakos ...

  5. The Impact of Bacillus Thuringiensis Israelensis (Bti) on Adult and ...

    African Journals Online (AJOL)

    In the year 2007, the Ministry of Health (MoH) initiated a larviciding program using Bacillus thuringiensis israelensis (Bti) to mitigate the effects of black fly bites. This study was aimed at assessing the impact of Bti on adult and larvae black fly populations. Baseline data was collected prior to Bti application and after ...

  6. Profile of cry from native Bacillus thuringiensis isolates and ...

    African Journals Online (AJOL)

    The characterization of 255 Bacillus thuringiensis isolates of Coorg, Sharavatti and BR hills, containing genes known to be active against coleopteran and lepidopteran insect species was done through PCR amplification using the specific and degenerate primers. The isolates were also tested for their insecticidal activity ...

  7. Detection of Bacillus thuringiensis genes in transgenic maize by the ...

    African Journals Online (AJOL)

    We optimized the PCR method to detect genetically engineered Bacillus thuringiensis (Bt) maize in open quarantine fields in Kenya. Many factors affect the extraction of the DNA from plants, such as the amount of tissue available, the condition of the plant material, the numbers of steps involved in the extraction procedure, ...

  8. Comparative transcriptome and phenotype analysis of acid-stressed Bacillus cereus strain ATCC 14579

    NARCIS (Netherlands)

    Mols, J.M.; Kranenburg, van Richard; Melis, van Clint; Moezelaar, Roy; Abee, Tjakko

    2009-01-01

    The food-borne human pathogen Bacillus cereus is found in environments that often have a low pH, such as food and soil. The physiological response upon exposure to several levels of acidity were investigated of B. cereus model strain ATCC 14579, to elucidate the response of B. cereus to acid stress.

  9. [Bacillus cereus endocarditis and a probable cutaneous gateway].

    Science.gov (United States)

    Soudet, S; Becquart, C; Dezoteux, F; Faure, K; Staumont-Salle, D; Delaporte, E

    2017-01-01

    Bacillus cereus is a ubiquitous telluric organism. B. cereus endocarditis is a rare condition seen mostly in prosthetic heart valves and among intravenous drug users. We report a new case of a patient without risk factors and with a good clinical outcome not requiring valve replacement. In October 2014, a 50-year-old woman was referred to the dermatology department of Lille University Hospital for lower-limb wounds developing 6 months earlier. She presented fever without clinical signs of infection, except for the lower-limbs wounds. Blood cultures revealed the presence of B. cereus. Transesophageal echocardiography was performed and revealed two foci of aortic valve vegetation with a diameter of 5mm. After bacterial sensitivity testing, rifampicin and levofloxacin treatment was given for six weeks, with complete remission. A skin graft was performed and good improvement was seen. Nineteen cases of B. cereus endocarditis have been described previously, only one of which was without risk factors. We described a case of complete remission after a 6-week course of antibiotics. Our case demonstrates that BC should not be considered as a blood culture contamination, and that treatment may be complex due to antibiotic resistance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Germination of Bacillus cereus spores adhered to stainless steel.

    Science.gov (United States)

    Hornstra, L M; de Leeuw, P L A; Moezelaar, R; Wolbert, E J; de Vries, Y P; de Vos, W M; Abee, T

    2007-05-30

    Adhered spores of Bacillus cereus represent a significant part of the surface-derived contamination in processing equipment used in the dairy industry. As germinated spores lose their resistance capacities instantaneously, efficient germination prior to a cleaning in place treatment could aid to the disinfecting effect of such a treatment. Therefore, spores of B. cereus ATCC 14579 and that of the environmental isolate B. cereus CMCC 3328 were assessed for their germination behaviour when adhered to a stainless steel surface. A mixture of l-alanine and inosine initiated germination of adhered spores efficiently, resulting in 3.2 decimal logarithms of germination. Notably, implementation of a germination-inducing step prior to a representative cleaning in place procedure reduced the number of survivors with over 3 decimal log units, while an alkali treatment alone, as part of the cleaning in place procedure, did not show any effect on B. cereus spore viability. These results show that implementation of a germination step enhances the disinfection effect of currently used cleaning in place procedures.

  11. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement... killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens is exempt from the...

  12. Proposal of nine novel species of the Bacillus cereus group.

    Science.gov (United States)

    Liu, Yang; Du, Juan; Lai, Qiliang; Zeng, Runying; Ye, Dezan; Xu, Jun; Shao, Zongze

    2017-08-01

    Nine novel Gram-stain-positive bacteria were investigated by a polyphasic taxonomic approach. Based on the analysis of 16S rRNA gene sequences, these strains belonged to the Bacillus cereus group, sharing over 97 % similarity with the known species of this group, and less than 95 % similarity with other species of the genus Bacillus. Multilocus sequence typing analysis showed that they formed nine robust and well-separated branches from the known species. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the nine strains were, respectively, below the 70 and 96 % threshold values for species definition, and between each strain and the known type strains of this group were also below the two threshold values. On the basis of the phenotypic and phylogenetic data, along with low dDDH and ANI values among these strains, these bacteria are assigned to the following nine novel species of the B. cereus group: Bacillus paranthracis sp. nov., type strain Mn5T (=MCCC 1A00395T=KCTC 33714T=LMG 28873T); Bacillus pacificus sp. nov., type strain EB422T (=MCCC 1A06182T=KCTC 33858T); Bacillus tropicus sp. nov., type strain N24T (=MCCC 1A01406T=KCTC 33711T=LMG 28874T); Bacillus albus sp. nov., type strain N35-10-2T (=MCCC 1A02146T=KCTC 33710T=LMG 28875T); Bacillus mobilis sp. nov., type strain 0711P9-1T (=MCCC 1A05942T=KCTC 33717T=LMG 28877T); Bacillus luti sp. nov., type strain TD41T (=MCCC 1A00359T=KCTC 33716T=LMG 28872T); Bacillus proteolyticus sp. nov., type strain TD42T (=MCCC 1A00365T=KCTC 33715T=LMG 28870T); Bacillus nitratireducens sp. nov., type strain 4049T (=MCCC 1A00732T=KCTC 33713T=LMG 28871T); and Bacillus paramycoides sp. nov., type strain NH24A2T (=MCCC 1A04098T=KCTC 33709T=LMG 28876T).

  13. Quorum Sensing in Bacillus thuringiensis Is Required for Completion of a Full Infectious Cycle in the Insect

    Directory of Open Access Journals (Sweden)

    Leyla Slamti

    2014-07-01

    Full Text Available Bacterial cell-cell communication or quorum sensing (QS is a biological process commonly described as allowing bacteria belonging to a same pherotype to coordinate gene expression to cell density. In Gram-positive bacteria, cell-cell communication mainly relies on cytoplasmic sensors regulated by secreted and re-imported signaling peptides. The Bacillus quorum sensors Rap, NprR, and PlcR were previously identified as the first members of a new protein family called RNPP. Except for the Rap proteins, these RNPP regulators are transcription factors that directly regulate gene expression. QS regulates important biological functions in bacteria of the Bacillus cereus group. PlcR was first characterized as the main regulator of virulence in B. thuringiensis and B. cereus. More recently, the PlcR-like regulator PlcRa was characterized for its role in cysteine metabolism and in resistance to oxidative stress. The NprR regulator controls the necrotrophic properties allowing the bacteria to survive in the infected host. The Rap proteins negatively affect sporulation via their interaction with a phosphorelay protein involved in the activation of Spo0A, the master regulator of this differentiation pathway. In this review we aim at providing a complete picture of the QS systems that are sequentially activated during the lifecycle of B. cereus and B. thuringiensis in an insect model of infection.

  14. Pan-genome and phylogeny of Bacillus cereus sensu lato.

    Science.gov (United States)

    Bazinet, Adam L

    2017-08-02

    Bacillus cereus sensu lato (s. l.) is an ecologically diverse bacterial group of medical and agricultural significance. In this study, I use publicly available genomes and novel bioinformatic workflows to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and population genetic analyses of this group to date in terms of the number of genes and taxa included. With these fundamental data in hand, I identify genes associated with particular phenotypic traits (i.e., "pan-GWAS" analysis), and quantify the degree to which taxa sharing common attributes are phylogenetically clustered. A rapid k-mer based approach (Mash) was used to create reduced representations of selected Bacillus genomes, and a fast distance-based phylogenetic analysis of this data (FastME) was performed to determine which species should be included in B. cereus s. l. The complete genomes of eight B. cereus s. l. species were annotated de novo with Prokka, and these annotations were used by Roary to produce the B. cereus s. l. pan-genome. Scoary was used to associate gene presence and absence patterns with various phenotypes. The orthologous protein sequence clusters produced by Roary were filtered and used to build HaMStR databases of gene models that were used in turn to construct phylogenetic data matrices. Phylogenetic analyses used RAxML, DendroPy, ClonalFrameML, PAUP*, and SplitsTree. Bayesian model-based population genetic analysis assigned taxa to clusters using hierBAPS. The genealogical sorting index was used to quantify the phylogenetic clustering of taxa sharing common attributes. The B. cereus s. l. pan-genome currently consists of ≈60,000 genes, ≈600 of which are "core" (common to at least 99% of taxa sampled). Pan-GWAS analysis revealed genes associated with phenotypes such as isolation source, oxygen requirement, and ability to cause diseases such as anthrax or food poisoning. Extensive phylogenetic analyses using an unprecedented amount of data

  15. 40 CFR 180.1181 - Bacillus cereus strain BPO1; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus cereus strain BPO1; exemption... FOOD Exemptions From Tolerances § 180.1181 Bacillus cereus strain BPO1; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance for residues of the Bacillus cereus...

  16. YwdL in Bacillus cereus: its role in germination and exosporium structure.

    Directory of Open Access Journals (Sweden)

    Cassandra Terry

    Full Text Available In members of the Bacillus cereus group the outermost layer of the spore is the exosporium, which interacts with hosts and the environment. Efforts have been made to identify proteins of the exosporium but only a few have so far been characterised and their role in determining spore architecture and spore function is still poorly understood. We have characterised the exosporium protein, YwdL. ΔywdL spores have a more fragile exosporium, subject to damage on repeated freeze-thawing, although there is no evidence of altered resistance properties, and coats appear intact. Immunogold labelling and Western blotting with anti-YwdL antibodies identified YwdL to be located exclusively on the inner surface of the exosporium of B. cereus and B. thuringiensis. We conclude that YwdL is important for formation of a robust exosporium but is not required to maintain the crystalline assembly within the basal layer or for attachment of the hairy nap structure. ΔywdL spores are unable to germinate in response to CaDPA, and have altered germination properties, a phenotype that confirms the expected defect in localization of the cortex lytic enzyme CwlJ in the coat.

  17. Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis.

    Science.gov (United States)

    Bolotin, Alexandre; Gillis, Annika; Sanchis, Vincent; Nielsen-LeRoux, Christina; Mahillon, Jacques; Lereclus, Didier; Sorokin, Alexei

    2017-05-01

    Bacillus thuringiensis subsp. israelensis is one of the most important microorganisms used against mosquitoes. It was intensively studied following its discovery and became a model bacterium of the B. thuringiensis species. Those studies focused on toxin genes, aggregation-associated conjugation, linear genome phages, etc. Recent announcements of genomic sequences of different strains have not been explicitly related to the biological properties studied. We report data on plasmid content analysis of four strains using ultra-high-throughput sequencing. The strains were commercial product isolates, with their putative ancestor and type B. thuringiensis subsp. israelensis strain sequenced earlier. The assembled contigs corresponding to published and novel data were assigned to plasmids described earlier in B. thuringiensis subsp. israelensis and other B. thuringiensis strains. A new 360 kb plasmid was identified, encoding multiple transporters, also found in most of the earlier sequenced strains. Our genomic data show the presence of two toxin-coding plasmids of 128 and 100 kb instead of the reported 225 kb plasmid, a co-integrate of the former two. In two of the sequenced strains, only a 100 kb plasmid was present. Some heterogeneity exists in the small plasmid content and structure between strains. These data support the perception of active plasmid exchange among B. thuringiensis subsp. israelensis strains in nature. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Enterotoxin production by Bacillus cereus under gastrointestinal conditions and their immunological detection by commercially available kits

    OpenAIRE

    Ceuppens, Siele; Rajkovic, Andreja; Hamelink, Stefanie; Van de Wiele, Tom; Boon, Nico; Uyttendaele, Mieke

    2012-01-01

    Currently, three commercial kits for Bacillus cereus enterotoxins Nhe and/or Hbl detection are available, namely, the Bacillus diarrheal enterotoxin visual immunoassay (BDE VIA (TM)) kit (3M Tecra), B. cereus enterotoxin reversed passive latex agglutination (BCET-RPLA) kit (Oxoid), and the Duopath (R) Cereus Enterotoxins (Merck). The performance of the kits and their applicability to gastrointestinal simulation samples were evaluated. Then, the stability and production of enterotoxins Hbl and...

  19. A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1.

    Science.gov (United States)

    Arora, Naresh; Ahmad, Tarannum; Rajagopal, R; Bhatnagar, Raj K

    2003-08-01

    A 36 kDa chitinase was purified by ion exchange and gel filtration chromatography from the culture supernatant of Bacillus thuringiensis HD-1. The chitinase production was independent of the presence of chitin in the growth medium and was produced even in the presence of glucose. The purified chitinase was active at acidic pH, had an optimal activity at pH 6.5, and showed maximum activity at 65 degrees C. Of the various substrates, the enzyme catalyzed the hydrolysis of the disaccharide 4-MU(GlnAc)(2) most efficiently and was therefore classified as an exochitinase. The sequence of the tryptic peptides showed extensive homology with Bacillus cereus 36 kDa exochitinase. The 1083 bp open reading frame encoding 36 kDa chitinase was amplified with primers based on the gene sequence of B. cereus 36 kDa exochitinase. The deduced amino-acid sequence showed that the protein contained an N-terminal signal peptide and consisted of a single catalytic domain. The two conserved signature sequences characteristic of family 18 chitinases were mapped at positions 105-109 and 138-145 of Chi36. The recombinant chitinase was expressed in a catalytically active form in Escherichia coli in the vector pQE-32. The expressed 36 kDa chitinase potentiated the insecticidal effect of the vegetative insecticidal protein (Vip) when used against neonate larvae of Spodoptera litura.

  20. Bacillus thuringiensis and its application in agriculture

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... Presently, a number of approaches to pest control via genetic engineering have been developed and genetically engineered crops ... of this bacterium, which are effective against Lepidop-. *Corresponding author. E-mail: .... provide a useful tool for management of resistance to B. thuringiensis toxins ...

  1. Bacillus thuringiensis HD-1 Cry- : development of a safe, non-insecticidal simulant for Bacillus anthracis.

    Science.gov (United States)

    Bishop, A H; Robinson, C V

    2014-09-01

    A representative simulant for spores of Bacillus anthracis is needed for field testing. Bacillus thuringiensis is gaining recognition as a suitable organism. A strain that does not form the insecticidal, parasporal crystals that are characteristic of this species is a more accurate physical representative of B. anthracis spores. We developed noninsecticidal derivatives of two isolates of B. thuringiensis HD-1. Two plasmid-cured derivatives of B. thuringiensis HD-1, unable to make crystal toxins ('Cry(-) '), were isolated. These isolates and the existing Cry(-) strain, B. thuringiensis Al Hakam, were probed with PCR assays against the known insecticidal genes cry, vip and cyt. Their genomic DNA was sequenced to demonstrate a lack of insecticidal genes. This was confirmed by bioassays against a number of invertebrate species. Real-time PCR assays were developed to identify the B. thuringiensis HD-1 Cry(-) derivatives and an effective differential and selective medium was assessed. All three Cry(-) isolates are devoid of known insecticidal determinants. The B. thuringiensis HD-1 Cry(-) derivatives can easily be recovered from soil and identified by PCR with some selectivity. The B. thuringiensis HD-1 Cry(-) derivatives represent accurate, nongenetically manipulated simulants for B. anthracis with excellent human and environmental safety records. © 2014 Crown Copyright. Journal of Applied Microbiology © 2014 Society for Applied Microbiology This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  2. Photoprotection of Bacillus thuringiensis kurstaki from ultraviolet irradiation

    International Nuclear Information System (INIS)

    Cohen, E.; Rozen, H.; Joseph, T.; Braun, S.; Margulies, L.

    1991-01-01

    Irradiation of Bacillus thuringiensis var. kurstaki HD1 at 300-350 nm for up to 12 hr using a photochemical reactor results in a rapid loss of its toxicity to larvae of Heliothis armigera. Photoprotection of the toxic component was obtained by adsorption of cationic chromophores such as acriflavin (AF), methyl green, and rhodamine B to B. thuringiensis. AF gave the best photoprotection and a level of 0.42 mmol/g dye absorbed per gram of B. thuringiensis was highly toxic even after 12 hr of ultraviolet (uv) irradiation as compared to the control (77.5 and 5% of insect mortality, respectively). Ultraviolet and Fourier-transform infrared spectroscopic studies indicate molecular interactions between B. thuringiensis and AF. The nature of these interactions and energy or charge transfer as possible mechanisms of photoprotection are discussed. It is speculated that tryptophan residues are essential for the toxic effect of B. thuringiensis. It is suggested that photoprotection is attained as energy is transferred from the excited tryptophan moieties to the chromophore molecules

  3. Elaboration of an electroporation protocol for Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Turgeon, Nathalie; Laflamme, Christian; Ho, Jim; Duchaine, Caroline

    2006-12-01

    An electro-transformation procedure was established for Bacillus cereus ATCC 14579. Using early growth-stage culture and high electric field, the ectroporation efficiency was up to 2 x 10(9) cfu microg(-1) ml(-1) with pC194 plasmid DNA. The procedure was tested with three other plasmids, of various sizes, replication mechanisms and selection markers, and the transformation efficiencies ranged between 2 x 10(6) and 1 x 10(8) cfu microg(-1) ml(-)(1). The effects of two wall-weakening agents on electroporation rates were also evaluated. The transformation rate that was reached with our procedure is 10(3) times higher than that previously obtained with members of the Bacillus genus with similar plasmids, and 10(6) times superior than that achieved with available protocols for B. cereus. The proposed method is quick, simple, efficient with small rolling circle plasmids and large theta replicating plasmids with low copy number per cell, and suitable for many genetic manipulations that are not possible without high-efficiency transformation protocols.

  4. Comparative Genomics of Bacillus thuringiensis Reveals a Path to Specialized Exploitation of Multiple Invertebrate Hosts.

    Science.gov (United States)

    Zheng, Jinshui; Gao, Qiuling; Liu, Linlin; Liu, Hualin; Wang, Yueying; Peng, Donghai; Ruan, Lifang; Raymond, Ben; Sun, Ming

    2017-08-08

    Understanding the genetic basis of host shifts is a key genomic question for pathogen and parasite biology. The Bacillus cereus group, which encompasses Bacillus thuringiensis and Bacillus anthracis , contains pathogens that can infect insects, nematodes, and vertebrates. Since the target range of the essential virulence factors (Cry toxins) and many isolates is well known, this group presents a powerful system for investigating how pathogens can diversify and adapt to phylogenetically distant hosts. Specialization to exploit insects occurs at the level of the major clade and is associated with substantial changes in the core genome, and host switching between insect orders has occurred repeatedly within subclades. The transfer of plasmids with linked cry genes may account for much of the adaptation to particular insect orders, and network analysis implies that host specialization has produced strong associations between key toxin genes with similar targets. Analysis of the distribution of plasmid minireplicons shows that plasmids with orf156 and orf157 , which carry genes encoding toxins against Lepidoptera or Diptera, were contained only by B. thuringiensis in the specialized insect clade (clade 2), indicating that tight genome/plasmid associations have been important in adaptation to invertebrate hosts. Moreover, the accumulation of multiple virulence factors on transposable elements suggests that cotransfer of diverse virulence factors is advantageous in terms of expanding the insecticidal spectrum, overcoming insect resistance, or through gains in pathogenicity via synergistic interactions between toxins. IMPORTANCE Population genomics have provided many new insights into the formation, evolution, and dynamics of bacterial pathogens of humans and other higher animals, but these pathogens usually have very narrow host ranges. As a pathogen of insects and nematodes, Bacillus thuringiensis , which produces toxins showing toxicity to many orders of insects and

  5. Purification and characterization of two polyhydroxyalcanoates from Bacillus cereus.

    Science.gov (United States)

    Zribi-Maaloul, Emna; Trabelsi, Imen; Elleuch, Lobna; Chouayekh, Hichem; Ben Salah, Riadh

    2013-10-01

    This work aimed to study the potential of 155 strains of Bacillus sp., isolated from a collection of Tunisian microorganisms, for polyhydroxyalcanoates production. The strains were submitted to a battery of standard tests commonly used for determining bioplastic properties. The findings revealed that two of the isolates, namely Bacillus US 163 and US 177, provided red excitations at a wavelength of approximately 543 nm. The polyhydroxyalcanoates produced by the two strains were purified. Gas chromatography-mass spectroscopy (GC-MS), Fourier transformed infrared spectroscopy (FTIR), and gel permeation chromatography (GPC) were used to characterize the two biopolymers. Bacillus US 163 was noted to produce a poly methyl-3-hydroxy tetradecanoic acid (P-3HTD) with an average molecular weight of 455 kDa, a completely amorphous homopolymer without crystallinity. The US 177 strain produced a homopolymer of methyl-3-hydroxy octadecanoic acid (P3-HOD) with an average molecular weight of 555 kDa. Exhibiting the highest performance, US 163 and US 177 were submitted to 16S rRNA gene sequencing, and the results revealed that they belonged to the Bacillus cereus species. Overall, the findings indicated that the Bacilli from petroleum soil have a number of promising properties that make them promising candidates for bioplastic production. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. [Bioconversion of sewage sludge to biopesticide by Bacillus thuringiensis].

    Science.gov (United States)

    Chang, Ming; Zhou, Shun-gui; Lu, Na; Ni, Jin-ren

    2006-07-01

    Feasibility of bioconversion of sewage sludge to biopesticide by Bacillus thuringiensis was studied using sewage sludge as a raw material. The fermentation was also compared with conventional medium. Results showed that without any pretreatment, the nutrients contained in sewage sludge were almost sufficient for Bacillus thuringiensis growth, even with a rapid multiplicational rate. Higher viable cells and viable spores values were obtained earlier at 24 h, with 9.48 x 10(8) CFU x mL(-1) and 8.51 x 10(8) CFU x mL(-1) respectively, which was 12 hours earlier and nearly 20 percent higher than conventional medium. SEM of 36 h samples gave a clear phenomenon that the metabolizability in sludge was much faster with spores and crystals spreading around. The crystals in sludge seemed rather bigger and more regular. Also a better crystal protein yield of 2.80 mg x mL(-1) was observed in sludge medium compared to conventional medium at the end of fermentation. Sludge fermentation for Bacillus thuringiensis reduces the producing cost, and gives better fermentation capabilities. It's expected to be a new method for sludge disposal.

  7. 40 CFR 174.517 - Bacillus thuringiensis Cry9C protein in corn; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry9C protein... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.517 Bacillus thuringiensis... Bacillus thuringiensis Cry9C protein in corn is exempted from the requirement of a tolerance for residues...

  8. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are exempted...

  9. 40 CFR 174.520 - Bacillus thuringiensis Cry1F protein in corn; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1F protein... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.520 Bacillus thuringiensis Cry1F protein in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis...

  10. 40 CFR 174.502 - Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1A.105...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.502 Bacillus thuringiensis Cry1A.105 protein; exemption from the requirement of a tolerance. (a) Residues of Bacillus thuringiensis Cry1A.105 protein in...

  11. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis modified Cry1Ab... Tolerance Exemptions § 174.529 Bacillus thuringiensis modified Cry1Ab protein as identified under OECD... Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN-IR67B-1 are...

  12. 40 CFR 174.530 - Bacillus thuringiensis Cry2Ae protein in cotton; temporary exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry2Ae protein... Bacillus thuringiensis Cry2Ae protein in or on the food commodities of cotton, cotton; cotton, undelinted... byproducts are exempt temporarily from the requirement of a tolerance when Bacillus thuringiensis Cry2Ae...

  13. Molecular Characterization and Risk Assessment of Bacillus cereus Sensu Lato Isolated from Ultrahigh-Temperature and Pasteurized Milk Marketed in Rio de Janeiro, Brazil.

    Science.gov (United States)

    Chaves, Jeane Q; de Paiva, Eislaine P; Rabinovitch, Leon; Vivoni, Adriana M

    2017-07-01

    The presence of Bacillus cereus in milk is a major concern in the dairy industry. In this study 27 Bacillus cereus sensu lato isolates from pasteurized and ultrahigh-temperature (UHT) milk (24 whole UHT and 4 pasteurized samples) collected at supermarket chains in Rio de Janeiro, Brazil, were evaluated to assess the potential risk for food poisoning. Toxigenic and virulence profiles were defined by gene-specific PCR. Affiliation to phylogenetic groups was assigned by panC sequencing. Microbiological analysis revealed the presence of B. cereus s.l. in eight (33.3%) brands (six brands of UHT and two brands of pasteurized milk). Twenty-seven isolates were recovered (13 B. cereus and 14 Bacillus thuringiensis ). Predominant toxigenic patterns were type I (contains all toxin genes except ces) and type II (does not contain cytK and ces), with seven (25.9%) isolates each. Predominant virulence patterns were type 2 (does not contain hlyII or shp) and type 3 (contains all virulence genes), with five (18.5%) isolates each. All isolates belonged to phylogenetic groups III and IV. Presence of hbl, piplc, and sph was associated with group IV isolates. Our results suggest that B. thuringiensis and B. cereus sensu stricto should be considered potential foodborne pathogens. Because the majority of the milk isolates studied have the potential to cause food poisoning because of the high prevalence of toxin and virulence genes and the specific phylogenetic group affiliations, these milk products can be potentially hazardous for human consumption.

  14. 40 CFR 180.1154 - CryIA(c) and CryIC derived delta-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated...

    Science.gov (United States)

    2010-07-01

    ...-endotoxins of Bacillus thuringiensis var. kurstaki encapsulated in killed Pseudomonas fluorescens, and the... Bacillus thuringiensis var. kurstaki encapsulated in killed Pseudomonas fluorescens, and the expression... thuringiensis var. kurstaki encapsulated in killed Pseudomonas fluorescens and the expression plasmid and...

  15. SR450 and Superhawk XP applications of Bacillus thuringiensis israelensis de Barjac against Culex quinquefasciatus Say

    Science.gov (United States)

    Sprayer comparisons and larval morality assays were conducted following SR450 backpack mist blower and Superhawk XP thermal fogger applications of Vectobac® WDG Bacillus thuringiensis israelensis (Bti) de Barjac against Culex quinquefasciatus Say. Bacillus thuringiensis israelensis was applied at m...

  16. Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress

    OpenAIRE

    Ganesh Babu, Malli Mohan; Sridhar, Jayavel; Gunasekaran, Paramasamy

    2011-01-01

    Abstract Silver nanoparticles (AgNPs) were synthesized using Bacillus cereus strains. Earlier, we had synthesized monodispersive crystalline silver nanoparticles using B. cereus PGN1 and ATCC14579 strains. These strains have showed high level of resistance to silver nitrate (1 mM) but their global transcriptomic response has not been studied earlier. In this study, we investigated the cellular and metabolic response of B. cereus ATCC14579 treated with 1 mM silver nitrate for 30 & 60 min. Glob...

  17. Comparative transcriptome and phenotype analysis of Bacillus cereus in response to disinfectant treatments

    OpenAIRE

    Ceragioli, Mara; Mols, J.M.; Moezelaar, Roy; Ghelardi, Emilia; Senesi, Sonia; Abee, Tjakko

    2010-01-01

    Antimicrobial chemicals are widely applied to clean and disinfect food-contacting surfaces. However, the cellular response of bacteria, such as Bacillus cereus, to various disinfectants is unclear. In this study, the physiological and genome-wide transcriptional responses of B. cereus ATCC 14579 exposed to four different disinfectants (i.e., benzalkonium chloride, sodium hypochlorite, hydrogen peroxide, and peracetic acid) were analyzed. The physiological response of B. cereus to different co...

  18. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    Science.gov (United States)

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  19. Methodology for fast evaluation of Bacillus thuringiensis crystal protein content

    Directory of Open Access Journals (Sweden)

    Alves Lúcia M. Carareto

    2000-01-01

    Full Text Available The development of the production and use of Bacillus thuringiensis in Brazil at a commercial scale faces certain difficulties, among them the establishment of efficient methodologies for the quantitation of toxic products to be commercialized. Presently, the amount of toxin is given in percentage by analyzing the samples total protein content. Such methodology however, does not measure the actual amount of active protein present in the product, since most strains express different endotoxin genes and might even produce b-toxin. Since the various types of toxins exhibit different antigenic characteristics, this work has as objective the utilization of fast immunological techniques to quantify the level of crystal protein. Crystal protein produced by a subspecies of Bacillus thuringiensis var. israelensis was purified by ultracentrifugation and utilized to immunize rabbits and to produce hiperimmune sera. Such sera were latter used to evaluate the level of proteins on commercial bioinsecticide and on laboratory cultures of B. thuringiensis through the immunodot technique. The results were obtained by comparison of data obtained from reactions with known concentrations of crystal protein permitting to evaluate the level of such protein on various materials.

  20. A new chemically defined medium for the growth and sporulation of Bacillus cereus strains in anaerobiosis.

    Science.gov (United States)

    Abbas, Amina Aicha; Planchon, Stella; Jobin, Michel; Schmitt, Philippe

    2014-10-01

    A new chemically defined liquid medium, MODS, was developed for the aerobic growth and anaerobic growth and sporulation of Bacillus cereus strains. The comparison of sporulation capacity of 18 strains of B. cereus has shown effective growth and spore production in anaerobiosis.. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Polymerase chain reaction assay for the detection of Bacillus cereus group cells

    DEFF Research Database (Denmark)

    Hansen, Bjarne Munk; Leser, Thomas D.; Hendriksen, Niels Bohse

    2001-01-01

    Recent investigations have shown that members of the Bacillus cereus group carry genes which have the potential to cause gastrointestinal and somatic diseases. Although most cases of diseases caused by the B. cereus group bacteria are relatively mild, it is desirable to be able to detect members ...

  2. Modelling the number of viable vegetative cells of Bacillus cereus passing through the stomach

    NARCIS (Netherlands)

    Wijnands, L.M.; Pielaat, A.; Dufrenne, J.B.; Zwietering, M.H.; Leusden, van F.M.

    2009-01-01

    Aims: Model the number of viable vegetative cells of B. cereus surviving the gastric passage after experiments in simulated gastric conditions. Materials and Methods: The inactivation of stationary and exponential phase vegetative cells of twelve different strains of Bacillus cereus, both mesophilic

  3. The impact of oxygen availability on stress survival and radical formation of Bacillus cereus

    NARCIS (Netherlands)

    Mols, J.M.; Pier, I.; Zwietering, M.H.; Abee, T.

    2009-01-01

    Both the growth and stress survival of two model Bacillus cereus strains, ATCC 14579 and ATCC 10987, were tested in three different conditions varying in oxygen availability, i.e., aerobic, microaerobic and anaerobic conditions. Both B. cereus strains displayed highest growth rates and yields under

  4. Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics.

    NARCIS (Netherlands)

    Mols, M.; Been, M.W.H.J. de; Zwietering, M.H.; Moezelaar, R.; Abee, T.

    2007-01-01

    Bacillus cereus is an important food-borne pathogen and spoilage organism. In this study, numerous phenotypes and the genomes of B.?cereus strains ATCC 14579 and ATCC 10987 were analysed to compare their metabolic capacity and stress resistance potential. The growth performance of the two strains

  5. Germinant receptor diversity and germination responses of four strains of the Bacillus cereus group

    NARCIS (Netherlands)

    Voort, van der M.; Garcia, D.; Moezelaar, R.; Abee, T.

    2010-01-01

    Four strains of the Bacillus cereus group were compared for their germinant receptor composition and spore germination capacity. Phylogenetic analysis of the germinant receptor encoding operons of the enterotoxic strains B. cereus ATCC 14579 and ATCC 10987, the emetic strain AH187, and the

  6. Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics

    NARCIS (Netherlands)

    Mols, J.M.; Been, de M.W.H.J.; Zwietering, M.H.; Moezelaar, R.; Abee, T.

    2007-01-01

    Bacillus cereus is an important food-borne pathogen and spoilage organism. In this study, numerous phenotypes and the genomes of B. cereus strains ATCC 14579 and ATCC 10987 were analysed to compare their metabolic capacity and stress resistance potential. The growth performance of the two strains

  7. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    Periago, P.M.; Schaik, van W.; Abee, T.; Wouters, J.A.

    2002-01-01

    To monitor the ability of the food-borne opportunistic pathogen Bacillus cereus to survive during minimal processing of food products, we determined its heat-adaptive response. During pre-exposure to 42°C, B. cereus ATCC 14579 adapts to heat exposure at the lethal temperature of 50°C (maximum

  8. Physiological and transcriptional response of Bacillus cereus treated with low-temperature nitrogen gas plasma

    NARCIS (Netherlands)

    Mols, J.M.; Mastwijk, H.C.; Nierop Groot, M.N.; Abee, T.

    2013-01-01

    Aims - This study was conducted to investigate the inactivation kinetics of Bacillus cereus vegetative cells upon exposure to low-temperature nitrogen gas plasma and to reveal the mode of inactivation by transcriptome profiling. Methods and Results - Exponentially growing B. cereus cells were

  9. Comparative transcriptome and phenotype analysis of Bacillus cereus in response to disinfectant treatments

    NARCIS (Netherlands)

    Ceragioli, Mara; Mols, J.M.; Moezelaar, Roy; Ghelardi, Emilia; Senesi, Sonia; Abee, Tjakko

    2010-01-01

    Antimicrobial chemicals are widely applied to clean and disinfect food-contacting surfaces. However, the cellular response of bacteria, such as Bacillus cereus, to various disinfectants is unclear. In this study, the physiological and genome-wide transcriptional responses of B. cereus ATCC 14579

  10. Soya bean tempe extracts show antibacterial activity against Bacillus cereus cells and spores

    NARCIS (Netherlands)

    Roubos-van den Hil, P.J.; Dalmas, E.; Nout, M.J.R.; Abee, T.

    2010-01-01

    Aims: Tempe, a Rhizopus ssp.-fermented soya bean food product, was investigated for bacteriostatic and/or bactericidal effects against cells and spores of the food-borne pathogen Bacillus cereus. Methods and results: Tempe extract showed a high antibacterial activity against B. cereus ATCC 14579

  11. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol

    NARCIS (Netherlands)

    Ultee, A.; Kets, E.P.W.; Alberda, M.; Hoekstra, F.A.; Smid, E.J.

    2000-01-01

    Carvacrol, a natural antimicrobial compound present in the essential oil fraction of oregano and thyme, is bactericidal towards Bacillus cereus. A decrease of the sensitivity of B. cereus towards carvacrol was observed after growth in the presence of non-lethal carvacrol concentrations. A decrease

  12. Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin

    NARCIS (Netherlands)

    Tempelaars, M.H.; Rodrigues, S.; Abee, T.

    2011-01-01

    Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial

  13. Construction of Bacillus thuringiensis Simulant Strains Suitable for Environmental Release.

    Science.gov (United States)

    Park, Sangjin; Kim, Changhwan; Lee, Daesang; Song, Dong Hyun; Cheon, Ki Cheol; Lee, Hong Suk; Kim, Seong Joo; Kim, Jee Cheon; Lee, Sang Yup

    2017-05-01

    For a surrogate bacterium to be used in outdoor studies, it is important to consider environmental and human safety and ease of detection. Recently, Bacillus thuringiensis , a popular bioinsecticide bacterium, has been gaining attention as a surrogate bacterium for use in biodefense. In this study, we constructed simulant strains of B. thuringiensis with enhanced characteristics for environmental studies. Through transposon mutagenesis, pigment genes were inserted into the chromosome, producing yellow-colored colonies for easy detection. To prevent persistence of spores in the environment, a genetic circuit was designed to produce a spore without sporulation capability. Two loxP sites were inserted, one on each side of the spo0A gene, which encodes a sporulation master regulator, and a sporulation-dependent Cre expression cassette was inserted into the chromosome. This genetic circuit successfully deleted spo0A during sporulation, producing spores that lacked the spo0A gene. In addition, two major α/β-type small acid-soluble spore protein (SASP) genes, predicted by synteny analysis, were deleted. The spores of the mutant strain showed increased UV-C sensitivity and quickly lost viability when tested in a solar simulator. When the spores of the mutant strain were administered to the lungs of BALB/c mice, cells were quickly removed from the body, suggesting enhanced in vivo safety. All strains constructed in this study contain no antibiotic resistance markers and all heterologous genes were inserted into the chromosome, which are useful features for simulants to be released into the environment. IMPORTANCE B. thuringiensis has recently been receiving increasing attention as a good spore simulant in biodefense research. However, few studies were done to properly address many important features of B. thuringiensis as a simulant in environmental studies. Since spores can persist in the environment for years after release, environmental contamination is a big problem

  14. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol.

    Science.gov (United States)

    Gomaa, Eman Zakaria

    2012-02-01

    Thirty bacterial strains were isolated from the rhizosphere of plants collected from Egypt and screened for production of chitinase enzymes. Bacillus thuringiensis NM101-19 and Bacillus licheniformis NM120-17 had the highest chitinolytic activities amongst those investigated. The production of chitinase by B. thuringiensis and B. licheniformis was optimized using colloidal chitin medium amended with 1.5% colloidal chitin, with casein as a nitrogen source, at 30°C after five days of incubation. An enhancement of chitinase production by the two species was observed by addition of sugar substances and dried fungal mats to the colloidal chitin media. The optimal conditions for chitinase activity by B. thuringiensis and B. licheniformis were at 40°C, pH 7.0 and pH 8.0, respectively. Na(+), Mg(2+), Cu(2+), and Ca(2+) caused enhancement of enzyme activities whereas they were markedly inhibited by Zn(2+), Hg(2+), and Ag(+). In vitro, B. thuringiensis and B. licheniformis chitinases had potential for cell wall lysis of many phytopathogenic fungi tested. The addition of B. thuringiensis chitinase was more effective than that of B. licheniformis in increasing the germination of soybean seeds infected with various phytopathogenic fungi.

  15. [Isolation of Bacillus thuringiensis IMV B-7324 fibrinolytic peptidase].

    Science.gov (United States)

    Nidialkova, N A; Matseliukh, O V; Varbanets', L D

    2012-01-01

    Fibrinolytic peptidase of Bacillus thuringiensis IMV B-7324 was isolated by ammonium sulfate fractionation, gel-filtration and ion exchange chromatography on TSK-gels--Toyopearl HW-55 and DEAE 650 (M). Fibrinolytic activity of the purified enzyme was 87.9 U/mg of protein that was 19.9 times higher compared with the supernatant cultural liquid, the yield on its activity reached 31%. The gel-filtration on Sepharose 6B and by SDS-PAGE electrophoresis demonstrated the homogeneity of the purified fibrinolytic peptidase, which molecular weight was approximately 24 kDa.

  16. Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.

    Science.gov (United States)

    Kong, Minsuk; Ryu, Sangryeol

    2015-04-01

    Bacillus cereus is an opportunistic human pathogen responsible for food poisoning and other, nongastrointestinal infections. Due to the emergence of multidrug-resistant B. cereus strains, the demand for alternative therapeutic options is increasing. To address these problems, we isolated and characterized a Siphoviridae virulent phage, PBC1, and its lytic enzymes. PBC1 showed a very narrow host range, infecting only 1 of 22 B. cereus strains. Phylogenetic analysis based on the major capsid protein revealed that PBC1 is more closely related to the Bacillus clarkii phage BCJA1c and phages of lactic acid bacteria than to the phages infecting B. cereus. Whole-genome comparison showed that the late-gene region, including the terminase gene, structural genes, and holin gene of PBC1, is similar to that from B. cereus temperate phage 250, whereas their endolysins are different. Compared to the extreme host specificity of PBC1, its endolysin, LysPBC1, showed a much broader lytic spectrum, albeit limited to the genus Bacillus. The catalytic domain of LysPBC1 when expressed alone also showed Bacillus-specific lytic activity, which was lower against the B. cereus group but higher against the Bacillus subtilis group than the full-length protein. Taken together, these results suggest that the virulent phage PBC1 is a useful component of a phage cocktail to control B. cereus, even with its exceptionally narrow host range, as it can kill a strain of B. cereus that is not killed by other phages, and that LysPBC1 is an alternative biocontrol agent against B. cereus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Characterization of germination receptors of Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Hornstra, Luc M; de Vries, Ynte P; Wells-Bennik, Marjon H J; de Vos, Willem M; Abee, Tjakko

    2006-01-01

    Specific amino acids, purine ribonucleosides, or a combination of the two is required for efficient germination of endospores of Bacillus cereus ATCC 14579. A survey including 20 different amino acids showed that l-alanine, l-cysteine, l-threonine, and l-glutamine are capable of initiating the germination of endospores of B. cereus ATCC 14579. In addition, the purine ribonucleosides inosine and adenosine can trigger germination of the spores. Advanced annotation of the B. cereus ATCC 14579 genome revealed the presence of seven putative germination (ger) operons, termed gerG, gerI, gerK, gerL, gerQ, gerR, and gerS. To determine the role of the encoded putative receptors in nutrient-induced germination, disruption mutants were constructed by the insertion of pMUTIN4 into each of the seven operons. Four of the seven mutants were affected in the germination response to amino acids or purine ribonucleosides, whereas no phenotype could be attributed to the mutants with disrupted gerK, gerL, and gerS loci. The strain with a disrupted gerR operon was severely hampered in the ability to germinate: germination occurred in response to l-glutamine but not in the presence of any of the other amino acids tested. The gerG mutant showed significantly reduced l-glutamine-induced germination, which points to a role of this receptor in the l-glutamine germination signaling pathway. gerR, gerI, and gerQ mutants showed reduced germination rates in the presence of inosine, suggesting a role for these operons in ribonucleoside signaling. Efficient germination by the combination of l-glutamine and inosine was shown to involve the gerG and gerI operons, since the germination of mutants lacking either one of these receptors was significantly reduced. Germination triggered by the combination of l-phenylalanine and inosine was lost in the gerI mutant, indicating that both molecules are effective at the GerI receptor.

  18. The two-component signal transduction system YvcPQ regulates the bacterial resistance to bacitracin in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Shumeng; Li, Xinfeng; Wang, Xun; Li, Zhou; He, Jin

    2016-10-01

    YvcPQ is one of the two-component signal transduction systems that respond to specific stimuli and enable cells to adjust multiple cellular functions. It consists of a histidine kinase YvcQ and a response regulator YvcP. In this study, through searching the consensus sequence recognized by YvcP, we found four YvcP-binding motifs in the promoter regions of genes yvcR (BMB171_C4100), BMB171_C4385, kapD (BMB171_C4525) and BMB171_C4835 in Bacillus thuringiensis BMB171 which is a representative of Bacillus cereus group, and confirmed that these genes are regulated by YvcP. We compared the sequence of yvcPQ and its downstream genes in genus Bacillus, and found two different kinds of yvc locus, one was the yvcPQ-RS in B. subtilis species and the other was the yvcPQ-R-S1S2 in B. cereus group. Furthermore, we found that YvcP activates the transcription of yvcS1S2 (downstream of yvcR) to promote bacterial resistance to bacitracin and deletion of either yvcPQ operon or yvcS1S2 operon renders the bacterial cells more sensitive to bacitracin. This study enriched our understanding of both the YvcPQ's function and the mechanism of bacterial resistance to bacitracin.

  19. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus.

    Science.gov (United States)

    Kong, Minsuk; Sim, Jieun; Kang, Taejoon; Nguyen, Hoang Hiep; Park, Hyun Kyu; Chung, Bong Hyun; Ryu, Sangryeol

    2015-09-01

    Rapid, specific and sensitive detection of pathogenic bacteria is crucial for public health and safety. Bacillus cereus is harmful as it causes foodborne illness and a number of systemic and local infections. We report a novel phage endolysin cell wall-binding domain (CBD) for B. cereus and the development of a highly specific and sensitive surface plasmon resonance (SPR)-based B. cereus detection method using the CBD. The newly discovered CBD from endolysin of PBC1, a B. cereus-specific bacteriophage, provides high specificity and binding capacity to B. cereus. By using the CBD-modified SPR chips, B. cereus can be detected at the range of 10(5)-10(8) CFU/ml. More importantly, the detection limit can be improved to 10(2) CFU/ml by using a subtractive inhibition assay based on the pre-incubation of B. cereus and CBDs, removal of CBD-bound B. cereus, and SPR detection of the unbound CBDs. The present study suggests that the small and genetically engineered CBDs can be promising biological probes for B. cereus. We anticipate that the CBD-based SPR-sensing methods will be useful for the sensitive, selective, and rapid detection of B. cereus.

  20. Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins

    Science.gov (United States)

    Ben-Dov, Eitan

    2014-01-01

    Bacillus thuringiensis subsp. israelensis (Bti) is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa) and at least two minor (of 78 and 29 kDa) polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III) and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come. PMID:24686769

  1. Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins

    Directory of Open Access Journals (Sweden)

    Eitan Ben-Dov

    2014-03-01

    Full Text Available Bacillus thuringiensis subsp. israelensis (Bti is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa and at least two minor (of 78 and 29 kDa polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come.

  2. Molluscicidal activity of Bacillus thuringiensis strains against Biomphalaria alexandrina snails

    Directory of Open Access Journals (Sweden)

    Amany M. Abd El-Ghany

    2017-12-01

    Full Text Available Schistosomiasis is a parasitic disease transmitted to man and different warm blooded animals by means of snails. Great effort has been made to control the transmission of the disease by many strategies. Consequently, the utilization of particular molluscicides is viewed as a standout amongst the best measures for molluscs control. Recently, microbial pathogen used as non-traditional molluscicides which have attracted significant research attention due to the increasing, worldwide development of resistance to chemical molluscicides in molluscs populations. The present work aimed to study the molluscicidal impacts of eleven isolates of Bacillus thuringiensis which were isolated from soils of six Egyptian governorates toward Biomphalaria alexandrina snails. Results showed that, B. thuringiensis provides an effective biological control agent against B. alexandrina snails. Out of the tested isolates, four isolates; Qalyubia, Asyut 1, Qena and North Sinai 2 isolates show high-level molluscicidal activity. The obtained results indicated that LC50 and LC90 values were ranged between 133.27–457.74 mg/mL and 270.32–781.05 mg/mL, respectively. The most noteworthy molluscicidal impact was displayed by Qalyubia isolate which isolated from Qalyubia governorate with mortality rate extended from 20% to100% at five treatment concentrations of 100–500 mg/mL. The LC50 and LC90 values for Qalyubia isolate were 133.27 mg/mL and 270.32 mg/mL, respectively. Keywords: Biomphalaria alexandrina, Bacillus thuringiensis, Molluscicidal activity, Biological control

  3. Bacillus cereus un patógeno importante en el control microbiológico de los alimentos / Bacillus cereus an important pathogen the microbiological control of food

    Directory of Open Access Journals (Sweden)

    Jennifer Sánchez

    2016-05-01

    Full Text Available Resumen Bacillus cereus es una bacteria genéticamente diversa que se encuentra comúnmente en el ambiente. Contamina los alimentos afectando la salud humana, al ingerir el microorganismo y/o sus toxinas, la emética o las enterotoxinas. En Colombia son escasos los reportes de intoxicación por B. cereus y se estima que hay un gran subregistro. Por lo anterior, se recomienda aumentar la vigilancia de este patógeno y realizar estudios sobre aspectos relevantes que permitan aplicar medidas de control para disminuir las intoxicaciones por B. cereus. El objetivo de esta revisión bibliográfica es presentar información actualizada sobre B. cereus, que incluye aspectos de su biología, taxonomía, toxinas, alimentos que contamina y metodologías para detectar, prevenir y controlar este microorganismo. La información presentada es de utilidad para el público en general, especialmente personas vinculadas al sector de alimentos, inocuidad alimentaria y control de procesos. / Abstract Bacillus cereus is a genetically diverse bacterium commonly found in the environment. It contaminates food, thus affecting human health upon ingestion of the microorganism and/or its toxins, the emetic or enterotoxins. In Colombia, reports of intoxication by B. cereus are scarce and under-registration is presumed. Because of this, it is recommended to increase surveillance of this pathogen and to develop studies on relevant aspects that allow the application of control measures to reduce intoxications by B. cereus. The aim of this review is to present current information on B. cereus, including aspects of its biology, taxonomy, toxins, food that it contaminates and methodologies for the detection, prevention and control of this microorganism. This information is useful for the general public, especially people involved with the food sector, food safety and process control.

  4. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement... into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens is...

  5. Molecular characterization of a DNA fragment harboring the replicon of pBMB165 from Bacillus thuringiensis subsp. tenebrionis

    Directory of Open Access Journals (Sweden)

    Yu Ziniu

    2006-10-01

    Full Text Available Abstract Background Bacillus thuringiensis belongs to the Bacillus cereus sensu lato group of Gram-positive and spore-forming bacteria. Most isolates of B. thuringiensis can bear many endogenous plasmids, and the number and size of these plasmids can vary widely among strains or subspecies. As far as we know, the replicon of the plasmid pBMB165 is the first instance of a plasmid replicon being isolated from subsp. tenebrionis and characterized. Results A 20 kb DNA fragment containing a plasmid replicon was isolated from B. thuringiensis subsp. tenebrionis YBT-1765 and characterized. By Southern blot analysis, this replicon region was determined to be located on pBMB165, the largest detected plasmid (about 82 kb of strain YBT-1765. Deletion analysis revealed that a replication initiation protein (Rep165, an origin of replication (ori165 and an iteron region were required for replication. In addition, two overlapping ORFs (orf6 and orf10 were found to be involved in stability control of plasmid. Sequence comparison showed that the replicon of pBMB165 was homologous to the pAMβ1 family replicons, indicating that the pBMB165 replicon belongs to this family. The presence of five transposable elements or remnants thereof in close proximity to and within the replicon control region led us to speculate that genetic exchange and recombination are potentially responsible for the divergence among the replicons of this plasmid family. Conclusion The replication and stability features of the pBMB165 from B. thuringiensis subsp. tenebrionis YBT-1765 were identified. Of particular interest is the homology and divergence shared between the pBMB165 replicon and other pAMβ1 family replicons.

  6. Deletion of the sigB gene in Bacillus cereus ATCC 14579 leads to hydrogen peroxide hyperresistance

    NARCIS (Netherlands)

    Schaik, van W.; Zwietering, M.H.; Vos, de W.M.; Abee, T.

    2005-01-01

    The sigB gene of Bacillus cereus ATCC 14579 encodes the alternative sigma factor B. Deletion of sigB in B. cereus leads to hyperresistance to hydrogen peroxide. The expression of katA, which encodes one of the catalases of B. cereus, is upregulated in the sigB deletion mutant, and this may

  7. Heat and salt stress in the food pathogen Bacillus cereus.

    Science.gov (United States)

    Browne, N; Dowds, B C

    2001-12-01

    The effects of stresses imposed on bacterial contaminants during food processing and treatment of packaging material were evaluated on the food pathogen Bacillus cereus. Conditions were established which allowed the cells to adapt to heat, ethanol and hydrogen peroxide stresses, but not to osmotic shock. Cross protection between stresses indicated a clear hierarchy of resistance with salt protecting against hydrogen peroxide, which protected against ethanol, which protected against heat shock. The cultures were shown to be most sensitive to heat, ethanol and oxidative stress at mid-exponential phase and to become resistant at stationary phase. Adaptive levels of stressor were found to induce synthesis of general stress and stress-specific proteins and differential accumulation of proteins was demonstrated between heat- or salt-stressed and unstressed cells. Sequencing revealed that a number of glycolytic enzymes were regulated by heat and osmotic shocks and that the chaperone GroEL was induced by heat shock. The implications of the physiological data in designing storage and processing conditions for food are discussed. The identification of stress-regulated proteins reveals a clear role for glycolysis in adaptation to heat shock and osmotic stress.

  8. Vacuum Distillation Residue Upgrading by an Indigenous Bacillus Cereus

    Directory of Open Access Journals (Sweden)

    Mitra Sadat Tabatabaee

    2013-07-01

    Full Text Available Background:Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly.Results:A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332. This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR, as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively.Conclusion:Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils.

  9. Production, characterization and purification of chitosanase from Bacillus cereus

    Directory of Open Access Journals (Sweden)

    F. A. T. PIZA

    1999-06-01

    Full Text Available A culture medium for a wild strain of Bacillus cereus was developed for chitosanase production by using an experimental design. The factors having the strongest influence on chitosanase production were ammonium sulfate concentration, aeration, pH and the interaction between the first two parameters. Optimal conditions for chitosan hydrolysis were pH 5.8 and 54 oC; however, hydrolysis activity drastically decreased at pH 7.0. The enzyme was purified (single-electrophoretic band by partitioning in an aqueous two-phase system (ATPS, followed by cation-exchange chromatography with a 66% yield. Chitosanase was mainly collected in the top phase (K = 129 of a 22% PEG 1,500, 13% phosphate (pH = 5.8 and 12% NaCl (w/w solution, and the main protein contaminants were evenly distributed between the phases (K = 1.07. The apparent molecular weight and the isoelectric point of the chitosanase, determined by SDS-PAGE electrophoresis and by isoelectric focalization, were 47 kDa and 8.8, respectively.

  10. Persistence of Bacillus thuringiensis subsp. kurstaki in Urban Environments following Spraying▿†‡

    Science.gov (United States)

    Van Cuyk, Sheila; Deshpande, Alina; Hollander, Attelia; Duval, Nathan; Ticknor, Lawrence; Layshock, Julie; Gallegos-Graves, LaVerne; Omberg, Kristin M.

    2011-01-01

    Bacillus thuringiensis subsp. kurstaki is applied extensively in North America to control the gypsy moth, Lymantria dispar. Since B. thuringiensis subsp. kurstaki shares many physical and biological properties with Bacillus anthracis, it is a reasonable surrogate for biodefense studies. A key question in biodefense is how long a biothreat agent will persist in the environment. There is some information in the literature on the persistence of Bacillus anthracis in laboratories and historical testing areas and for Bacillus thuringiensis in agricultural settings, but there is no information on the persistence of Bacillus spp. in the type of environment that would be encountered in a city or on a military installation. Since it is not feasible to release B. anthracis in a developed area, the controlled release of B. thuringiensis subsp. kurstaki for pest control was used to gain insight into the potential persistence of Bacillus spp. in outdoor urban environments. Persistence was evaluated in two locations: Fairfax County, VA, and Seattle, WA. Environmental samples were collected from multiple matrices and evaluated for the presence of viable B. thuringiensis subsp. kurstaki at times ranging from less than 1 day to 4 years after spraying. Real-time PCR and culture were used for analysis. B. thuringiensis subsp. kurstaki was found to persist in urban environments for at least 4 years. It was most frequently detected in soils and less frequently detected in wipes, grass, foliage, and water. The collective results indicate that certain species of Bacillus may persist for years following their dispersal in urban environments. PMID:21926205

  11. Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua

    NARCIS (Netherlands)

    Hernandez-Martinez, P.; Navarro-Cerrillo, G.; Caccia, S.; Maagd, de R.A.; Moar, W.J.; Ferre, J.; Escriche, B.; Herrero, S.

    2010-01-01

    Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes

  12. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes.

    Science.gov (United States)

    Eom, Jeong Seon; Lee, Sun Young; Choi, Hye Sun

    2014-11-01

    Bacillus subtilis HJ18-4 isolated from buckwheat sokseongjang, a traditional Korean fermented soybean food, exhibits broad-spectrum antimicrobial activity against foodborne pathogens, including Bacillus cereus. In this study, we investigated the antibacterial efficacy and regulation of toxin gene expression in B. cereus by B. subtilis HJ18-4. Expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM) was downregulated by B. subtilis HJ18-4, which also exhibited strong antibacterial activity against B. cereus. We also found that water extracts of soy product fermented with B. subtilis HJ18-4 significantly inhibited the growth of B. cereus and toxin expression. These results indicate that B. subtilis HJ18-4 could be used as an antimicrobial agent to control B. cereus in the fermented soybean food industry. Our findings also provide an opportunity to develop an efficient biological control agent against B. cereus. © 2014 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists®

  13. Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group.

    Science.gov (United States)

    Ahmod, Nadia Z; Gupta, Radhey S; Shah, Haroun N

    2011-12-01

    Bacillus anthracis, the causative agent of anthrax, is a potential source of bioterrorism. The existing assays for its identification lack specificity due to the close genetic relationship it exhibits to other members of the B. cereus group. Our comparative analyses of protein sequences from Bacillus species have identified a 24 amino acid deletion in a conserved region of the YeaC protein that is uniquely present in B. anthracis. PCR primers based on conserved regions flanking this indel in the Bacillus cereus group of species (viz. Bacillus cereus, B. anthracis, B. thuringiensis, B. mycoides, B. weihenstephnensis and B. pseudomycoides) specifically amplified a 282 bp fragment from all six reference B. anthracis strains, whereas a 354 bp fragment was amplified from 15 other B. cereus group of species/strains. These fragments, due to large size difference, are readily distinguished by means of agarose gel electrophoresis. In contrast to the B. cereus group, no PCR amplification was observed with any of the non-B. cereus group of species/strains. This indel was also used for developing a rapid pyrosequencing assay for the identification of B. anthracis. Its performance was evaluated by examining the presence or absence of this indel in a panel of 81 B. cereus-like isolates from various sources that included 39 B. anthracis strains. Based upon the sequence data from the pyrograms, the yeaC indel was found to be a distinctive characteristic of various B. anthracis strains tested and not found in any other species/strains from these samples. Therefore, this B. anthracis specific indel provides a robust and highly-specific chromosomal marker for the identification of this high-risk pathogen from other members of the B. cereus group independent of a strain's virulence. The pyrosequencing platform also allows for the rapid and simultaneous screening of multiple samples for the presence of this B. anthracis-specific marker. Copyright © 2011. Published by Elsevier B.V.

  14. Inhibition of Bacillus cereus ATCC 14579 by plantaricin UG1 in vitro and in food.

    Science.gov (United States)

    Enan, G

    2000-10-01

    The inhibition of Bacillus cereus ATCC 14579 viable growth by Lactobacillus plantarum UG1 bacteriocin (plantaricin UG1) in vitro and in food (pasteurized milk and minced meat) was studied. The inhibitory effect against B. cereus food-borne pathogen noticed in this study was due to plantaricin UG1, but not due to lactic acid produced by the L. plantarum UG1 culture. Plataricin UG1 negative clone did not affect viable growth of B. cereus in both broth and meat or pasteurized milk. The inhibitory effect of L. plantarum UG1 and its bacteriocion was apparently more in liquid systems (BHI broth & pasteurized milk) than in minced meat. The inhibitory effect of plantaricin UG1 against B. cereus was dependent on its concentration. The 22880 AU/ml concentration appeared to be an ideal preservative against B. cereus ATCC 14579 in liquid systems.

  15. Antimicrobial Effect of Nisin against Bacillus cereus in Beef Jerky during Storage.

    Science.gov (United States)

    Lee, Na-Kyoung; Kim, Hyoun Wook; Lee, Joo Yeon; Ahn, Dong Uk; Kim, Cheon-Jei; Paik, Hyun-Dong

    2015-01-01

    The microbial distribution of raw materials and beef jerky, and the effect of nisin on the growth of Bacillus cereus inoculated in beef jerky during storage, were studied. Five strains of pathogenic B. cereus were detected in beef jerky, and identified with 99.8% agreement using API CHB 50 kit. To evaluate the effect of nisin, beef jerky was inoculated with approximately 3 Log CFU/g of B. cereus mixed culture and nisin (100 IU/g and 500 IU/g). During the storage of beef jerky without nisin, the number of mesophilic bacteria and B. cereus increased unlikely for beef jerky with nisin. B. cereus started to grow after 3 d in 100 IU nisin/g treatment, and after 21 d in 500 IU nisin/g treatment. The results suggest that nisin could be an effective approach to extend the shelf-life, and improve the microbial safety of beef jerky, during storage.

  16. 40 CFR 174.504 - Bacillus thuringiensis Cry1F protein in cotton; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1F protein... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.504 Bacillus thuringiensis Cry1F protein in cotton; exemption from the requirement of a tolerance. Residues of Bacillus...

  17. Characterization of type II and III restriction-modification systems from Bacillus cereus strains ATCC 10987 and ATCC 14579.

    Science.gov (United States)

    Xu, Shuang-yong; Nugent, Rebecca L; Kasamkattil, Julie; Fomenkov, Alexey; Gupta, Yogesh; Aggarwal, Aneel; Wang, Xiaolong; Li, Zhiru; Zheng, Yu; Morgan, Richard

    2012-01-01

    The genomes of two Bacillus cereus strains (ATCC 10987 and ATCC 14579) have been sequenced. Here, we report the specificities of type II/III restriction (R) and modification (M) enzymes. Found in the ATCC 10987 strain, BceSI is a restriction endonuclease (REase) with the recognition and cut site CGAAG 24-25/27-28. BceSII is an isoschizomer of AvaII (G/GWCC). BceSIII cleaves at ACGGC 12/14. The BceSIII C terminus resembles the catalytic domains of AlwI, MlyI, and Nt.BstNBI. BceSIV is composed of two subunits and cleaves on both sides of GCWGC. BceSIV activity is strongly stimulated by the addition of cofactor ATP or GTP. The large subunit (R1) of BceSIV contains conserved motifs of NTPases and DNA helicases. The R1 subunit has no endonuclease activity by itself; it strongly stimulates REase activity when in complex with the R2 subunit. BceSIV was demonstrated to hydrolyze GTP and ATP in vitro. BceSIV is similar to CglI (GCSGC), and homologs of R1 are found in 11 sequenced bacterial genomes, where they are paired with specificity subunits. In addition, homologs of the BceSIV R1-R2 fusion are found in many sequenced microbial genomes. An orphan methylase, M.BceSV, was found to modify GCNGC, GGCC, CCGG, GGNNCC, and GCGC sites. A ParB-methylase fusion protein appears to nick DNA nonspecifically. The ATCC 14579 genome encodes an active enzyme Bce14579I (GCWGC). BceSIV and Bce14579I belong to the phospholipase D (PLD) family of endonucleases that are widely distributed among Bacteria and Archaea. A survey of type II and III restriction-modification (R-M) system genes is presented from sequenced B. cereus, Bacillus anthracis, and Bacillus thuringiensis strains.

  18. Inhibition of Bacillus cereus Growth and Toxin Production by Bacillus amyloliquefaciens RD7-7 in Fermented Soybean Products.

    Science.gov (United States)

    Eom, Jeong Seon; Choi, Hye Sun

    2016-01-01

    Bacillus cereus is a gram-positive, rod-shaped, spore-forming bacterium that has been isolated from contaminated fermented soybean food products and from the environment. B. cereus produces diarrheal and emetic toxins and has caused many outbreaks of foodborne diseases. In this study, we investigated whether B. amyloliquefaciens RD7-7, isolated from rice doenjang (Korean fermented soybean paste), a traditional Korean fermented soybean food, shows antimicrobial activity against B. cereus and regulates its toxin gene expression. B. amyloliquefaciens RD7-7 exhibited strong antibacterial activity against B. cereus and inhibited the expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM). We also found that addition of water extracts of soybean and buckwheat soksungjang (Korean fermented soybean paste made in a short time) fermented with B. amyloliquefaciens RD7-7 significantly reduced the growth and toxin expression of B. cereus. These results indicate that B. amyloliquefaciens RD7-7 could be used to control B. cereus growth and toxin production in the fermented soybean food industry. Our findings also provide a basis for the development of candidate biological control agents against B. cereus to improve the safety of fermented soybean food products.

  19. Long lasting persistence of Bacillus thuringiensis Subsp. israelensis (Bti in mosquito natural habitats.

    Directory of Open Access Journals (Sweden)

    Mathieu Tilquin

    Full Text Available BACKGROUND: The detrimental effects of chemical insecticides on the environment and human health have lead to the call for biological alternatives. Today, one of the most promising solutions is the use of spray formulations based on Bacillus thuringiensis subsp. israelensis (Bti in insect control programs. As a result, the amounts of Bti spread in the environment are expected to increase worldwide, whilst the common belief that commercial Bti is easily cleared from the ecosystem has not yet been clearly established. METHODOLOGY/MAIN FINDINGS: In this study, we aimed to determine the nature and origin of the high toxicity toward mosquito larvae found in decaying leaf litter collected in several natural mosquito breeding sites in the Rhône-Alpes region. From the toxic fraction of the leaf litter, we isolated B. cereus-like bacteria that were further characterized as B. thuringiensis subsp. israelensis using PCR amplification of specific toxin genes. Immunological analysis of these Bti strains showed that they belong to the H14 group. We finally used amplified length polymorphism (AFLP markers to show that the strains isolated from the leaf litter were closely related to those present in the commercial insecticide used for field application, and differed from natural worldwide genotypes. CONCLUSIONS/SIGNIFICANCE: Our results raise the issue of the persistence, potential proliferation and environmental accumulation of human-spread Bti in natural mosquito habitats. Such Bti environmental persistence may lengthen the exposure time of insects to this bio-insecticide, thereby increasing the risk of resistance acquisition in target insects, and of a negative impact on non-target insects.

  20. Direct detection of toxigenic Bacillus cereus in dietary complement for children and cassava starch

    OpenAIRE

    Jnnifer A. Sánchez; Margarita M. Correa; Ángel E. Aceves Dies; Laura M. Castañeda Sandoval

    2014-01-01

    Bacillus cereus is a food contaminant and a known human pathogen that can cause emetic and diarrheal syndromes. In this study we evaluated the presence of toxigenic B. cereus by multiplex PCR directly in dietary complement for children and cassava starch samples collected on Medellin, Colombia. Of 75 dietary complement for children samples evaluated, 70.7% were contaminated with toxigenic B. cereus and four different toxigenic consortia were detected: I: nheA, hblC, cytK (9.8%), II: nheA, hbl...

  1. Antimicrobial Effect of Nisin against Bacillus cereus in Beef Jerky during Storage

    OpenAIRE

    Lee, Na-Kyoung; Kim, Hyoun Wook; Lee, Joo Yeon; Ahn, Dong Uk; Kim, Cheon-Jei; Paik, Hyun-Dong

    2015-01-01

    The microbial distribution of raw materials and beef jerky, and the effect of nisin on the growth of Bacillus cereus inoculated in beef jerky during storage, were studied. Five strains of pathogenic B. cereus were detected in beef jerky, and identified with 99.8% agreement using API CHB 50 kit. To evaluate the effect of nisin, beef jerky was inoculated with approximately 3 Log CFU/g of B. cereus mixed culture and nisin (100 IU/g and 500 IU/g). During the storage of beef jerky without nisin, t...

  2. Germination and persistence of Bacillus anthracis and Bacillus thuringiensis in soil microcosms.

    Science.gov (United States)

    Bishop, A H

    2014-11-01

    Decontaminating large, outdoor spaces of Bacillus anthracis spores presents significant problems, particularly in soil. Proof was sought that the addition of germinant chemicals could cause spores of B. anthracis and Bacillus thuringiensis, a commonly used simulant of the threat agent, to convert to the less resistant vegetative form in a microcosm. Nonsterile plant/soil microcosms were inoculated with spores of B. thuringiensis and two nonpathogenic strains of B. anthracis. A combination of L-alanine (100 mmol l(-1)) and inosine (10 mmol l(-1)) resulted in a 6 log decrease in spore numbers in both strains of B. anthracis over 2 weeks at 22°C; a 3 log decrease in B. anthracis Sterne spore numbers was observed after incubation for 2 weeks at 10°C. Negligible germination nor a decrease in viable count occurred in either strain when the concentration of L-alanine was decreased to 5 mmol l(-1). Germinated spores of B. thuringiensis were able to persist in vegetative form in the microcosms, whereas those of B. anthracis rapidly disappeared. The pleiotropic regulator PlcR, which B. anthracis lacks, does not contribute to the persistence of B. thuringiensis in vegetative form in soil. The principle of adding germinants to soil to trigger the conversion of spores to vegetative form has been demonstrated. Bacillus anthracis failed to persist in vegetative form or resporulate in the microcosms after it had been induced to germinate. The large scale, outdoor decontamination of B. anthracis spores may be facilitated by the application of simple, defined combinations of germinants. © 2014 Crown Copyright. Journal of Applied Microbiology © 2014 Society for Applied Microbiology This article is Published with the permission of the Controller of HMSO and Queen's Printer for Scotland.

  3. Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity.

    Science.gov (United States)

    Liu, M; Cai, Q X; Liu, H Z; Zhang, B H; Yan, J P; Yuan, Z M

    2002-01-01

    To investigate the distribution of chitinase in Bacillus thuringiensis strains, and the enhancing effects of the chitinase-producing B. thuringiensis strains on insecticidal toxicity of active B. thuringiensis strain against Spodoptera exigua larvae. The chitinolytic activities of B.thuringiensis strains representing the 70 serotypes were investigated by the whitish opaque halo and the colorimetric method. Thirty-eight strains produced different levels of chitinase at pH 7.0, and so did 17 strains at pH 10.0. The strain T04A001 exhibited the highest production, reaching a specific activity of 355 U ml(-1) in liquid medium. SDS-PAGE and Western blotting showed that the chitinase produced by some B. thuringiensis strains had a molecular weight of about 61 kDa. The bioassay results indicated that the chitinase-producing B. thuringiensis strains could enhance the insecticidal activity of B. thuringiensis strain DL5789 against S. exigua larvae, with an enhancing ratio of 2.35-fold. This study demonstrated that chitinase was widely produced in B. thuringiensis strains and some of the strains could enhance the toxicity of active B. thuringiensis strain. This is the first investigation devoted exclusively to analyse the distribution of chitinase in B. thuringiensis. It infers that the chitinase produced by B. thuringiensis might play a role in the activity of the biopesticide.

  4. Improvement of Bacillus thuringiensis bacteriocin production through culture conditions optimization.

    Science.gov (United States)

    Kamoun, Fakher; Zouari, Nabil; Saadaoui, Imen; Jaoua, Samir

    2009-01-01

    BUPM4 is a Bacillus thuringiensis subsp. kurstaki strain, isolated from Tunisian soil, producing an original bacteriocin named Bacthuricin F4. The optimization of the latter production conditions was carried out under several physicochemical conditions. It was found that the highest bacteriocin activity was reached at low aeration while bacteriocin synthesis yields were strongly reduced at higher ones. A balance between growth and bacteriocin synthesis, both highly dependent on aeration, was taken into account for the overproduction of bacteriocin. Both glucose and glycerol were shown to be necessary for Bacthuricin F4 maximal synthesis. In addition, the optimal carbon/nitrogen ratio for bacteriocin production is 9. In such optimal conditions, more than 4-fold greater bacteriocin production was obtained than when using TSB medium.

  5. Evaluation of a new formulation of Bacillus thuringiensis israelensis

    Directory of Open Access Journals (Sweden)

    J. Lopes

    Full Text Available The aim of this study was to determine the potency (ITU and efficacy of a liquid formulation of Bacillus thuringiensis israelensis developed by the State University of Londrina named BioUel, against early fourth instar larvae of Aedes aegypti and Culex quinquefasciatus. The ITU/mg of BioUel was 960, the LC50 was of 0.271 (± 0.39 ppm, and the LC95 was 0.634 (± 0.099 ppm, in larvae of C. quinquefasciatus. In A. aegypti larvae, LC50 was 0.332 (± 0.042 ppm and LC95 was 0.694 (± 0.073 ppm. The ITU level of BioUel and its control results were similar to most commercial products tested. Stability was of approximately 90 days, which allows for local production.

  6. Presence survival spores of Bacillus thuringiensis varieties in grain warehouse

    Directory of Open Access Journals (Sweden)

    Sánchez-Yáñez Juan Manuel

    2016-08-01

    Full Text Available Genus Bacillus thuringiensis (Bt synthesized spores and crystals toxic to pest-insects in agriculture. Bt is comospolitan then possible to isolate some subspecies or varieties from warehouse. The aims of study were: i to isolate Bt varieties from grain at werehouse ii to evaluate Bt toxicity on Spodoptera frugiperda and Shit-ophilus zeamaisese iii to analyze Bt spores persistence in Zea mays grains at werehouse compared to same Bt on grains exposed to sun radiation. Results showed that at werehouse were recovered more than one variety of Bt spores. According to each isolate Bt1 o Bt2 were toxic to S. frugiperda or S. zeamaisese. One those Bt belong to var morrisoni. At werehouse these spores on Z. mays grains surviving more time, while the same spores exposed to boicide sun radiation they died.

  7. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy

    Science.gov (United States)

    Gillis, Annika; Dupres, Vincent; Delestrait, Guillaume; Mahillon, Jacques; Dufrêne, Yves F.

    2012-02-01

    Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in cell surface appendages.Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in

  8. Data on genome sequencing, analysis and annotation of a pathogenic Bacillus cereus 062011msu

    Directory of Open Access Journals (Sweden)

    Rashmi Rathy

    2018-04-01

    Full Text Available Bacillus species 062011 msu is a harmful pathogenic strain responsible for causing abscessation in sheep and goat population studied by Mariappan et al. (2012 [1]. The organism specifically targets the female sheep and goat population and results in the reduction of milk and meat production. In the present study, we have performed the whole genome sequencing of the pathogenic isolate using the Ion Torrent sequencing platform and generated 458,944 raw reads with an average length of 198.2 bp. The genome sequence was assembled, annotated and analysed for the genetic islands, metabolic pathways, orthologous groups, virulence factors and antibiotic resistance genes associated with the pathogen. Simultaneously the 16S rRNA sequencing study and genome sequence comparison data confirmed that the strain belongs to the species Bacillus cereus and exhibits 99% sequence homo;logy with the genomes of B. cereus ATCC 10987 and B. cereus FRI-35. Hence, we have renamed the organism as Bacillus cereus 062011msu. The Whole Genome Shotgun (WGS project has been deposited at DDBJ/ENA/GenBank under the accession NTMF00000000 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA404036(SAMN07629099. Keywords: Bacillus cereus, Genome sequencing, Abscessation, Virulence factors

  9. Bacillus Cereus catheter related bloodstream infection in a patient in a patient with acute lymphblastic leukemia

    Directory of Open Access Journals (Sweden)

    Lütfiye Öksüz

    2012-01-01

    Full Text Available Bacillus cereus infection is rarely associated with actual infection and for this reason single positive blood culture is usually regarded as contamination . However it may cause a number of infections, such catheter-related blood stream infections. Significant catheter-related bloodstream infections (CRBSI caused by Bacillus spp. are mainly due to B.cereus and have been predominantly reported in immunocompromised hosts1 . Catheter removal is generally advised for management of infection. In this report, catheter-related bacteremia caused by B.cereus in a patient with acute lymphoblastıc leukemia (ALL in Istanbul Medical Faculty was presented.A 44-year old man presented with fatigue, weight loss, epistaxis and high fever. A double-lumen Hickman–catheter (Bard 12.0 Fr, Round Dual Lumen was inserted by surgical cut-down to access the right subclavian vein which would be necessary for allogeneic stem cell transplantation. Three weeks later the patient presented with high fever and headache. Bacillus spp. was isolated from the cathether while blood culture obtained from the peripheral vein remained negative. The bacterial identification was confirmed as B.cereus using VITEK identification system It has been reported Bacillus cereus septicemia may be fatal in immunocompromised hosts despite broad-spectrum appropriate treatment10. Catheter removal is essential for prevention of recurrent bacteremia. Long-term cathater salvage should be reserved for appropriate patient group.

  10. Identification of multidrug-resistant bacteria and Bacillus cereus from ...

    African Journals Online (AJOL)

    However, B. cereus was isolated from the hands of three. HCWs. Table 1 shows species of bacteria isolated from. HCWs and ES in Elkhomes hospital. B. cereus is a Gram-positive spore-forming facultative- anaerobic rod-shaped organism that can be found in different types of soils and widely distributed in the environment.

  11. Concerted action of sphingomyelinase and non-hemolytic enterotoxin in pathogenic Bacillus cereus.

    Directory of Open Access Journals (Sweden)

    Viktoria M Doll

    Full Text Available Bacillus cereus causes food poisoning and serious non-gastrointestinal-tract infections. Non-hemolytic enterotoxin (Nhe, which is present in most B. cereus strains, is considered to be one of the main virulence factors. However, a B. cereus ΔnheBC mutant strain lacking Nhe is still cytotoxic to intestinal epithelial cells. In a screen for additional cytotoxic factors using an in vitro model for polarized colon epithelial cells we identified B. cereus sphingomyelinase (SMase as a strong inducer of epithelial cell death. Using single and double deletion mutants of sph, the gene encoding for SMase, and nheBC in B. cereus we demonstrated that SMase is an important factor for B. cereus cytotoxicity in vitro and pathogenicity in vivo. SMase substantially complemented Nhe induced cytotoxicity in vitro. In addition, SMase but not Nhe contributed significantly to the mortality rate of larvae in vivo in the insect model Galleria mellonella. Our study suggests that the role of B. cereus SMase as a secreted virulence factor for in vivo pathogenesis has been underestimated and that Nhe and SMase complement each other significantly to cause full B. cereus virulence hence disease formation.

  12. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579.

    Directory of Open Access Journals (Sweden)

    Carmen M Abfalter

    Full Text Available Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR. B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt and mutated to a proteolytically inactive (ColAE501A version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l. and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.

  13. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Abfalter, Carmen M; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.

  14. Pengaruh Bacillus Thuringiensis terhadap penggerek batang jagung Ostrinia Furnacalis (Lep. Pyralidae

    Directory of Open Access Journals (Sweden)

    Harnoto Harnoto

    2017-02-01

    Full Text Available The effect of Bacillus thuringiensis to the mortality of corn stemborer Ostrinia furnacalis (Lep. Pyralidae. The study was conducted at the laboratory of Bogor Research Institute for Agricultural Biotechnology and Genetic Resources during 2005. The objective of this study was to evaluate the effect of the dosages of Bacillus. thuringiensis var. aizawai and var. Kurstaki on the mortalities of larvae of corn stemborer Ostrinia furnacalis. Completely randomize design was used with seven treatments. Each treatment was repeated four time with ten larvae per replication. The treatments were three formulation dosages of B. thuringiensis var. aizawai, i.e. 0,5; 1,0; and 2,0 g/l, thee formulation dosages of B. thuringiensis var. Kurstaki, i.e. 0,5; 1,0; and 2,0 g/l, and untreated control. Second instar larvae of O. furnacalis was used in this study. B. thuringiensis was contaminated to the surface of artificial diet with a small paint brush. The result showed that B. thuringiensis var. kurstaki at the dose rate of 1,0 g/l was toxic to the test insect while B. thuringiensis var. aizawai at the dose rate of 2,0 g/l was toxic to the test insect B. thuringiensis var. kurstaki was more toxic than  B. thuringiensis var. aizawai to the corn stemborer.

  15. PENGARUH EKSTRAK ANDALIMAN (Zanthoxyium acanthopodium DC TERHADAP PERMEABILITAS DAN HIDROFOBISITAS Bacillus cereus [Effect of Andaliman (Zanthoxylum acanthopodium DC Extracts upon Permeability and Hidrophobicity of Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Sedarnawati Yasni2

    2005-04-01

    Full Text Available Andaliman spice is usually added as one of main spices in cooked fish and meat. Andaliman seeds were extracted using maceration method with nonpolar, semipolar and polar solvents. The result showed that the three kinds of andaliman extract had antibacterial activity on Bacillus cereus, especially during exponential phase (8 hour incubation period. Ethyl-acetate extract of Andaliman showed the highest antibacterial activity toward B. cereus with MIC and MBC values being 0.2% and 0.8% respectively. The permeability of B. cereus was observed at the dose of 2.5 MIC and 60.30% hydrophobicity leakage was obtained at 6% andaliman extracted by ethyl-acetate.

  16. Successful Treatment of Bacillus cereus Bacteremia in a Patient with Propionic Acidemia.

    Science.gov (United States)

    Aygun, Fatma Deniz; Aygun, Fatih; Cam, Halit

    2016-01-01

    Bacillus cereus can cause serious, life-threatening, systemic infections in immunocompromised patients. The ability of microorganism to form biofilm on biomedical devices can be responsible for catheter-related bloodstream infections. Other manifestations of severe disease are meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections. The most common feature in true bacteremia caused by Bacillus is the presence of an intravascular catheter. Herein, we report a case of catheter-related bacteremia caused by B. cereus in a patient with propionic acidemia.

  17. Successful Treatment of Bacillus cereus Bacteremia in a Patient with Propionic Acidemia

    Directory of Open Access Journals (Sweden)

    Fatma Deniz Aygun

    2016-01-01

    Full Text Available Bacillus cereus can cause serious, life-threatening, systemic infections in immunocompromised patients. The ability of microorganism to form biofilm on biomedical devices can be responsible for catheter-related bloodstream infections. Other manifestations of severe disease are meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections. The most common feature in true bacteremia caused by Bacillus is the presence of an intravascular catheter. Herein, we report a case of catheter-related bacteremia caused by B. cereus in a patient with propionic acidemia.

  18. [Meningitis due to Bacillus cereus in an infant with Reye syndrome].

    Science.gov (United States)

    Ferroni, A; Odièvre, M H; Abachin, E; Révy, P; Casanova, J L; Saudubray, J M; Berche, P; Nassif, X

    1998-10-01

    We report the case of a 2.5-month-old infant with Bacillus cereus meningitis who was initially admitted for Reye syndrome. Gram positive bacteria was isolated in CSF and shown to be located inside the polymorphonuclears. This pathogen was further identified by sequencing of the 16S RNA. Early administration of imipenem in association with amikacin resulted in a rapid recovery. No obvious immune defect or invasive procedure could be assessed. Although Bacillus cereus is mainly associated with contamination, repeated isolations of this bacteria may be due to true infection.

  19. Low persistence of Bacillus thuringiensis serovar israelensis spores in four mosquito biotopes of a salt marsh in southern France.

    Science.gov (United States)

    Hajaij, Myriam; Carron, Alexandre; Deleuze, Julien; Gaven, Bruno; Setier-Rio, Marie-Laure; Vigo, Gerard; Thiéry, Isabelle; Nielsen-LeRoux, Christina; Lagneau, Christophe

    2005-11-01

    We studied the persistence of Bacillus thuringiensis serovar israelensis (Bti) in a typical breeding site of the mosquito Ochlerotatus caspius in a particularly sensitive salt marsh ecosystem following two Bti-based larvicidal applications (Vectobac 12AS, 1.95 L/ha). The treated area was composed of four larval biotopes that differed in terms of the most representative plant species (Sarcocornia fruticosa, Bolboschoenus maritimus, Phragmites australis, and Juncus maritimus) and the physical and chemical characteristics of the soil. We sampled water, soil, and plants at various times before and after the applications (from spring to autumn, 2001) and quantified the spores of B. thuringiensis (Bt) and Bacillus species. The B. cereus group accounted for between 0% and 20% of all Bacillus spp. before application depending on the larval biotope. No Bti were found before application. The variation in the quantity of bacilli during the mosquito breeding season depended more on the larval biotope than on the season or the larvicidal application. More bacilli were found in soil (10(4)-10(6) spores/g) than on plant samples (10(2)-10(4) spores/g). The abundance in water (10(5) to 10(7) spores/L) appeared to be correlated to the water level of the breeding site. The number of Bti spores increased just after application, after declining; no spores were detected in soil or water 3 months after application. However, low numbers of Bti spores were present on foliage from three of the four studied plant strata. In conclusion, the larvicidal application has very little impact on Bacillus spp. flora after one breeding season (two applications).

  20. Identification and Analysis of Informative Single Nucleotide Polymorphisms in 16S rRNA Gene Sequences of the Bacillus cereus Group.

    Science.gov (United States)

    Hakovirta, Janetta R; Prezioso, Samantha; Hodge, David; Pillai, Segaran P; Weigel, Linda M

    2016-11-01

    Analysis of 16S rRNA genes is important for phylogenetic classification of known and novel bacterial genera and species and for detection of uncultivable bacteria. PCR amplification of 16S rRNA genes with universal primers produces a mixture of amplicons from all rRNA operons in the genome, and the sequence data generally yield a consensus sequence. Here we describe valuable data that are missing from consensus sequences, variable effects on sequence data generated from nonidentical 16S rRNA amplicons, and the appearance of data displayed by different software programs. These effects are illustrated by analysis of 16S rRNA genes from 50 strains of the Bacillus cereus group, i.e., Bacillus anthracis, Bacillus cereus, Bacillus mycoides, and Bacillus thuringiensis These species have 11 to 14 rRNA operons, and sequence variability occurs among the multiple 16S rRNA genes. A single nucleotide polymorphism (SNP) previously reported to be specific to B. anthracis was detected in some B. cereus strains. However, a different SNP, at position 1139, was identified as being specific to B. anthracis, which is a biothreat agent with high mortality rates. Compared with visual analysis of the electropherograms, basecaller software frequently missed gene sequence variations or could not identify variant bases due to overlapping basecalls. Accurate detection of 16S rRNA gene sequences that include intragenomic variations can improve discrimination among closely related species, improve the utility of 16S rRNA databases, and facilitate rapid bacterial identification by targeted DNA sequence analysis or by whole-genome sequencing performed by clinical or reference laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Draft Genome Sequences of Bacillus cereus E41 and Bacillus anthracis F34 Isolated from Algerian Salt Lakes

    OpenAIRE

    Daas, Mohamed Seghir; Rosana, Albert Remus R.; Acedo, Jeella Z.; Nateche, Farida; Kebbouche-Gana, Salima; Vederas, John C.; Case, Rebecca J.

    2017-01-01

    ABSTRACT Two strains of Bacillus, B.?cereus E41 and B.?anthracis F34, were isolated from a salt lake in A?n M?lila-Oum El Bouaghi, eastern Algeria, and Ain Baida-Ouargla, southern Algeria, respectively. Their genomes display genes for the production of several bioactive secondary metabolites, including polyhydroxyalkanoate, iron siderophores, lipopeptides, and bacteriocins.

  2. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Directory of Open Access Journals (Sweden)

    Sabrina Laouami

    Full Text Available The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  3. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Laouami, Sabrina; Clair, Géremy; Armengaud, Jean; Duport, Catherine

    2014-01-01

    The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  4. Detection of presumptive Bacillus cereus in the Irish dairy farm environment

    Directory of Open Access Journals (Sweden)

    O’Connell A.

    2016-12-01

    Full Text Available The objective of the study was to isolate potential Bacillus cereus sensu lato (B. cereus s.l. from a range of farm environments. Samples of tap water, milking equipment rinse water, milk sediment filter, grass, soil and bulk tank milk were collected from 63 farms. In addition, milk liners were swabbed at the start and the end of milking, and swabs were taken from cows’ teats prior to milking. The samples were plated on mannitol egg yolk polymyxin agar (MYP and presumptive B. cereus s.l. colonies were isolated and stored in nutrient broth with 20% glycerol and frozen at -80 °C. These isolates were then plated on chromogenic medium (BACARA and colonies identified as presumptive B. cereus s.l. on this medium were subjected to 16S ribosomal RNA (rRNA sequencing. Of the 507 isolates presumed to be B. cereus s.l. on the basis of growth on MYP, only 177 showed growth typical of B. cereus s.l. on BACARA agar. The use of 16S rRNA sequencing to identify isolates that grew on BACARA confirmed that the majority of isolates belonged to B. cereus s.l. A total of 81 of the 98 isolates sequenced were tentatively identified as presumptive B. cereus s.l. Pulsed-field gel electrophoresis was carried out on milk and soil isolates from seven farms that were identified as having presumptive B. cereus s.l. No pulsotype was shared by isolates from soil and milk on the same farm. Presumptive B. cereus s.l. was widely distributed within the dairy farm environment.

  5. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids.

    Directory of Open Access Journals (Sweden)

    Silke R Klee

    Full Text Available Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var. anthracis".

  6. Screening of Bacillus thuringiensis strains effective against mosquitoes Prospecção de estirpes de Bacillus thuringiensis efetivas contra mosquitos

    Directory of Open Access Journals (Sweden)

    Rose Gomes Monnerat

    2005-02-01

    Full Text Available The objective of this work was to evaluate 210 Bacillus thuringiensis strains against Aedes aegypti and Culex quinquefasciatus larvae to select the most effective. These strains were isolated from different regions of Brazil and are stored in a Bacillus spp. collection at Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil. The selected strains were characterized by morphological (microscopy, biochemical (SDS-PAGE 10% and molecular (PCR methods. Six B. thuringiensis strains were identified as mosquito-toxic after the selective bioassays. None of the strains produced the expected PCR products for detection of cry4, cry11 and cyt1A genes. These results indicate that the activity of mosquitocidal Brazilian strains are not related with Cry4, Cry11 or Cyt proteins, so they could be used as an alternative bioinsecticide against mosquitoes.Neste trabalho foram realizados testes de patogenicidade com 210 estirpes de Bacillus thuringiensis contra larvas de Aedes aegypti e Culex quinquefasciatus, a fim de se determinar as mais eficazes. Estas estirpes foram isoladas de diversas regiões do Brasil e estão armazenadas na coleção de Bacillus spp. da Embrapa Recursos Genéticos e Biotecnologia. As estirpes selecionadas foram caracterizadas por métodos morfológicos (microscopia, bioquímicos (SDS-PAGE 10% e moleculares (Reação em Cadeia da Polimerase. Foram selecionadas seis estirpes entomopatogênicas de Bacillus thuringiensis. Nenhuma das estirpes de Bacillus thuringiensis apresentou produtos de PCR esperados para a detecção dos genes cry4, cry11 e cyt1A. A patogenicidade das estirpes não está associada à presença das toxinas Cry4, Cry11 ou Cyt, assim, essas estirpes poderão ser utilizadas para a formatação de um bioinseticida alternativo contra mosquitos.

  7. Kelimpahan Arthropoda Karnivora di Pertanaman Padi Ratun di Sawah Lebak yang Diaplikasikan Bioinsektisida Bacillus Thuringiensis

    OpenAIRE

    Sunariah, Fila; Herlinda, Siti; Windusari, Yuanita

    2016-01-01

    Kelimpahan Arthropoda karnivora di pertanaman padi ratun di sawah lebak yang diaplikasikan bioinsektisida Bacillus thuringiensis telah dilakukan di sawah lebak Pemulutan, Ogan Ilir Sumatera Selatan selama Agustus-Oktober 2013. Penelitian bertujuan untuk mengetahui kelimpahan Arthropoda karnivora padi ratun yang diberi aplikasi Bacillus thurngiensis dan tanpa diberi aplikasi bioinsektisida. Pengambilan sampel spesies Arthropoda dilakukan dengan menggunakan jaring serangga pada tajuk tanaman pa...

  8. Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline

    International Nuclear Information System (INIS)

    Rajasekar, A.; Ganesh Babu, T.; Karutha Pandian, S.; Maruthamuthu, S.; Palaniswamy, N.; Rajendran, A.

    2007-01-01

    The degradation problem of petroleum products arises since hydrocarbon acts as an excellent food source for a wide variety of microorganisms. Microbial activity leads to unacceptable level of turbidity, corrosion of pipeline and souring of stored product. The present study emphasizes the role of Bacillus cereus ACE4 on degradation of diesel and its influence on corrosion of API 5LX steel. A demonstrating bacterial strain ACE4 was isolated from corrosion products and 16S rRNA gene sequence analysis showed that it has more than 99% similarity with B. cereus. The biodegradation and corrosion studies revealed that B. cereus degraded the aliphatic protons and aromatic protons in diesel and is capable of oxidizing ferrous/manganese into oxides. This is the first report that discloses the involvement of manganese oxidizer B. cereus ACE4 on biodegradation of diesel and its influence on corrosion in a tropical country pipeline

  9. Involvement of alanine racemase in germination of Bacillus cereus spores lacking an intact exosporium.

    Science.gov (United States)

    Venir, Elena; Del Torre, Manuela; Cunsolo, Vincenzo; Saletti, Rosaria; Musetti, Rita; Stecchini, Mara Lucia

    2014-02-01

    The L-alanine mediated germination of food isolated Bacillus cereus DSA 1 spores, which lacked an intact exosporium, increased in the presence of D-cycloserine (DCS), which is an alanine racemase (Alr) inhibitor, reflecting the activity of the Alr enzyme, capable of converting L-alanine to the germination inhibitor D-alanine. Proteomic analysis of the alkaline extracts of the spore proteins, which include exosporium and coat proteins, confirmed that Alr was present in the B. cereus DSA 1 spores and matched to that encoded by B. cereus ATCC 14579, whose spore germination was strongly affected by the block of conversion of L- to D-alanine. Unlike ATCC 14579 spores, L-alanine germination of B. cereus DSA 1 spores was not affected by the preincubation with DCS, suggesting a lack of restriction in the reactant accessibility.

  10. Reference genes for quantitative, reverse-transcription PCR in Bacillus cereus group strains throughout the bacterial life cycle.

    Science.gov (United States)

    Reiter, Lillian; Kolstø, Anne-Brit; Piehler, Armin P

    2011-08-01

    Quantitative reverse-transcription PCR (RT-qPCR) has become a major tool to better understand the biology and pathogenesis of bacteria. One prerequisite of valid RT-qPCR data is their proper normalization to stably expressed reference genes. To identify and evaluate reference genes suitable for normalization of gene expression data in Bacillus cereus group strains, mRNA levels of eleven candidate reference genes (rpsU, nifU, udp (UDP-N-acetylglucosamine 2-epimerase), BT9727_5154/BC_5475, BT9727_4034/BC_4293, BT9727_4549/BC_4813, pspA, gatB_Yqey (gatB_Yqey domain containing protein), helicase (SWF/SNF family protein), adk and pta) and a target gene (BT9727_3305/BC3547+BC3546) were quantified by RT-qPCR at different time points throughout the entire life cycle of the wild-type B. cereus ATCC 14579 and Bacillus thuringiensis subsp. konkukian 97-27, a phylogenetically closely related strain to Bacillus anthracis. The programs geNorm and Normfinder were used to calculate expression stabilities and identified the genes gatB_Yqey, rpsU and udp as the most stably expressed reference genes. Compared to this combination or the sets of reference genes as recommended by geNorm or Normfinder, normalization using a traditional housekeeping gene (adk) alone resulted in significantly different gene expression results and in a significant overestimation of the target gene transcription. Normalization of the data to the reference gene gatB_Yqey alone showed no or only small differences to the reference gene combinations indicating that gatB_Yqey may be used as a single reference gene when investigating rather large changes in mRNA transcription. Otherwise, a combination of the stably expressed reference genes is recommended. In conclusion, the present study underlines the importance of normalization to stably expressed reference genes and presents valid endogenous controls suitable for normalization of transcriptional data throughout the life cycle of B. cereus group strains

  11. Incidence and characterization of Bacillus cereus isolated from traditional fermented meals in Nigeria.

    Science.gov (United States)

    Oguntoyinbo, Folarin Anthony; Oni, Oluwajenyo Mathew

    2004-12-01

    The aim of this study was to examine the presence of Bacillus cereus in fermented meals used in food seasoning in Nigeria. The microbial profiles of iru and ogiri, two Nigerian fermented vegetable proteins, were examined for presence of B. cereus. In the 50 samples tested, B. cereus was detected in all the samples, with the level of detection ranging from log 6.3 to log 8.3 g(-1) sample. Phenotypic characteristics of the B. cereus isolates showed that all of them could not ferment many sugars, most especially mannitol, but they utilized propionate citrate as a source of carbon and grew anaerobically. The isolates do not produce gas from glucose but hydrolyzed starch, casein, and gelatin. API-50CHB combined with API-20E identified the isolates as B. cereus. The diarrheal enterotoxin was detected by a reversed passive latex agglutination test kit. Results showed no significant difference in toxin production between ogiri and iru B. cereus isolated from different sources; all the isolates also demonstrated positive hemolytic activity. The API-ZYM enzyme profile showed that the strains have poor hydrolytic enzyme potential; hence, their possible contributions to the fermentation of vegetable protein is doubtful. This study established the proliferation of B. cereus in fermented protein meal and determined the diarrheal toxin production potential of the organism.

  12. Production of nanodrug for Bacillus cereus isolated from HIV positive patient using Mallotus philippensis

    Directory of Open Access Journals (Sweden)

    R. Bhuvaneswari

    2016-04-01

    Full Text Available The present investigation was aimed to synthesis of silver nanoparticles (AgNPs using Mallotus philippensis leaf extract and their antibacterial potential against Bacillus cereus isolated from HIV positive patient. In this, UV- Visible spectroscopy showed the high peak of absorption band at 450 nm. Based on XRD analysis, face centered cubic structure and average size of the AgNPs was around 16 nm. FTIR spectroscopy study revealed the seventeen functional groups of the AgNPs was observed. The morphology of AgNPs was spherical, oval shapes and diameter of the particle size ranges between 9 and 24 nm was measured using transmission electron microscopy (TEM. In addition to these green synthesized AgNPs were found to express the higher efficacy in inhibiting the growth of Bacillus cereus (B. cereus isolated from the HIV-positive patient.

  13. How Quorum Sensing Connects Sporulation to Necrotrophism in Bacillus thuringiensis.

    Directory of Open Access Journals (Sweden)

    Stéphane Perchat

    2016-08-01

    Full Text Available Bacteria use quorum sensing to coordinate adaptation properties, cell fate or commitment to sporulation. The infectious cycle of Bacillus thuringiensis in the insect host is a powerful model to investigate the role of quorum sensing in natural conditions. It is tuned by communication systems regulators belonging to the RNPP family and directly regulated by re-internalized signaling peptides. One such RNPP regulator, NprR, acts in the presence of its cognate signaling peptide NprX as a transcription factor, regulating a set of genes involved in the survival of these bacteria in the insect cadaver. Here, we demonstrate that, in the absence of NprX and independently of its transcriptional activator function, NprR negatively controls sporulation. NprR inhibits expression of Spo0A-regulated genes by preventing the KinA-dependent phosphorylation of the phosphotransferase Spo0F, thus delaying initiation of the sporulation process. This NprR function displays striking similarities with the Rap proteins, which also belong to the RNPP family, but are devoid of DNA-binding domain and indirectly control gene expression via protein-protein interactions in Bacilli. Conservation of the Rap residues directly interacting with Spo0F further suggests a common inhibition of the sporulation phosphorelay. The crystal structure of apo NprR confirms that NprR displays a highly flexible Rap-like structure. We propose a molecular regulatory mechanism in which key residues of the bifunctional regulator NprR are directly and alternatively involved in its two functions. NprX binding switches NprR from a dimeric inhibitor of sporulation to a tetrameric transcriptional activator involved in the necrotrophic lifestyle of B. thuringiensis. NprR thus tightly coordinates sporulation and necrotrophism, ensuring survival and dissemination of the bacteria during host infection.

  14. 40 CFR 174.518 - Bacillus thuringiensis Cry3Bb1 protein in corn; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3Bb1 protein... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.518 Bacillus thuringiensis Cry3Bb1 protein in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis...

  15. Genomic study of the cereolysin A and B genes in Bacillus cereus ...

    African Journals Online (AJOL)

    Hence study about existence of Bacillus cereus in pasteurized milk is very important due to probability of causing illness by Cereolysin gene products. Therefore, Different milk samples were collected from raw milk to pasteurized milk after various stages of producing pasteurized milk. Cultivation of milk samples in Mannitol ...

  16. Predictive modeling of Bacillus cereus spores in farm tank milk during grazing and housing periods

    NARCIS (Netherlands)

    Vissers, M.M.M.; Giffel, M.C.T.; Driehuis, F.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    The shelf life of pasteurized dairy products depends partly on the concentration of Bacillus cereus spores in raw milk. Based on a translation of contamination pathways into chains of unit-operations, 2 simulation models were developed to quantitatively identify factors that have the greatest effect

  17. Genomic study of the cereolysin A and B genes in Bacillus cereus ...

    African Journals Online (AJOL)

    AMAJU

    2011-01-17

    Jan 17, 2011 ... Infect. 2(2): 189-. 198. Miller SA, Dykes DD, Polesky HF (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16 (3): p. 1215. Nduhiu J, Jackson NO, Dorcas WN, Michael MG (2009). Genetic characterization of food borne Bacillus cereus strains from milk,.

  18. Isolation, identification and characterization of Bacillus cereus from the dairy environment

    NARCIS (Netherlands)

    Giffel, te M.

    1997-01-01

    In this thesis the occurrence of Bacillus cereus in the milk production and processing environment was investigated. Isolates were identified biochemically and by DNA probes based on the variable regions of 16S rRNA. Further characterization was carried out using

  19. Comparative transcriptomic and phenotypic analysis of the responses of Bacillus cereus to various disinfectant treatments

    NARCIS (Netherlands)

    Ceragioli, M.; Mols, J.M.; Moezelaar, R.; Ghelardi, E.; Senesi, S.; Abee, T.

    2010-01-01

    Antimicrobial chemicals are widely applied to clean and disinfect food-contacting surfaces. However, the cellular response of bacteria to various disinfectants is unclear. In this study, the physiological and genome-wide transcriptional responses of Bacillus cereus ATCC 14579 exposed to four

  20. Comparative transcriptome analysis of biofilm and planktonic cells of Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    Wijman, Janneke; Mols, M.; Tempelaars, Marcel; Abee, Tjakko

    2015-01-01

    Planktonic and biofilm cells of Bacillus cereus ATCC 14579 and ATCC 10987 were studied using microscopy and transcriptome analysis. By microscopy, clear differences could be observed between biofilm and planktonic cells as well as between the two strains. By using hierarchical clustering of the

  1. Assessment of CcpA-mediated carbolite control of gene expression in Bacillus Cereus ATCC 14579

    NARCIS (Netherlands)

    Voort, van der M.; Kuipers, O.P.; Buist, G.; Vos, de W.M.; Abee, T.

    2008-01-01

    Background - The catabolite control protein CcpA is a transcriptional regulator conserved in many Gram-positives, controlling the efficiency of glucose metabolism. Here we studied the role of Bacillus cereus ATCC 14579 CcpA in regulation of metabolic pathways and expression of enterotoxin genes by

  2. Comparative transcriptome analysis of biofilm and planktonic cells of Bacillus cereus ATCC 10987

    NARCIS (Netherlands)

    Wijman, Janneke; Mols, M.; Tempelaars, Marcel; Abee, Tjakko

    2015-01-01

    Planktonic and biofilm cells of Bacillus cereus ATCC 14579 and ATCC 10987 were studied using microscopy and transcriptome analysis. By microscopy, clear differences could be observed between biofilm and planktonic cells as well as between the two strains. By using hierarchical clustering of the

  3. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    van der Voort, Menno; Kuipers, Oscar P.; Buist, Girbe; de Vos, Willem M.; Abee, Tjakko

    2008-01-01

    Background: The catabolite control protein CcpA is a transcriptional regulator conserved in many Gram-positives, controlling the efficiency of glucose metabolism. Here we studied the role of Bacillus cereus ATCC 14579 CcpA in regulation of metabolic pathways and expression of enterotoxin genes by

  4. Prevalence of potentially pathogenic Bacillus cereus in food commodities in The Netherlands

    NARCIS (Netherlands)

    Wijnands, L.M.; Dufrenne, J.B.; Rombouts, F.M.; Veld, in 't P.H.; Leusden, van F.M.

    2006-01-01

    Randomly selected food commodities, categorized in product groups, were investigated for the presence and number of Bacillus cereus bacteria. If positive, and when possible, five separate colonies were isolated and investigated for the presence of four virulence factors: presence of genes encoding

  5. A probabilistic modeling approach in thermal inactivation: estimation of postprocess Bacillus cereus spore prevalence and concentration

    NARCIS (Netherlands)

    Membre, J.M.; Amezquita, A.; Bassett, J.; Giavedoni, P.; Blackburn, W.; Gorris, L.G.M.

    2006-01-01

    The survival of spore-forming bacteria is linked to the safety and stability of refrigerated processed foods of extended durability (REPFEDs). A probabilistic modeling approach was used to assess the prevalence and concentration of Bacillus cereus spores surviving heat treatment for a semiliquid

  6. Sporulation dynamics and spore heat resistance in wet and dry biofilms of Bacillus cereus

    NARCIS (Netherlands)

    Hayrapetyan, Hasmik; Abee, Tjakko; Nierop Groot, Masja

    2016-01-01

    Environmental conditions and growth history can affect the sporulation process as well as subsequent properties of formed spores. The sporulation dynamics was studied in wet and air-dried biofilms formed on stainless steel (SS) and polystyrene (PS) for Bacillus cereus ATCC 10987 and the

  7. Environmental Distribution and Diversity of Insecticidal Proteins of Bacillus thuringiensis Berliner

    Directory of Open Access Journals (Sweden)

    Xavier, R.

    2007-01-01

    Full Text Available Bacillus thuringiensis Berliner based biopesticides have been successfully used world over for the control of agricultural pests and vectors of human diseases. Currently there are more than 200 B. thuringiensis strains with differing insecticidal activities are available as biocontrol agents and for developing transgenic plants. However, two major disadvantages are the development of insect resistance and high target specificity (narrow host range. Globally there is a continuous search for new B. thuringiensis strains with novel insecticidal activities. The present study aims to study the environmental distribution of B. thuringiensis and their toxic potential against insect pests. Soil and grain samples were collected from different environments and were processed by a modified acetate selection method. Initially B. thuringiensis isolates were screened on the basis of colony morphology and phase contrast microscopy for the presence of parasporal crystal inclusions. The population dynamics showed that B. thuringiensis is abundant in sericulture environment compared to other niches. Relative abundance of B. thuringiensis strains in sericulture environment shows the persistent association of B. thuringiensis with Bombyx mori (silk worm as insect pathogen. The protein profiles of the selected strains were studied by SDS-PAGE. The protein profiles of majority of B. thuringiensis isolates from grain storage facilities predominantly showing the 130 kDa and 68 kDa proteins, which is characteristics of lepidopteran active B. thuringiensis. However, one isolate BTRX-4 has 80-85 kDa protein, which is novel in that, this strain also exhibits antilepidopteran activity, which is normally presented by B. thuringiensis strains having 130 kDa and 68 kDa proteins. The protein profile of B. thuringiensis isolates from sericulture environment shows two different protein profiles. B. thuringiensis isolates BTRX-16 to BTRX-22 predominantly show 130 kDa protein

  8. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract.

    Science.gov (United States)

    Berthold-Pluta, Anna; Pluta, Antoni; Garbowska, Monika

    2015-05-01

    Bacillus cereus is a Gram-positive bacterium widely distributed in soil and vegetation. This bacterial species can also contaminate raw or processed foods. Pathogenic B. cereus strains can cause a range of infections in humans, as well as food poisoning of an emetic (intoxication) or diarrheal type (toxico-infection). Toxico-infections are due to the action of the Hbl toxin, Nhe toxin, and cytotoxin K produced by the microorganism in the gastrointestinal tract. This occurs once the spores or vegetative B. cereus cells survive the pH barrier of the stomach and reach the small intestine where they produce toxins in sufficient amounts. This article discusses the effect of various factors on the survival of B. cereus in the gastrointestinal tract, including low pH and the presence of digestive enzymes in the stomach, bile salts in the small intestine, and indigenous microflora in the lower parts of the gastrointestinal tract. Additional aspects also reported to affect B. cereus survival and virulence in the gastrointestinal tract include the interaction of the spores and vegetative cells with enterocytes. In vitro studies revealed that both vegetative B. cereus and spores can survive in the gastrointestinal tract suggesting that the biological form of the microorganism may have less influence on the occurrence of the symptoms of infection than was once believed. It is most likely the interaction between the pathogen and enterocytes that is necessary for the diarrheal form of B. cereus food poisoning to develop. The adhesion of B. cereus to the intestinal epithelium allows the bacterium to grow and produce enterotoxins in the proximity of the epithelium. Recent studies suggest that the human intestinal microbiota inhibits the growth of vegetative B. cereus cells considerably. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Germination and conjugation of Bacillus thuringiensis subsp. israelensis in the intestine of gnotobiotic rats

    DEFF Research Database (Denmark)

    Wilcks, Andrea; Ørum-Smidt, Lasse; Bahl, Martin Iain

    2008-01-01

    Aims: To study the ability of Bacillus thuringiensis subsp. israelensis spores to germinate and subsequently transfer a conjugative plasmid in the intestinal tract of gnotobiotic rats. Methods and Results: Germination was studied by feeding germ-free rats with spores of a B. thuringiensis strain...... harbouring a plasmid encoding green fluorescent protein (GFP), which enabled quantification of germinated bacteria by flow cytometry. To study in vivo conjugation, germ-free rats were first associated with a B. thuringiensis recipient strain and after 1 week an isogenic donor strain harbouring...... the conjugative plasmid pXO16 was introduced. Both strains were given as spores and transfer of pXO16 was observed from the donor to the recipient strain. Conclusions: Bacillus thuringiensis is able to have a full life cycle in the intestine of gnotobiotic rats including germination of spores, several cycles...

  10. Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis.

    Science.gov (United States)

    Amichot, Marcel; Curty, Christine; Benguettat-Magliano, Olivia; Gallet, Armel; Wajnberg, Eric

    2016-02-01

    Most of the detrimental effects of using conventional insecticides to control crop pests are now well identified and are nowadays major arguments for replacing such compounds by the use of biological control agents. In this respect, the bacterium Bacillus thuringiensis var. kurstaki and Trichogramma (Hymenoptera: Trichogrammatidae) parasitic wasp species are both effective against lepidopterous pests and can actually be used concomitantly. In this work, we studied the potential side effects of B. thuringiensis var. kurstaki on Trichogramma chilonis females. We first evidenced an acute toxicity of B. thuringiensis on T. chilonis. Then, after ingestion of B. thuringiensis at sublethal doses, we focused on life history traits of T. chilonis such as longevity, reproductive success and the time spent on host eggs patches. The reproductive success of T. chilonis was not modified by B. thuringiensis while a significant effect was observed on longevity and the time spent on host eggs patches. The physiological and ecological meanings of the results obtained are discussed.

  11. Persistence of Bacillus thuringiensis bioinsecticides in the gut of human-flora-associated rats

    DEFF Research Database (Denmark)

    Wilcks, Andrea; Hansen, Bjarne Munk; Hendriksen, Niels Bohse

    2006-01-01

    The capability of two bioinsecticide strains of Bacillus thuringiensis (ssp. israelensis and ssp. kurstaki) to germinate and persist in vivo in the gastrointestinal tract of human-flora-associated rats was studied. Rats were dosed either with vegetative cells or spores of the bacteria for 4...... consecutive days. In animals fed spores, B. thuringiensis cells were detected in faecal and intestinal samples of all animals, whereas vegetative cells only poorly survived the gastric passage. Heat-treatment of intestinal samples, which kills vegetative cells, revealed that B. thuringiensis spores were...... capable of germination in the gastrointestinal tract. In one animal fed spores of B. thuringiensis ssp. kurstaki, these bacteria were detected at high density (10(3)-10(4) CFU g(-1) faecal and intestinal samples) even 2 weeks after the last dosage. In the same animal, passage of B. thuringiensis ssp...

  12. Isolation and identification of some Bacillus thuringiensis strains with insecticidal activity against Ceratitis capitata

    International Nuclear Information System (INIS)

    Majdoub, Nihed

    2010-01-01

    The aims of the present work is to study the effect of toxins (delta-endotoxins), extracted from different strains of Bacillus thuringiensis on Ceratitis capitata, a devastating of citrus and fruit trees. Strains of B. thuringiensis were isolated from the mud of Sebket Sejoumi. Among 70 isolates tested, 15 showed a significant identicalness activity in which 5 isolates led to mortality rates ≥ 90 pour cent . These mortality rates are caused by endotoxins of B. thuringiensis. Analysis of proteins profiles of different isolates of B. thuringiensis revealed variability between them. The preliminary results of this study encourage us towards the characterization of the insecticidal activity produced by B. thuringiensis strains for large scale application.

  13. Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants

    OpenAIRE

    Monnerat, Rose Gomes; Soares, Carlos Marcelo; Capdeville, Guy; Jones, Gareth; Martins, Érica Soares; Praça, Lilian; Cordeiro, Bruno Arrivabene; Braz, Shélida Vasconcelos; Dos Santos, Roseane Cavalcante; Berry, Colin

    2009-01-01

    Summary The major biological pesticide for the control of insect infestations of crops, Bacillus thuringiensis was found to be present naturally within cotton plants from fields that had never been treated with commercial formulations of this bacterium. The ability of B. thuringiensis to colonize plants as an endophyte was further established by the introduction of a strain marked by production of green fluorescent protein (GFP). After inoculation of this preparation close to the roots of cot...

  14. Synergistic activity of Bacillus thuringiensis toxins against Simulium spp. larvae.

    Science.gov (United States)

    Monnerat, Rose; Pereira, Eleny; Teles, Beatriz; Martins, Erica; Praça, Lilian; Queiroz, Paulo; Soberon, Mario; Bravo, Alejandra; Ramos, Felipe; Soares, Carlos Marcelo

    2014-09-01

    Species of Simulium spread diseases in humans and animals such as onchocerciasis and mansonelosis, causing health problems and economic loses. One alternative for controlling these insects is the use of Bacillus thuringiensis serovar israelensis (Bti). This bacterium produces different dipteran-active Cry and Cyt toxins and has been widely used in blackfly biological control programs worldwide. Studies on other insect targets have revealed the role of individual Cry and Cyt proteins in toxicity and demonstrated a synergistic effect among them. However, the insecticidal activity and interactions of these proteins against Simulium larvae have not been reported. In this study we demonstrate that Cry4Ba is the most effective toxin followed by Cry4Aa and Cry11Aa. Cry10Aa and Cyt1Aa were not toxic when administered alone but both were able to synergise the activity of Cry4B and Cry11Aa toxins. Cyt1Aa is also able to synergise with Cry4Aa. The mixture of all toxin-producing strains showed the greatest level of synergism, but still lower than the Bti parental strain. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Bacillus thuringiensis: fermentation process and risk assessment: a short review

    Directory of Open Access Journals (Sweden)

    Deise M. F Capalbo

    1995-02-01

    Full Text Available Several factors make the local production of Bacillus thuringiensis (Bt highly appropriate for pest control in developing nations. Bt can be cheaply produced on a wide variety of low cost, organic substrates. Local production results in considerable savings in hard currency which otherwise would be spent on importation of chemical and biological insecticides. The use of Bt in Brazil has been limited in comparison with chemical insecticides. Although Bt is imported, some Brazilian researchers have been working on its development and production. Fermentation processes (submerged and semi-solid were applied, using by-products from agro-industries. As the semi-solid fermentation process demonstrated to be interesting for Bt endotoxins production, it could be adopted for small scale local production. Although promising results had been achieved, national products have not been registered due to the absence of a specific legislation for biological products. Effective actions are being developed in order to solve this gap. Regardless of the biocontrol agents being considered atoxic and harmless to the environment, information related to direct and indirect effects of microbials are still insufficient in many cases. The risk analysis of the use of microbial control agents is of upmost importance nowadays, and is also discussed.

  16. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity

    Science.gov (United States)

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-01-01

    Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities. PMID:25514092

  17. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  18. Raman spectroscopy of Bacillus thuringiensis physiology and inactivation

    Science.gov (United States)

    Morrow, J. B.; Almeida, J.; Cole, K. D.; Reipa, V.

    2012-12-01

    The ability to detect spore contamination and inactivation is relevant to developing and determining decontamination strategy success for food and water safety. This study was conducted to develop a systematic comparison of nondestructive vibrational spectroscopy techniques (Surface-Enhanced Raman Spectroscopy, SERS, and normal Raman) to determine indicators of Bacillus thuringiensis physiology (spore, vegetative, outgrown, germinated and inactivated spore forms). SERS was found to provide better resolution of commonly utilized signatures of spore physiology (dipicolinic acid at 1006 cm-1 and 1387 cm-1) compared to normal Raman and native fluorescence indigenous to vegetative and outgrown cell samples was quenched in SERS experiment. New features including carotenoid pigments (Raman features at 1142 cm-1, 1512 cm-1) were identified for spore cell forms. Pronounced changes in the low frequency region (300 cm-1 to 500 cm-1) in spore spectra occurred upon germination and inactivation (with both free chlorine and by autoclaving) which is relevant to guiding decontamination and detection strategies using Raman techniques.

  19. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity

    Directory of Open Access Journals (Sweden)

    Leopoldo Palma

    2014-12-01

    Full Text Available Bacillus thuringiensis (Bt is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein. Bin-like and ETX_MTX2-family proteins (Pfam PF03318, which share amino acid similarities with mosquitocidal binary (Bin and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.

  20. Biopesticide production from Bacillus thuringiensis: an environmentally friendly alternative.

    Science.gov (United States)

    Rosas-García, Ninfa M

    2009-01-01

    Since its discovery as a microbial insecticide, Bacillus thuringiensis has been widely used to control insect pests important in agriculture, forestry, and medicine. The wide variety of formulations based on spore-crystal complexes intended for ingestion by target insects, are the result of many years of research. The development of a great variety of matrices for support of the spore-crystal complex enables many improvements, such as an increase in toxic activity, higher palatability to insects, or longer shelf lives. These matrices use many chemical, vegetable or animal compounds to foster contact between crystals and insect midguts, without harming humans or the environment. Biotechnology companies are tasked with the production of these kinds of bioinsecticides. These companies must not only provide formulations tailored to specific crops and the insect pests, but they must also search for and produce bioinsecticides based on new strains of high potency, whether wild or genetically improved. It is expected that new products will appear on the market soon, providing an increased activity spectrum and applicability to many other pest-impacted crops. These products may help develop a more organic agriculture. This review article discusses recent patents related to bioinsecticides.

  1. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  2. The complete genome sequence of Bacillus thuringiensis serovar Hailuosis YWC2-8.

    Science.gov (United States)

    Zhu, Jun; Zhang, Qinbin; Cao, Ye; Li, Qiao; Zhu, Zizhong; Wang, Linxia; Li, Ping

    2016-02-10

    Bacillus thuringiensis, a typical aerobic, Gram-positive, spore-forming bacterium, is an important microbial insecticide widely used in the control of agricultural pests. B. thuringiensis serovar Hailuosis YWC2-8 with high insecticidal activity against Diptera and Lepidoptera insects has three insecticidal crystal protein genes, such as cry4Cb2, cry30Ea2, and cry56Aa1. In this study, the complete genome sequence of B. thuringiensis YWC2-8 was analyzed, which contains one circular gapless chromosome and six circular plasmids. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Deletion of the sigB gene in Bacillus cereus ATCC 14579 leads to hydrogen peroxide hyperresistance.

    Science.gov (United States)

    van Schaik, Willem; Zwietering, Marcel H; de Vos, Willem M; Abee, Tjakko

    2005-10-01

    The sigB gene of Bacillus cereus ATCC 14579 encodes the alternative sigma factor sigma(B). Deletion of sigB in B. cereus leads to hyperresistance to hydrogen peroxide. The expression of katA, which encodes one of the catalases of B. cereus, is upregulated in the sigB deletion mutant, and this may contribute to the hydrogen peroxide-resistant phenotype.

  4. Deletion of the sigB gene in Bacillus cereus ATCC 14579 leads to hydrogen peroxide hyperresistance

    OpenAIRE

    Schaik, van, W.; Zwietering, M.H.; Vos, de, W.M.; Abee, T.

    2005-01-01

    The sigB gene of Bacillus cereus ATCC 14579 encodes the alternative sigma factor σB. Deletion of sigB in B. cereus leads to hyperresistance to hydrogen peroxide. The expression of katA, which encodes one of the catalases of B. cereus, is upregulated in the sigB deletion mutant, and this may contribute to the hydrogen peroxide-resistant phenotype.

  5. Growth and enterotoxin production of Bacillus cereus in cow, goat, and sheep milk

    Directory of Open Access Journals (Sweden)

    Lenka Necidová

    2014-01-01

    Full Text Available The aim of this study was to compare Bacillus cereus growth rates and diarrhoeal enterotoxin production in raw and pasteurized goat, sheep, and cow milk in terms of storage conditions. Milk samples were inoculated with B. cereus (CCM 2010, which produces diarrhoeal enterotoxins. Enterotoxin production was tested by ELISA (Enzyme-Linked Immunosorbent Assay, and the count of B. cereus was determined by the plate method. With raw cow milk, B. cereus growth and enterotoxin production can be completely suppressed; in raw goat and sheep milk, enterotoxin was produced at 22 °C. In pasteurized cow, goat, and sheep milk, the B. cereus count increased under all storage conditions, with more rapid growth being observed at 15 °C (sheep milk and 22 °C (cow and goat milk. Enterotoxin presence was detected at 15 °C and 22 °C, and with pasteurized cow milk also at 8 °C. Our model experiments have determined that B. cereus multiplication and subsequent enterotoxin production depend on storage temperature and milk type.

  6. Direct detection of toxigenic Bacillus cereus in dietary complement for children and cassava starch

    Directory of Open Access Journals (Sweden)

    Jnnifer A. Sánchez

    2014-05-01

    Full Text Available Bacillus cereus is a food contaminant and a known human pathogen that can cause emetic and diarrheal syndromes. In this study we evaluated the presence of toxigenic B. cereus by multiplex PCR directly in dietary complement for children and cassava starch samples collected on Medellin, Colombia. Of 75 dietary complement for children samples evaluated, 70.7% were contaminated with toxigenic B. cereus and four different toxigenic consortia were detected: I: nheA, hblC, cytK (9.8%, II: nheA, hblC (2%, III: hblC, cytK (41.2%, IV: hblC (47%. Of 75 cassava starch samples, 44% were contaminated with toxigenic B. cereus and four different toxigenic consortia were determined: I: nheA, hblC, cytK (48.5%, II: nheA, hblC, cytK, cesB (3%, III: hblC, cytK (30.3%, IV: hblC (18.2%. In general, in dietary complement for children only enterotoxigenic consortia were detected while in cassava starch the enterotoxigenic consortia predominated over the emetic. Multiplex PCR was useful to detect toxigenic B. cereus contamination allowing direct and imultaneous detection of all toxin genes in foods. This study is the first in Colombia to evaluate toxigenic B. cereus, providing information of importance for microbiological risk evaluation in dried foods.

  7. Food poisoning associated with emetic-type of Bacillus cereus in Korea.

    Science.gov (United States)

    Kim, Jung-Beom; Jeong, Hong-Rae; Park, Yong-Bae; Kim, Jae-Moung; Oh, Deog-Hwan

    2010-05-01

    Bacillus cereus can cause diarrheal and emetic types of food poisoning but little study has been done on emetic type of food poisoning in Korea. The objective of this study was to report on the emetic type of food poisoning associated with B. cereus in Korea. The toxin gene profile, toxin production, and antibiotic resistance of B. cereus isolates were investigated in this study. B. cereus was detected in three out of four samples, while the other food poisoning bacteria were not detected. All isolates (KUGH 10, 11, and 12) presented nhe A, B, and C diarrheal toxin genes (755, 743, and 683 bp), detected using NHA, NHB, and NHC primers, and ces emetic toxin gene (1271 bp), detected using CES primer, and produced nonhemolytic enterotoxin and emetic toxin (cereulide), detected using immunochemical assay and high performance liquid chromotography/mass spectrometry (HPLC/MS) analysis. All emetic-associated isolates were resistant to beta-lactam antibiotics. Most important finding in this study was that the risk of emetic-type B. cereus food poisoning has existed in Korea. This suggested that the food poisoning caused by B. cereus producing emetic and diarrheal toxins should be constantly evaluated to prevent misdiagnosis between emetic and diarrheal types of food poisoning.

  8. Modeling of Bacillus cereus distribution in pasteurized milk at the time of consumption

    Directory of Open Access Journals (Sweden)

    Ľubomír Valík

    2013-02-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Modelling of Bacillus cereus distribution, using data from pasteurized milk produced in Slovakia, at the time of consumption was performed in this study. The Modular Process Risk Model (MPRM methodology was applied to over all the consecutive steps in the food chain. The main factors involved in the risk of being exposed to unacceptable levels of B. cereus (model output were the initial density of B. cereus after milk pasteurization, storage temperatures and times (model input. Monte Carlo simulations were used for probability calculation of B. cereus density. By applying the sensitivity analysis influence of the input factors and their threshold values on the final count of B. cereus were determined. The results of the general case exposure assessment indicated that almost 14 % of Tetra Brik cartons can contain > 104 cfu/ml of B. cereus at the temperature distribution taken into account and time of pasteurized milk consumption. doi:10.5219/264

  9. Prevalence and antimicrobial resistance of Bacillus cereus isolated from beef products in Egypt

    Directory of Open Access Journals (Sweden)

    Reyad Shawish

    2017-12-01

    Full Text Available Foodborne pathogens have the main concern in public health and food safety. Bacillus cereus food poisoning is one of the most important foodborne pathogens worldwide. In the present study, a total of 200 random beef product samples were collected from different supermarkets located at Menofia and Cairo governorates were examined for the presence of B. cereus. In addition, the presence of some virulence encoding genes was evaluated using Multiplex PCR. Finally, the antibiogram testing was conveyed to illustrate the resistance pattern of the confirmed B. cereus. The data showed that B. cereus was recovered from 22.5%, 30%, 25%, 37.5% and 15% of the minced meat, burger, sausage, kofta, and luncheon respectively. Among the 20 examined isolates 18/20 (90% were harbor hblC enterotoxin encoding gene compared with 20/20 (100 were have cytK enterotoxin encoding gene. The isolated strains of B. cereus were resistant to penicillin G and sensitive to oxacillin, clindamycin, vancomycin, erythromycin, gentamicin, ciprofloxacin, and ceftriaxone. In all, the obtained data showed the importance of emerging B. cereus in disease control and prevention programs, and in regular clinical and food quality control laboratories in Egypt.

  10. Growth of Bacillus cereus isolated from some traditional condiments ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... cheese and ice cream have been reported to be frequently contaminated with B. cereus (Ahmed et al.,. 1983; Wong et al., 1988). The factors that make B. ce- reus a potential threat to food processing are ability to form thermoduric endospore, ability to grow and survive at refrigeration temperature and toxin ...

  11. Secondary cell wall polysaccharides of Bacillus anthracis are antigens that contain specific epitopes which cross-react with three pathogenic Bacillus cereus strains that caused severe disease, and other epitopes common to all the Bacillus cereus strains tested.

    Science.gov (United States)

    Leoff, Christine; Saile, Elke; Rauvolfova, Jana; Quinn, Conrad P; Hoffmaster, Alex R; Zhong, Wei; Mehta, Alok S; Boons, Geert-Jan; Carlson, Russell W; Kannenberg, Elmar L

    2009-06-01

    The immunoreactivities of hydrogen fluoride (HF)-released cell wall polysaccharides (HF-PSs) from selected Bacillus anthracis and Bacillus cereus strains were compared using antisera against live and killed B. anthracis spores. These antisera bound to the HF-PSs from B. anthracis and from three clinical B. cereus isolates (G9241, 03BB87, and 03BB102) obtained from cases of severe or fatal human pneumonia but did not bind to the HF-PSs from the closely related B. cereus ATCC 10987 or from B. cereus type strain ATCC 14579. Antiserum against a keyhole limpet hemocyanin conjugate of the B. anthracis HF-PS (HF-PS-KLH) also bound to HF-PSs and cell walls from B. anthracis and the three clinical B. cereus isolates, and B. anthracis spores. These results indicate that the B. anthracis HF-PS is an antigen in both B. anthracis cell walls and spores, and that it shares cross-reactive, and possibly pathogenicity-related, epitopes with three clinical B. cereus isolates that caused severe disease. The anti-HF-PS-KLH antiserum cross-reacted with the bovine serum albumin (BSA)-conjugates of all B. anthracis and all B. cereus HF-PSs tested, including those from nonclinical B. cereus ATCC 10987 and ATCC 14579 strains. Finally, the serum of vaccinated (anthrax vaccine adsorbed (AVA)) Rhesus macaques that survived inhalation anthrax contained IgG antibodies that bound the B. anthracis HF-PS-KLH conjugate. These data indicate that HF-PSs from the cell walls of the bacilli tested here are (i) antigens that contain (ii) a potentially virulence-associated carbohydrate antigen motif, and (iii) another antigenic determinant that is common to B. cereus strains.

  12. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727

    Directory of Open Access Journals (Sweden)

    Mahillon Jacques

    2005-07-01

    Full Text Available Abstract Background Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis belong to the genetically close-knit Bacillus cereus sensu lato group, a family of rod-shaped Gram-positive bacteria. pAW63 is the first conjugative plasmid from the B. cereus group to be completely sequenced. Results The 71,777 bp nucleotide sequence of pAW63 reveals a modular structure, including a 42 kb tra region encoding homologs of the Type IV secretion systems components VirB11, VirB4 and VirD4, as well as homologs of Gram-positive conjugation genes from Enterococcus, Lactococcus, Listeria, Streptococcus and Staphylococcus species. It also firmly establishes the existence of a common backbone between pAW63, pXO2 from Bacillus anthracis and pBT9727 from the pathogenic Bacillus thuringiensis serovar konkukian strain 97-27. The alignment of these three plasmids highlights the presence of well conserved segments, in contrast to distinct regions of high sequence plasticity. The study of their specific differences has provided a three-point reference framework that can be exploited to formulate solid hypotheses concerning the functionalities and the molecular evolution of these three closely related plasmids. This has provided insight into the chronology of their divergence, and led to the discovery of two Type II introns on pAW63, matching copies of the mobile element IS231L in different loci of pXO2 and pBT9727, and the identification on pXO2 of a 37 kb pathogenicity island (PAI containing the anthrax capsule genes. Conclusion The complete sequence determination of pAW63 has led to a functional map of the plasmid yielding insights into its conjugative apparatus, which includes T4SS-like components, as well as its resemblance to other large plasmids of Gram-positive bacteria. Of particular interest is the extensive homology shared between pAW63 and pXO2, the second virulence plasmid of B. anthracis, as well as pBT9727 from the pathogenic strain B. thuringiensis

  13. The YvfTU Two-component System is involved in plcR expression in Bacillus cereus

    NARCIS (Netherlands)

    Brillard, Julien; Susanna, Kim; Michaud, Caroline; Dargaignaratz, Claire; Gohar, Michel; Nielsen-Leroux, Christina; Ramarao, Nalini; Kolsto, Anne-Brit; Nguyen-The, Christophe; Lereclus, Didier; Broussolle, Veronique

    2008-01-01

    Background: Most extracellular virulence factors produced by Bacillus cereus are regulated by the pleiotropic transcriptional activator PlcR. Among strains belonging to the B. cereus group, the plcR gene is always located in the vicinity of genes encoding the YvfTU two-component system. The putative

  14. Characterization and exposure assessment of emetic bacillus cereus and cereulide production in food products on the Dutch market

    NARCIS (Netherlands)

    Biesta-Peters, Elisabeth G.; Dissel, Serge; Reij, Martine W.; Zwietering, Marcel H.; In't Veld, Paul H.

    2016-01-01

    The emetic toxin cereulide, which can be produced by Bacillus cereus, can be the cause of food poisoning upon ingestion by the consumer. The toxin causes vomiting and is mainly produced in farinaceous food products. This article includes the prevalence of B. cereus and of cereulide in food

  15. Analysis of acid-stressed Bacillus cereus reveals a major oxidative response and inactivation-associated radical formation

    NARCIS (Netherlands)

    Mols, J.M.; Kranenburg, van R.; Melis, van C.C.J.; Moezelaar, R.; Abee, T.

    2010-01-01

    Acid stress resistance of the food-borne human pathogen Bacillus cereus may contribute to its survival in acidic environments, such as encountered in soil, food and the human gastrointestinal tract. The acid stress responses of B. cereus strains ATCC 14579 and ATCC 10987 were analysed in aerobically

  16. Identification of sigmaB-dependent genes in Bacillus cereus by proteome and in vitro transcription analysis

    NARCIS (Netherlands)

    Schaik, van W.; Zwietering, M.H.; Vos, de W.M.; Abee, T.

    2004-01-01

    The alternative sigma factor sigma(B) of the food pathogen Bacillus cereus is activated upon stress exposure and plays a role in the adaptive response of vegetative cells. This study describes the identification of sigma(B)-dependent genes in B. cereus. Two-dimensional gel electrophoresis was

  17. Determining the source of Bacillus cereus and Bacillus licheniformis isolated from raw milk, pasteurized milk and yoghurt.

    Science.gov (United States)

    Banykó, J; Vyletelová, M

    2009-03-01

    Strain-specific detection of Bacillus cereus and Bacillus licheniformis in raw and pasteurized milk, and yoghurt during processing. Randomly selected isolates of Bacillus spp. were subjected to PCR analysis, where single primer targeting to the repetitive sequence Box elements was used to fingerprint the species. The isolates were separated into six different fingerprint patterns. The results show that isolates clustered together at about the 57% similarity level with two main groups at the 82% and 83% similarity levels, respectively. Contamination with identical strains both of B. cereus and B. licheniformis in raw and pasteurized milk was found as well as contaminated with different strains (in the case of raw milk and yoghurt/pasteurized milk and yoghurt). Several BOX types traced in processed milk samples were not discovered in the original raw milk. BOX-PCR fingerprinting is useful for characterizing Bacillus populations in a dairy environment. It can be used to confirm environmental contamination, eventually clonal transfer of Bacillus strains during the technological processing of milk. Despite the limited number of strains analysed, the two Bacillus species yielded adequately detectable banding profiles, permitting differentiation of bacteria at the strain level and showing their diversity throughout dairy processing.

  18. Sensitivity of Spores of Eight Bacillus Cereus Strains to Pressure-Induced Germination by Moderate Hydrostatic Pressure, Time and Temperature

    National Research Council Canada - National Science Library

    Kalchayanand, Norasak; Ray, Bibek; Dunne, C. P; Sikes, Anthony

    2005-01-01

    The spores of eight Bacillus cereus strains were pressurized at 138 to 483 MPa for 5 to 20 min at 25 to 70 C in order to determine the sensitive and the resistant strains to pressure-induced germination...

  19. Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics

    OpenAIRE

    Madeira, Jean-Paul; Omer, Hélène; Alpha-Bazin, Béatrice; Armengaud, Jean

    2016-01-01

    The pathogen, Bacillus cereus, is able to adapt itsmetabolismto various environmental conditions. The reference strain, Bacillus cereus ATCC 14579, harbors a linear plasmid, pBClin15, which displays a cryptic prophage behavior. Here, we studied the impact of pBClin15 on the aerobic respiratory metabolism of B. cereus by curing its host strain. We compared, by means of a high-throughput shotgun proteomic approach, both the cellular proteome and the exoproteome of B. cereus ATCC 14579 in the pr...

  20. Environmental and Biofilm-dependent Changes in a Bacillus cereus Secondary Cell Wall Polysaccharide*

    Science.gov (United States)

    Candela, Thomas; Maes, Emmanuel; Garénaux, Estelle; Rombouts, Yoann; Krzewinski, Frédéric; Gohar, Michel; Guérardel, Yann

    2011-01-01

    Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B. anthracis strains, the effect of culture conditions or of bacterial growth state on their synthesis has never been addressed. Herein we show that B. cereus ATCC 14579 can synthesize not only one, as previously reported, but two structurally unrelated secondary cell wall polymers (SCWP) polysaccharides. The first of these SCWP, →4)[GlcNAc(β1–3)]GlcNAc(β1–6)[Glc(β1-3)][ManNAc(α1–4)]GalNAc(α1–4)ManNAc(β1→, although presenting an original sequence, fits to the already described the canonical sequence motif of SCWP. In contrast, the second polysaccharide was made up by a totally original sequence, →6)Gal(α1–2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, which no equivalent has ever been identified in the Bacillus genus. In addition, we established that the syntheses of these two polysaccharides were differently regulated. The first one is constantly expressed at the surface of the bacteria, whereas the expression of the second is tightly regulated by culture conditions and growth states, planktonic, or biofilm. PMID:21784857

  1. Environmental and biofilm-dependent changes in a Bacillus cereus secondary cell wall polysaccharide.

    Science.gov (United States)

    Candela, Thomas; Maes, Emmanuel; Garénaux, Estelle; Rombouts, Yoann; Krzewinski, Frédéric; Gohar, Michel; Guérardel, Yann

    2011-09-09

    Bacterial species from the Bacillus genus, including Bacillus cereus and Bacillus anthracis, synthesize secondary cell wall polymers (SCWP) covalently associated to the peptidoglycan through a phospho-diester linkage. Although such components were observed in a wide panel of B. cereus and B. anthracis strains, the effect of culture conditions or of bacterial growth state on their synthesis has never been addressed. Herein we show that B. cereus ATCC 14579 can synthesize not only one, as previously reported, but two structurally unrelated secondary cell wall polymers (SCWP) polysaccharides. The first of these SCWP, →4)[GlcNAc(β1-3)]GlcNAc(β1-6)[Glc(β1-3)][ManNAc(α1-4)]GalNAc(α1-4)ManNAc(β1→, although presenting an original sequence, fits to the already described the canonical sequence motif of SCWP. In contrast, the second polysaccharide was made up by a totally original sequence, →6)Gal(α1-2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1-6)GlcNAc(β1→, which no equivalent has ever been identified in the Bacillus genus. In addition, we established that the syntheses of these two polysaccharides were differently regulated. The first one is constantly expressed at the surface of the bacteria, whereas the expression of the second is tightly regulated by culture conditions and growth states, planktonic, or biofilm.

  2. Milk-originated Bacillus cereus sensu lato strains harbouring Bacillus anthracis-like plasmids are genetically and phenotypically diverse.

    Science.gov (United States)

    Bartoszewicz, Marek; Marjańska, Paulina Sylwia

    2017-10-01

    Bacillus cereus sensu lato is widely distributed in food products, including raw and processed milk. Plasmids often determine bacterial virulence and toxicity, but their role in the evolution of B. cereus sensu lato is only partly known. Here, we observed that nearly 8% of B. cereus sensu lato isolates were positive for pXO1-like plasmids and 12% for pXO2-like plasmids in raw and ultra-heat-treated (UHT) milk from one dairy plant. However, pXO1-like plasmids were significantly more frequent in raw milk, while pXO2-like plasmids were more frequent in processed milk. Strains from raw and UHT milk were enterotoxigenic, with up to one-fifth of the isolates being psychrotolerant. Phylogenetic assessment using multi-locus sequence typing revealed a polyphyletic structure for these bacilli, with distinct groups of cold-adapted isolates and pathogenic strains (including emetic B. cereus). Populations corresponding to both sampling sites exhibited significant linkage disequilibrium and the presence of purifying selection. The far-from-clonal population structure indicated the presence of sequence types or ecotypes adapted to specific conditions in the dairy industry. A high recombination-to-mutation ratio suggested an important role for horizontal gene transfer among B. cereus sensu lato isolates in milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Draft Genome Sequences of Bacillus cereus E41 and Bacillus anthracis F34 Isolated from Algerian Salt Lakes

    Science.gov (United States)

    Daas, Mohamed Seghir; Rosana, Albert Remus R.; Acedo, Jeella Z.; Nateche, Farida; Kebbouche-Gana, Salima; Vederas, John C.

    2017-01-01

    ABSTRACT Two strains of Bacillus, B. cereus E41 and B. anthracis F34, were isolated from a salt lake in Aïn M’lila-Oum El Bouaghi, eastern Algeria, and Ain Baida-Ouargla, southern Algeria, respectively. Their genomes display genes for the production of several bioactive secondary metabolites, including polyhydroxyalkanoate, iron siderophores, lipopeptides, and bacteriocins. PMID:28522726

  4. Identification and genomic comparison of temperate bacteriophages derived from emetic Bacillus cereus.

    Science.gov (United States)

    Geng, Peiling; Tian, Shen; Yuan, Zhiming; Hu, Xiaomin

    2017-01-01

    Cereulide-producing Bacillus cereus isolates can cause serious emetic (vomiting) syndrome and even acute lethality. As mobile genetic elements, the exploration of prophages derived from emetic B. cereus isolates will help in our understanding of the genetic diversity and evolution of these pathogens. In this study, five temperate phages derived from cereulide-producing B. cereus strains were induced, with four of them undergoing genomic sequencing. Sequencing revealed that they all belong to the Siphoviridae family, but presented in different forms in their hosts. PfNC7401 and PfIS075 have typical icosahedral heads, probably existing alone as phagemids in the host with self-replicating capability in the lysogenic state. PfEFR-4, PfEFR-5, and PfATCC7953 have elongated heads, with the genomes of the former two identified as linear dsDNA, which could be integrated into the host genome during the lysogenic state. Genomic comparison of the four phages with others also derived from emetic B. cereus isolates showed similar genome structures and core genes, thus displaying host spectrum specificity. In addition, phylogenic analysis based on the complete genome and conserved tail fiber proteins of 36 Bacillus species-derived phages confirmed that the phages derived from emetic B. cereus strains were highly similar. Furthermore, one endolysin LysPfEFR-4 was cloned and showed lytic activity against all tested emetic B. cereus strains and cross-lytic activity against some other pathogenic bacteria, implying a potential to control bacterial contamination in the food supply.

  5. Identification and genomic comparison of temperate bacteriophages derived from emetic Bacillus cereus.

    Directory of Open Access Journals (Sweden)

    Peiling Geng

    Full Text Available Cereulide-producing Bacillus cereus isolates can cause serious emetic (vomiting syndrome and even acute lethality. As mobile genetic elements, the exploration of prophages derived from emetic B. cereus isolates will help in our understanding of the genetic diversity and evolution of these pathogens. In this study, five temperate phages derived from cereulide-producing B. cereus strains were induced, with four of them undergoing genomic sequencing. Sequencing revealed that they all belong to the Siphoviridae family, but presented in different forms in their hosts. PfNC7401 and PfIS075 have typical icosahedral heads, probably existing alone as phagemids in the host with self-replicating capability in the lysogenic state. PfEFR-4, PfEFR-5, and PfATCC7953 have elongated heads, with the genomes of the former two identified as linear dsDNA, which could be integrated into the host genome during the lysogenic state. Genomic comparison of the four phages with others also derived from emetic B. cereus isolates showed similar genome structures and core genes, thus displaying host spectrum specificity. In addition, phylogenic analysis based on the complete genome and conserved tail fiber proteins of 36 Bacillus species-derived phages confirmed that the phages derived from emetic B. cereus strains were highly similar. Furthermore, one endolysin LysPfEFR-4 was cloned and showed lytic activity against all tested emetic B. cereus strains and cross-lytic activity against some other pathogenic bacteria, implying a potential to control bacterial contamination in the food supply.

  6. Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin.

    Science.gov (United States)

    Tempelaars, Marcel H; Rodrigues, Susana; Abee, Tjakko

    2011-04-01

    Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed.

  7. Comparative Analysis of Antimicrobial Activities of Valinomycin and Cereulide, the Bacillus cereus Emetic Toxin▿

    Science.gov (United States)

    Tempelaars, Marcel H.; Rodrigues, Susana; Abee, Tjakko

    2011-01-01

    Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC2(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed. PMID:21357430

  8. Effect of Bacillus thuringiensis on microbial functional groups in sorghum rhizosphere Efeito do Bacillus thuringiensis sobre grupos funcionais de microrganismos na rizosfera de sorgo

    Directory of Open Access Journals (Sweden)

    Carlos Brasil

    2006-05-01

    Full Text Available The objective of this work was to assess the effect of two strains of Bacillus thuringiensis var. kurstaki on sorghum rhizosphere microorganisms. The strains were HD1, that produces the bioinsecticidal protein, and 407, that is a mutant non-producer. The strains do not influence microbial population, but reduce plant growth and improve mycorrhizal colonization and free living fixing N2 community.O objetivo deste trabalho foi avaliar o efeito de duas cepas de Bacillus thuringiensis var. kurstaki sobre microrganismos na rizosfera do sorgo. As cepas foram a HD1, produtora do cristal bioinseticida, e a 407, uma mutante não-produtora. As duas cepas não influenciam a comunidade microbiana, mas reduzem o crescimento da planta. A colonização micorrízica e a população de fixadores de N2 de vida livre aumentaram.

  9. Insertional mutagenesis reveals genes involved in Bacillus cereus ATCC 14579 growth at low temperature.

    Science.gov (United States)

    Broussolle, Véronique; Pandiani, Franck; Haddad, Nabila; Michaud, Caroline; Carlin, Frédéric; Nguyen-the, Christophe; Brillard, Julien

    2010-05-01

    Transposon mutagenesis of Bacillus cereus ATCC 14579 yielded cold-sensitive mutants. Mutants of genes encoding enzymes of the central metabolism were affected by cold, but also by other stresses, such as pH or salt, whereas a mutant with transposon insertion in the promoter region of BC0259 gene, encoding a putative DEAD-box RNA helicase displaying homology with Escherichia coli CsdA and Bacillus subtilis CshA RNA helicases, was only cold-sensitive. Expression of the BC0259 gene at 10 degrees C is reduced in the mutant. Analysis of the 5' untranslated region revealed the transcriptional start and putative cold shock-responsive elements. The role of this RNA helicase in the cold-adaptive response of B. cereus is discussed.

  10. Prevalence, PFGE typing, and antibiotic resistance of Bacillus cereus group isolated from food in Morocco.

    Science.gov (United States)

    Merzougui, Souad; Lkhider, Mustapha; Grosset, Noel; Gautier, Michel; Cohen, Nozha

    2014-02-01

    This article reports the prevalence and antibiotic resistance of the Bacillus cereus group isolated from different foods (milk and dairy products, spices, and rice salad) in Morocco. In total, 402 different food samples collected from 2008 to 2010 were analyzed by microbiological methods to isolate B. cereus. The strains were subjected to a polymerase chain reaction test in order to verify whether they belonged to the B. cereus group. Sixty-four of all isolates (15.9%) were found to be positive. Among the sources, B. cereus strains from milk and dairy products constituted the largest proportion of isolates (33/64; 51.6%) followed by spices (22/64; 34.4%) and salad with rice (9/64; 14.1%). The genetic diversity of the strains of B. cereus group was examined by pulsed-field gel electrophoresis (PFGE) of chromosomal DNA digested with SmaI. The enzyme restriction profiles showed a high degree of polymorphism among the strains. The results showed that PFGE analysis could reveal the genetic differences among B. cereus strains. Investigation of antibiotic-resistance profiles showed that isolates were resistant to ampicillin (98.4%), tetracycline (90.6%), oxacillin (100%), cefepime (100%), and penicillin (100%), and were susceptible to chloramphenicol (67.2%), erythromycin (84.4%), and gentamicin (100%). The results of this study indicated that B. cereus could be a significant etiological agent of food poisoning in Morocco because of its high prevalence. Also, we demonstrated that the majority of strains came from milk and dairy products. However, additional research involving cytotoxicity tests is needed to more evaluate this sanitary risk.

  11. Detection of toxin genes and RAPD analysis of bacillus cereus isolates from different soil types

    Directory of Open Access Journals (Sweden)

    Savic Dejana

    2015-01-01

    Full Text Available The aim of this study was to detect genes for enterotoxins (hbla, entFM and bceT and for emetic toxin (cer, to determine antibiotic resistance, and to estimate intraspecies diversity in B. cereus isolates by RAPD analysis. B. cereus was identified in 12 out of 117 indigenous Bacillus spp. using the classical microbiological methods and PCR. All isolates were resistant to penicillin and ampicillin, two to tetracyclin and four to trimethoprim-sulphamethoxazole. Also, all isolates produced inducible penicillinases and β-lactamase. Toxin genes were detected with PCR. EntFM and cer genes were present in all isolates, hbla in all, but two, and bceT in none. RAPD analysis was performed with four different primers, two of them designed for this study. The intraspecies diversity revealed 10 different patterns at the 90% similarity level. Two separate clusters were formed regardless of a soil type or utilization. The detection of genes encoding toxins in all B. cereus isolates indicated these bacteria as potentially pathogenic and seriously for human health. Regardless of a soil type or utilization, the RAPD analysis showed high intraspecies heterogeneity in B. cereus isolates. To the best of our knowledge, this is the first study to analyse the presence of entero- and emetic toxin genes and genetic heterogeneity in B. cereus isolates from different soil types and different soil utilization in Serbia. [Projekat Ministarstva nauke Republike Srbije, br. TR37006

  12. Simultaneous removal of chlorothalonil and nitrate by Bacillus cereus strain NS1

    International Nuclear Information System (INIS)

    Zhang Yiqiang; Lu Jianhang; Wu Laosheng; Chang, Andrew; Frankenberger, William T.

    2007-01-01

    Elevated NO 3 - and chlorothalonil (CTN) have been found in production nursery recycling ponds. Bacillus cereus strain NS1 isolated from nursery recycling pond sediment was assessed for its ability to reduce NO 3 - and degrade CTN in a mineral medium. The results showed that the efficiency of NO 3 - reduction and CTN degradation by B. cereus strain NS1 were related to the nature of organic carbon sources added to the medium. In the medium amended with 100 mg/L yeast extract, 86% of NO 3 - (100 mg/L) and 99% of CTN (78 μg/L) were simultaneously removed by B. cereus strain NS1 during the first day of the experiment. It took 6 days for the removal of 82-93% of NO 3 - and 87-91% of CTN in the media containing glucose and acetate. B. cereus strain NS1 needed organic carbon as energy sources and electron donors to respire NO 3 - , and simultaneously degrade CTN. These results suggest that B. cereus strain NS1 may have great potential to remediate NO 3 - and CTN contaminated water in nursery recycling ponds

  13. Proteome data to explore the impact of pBClin15 on Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Omer, Hélène; Duport, Catherine

    2016-09-01

    This data article reports changes in the cellular and exoproteome of B. cereus cured from pBClin15.Time-course changes of proteins were assessed by high-throughput nanoLC-MS/MS. We report all the peptides and proteins identified and quantified in B. cereus with and without pBClin15. Proteins were classified into functional groups using the information available in the KEGG classification and we reported their abundance in term of normalized spectral abundance factor. The repertoire of experimentally confirmed proteins of B. cereus presented here is the largest ever reported, and provides new insights into the interplay between pBClin15 and its host B. cereus ATCC 14579. The data reported here is related to a published shotgun proteomics analysis regarding the role of pBClin15, "Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics" Madeira et al. [1]. All the associated mass spectrometry data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (http://www.ebi.ac.uk/pride/), with the dataset identifier PRIDE: PXD001568, PRIDE: PXD002788 and PRIDE: PXD002789.

  14. Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion.

    Science.gov (United States)

    Wijman, Janneke G E; de Leeuw, Patrick P L A; Moezelaar, Roy; Zwietering, Marcel H; Abee, Tjakko

    2007-03-01

    Biofilm formation by Bacillus cereus was assessed using 56 strains of B. cereus, including the two sequenced strains, ATCC 14579 and ATCC 10987. Biofilm production in microtiter plates was found to be strongly dependent on incubation time, temperature, and medium, as well as the strain used, with some strains showing biofilm formation within 24 h and subsequent dispersion within the next 24 h. A selection of strains was used for quantitative analysis of biofilm formation on stainless steel coupons. Thick biofilms of B. cereus developed at the air-liquid interface, while the amount of biofilm formed was much lower in submerged systems. This suggests that B. cereus biofilms may develop particularly in industrial storage and piping systems that are partly filled during operation or where residual liquid has remained after a production cycle. Moreover, depending on the strain and culture conditions, spores constituted up to 90% of the total biofilm counts. This indicates that B. cereus biofilms can act as a nidus for spore formation and subsequently can release their spores into food production environments.

  15. Proteome data to explore the impact of pBClin15 on Bacillus cereus ATCC 14579

    Directory of Open Access Journals (Sweden)

    Jean-Paul Madeira

    2016-09-01

    Full Text Available This data article reports changes in the cellular and exoproteome of B. cereus cured from pBClin15.Time-course changes of proteins were assessed by high-throughput nanoLC-MS/MS. We report all the peptides and proteins identified and quantified in B. cereus with and without pBClin15. Proteins were classified into functional groups using the information available in the KEGG classification and we reported their abundance in term of normalized spectral abundance factor. The repertoire of experimentally confirmed proteins of B. cereus presented here is the largest ever reported, and provides new insights into the interplay between pBClin15 and its host B. cereus ATCC 14579. The data reported here is related to a published shotgun proteomics analysis regarding the role of pBClin15, “Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics” Madeira et al. [1]. All the associated mass spectrometry data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository (http://www.ebi.ac.uk/pride/, with the dataset identifier PRIDE: PXD001568, PRIDE: PXD002788 and PRIDE: PXD002789.

  16. Infective endocarditis due to Bacillus cereus in a pregnant female: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Mahek Shah

    2015-01-01

    Full Text Available Incidence of infective endocarditis during pregnancy is around 0.006% with high maternal and fetal mortality. Bacillus cereus is an extremely rare cause for endocarditis in intravenous drug abusers (IVDA or those with valvular disease or devices such as pacemakers. We report a case of B. cereus endocarditis, which, to the best of our knowledge, has never been reported in pregnancy. A 30-year-old, 25-week pregnant female presented with right shoulder pain, swelling and erythema on the lateral aspect of deltoid muscle from large abscess over her deltoid muscle. She was found to have a vegetation on the native tricuspid valve. Cultures from abscess fluid and blood cultures grew B. cereus, she was appropriately treated with antimicrobials and had favorable outcomes. There are <20 cases of B. cereus endocarditis reported but none during pregnancy. When cultures grow unusual organisms the case must be thoroughly investigated. This case illustrates a rare situation (endocarditis in pregnancy with an unusual outcome (B. cereus on an uncommon valve (tricuspid valve.

  17. Advances in developing Bacillus thuringiensis-based insecticde formulations Avances en el desarrollo de formulaciones insecticidas a base de Bacillus thuringiensis

    OpenAIRE

    Rosas-García Ninfa María

    2008-01-01

    Developing Bacillus thuringiensis-based formulations is an old technology which has been revived during recent decades. The spore-crystal complex (being the main ingredient in these preparations) has been the main objective of this research, involving the search for new or improved strains. The type of materials used included a wide variety of completely biodegradable ingredients which could have been leaves, stems or fruit which when dried and ground could serve as feeding stimulants, as wel...

  18. Isolation, Identification, Prevalence, and Genetic Diversity of Bacillus cereus Group Bacteria From Different Foodstuffs in Tunisia.

    Science.gov (United States)

    Gdoura-Ben Amor, Maroua; Siala, Mariam; Zayani, Mariem; Grosset, Noël; Smaoui, Salma; Messadi-Akrout, Feriele; Baron, Florence; Jan, Sophie; Gautier, Michel; Gdoura, Radhouane

    2018-01-01

    Bacillus cereus group is widespread in nature and foods. Several members of this group are recognized as causing food spoilage and/or health issues. This study was designed to determine the prevalence and genetic diversity of the B. cereus group strains isolated in Tunisia from different foods (cereals, spices, cooked food, fresh-cut vegetables, raw and cooked poultry meats, seafood, canned, pastry, and dairy products). In total, 687 different samples were collected and searched for the presence of the B. cereus group after selective plating on MYP agar and enumeration of each sample. The typical pink-orange uniform colonies surrounded by a zone of precipitate were assumed to belong to the B. cereus group. One typical colony from each sample was subcultured and preserved as cryoculture. Overall, 191 (27.8%) food samples were found positive, giving rise to a collection of 191 B. cereus -like isolates. The concentration of B. cereus -like bacteria were below 10 3 cfu/g or ml in 77.5% of the tested samples. Higher counts (>10 4 cfu/g or ml) were found in 6.8% of samples including fresh-cut vegetables, cooked foods, cereals, and pastry products. To verify whether B. cereus -like isolates belonged to the B. cereus group, a PCR test targeting the sspE gene sequence specific of the group was carried out. Therefore, 174 isolates were found to be positive. Food samples were contaminated as follows: cereals (67.6%), pastry products (46.2%), cooked food (40.8%), cooked poultry meat (32.7%), seafood products (32.3%), spices (28.8%), canned products (16.7%), raw poultry meat (9.4%), fresh-cut vegetables (5.0%), and dairy products (4.8%). The 174 B. cereus isolates were characterized by partial sequencing of the panC gene, using a Sym'Previous software tool to assign them to different phylogenetic groups. Strains were distributed as follows: 61.3, 29.5, 7.5, and 1.7% in the group III, IV, II, and V, respectively. The genetic diversity was further assessed by ERIC-PCR and PFGE

  19. Isolation, Identification, Prevalence, and Genetic Diversity of Bacillus cereus Group Bacteria From Different Foodstuffs in Tunisia

    Directory of Open Access Journals (Sweden)

    Maroua Gdoura-Ben Amor

    2018-03-01

    Full Text Available Bacillus cereus group is widespread in nature and foods. Several members of this group are recognized as causing food spoilage and/or health issues. This study was designed to determine the prevalence and genetic diversity of the B. cereus group strains isolated in Tunisia from different foods (cereals, spices, cooked food, fresh-cut vegetables, raw and cooked poultry meats, seafood, canned, pastry, and dairy products. In total, 687 different samples were collected and searched for the presence of the B. cereus group after selective plating on MYP agar and enumeration of each sample. The typical pink-orange uniform colonies surrounded by a zone of precipitate were assumed to belong to the B. cereus group. One typical colony from each sample was subcultured and preserved as cryoculture. Overall, 191 (27.8% food samples were found positive, giving rise to a collection of 191 B. cereus-like isolates. The concentration of B. cereus-like bacteria were below 103 cfu/g or ml in 77.5% of the tested samples. Higher counts (>104 cfu/g or ml were found in 6.8% of samples including fresh-cut vegetables, cooked foods, cereals, and pastry products. To verify whether B. cereus-like isolates belonged to the B. cereus group, a PCR test targeting the sspE gene sequence specific of the group was carried out. Therefore, 174 isolates were found to be positive. Food samples were contaminated as follows: cereals (67.6%, pastry products (46.2%, cooked food (40.8%, cooked poultry meat (32.7%, seafood products (32.3%, spices (28.8%, canned products (16.7%, raw poultry meat (9.4%, fresh-cut vegetables (5.0%, and dairy products (4.8%. The 174 B. cereus isolates were characterized by partial sequencing of the panC gene, using a Sym'Previous software tool to assign them to different phylogenetic groups. Strains were distributed as follows: 61.3, 29.5, 7.5, and 1.7% in the group III, IV, II, and V, respectively. The genetic diversity was further assessed by ERIC-PCR and PFGE

  20. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera

    Science.gov (United States)

    Broderick, Nichole A; Robinson, Courtney J; McMahon, Matthew D; Holt, Jonathan; Handelsman, Jo; Raffa, Kenneth F

    2009-01-01

    Background Gut microbiota contribute to the health of their hosts, and alterations in the composition of this microbiota can lead to disease. Previously, we demonstrated that indigenous gut bacteria were required for the insecticidal toxin of Bacillus thuringiensis to kill the gypsy moth, Lymantria dispar. B. thuringiensis and its associated insecticidal toxins are commonly used for the control of lepidopteran pests. A variety of factors associated with the insect host, B. thuringiensis strain, and environment affect the wide range of susceptibilities among Lepidoptera, but the interaction of gut bacteria with these factors is not understood. To assess the contribution of gut bacteria to B. thuringiensis susceptibility across a range of Lepidoptera we examined larval mortality of six species in the presence and absence of their indigenous gut bacteria. We then assessed the effect of feeding an enteric bacterium isolated from L. dispar on larval mortality following ingestion of B. thuringiensis toxin. Results Oral administration of antibiotics reduced larval mortality due to B. thuringiensis in five of six species tested. These included Vanessa cardui (L.), Manduca sexta (L.), Pieris rapae (L.) and Heliothis virescens (F.) treated with a formulation composed of B. thuringiensis cells and toxins (DiPel), and Lymantria dispar (L.) treated with a cell-free formulation of B. thuringiensis toxin (MVPII). Antibiotics eliminated populations of gut bacteria below detectable levels in each of the insects, with the exception of H. virescens, which did not have detectable gut bacteria prior to treatment. Oral administration of the Gram-negative Enterobacter sp. NAB3, an indigenous gut resident of L. dispar, restored larval mortality in all four of the species in which antibiotics both reduced susceptibility to B. thuringiensis and eliminated gut bacteria, but not in H. virescens. In contrast, ingestion of B. thuringiensis toxin (MVPII) following antibiotic treatment

  1. Bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting with Bacillus cereus HDYM-02

    OpenAIRE

    Dan Zhao; Pengfei Liu; Chao Pan; Renpeng Du; Wenxiang Ping; Jingping Ge

    2016-01-01

    High-throughput sequencing and GC-MS (gas chromatography-mass spectrometry) were jointly used to reveal the bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting. The inoculation of Bacillus cereus HDYM-02 decreased bacterial richness and diversity. This inoculum led to the replacement of Enterobacteriaceae by Bacillaceae. The level of aerobic Pseudomonadaceae (mainly Azotobacter) and anaerobic Clostridiaceae_1 gradually increased and decreased, respectively...

  2. Comparative Transcriptomic and Phenotypic Analysis of the Responses of Bacillus cereus to Various Disinfectant Treatments▿ †

    OpenAIRE

    Ceragioli, Mara; Mols, Maarten; Moezelaar, Roy; Ghelardi, Emilia; Senesi, Sonia; Abee, Tjakko

    2010-01-01

    Antimicrobial chemicals are widely applied to clean and disinfect food-contacting surfaces. However, the cellular response of bacteria to various disinfectants is unclear. In this study, the physiological and genome-wide transcriptional responses of Bacillus cereus ATCC 14579 exposed to four different disinfectants (benzalkonium chloride, sodium hypochlorite, hydrogen peroxide, and peracetic acid) were analyzed. For each disinfectant, concentrations leading to the attenuation of growth, growt...

  3. Comparative transcriptomic and phenotypic analysis of the responses of Bacillus cereus to various disinfectant treatments

    OpenAIRE

    Ceragioli, M.; Mols, J.M.; Moezelaar, R.; Ghelardi, E.; Senesi, S.; Abee, T.

    2010-01-01

    Antimicrobial chemicals are widely applied to clean and disinfect food-contacting surfaces. However, the cellular response of bacteria to various disinfectants is unclear. In this study, the physiological and genome-wide transcriptional responses of Bacillus cereus ATCC 14579 exposed to four different disinfectants (benzalkonium chloride, sodium hypochlorite, hydrogen peroxide, and peracetic acid) were analyzed. For each disinfectant, concentrations leading to the attenuation of growth, growt...

  4. Isolation of protease producing novel Bacillus cereus and detection ...

    African Journals Online (AJOL)

    user

    2011-02-14

    1991). Industrial enzymes-developments in production and application, Biotechnol. Adv. 9: 643-658. Ferrero MA, Castro GR, Abate CM, Baigori MD, Sineriz F (1996). Thermostable alkaline proteases of Bacillus licheniformis MIR ...

  5. Isolation and partial characterization of a mutant of Bacillus thuringiensis producing melanin Isolamento e caracterização parcial de um mutante de Bacillus thuringiensis produtor de melanina

    Directory of Open Access Journals (Sweden)

    Gislayne T. Vilas-Bôas

    2005-09-01

    Full Text Available A mutant (407-P of Bacillus thuringiensis subsp. thuringiensis strain 407 producing a melanin was obtained after treatment with the mutagenic agent ethyl-methane-sulfonate. Several microbiological and biochemical properties of the two strains were analyzed and the results were similar. The mutant 407-P was also incorporated into non-sterilized soil samples, recovered, easily identified, and quantified, what enables its use in ecology of B. thuringiensis.Um mutante (407-P da linhagem Bacillus thuringiensis subsp. thuringiensis 407 produtor de melanina foi obtido após tratamento com o agente mutagênico etil-metano-sulfonato. Diversas propriedades microbiológicas e bioquímicas das duas linhagens foram analisadas e os resultados foram similares. O mutante 407-P foi incorporado em amostras de solo não esterilizado, recuperado, facilmente identificado e quantificado, possibilitando seu uso em estudos de ecologia de B. thuringiensis.

  6. Continuous Cultivation for Apparent Optimization of Defined Media for Cellulomonas sp. and Bacillus cereus

    Science.gov (United States)

    Summers, R. J.; Boudreaux, D. P.; Srinivasan, V. R.

    1979-01-01

    Steady-state continuous culture was used to optimize lean chemically defined media for a Cellulomonas sp. and Bacillus cereus strain T. Both organisms were extremely sensitive to variations in trace-metal concentrations. However, medium optimization by this technique proved rapid, and multifactor screening was easily conducted by using a minimum of instrumentation. The optimized media supported critical dilution rates of 0.571 and 0.467 h−1 for Cellulomonas and Bacillus, respectively. These values approximated maximum growth rate values observed in batch culture. PMID:16345417

  7. Enterotoxigenic gene profiles of Bacillus cereus and Bacillus megaterium isolates recovered from honey Búsqueda de factores de virulencia en cepas de Bacillus cereus y de Bacillus megaterium aisladas de miel

    Directory of Open Access Journals (Sweden)

    A. C. López

    2010-09-01

    Full Text Available One hundred and thirty two Bacillus cereus and 52 Bacillus megaterium isolates from honeys were evaluated for the presence of genes encoding enterotoxin HBL, enterotoxin-T, cytotoxin K and the NHE complex, respectively. The relationship between hemolytic and coagulase activity and its correlation with the presence of the four mentioned enterotoxins was determined by principal component analysis (PCA. PCA in B. cereus revealed a positive correlation among free coagulase, hemolysis and the presence of genes hblA, hblB, hblC, hblD (HBL complex and bceT (enterotoxin-T, but no correlation with the clumping factor (bound coagulase and the presence of sequences of the NHE complex. On the other hand, PCA in B. megaterium showed a high positive correlation between coagulase (bound and free and the haemolytic activity but no correlation in relation to the presence of genes of the HBL complex, cytotoxin K, enterotoxin T and the NHE complex. To our knowledge, this is the first report of the detection of cytotoxin K and of the NHE complex genes in B. megaterium. The relationship between the coagulase activity and the presence of virulence factors has not been described before in the genus Bacillus, being this work the first report of this correlation. Interestingly, the presence of the cytK gene was almost independent of the presence of the rest of virulence factors herein analyzed both in B. cereus and B. megaterium populations. Our results suggest that honey could be a possible vehicle for foodborne illness due to the presence of toxigenic B. cereus and B. megaterium strains containing different virulence factors.Se evaluaron 132 aislamientos de Bacillus cereus y 52 de Bacillus megaterium provenientes de mieles de distintos orígenes geográficos para investigar la presencia de secuencias de ADN relacionadas con genes de virulencia y su posible correlación con la actividad hemolítica y coagulasa. Con respecto a los genes de virulencia, se analizaron por

  8. ENUMERATION OF Bacillus cereus IN “FUBÁ” OF CORN (Zea mays. L. ENUMERAÇÃO DE Bacillus cereus EM FUBÁ DE MILHO (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Albenones José de Mesquita

    2007-09-01

    Full Text Available

    A hundred (100 samples of “fubá” were examined, in relation to the incidence of Bacillus cereus, obtained by different technological processes (common “fubá” and previously cooked “fubá” and sold in the retail market in Goiânia - GO. The results of the examination showed that 23% of the samples was contaminated, of this percentual, 39.1% of the contaminations occurred in samples of previously cooked “fubá” and 60.9% in samples of common “fubá”. This in relation of the two products clearly showed the more accurate technological process that the previously cooked “fubá” was brought under. It was also observed that the totality of the analyzed samples showed enumerations below the limit established by the Brazilian microbiologic standard that establishes a limit of 10³ cells of Bacillus cereus for a gram of the food.

    Foram examinadas 100 amostras de fubá de milho, em relação à incidência de Bacillus cereus, obtidas através de processamentos tecnológicos diferentes (fubá comum e fubá pré-cozido e comercializadas no mercado varejista de Goiânia - GO. Os resultados revelaram que 23% das amostras estavam contaminadas, deste percentual, 39,1% das contaminações ocorreram em amostras de fubá pré-cozido e 60,9%, em amostras de fubá comum. Esta considerável diferença, observada em termos percentuais em relação aos dois produtos evidenciou o processamento tecnológico mais rigoroso a que foi submetido o fubá pré-cozido. Observou-se, também, que a totalidade das amostras analisadas apresentou enumerações abaixo do limite estabelecido pelo padrão microbiológico brasileiro que determina um limite de 10³ células de B. cereus por gama do alimento.

  9. A method for in Vivo radiolabeling Bacillus thuringiensis native δ-endotoxin crystals

    Science.gov (United States)

    C. Noah Koller; Leah S. Bauer; Robert M. Hollingworth

    1995-01-01

    The entomocidal CryIIIA δ-endotoxin protein of Bacillus thuringiensis var. tenebrionis is distinctive in chemistry and host range. In contrast to other δ-endotoxins, the CryIIIA parasporal crystals are toxic within the acidic midgut environment of several coleopteran species, particularly those in the family...

  10. Effect of chemical additives on Bacillus thuringiensis (Bacillales: Bacillaceae) against Plutella xylostella (Lepidoptera: Pyralidae)

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Qiu, S.; Huang, T.; Huang, Z.; Xu, L.; Wu, C.; Gelbič, Ivan; Guan, X.

    2013-01-01

    Roč. 106, č. 3 (2013), s. 1075-1080 ISSN 0022-0493 Institutional research plan: CEZ:AV0Z50070508 Keywords : additives * Bacillus thuringiensis * biocontrol Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.605, year: 2013 http://www.bioone.org/doi/pdf/10.1603/EC12288

  11. Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis

    Science.gov (United States)

    Leah S. Bauer

    1995-01-01

    Insecticidal crystal proteins (also known as d-endotoxins) synthesized by the bacterium Bacillus thuringiensis Berliner (Bt) are the active ingredient of various environmentally friendly insecticides that are 1) highly compatible with natural enemies and other nontarget organisms due to narrow host specificity, 2) harmless to vertebrates, 3) biodegradable in the...

  12. A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Zhang, X.; Zhang, Y.; Wu, S.; Gelbič, Ivan; Xu, L.; Guan, X.

    2016-01-01

    Roč. 6, DEC 22 (2016), č. článku 39425. ISSN 2045-2322 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * pest control * UV protection Subject RIV: EE - Microbiology, Virology Impact factor: 4.259, year: 2016 http://www.nature.com/articles/srep39425

  13. Potato expressing beetle-specific Bacillus thuringiensis Cry3Aa toxin reduces performance of a moth

    Czech Academy of Sciences Publication Activity Database

    Hussein, H. M.; Habuštová, Oxana; Turanli, Ferit; Sehnal, František

    2006-01-01

    Roč. 32, č. 1 (2006), s. 1-13 ISSN 0098-0331 R&D Projects: GA ČR(CZ) GA522/02/1507 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis * Spodoptera littoralis * Leptinotarsa decemlineata Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.896, year: 2006

  14. Characterization of Baculovirus Insecticides Expressing Tailored Bacillus thuringiensis CryIA(b) Crystal Proteins

    NARCIS (Netherlands)

    Martens, John W M; Knoester, Marga; Weijts, Franci; Groffen, Sander J A; Hu, Zhihong; Bosch, Dirk; Vlak, Just M.

    1995-01-01

    Full-length, truncated, and mature forms of the CryIA(b) insecticidal crystal protein gene of Bacillus thuringiensis were engineered into the p10 locus of Autographa californica nuclear polyhedrosis virus (AcNPV). A signal sequence of Heliothis virescens juvenile hormone esterase was introduced at

  15. Laboratory Assessment of the Effects of Bacillus thuringiensis on Native Lepidoptera

    Science.gov (United States)

    John W. Peacock; Dale F. Schweitzer; Jane L. Carter; Normand R. Dubois

    1998-01-01

    The effect of 2 formulations of Bacillus thuringiensis subsp. kurstaki (Foray 48B and Dipel 8AF) was evaluated on 42 species of native Lepidoptera in laboratory bioassays using instars that are present in the field at the time of gypsy moth suppression applications. Mortality was significant for 27 of the 42 species evaluated...

  16. Laboratory and field studies on the effects of Bacillus thuringiensis on non-target lepidoptera

    Science.gov (United States)

    John Peacock; Stephen Talley; Taylor Williams; Richard. Reardon

    1992-01-01

    Bacillus thuringiensis (B.t.) is one of the insecticides considered effective for suppression of gypsy moth infestations, and it is considered to one of the most selective in terms of its effects on other insects. Although B.t. is touted to be "environmentally safe", there is a paucity of field data to support this claim, particularly as...

  17. Use of spent mushroom substrate for production of Bacillus thuringiensis by solid-state fermentation

    Czech Academy of Sciences Publication Activity Database

    Wu, S.; Lan, Y.; Huang, D.; Peng, Y.; Huang, Z.; Xu, L.; Gelbič, Ivan; Carballar-Lejarazu, R.; Guan, X.; Zhang, L.; Zou, S.

    2014-01-01

    Roč. 107, č. 1 (2014), s. 137-143 ISSN 0022-0493 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * spent mushroom substrate * solid-state fermentation Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.506, year: 2014 http://www.bioone.org/doi/pdf/10.1603/EC13276

  18. Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis

    Science.gov (United States)

    Transgenic rice to control stem borer damage is under development in China. To assess the potential of Bacillus thuringiensis (Bt) transgenes in stem borer control, the toxicity of five Bt protoxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1Ca) against two rice stem borers, Sesamia inferens (pink stem...

  19. Biological activity of Bacillus thuringiensis (Bacillales: Bacillaceae) chitinase against Caenorhabditis elegans (Rhabditida: Rhabditidae)

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Yu, J.; Xie, Y.; Lin, H.; Huang, Z.; Xu, L.; Gelbič, Ivan; Guan, X.

    2014-01-01

    Roč. 107, č. 2 (2014), s. 551-558 ISSN 0022-0493 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * Caenorhabditis elegans * chitinase Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.506, year: 2014 http://www.bioone.org/doi/ pdf /10.1603/EC13201

  20. The occurrence of Photorhabdus-like toxin complexes in Bacillus thuringiensis

    Science.gov (United States)

    Recently, genomic sequencing of a Bacillus thuringiensis (Bt) isolate from our collection revealed the presence of an apparent operon encoding an insecticidal toxin complex (Tca) similar to that first described from the entomopathogen Photorhabdus luminescens. To determine whether these genes are w...

  1. Characterization of cry1Cb3 and cry1Fb7 from Bacillus thuringiensis subsp. galleriae

    Czech Academy of Sciences Publication Activity Database

    Huang, T.; Xiao, Y.; Pan, J.; Zhang, L.; Gelbič, Ivan; Guan, X.

    2015-01-01

    Roč. 10, č. 1 (2015), s. 521-528 ISSN 2391-5412 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis subsp. galleriae * PCR-RFLP * cloning Subject RIV: EB - Genetics ; Molecular Biology http://www.degruyter.com/view/j/biol.2015.10.issue-1/biol-2015-0054/biol-2015-0054.xml

  2. Solubilization, Activation, and Insecticidal Activity of Bacillus thuringiensis Serovar thompsoni HD542 Crystal Proteins

    NARCIS (Netherlands)

    Naimov, S.; Boncheva, R.; Karlova, R.B.; Dukiandjiev, S.; Minkov, I.; Maagd, de R.A.

    2008-01-01

    Cry15Aa protein, produced by Bacillus thuringiensis serovar thompsoni HD542 in a crystal together with a 40 kDa accompanying protein is one of a small group of non-typical, less well-studied members of the Cry family of insecticidal proteins, and may provide an alternative for the more commonly used

  3. Investigation of Cytocidal Activity of Bacillus Thuringiensis Parasporal Toxin on CCRF-CEM Cell Line

    Directory of Open Access Journals (Sweden)

    Elham Moazamian

    2013-03-01

    Full Text Available Background & Objective: Parasporin is a parasporal protein of Bacillus thuringiensis and exhibits special cytocidal activity against human cancer cells. Similar to other insecticidal Bacillus thuringiensis crystal toxins, parasporin shows target specificity and damages the cellular membrane. In this study, different strains of Bacillus thuringiensis isolated from various regions of Iran and their cytocidal activity against CCRF-CEM cell line and human erythrocyte were investigated.   Materials & Methods: Fifty soil samples were collected from different Iranian provinces, and characterization was performed based on protein crystal morphology by phase-contrast microscope and variations of Cry protein toxin using SDS-PAGE. After parasporin was processed with proteinase K, the active form was produced and protein activity on the cell line was evaluated. Results: Parasporal inclusion proteins showed different cytotoxicity against acute lymphoblastic leukemia cells (ALL, but not against normal lymphocyte. Isolated parasporin demonstrated no hemolytic activity against human erythrocyte. It appears that these proteins have the ability to differentiate between normal lymphocytes and leukemia cells and have specific receptors on specific cancer cell lines. Conclusion: Our results provide evidence that the parasporin-producing organism is a common member in Bacillus thuringiensis populations occurring in the natural environments of Iran.

  4. IMPACT OF BT ( BACILLUS THURINGIENSIS ) CROPS ON BAT ACTIVITY IN SOUTH TEXAS AGROECOSYSTEMS

    Science.gov (United States)

    The widespread adoption of transgenic insecticidal crops raises concerns that nontarget species may be harmed and food webs disrupted. The goal of this research is to determine how transgenic Bt (Bacillus thuringiensis) crops impact the activity of Brazilian freetailed bats (Tada...

  5. Regulation by gut bacertia of immune response, Bacillus thuringiensis susceptibility and hemolin expression in Plodia interpunctella

    Science.gov (United States)

    Plodia interpunctella (Hübner) is an important stored grain insect pest worldwide, and the first lepidopteran with reported resistance to Bacillus thuringiensis (Bt) toxins. Since gut bacteria may affect Bt insecticidal activity, we determined whether P. interpunctella lacking gut enterobacteria had...

  6. Recent field experiences with Bacillus thuringiensis in Canada and research needs

    Science.gov (United States)

    Oswald N. Morris

    1985-01-01

    The CANUSA working group on the use of B.t. against the spruce budworm has prepared a document entitled "Guidelines for the operational use of Bacillus thuringiensis (B.t.) against the spruce budworm" following six years of extensive cooperative field trials in Canada and the U.S.A. (Morris et al 1984). The document summarized below (Table...

  7. Bacillus thuringiensis toxins trigger receptor shedding from gypsy moth midgut cells

    Science.gov (United States)

    Algimantas P. Valaitis

    2007-01-01

    The mechanism of action of the Cry1 insecticidal proteins produced by Bacillus thuringiensis (Bt) begins with the processing of these proteins in the larval gut. After proteolytic activation, the Bt toxins bind to specific midgut receptors and insert into the membrane of the gut epithelial cells, causing insect death.

  8. Response of the Cottonwood Leaf Beetle (Coleoptera: Chrysomelidae) to Bacillus thuringiensis var. san diego

    Science.gov (United States)

    Leah S. Bauer

    1990-01-01

    A standardized laboratory bioassay was used to quantify the lethal and sub-lethal responses of larval and adult cottonwood leaf beetles, Chrysomela scripta F., to Bacillus thuringiensis var. san diego, formulated as M-One standard powder (Mycogen Corporation, San Diego). The median lethal concentration (LC

  9. Effects of Bacillus thuringiensis CRY1A(c) δ-endotoxin on growth ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... The recent introduction of Bt maize and Bt cotton transgenic crops into Africa has raised concerns on their potential short and long-term ecological effects on the environment. The effects of Bacillus thuringiensis (Bt) Cry1A(c) δ-endotoxin on the growth, nodulation and productivity of two leguminous.

  10. Effects of ensiling of Bacillus thuringiensis (Bt) maize (MON810) on ...

    African Journals Online (AJOL)

    The study investigated the degradation of the Bt protein (Cry1Ab) in Bt maize during ensiling and chemical composition of the silage. Two laboratory studies were conducted at the University of Fort Hare. One Bacillus thuringiensis (Bt) maize cultivar (DKC80-12B) and its isoline (DKC80-10) in the 2008/2009 study and two Bt ...

  11. Effects of Bacillus thuringiensis CRY1A(c) d-endotoxin on growth ...

    African Journals Online (AJOL)

    The recent introduction of Bt maize and Bt cotton transgenic crops into Africa has raised concerns on their potential short and long-term ecological effects on the environment. The effects of Bacillus thuringiensis (Bt) Cry1A(c) d-endotoxin on the growth, nodulation and productivity of two leguminous plants grown in clay soil ...

  12. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Goltsman, Eugene [U.S. Department of Energy, Joint Genome Institute; Auger, Sandrine [Genetique Microbienne; Galleron, Nathalie [Genetique Microbienne; Segurens, Beatrice [Center National Sequencage, F-91057 Evry, France; Simon, Jorg [Johann Wolfgang Goethe University, Frankfurt am Main, Germany; Dossat, Carole [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Land, Miriam L [ORNL; Broussolle, Veronique [Securite et Qualite des Produits d' Origine Vegetale; Brillard, Julien [Securite et Qualite des Produits d' Origine Vegetale; Guinebretiere, Marie-Helene [Securite et Qualite des Produits d' Origine Vegetale; Sanchis, Vincent [Genetique Microbienne; Nguen-the, Christophe [Securite et Qualite des Produits d' Origine Vegetale; Lereclus, Didier [Genetique Microbienne; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Wincker, Patrick [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Weissenbach, Jean [Genoscope/Centre National de la Recherche Scientifique-Unite Mixte de Recherche; Ehrlich, Dusko [Genetique Microbienne; Sorokin, Alexei [Genetique Microbienne

    2008-01-01

    The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530 kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic

  13. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  14. Small Bacillus cereus ATCC 14579 subpopulations are responsible for cytotoxin K production.

    Science.gov (United States)

    Ceuppens, S; Timmery, S; Mahillon, J; Uyttendaele, M; Boon, N

    2013-03-01

    Bacillus cereus diarrhoeal food poisoning can be caused by several potential enterotoxins, including the nonhaemolytic enterotoxin (Nhe), haemolysin BL (Hbl) and cytotoxin K (CytK). To get more insights into the CytK expression, a fluorescent reporter strain was created for CytK expression. Bacillus cereus ATCC 14579 was used as the reporter strain that contained the cyan fluorescent protein (CFPopt) gene under control of the cytK promoter. Transcription of enterotoxin genes nheB, hblC and cytK was assessed by messenger RNA analysis (RT-qPCR), and their full expression was assessed by immunological protein detection in the case of Nhe and Hbl and fluorescence microscopy in the case of CytK, using the reporter gene CFPopt. Transcription of enterotoxins Nhe, Hbl and CytK showed similar kinetics with a peak during the late exponential growth phase. Toxin expression of the reporter strain was unaltered in comparison with the wild type. However, fluorescence, and thus CytK expression, only occurred in a small (1-2%) portion of the cell population. These results suggest that a small subpopulation of B. cereus ATCC 14579 is responsible for CytK production in a homogeneous monoculture. Future research is warranted to determine whether genetically homogeneous B. cereus populations utilize differential gene expression for other toxins and virulence genes than CytK and whether this also applies to other B. cereus strains. If so, differential expression of toxin genes could be used by these bacteria to increase the fitness and survival chances of their population by diversification and specialization into different subpopulations. © 2012 Ghent University © 2012 The Society for Applied Microbiology.

  15. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermentedfood condiments

    DEFF Research Database (Denmark)

    Ouoba, Labia Irene I.; Thorsen, Line; Varnam, Alan H.

    2008-01-01

    -hemolytic enterotoxin (NheA, NheB, NheC) and EM1 specific of emetic toxin producerswas also investigated using PCR with single pair and multiplex primers. Of 41 isolates, 29 Bacillus belonging to the species of B. cereus, Bacillus subtilis, Bacillus licheniformis and Bacillus pumilus showed haemolysis on blood agar......The ability of various species of Bacillus from fermented seeds of Parkia biglobosa known as African locust bean(Soumbala) and fermented seeds of Hibiscus sabdariffa (Bikalga) was investigated. The study included screening of the isolates by haemolysis on blood agar, detection of toxins in broth...... and during the fermentation of African locust bean using the Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCETRPLA) and the Bacillus Diarrhoeal Enterotoxin Visual Immunoassay (BDEVIA). Detection of genes encoding´cytotoxin K (CytK), haemolysin BL (Hbl A, Hbl C, Hbl D), non...

  16. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms

    Directory of Open Access Journals (Sweden)

    Joaquín eCaro-Astorga

    2015-01-01

    Full Text Available Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed i the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and ii the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog.

  17. Unusual group II introns in bacteria of the Bacillus cereus group.

    Science.gov (United States)

    Tourasse, Nicolas J; Stabell, Fredrik B; Reiter, Lillian; Kolstø, Anne-Brit

    2005-08-01

    A combination of sequence and structure analysis and reverse transcriptase PCR experiments was used to characterize the group II introns in the complete genomes of two strains of the pathogen Bacillus cereus. While B. cereus ATCC 14579 harbors a single intron element in the chromosome, B. cereus ATCC 10987 contains three introns in the chromosome and four in its 208-kb pBc10987 plasmid. The most striking finding is the presence in B. cereus ATCC 10987 of an intron [B.c.I2(a)] located on the reverse strand of a gene encoding a putative cell surface protein which appears to be correlated to strains of clinical origin. Because of the opposite orientation of B.c.I2(a), the gene is disrupted. Even more striking is that B.c.I2(a) splices out of an RNA transcript corresponding to the opposite DNA strand. All other intragenic introns studied here are inserted in the same orientation as their host genes and splice out of the mRNA in vivo, setting the flanking exons in frame. Noticeably, B.c.I3 in B. cereus ATCC 10987 represents the first example of a group II intron entirely included within a conserved replication gene, namely, the alpha subunit of DNA polymerase III. Another striking finding is that the observed 3' splice site of B.c.I4 occurs 56 bp after the predicted end of the intron. This apparently unusual splicing mechanism may be related to structural irregularities in the 3' terminus. Finally, we also show that the intergenic introns of B. cereus ATCC 10987 are transcribed with their upstream genes and do splice in vivo.

  18. Isolation of protease producing novel Bacillus cereus and detection ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... The highest protease activity was determined at 30°C temperature and 6.4 pH conditions and after the 18th hour, it decreased evidently. Key words: Protease, production, optimization, Bacillus sp. INTRODUCTION. Enzymes have been produced in large industrial scale for several decades (Falch, 1991).

  19. New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae.

    Science.gov (United States)

    Elleuch, Jihen; Zghal, Raida Zribi; Jemaà, Mohamed; Azzouz, Hichem; Tounsi, Slim; Jaoua, Samir

    2014-04-01

    Cyt1Aa from Bacillus thuringiensis israelensis is known by its synergistical activity with B. thuringiensis and Bacillus sphaericus toxins. It is able to improve dipteran specific toxins activity and can prevent or overcome larval resistance to those proteins. The objective of the current study was to investigate the possible improvement of larvicidal activity of B. thuringiensis kurstaki expressing heterogeneous proteins Cyt1A and P20. cyt1A98 and p20 genes encoding the cytolytic protein (Cyt1A98) and the accessory protein (P20), respectively, were introduced individually and in combination into B. thuringiensis kurstaki strain BNS3. Immunoblot analysis evidenced the expression of these genes in the recombinant strains and hinted that P20 acts as molecular chaperone protecting Cyt1A98 from proteolytic attack in BNS3. The toxicities of recombinant strains were studied and revealed that BNS3pHTp20 exhibited higher activity than that of the negative control (BNS3pHTBlue) toward Ephestia kuehniella, but not toward Spodoptera littoralis. When expressed in combination with P20, Cyt1A98 enhanced BNS3 activity against E. kuehniella and S. littoralis. Thus, Cyt1Aa protein could enhance lepidopteran Cry insecticidal activity and would prevent larval resistance to the most commercialized B. thuringiensis kurstaki toxins. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Genomic and transcriptomic insights into the efficient entomopathogenicity of Bacillus thuringiensis.

    Science.gov (United States)

    Zhu, Lei; Peng, Donghai; Wang, Yueying; Ye, Weixing; Zheng, Jinshui; Zhao, Changming; Han, Dongmei; Geng, Ce; Ruan, Lifang; He, Jin; Yu, Ziniu; Sun, Ming

    2015-09-28

    Bacillus thuringiensis has been globally used as a microbial pesticide for over 70 years. However, information regarding its various adaptions and virulence factors and their roles in the entomopathogenic process remains limited. In this work, we present the complete genomes of two industrially patented Bacillus thuringiensis strains (HD-1 and YBT-1520). A comparative genomic analysis showed a larger and more complicated genome constitution that included novel insecticidal toxicity-related genes (ITRGs). All of the putative ITRGs were summarized according to the steps of infection. A comparative genomic analysis showed that highly toxic strains contained significantly more ITRGs, thereby providing additional strategies for infection, immune evasion, and cadaver utilization. Furthermore, a comparative transcriptomic analysis suggested that a high expression of these ITRGs was a key factor in efficient entomopathogenicity. We identified an active extra urease synthesis system in the highly toxic strains that may aid B. thuringiensis survival in insects (similar to previous results with well-known pathogens). Taken together, these results explain the efficient entomopathogenicity of B. thuringiensis. It provides novel insights into the strategies used by B. thuringiensis to resist and overcome host immune defenses and helps identify novel toxicity factors.

  1. Genome Sequencing of Bacillus subtilis SC-8, Antagonistic to the Bacillus cereus Group, Isolated from Traditional Korean Fermented-Soybean Food

    OpenAIRE

    Yeo, In-Cheol; Lee, Nam Keun; Hahm, Young Tae

    2012-01-01

    Bacillus subtilis SC-8 is a Gram-positive bacterium displaying narrow antagonistic activity for the Bacillus cereus group. B. subtilis SC-8 was isolated from Korean traditional fermented-soybean food. Here we report the draft genome sequence of B. subtilis SC-8, including biosynthetic genes for antibiotics that may have beneficial effects for control of food-borne pathogens.

  2. Genome sequencing of Bacillus subtilis SC-8, antagonistic to the Bacillus cereus group, isolated from traditional Korean fermented-soybean food.

    Science.gov (United States)

    Yeo, In-Cheol; Lee, Nam Keun; Hahm, Young Tae

    2012-01-01

    Bacillus subtilis SC-8 is a Gram-positive bacterium displaying narrow antagonistic activity for the Bacillus cereus group. B. subtilis SC-8 was isolated from Korean traditional fermented-soybean food. Here we report the draft genome sequence of B. subtilis SC-8, including biosynthetic genes for antibiotics that may have beneficial effects for control of food-borne pathogens.

  3. Sensitivity of the bacterium Bacillus Thuringiensis as an insect disease agent to gamma-rays

    International Nuclear Information System (INIS)

    Merdam, A.I.; Abdu, R.M.

    1977-01-01

    The effect of gamma radiation on the viability of the entomopathogenic spore-forming bacterium, Bacillus thuringiensis, was tested. The different gamma doses varied much in their effect on such bacterium. All irradiated Bacillus suspensions with doses below 85 krad showed different degrees of inhibitory activity. However, bacterial suspensions irradiated at a dose of 90 krad. proved to promote spore germination. Changes in the physiological, and morphological characters of the irradiated Bacillus at these levels were detected. The new observed characters were induced at a particular dose level of 90 krad. These new characters are assumed to be due to genetic changes induced at this particular gamma dose

  4. Analysis of Bacillus thuringiensis Population Dynamics and Its Interaction With Pseudomonas fluorescens in Soil

    Science.gov (United States)

    Rojas-Ruiz, Norma Elena; Sansinenea-Royano, Estibaliz; Cedillo-Ramirez, Maria Lilia; Marsch-Moreno, Rodolfo; Sanchez-Alonso, Patricia; Vazquez-Cruz, Candelario

    2015-01-01

    Background: Bacillus thuringiensis is the most successful biological control agent, however, studies so far have shown that B. thuringiensis is very sensitive to environmental factors such as soil moisture and pH. Ultraviolet light from the sun had been considered as the main limiting factor for its persistence in soil and it has recently been shown that the antagonism exerted by other native soil organisms, such as Pseudomonas fluorescens, is a determining factor in the persistence of this bacterium under in vitro culture conditions. Objectives: The aim of the present investigation was to analyze the population dynamics of B. thuringiensis and its interaction with P. fluorescens using microbiological and molecular methods in soil, under different conditions, and to determinate the effect of nutrients and moisture on its interaction. Materials and Methods: The monitoring was performed by microbiological methods, such as viable count of bacteria, and molecular methods such as Polymerase Chain Reaction (PCR) and hybridization, using the direct extraction of DNA from populations of inoculated soil. Results: The analysis of the interaction between B. thuringiensis and P. fluorescens in soil indicated that the disappearance of B. thuringiensis IPS82 is not dependent on the moisture but the composition of nutrients that may be affecting the secretion of toxic compounds in the environment of P. fluorescens. The results showed that the recovered cells were mostly spores and not vegetative cells in all proved treatments. The molecular methods were effective for monitoring bacterial population inoculated in soil. Conclusions: Bacillus thuringiensis is very sensitive to the interaction of P. fluorescens, however is capable to survive in soil due to its capacity of sporulate. Some of the cells in the form of spores germinated and folded slightly and remained in a constant cycle of sporulation and germination. This confirms that B. thuringiensis IPS82 can germinate, grow and

  5. RAP-PCR fingerprinting reveals time-dependent expression of development-related genes following differentiation process of Bacillus thuringiensis

    Czech Academy of Sciences Publication Activity Database

    Huang, T.; Yu, X.; Gelbič, Ivan; Guan, X.

    2015-01-01

    Roč. 61, č. 9 (2015), s. 683-690 ISSN 0008-4166 Institutional support: RVO:60077344 Keywords : Bacillus thuringiensis * development * RNA arbitrarily primed PCR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.335, year: 2015

  6. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China

    Science.gov (United States)

    Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) are cultivated extensively worldwide. However, their benefits are being eroded by increasingly rapid evolution of resistance in pests. In some previously analyzed strains of three major lepidopteran pests, resistance t...

  7. Interactions between Bacillus thuringiensis and parasitoids of late-instar larvae of the spruce budworm (Lepidoptera: Tortricidae)

    NARCIS (Netherlands)

    Schoenmaker, A.; Cusson, M.; Frankenhuyzen, van K.

    2001-01-01

    We investigated interactions between Bacillus thuringiensis Berliner var. kurstaki and parasitoids that attack late instars of the eastern spruce budworm, Choristoneura fumiferana (Clemens). In a petri-dish arena, females of Tranosema rostrale rostrale (Brishke) (Hymenoptera: Ichneumonidae) were

  8. Microimaging of Bacillus thuringiensis Toxin-binding proteins in gypsy moth larval gut using confocal fluorescence microscopy

    Science.gov (United States)

    Daniel J. Krofcheck; Algimantas P. Valaitis

    2010-01-01

    After ingestion by susceptible insect larvae, Bacillus thuringiensis (Bt) insecticidal proteins bind to the brush border membranes of gut epithelial cells and disrupt the integrity of the plasma membrane by forming...

  9. Comparison of sampling methods to recover germinated Bacillus anthracis and Bacillus thuringiensis endospores from surface coupons.

    Science.gov (United States)

    Mott, T M; Shoe, J L; Hunter, M; Woodson, A M; Fritts, K A; Klimko, C P; Quirk, A V; Welkos, S L; Cote, C K

    2017-05-01

    In an attempt to devise decontamination methods that are both effective and minimally detrimental to the environment, we evaluated germination induction as an enhancement to strategies for Bacillus anthracis spore decontamination. To determine an optimal method for the recovery of germinating spores from different matrices, it was critical to ensure that the sampling procedures did not negatively impact the viability of the germinating spores possibly confounding the results and downstream analyses of field trial data. Therefore, the two main objectives of this study were the following: (i) development of an effective processing protocol capable of recovering the maximum number of viable germinating or germinated spores from different surface materials; and (ii) using a model system of spore contamination, employ this protocol to evaluate the potential applicability of germination induction to wide-area decontamination of B. anthracis spores. We examined parameters affecting the sampling efficiencies of B. anthracis and the surrogate species Bacillus thuringiensis on nonporous and porous materials. The most efficient extraction from all matrices was observed using PBS with 0·01% Tween 80 extraction buffer. The addition of a sonication and/or extended vortex treatment did not yield significant increases in spore or germinated spore recovery. Our data demonstrate that previous germination-induction experiments performed in suspension can be reproduced when Bacillus spores are deposited onto reference surfaces materials. Our proof of concept experiment illustrated that a germination pretreatment step significantly improves conventional secondary decontamination strategies and remediation plans. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  10. Decreased toxicity of Bacillus thuringiensis subsp. israelensis to mosquito larvae after contact with leaf litter.

    Science.gov (United States)

    Tetreau, Guillaume; Stalinski, Renaud; Kersusan, Dylann; Veyrenc, Sylvie; David, Jean-Philippe; Reynaud, Stéphane; Després, Laurence

    2012-08-01

    Bacillus thuringiensis subsp. israelensis is a bacterium producing crystals containing Cry and Cyt proteins, which are toxic for mosquito larvae. Nothing is known about the interaction between crystal toxins and decaying leaf litter, which is a major component of several mosquito breeding sites and represents an important food source. In the present work, we investigated the behavior of B. thuringiensis subsp. israelensis toxic crystals sprayed on leaf litter. In the presence of leaf litter, a 60% decrease in the amount of Cyt toxin detectable by immunology (enzyme-linked immunosorbent assays [ELISAs]) was observed, while the respective proportions of Cry toxins were not affected. The toxicity of Cry toxins toward Aedes aegypti larvae was not affected by leaf litter, while the synergistic effect of Cyt toxins on all B. thuringiensis subsp. israelensis Cry toxins was decreased by about 20% when mixed with leaf litter. The toxicity of two commercial B. thuringiensis subsp. israelensis strains (VectoBac WG and VectoBac 12AS) and a laboratory-produced B. thuringiensis subsp. israelensis strain decreased by about 70% when mixed with leaf litter. Taken together, these results suggest that Cyt toxins interact with leaf litter, resulting in a decreased toxicity of B. thuringiensis subsp. israelensis in litter-rich environments and thereby dramatically reducing the efficiency of mosquitocidal treatments.

  11. Decreased Toxicity of Bacillus thuringiensis subsp. israelensis to Mosquito Larvae after Contact with Leaf Litter

    Science.gov (United States)

    Stalinski, Renaud; Kersusan, Dylann; Veyrenc, Sylvie; David, Jean-Philippe; Reynaud, Stéphane; Després, Laurence

    2012-01-01

    Bacillus thuringiensis subsp. israelensis is a bacterium producing crystals containing Cry and Cyt proteins, which are toxic for mosquito larvae. Nothing is known about the interaction between crystal toxins and decaying leaf litter, which is a major component of several mosquito breeding sites and represents an important food source. In the present work, we investigated the behavior of B. thuringiensis subsp. israelensis toxic crystals sprayed on leaf litter. In the presence of leaf litter, a 60% decrease in the amount of Cyt toxin detectable by immunology (enzyme-linked immunosorbent assays [ELISAs]) was observed, while the respective proportions of Cry toxins were not affected. The toxicity of Cry toxins toward Aedes aegypti larvae was not affected by leaf litter, while the synergistic effect of Cyt toxins on all B. thuringiensis subsp. israelensis Cry toxins was decreased by about 20% when mixed with leaf litter. The toxicity of two commercial B. thuringiensis subsp. israelensis strains (VectoBac WG and VectoBac 12AS) and a laboratory-produced B. thuringiensis subsp. israelensis strain decreased by about 70% when mixed with leaf litter. Taken together, these results suggest that Cyt toxins interact with leaf litter, resulting in a decreased toxicity of B. thuringiensis subsp. israelensis in litter-rich environments and thereby dramatically reducing the efficiency of mosquitocidal treatments. PMID:22610426

  12. Plant Compounds Enhance the Assay Sensitivity for Detection of Active Bacillus cereus Toxin

    Directory of Open Access Journals (Sweden)

    Reuven Rasooly

    2015-03-01

    Full Text Available Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety.

  13. Lessons learnt from a birthday party: a Bacillus cereus outbreak, Bari, Italy, January 2012

    Directory of Open Access Journals (Sweden)

    Domenico Martinelli

    2013-12-01

    Full Text Available INTRODUCTION: Bacillus cereus, a ubiquitous bacterium, can be isolated in various starchy food items, causing both emetic and diarrhoeal disease. The real burden of B. cereus outbreaks is actually poorly known in Italy. We report a B. cereus foodborne outbreak that occurred in a pub in Bari (Italy on January 22nd 2012 during a birthday party, promptly reported by the pub owner. MATERIALS AND METHODS: Between January 22nd and 24th 2012, we performed a retrospective cohort study among the guests of the party to identify risk factors associated with illness. Leftovers of different meals were available for microbiological analysis. Faecal specimens were collected from cases. RESULTS: A total of 12 cases among the 13 customers (attack rate: 92% were reported. All cases had consumed basmati rice and sweet and sour vegetables (aetiological fraction: 100%. B. cereus was isolated from both basmati rice served during the party and faecal specimens. DISCUSSION: The close collaboration between the pub owner and the public health officers and the possibility to test food leftovers and stool samples contributed to prevent further cases.

  14. Partial Characterisation of Bacteriocins Produced by Bacillus cereus Isolates from Milk and Milk Products

    Directory of Open Access Journals (Sweden)

    Bojana Bogović Matijašić

    2003-01-01

    Full Text Available Thirty one (19.2 % out of 161 Bacillus cereus isolates from raw milk and milk products were found to produce proteinaceous substances which inhibit the growth of other B. cereus isolates. The detection of antibacterial activity depended on medium and method used. Bactericidal activity was detected in 23 (14 % or 19 (12 % of the tested strains on the triptic soya agar and brain-heart infusion with glucose, respectively, while 11 (7 % of the strains produced bactericidal substances on both media. Nineteen percent of isolates from raw milk and 20 % of isolates from milk products were found to produce bacteriocins. Four B. cereus isolates inhibited the growth of individual test strains belonging to B. licheniformis, B. subtilis, Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, Lactobacillus helveticus and L. casei species. The bacteriocins of four B. cereus isolates were studied in more detail. The production and activity of these substances were detected in stationary- phase of bacterial culture. Two of them were stable after heating at 60 °C, while only one was stable after heating at 75 °C for 15 minutes. All of them were active over a range of pH=3–10. The apparent molecular weights of four bacteriocins detected by SDS-PAGE electrophoresis were in the range of 1 to 8 kDa.

  15. Soya bean tempe extracts show antibacterial activity against Bacillus cereus cells and spores.

    Science.gov (United States)

    Roubos-van den Hil, P J; Dalmas, E; Nout, M J R; Abee, T

    2010-07-01

    Tempe, a Rhizopus ssp.-fermented soya bean food product, was investigated for bacteriostatic and/or bactericidal effects against cells and spores of the food-borne pathogen Bacillus cereus. Tempe extract showed a high antibacterial activity against B. cereus ATCC 14579 based on optical density and viable count measurements. This growth inhibition was manifested by a 4 log CFU ml(-1) reduction, within the first 15 min of exposure. Tempe extracts also rapidly inactivated B. cereus spores upon germination. Viability and membrane permeability assessments using fluorescence probes showed rapid inactivation and permeabilization of the cytoplasmic membrane confirming the bactericidal mode of action. Cooked beans and Rhizopus grown on different media did not show antibacterial activity, indicating the unique association of the antibacterial activity with tempe. Subsequent characterization of the antibacterial activity revealed that heat treatment and protease addition nullified the bactericidal effect, indicating the proteinaceous nature of the bioactive compound. During fermentation of soya beans with Rhizopus, compounds are released with extensive antibacterial activity against B. cereus cells and spores. The results show the potential of producing natural antibacterial compounds that could be used as ingredients in food preservation and pathogen control. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  16. Characterization of a spore-specific protein of the Bacillus cereus group.

    Science.gov (United States)

    From, Cecilie; van der Voort, Menno; Abee, Tjakko; Granum, Per Einar

    2012-06-01

    Bc1245 is a monocistronic chromosomal gene of Bacillus cereus ATCC 14579 encoding a putative protein of 143 amino acids identified in this study to have a spore-related function in B. cereus. Bc1245 is highly conserved in the genome of members of the B. cereus group, indicating an important function of the gene in this group of bacteria. Quantitative PCR revealed that bc1245 is transcribed late in sporulation (upon formation of phase-bright spores) and at the same time as the mother cell-specific transcription factor σ(K) . The σ(K) regulon includes structural components of the spore (such as coat proteins), and it is therefore plausible that bc1245 might encode a structural outer spore protein. This was confirmed by detection of BC1245 in exosporium extracts from B. cereus by immunoblotting against BC1245 antiserum. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics.

    Science.gov (United States)

    Mols, Maarten; de Been, Mark; Zwietering, Marcel H; Moezelaar, Roy; Abee, Tjakko

    2007-12-01

    Bacillus cereus is an important food-borne pathogen and spoilage organism. In this study, numerous phenotypes and the genomes of B. cereus strains ATCC 14579 and ATCC 10987 were analysed to compare their metabolic capacity and stress resistance potential. The growth performance of the two strains was assessed for nearly 2000 phenotypes, including use of nutrient sources, performance in acid and basic environments, osmo-tolerance and antibiotic resistance. Several food-relevant phenotypic differences were found between ATCC 14579 and ATCC 10987, such as differences in utilization of carbohydrates, peptides, amino acids and ammonia. Subsequently, the genomes of both strains were analysed with INPARANOID to search for strain-specific open reading frames (ORFs). B. cereus ATCC 14579 and ATCC 10987 were found to harbour 983 and 1360 strain-specific ORFs respectively. The strain-specific phenotypic features were interlinked with corresponding genetic features and for several phenotypic differences a related strain-specific genetic feature could be identified. In conclusion, the combination of phenotypic data with strain-specific genomic differences has led to detailed insight into the performance of the two B. cereus strains, and may supply indicators for the performance of these bacteria in different environments and ecological niches.

  18. Identification of Bacillus cereus genes specifically expressed during growth at low temperatures.

    Science.gov (United States)

    Brillard, Julien; Jéhanno, Isabelle; Dargaignaratz, Claire; Barbosa, Isabelle; Ginies, Christian; Carlin, Frédéric; Fedhila, Sinda; Nguyen-the, Christophe; Broussolle, Véronique; Sanchis, Vincent

    2010-04-01

    The mechanisms involved in the ability of Bacillus cereus to multiply at low temperatures were investigated. It was assumed that many genes involved in cold acclimation would be upregulated at low temperatures. Recombinase-based in vivo expression technology (IVET) was adapted to the detection of the transient activation of B. cereus promoters during growth at 10 degrees C. Four independent screenings of a promoter library from type strain ATCC 14579 were performed, and 17 clones were isolated. They corresponded to 17 promoter regions that displayed reproducibly elevated expression at 10 degrees C relative to expression at 30 degrees C. This analysis revealed several genes that may be important for B. cereus to grow successfully under the restrictive conditions of cold habitats. Among them, a locus corresponding to open reading frames BC5402 to BC5398, harboring a lipase-encoding gene and a putative transcriptional regulator, was identified three times. While a mutation in the putative regulator-encoding gene did not cause any particular phenotype, a mutant deficient in the lipase-encoding gene showed reduced growth abilities at low temperatures compared with the parental strain. The mutant did not change its fatty acid profiles in the same way as the wild type when grown at 12 degrees C instead of 37 degrees C. This study demonstrates the feasibility of a promoter trap strategy for identifying cold-induced genes. It outlines a first picture of the different processes involved in B. cereus cold acclimation.

  19. Antibacterial Effects of Cissus welwitschii and Triumfetta welwitschii Extracts against Escherichia coli and Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Batanai Moyo

    2015-01-01

    Full Text Available Antibiotic resistance has increased sharply, while the pace for the development of new antimicrobials has slowed down. Plants provide an alternative source for new drugs. This study aimed to screen extracts from Cissus welwitschii and Triumfetta welwitschii for antibacterial activity against Escherichia coli and Bacillus cereus. The tests conducted included a susceptibility determination test, analysis of the effect of T. welwitschii on cell wall integrity, and transport across the membrane. It was found that the T. welwitschii methanol extracts were more effective than the water extracts and had the lowest minimum inhibitory concentration and minimum bactericidal concentration at 0.125 mg/mL and 0.5 mg/mL, respectively, against E. coli and B. cereus. The C. welwitschii extract caused the most drug accumulation in E. coli. In B. cereus, no significant drug accumulation was observed. Nucleic acid leakage in B. cereus and E. coli and protein leakage in E. coli were observed after exposure to the T. welwitschii extract. The extracts from T. welwitschii had greater antibacterial activity than the extracts from C. welwitschii. T. welwitschii may be a potential source of lead compounds for that could be developed into antibacterial agents.

  20. Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin.

    Science.gov (United States)

    Fang, Shangling; Wang, Li; Guo, Wei; Zhang, Xia; Peng, Donghai; Luo, Chunping; Yu, Ziniu; Sun, Ming

    2009-08-01

    Bacillus thuringiensis has been used as a bioinsecticide to control agricultural insects. Bacillus cereus group genomes were found to have a Bacillus enhancin-like (bel) gene, encoding a peptide with 20 to 30% identity to viral enhancin protein, which can enhance viral infection by degradation of the peritrophic matrix (PM) of the insect midgut. In this study, the bel gene was found to have an activity similar to that of the viral enhancin gene. A bel knockout mutant was constructed by using a plasmid-free B. thuringiensis derivative, BMB171. The 50% lethal concentrations of this mutant plus the cry1Ac insecticidal protein gene were about 5.8-fold higher than those of the BMB171 strain. When purified Bel was mixed with the Cry1Ac protein and fed to Helicoverpa armigera larvae, 3 mug/ml Cry1Ac alone induced 34.2% mortality. Meanwhile, the mortality rate rose to 74.4% when the same amount of Cry1Ac was mixed with 0.8 mug/ml of Bel. Microscopic observation showed a significant disruption detected on the midgut PM of H. armigera larvae after they were fed Bel. In vitro degradation assays showed that Bel digested the intestinal mucin (IIM) of Trichoplusia ni and H. armigera larvae to various degrading products, similar to findings for viral enhancin. These results imply Bel toxicity enhancement depends on the destruction of midgut PM and IIM, similar to the case with viral enhancin. This discovery showed that Bel has the potential to enhance insecticidal activity of B. thuringiensis-based biopesticides and transgenic crops.

  1. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis modified Cry3A... of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement of... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.505 Bacillus...

  2. 40 CFR 174.519 - Bacillus thuringiensis Cry2Ab2 protein in corn and cotton; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry2Ab2 protein... Bacillus thuringiensis Cry2Ab2 protein in or on corn or cotton are exempt from the requirement of a... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.519 Bacillus...

  3. 40 CFR 174.501 - Bacillus thuringiensis Vip3Aa protein in corn and cotton; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Vip3Aa protein... Bacillus thuringiensis Vip3Aa proteins in or on corn or cotton are exempt from the requirement of a... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.501 Bacillus...

  4. 40 CFR 174.506 - Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry34Ab1 and... Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn are exempted from the requirement of a... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.506 Bacillus...

  5. 40 CFR 174.510 - Bacillus thuringiensis Cry1Ac protein in all plants; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1Ac protein... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.510 Bacillus thuringiensis Cry1Ac protein in all plants; exemption from the requirement of a tolerance. Residues of Bacillus...

  6. 40 CFR 174.511 - Bacillus thuringiensis Cry1Ab protein in all plants; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry1Ab protein... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.511 Bacillus thuringiensis Cry1Ab protein in all plants; exemption from the requirement of a tolerance. Residues of Bacillus...

  7. Sequence Analysis of Inducible Prophage phIS3501 Integrated into the Haemolysin II Gene of Bacillus thuringiensis var israelensis ATCC35646

    Directory of Open Access Journals (Sweden)

    Bouziane Moumen

    2012-01-01

    Full Text Available Diarrheic food poisoning by bacteria of the Bacillus cereus group is mostly due to several toxins encoded in the genomes. One of them, cytotoxin K, was recently identified as responsible for severe necrotic syndromes. Cytotoxin K is similar to a class of proteins encoded by genes usually annotated as haemolysin II (hlyII in the majority of genomes of the B. cereus group. The partially sequenced genome of Bacillus thuringiensis var israelensis ATCC35646 contains several potentially induced prophages, one of them integrated into the hlyII gene. We determined the complete sequence and established the genomic organization of this prophage-designated phIS3501. During induction of excision of this prophage with mitomycin C, intact hlyII gene is formed, thus providing to cells a genetic ability to synthesize the active toxin. Therefore, this prophage, upon its excision, can be implicated in the regulation of synthesis of the active toxin and thus in the virulence of bacterial host. A generality of selection for such systems in bacterial pathogens is indicated by the similarity of this genetic arrangement to that of Staphylococcus aureus  β-haemolysin.

  8. Detection and Characterization of β-Lactam Resistance in Bacillus cereus PTCC 1015

    Directory of Open Access Journals (Sweden)

    Javad Behravan

    2004-01-01

    Full Text Available In the present study, detection, isolation, and characterization of β-lactamases from Bacillus cereus PTCC 1015 were investigated. B. cereus was inoculated in nutrient broth containing ampicillin (50 μg.ml−1 for 24 h (35°C, 200 rpm. Activity measurements were carried out against ampicillin (0.1 mg.ml−1 and cephalexin (0.08 mg.ml−1 by a spectrophotometric method at different conditions (pH 6–10, temperatures 25–45°C.Maximum penicillinase and cephalosporinase activity was observed at pH 7. The optimized temperatures for penicillinase and cephalosporinase activity were 30 and 40°C, respectively. At the above conditions, maximum enzymatic activity was calculated as 0.89 ± 0.014 and 0.037 ± 0.001 units against ampicillin and cephalexin.

  9. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Baloda, S.; Boye, Mette

    2001-01-01

    From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural soil...... on selection of resistance among soil bacteria. No variations in resistance levels were observed between farms; but when the four differently treated soils were compared, resistance was seen for carbadox, chloramphenicol, nalidixan (nalidixic acid), nitrofurantoin, streptomycin and tetracycline for Pseudomonas...... spp., and for bacitracin, erythromycin, penicillin and streptomycin for the B. cereus group. Variations in resistance levels were observed when soil before and after spread of animal waste was compared, indicating an effect from spread of animal waste....

  10. 40 CFR 174.532 - Bacillus thuringiensis eCry3.1Ab protein in corn; temporary exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis eCry3.1Ab... Bacillus thuringiensis eCry3.1Ab protein in corn, in or on the food and feed commodities of corn; corn... Bacillus thuringiensis eCry3.1Ab protein in corn is used as a plant-incorporated protectant in accordance...

  11. Evaluation de l'efficacité de la Bacillus thuringiensis contre les larves et imagos de Andrector ruficornis sur les plants de Solanum tuberosum au Cameroun

    OpenAIRE

    Ouzounov, IS.; Omokolo, ND.; Ambang, Z.

    2002-01-01

    Evaluation of the Efficiency of Bacillus thuringiensis on Larvae and Adults of Andrector ruficornis on Solanum tuberosum plants in Cameroon. The efficiency of Bacillus thuringiensis as an insecticide on the larvae and adults of A. ruficornis (a leaf eating pest) was investigated on Solanum tuberosum plants grown in the field. The results show that, one hour following the treatment of A. ruficornis with a 1.4 g/l suspension of Bacillus thuringiensis, larvae and adults are paralysed on the plan...

  12. Estirpes de Bacillus thuringiensis efetivas contra insetos das ordens Lepidoptera, Coleoptera e Diptera Bacillus thuringiensis strains effective against insects of Lepidoptera, Coleoptera and Diptera orders

    Directory of Open Access Journals (Sweden)

    Lílian Botelho Praça

    2004-01-01

    Full Text Available O objetivo deste trabalho foi selecionar entre 300 estirpes de Bacillus thuringiensis as efetivas simultaneamente contra larvas de Spodoptera frugiperda J.E. Smith e Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae, Anthonomus grandis Boheman (Coleoptera: Curculionidae, Aedes aegypti Linnaeus e Culex quinquefasciatus Say (Diptera: Culicidae. Foram selecionadas duas estirpes de B. thuringiensis, denominadas S234 e S997, que apresentaram atividade contra as três ordens de insetos. As estirpes foram caracterizadas por métodos morfológicos, bioquímicos e moleculares. As mesmas apresentaram duas proteínas principais de 130 e 65 kDa, produtos de reação em cadeia da polimerase de tamanho esperado para a detecção dos genes cry1Aa, cry1Ab, cry1Ac, cry1B e cry2 e cristais bipiramidais, cubóides e esféricos.The aim of this work was to select among 300 strains of Bacillus thuringiensis those which are simultaneously effective against larvae of Spodoptera frugiperda J.E. Smith and Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae, Anthonomus grandis Boheman (Coleoptera: Curculionidae, Aedes aegypti Linnaeus and Culex quinquefasciatus Say (Diptera: Culicidae. Two strains of B. thuringiensis were selected, S234 and S997, which presented activity against those three insect orders. Both strains were characterized by morphological, biochemical and molecular methods. They have presented two main proteins with 130 and 65 kDa, polimerase chain reaction products with expected sizes for detection of the genes cry1Aa, cry1Ab, cry1Ac, cry1B and cry2 and bipiramidal, cubical and spherical crystals.

  13. Survival and Germination of Bacillus cereus Spores without Outgrowth or Enterotoxin Production during In Vitro Simulation of Gastrointestinal Transit

    OpenAIRE

    Ceuppens, Siele; Uyttendaele, Mieke; Drieskens, Katrien; Heyndrickx, Marc; Rajkovic, Andreja; Boon, Nico; Van de Wiele, Tom

    2012-01-01

    To study the gastrointestinal survival and enterotoxin production of the food-borne pathogen Bacillus cereus, an in vitro simulation experiment was developed to mimic gastrointestinal passage in 5 phases: (i) the mouth, (ii) the stomach, with gradual pH decrease and fractional emptying, (iii) the duodenum, with high concentrations of bile and digestive enzymes, (iv) dialysis to ensure bile reabsorption, and (v) the ileum, with competing human intestinal bacteria. Four different B. cereus stra...

  14. Impact of sorbic acid and other mild preservation stresses on germination and outgrowth of Bacillus cereus spores

    OpenAIRE

    Melis, van, C.C.J.

    2013-01-01

      Weak organic acids such as sorbic acid, lactate, and acetic acid are widely used by the food industry as preservatives to control growth of micro-organisms. With the current trend towards milder processing of food products, opportunities arise for spore-forming spoilage and pathogenic microorganisms such as Bacillus cereus, that may survive the use of milder heating regimes. Dormant spores produced by B. cereus can survive processing conditions and their subsequent outgrowth increases ...

  15. Inactivation of Bacillus cereus by Na-chlorophyllin-based photosensitization on the surface of packaging.

    Science.gov (United States)

    Luksiene, Z; Buchovec, I; Paskeviciute, E

    2010-11-01

    This study was focused on the possibility to inactivate food-borne pathogen Bacillus cereus by Na-chlorophyllin (Na-Chl)-based photosensitization in vitro and after attachment to the surface of packaging material. Bacillus cereus in vitro or attached to the packaging was incubated with Na-Chl (7·5×10(-8) to 7·5×10(-5) mol l(-1) ) for 2-60min in phosphate buffer saline. Photosensitization was performed by illuminating cells under a light with a λ of 400nm and an energy density of 20mW cm(-2) . The illumination time varied 0-5min and subsequently the total energy dose was 0-6J cm(-2) . The results show that B. cereus vegetative cells in vitro or attached to the surface of packaging after incubation with 7·5×10(-7) mol l(-1) Na-Chl and following illumination were inactivated by 7log. The photoinactivation of B. cereus spores in vitro by 4log required higher (7·5×10(-6) mol l(-1) ) Na-Chl concentration. Decontamination of packaging material from attached spores by photosensitization reached 5log at 7·5×10(-5) mol l(-1) Na-Chl concentration. Comparative analysis of different packaging decontamination treatments indicates that washing with water can diminish pathogen population on the surface by packaging material. Spores are more resistant than vegetative cells to photosensitization-based inactivation. Comparison of different surface decontamination treatments indicates that Na-Chl-based photosensitization is much more effective antibacterial tool than washing with water or 200ppm Na-hypochlorite. Our data support the idea that Na-Chl-based photosensitization has great potential for future application as an environment-friendly, nonthermal surface decontamination technique. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  16. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    Science.gov (United States)

    Hong, Yun-Hee; Park, Ji-Yong; Park, Jong-Hyun; Chung, Myong-Soo; Kwon, Ki-Sung; Chung, Kyungsook; Won, Misun; Song, Kyung-Bin

    2008-09-01

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D10-vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities.

  17. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yun-Hee [Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of); Park, Ji-Yong [Department of Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Park, Jong-Hyun [Department of Food Science and Biotechnology, Kyungwon University, Sungnam 461-701 (Korea, Republic of); Chung, Myong-Soo [Department of Food Science, Ehwa Women' s University, Seoul 120-750 (Korea, Republic of); Kwon, Ki-Sung [Center for Food safety Evaluation, Korea Food and Drug Administration, Seoul 122-704 (Korea, Republic of); Chung, Kyungsook; Won, Misun [Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Song, Kyung-Bin [Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of)], E-mail: kbsong@cnu.ac.kr

    2008-09-15

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D{sub 10}-vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities.

  18. Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium in powdered weaning food by electron-beam irradiation

    International Nuclear Information System (INIS)

    Hong, Yun-Hee; Park, Ji-Yong; Park, Jong-Hyun; Chung, Myong-Soo; Kwon, Ki-Sung; Chung, Kyungsook; Won, Misun; Song, Kyung-Bin

    2008-01-01

    Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D 10 -vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities

  19. One-day pulsed-field gel electrophoresis protocol for rapid determination of emetic Bacillus cereus isolates.

    Science.gov (United States)

    Kaminska, Paulina S; Fiedoruk, Krzysztof; Jankowska, Dominika; Mahillon, Jacques; Nowosad, Karol; Drewicka, Ewa; Zambrzycka, Monika; Swiecicka, Izabela

    2015-04-01

    Bacillus cereus, the Gram-positive and spore-forming ubiquitous bacterium, may cause emesis as the result of food intoxication with cereulide, a heat-stable emetic toxin. Rapid determination of cereulide-positive B. cereus isolates is of highest importance due to consequences of this intoxication for human health and life. Here we present a 1-day pulsed-field gel electrophoresis for emetic B. cereus isolates, which allows rapid and efficient determination of their genomic relatedness and helps determining the source of intoxication in case of outbreaks caused by these bacilli. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bacillus cereus cell response upon exposure to acid environment: towards the identification of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Noémie eDESRIAC

    2013-10-01

    Full Text Available Microorganisms are able to adapt to different environments and evolve rapidly, allowing them to cope with their new environments. Such adaptive response and associated protections towards other lethal stresses, is a crucial survival strategy for a wide spectrum of microorganisms, including food spoilage bacteria, pathogens and organisms used in functional food applications. The growing demand for minimal processed food yields to an increasing use of combination of hurdles or mild preservation factors in the food industry. A commonly used hurdle is low pH which allows the decrease in bacterial growth rate but also the inactivation of pathogens or spoilage microorganisms. Bacillus cereus is a well-known food-borne pathogen leading to economical and safety issues in food industry. Because survival mechanisms implemented will allow bacteria to cope with environmental changes, it is important to provide understanding of B. cereus stress response. Thus this review deals with the adaptive traits of B. cereus cells facing to acid stress conditions. The acid stress response of B. cereus could be divided into four groups (i general stress response (ii pH homeostasis, (iii metabolic modifications and alkali production and (iv secondary oxidative stress response. This current knowledge may be useful to understand how B. cereus cells may cope to acid environment such as encountered in food products and thus to find some molecular biomarkers of the bacterial behaviour. These biomarkers could be furthermore used to develop new microbial behaviour prediction tools which can provide insights into underlying molecular physiological states which govern the behaviour of microorganisms and thus opening the avenue toward the detection of stress adaptive behaviour at an early stage and the control of stress-induced resistance throughout the food chain.

  1. Inactivation of Bacillus cereus vegetative cells by gastric acid and bile during in vitro gastrointestinal transit

    Directory of Open Access Journals (Sweden)

    Ceuppens Siele

    2012-10-01

    Full Text Available Abstract Background The foodborne pathogen Bacillus cereus can cause diarrhoeal food poisoning by production of enterotoxins in the small intestine. The prerequisite for diarrhoeal disease is thus survival during gastrointestinal passage. Methods Vegetative cells of 3 different B. cereus strains were cultivated in a real composite food matrix, lasagne verde, and their survival during subsequent simulation of gastrointestinal passage was assessed using in vitro experiments simulating transit through the human upper gastrointestinal tract (from mouth to small intestine. Results No survival of vegetative cells was observed, despite the high inoculum levels of 7.0 to 8.0 log CFU/g and the presence of various potentially protective food components. Significant fractions (approx. 10% of the consumed inoculum of B. cereus vegetative cells survived gastric passage, but they were subsequently inactivated by bile exposure in weakly acidic intestinal medium (pH 5.0. In contrast, the low numbers of spores present (up to 4.0 log spores/g showed excellent survival and remained viable spores throughout the gastrointestinal passage simulation. Conclusion Vegetative cells are inactivated by gastric acid and bile during gastrointestinal passage, while spores are resistant and survive. Therefore, the physiological form (vegetative cells or spores of the B. cereus consumed determines the subsequent gastrointestinal survival and thus the infective dose, which is expected to be much lower for spores than vegetative cells. No significant differences in gastrointestinal survival ability was found among the different strains. However, considerable strain variability was observed in sporulation tendency during growth in laboratory medium and food, which has important implications for the gastrointestinal survival potential of the different B. cereus strains.

  2. Triplex PCR-based detection of enterotoxigenic Bacillus cereus ATCC 14579 in nonfat dry milk.

    Science.gov (United States)

    Gracias, Kiev S; McKillip, John L

    2011-04-01

    Although many strains of Bacillaceae are considered nonpathogenic, Bacillus cereus is recognized worldwide as a bacterial pathogen in a variety of foods. The ability of B. cereus to cause gastroenteritis following ingestion of contaminated food is due to the production of enterotoxins. The ubiquity of this genus makes it a persistent problem for quality assurance in food processing environments. The primary objective of this study was to develop and apply a multiplex real-time PCR-based assay for rapid and sensitive detection of enterotoxigenic B. cereus. Template DNA was separately extracted from tryptic soy broth (TSB)-grown and 2.5% Nonfat Dry Milk (NFDM)-grown B. cereus using a commercial system. Three enterotoxin gene fragments (hblC, nheA, and hblA) were simultaneously amplified in real-time followed by melting curve analysis to confirm amplicon identity. Resolution of melting curves (characteristic T(m)) was achieved for each amplicon (hblC = 74.5 °C; nheA = 78 °C; and hblA = 85.5 °C in TSB and 84 °C in NFDM) with an assay sensitivities of 10(1) CFU/ml for both TSB and NFDM-grown B. cereus compared to 10(4) CFU/ml in either matrix using gel electrophoresis. The results demonstrate the potential sensitivity of real-time bacterial detection methods in a heterogenous food matrix using real-time PCR. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres.

    Directory of Open Access Journals (Sweden)

    Karla D Passalacqua

    Full Text Available Bacillus species are spore-forming bacteria that are ubiquitous in the environment and display a range of virulent and avirulent phenotypes. This range is particularly evident in the Bacillus cereus sensu lato group; where closely related strains cause anthrax, food-borne illnesses, and pneumonia, but can also be non-pathogenic. Although much of this phenotypic range can be attributed to the presence or absence of a few key virulence factors, there are other virulence-associated loci that are conserved throughout the B. cereus group, and we hypothesized that these genes may be regulated differently in pathogenic and non-pathogenic strains.Here we report transcriptional profiles of three closely related but phenotypically unique members of the Bacillus cereus group--a pneumonia-causing B. cereus strain (G9241, an attenuated strain of B. anthracis (Sterne 34F(2, and an avirulent B. cereus strain (10987--during exponential growth in two distinct atmospheric environments: 14% CO(2/bicarbonate and ambient air. We show that the disease-causing Bacillus strains undergo more distinctive transcriptional changes between the two environments, and that the expression of plasmid-encoded virulence genes was increased exclusively in the CO(2 environment. We observed a core of conserved metabolic genes that were differentially expressed in all three strains in both conditions. Additionally, the expression profiles of putative virulence genes in G9241 suggest that this strain, unlike Bacillus anthracis, may regulate gene expression with both PlcR and AtxA transcriptional regulators, each acting in a different environment.We have shown that homologous and even identical genes within the genomes of three closely related members of the B. cereus sensu lato group are in some instances regulated very differently, and that these differences can have important implications for virulence. This study provides insights into the evolution of the B. cereus group, and

  4. Bacillus cereus in Infant Foods: Prevalence Study and Distribution of Enterotoxigenic Virulence Factors in Isfahan Province, Iran

    Directory of Open Access Journals (Sweden)

    Ebrahim Rahimi

    2013-01-01

    Full Text Available This study was carried out in order to investigate the presences of Bacillus cereus and its enterotoxigenic genes in infant foods in Isfahan, Iran. Overall 200 infant foods with various based were collected and immediately transferred to the laboratory. All samples were culture and the genomic DNA was extracted from colonies with typical characters of Bacillus cereus. The presences of enterotoxigenic genes were investigated using the PCR technique. Eighty-four of two hundred samples (42% were found to be contaminated with B. cereus with a ranges of 3 × 101–9.3 × 101 spore per gram sample. Totally, entFM had the highest (61.90% incidences of enterotoxigenic genes while hblA had the lowest (13.09% incidences of enterotoxigenic genes. Overall, 6.7% of B. cereus isolates had all studied enetrotoxigenic genes while 25.5% of B. cereus strains had all studied enetrotoxigenic genes expectance bceT gene. Thisstudyisthe first prevalence report of B. cereus and its enterotoxigenic genes in infant foods in Iran. Results showed that the infant food is one of the main sources of enterotoxigenic genes of B. cereus in Iran. Therefore, the accurate food inspection causes to reducing outbreak of diseases.

  5. Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain.

    Science.gov (United States)

    Brillard, Julien; Lereclus, Didier

    2004-08-01

    The cytotoxin CytK produced by Bacillus cereus is believed to be involved in food-borne diseases. The transcriptional activity of the cytK promoter region in a food-poisoning strain was studied using a reporter gene and compared with that in the reference B. cereus strain ATCC 14579. In the food-poisoning strain, cytK is more strongly transcribed, possibly explaining the pathogenicity. The global regulator PlcR in B. cereus controls several putative virulence factors. It was found that PlcR regulates cytK in this clinical strain despite a mismatch in the PlcR recognition site, as currently defined. This suggests that the PlcR box consensus should be reconsidered and that the PlcR regulon might be larger than suspected. It is also shown that the high level of cytK transcription is not caused by a modification in the PlcR recognition site.

  6. Frequency and distribution of Bacillus Thuringiensis from Ethiopian ...

    African Journals Online (AJOL)

    Two hundred and thirteen B. thuringiensis isolates were tested for larvicidal activity against An. arabiensis (Diptera) and Plutella xylostella (Lepidoptera) larvae. Of the tested isolates, 44 (21%) killed 50-100% of An. arabiensis larvae within 48 hours. Isolates that killed 100% larvae within 24 hours were all from tepid to cool ...

  7. Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins

    Science.gov (United States)

    Xu, Chengchen; Wang, Bi-Cheng; Yu, Ziniu; Sun, Ming

    2014-01-01

    Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-forming toxins (PFTs) structures, similarities between PFTs and B. thuringiensis toxins have provided great insights into receptor binding interactions and conformational changes from water-soluble to membrane pore-forming state of B. thuringiensis toxins. This review mainly focuses on the latest discoveries of the toxin working mechanism, with the emphasis on structural related progress. Based on the structural features, B. thuringiensis Cry, Cyt and parasporin toxins could be divided into three categories: three-domain type α-PFTs, Cyt toxin type β-PFTs and aerolysin type β-PFTs. Structures from each group are elucidated and discussed in relation to the latest data, respectively. PMID:25229189

  8. Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins

    Directory of Open Access Journals (Sweden)

    Chengchen Xu

    2014-09-01

    Full Text Available Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-forming toxins (PFTs structures, similarities between PFTs and B. thuringiensis toxins have provided great insights into receptor binding interactions and conformational changes from water-soluble to membrane pore-forming state of B. thuringiensis toxins. This review mainly focuses on the latest discoveries of the toxin working mechanism, with the emphasis on structural related progress. Based on the structural features, B. thuringiensis Cry, Cyt and parasporin toxins could be divided into three categories: three-domain type α-PFTs, Cyt toxin type β-PFTs and aerolysin type β-PFTs. Structures from each group are elucidated and discussed in relation to the latest data, respectively.

  9. An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease

    Directory of Open Access Journals (Sweden)

    Vikram Surendra

    2010-07-01

    Full Text Available Abstract Background Many workers have reported halotolerant bacteria from saline conditions capable of protease production. However, antibiotic resistance and heavy metal tolerance pattern of such organisms is not documented very well. Similarly, only a few researchers have reported the pattern of pH change of fermentation medium during the course of protease production. In this study, we have isolated a halotolerant Bacillus cereus SIU1 strain from a non-saline environment and studied its antibiotic and heavy metal resistance pattern. The isolate produces a thermoalkaline protease and changes the medium pH during the course of fermentation. Thermostability of protease was also studied for 30 min. Results Seventy bacterial strains isolated from the soils of Eastern Uttar Pradesh, India were screened for protease production. All of them exhibited protease activity. However, 40% bacterial isolates were found good protease producers as observed by caseinolytic zones on milk agar plates. Among them, culture S-4 was adjudged as the best protease producer, and was identified as Bacillus cereus by morphological, biochemical and 16 S rDNA sequence analyses. The isolate was resistant to heavy metals (As2+, Pb2+, Cs1+ and antibiotics (penicillin, lincomycin, cloxacillin, pefloxacin. Its growth behavior and protease production was studied at 45°C and pH 9.0. The protease units of 88 ml-1 were noted in unoptimized modified glucose yeast extract (GYE medium during early stationary phase at 20 h incubation period. The enzyme was stable in the temperature range of 35°-55°C. Conclusions An antibiotic and heavy metal resistant, halotolerant Bacillus cereus isolate is capable of producing thermoalkaline protease, which is active and stable at pH 9.0 and 35°-55°C. This isolate may be useful in several industrial applications owing to its halotolerance and antibiotic and heavy metal resistance characteristics.

  10. Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream.

    Science.gov (United States)

    Arslan, Seza; Eyi, Ayla; Küçüksarı, Rümeysa

    2014-02-01

    Bacillus spp. can be recovered from almost every environment. It is also found readily in foods, where it may cause food spoilage and/or food poisoning due to its toxigenic and pathogenic nature, and extracellular enzymes. In this study, 29 Bacillus cereus group strains from ice cream were examined for the presence of following virulence genes hblC, nheA, cytK and ces genes, and tested for a range of the extracellular enzymes, and antimicrobial susceptibility. The strains were found to produce extracellular enzymes: proteolytic and lipolytic activity, gelatin hydrolysis and lecithinase production (100%), DNase production (93.1%) and amylase activity (93.1%). Of 29 strains examined, 24 (82.8%) showed hemolytic activity on blood agar. Beta-lactamase enzyme was only produced by 20.7% of B. cereus group. Among 29 B. cereus group from ice cream, nheA was the most common virulence gene detected in 44.8% of the strains, followed by hblC gene with 17.2%. Four (13.8%) of the 29 strains were positive for both hblC gene and nheA gene. Contrarily, cytK and ces genes were not detected in any of the strains. Antimicrobial susceptibility of ice cream isolates was tested to 14 different antimicrobial agents using the disc diffusion method. We detected resistance to penicillin and ampicillin with the same rate of 89.7%. Thirty-one percent of the strains were multiresistant to three or more antibiotics. This study emphasizes that the presence of natural isolates of Bacillus spp. harboring one or more enterotoxin genes, producing extracellular enzymes which may cause spoilage and acquiring antibiotic resistance might hold crucial importance in the food safety and quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group

    Directory of Open Access Journals (Sweden)

    Granum Per

    2007-05-01

    Full Text Available Abstract Background Three enterotoxins are implicated in diarrhoeal food poisoning due to Bacillus cereus: Haemolysin BL (Hbl, Non-haemolytic enterotoxin (Nhe, and Cytotoxin K (CytK. Toxin gene profiling and assays for detection of toxin-producing stains have been used in attempts to evaluate the enterotoxic potential of B. cereus group strains. B. cereus strain NVH 391/98, isolated from a case of fatal enteritis, was genetically remote from other B. cereus group strains. This strain lacked the genes encoding Hbl and Nhe, but contains CytK-1. The high virulence of this strain is thought to be due to the greater cytotoxic activity of CytK-1 compared to CytK-2, and to a high level of cytK expression. To date, only three strains containing cytK-1 have been identified; B. cereus strains NVH 391/98, NVH 883/00, and INRA AF2. Results A novel gene variant encoding Nhe was identified in these three strains, which had an average of 80% identity in protein sequence with previously identified Nhe toxins. While culture supernatants containing CytK and Nhe from NVH 391/98 and INRA AF2 were highly cytotoxic, NVH 883/00 expressed little or no CytK and Nhe and was non-cytotoxic. Comparative sequence and expression studies indicated that neither the PlcR/PapR quorum sensing system, nor theYvrGH and YvfTU two-component systems, were responsible for the observed difference in toxin production. Additionally, phylogenetic analysis of 13 genes showed that NVH 391/98, NVH 883/00, and INRA AF2 comprise a novel cluster of strains genetically distant from other B. cereus group strains. Conclusion Due to its divergent sequence, the novel nhe operon had previously not been detected in NVH 391/98 using PCR and several monoclonal antibodies. Thus, toxigenic profiling based on the original nhe sequence will fail to detect the toxin in this group of strains. The observation that strain NVH 883/00 carries cytK-1 but is non-cytotoxic indicates that the detection of this gene

  12. Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin

    OpenAIRE

    Tempelaars, M.H.; Rodrigues, S.; Abee, T.

    2011-01-01

    Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity a...

  13. [Biosorption of Ag+ by heavy metals hyperresistant Bacillus cereus strain HQ-1].

    Science.gov (United States)

    Zeng, Jing-Hai; Qi, Hong-Yan; Yang, Jian-Zhou; Hu, Qing; Zhang, Hong-Xun; Zhuang, Guo-Qiang

    2008-01-01

    A newly isolated Bacillus cereus strain HQ-1 was found to possess high capability to absorb silver ions. The study showed that the biosorption process could be described well by pseudo-second-order kinetic model and Freundlich isotherm model. Higher cell concentration was favorable to the biosorption. Temperature's effect on the biosorption was not obvious. The oxygenous and nitrogenous functional groups on the cell wall played a very important role in the process of biosorption. Microdeposits were formed by interaction between silver ions and biopolymers from the cell wall (such as polysaccharides, proteins and some hydrolysis).

  14. Unsaturated fatty acids from food and in the growth medium improve growth of Bacillus cereus under cold and anaerobic conditions.

    Science.gov (United States)

    de Sarrau, Benoît; Clavel, Thierry; Zwickel, Nicolas; Despres, Jordane; Dupont, Sébastien; Beney, Laurent; Tourdot-Maréchal, Raphaëlle; Nguyen-The, Christophe

    2013-12-01

    In a chemically defined medium and in Luria broth, cold strongly reduced maximal population density of Bacillus cereus ATCC 14579 in anaerobiosis and caused formation of filaments. In cooked spinach, maximal population density of B. cereus in anaerobiosis was the same at cold and optimal temperatures, with normal cell divisions. The lipid containing fraction of spinach, but not the hydrophilic fraction, restored growth of B. cereus under cold and anaerobiosis when added to the chemically defined medium. This fraction was rich in unsaturated, low melting point fatty acids. Addition of phosphatidylcholine containing unsaturated, low melting point, fatty acids similarly improved B. cereus anaerobic growth at cold temperature. Addition of hydrogenated phosphatidylcholine containing saturated, high melting point, fatty acids did not modify growth. Fatty acids from phospholipids, from spinach and from hydrogenated phosphatidylcholine, although normally very rare in B. cereus, were inserted in the bacterium membrane. Addition of phospholipids rich in unsaturated fatty acids to cold and anaerobic cultures, increased fluidity of B. cereus membrane lipids, to the same level as those from B. cereus normally cold adapted, i.e. grown aerobically at 15 °C. B. cereus is therefore able to use external fatty acids from foods or from the growth medium to adapt its membrane to cold temperature under anaerobiosis, and to recover the maximal population density achieved at optimal temperature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Identification and antibiogram pattern of Bacillus cereus from the milk and milk products in and around Jammu region

    Science.gov (United States)

    Yusuf, Umar; Kotwal, S. K.; Gupta, Sanjolly; Ahmed, Touqeer

    2018-01-01

    Aim: The aims of the present study were to assess the prevalence, identification, and antibiogram pattern of Bacillus cereus from 215 samples of different milk and milk products in and around Jammu region. Materials and Methods: In the present study, 215 samples of milk, rasgulla, burfi, rasmalai, kalaari, paneer, ice cream, and pastry were collected and analyzed for the isolation of the B. cereus using PEMBA, and antibiogram pattern was observed for all the milk and milk products. Results: B. cereus was detected in 61/215 samples with an overall prevalence of 28.37%. Biotyping revealed predominantly 5, 7, and 2 biotypes in raw milk. Burfi and ice cream revealed 2, 3, 5, and 7 biotypes. Rasgulla had 2, 3, and 5 biotypes; paneer and rasmalai had biotypes 2 and 5, while kalaari revealed biotype 5. Antibiogram pattern revealed that isolates were highly sensitive to gentamicin (100%), intermediate to ampicillin (40.98%), tetracycline (31.14%), erythromycin (29.50%), and amoxicillin (26.22%), and high resistance against penicillin G (100%). Adulteration of starch was detected in 16.66 % raw milk samples. All starch positive samples were positive for B. cereus. However, 12 starch negative samples also yielded B. cereus. Conclusion: From this study, it was concluded that highest prevalence of B. cereus was found in ice cream. Several isolates of B. cereus showed toxigenic activity, so the presence of B. cereus in milk and milk products may be of public health hazard. The antibiogram pattern of B. cereus isolates showed sensitivity to gentamicin, ciprofloxacin, chloramphenicol, streptomycin, and resistance to penicillin-G and cephalexin. The presence of B. cereus in milk and milk products showed a strong association besides establishing the fact that starch adulteration can be indicative of the presence of B. cereus. PMID:29657402

  16. Toxicity studies for indigenous Bacillus thuringiensis isolates from Malang City, East Java on Aedes aegypti larvae.

    Science.gov (United States)

    Gama, Zulfaidah Penata; Nakagoshi, Nobukazu; Suharjono; Setyowati, Faridah

    2013-02-01

    To investigate the toxicity of indigenous Bacillus thuringiensis (B. thuringiensis)isolates from Malang City for controlling Aedes aegypti (Ae. aegypti) larvae. Soil samples were taken from Purwantoro and Sawojajar sub-districts. Bacterial isolation was performed using B. thuringiensis selective media. Phenotypic characteristics of the isolates were obtained with the simple matching method. The growth and prevalence of spores were determined by the Total Plate Count method, and toxicity tests were also performed on the third instar larval stage of Ae. aegypti. The percentage of larval mortality was analysed using probit regression. The LC50 was analysed by ANOVA, and the Tukey HSD interval was 95%. Among the 33 selected bacterial isolates, six were obtained (PWR4-31, PWR4-32, SWJ4-2b, SWJ4-4b, SWJ-4k and SWJ5-1) that had a similar phenotype to reference B. thuringiensis. Based on the dendrogram, all of the bacterial isolates were 71% similar. Three isolates that had a higher prevalence of reference B. thuringiensis were PWR4-32, SWJ4-4b and SW5-1, of which the spore prevalence was 52.44%, 23.59%, 34.46%, respectively. These three indigenous isolates from Malang City successfully killed Ae. aegypti larvae. The PWR4-32 isolates were the most effective at killing the larvae. Six indigenous B. thuringiensis isolates among the 33 bacterial isolates found in the Sawojajar and Purwantoro sub-districts were toxic to the third instar larvae of Ae. aegypti. The PWR4-32 isolates were identical to the reference B. thuringiensis and had 88% phenotype similarity. The PWR4-32 isolates had the highest spore prevalence (52.44%), and the early stationary phase occurred at 36 h. The PWR4-32 isolates were the most effective at killing Ae. aegypti larvae (LC50-72 h=2.3×10(8) cells/mL).

  17. Complete genome sequence and bioinformatics analyses of Bacillus thuringiensis strain BM-BT15426.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Peters, Brian M; Li, Bing; Chen, Dingqiang; Xu, Zhenbo; Shirtliff, Mark E

    2017-07-01

    This study aimed to investigate the genetic characteristics of Bacillus thuringiensis strain BM-BT15426. B. thuringiensis strain was identified by sequencing the PCR product (amplifying 16S rRNA gene) using ABI Prism 377 DNA Sequencer. The genome was sequenced using PacBio RS II sequencers and assembled de novo using HGAP. Also, further genome annotation was performed. The genome of B. thuringiensis strain BM-BT15426 has a length of 5,246,329 bp and contains 5409 predicted genes with an average G + C content of 35.40%. Three genes were involved in the "Infectious diseases: Amoebiasis" pathway. A total of 21 virulence factors and 9 antibiotic resistant genes were identified. The major pathogenic factors of B. thuringiensis strain BM-BT15426 were identified through complete genome sequencing and bioinformatics analyses which contributes to further study on pathogenic mechanism and phenotype of B. thuringiensis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Translocation of Bacillus thuringiensis in Phaseolus vulgaris tissues and vertical transmission in Arabidopsis thaliana.

    Science.gov (United States)

    García-Suárez, R; Verduzco-Rosas, L A; Del Rincón-Castro, M C; Délano-Frier, J P; Ibarra, J E

    2017-04-01

    To demonstrate the ability of Bacillus thuringiensis to penetrate as spore-crystal complex to the internal tissues of bean plants, and keep its insecticidal activity. To test the vertical transmission of the spore-crystal complex in Arabidopsis thaliana. The experimental strain was transformed with the pMUTIN-gfp plasmid which labelled the spores of B. thuringiensis HD-73 with the GFP protein. Once the rhizosphere of the bean plants was inoculated with the labelled strain, the bacterium was recovered from leaves, stems, and petioles. Furthermore, toxicity of treated plants was significantly higher than control plants when bio-assayed on cabbage looper larvae. The labelled strain was recovered from the dead insects. When the rhizosphere of A. thaliana plants was inoculated with the labelled strain, mature seeds from these plants were surface-sterilized and grown under in vitro conditions. The labelled strain was recovered from the seedlings. We showed that B. thuringiensis subsp. kurstaki (HD-73) in the rhizosphere can translocate to upper tissues of bean plants, and keep its insecticidal activity. Transmission of the labelled B. thuringiensis strain passed to the next generation of A. thaliana. The role of B. thuringiensis as a potential facultative endophyte bacterium and the possible biotechnological repercussions are discussed. © 2017 The Society for Applied Microbiology.

  19. SR450 And Superhawk XP Applications Of Bacillus thuringiensis israelensis Against Culex quinquefasciatus.

    Science.gov (United States)

    Dunford, James C; Stoops, Craig A; Estep, Alden S; Britch, Seth C; Richardson, Alec G; Walker, Todd W; Farooq, Muhammad; Hoel, David F; Platt, Raymond R; Smith, Vincent L; Wirtz, Robert A; Kerce, Jerry D

    2014-09-01

    Sprayer comparisons and larval morality assays were conducted following SR450 backpack mist blower and Superhawk XP thermal fogger applications of Vectobac® WDG Bacillus thuringiensis israelensis (Bti) against Culex quinquefasciatus. Bacillus thuringiensis israelensis was applied at maximum label rate in a 232.26-m(2) field plot located in north-central Florida with containers placed at 2 heights (ground level and 1.52 m above ground) on stakes positioned 3.04, 6.09, 9.14, 12.19, and 15.24 m from the spray line. Results indicated that there was no significant (P > 0.05) difference in 24- and 48-h larval mortality between the 2 sprayers or between the 2 heights. There was significant difference (P 70% larval mortality 3.04-9.14 m from the spray line, and control mosquito larvae.

  20. Laser He-Ne effect on bacillus thuringiensis var. kurstaki strain LBT-24

    International Nuclear Information System (INIS)

    Dias, Adriana; Barreara, Lenay; Otero, Isabel; Rabelo, Yanet; Rodriguez, Dania

    1999-01-01

    Bacillus thuringiensis toxin is one of the world widely used entomopathogen. It presents an strong insecticide activity on Lepidoptera, Coleoptera and Diptera. It was studied the effect of Laser He-Ne on Bacillus thuringiensis var. kurstaki strain LBT-24. Growing curves were made and were calculated the duplication time and the specific growing speed of each one. The curves were statistically compared. It was also analysed the phage induction with and without Laser red light influence. Also, it was observed the presence of the d-endotoxin crystal with this treatment. The red Laser He-Ne enhanced the growth of this micro-organism under laboratory conditions and didn't have any effect over the other characteristics analysed

  1. Enhancement of virulence of bacillus thuringiensis and serratia marcescens by chemicals

    International Nuclear Information System (INIS)

    Khan, K. A.

    2006-01-01

    Studies were conducted on the enhancement of pathogenicity of Bacillus thuringiensis by 1% boric acid against various species of termites. The increase in virulence of Serratia marcescens by 1% potassium chloride or 1% Sodium citrate against the workers of M. championi has also been established. The increase in virulence is confirmed by the enhancement ratio, which are ranging from about 1.5 to 1.8 for Bacillus thuringiensis and 1.3 to 1.6 for Serratia marcescens. It was also noted that 1% boric acid alone was found toxic to various species of termites. However, Potassium chloride and Sodium citrate in a concentration of 1% were non-toxic to the workers of M. championi. (author)

  2. Growth and sporulation of Bacillus cereus ATCC 14579 under defined conditions: temporal expression of genes for key sigma factors.

    Science.gov (United States)

    de Vries, Ynte P; Hornstra, Luc M; de Vos, Willem M; Abee, Tjakko

    2004-04-01

    An airlift fermentor system allowing precise regulation of pH and aeration combined with a chemically defined medium was used to study growth and sporulation of Bacillus cereus ATCC 14579. Sporulation was complete and synchronous. Expression of sigA, sigB, sigF, and sigG was monitored with real-time reverse transcription-PCR, and the pattern qualitatively resembled that of Bacillus subtilis. This method allows reproducible production of stable spores, while the synchronous growth and defined conditions are excellently suitable for further gene expression studies of cellular differentiation of B. cereus.

  3. Efektifitas Bacillus Thuringiensis Yang Diisolasi Dari Sampel Tanah Di YOGYAKARTA Terhadap Larva Culex Quinquefasciatus Invitro

    OpenAIRE

    Suryani, Lilis

    2008-01-01

    Filariasis disease is a public health problem, especially in rural areas. One kinds of mosquitoes that transmited it is Culex quinquefasciatus. Since 1972 chemical insecticides has been usedfor vector control in Indonesia. However, in 1987 it was reported that there are many areas has been resistant against chemical insecticides. Bacillus thuringiensis is a gram positif bacteria, rod, aerobic and spore shape. There are many strain of this bacteria produces a toxic protein to insect. This rese...

  4. Genetical and radiobiological characteristics of phage Tg13 of Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Takubova, R.M.; Azizbekyan, R.R.

    1979-01-01

    The radiation-genetical aspects of interrelations between phages and cells of the spore-forming bacteria Bacillus thurin-giensis were studied. The phage Tg13 liberates C-mutants, forming transparent negative colonies, both spontaneously and under the effect of UV irradiation. UV-radiation increases reliably the level of C-mutants in the population. The phenotype of the observed mutants is, evidently, caused by the specific features of interaction in the system: preudolysogenic culture -phage Tg13

  5. Activity of Bacillus thuringiensis D(delta)-endotoxins against codling moth (Cydia pomonella L.) larvae

    NARCIS (Netherlands)

    Boncheva, R.; Dukiandjiev, S.; Minkov, I.; Maagd, de R.A.; Naimov, S.

    2006-01-01

    Solubilized protoxins of nine Cry1 and one hybrid Cry1 ¿-endotoxin from Bacillus thuringiensis were tested for their activity against larvae of the codling moth (Cydia pomonella L). Cry1Da was the most toxic, followed by Cry1Ab, Cry1Ba, and Cry1Ac, while Cry1Aa, Cry1Fa, Cry1Ia, and SN19 were still

  6. The potential of the novel mosquitocidal Bacillus thuringiensis strain LLP29 for use in practice

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Wu, S.; Peng, Y.; Li, M.; Sun, L.; Huang, E.; Guan, X.; Gelbič, Ivan

    2011-01-01

    Roč. 36, č. 2 (2011), s. 458-460 ISSN 1081-1710 R&D Projects: GA MŠk 2B08003 Grant - others:National Natural Science Foundation of China (CN) 31071745; Science Foundation of the Ministry of Education of China (CN) 20093515110010; Science Foundation of the Ministry of Education of China (CN) 20093515120010 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis Subject RIV: ED - Physiology Impact factor: 0.885, year: 2011

  7. Distinct clpP Genes Control Specific Adaptive Responses in Bacillus thuringiensis

    OpenAIRE

    Fedhila, Sinda; Msadek, Tarek; Nel, Patricia; Lereclus, Didier

    2002-01-01

    ClpP and ClpC are subunits of the Clp ATP-dependent protease, which is ubiquitous among prokaryotic and eukaryotic organisms. The role of these proteins in stress tolerance, stationary-phase adaptive responses, and virulence in many bacterial species has been demonstrated. Based on the amino acid sequences of the Bacillus subtilis clpC and clpP genes, we identified one clpC gene and two clpP genes (designated clpP1 and clpP2) in Bacillus thuringiensis. Predicted proteins ClpP1 and ClpP2 have ...

  8. Synergistic effect of certain insecticides combined with Bacillus thuringiensis on mosquito larvae

    Directory of Open Access Journals (Sweden)

    C.P. Narkhede

    2017-04-01

    Full Text Available For effective vector control it is essential to formulate new preparations having multiple action against the vector pest. Developing combined formulation of biopesticide and chemical pesticide is one of the novel concept to fight against the vectors with new weapons; however, compatibility of biopesticide i.e. Bacillus thuringiensis (Bt and chemical pesticide is a real hurdle. In this investigation, local isolate Bacillus thuringiensis SV2 (BtSV2 was tested for its compatibility with various available mosquito larvicides. Temephos was most compatible with BtSV2 than with other tested pesticides. These two compatible agents were tested for larvicidal potential. Our study revealed that the synergistic effect of both agents reduces LC50 value by 30.68 and 22.36% against the Ae. aegypti and An. stephensi, respectively. The larvicidal potential increased when compared to individual pesticides. It was also observed a biochemical change in larvae after the TBT (Temephos + Bacillus thuringiensis combination treatment; it involves decreased level of alpha esterase, acetylcholine esterase and protein while level of beta esterase and acid phosphatase was unchanged and alkaline phosphatase activity was increased. Increased potential of combined formulation may be due to altered physiological condition.

  9. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis.

    Science.gov (United States)

    Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio

    2015-12-01

    Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.

  10. Formation of cereulide and enterotoxins by Bacillus cereus in fermented African locust beans

    DEFF Research Database (Denmark)

    Thorsen, Line; Azokpota, Paulin; Munk Hansen, Bjarne

    2011-01-01

    Afitin, iru and sonru are three spontaneously fermented African locust bean Benin condiments. The fermentation processes are exothermic, with temperatures mostly being above 40 °C. A total of 19 predominant Bacillus cereus isolates from afitin, iru and sonru, were investigated. The enterotoxin...... genes nhe (A, B, C) were present in all 19 isolates, the hbl (A, C, D) in one (afitin), and the cytK gene in three isolates (afitin). Levels of cytotoxicity to Vero cells and NheA production in BHI-broth was within the range of known diarrheal outbreak strains. Autoclaved cooked African locust beans...... inoculated with emetic (cereulide producing) B. cereus Ba18H2/RIF supported growth at 25, 30 and 40 °C with highly different maximum cereulide productions of 6 ± 5, 97 ± 3 and 0.04 ± 0.02 μg/g beans, respectively (48 h). For non-autoclaved cooked beans inoculated with 2, 4 and 6 log10 B. cereus Ba18H2/RIF...

  11. Bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting with Bacillus cereus HDYM-02.

    Science.gov (United States)

    Zhao, Dan; Liu, Pengfei; Pan, Chao; Du, Renpeng; Ping, Wenxiang; Ge, Jingping

    2016-09-02

    High-throughput sequencing and GC-MS (gas chromatography-mass spectrometry) were jointly used to reveal the bacterial succession and metabolite changes during flax (Linum usitatissimum L.) retting. The inoculation of Bacillus cereus HDYM-02 decreased bacterial richness and diversity. This inoculum led to the replacement of Enterobacteriaceae by Bacillaceae. The level of aerobic Pseudomonadaceae (mainly Azotobacter) and anaerobic Clostridiaceae_1 gradually increased and decreased, respectively. Following the addition of B. cereus HDYM-02, the dominant groups were all degumming enzyme producers or have been proven to be involved in microbial retting throughout the entire retting period. These results could be verified by the metabolite changes, either degumming enzymes or their catalytic products galacturonic acid and reducing sugars. The GC-MS data showed a clear separation between flax retting with and without B. cereus HDYM-02, particularly within the first 72 h. These findings reveal the important bacterial groups that are involved in fiber retting and will facilitate improvements in the retting process.

  12. Characteristics and phylogeny of Bacillus cereus strains isolated from Maari, a traditional West African food condiment

    DEFF Research Database (Denmark)

    Thorsen, Line; Kando, Christine Kere; Sawadogo, Hagrétou

    2015-01-01

    Maari is a spontaneously fermented food condiment made from baobab tree seeds in West African countries. This type of product is considered to be safe, being consumed by millions of people on a daily basis. However, due to the spontaneous nature of the fermentation the human pathogen Bacillus...... identified as B. cereus sensu lato by use of ITS-PCR and grouped into 3 groups using PCR fingerprinting based on Escherichia coli phage-M13 primer (M13-PCR). As determined by panC gene sequencing, the isolates of B. cereus belonged to PanC types III and IV with potential for high cytotoxicity. Phylogenetic...... found in potash, DW, cooking water and at 8h fermentation. The "emetic" type B. cereus were present in DW, the seed mash at 48-72h of fermentation and in the final product, while the remaining isolates (PanC type IV) were detected in ash, at 48-72h fermentation and in the final product. This work sheds...

  13. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation

    Directory of Open Access Journals (Sweden)

    Jean-Paul eMadeira

    2015-04-01

    Full Text Available At low density, Bacillus cereus cells release a large variety of proteins into the extracellular medium when cultivated in pH-regulated, glucose-containing minimal medium, either in the presence or absence of oxygen. The majority of these exoproteins are putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential (ORP anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus on oxidative-induced post-translational modifications of methionine residues. Principal component analysis (PCA of the exoproteome dynamics indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their methionine sulfoxide (Met(O content. PCA also revealed an interesting interconnection between toxin-, metabolism-, and oxidative stress–related proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O content in the B. cereus exoproteome, reflected the cellular oxidation under both aerobiosis and anaerobiosis.

  14. Antagonistic effects of Bacillus cereus strain B-02 on morphology, ultrastructure and cytophysiology of Botrytis cinerea.

    Science.gov (United States)

    Li, Feng-Xia; Ma, Hui-Quan; Liu, Jing; Zhang, Chao

    2012-01-01

    The study on antagonistic mechanism of biocontrol strains gives the premise and basis for efficient and stable biological control. This study aimes to overcome of biocontrol agent in aspects of complicated and diversified mode of action, short-lasting and unstable efficacy in the production processes. This study elucidated the antagonistic mechanism of Bacillus cereus strain B-02 on Botrytis cinerea by detecting changes in morphology, ultrastructure and physiology in affected hyphae of Botrytis cinerea. Which provided certain theoretical and practical significance for biological control of gray mould caused by B. cinerea. B. cereus strain B-02 isolated from tomato rhizosphere mightily suppressed gray mold in tomato caused by B. cinerea. Spore germination and hyphal growth of B. cinerea were inhibited by B. cereus strain B-02. Changes of cell morphology such as distortion, shrinking and swelling were observed by SEM. TEM observation further indicated the ultrastructural alterations of hyphae, including mitochondrion reduction, un-membranous inclusion in cytoplasm, considerable thickening of cell walls, and electronic density enhancement. LSCM observation revealed the fluorescence intensity of nucleus DNA, mitochondrion DNA and reactive oxygen radical in treated hyphae were all stronger than control and the difference was significant (P cinerea were likely due to a combination of abnormal synthesis of nucleus DNA and mitochondrion DNA and multifarious ultrastructural alterations in hyphal cell.

  15. Biosurfactants production potential of native strains of Bacillus cereus and their antimicrobial, cytotoxic and antioxidant activities.

    Science.gov (United States)

    Basit, Madiha; Rasool, Muhammad Hidayat; Naqvi, Syed Ali Raza; Waseem, Muhammad; Aslam, Bilal

    2018-01-01

    Present study was designed to evaluate the biosurfactant production potential by native strains of Bacillus cereus as well as determine their antimicrobial and antioxidant activities. The strains isolated from garden soil were characterized as B. cereus MMIC 1, MMIC 2 and MMIC 3. Biosurfactants were extracted as grey white precipitates. Optimum conditions for biosurfactant production were 37°C, the 7th day of incubation, 0.5% NaCl, pH 7.0. Moreover, corn steep liquor was the best carbon source. Biuret test, Thin Layer Chromatography (TLC), agar double diffusion and Fourier Transform Infrared Spectroscopy (FTIR) characterized the biosurfactants as cationic lipopeptides. Biosurfactants exhibited significant antibacterial and antifungal activity against S. aureus, E. coli, P. aeruginosa, K. pneumoniae, A. niger and C. albicans at 30 mg/ml. Moreover, they also possessed antiviral activity against NDV at 10 mg/ml. Cytotoxicity assay in BHK-21 cell lines revealed 63% cell survival at 10 mg/ml of biosurfactants and thus considered as safe. They also showed very good antioxidant activity by ferric-reducing activity and DPPH scavenging activity at 2 mg/ml. Consequently, the study offers an insight for the exploration of new bioactive molecules from the soil. It was concluded that lipopeptide biosurfactants produced from native strains of B. cereus may be recommended as safe antimicrobial, emulsifier and antioxidant agent.

  16. Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress

    Directory of Open Access Journals (Sweden)

    Ganesh Babu Malli Mohan

    2011-11-01

    Full Text Available Abstract Silver nanoparticles (AgNPs were synthesized using Bacillus cereus strains. Earlier, we had synthesized monodispersive crystalline silver nanoparticles using B. cereus PGN1 and ATCC14579 strains. These strains have showed high level of resistance to silver nitrate (1 mM but their global transcriptomic response has not been studied earlier. In this study, we investigated the cellular and metabolic response of B. cereus ATCC14579 treated with 1 mM silver nitrate for 30 & 60 min. Global expression profiling using genomic DNA microarray indicated that 10% (n = 524 of the total genes (n = 5234 represented on the microarray were up-regulated in the cells treated with silver nitrate. The majority of genes encoding for chaperones (GroEL, nutrient transporters, DNA replication, membrane proteins, etc. were up-regulated. A substantial number of the genes encoding chemotaxis and flagellar proteins were observed to be down-regulated. Motility assay of the silver nitrate treated cells revealed reduction in their chemotactic activity compared to the control cells. In addition, 14 distinct transcripts overexpressed from the 'empty' intergenic regions were also identified and proposed as stress-responsive non-coding small RNAs.

  17. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer.

    Science.gov (United States)

    Fukushima, Tatsuya; Sia, Allyson K; Allred, Benjamin E; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N; Raymond, Kenneth N

    2012-10-16

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up (55)Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (K(d)) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization-mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations.

  18. The impact of oxygen availability on stress survival and radical formation of Bacillus cereus.

    Science.gov (United States)

    Mols, Maarten; Pier, Ilona; Zwietering, Marcel H; Abee, Tjakko

    2009-11-15

    Both the growth and stress survival of two model Bacillus cereus strains, ATCC 14579 and ATCC 10987, were tested in three different conditions varying in oxygen availability, i.e., aerobic, microaerobic and anaerobic conditions. Both B. cereus strains displayed highest growth rates and yields under aerobic conditions, whereas the microaerobic and anaerobic cultures showed similar reduced growth performances. The cells grown and exposed microaerobically and anaerobically were more resistant to heat and acid than cells that were cultured and exposed aerobically. On the other hand, the anaerobically grown cells were more sensitive to hydrogen peroxide compared to the (micro)aerobically grown cells. The increased heat- and acid-induced inactivation in aerobic conditions appeared to be associated with intracellular accumulation of excess hydroxyl and/or peroxynitrite radicals, as determined by flow cytometry in combination with the fluorescent reporter dye 3'-(p-hydroxyphenyl) fluorescein. This suggests that radical formation may contribute to inactivation of bacteria in the presence of oxygen, such as in aerobic and microaerobic conditions. No evidence was found for radical formation upon exposure to salt and hydrogen peroxide. The increased resistance to heat and acid in microaerobic and anaerobic conditions shows that oxygen availability should be taken into account when behavior of bacteria, such as B. cereus, in food industry related conditions is investigated, because oxygen availability may affect the efficiency of food preservation conditions.

  19. Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress.

    Science.gov (United States)

    Babu, Malli Mohan Ganesh; Sridhar, Jayavel; Gunasekaran, Paramasamy

    2011-11-10

    Silver nanoparticles (AgNPs) were synthesized using Bacillus cereus strains. Earlier, we had synthesized monodispersive crystalline silver nanoparticles using B. cereus PGN1 and ATCC14579 strains. These strains have showed high level of resistance to silver nitrate (1 mM) but their global transcriptomic response has not been studied earlier. In this study, we investigated the cellular and metabolic response of B. cereus ATCC14579 treated with 1 mM silver nitrate for 30 & 60 min. Global expression profiling using genomic DNA microarray indicated that 10% (n = 524) of the total genes (n = 5234) represented on the microarray were up-regulated in the cells treated with silver nitrate. The majority of genes encoding for chaperones (GroEL), nutrient transporters, DNA replication, membrane proteins, etc. were up-regulated. A substantial number of the genes encoding chemotaxis and flagellar proteins were observed to be down-regulated. Motility assay of the silver nitrate treated cells revealed reduction in their chemotactic activity compared to the control cells. In addition, 14 distinct transcripts overexpressed from the 'empty' intergenic regions were also identified and proposed as stress-responsive non-coding small RNAs.

  20. Prevalence of Bacillus cereus in milk and rice grains collected from great Cairo

    International Nuclear Information System (INIS)

    Abo State, M.A.M.; Youssef, B.M.

    2012-01-01

    Sixty two Samples of heat treated milk, raw rice grains and Cheetos (XO-Snacks) were collected from supermarkets of great Cairo. Seventeen out of 25 milk samples (68%) gave detectable count of B. cereus on MYP medium. These positive samples count was ranging from 1.5 X 10 1 cfu/ml to 11.3X10 2 cfu/ml. Eighteen out of 25 Samples of raw rice grains (72%) gave also detectable count on MYP medium also. The count of positive rice grains was ranging from 2.0X10 1 cfu/g to 11.5X10 3 cfu /ml. However one Sample out of 12 Samples (8%) of Cheetos (Snacks) was positive with count 3.0X10 2 cfu /g. Gamma irradiation reduced the total bacterial count and B. cereus count gradually. Eight kGy reduced total bacterial count and Bacillus cereus count by 3.1 and 2.2 log cycles respectively.

  1. Novel Cell Wall Hydrolase CwlC from Bacillus thuringiensis Is Essential for Mother Cell Lysis.

    Science.gov (United States)

    Chen, Xiaomin; Gao, Tantan; Peng, Qi; Zhang, Jie; Chai, Yunrong; Song, Fuping

    2018-04-01

    In this study, a sporulation-specific gene (tentatively named cwlC ) involved in mother cell lysis in Bacillus thuringiensis was characterized. The encoded CwlC protein consists of an N-terminal N -acetylmuramoyl-l-alanine amidase (Mur N Ac-LAA) domain and a C-terminal amidase02 domain. The recombinant histidine-tagged CwlC proteins purified from Escherichia coli were able to directly bind to and digest the B. thuringiensis cell wall. The CwlC point mutations at the two conserved glutamic acid residues (Glu-24 and Glu-140) shown to be critical for the catalytic activity in homologous amidases resulted in a complete loss of cell wall lytic activity, suggesting that CwlC is an N -acetylmuramoyl-l-alanine amidase. Results of transcriptional analyses indicated that cwlC is transcribed as a monocistronic unit and that its expression is dependent on sporulation sigma factor K (σ K ). Deletion of cwlC completely blocked mother cell lysis during sporulation without impacting the sporulation frequency, Cry1Ac protein production, and insecticidal activity. Taken together, our data suggest that CwlC is an essential cell wall hydrolase for B. thuringiensis mother cell lysis during sporulation. Engineered B. thuringiensis strains targeting cwlC , which allows the crystal inclusion to remain encapsulated in the mother cell at the end of sporulation, may have the potential to become more effective biological control agents in agricultural applications since the crystal inclusion remains encapsulated in the mother cell at the end of sporulation. IMPORTANCE Mother cell lysis has been well studied in Bacillus subtilis , which involves three distinct yet functionally complementary cell wall hydrolases. In this study, a novel cell wall hydrolase, CwlC, was investigated and found to be essential for mother cell lysis in Bacillus thuringiensis CwlC of B. thuringiensis only shows 9 and 21% sequence identity with known B. subtilis mother cell hydrolases CwlB and CwlC, respectively

  2. Bacillus cereus as indicator in the sterilization of residual water with high energy electrons

    International Nuclear Information System (INIS)

    Mejia Z, E.

    2000-01-01

    One of the main causes of water pollution is the presence of microorganisms that provoke infections, moreover of chemical substances. The processes of residual water treatment finally require of the disinfection for its use or final disposition. The radiation technology for the residual water treatment by mean of electron beams is an innovator process because as well as decomposing the chemical substance or to degrade them, also it provokes a disinfection by which this is proposed as alternative for disinfection of residual water, with the purpose in reusing the water treated in the agriculture, recreation and industry among others secondary activities, solving environmental or health problems. The objective of this work is to evaluate the use of Bacillus cereus as biological indicator in the disinfection by radiation, using High Energy Electrons. To fulfil with this objective, the work was developed in three stages, the first one consisted in the acquisition, propagation and conservation of the Bacillus cereus stumps, considering Escherichia coli and Salmonella typhimurium as pathogenic germs present in residual water. Moreover, the inocule standardization and the conditions of the Electron accelerator Type Pelletron. In the second stage it was performed the irradiation of aqueous samples of the microorganisms simulating biological pollution and the application to problem samples of a treatment plant sited in the Lerma River zone of mixed residual water. And in the third stage was performed a regression analysis to the reported survival for each kind of microorganisms. The results obtained show that with the use of Electron beams was reduced 6 logarithmic units de E. coli at 129 Gy, for S. typhimurium it was reduced 8 logarithmic units at 383 Gy and the B. cereus at 511 Gy was reduced 6.8 logarithmic units. Of the problem samples irradiated at 500 Gy, the concentration of the total account diminished from 8.70 x 10 7 UFC/ml to 550 UFC/ml, the presence of B. Cereus

  3. Cereulide formation by Bacillus weihenstephanensis and mesophilic emetic Bacillus cereus at temperature abuse depends on pre-incubation conditions

    DEFF Research Database (Denmark)

    Thorsen, Line; Budde, Birgitte Bjørn; Henrichsen, Lars

    2009-01-01

    Emetic toxin (cereulide) formation was recently identified in a psychrotolerant species, Bacillus weihenstephanensis[Thorsen, L., Hansen, B.M., Nielsen, K.F.,Hendriksen, N.B., Phipps, R.K., Budde, B.B., 2006. Characterization ofemetic Bacillus weihenstephanensisis, a new cereulide-producing bacte......Emetic toxin (cereulide) formation was recently identified in a psychrotolerant species, Bacillus weihenstephanensis[Thorsen, L., Hansen, B.M., Nielsen, K.F.,Hendriksen, N.B., Phipps, R.K., Budde, B.B., 2006. Characterization ofemetic Bacillus weihenstephanensisis, a new cereulide......-producing bacterium. Applied and EnvironmentalMicrobiology, 72, 5118-5121.]. Although recent findings indicated B. weihenstephanensis as a cereulide producer only limited information is available regarding environmental conditions affecting cereulide production. In the present study a model agar system was used....... weihenstephanensis MC67 occurred in stationary growth phase, as previously observed for B. cereus, and biomass formation and cereulide formation showed a linear correlation. During incubation at 5 °C for 1, 2 and 3 weeks growth was inhibited and as a consequence no detectable cereulide production occurred for any...

  4. A novel Bacillus thuringiensis strain LLB6, isolated from bryophytes, and its new cry2Ac-type gene.

    Science.gov (United States)

    Zhang, L L; Lin, J; Luo, L; Guan, C Y; Zhang, Q L; Guan, Y; Zhang, Y; Ji, J T; Huang, Z P; Guan, X

    2007-03-01

    To isolate and characterize the novel Bacillus thuringiensis strains from bryophytes collected from Wuyi Mountain, Fujian Province of China, and identify new B. thuringiensis strains and toxins active against mosquitoes. Twelve novel B. thuringiensis strains were isolated from 76 bryophyte samples. According to the results of this preliminary screening, LLB6 was the most toxic to Aedes albopictus. Then phase-contrast as well as scanning electron microscopy, bioassays, cloning, sequencing and expression were performed to characterize the novel isolate LLB6 and its new gene cry2Ac5. Bacillus thuringiensis occurred naturally on bryophytes. LLB6 isolated from Physcomitrium japonicum was toxic to A. albopictus. A new cry2Ac5 gene of LLB6 was detected, cloned and expressed successfully. Bioassays on A. albopictus showed that the expressed Cry2Ac5 was also toxic to the third instar larvae. This is the first report of B. thuringiensis strains isolated from bryophytes. It represents a specific source of new B. thuringiensis strains and is of great importance for the knowledge of the ecology of B. thuringiensis. Novel LLB6 harboring the new gene cry2Ac5 and its expressed Cry2Ac5 protein revealed activity against A. albopictus and became a new member of B. thuringiensis toxins.

  5. The CodY-dependent clhAB2 operon is involved in cell shape, chaining and autolysis in Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Huillet, Eugénie; Bridoux, Ludovic; Wanapaisan, Pagakrong; Rejasse, Agnès; Peng, Qi; Panbangred, Watanalai; Lereclus, Didier

    2017-01-01

    The Gram-positive pathogen Bacillus cereus is able to grow in chains of rod-shaped cells, but the regulation of chaining remains largely unknown. Here, we observe that glucose-grown cells of B. cereus ATCC 14579 form longer chains than those grown in the absence of glucose during the late exponential and transition growth phases, and identify that the clhAB2 operon is required for this chain lengthening phenotype. The clhAB2 operon is specific to the B. cereus group (i.e., B. thuringiensis, B. anthracis and B. cereus) and encodes two membrane proteins of unknown function, which are homologous to the Staphylococcus aureus CidA and CidB proteins involved in cell death control within glucose-grown cells. A deletion mutant (ΔclhAB2) was constructed and our quantitative image analyses show that ΔclhAB2 cells formed abnormal short chains regardless of the presence of glucose. We also found that glucose-grown cells of ΔclhAB2 were significantly wider than wild-type cells (1.47 μm ±CI95% 0.04 vs 1.19 μm ±CI95% 0.03, respectively), suggesting an alteration of the bacterial cell wall. Remarkably, ΔclhAB2 cells showed accelerated autolysis under autolysis-inducing conditions, compared to wild-type cells. Overall, our data suggest that the B. cereus clhAB2 operon modulates peptidoglycan hydrolase activity, which is required for proper cell shape and chain length during cell growth, and down-regulates autolysin activity. Lastly, we studied the transcription of clhAB2 using a lacZ transcriptional reporter in wild-type, ccpA and codY deletion-mutant strains. We found that the global transcriptional regulatory protein CodY is required for the basal level of clhAB2 expression under all conditions tested, including the transition growth phase while CcpA, the major global carbon regulator, is needed for the high-level expression of clhAB2 in glucose-grown cells.

  6. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Periago, Paula M; van Schaik, Willem; Abee, Tjakko; Wouters, Jeroen A

    2002-07-01

    To monitor the ability of the food-borne opportunistic pathogen Bacillus cereus to survive during minimal processing of food products, we determined its heat-adaptive response. During pre-exposure to 42 degrees C, B. cereus ATCC 14579 adapts to heat exposure at the lethal temperature of 50 degrees C (maximum protection occurs after 15 min to 1 h of pre-exposure to 42 degrees C). For this heat-adaptive response, de novo protein synthesis is required. By using two-dimensional gel electrophoresis, we observed 31 heat-induced proteins, and we determined the N-terminal sequences of a subset of these proteins. This revealed induction of stress proteins (CspB, CspE, and SodA), proteins involved in sporulation (SpoVG and AldA), metabolic enzymes (FolD and Dra), identified heat-induced proteins in related organisms (DnaK, GroEL, ClpP, RsbV, HSP16.4, YflT, PpiB, and TrxA), and other proteins (MreB, YloH, and YbbT). The upregulation of several stress proteins was confirmed by using antibodies specific for well-characterized heat shock proteins (HSPs) of B. subtilis. These observations indicate that heat adaptation of B. cereus involves proteins that function in a variety of cellular processes. Notably, a 30-min pre-exposure to 4% ethanol, pH 5, or 2.5% NaCl also results in increased thermotolerance. Also, for these adaptation processes, protein synthesis is required, and indeed, some HSPs are induced under these conditions. Collectively, these data show that during mild processing, cross-protection from heating occurs in pathogenic B. cereus, which may result in increased survival in foods.

  7. Isolation and characterization of flagellar filaments from Bacillus cereus ATCC 14579.

    Science.gov (United States)

    Tagawa, Yuichi

    2014-12-01

    Isolated flagellar filaments from the type strain of Bacillus cereus, ATCC 14579, were shown to consist of 34, 32 and 31 kDa proteins in similar proportions as judged by band intensities on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequences of these three proteins of strain ATCC 14579 were identical with the deduced sequences of three flagellin genes BC1657, BC1658 and BC1659 in the whole genome sequence. Strain ATCC 14579 was classified into serotype T2 by a flagellar serotyping scheme for B. cereus strains that are untypeable into known flagellar serotypes H1 to H23. Flagellar filaments from a reference strain of serotype T2 contained two protein bands at 34 and 32 kDa, but a single protein band at 39 kDa was detected in flagellar filaments of a reference strain of serotype H1. Two murine monoclonal antibodies, 1A5 and 2A5, which recognize both the 34 and 32 kDa flagellins and a single flagellin of 32 kDa, respectively, were specifically reactive with B. cereus strains ATCC 14579 and serotype T2 in whole-cell ELISA and bacterial motility inhibition tests. In immunoelectron microscopy with monoclonal antibodies 1A5 and 2A5, colloidal gold spheres were shown to localize almost evenly over the entire part of flagellar filaments. Since strain ATCC 14579, and presumably strain serotype T2, are unusual among B. cereus strains in possessing multiple genes that encode flagellin subunits, a possible unique mechanism may contribute to assembly of multiple flagellin subunits into the filament over its entire length.

  8. Genetic and functional analysis of the cytK family of genes in Bacillus cereus.

    Science.gov (United States)

    Fagerlund, Annette; Ween, Ola; Lund, Terje; Hardy, Simon P; Granum, Per E

    2004-08-01

    CytK is a pore-forming toxin of Bacillus cereus that has been linked to a case of necrotic enteritis. PCR products of the expected size were generated with cytK primers in 13 of 29 strains. Six strains were PCR-positive for the related gene hly-II, which encodes haemolysin II, a protein that is 37 % identical to the original CytK. Five of the strains were positive for both genes. The DNA sequences of putative cytK genes from three positive strains were determined, and the deduced amino acid sequences were 89 % identical to that of the original CytK. The authors have designated this new cytK variant cytK-2, and refer to the original cytK as cytK-1. The CytK-2 proteins from these three strains were isolated, and their identity was verified by N-terminal sequencing. blast analysis using the cytK-2 gene sequences revealed very high homology with two cytK-2 sequences in the genomes of B. cereus strains ATCC 14579 and ATCC 10987. The differences between CytK-1 and the CytK-2 proteins were clustered to certain regions of the proteins. The isolated CytK-2 proteins were haemolytic and toxic towards human intestinal Caco-2 cells and Vero cells, although their toxicity was about 20 % of that of CytK-1. Both native and recombinant CytK-2 proteins from B. cereus 1230-88 were able to form pores in planar lipid bilayers, but the majority of the channels observed were of lower conductance than those created by CytK-1. It is likely that CytK-2 toxins contribute to the enterotoxicity of several strains of B. cereus, although not all of the CytK-2 toxins may be as harmful as the CytK-1 originally isolated.

  9. Evaluation of the Sporicidal Activity of Ethanol Extract of Arctium lappa Root against Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Vajihe Karbasizade

    2014-10-01

    Full Text Available Background: Bacillus cereus is one of the most common causes of food spoilage, keratitis, endophthalmitis, and panophthalmitis. These bacteria produce spores which are resistant to chemical and physical agents. Nowadays, the sporicidal properties of plants have been considered as alternatives to chemical sporicidal agents. Materials and Methods: In this empirical-experimental study the effect of ethanol extract of edible burdock (Arctium lappa root has been studied on Bacillus cereus spores. In this investigation, the suspensions of tested microorganisms were cultured in sporulating agar. Sporulation process was assessed by optical microscopy following the staining of spores. Then the produced spores were exposed to various concentrations (100, 150, 200, 250, 300 mg/mL of ethanol extract of edible burdock (Arctium lappa root and finally the remaining spores were counted. With increasing concentrations of ethanol extract, the number of spores declined. Results: Pearson correlation showed inverse relation between the spores count and concentration of ethanol extract of edible burdock (Arctium lappa root (r=-0.765, p<0.001. The most effective extract concentration was 300 mg /mL. Conclusion: Ethanol extract of edible burdock (Arctium lappa root, has sporicidal activity. Only, the sporicidal nature of ethanol extract has been evaluated by this study; therefore, the assessment of other extracts and essences is necessary.

  10. Simultaneous Detection of Escherichia coli, Salmonella enterica, Listeria monocytegenes and Bacillus cereus by Oligonucleotide Microarray

    Directory of Open Access Journals (Sweden)

    Meysam Sarshar

    2015-11-01

    Full Text Available Background: Traditional laboratory methods to detect pathogenic bacteria are time consuming and laborious. Therefore, it is essential to use powerful and reliable molecular methods for quick and simultaneous detection of microbial pathogens. Objectives: The current study aimed to evaluate the capability and efficiency of 23S rDNA sequence for rapid and simultaneous detection of four important food-borne pathogens by an oligonucleotide microarray technique. Materials and Methods: The 23S rDNA sequences of Escherichia coli, Salmonella enterica, Listeria monocytogenes and Bacillus cereus were obtained from GenBank databases and used to design the oligonucleotide probes and primers by Vector NTI software. Oligonucleotide probes were placed on a nylon membrane and hybridization was performed between probes and 23S rDNA digoxigenin-labeled polymerase chain reaction (PCR products. Hybridization signals were visualized by NBT/BCIP color development. Results: Positive hybridization color was produced for Escherichia coli, Salmonella enterica, Listeria monocytogenes and Bacillus cereus. The oligonucleotide microarray detected all bacterial strains in a single reaction in less than five hours. The sensitivity of the performed microarray assay was 103 cfu/mL for each species of pathogen. No cross reaction was found between the tested bacterial species. Conclusions: The obtained results indicated that amplification of 23S rDNA gene followed by oligonucleotide microarray hybridization is a rapid and reliable method to identify and discriminate foodborne pathogens tested under the study.

  11. Inhibition of Bacillus cereus Strains by Antimicrobial Metabolites from Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21.

    Science.gov (United States)

    Soria, M Cecilia; Audisio, M Carina

    2014-12-01

    Bacillus cereus is an endospore-forming, Gram-positive bacterium able to cause foodborne diseases. Lactic acid bacteria (LAB) are known for their ability to synthesize organic acids and bacteriocins, but the potential of these compounds against B. cereus has been scarcely documented in food models. The present study has examined the effect of the metabolites produced by Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21 on the viability of select B. cereus strains. Furthermore, the effect of E. faecium SM21 metabolites against B. cereus strains has also been investigated on a rice food model. L. johnsonii CRL1647 produced 128 mmol/L of lactic acid, 38 mmol/L of acetic acid and 0.3 mmol/L of phenyl-lactic acid. These organic acids reduced the number of vegetative cells and spores of the B. cereus strains tested. However, the antagonistic effect disappeared at pH 6.5. On the other hand, E. faecium SM21 produced only lactic and acetic acid (24.5 and 12.2 mmol/L, respectively) and was able to inhibit both vegetative cells and spores of the B. cereus strains, at a final fermentation pH of 5.0 and at pH 6.5. This would indicate the action of other metabolites, different from organic acids, present in the cell-free supernatant. On cooked rice grains, the E. faecium SM21 bacteriocin(s) were tested against two B. cereus strains. Both of them were significantly affected within the first 4 h of contact; whereas B. cereus BAC1 cells recovered after 24 h, the effect on B. cereus 1 remained up to the end of the assay. The LAB studied may thus be considered to define future strategies for biological control of B. cereus.

  12. Germinant receptor diversity and germination responses of four strains of the Bacillus cereus group.

    Science.gov (United States)

    van der Voort, Menno; García, Diego; Moezelaar, Roy; Abee, Tjakko

    2010-04-30

    Four strains of the Bacillus cereus group were compared for their germinant receptor composition and spore germination capacity. Phylogenetic analysis of the germinant receptor encoding operons of the enterotoxic strains B. cereus ATCC 14579 and ATCC 10987, the emetic strain AH187, and the psychrotolerant strain Bacillus weihenstephanensis KBAB4, indicated a core group of five germinant receptor operons to be present in the four strains, with each strain containing one to three additional receptors. Using quantitative PCR, induction of expression during sporulation was confirmed for all identified germinant receptor operons in these strains. Despite the large overlap in receptors, diversity in amino acid-induced germination capacity was observed, with six out of 20 amino acids, serving as germinants for spores of all four strains. Each strain showed unique features: efficient germination of strain KBAB4 spores required non-inducing amounts of inosine as the co-germinant, strain ATCC 10987 spores germinated only efficiently after heat activation. Furthermore, strain ATCC 14579 and AH187 spores germinated without heat activation or inosine, with strain ATCC 14579 spores being triggered by all amino acids except phenylalanine and strain AH187 spores being specifically triggered efficiently only by phenylalanine. Analysis of all germination data did not reveal strict linkages between specific germinants and germinant receptors. Finally, the diversity in nutrient-induced germination capacity was also reflected in the diverse germination responses of heat-activated spores of the four B. cereus strains in food matrices, such as milk, rice water and meat bouillon, indicating that amino acid composition and/or availability of inosine are important germination determinants in foods. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil.

    Science.gov (United States)

    Vilain, Sébastien; Luo, Yun; Hildreth, Michael B; Brözel, Volker S

    2006-07-01

    Bacillus is commonly isolated from soils, with organisms of Bacillus cereus sensu lato being prevalent. Knowledge of the ecology of B. cereus and other Bacillus species in soil is far from complete. While the older literature favors a model of growth on soil-associated organic matter, the current paradigm is that B. cereus sensu lato germinates and grows in association with animals or plants, resulting in either symbiotic or pathogenic interactions. An in terra approach to study soil-associated bacteria is described, using filter-sterilized soil-extracted soluble organic matter (SESOM) and artificial soil microcosms (ASM) saturated with SESOM. B. cereus ATCC 14579 displayed a life cycle, with the ability to germinate, grow, and subsequently sporulate in both the liquid SESOM extract and in ASM inserted into wells in agar medium. Cells grew in liquid SESOM without separating, forming multicellular structures that coalesced to form clumps and encasing the ensuing spores in an extracellular matrix. Bacillus was able to translocate from the point of inoculation through soil microcosms as shown by the emergence of outgrowths on the surrounding agar surface. Microscopic inspection revealed bundles of parallel chains inside the soil. The motility inhibitor L-ethionine failed to suppress outgrowth, ruling out translocation by a flagellar-mediated mechanism such as swimming or swarming. Bacillus subtilis subsp. subtilis Marburg and four Bacillus isolates taken at random from soils also displayed a life cycle in SESOM and ASM and were all able to translocate through ASM, even in presence of L-ethionine. These data indicate that B. cereus is a saprophytic bacterium that is able to grow in soil and furthermore that it is adapted to translocate by employing a multicellular mode of growth.

  14. Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus--United States, 1998-2008.

    Science.gov (United States)

    Bennett, Sarah D; Walsh, Kelly A; Gould, L Hannah

    2013-08-01

    From 1998 to 2008, 1229 foodborne outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus were reported in the United States; 39% were reported with a confirmed etiology. Vomiting was commonly reported in B. cereus (median, 75% of cases) and S. aureus outbreaks (median, 87%), but rarely in C. perfringens outbreaks (median, 9%). Meat or poultry dishes were commonly implicated in C. perfringens (63%) and S. aureus (55%) outbreaks, and rice dishes were commonly implicated in B. cereus outbreaks (50%). Errors in food processing and preparation were commonly reported (93%), regardless of etiology; contamination by a food worker was only common in S. aureus outbreaks (55%). Public health interventions should focus on these commonly reported errors to reduce the occurrence of outbreaks caused by B. cereus, C. perfringens, and S. aureus in the United States.

  15. Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation

    International Nuclear Information System (INIS)

    Fernandes, Joao C.; Eaton, Peter; Gomes, Ana M.; Pintado, Manuela E.; Xavier Malcata, F.

    2009-01-01

    Bacillus cereus is a Gram-positive, spore-forming bacterium that is widely distributed in nature. Its intrinsic thermal resistance coupled with the extraordinary resistance against common food preservation techniques makes it one of the most frequent food-poisoning microorganisms causing both intoxications and infections. In order to control B. cereus growth/sporulation, and hence minimize the aforementioned hazards, several antimicrobial compounds have been tested. The aim of this work was to assess by atomic force microscopy (AFM) the relationship between the molecular weight (MW) of chitosan and its antimicrobial activity upon both vegetative and resistance forms of B. cereus. The use of AFM imaging studies helped us to understand how chitosans with different MW act differently upon B. cereus. Higher MW chitosans (628 and 100 kDa) surrounded both forms of B. cereus cells by forming a polymer layer-which eventually led to the death of the vegetative form by preventing the uptake of nutrients yet did not affect the spores since these can survive for extended periods without nutrients. Chitooligosaccharides (COS) (<3 kDa), on the other hand, provoked more visible damages in the B. cereus vegetative form-most probably due to the penetration of the cells by the COS. The use of COS by itself on B. cereus spores was not enough for the destruction of a large number of cells, but it may well weaken the spore structure and its ability to contaminate, by inducing exosporium loss.

  16. Characterization of LysB4, an endolysin from the Bacillus cereus-infecting bacteriophage B4.

    Science.gov (United States)

    Son, Bokyung; Yun, Jiae; Lim, Jeong-A; Shin, Hakdong; Heu, Sunggi; Ryu, Sangryeol

    2012-03-15

    Bacillus cereus is a foodborne pathogen that causes emetic or diarrheal types of food poisoning. The incidence of B. cereus food poisoning has been gradually increasing over the past few years, therefore, biocontrol agents effective against B. cereus need to be developed. Endolysins are phage-encoded bacterial peptidoglycan hydrolases and have received considerable attention as promising antibacterial agents. The endolysin from B. cereus phage B4, designated LysB4, was identified and characterized. In silico analysis revealed that this endolysin had the VanY domain at the N terminus as the catalytic domain, and the SH3_5 domain at the C terminus that appears to be the cell wall binding domain. Biochemical characterization of LysB4 enzymatic activity showed that it had optimal peptidoglycan hydrolase activity at pH 8.0-10.0 and 50°C. The lytic activity was dependent on divalent metal ions, especially Zn2+. The antimicrobial spectrum was relatively broad because LysB4 lysed Gram-positive bacteria such as B. cereus, Bacillus subtilis and Listeria monocytogenes and some Gram-negative bacteria when treated with EDTA. LC-MS analysis of the cell wall cleavage products showed that LysB4 was an L-alanoyl-D-glutamate endopeptidase, making LysB4 the first characterized endopeptidase of this type to target B. cereus. LysB4 is believed to be the first reported L-alanoyl-D-glutamate endopeptidase from B. cereus-infecting bacteriophages. The properties of LysB4 showed that this endolysin has strong lytic activity against a broad range of pathogenic bacteria, which makes LysB4 a good candidate as a biocontrol agent against B. cereus and other pathogenic bacteria.

  17. Characterization of LysB4, an endolysin from the Bacillus cereus-infecting bacteriophage B4

    Directory of Open Access Journals (Sweden)

    Son Bokyung

    2012-03-01

    Full Text Available Abstract Background Bacillus cereus is a foodborne pathogen that causes emetic or diarrheal types of food poisoning. The incidence of B. cereus food poisoning has been gradually increasing over the past few years, therefore, biocontrol agents effective against B. cereus need to be developed. Endolysins are phage-encoded bacterial peptidoglycan hydrolases and have received considerable attention as promising antibacterial agents. Results The endolysin from B. cereus phage B4, designated LysB4, was identified and characterized. In silico analysis revealed that this endolysin had the VanY domain at the N terminus as the catalytic domain, and the SH3_5 domain at the C terminus that appears to be the cell wall binding domain. Biochemical characterization of LysB4 enzymatic activity showed that it had optimal peptidoglycan hydrolase activity at pH 8.0-10.0 and 50°C. The lytic activity was dependent on divalent metal ions, especially Zn2+. The antimicrobial spectrum was relatively broad because LysB4 lysed Gram-positive bacteria such as B. cereus, Bacillus subtilis and Listeria monocytogenes and some Gram-negative bacteria when treated with EDTA. LC-MS analysis of the cell wall cleavage products showed that LysB4 was an L-alanoyl-D-glutamate endopeptidase, making LysB4 the first characterized endopeptidase of this type to target B. cereus. Conclusions LysB4 is believed to be the first reported L-alanoyl-D-glutamate endopeptidase from B. cereus-infecting bacteriophages. The properties of LysB4 showed that this endolysin has strong lytic activity against a broad range of pathogenic bacteria, which makes LysB4 a good candidate as a biocontrol agent against B. cereus and other pathogenic bacteria.

  18. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1.

    Science.gov (United States)

    Rasko, David A; Ravel, Jacques; Økstad, Ole Andreas; Helgason, Erlendur; Cer, Regina Z; Jiang, Lingxia; Shores, Kelly A; Fouts, Derrick E; Tourasse, Nicolas J; Angiuoli, Samuel V; Kolonay, James; Nelson, William C; Kolstø, Anne-Brit; Fraser, Claire M; Read, Timothy D

    2004-01-01

    We sequenced the complete genome of Bacillus cereus ATCC 10987, a non-lethal dairy isolate in the same genetic subgroup as Bacillus anthracis. Comparison of the chromosomes demonstrated that B.cereus ATCC 10987 was more similar to B.anthracis Ames than B.cereus ATCC 14579, while containing a number of unique metabolic capabilities such as urease and xylose utilization and lacking the ability to utilize nitrate and nitrite. Additionally, genetic mechanisms for variation of capsule carbohydrate and flagella surface structures were identified. Bacillus cereus ATCC 10987 contains a single large plasmid (pBc10987), of approximately 208 kb, that is similar in gene content and organization to B.anthracis pXO1 but is lacking the pathogenicity-associated island containing the anthrax lethal and edema toxin complex genes. The chromosomal similarity of B.cereus ATCC 10987 to B.anthracis Ames, as well as the fact that it contains a large pXO1-like plasmid, may make it a possible model for studying B.anthracis plasmid biology and regulatory cross-talk.

  19. Influence of glutamate on growth, sporulation, and spore properties of Bacillus cereus ATCC 14579 in defined medium

    NARCIS (Netherlands)

    Vries, de Y.P.; Atmadja, R.D.; Hornstra, L.M.; Vos, de W.M.; Abee, T.

    2005-01-01

    A chemically defined medium in combination with an airlift fermentor system was used to study the growth and sporulation of Bacillus cereus ATCC 14579. The medium contained six amino acids and lactate as the main carbon sources. The amino acids were depleted during exponential growth, while lactate

  20. Role of germinant receptors in Caco-2 cell-initiated germination of Bacillus cereus ATCC 14579 endospores

    NARCIS (Netherlands)

    Hornstra, L.M.; Voort, van der M.; Wijnands, L.M.; Roubos-van den Hil, P.J.; Abee, T.

    2009-01-01

    Spores obtained from Bacillus cereus ATCC 14579 and mutant strains lacking each of seven germinant receptor operons were exposed to differentiated Caco-2 cells and monitored for germination. Spores of the gerI and gerL mutants showed a reduced germination response, pointing to a role for these

  1. Sporulation environment of emetic toxin-producing Bacillus cereus strains determines spore size, heat resistance and germination capacity

    NARCIS (Netherlands)

    Voort, van der M.; Abee, T.

    2013-01-01

    Aim Heat resistance, germination and outgrowth capacity of Bacillus cereus spores in processed foods are major factors in causing the emetic type of gastrointestinal disease. In this study, we aim to identify the impact of different sporulation conditions on spore properties of emetic

  2. A novel hybrid kinase is essential for regulating the σB-mediated stress response of Bacillus cereus.

    NARCIS (Netherlands)

    Been, de M.W.H.J.; Tempelaars, Marcel; Schaik, van W.; Moezelaar, Roy; Siezen, R.J.; Abee, Tjakko

    2009-01-01

    A common bacterial strategy for monitoring environmental challenges is to use two-component systems, which consist of a sensor histidine kinase (HK) and a response regulator (RR). In the food-borne pathogen Bacillus cereus, the alternative sigma factor σB is activated by the RR RsbY. Here we present

  3. A novel hybrid kinase is essential for regulating the sigmaB-mediated stress response of Bacillus cereus

    NARCIS (Netherlands)

    Been, de M.W.H.J.; Tempelaars, M.H.; Schaik, van W.; Moezelaar, R.; Siezen, R.J.; Abee, T.

    2010-01-01

    A common bacterial strategy for monitoring environmental challenges is to use two-component systems, which consist of a sensor histidine kinase (HK) and a response regulator (RR). In the food-borne pathogen Bacillus cereus, the alternative sigma factor sB is activated by the RR RsbY. Here we present

  4. Transcriptional regulation of metabolic pathways, alternative respiration and enterotoxin genes in anaerobic growth of Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    Voort, van der M.; Abee, T.

    2009-01-01

    Aims: To assess genes specifically activated during anaerobic growth that are involved in metabolism and pathogenesis of the foodborne pathogen Bacillus cereus. Methods and Results: Growth under anaerobic conditions in Brain Heart Infusion (BHI) broth revealed a reduced growth rate and lower yield

  5. Characterization of germination and outgrowth of sorbic acid-stressed Bacillus cereus ATCC 14579 spores: Phenotype and transcriptome analysis

    NARCIS (Netherlands)

    Melis, van C.C.J.; Nierop Groot, M.N.; Tempelaars, M.H.; Moezelaar, R.; Abee, T.

    2011-01-01

    Sorbic acid (SA) is widely used as a preservative, but the effect of SA on spore germination and outgrowth has gained limited attention up to now. Therefore, the effect of sorbic acid on germination of spores of Bacillus cereus strain ATCC 14579 was analyzed both at phenotype and transcriptome

  6. Assessment of CcpA-mediated catabolite control of metabolism and enterotoxin production in Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    Voort, van der M.; Kuipers, O.P.; Buist, G.; Vos, de Willem; Abee, Tjakko

    2008-01-01

    In Bacillus cereus the catabolite control protein CcpA was shown to be involved in optimizing the efficiency of glucose catabolism by activating genes encoding glycolytic enzymes including a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase that mediates conversion of D-glyceraldehyde

  7. Growth and sporulation of Bacillus cereus ATCC 14579 under defined conditions: temporal expression of genes for key sigma factors

    NARCIS (Netherlands)

    Vries, de Y.P.; Hornstra, L.M.; Vos, de W.M.; Abee, T.

    2004-01-01

    An airlift fermentor system allowing precise regulation of pH and aeration combined with a chemically defined medium was used to study growth and sporulation of Bacillus cereus ATCC 14579. Sporulation was complete and synchronous. Expression of sigA, sigB, sigF, and sigG was monitored with real-time

  8. Seleção de bacillus spp. para produção de esterases e melhoramento de bacillus cereus (c124 Selection of bacillus spp. For esterase production and genetic improvement of bacillus cereus (c124

    Directory of Open Access Journals (Sweden)

    Analucia Longman Mendonça

    1998-06-01

    Full Text Available Forty-four Bacillus spp. strains obtained from sugar cane derivates and residues, six of them isolated in this work, were tested using Tween 80 as substrate (agar-Tween 80 medium, in order to determine their esterase activity through the enzymatic index averages. After statistic analysis, B. cereus (C124 strain, which presented better results, was submitted to genetic improvement by treatment with ultraviolet light (UV. The survival curve pointed out 28" as the time necessary to obtain 30% of survivors. Fifty survivors and the wild strain C124 were compared in relation to their esterase activity as mentioned previously. The wild strain and the mutant C124UV35, which showed enzymatic index average higher than C124, were characterized in polyacrilamide gel electrophoresis (PAGE. Eletrophoretic patterns for total proteins of wild and mutant strain showed different profiles according to number, position and intensity of bands. For esterase, the bands varied only in intensity.

  9. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis.

    Science.gov (United States)

    Kumar, Prasun; Sharma, Rishi; Ray, Subhasree; Mehariya, Sanjeet; Patel, Sanjay K S; Lee, Jung-Kul; Kalia, Vipin C

    2015-04-01

    Biodiesel manufacturing units discharge effluents rich in glycerol. The need is to convert crude glycerol (CG) into useful products such as hydrogen (H2). Under batch culture, Bacillusthuringiensis EGU45 adapted on pure glycerol (PG, 2% v/v) resulted in an H2 yield of 0.646 mol/mol glycerol consumed on minimal media (250 mL) supplemented with 1% ammonium nitrate at 37°C over 4 days. Here, H2 constituted 67% of the total biogas. Under continuous culture, at 2 days of hydraulic retention time, B. thuringiensis immobilized on ligno-cellulosic materials (banana leaves - BL, 10% v/v) resulted in a H2 yield of 0.386 mol/mol PG consumed. On CG, the maximal H2 yield of 0.393 mol/mol feed consumed was recorded. In brief, B. thuringiensis could transform CG, on limited resources - minimal medium with sodium nitrate, by immobilizing them on cheap and easily available biowaste, which makes it a suitable candidate for H2 production on a large scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants.

    Science.gov (United States)

    Monnerat, Rose Gomes; Soares, Carlos Marcelo; Capdeville, Guy; Jones, Gareth; Martins, Erica Soares; Praça, Lilian; Cordeiro, Bruno Arrivabene; Braz, Shélida Vasconcelos; dos Santos, Roseane Cavalcante; Berry, Colin

    2009-07-01

    The major biological pesticide for the control of insect infestations of crops, Bacillus thuringiensis was found to be present naturally within cotton plants from fields that had never been treated with commercial formulations of this bacterium. The ability of B. thuringiensis to colonize plants as an endophyte was further established by the introduction of a strain marked by production of green fluorescent protein (GFP). After inoculation of this preparation close to the roots of cotton and cabbage seedlings, GFP-marked bacteria could be re-isolated from all parts of the plant, having entered the roots and migrated through the xylem. Leaves taken from the treated plants were able to cause toxicity when fed to the Lepidoptera Spodoptera frugiperda (cotton) and Plutella xylostella (cabbage). These results open up new horizons for understanding the natural ecology and evolution of B. thuringiensis and use of B. thuringiensis in insect control. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd. No claim to original Brazilian government works.

  11. Effect of Bacillus thuringiensis parasporal toxin on stimulating of IL-2 and IL-5 cytokines production

    Directory of Open Access Journals (Sweden)

    Marzieh Soleimany

    2018-03-01

    Full Text Available Introduction:Bacillus thuringiensis, is a Gram-positive spore-forming bacterium that produces crystalline parasporal protein (Cry during sporulation. Some of these Cry toxins do not show cytotoxicity against insects but they are capable to kill some human and animal cancer cells. The aim of this study was to verify whether cytocidal parasporal of B thuringiensis strains have immunostimulatory activity on human peripheral blood mononuclear cells (PBMNC and to evaluate the ability of IL-2 and IL-5 production. Materials and methods: B. thuringiensis toxin with cytocidal activity was isolated and treated with proteinase K. PBMNC was cultured and treated with activated crystal proteins. We evaluated the ability of different cytokines production with Flow Cytometry. Results: In this study, immune stimulatory toxins Cry1 were distinguished. This toxin can stimulate production of cytokines IL-2 and stop production of IL-5. Discussion and conclusion: According to anti-cancer effect of B. thuringiensis toxins and also immune stimulatory effect, with more research these toxins can be introduced as immunotherapy drug in cancer treatment.

  12. Assessment of microbial larvicide spraying with Bacillus thuringiensis israelensis, for the prevention of malaria.

    Science.gov (United States)

    Kinde-Gazard, D; Baglo, T

    2012-03-01

    The aim of this study was to assess the contribution of microbial larvicide spraying, Bacillus thuringiensis israelensis, as prevention strategy against malaria. An experimental study consisted in spraying B. thuringiensis israelensis in a district during 1 year has been conducted. Another district (control) was not sprayed. Eight hundred and two children were evaluated, thick drop and swab examination was performed for those presenting with fever. The larval density was calculated in their habitats as well as larvicide remanence. Capture of mosquitoes with human bait allowed determining human exposure to bites at night, and identifying anopheles after dissection. The incidence of pediatric malaria was 13.8% in the sprayed district and 31.4% in the control district. The parasitic load ranged from 2000 to 42,000 parasites/μL in the sprayed district and 2000 to 576,000 parasites/μL in the control district. Plasmodium falciparum was the most frequent (97.8%) plasmodial species. In the control district, at least 20 larvae by liter of water were counted; anopheles larvae were found in 11 larval habitats out of 15 (73.33%). The human exposure to anopheles bites at night was 14.25 in the sprayed district and 33.13 in the control district. The remanence of B. thuringiensis israelensis was estimated at 9 days in the sprayed district. The larvicide B. thuringiensis israelensis may be used in vector control strategy for the prevention of malaria. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Effect of inherited sterility and bacillus thuringiensis on mortality and reproduction of phthorimaea opercullela zeller (lepidoptera: gelechidae)

    International Nuclear Information System (INIS)

    Makee, H.; Tlas, M. D.; Amer, S.; Abdulla, J.

    2008-01-01

    The effect of a commercial formulation of Bacillus thuringiensis (Dipel 2X) upon F 1 progeny of irradiated and unirradiated phthorimaea operculella male parents was investigated. F 1 progeny of irradiated parents was more susceptible to B. thuringiensis than that of unirradiated parents. A combination of irradiation and B. thuringiensis led to higher mortality in F 1 progeny of P. operculella. The LC 50 was 0.406 g/100ml for F 1 progeny of unirradiated parents, but 0.199 g/100ml for those of irradiated parents. There was a great reduction in the pupal weight, fecundity and egg hatchability of F 1 progeny of irradiated patents compared to those unirradiated parents. Such reduction was increased by applying higher concentration of B. thuringiensis. A combination between inherited sterility technique and B. thuringiensis application could give a good controlling result against P. operculella. (author)

  14. Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1

    Directory of Open Access Journals (Sweden)

    He Minyan

    2010-08-01

    Full Text Available Abstract Background Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr(VI and Cr(III. Chromate [Cr(VI] is carcinogenic, mutational, and teratogenic due to its strong oxidizing nature. Biotransformation of Cr(VI to less-toxic Cr(III by chromate-resistant and reducing bacteria has offered an ecological and economical option for chromate detoxification and bioremediation. However, knowledge of the genetic determinants for chromate resistance and reduction has been limited so far. Our main aim was to investigate chromate resistance and reduction by Bacillus cereus SJ1, and to further study the underlying mechanisms at the molecular level using the obtained genome sequence. Results Bacillus cereus SJ1 isolated from chromium-contaminated wastewater of a metal electroplating factory displayed high Cr(VI resistance with a minimal inhibitory concentration (MIC of 30 mM when induced with Cr(VI. A complete bacterial reduction of 1 mM Cr(VI was achieved within 57 h. By genome sequence analysis, a putative chromate transport operon, chrIA1, and two additional chrA genes encoding putative chromate transporters that likely confer chromate resistance were identified. Furthermore, we also found an azoreductase gene azoR and four nitroreductase genes nitR possibly involved in chromate reduction. Using reverse transcription PCR (RT-PCR technology, it was shown that expression of adjacent genes chrA1 and chrI was induced in response to Cr(VI but expression of the other two chromate transporter genes chrA2 and chrA3 was constitutive. In contrast, chromate reduction was constitutive in both phenotypic and gene expression analyses. The presence of a resolvase gene upstream of chrIA1, an arsenic resistance operon and a gene encoding Tn7-like transposition proteins ABBCCCD downstream of chrIA1 in B. cereus SJ1 implied the possibility of recent horizontal gene transfer. Conclusion Our results indicate that expression of the chromate

  15. Activity of Bacillus thuringiensis isolates against immature horn fly and stable fly (Diptera: Muscidae).

    Science.gov (United States)

    Lysyk, T J; Kalischuk-Tymensen, L D; Rochon, K; Selinger, L B

    2010-06-01

    We screened 85 isolates of Bacillus thuringiensis (Berliner), making up 57 different subspecies, and two isolates of Bacillus sphaericus (Meyer and Neide) for activity against immature horn flies, Haematobia irritans (L.), and stable flies, Stomoxys calcitrans (L.). The majority of B. thuringiensis and the B. sphaericus isolates had little or no activity against horn fly and stable fly. Approximately 87% of the isolates caused fly larvae and 64% caused stable fly, 95% of the isolates caused fly and stable fly immatures. These isolates were B. t. tolworthi 4L3, B. t. darmstadiensis 4M1, B. t. thompsoni 401, B. t. thuringiensis HD2, and B. t. kurstaki HD945. The LD50 values ranged from 2.2 to 7.9 x 10(6) spores per g manure for horn fly and from 6.3 to 35 x 10(6) spores per g media for stable fly. These were consistently more toxic compared with the B. t. israelensis isolates examined. All had DNA that hybridized with cry1Aa, cry1Ab, and cry1Ac toxin probes, three hybridized with a cry1B probe, and two hybridized with a cry2A probe. These may have potential for use in integrated management of pest flies.

  16. Screening and identification of a Bacillus thuringiensis strain S1/4 with large and efficient insecticidal activities.

    OpenAIRE

    Jaoua, Samir; Sellami, Sameh; Zghal, Taheni; Cherif, Maroua; Zalila-Kolsi, Imen; Jaoua, Samir; Jamoussi, Kaïs

    2013-01-01

    The bacterium Bacillus thuringiensis was recognized for its entomopathogenic activities related to Cry and Cyt proteins forming the δ-endotoxins and some extracellular activities like the vegetative insecticidal proteins (VIP) and Cry1I. These activities may act specifically against diverse organisms and some of them typically characterize each strain. Here, we screened a set of 212 B. thuringiensis strains to search the higher insecticidal activities. These strains had bipyramidal and cubic ...

  17. Evaluation of Bacillus thuringiensis Pathogenicity for a Strain of the Tick, Rhipicephalus microplus, Resistant to Chemical Pesticides

    OpenAIRE

    Fern?ndez-Ruvalcaba, Manuel; Pe?a-Chora, Guadalupe; Romo-Mart?nez, Armando; Hern?ndez-Vel?zquez, V?ctor; de Parra, Alejandra Bravo; De La Rosa, Diego P?rez

    2010-01-01

    The pathogenicity of four native strains of Bacillus thuringiensis against Rhipicephalus (Boophilus) microplus (Canestrine) (Acari: Ixodidae) was evaluated. A R. microplus strain that is resistant to organophosphates, pyrethroids, and amidines, was used in this study. Adult R. microplus females were bioassayed using the immersion test of Drummond against 60 B. thuringiensis strains. Four strains, GP123, GP138, GP130, and GP140, were found to be toxic. For the immersion test, the total protein...

  18. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579.

    Science.gov (United States)

    van der Voort, Menno; Kuipers, Oscar P; Buist, Girbe; de Vos, Willem M; Abee, Tjakko

    2008-04-16

    The catabolite control protein CcpA is a transcriptional regulator conserved in many Gram-positives, controlling the efficiency of glucose metabolism. Here we studied the role of Bacillus cereus ATCC 14579 CcpA in regulation of metabolic pathways and expression of enterotoxin genes by comparative transcriptome analysis of the wild-type and a ccpA-deletion strain. Comparative analysis revealed the growth performance and glucose consumption rates to be lower in the B. cereus ATCC 14579 ccpA deletion strain than in the wild-type. In exponentially grown cells, the expression of glycolytic genes, including a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase that mediates conversion of D-glyceraldehyde 3-phosphate to 3-phospho-D-glycerate in one single step, was down-regulated and expression of gluconeogenic genes and genes encoding the citric acid cycle was up-regulated in the B. cereus ccpA deletion strain. Furthermore, putative CRE-sites, that act as binding sites for CcpA, were identified to be present for these genes. These results indicate CcpA to be involved in the regulation of glucose metabolism, thereby optimizing the efficiency of glucose catabolism. Other genes of which the expression was affected by ccpA deletion and for which putative CRE-sites could be identified, included genes with an annotated function in the catabolism of ribose, histidine and possibly fucose/arabinose and aspartate. Notably, expression of the operons encoding non-hemolytic enterotoxin (Nhe) and hemolytic enterotoxin (Hbl) was affected by ccpA deletion, and putative CRE-sites were identified, which suggests catabolite repression of the enterotoxin operons to be CcpA-dependent. The catabolite control protein CcpA in B. cereus ATCC 14579 is involved in optimizing the catabolism of glucose with concomitant repression of gluconeogenesis and alternative metabolic pathways. Furthermore, the results point to metabolic control of enterotoxin gene expression and suggest that Ccp

  19. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579

    Directory of Open Access Journals (Sweden)

    Buist Girbe

    2008-04-01

    Full Text Available Abstract Background The catabolite control protein CcpA is a transcriptional regulator conserved in many Gram-positives, controlling the efficiency of glucose metabolism. Here we studied the role of Bacillus cereus ATCC 14579 CcpA in regulation of metabolic pathways and expression of enterotoxin genes by comparative transcriptome analysis of the wild-type and a ccpA-deletion strain. Results Comparative analysis revealed the growth performance and glucose consumption rates to be lower in the B. cereus ATCC 14579 ccpA deletion strain than in the wild-type. In exponentially grown cells, the expression of glycolytic genes, including a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase that mediates conversion of D-glyceraldehyde 3-phosphate to 3-phospho-D-glycerate in one single step, was down-regulated and expression of gluconeogenic genes and genes encoding the citric acid cycle was up-regulated in the B. cereus ccpA deletion strain. Furthermore, putative CRE-sites, that act as binding sites for CcpA, were identified to be present for these genes. These results indicate CcpA to be involved in the regulation of glucose metabolism, thereby optimizing the efficiency of glucose catabolism. Other genes of which the expression was affected by ccpA deletion and for which putative CRE-sites could be identified, included genes with an annotated function in the catabolism of ribose, histidine and possibly fucose/arabinose and aspartate. Notably, expression of the operons encoding non-hemolytic enterotoxin (Nhe and hemolytic enterotoxin (Hbl was affected by ccpA deletion, and putative CRE-sites were identified, which suggests catabolite repression of the enterotoxin operons to be CcpA-dependent. Conclusion The catabolite control protein CcpA in B. cereus ATCC 14579 is involved in optimizing the catabolism of glucose with concomitant repression of gluconeogenesis and alternative metabolic pathways. Furthermore, the results point to metabolic control

  20. Prevalence, Virulence Genes, Antimicrobial Susceptibility, and Genetic Diversity of Bacillus cereus Isolated From Pasteurized Milk in China

    Directory of Open Access Journals (Sweden)

    Tiantian Gao

    2018-03-01

    Full Text Available Bacillus cereus is a common and important food-borne pathogen that can be found in various food products. Due to low-temperature sterilization for a short period of time, pasteurization is not sufficient for complete elimination of B. cereus in milk, thereby cause severe economic loss and food safety problems. It is therefore of paramount importance to perform risk assessment of B. cereus in pasteurized milk. In this study, we isolated B. cereus from pasteurized milk samples in different regions of China, and evaluated the contamination situation, existence of virulence genes, antibiotic resistance profile and genetic polymorphism of B. cereus isolates. Intriguingly, 70 samples (27% were found to be contaminated by B. cereus and the average contamination level was 111 MPN/g. The distribution of virulence genes was assessed toward 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM, bceT, and hlyII and one emetic gene (cesB. Forty five percent strains harbored enterotoxigenic genes hblACD and 93% isolates contained nheABC gene cluster. The positive rate of cytK, entFM, bceT, hlyII, and cesB genes were 73, 96, 75, 54, and 5%, respectively. Antibiotic susceptibility assessment showed that most of the isolates were resistant to β-lactam antibiotics and rifampicin, but susceptible to other antibiotics such as ciprofloxacin, gentamicin and chloramphenicol. Total multidrug-resistant population was about 34%. In addition, B. cereus isolates in pasteurized milk showed a high genetic diversity. In conclusion, our findings provide the first reference on the prevalence, contamination level and characteristics of B. cereus isolated from pasteurized milk in China, suggesting a potential high risk of B. cereus to public health and dairy industry.

  1. Expression of chitinase-encoding genes in Bacillus thuringiensis and toxicity of engineered B. thuringiensis subsp. aizawai toward Lymantria dispar larvae.

    Science.gov (United States)

    Lertcanawanichakul, Monthon; Wiwat, Chanpen; Bhumiratana, Amaret; Dean, Donald Harry

    2004-03-01

    Chitinase genes from Aeromonas hydrophila and Bacillus circulans No.4.1 were cloned into the plasmid pHY300PLK and designated as pHYA2 and pHYB43, respectively. Both plasmids were introduced into various strains of B. thuringiensis by electroporation. Plasmid pHYB43 was generally structurally stable, but showed lower segregrational stability than pHYA2 in B. thuringiensis subsp. aizawai when grown under nonselective conditions. The production of chitinase from B. thuringiensis subsp. aizawai harboring pHYB43 or pHYA2 could be detected after native polyacrylamide gel electrophoresis by using 4-methylumbelliferyl beta-D- N,N'- diacetylchitobioside as the substrate. Moreover, B. thuringiensis subsp. aizawai harboring pHYB43 gave 15 times higher chitinase activity than when harboring pHYA2, as determined by means of a colorimetric method using glycol chitin as the substrate. In addition, B. thuringiensis subsp. aizawai harboring pHYB43 was more toxic to gypsy moth larvae ( Lymantria dispar) than parental B. thuringiensis subsp. aizawai or its clone harboring pHYA2.

  2. Intraclade Variability in Toxin Production and Cytotoxicity of Bacillus cereus Group Type Strains and Dairy-Associated Isolates.

    Science.gov (United States)

    Miller, Rachel A; Jian, Jiahui; Beno, Sarah M; Wiedmann, Martin; Kovac, Jasna

    2018-03-15

    While some species in the Bacillus cereus group are well-characterized human pathogens (e.g., B. anthracis and B. cereus sensu stricto ), the pathogenicity of other species (e.g., B. pseudomycoides ) either has not been characterized or is presently not well understood. To provide an updated characterization of the pathogenic potential of species in the B. cereus group, we classified a set of 52 isolates, including 8 type strains and 44 isolates from dairy-associated sources, into 7 phylogenetic clades and characterized them for (i) the presence of toxin genes, (ii) phenotypic characteristics used for identification, and (iii) cytotoxicity to human epithelial cells. Overall, we found that B. cereus toxin genes are broadly distributed but are not consistently present within individual species and/or clades. After growth at 37°C, isolates within a clade did not typically show a consistent cytotoxicity phenotype, except for isolates in clade VI ( B. weihenstephanensis / B. mycoides ), where none of the isolates were cytotoxic, and isolates in clade I ( B. pseudomycoides ), which consistently displayed cytotoxic activity. Importantly, our study highlights that B. pseudomycoides is cytotoxic toward human cells. Our results indicate that the detection of toxin genes does not provide a reliable approach to predict the pathogenic potential of B. cereus group isolates, as the presence of toxin genes is not always consistent with cytotoxicity phenotype. Overall, our results suggest that isolates from multiple B. cereus group clades have the potential to cause foodborne illness, although cytotoxicity is not always consistently found among isolates within each clade. IMPORTANCE Despite the importance of the Bacillus cereus group as a foodborne pathogen, characterizations of the pathogenic potential of all B. cereus group species were lacking. We show here that B. pseudomycoides (clade I), which has been considered a harmless environmental microorganism, produces toxins and

  3. A strain-variable bacteriocin in Bacillus anthracis and Bacillus cereus with repeated Cys-Xaa-Xaa motifs

    Directory of Open Access Journals (Sweden)

    Haft Daniel H

    2009-04-01

    Full Text Available Abstract Bacteriocins are peptide antibiotics from ribosomally translated precursors, produced by bacteria often through extensive post-translational modification. Minimal sequence conservation, short gene lengths, and low complexity sequence can hinder bacteriocin identification, even during gene calling, so they are often discovered by proximity to accessory genes encoding maturation, immunity, and export functions. This work reports a new subfamily of putative thiazole-containing heterocyclic bacteriocins. It appears universal in all strains of Bacillus anthracis and B. cereus, but has gone unrecognized because it is always encoded far from its maturation protein operon. Patterns of insertions and deletions among twenty-four variants suggest a repeating functional unit of Cys-Xaa-Xaa. Reviewers This article was reviewed by Andrei Osterman and Lakshminarayan Iyer.

  4. Expression of Bacillus thuringiensis serovar. israelensis toxins in Asticcacaulis excentricus to control dipteran larvae of vectors of diseases

    Directory of Open Access Journals (Sweden)

    Óscar Enrique Guevara

    2004-01-01

    Full Text Available Bacillus thuringiensis cry genes encode for a diverse group of crystal-forming proteins that exhibit insecticidal activity towards dipteran, lepidopteran and coleopteran larvae. The effectiveness of insecticides based on mosquito larvicidal B. thuringiensis strains can be enhanced by using aquatic prosthecated bacteria as alternative hosts, since they do not sink, cytoplasmic located toxins are protected f rom UV radiation and, most importantly, mosquito larvae feed on them. An Asticcacaulis excentricus reference strain was transformed with the cry1 1Aa gene from Bacillus thuringiensis serovar. israelensis. Western blot and electrophoresis were used to test recombinant protein expression; Western blot revealed a 72 kDa protein corresponding to B. thuringiensis serovar. israelensis Cry1 1 Aa. These aquatic bacte­rias toxicity achieved 50% mortality at 23 ng/mL concentration in f irst instar Culex quinquefasciatus larvae. Other bioassays indicated that recombinant A. excentricus is toxic against Aedes aegyptiand Anopheles albimanus first instar larvae. Buoyancy tests demonstrated the advantage of A. excentricus over B. thuringiensis. Key words: Asticcacaulis excentricus, Bacillus thuringiensis, prosthecated bacteria, dengue, malaria.

  5. Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis?

    Science.gov (United States)

    Ruan, Lifang; Crickmore, Neil; Peng, Donghai; Sun, Ming

    2015-06-01

    Bacillus thuringiensis, which is well known as an entomopathogen, has been accepted by the public as a safe bioinsecticide. The natural ecology of this bacterium has never been particularly clear, with views ranging from it being an obligate pathogen to an opportunist pathogen that can otherwise exist as a soil saprophyte or a plant endophyte. This confusion has recently led to it being considered as an environmental pathogen that has evolved to occupy a diverse set of environmental niches in which it can thrive without needing a host. A significant driving force behind this classification is the fact that B. thuringiensis is found in high numbers in environments that are not occupied by the insect hosts to which it is pathogenic. It is our opinion that the ubiquitous presence of this bacterium in the environment is the result of a variety of vectoring systems, particularly those that include nematodes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus.

    Science.gov (United States)

    DE Lara, Ana Paula DE Souza Stori; Lorenzon, Lucas Bigolin; Vianna, Ana Muñoz; Santos, Francisco Denis Souza; Pinto, Luciano Silva; Aires Berne, Maria Elisabeth; Leite, Fábio Pereira Leivas

    2016-10-01

    Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g-1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.

  7. Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa-Chromosomal Monophyly and Broad Geographic Distribution.

    Directory of Open Access Journals (Sweden)

    Kym S Antonation

    2016-09-01

    Full Text Available Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats in West and Central Africa (Côte d'Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo. The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans.

  8. Antagonistic activity of selected strains of Bacillus thuringiensis ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-02

    May 2, 2008 ... funguicidas. Memorias Primera Convención Mundial del Chile. León,. Guanajuato, México. Resumen, pp. 144-150. Podile AR, Laxmi VDV (1998). Seed bacterization with Bacillus subtilis. AF1 increases phenylalanine ammnonia lyase and reduces the incidence of fusarial wilt in pigeonpea. J. Phytophatol.

  9. Dynamic Predictive Model for Growth of Bacillus cereus from Spores in Cooked Beans.

    Science.gov (United States)

    Juneja, Vijay K; Mishra, Abhinav; Pradhan, Abani K

    2018-02-01

    Kinetic growth data for Bacillus cereus grown from spores were collected in cooked beans under several isothermal conditions (10 to 49°C). Samples were inoculated with approximately 2 log CFU/g heat-shocked (80°C for 10 min) spores and stored at isothermal temperatures. B. cereus populations were determined at appropriate intervals by plating on mannitol-egg yolk-polymyxin agar and incubating at 30°C for 24 h. Data were fitted into Baranyi, Huang, modified Gompertz, and three-phase linear primary growth models. All four models were fitted to the experimental growth data collected at 13 to 46°C. Performances of these models were evaluated based on accuracy and bias factors, the coefficient of determination ( R 2 ), and the root mean square error. Based on these criteria, the Baranyi model best described the growth data, followed by the Huang, modified Gompertz, and three-phase linear models. The maximum growth rates of each primary model were fitted as a function of temperature using the modified Ratkowsky model. The high R 2 values (0.95 to 0.98) indicate that the modified Ratkowsky model can be used to describe the effect of temperature on the growth rates for all four primary models. The acceptable prediction zone (APZ) approach also was used for validation of the model with observed data collected during single and two-step dynamic cooling temperature protocols. When the predictions using the Baranyi model were compared with the observed data using the APZ analysis, all 24 observations for the exponential single rate cooling were within the APZ, which was set between -0.5 and 1 log CFU/g; 26 of 28 predictions for the two-step cooling profiles also were within the APZ limits. The developed dynamic model can be used to predict potential B. cereus growth from spores in beans under various temperature conditions or during extended chilling of cooked beans.

  10. Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species

    Science.gov (United States)

    Velusamy, Vijayalakshmi; Arshak, Khalil; Korostynska, Olga; Oliwa, Kamila; Adley, Catherine

    2009-05-01

    Biosensor designs are emerging at a significant rate and play an increasingly important role in foodborne pathogen detection. Conducting polymers are excellent tools for the fabrication of biosensors and polypyrrole has been used in the detection of biomolecules due to its unique properties. The prime intention of this paper was to pioneer the design and fabrication of a single-strand (ss) DNA biosensor for the detection of the Bacillus cereus (B.cereus) group species. Growth of B. cereus, results in production of several highly active toxins. Therefore, consumption of food containing >106 bacteria/gm may results in emetic and diarrhoeal syndromes. The most common source of this bacterium is found in liquid food products, milk powder, mixed food products and is of particular concern in the baby formula industry. The electrochemical deposition technique, such as cyclic voltammetry, was used to develop and test a model DNA-based biosensor on a gold electrode electropolymerized with polypyrrole. The electrically conducting polymer, polypyrrole is used as a platform for immobilizing DNA (1μg) on the gold electrode surface, since it can be more easily deposited from neutral pH aqueous solutions of pyrrolemonomers. The average current peak during the electrodeposition event is 288μA. There is a clear change in the current after hybridization of the complementary oligonucleotide (6.35μA) and for the noncomplementary oligonucleotide (5.77μA). The drop in current after each event was clearly noticeable and it proved to be effective.

  11. Transcriptional profile of tomato roots exhibiting Bacillus thuringiensis-induced resistance to Ralstonia solanacearum.

    Science.gov (United States)

    Takahashi, Hideki; Nakaho, Kazuhiro; Ishihara, Takeaki; Ando, Sugihiro; Wada, Takumi; Kanayama, Yoshinori; Asano, Shinichiro; Yoshida, Shigenobu; Tsushima, Seiya; Hyakumachi, Mitsuro

    2014-01-01

    Activation of SA-dependent signaling pathway and suppression of JA-dependent signaling pathway seem to play key roles inB. thuringiensis-induced resistance toR. solanacearumin tomato plants. Bacillus thuringiensis, a well-known and effective bio-insecticide, has attracted considerable attention as a potential biological control agent for the suppression of plant diseases. Treatment of tomato roots with a filter-sterilized cell-free filtrate (CF) of B. thuringiensis systemically suppresses bacterial wilt caused by Ralstonia solanacearum through systemic activation of the plant defense system. Comparative analysis of the expression of the Pathogenesis-Related 1(P6) gene, a marker for induced resistance to pathogens, in various tissues of tomato plants treated with CF on their roots suggested that the B. thuringiensis-induced defense system was activated in the leaf, stem, and main root tissues, but not in the lateral root tissue. At the same time, the growth of R. solanacearum was significantly suppressed in the CF-treated main roots but not in the CF-treated lateral roots. This distinct activation of the defense reaction and suppression of R. solanacearum were reflected by the differences in the transcriptional profiles of the main and lateral tissues in response to the CF. In CF-treated main roots, but not CF-treated lateral roots, the expression of several salicylic acid (SA)-responsive defense-related genes was specifically induced, whereas jasmonic acid (JA)-related gene expression was either down-regulated or not induced in response to the CF. On the other hand, genes encoding ethylene (ET)-related proteins were induced equally in both the main and lateral root tissues. Taken together, the co-activation of SA-dependent signaling pathway with ET-dependent signaling pathway and suppression of JA-dependent signaling pathway may play key roles in B. thuringiensis-induced resistance to R. solanacearum in tomato.

  12. Identification of Distinct Bacillus thuringiensis 4A4 Nematicidal Factors Using the Model Nematodes Pristionchus pacificus and Caenorhabditis elegans

    Science.gov (United States)

    Iatsenko, Igor; Nikolov, Angel; Sommer, Ralf J.

    2014-01-01

    Bacillus thuringiensis has been extensively used for the biological control of insect pests. Nematicidal B. thuringiensis strains have also been identified; however, virulence factors of such strains are poorly investigated. Here, we describe virulence factors of the nematicidal B. thuringiensis 4A4 strain, using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. We show that B. thuringiensis 4A4 kills both nematodes via intestinal damage. Whole genome sequencing of B. thuringiensis 4A4 identified Cry21Ha, Cry1Ba, Vip1/Vip2 and β-exotoxin as potential nematicidal factors. Only Cry21Ha showed toxicity to C. elegans, while neither Cry nor Vip toxins were active against P. pacificus, when expressed in E. coli. Purified crystals also failed to intoxicate P. pacificus, while autoclaved spore-crystal mixture of B. thuringiensis 4A4 retained toxicity, suggesting that primary β-exotoxin is responsible for P. pacificus killing. In support of this, we found that a β-exotoxin-deficient variant of B. thuringiensis 4A4, generated by plasmid curing lost virulence to the nematodes. Thus, using two model nematodes we revealed virulence factors of the nematicidal strain B. thuringiensis 4A4 and showed the multifactorial nature of its virulence. PMID:25025708

  13. Identification of Cereulide-Producing Bacillus cereus by Nucleic Acid Chromatography and Reverse Transcription Real-Time PCR.

    Science.gov (United States)

    Ueda, Shigeko; Yamaguchi, Manami; Eguchi, Kayoko; Iwase, Miki

    2016-01-01

    RNA extracts were analyzed with a nucleic acid sequence-based amplification (NASBA) - nucleic acid chromatography and a reverse transcription-quantitative PCR assay (RT-qPCR) based on the TaqMan probe for identification of cereulide-producing Bacillus cereus. All 100 emetic B. cereus strains were found to give positive results, but 50 diarrheal B. cereus strains and other bacterial species showed negative results in the NASBA-chromatography. That is, the assay could selectively identify the emetic strains among B. cereus strains. Also, the B. cereus contents of more than 10(7) cfu/ml were required for the identification of the cereulide-producing strains in this assay. In qRT-PCR assays, all 100 emetic type strains of B. cereus produced 10(2) - 10(4) copy numbers per ng of the RNA preparation, and the strains produced 10(4) copies including ones which had the high vacuolation activities of HEp-2 cells.

  14. Characterization of LysPBC4, a novel Bacillus cereus-specific endolysin of bacteriophage PBC4.

    Science.gov (United States)

    Na, Hongjun; Kong, Minsuk; Ryu, Sangryeol

    2016-06-01

    Bacillus cereus is a spore-forming, Gram-positive bacterium and is a major food-borne pathogen. A B. cereus-specific bacteriophage PBC4 was isolated from the soil of a stock farm, and its genome was analyzed. PBC4 belongs to the Siphoviridae family and has a genome consisting of 80 647-bp-long double-stranded DNA, including 123 genes and two tRNAs. LysPBC4, the endolysin of PBC4, has an enzymatically active domain (EAD) on its N-terminal region and a putative cell wall-binding domain (CBD) on its C-terminal region, respectively. Although the phage PBC4 showed a very limited host range, LysPBC4 could lyse all of the B. cereus strains tested. However, LysPBC4 did not kill other bacteria such as B. subtilis or Listeria, indicating that the endolysin has specific lytic activity against the B. cereus group species. Furthermore, LysPBC4_CBD fused with enhanced green fluorescent protein (EGFP) could decorate limited strains of B. cereus group, suggesting that the LysPBC4_CBD may be a promising material for specific detection of B. cereus. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  16. Variable responses on early development of shallot (Allium ascalonicum and mustard (Brassica juncea plants to Bacillus cereus inoculation

    Directory of Open Access Journals (Sweden)

    Aziz, Z.F.A

    2012-01-01

    Full Text Available Aim: Auxin, a phytohormone secreted by plant growth-promoting rhizobacteria is one of the direct mechanisms vital for plant growth promotion. A laboratory experiment was conducted to observe the effect of IAA-producing and non-IAA-producing diazotroph Bacillus cereus strains on early growth of shallot (Allium ascalonicum and mustard (Brassica juncea plants.Methodology and Results: Treatments evaluated were as follows: Control = uninoculated, no inoculation, UPMLH1 = IAA-producing B. cereus UPMLH1, and UPMLH24 = non-IAA-producing B. cereus UPMLH24. Inoculation with IAA-producing B. cereus UPMLH1 significantly increased shallot adventitious roots (root number and length and shoot growth (19 to 54% increment. Inoculation of non-IAA-producing B. cereus UPMLH24 did not significantly improve growth of adventitious roots of shallot as compared to uninoculated control, except its shoot (up to 40% increase. However, primary roots and shoot growth of mustard plants significantly increased through inoculation with IAA-producing and non-IAA-producing strains (14 to 73% increment.Conclusion, Significance and Impact of Study: The results indicated that exogenous IAA secreted by B. cereus UPMLH1 might have play an important role in inducing roots of shallot bulbs and it may have a variable promotional effect depending on plant species.

  17. Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit.

    Science.gov (United States)

    Wang, Xiaoli; Xu, Feng; Wang, Jing; Jin, Peng; Zheng, Yonghua

    2013-01-15

    The biocontrol effects of Bacillus cereus AR156 on Rhizopus rot caused by Rhizopus stolonifer in postharvest peach fruit and the possible mechanisms were investigated. The results showed that fruit treated with B. cereus AR156 had significantly lower disease incidence and smaller lesion diameter than the control fruit did. B. cereus AR156 treatment remarkably enhanced activities of chitinase and β-1,3-glucanase, promoted accumulation of H(2)O(2), and improved total phenolic content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity. Transcripts of four defense related genes were only significantly enhanced in fruit both treated with B. cereus AR156 and inoculated with R. stolonifer compared with those that were only treated with B. cereus AR156 or inoculated with R. stolonifer. These results suggest that B. cereus AR156 can effectively inhibit Rhizopus rot caused by R. stolonifer and enhance antioxidant activity in peach fruit through the priming of defense responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effects of Copaifera duckei Dwyer oleoresin on the cell wall and cell division of Bacillus cereus.

    Science.gov (United States)

    Gomes Dos Santos, Elizabeth Cristina; Donnici, Claudio Luis; Camargos, Elizabeth Ribeiro da Silva; Augusto de Rezende, Adriana; Andrade, Eloisa Helena de Aguiar; Soares, Luiz Alberto Lira; Farias, Luiz de Macêdo; Roque de Carvalho, Maria Auxiliadora; Almeida, Maria das Graças

    2013-07-01

    The aim of this work was to evaluate the antibacterial activity of Copaifera duckei oleoresin and to determine its possible mechanism of action against bacteria of clinical and food interest. The antibacterial activity was determined by agar diffusion and dilution methods; the mechanism of action by transmission electron microscopy and by SDS-PAGE; the bioactive compounds by bioautography; and the chemical analysis by GC/MS. Oleoresin showed activity against nine of the 11 strains of bacteria tested. Bacillus cereus was the most sensitive, with a MIC corresponding to 0.03125 mg ml(-1) and with a bactericidal action. Oleoresin acted on the bacterial cell wall, removing proteins and the S-layer, and interfering with the cell-division process. This activity probably can be attributed to the action of terpenic compounds, among them the bisabolene compound. Gram-negative bacteria tested were not inhibited. C. duckei oleoresin is a potential antibacterial, suggesting that this oil could be used as a therapeutic alternative, mainly against B. cereus.

  19. [Lead adsorption by Trametes gallica, Bacillus cereus, and their co-immobilized biomaterial].

    Science.gov (United States)

    Yang, Zhou-Ping; Chen, Ping; Wang, Zhen-Yu; Hu, Rong; Jing, De-Jun; Huang, Qian-Ming

    2012-08-01

    Taking Trametes gallica mycelium pellets, Bacillus cereus, and their co-immobilized biomaterial as bio-adsorbents, this paper studied their Pb2+ adsorption under effects of different contact time, medium initial pH value and Pb2+ concentration, and bio-adsorbent concentration, and compared the infrared spectra of the bio-adsorbents before and after Pb2+ absorption. The Pb2+ adsorption efficiency of the bio-adsorbents was the highest when the bio-adsorbent concentration was 2 g x L(-1), initial pH was 5.0, initial Pb2+ concentration was 50 mg x L(-1), and contact time was 1 h, with the Pb2+ biosorption rate being 71.7% for the mycelium pellets of T. gallica, 91.0% for B. cereus, and 96.9% for the co-immobilized biomaterial. The infrared spectra of the bio-adsorbents were mainly consisted of the absorption zones of protein, carbohydrates, and sulphur- and phosphors-based groups, suggesting that hydroxyl, carboxyl, and sulphur- and phosphate-based groups played important roles in the Pb2+ adsorption by the bio-adsorbents.

  20. Production of Bio polymer (PHB) from Whey by Local Strain of Bacillus cereus

    International Nuclear Information System (INIS)

    Abdel Kareem, H.; Hamed, D.; Omar, S.; Gebreel, H.; Khalaf, M.; El-M-Mahalawy, A.

    2008-01-01

    The local strain Bacillus cereus S 3 , which isolated from the soil attached to the rice root, was employed for PHB production from whey and soya extract as the main carbon and nitrogen sources. Some supplements such as (0.5 g) tryptone and (0.5 g) NaCl were added to 75 ml whey and 25 ml soya extract to optimize the PHB accumulation medium. Different parameters including; initial ph of the medium, working volume, NaCl concentration and inoculum age and size; were carried out under shaking flask conditions (150 rpm) at 30 degree C for 48 h of incubation to enhance the PHB accumulation. The maximum PHB accumulation (2.42 gl -1 ) was achieved at ph 6, 100 ml working volume, (0.5-2%) NaCl, at 60 h and 4 ml inoculum age and size, respectively. An experiment was conducted to investigate the effect of gamma irradiation on the activity of B. cereus S 3 towards PHB accumulation. At dose level 1.5 kGy the maximum PHB accumulation obtained was 3.2 gl -1

  1. Characterization of an endolysin, LysBPS13, from a Bacillus cereus bacteriophage.

    Science.gov (United States)

    Park, Jaeeun; Yun, Jiae; Lim, Jeong-A; Kang, Dong-Hyun; Ryu, Sangryeol

    2012-07-01

    Use of bacteriophages as biocontrol agents is a promising tool for controlling pathogenic bacteria including antibiotic-resistant bacteria. Not only bacteriophages but also endolysins, the peptidoglycan hydrolyzing enzymes encoded by bacteriophages, have high potential for applications as biocontrol agents against food-borne pathogens. In this study, a putative endolysin gene was identified in the genome of the bacteriophage BPS13, which infects Bacillus cereus. In silico analysis of this endolysin, designated LysBPS13, showed that it consists of an N-terminal catalytic domain (PGRP domain) and a C-terminal cell wall binding domain (SH3_5 domain). Further characterization of the purified LysBPS13 revealed that this endolysin is an N-acetylmuramyl-l-alanine amidase, the activity of which was not influenced by addition of EDTA. In addition, LysBPS13 demonstrated remarkable thermostability in the presence of glycerol, and it retained its lytic activity even after incubation at 100 °C for 30 min. Taken together, these results indicate that LysBPS13 can be considered a favorable candidate for a new antimicrobial agent to control B. cereus. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Comparative transcriptomic and phenotypic analysis of the responses of Bacillus cereus to various disinfectant treatments.

    Science.gov (United States)

    Ceragioli, Mara; Mols, Maarten; Moezelaar, Roy; Ghelardi, Emilia; Senesi, Sonia; Abee, Tjakko

    2010-05-01

    Antimicrobial chemicals are widely applied to clean and disinfect food-contacting surfaces. However, the cellular response of bacteria to various disinfectants is unclear. In this study, the physiological and genome-wide transcriptional responses of Bacillus cereus ATCC 14579 exposed to four different disinfectants (benzalkonium chloride, sodium hypochlorite, hydrogen peroxide, and peracetic acid) were analyzed. For each disinfectant, concentrations leading to the attenuation of growth, growth arrest, and cell death were determined. The transcriptome analysis revealed that B. cereus, upon exposure to the selected concentrations of disinfectants, induced common and specific responses. Notably, the common response included genes involved in the general and oxidative stress responses. Exposure to benzalkonium chloride, a disinfectant known to induce membrane damage, specifically induced genes involved in fatty acid metabolism. Membrane damage induced by benzalkonium chloride was confirmed by fluorescence microscopy, and fatty acid analysis revealed modulation of the fatty acid composition of the cell membrane. Exposure to sodium hypochlorite induced genes involved in metabolism of sulfur and sulfur-containing amino acids, which correlated with the excessive oxidation of sulfhydryl groups observed in sodium hypochlorite-stressed cells. Exposures to hydrogen peroxide and peracetic acid induced highly similar responses, including the upregulation of genes involved in DNA damage repair and SOS response. Notably, hydrogen peroxide- and peracetic acid-treated cells exhibited high mutation rates correlating with the induced SOS response.

  3. Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks.

    Science.gov (United States)

    Mols, Maarten; van Kranenburg, Richard; Tempelaars, Marcel H; van Schaik, Willem; Moezelaar, Roy; Abee, Tjakko

    2010-01-31

    Comparative phenotype and transcriptome analyses were performed with Bacillus cereus ATCC 14579 exposed to pH 5.5 set with different acidulants including hydrochloric acid (HCl), lactic acid (HL) and acetic acid (HAc). Phenotypes observed included a decreased growth rate (with HCl), bacteriostatic and bactericidal conditions, with 2mM undissociated HAc or HL, and 15mM undissociated HAc, respectively. In the latter condition a concomitant decrease in intracellular ATP levels was observed. The transcriptome analyses revealed general and specific responses to the acidulants used. The general acid stress response includes modulation of pyruvate metabolism with activation of the butanediol fermentation pathway, and an oxidative stress response that was, however, more extensive in the bacteriostatic and bactericidal conditions. HL-specific and HAc-specific responses include modulation of metabolic pathways for amino acid metabolism. Activation of lactate, formate, and ethanol fermentation pathways, alternative electron-transport chain components and fatty acid biosynthesis genes was noted in the presence of 15mM undissociated HAc. In conclusion, our study has provided insights in phenotype-associated, and general and acidulant-specific responses in B. cereus. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave.

    Science.gov (United States)

    Park, Hyong Seok; Yang, Jungwoo; Choi, Hee Jung; Kim, Kyoung Heon

    2017-07-28

    Microwave sterilization was performed to inactivate the spores of biofilms of Bacillus cereus involved in foodborne illness. The sterilization conditions, such as the amount of water and the operating temperature and treatment time, were optimized using statistical analysis based on 15 runs of experimental results designed by the Box-Behnken method. Statistical analysis showed that the optimal conditions for the inactivation of B. cereus biofilms were 14 ml of water, 108°C of temperature, and 15 min of treatment time. Interestingly, response surface plots showed that the amount of water is the most important factor for microwave sterilization under the present conditions. Complete inactivation by microwaves was achieved in 5 min, and the inactivation efficiency by microwave was obviously higher than that by conventional steam autoclave. Finally, confocal laser scanning microscopy images showed that the principal effect of microwave treatment was cell membrane disruption. Thus, this study can contribute to the development of a process to control food-associated pathogens.

  5. The T box regulatory element controlling expression of the class I lysyl-tRNA synthetase of Bacillus cereus strain 14579 is functional and can be partially induced by reduced charging of asparaginyl-tRNAAsn

    LENUS (Irish Health Repository)

    Foy, Niall

    2010-07-22

    Abstract Background Lysyl-tRNA synthetase (LysRS) is unique within the aminoacyl-tRNA synthetase family in that both class I (LysRS1) and class II (LysRS2) enzymes exist. LysRS1 enzymes are found in Archaebacteria and some eubacteria while all other organisms have LysRS2 enzymes. All sequenced strains of Bacillus cereus (except AH820) and Bacillus thuringiensis however encode both a class I and a class II LysRS. The lysK gene (encoding LysRS1) of B. cereus strain 14579 has an associated T box element, the first reported instance of potential T box control of LysRS expression. Results A global study of 891 completely sequenced bacterial genomes identified T box elements associated with control of LysRS expression in only four bacterial species: B. cereus, B. thuringiensis, Symbiobacterium thermophilum and Clostridium beijerinckii. Here we investigate the T box element found in the regulatory region of the lysK gene in B. cereus strain 14579. We show that this T box element is functional, responding in a canonical manner to an increased level of uncharged tRNALys but, unusually, also responding to an increased level of uncharged tRNAAsn. We also show that B. subtilis strains with T box regulated expression of the endogenous lysS or the heterologous lysK genes are viable. Conclusions The T box element controlling lysK (encoding LysRS1) expression in B. cereus strain 14579 is functional, but unusually responds to depletion of charged tRNALys and tRNAAsn. This may have the advantage of making LysRS1 expression responsive to a wider range of nutritional stresses. The viability of B. subtilis strains with a single LysRS1 or LysRS2, whose expression is controlled by this T box element, makes the rarity of the occurrence of such control of LysRS expression puzzling.

  6. Effects of Aronia melanocarpa Constituents on Biofilm Formation of Escherichia coli and Bacillus cereus

    Directory of Open Access Journals (Sweden)

    Marie Bräunlich

    2013-12-01

    Full Text Available Many bacteria growing on surfaces form biofilms. Adaptive and genetic changes of the microorganisms in this structure make them resistant to antimicrobial agents. Biofilm-forming organisms on medical devices can pose serious threats to human health. Thus, there is a need for novel prevention and treatment strategies. This study aimed to evaluate the ability of Aronia melanocarpa extracts, subfractions and compounds to prevent biofilm formation and to inhibit bacterial growth of Escherichia coli and Bacillus cereus in vitro. It was found that several aronia substances possessed anti-biofilm activity, however, they were not toxic to the species screened. This non-toxic inhibition may confer a lower potential for resistance development compared to conventional antimicrobials.

  7. Effects of sporulation pH on the heat resistance and the sporulation of Bacillus cereus.

    Science.gov (United States)

    Mazas, M; López, M; González, I; Bernardo, A; Martín, R

    1997-11-01

    Spores of Bacillus cereus ATCC 7004, 4342 and 9818 were obtained in nutrient agar at several pH from 5.9 to 8.3. The optimum pH for sporulation was around 7, but good production of spores was obtained in the range 6.5-8.3. With all three strains, D-values clearly dropped with sporulation pH, decreasing by about 65% per pH unit. z-Values were not significantly modified (P > 0.05) by this factor. Mean z-values of 7.13 degrees C +/- 0.16 for strain 7004, 7.67 degrees C +/- 0.04 for 4342 and 8.80 degrees C +/- 0.64 for 9818 were obtained.

  8. The Genetically Remote Pathogenic Strain NVH391-98 of the Bacillus cereus Group Represents the Cluster of Thermophilic Strains

    Energy Technology Data Exchange (ETDEWEB)

    Auger, Sandrine; Galleron, Nathalie; Bidnenko, Elena; Ehrlich, S. Dusko; Lapidus, Alla; Sorokin, Alexei

    2007-10-02

    Bacteria of the Bacillus cereus group are known to cause food poisoning. A rare phylogenetically remote strain, NVH391-98, was recently characterized to encode a particularly efficient cytotoxin K presumably responsible for food poisoning. This pathogenic strain and its close relatives can be phenotypically distinguished from other strains of the B. cereus group by the inability to grow at temperatures below 17 degrees C and by the ability to grow at temperatures from 48 to 53 degrees C. A temperate phage, phBC391A2, residing in the genome of NVH391-98 allows us to distinguish the three known members of this thermophilic strain cluster.

  9. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation

    DEFF Research Database (Denmark)

    Okshevsky, Mira; Louw, Matilde Greve; Lamela, Elena Otero

    2018-01-01

    Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Desp...

  10. A Study To Assess the Numbers and Prevalence of Bacillus cereus and Its Toxins in Pasteurized Fluid Milk.

    Science.gov (United States)

    Saleh-Lakha, Saleema; Leon-Velarde, Carlos G; Chen, Shu; Lee, Susan; Shannon, Kelly; Fabri, Martha; Downing, Gavin; Keown, Bruce

    2017-07-01

    Bacillus cereus is a pathogenic adulterant of raw milk and can persist as spores and grow in pasteurized milk. The objective of this study was to determine the prevalence of B. cereus and its enterotoxins in pasteurized milk at its best-before date when stored at 4, 7, and 10°C. More than 5.5% of moderately temperature-abused products (stored at 7°C) were found to contain >10 5 CFU/mL B. cereus , and about 4% of them contained enterotoxins at a level that may result in foodborne illness; in addition, more than 31% of the products contained >10 5 CFU/mL B. cereus and associated enterotoxins when stored at 10°C. Results from a growth kinetic study demonstrated that enterotoxin production by B. cereus in pasteurized milk can occur in as short as 7 to 8 days of storage at 7°C. The higher B. cereus counts were associated with products containing higher butterfat content or with those produced using the conventional high-temperature, short-time pasteurization process. Traditional indicators, aerobic colony counts and psychrotrophic counts, were found to have no correlation with level of B. cereus in milk. The characterization of 17 representative B. cereus isolates from pasteurized milk revealed five toxigenic gene patterns, with all the strains carrying genes encoding for diarrheal toxins but not for an emetic toxin, and with one strain containing all four diarrheal enterotoxin genes (nheA, entFM, hblC, and cytK). The results of this study demonstrate the risks associated even with moderately temperature-abused pasteurized milk and the necessity of a controlled cold chain throughout the shelf life of fluid milk to enhance product safety and minimize foodborne illness.

  11. Detection of hblA and bal Genes in Bacillus cereus Isolates From Cheese Samples Using the Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Molayi Kohneshahri

    2016-03-01

    Full Text Available Background Bacillus cereus is a Gram-positive spore-forming bacterium, which causes food poisoning. Spores enable the persistence of B. cereus in the environment, and B. cereus strains can tolerate adverse environmental conditions, such as temperature and insufficient nutrients. B. cereus causes food poisoning via the production of two enterotoxins. Most isolates produce toxins leading to diarrhea (enterotoxins and vomiting (emetic forms. Diarrhea is caused by the production of three different heat-labile enterotoxins: HBL, NHE, and cytotoxin K. A heat-stable toxin, cereulide, is responsible for emesis. Objectives This study aimed to detect enterotoxigenic B. cereus isolates in cheese samples using the polymerase chain reaction (PCR. Materials and Methods Two-hundred pasteurized (n = 100 and nonpasteurized (n = 100 cheese samples were collected. The initial isolation was performed on PEMBA specific medium. Antibiotic susceptibility testing was performed using several antibiotic disks, according to the guidelines of the Clinical Laboratory and Standards Institute. Specific primers amplifying the hblA enterotoxin-encoding gene and bal hemolysin-encoding gene were used for the molecular detection of the toxins. Results Ten samples were positive for the presence of B. cereus, with both Gram staining and biochemical reactions. All the isolates were resistant to penicillin and ampicillin but susceptible to vancomycin, erythromycin, and ciprofloxacin. Six and three isolates were resistant to tetracycline and trimethoprim-sulfamethoxazole, respectively. The hblA and bal genes were amplified in all the B. cereus isolates. Conclusions The prevalence of B. cereus among the cheese samples was low. All the isolates were positive for genes encoding the hblA enterotoxin and bal toxin.

  12. Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis.

    Science.gov (United States)

    Yuan, Yihui; Peng, Qin; Gao, Meiying

    2012-12-19

    Endolysins produced by bacteriophages lyse bacteria, and are thus considered a novel type of antimicrobial agent. Several endolysins from Bacillus phages or prophages have previously been characterized and used to target Bacillus strains that cause disease in animals and humans. B. thuringiensis phage BtCS33 is a Siphoviridae family phage and its genome has been sequenced and analyzed. In the BtCS33 genome, orf18 was found to encode an endolysin protein (PlyBt33). Bioinformatic analyses showed that endolysin PlyBt33 was composed of two functional domains, the N-terminal catalytic domain and the C-terminal cell wall binding domain. In this study, the entire endolysin PlyBt33, and both the N- and C-termini,were expressed in Escherichia coli and then purified. The lytic activities of PlyBt33 and its N-terminus were tested on bacteria. Both regions exhibited lytic activity, although PlyBt33 showed a higher lytic activity than the N-terminus. PlyBt33 exhibited activity against all Bacillus strains tested from five different species, but was not active against Gram-negative bacteria. Optimal conditions for PlyBt33 reactivity were pH 9.0 and 50 °C. PlyBt33 showed high thermostability, with 40% of initial activity remaining following 1 h of treatment at 60 °C. The C-terminus of PlyBt33 bound to B. thuringiensis strain HD-73 and Bacillus subtilis strain 168. This cell wall binding domain might be novel, as its amino acid sequence showed little similarity to previously reported endolysins. PlyBt33 showed potential as a novel antimicrobial agent at a relatively high temperature and had a broad lytic spectrum within the Bacillus genus. The C-terminus of PlyBt33 might be a novel kind of cell wall binding domain.

  13. Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Yuan Yihui

    2012-12-01

    Full Text Available Abstract Background Endolysins produced by bacteriophages lyse bacteria, and are thus considered a novel type of antimicrobial agent. Several endolysins from Bacillus phages or prophages have previously been characterized and used to target Bacillus strains that cause disease in animals and humans. B. thuringiensis phage BtCS33 is a Siphoviridae family phage and its genome has been sequenced and analyzed. In the BtCS33 genome, orf18 was found to encode an endolysin protein (PlyBt33. Results Bioinformatic analyses showed that endolysin PlyBt33 was composed of two functional domains, the N-terminal catalytic domain and the C-terminal cell wall binding domain. In this study, the entire endolysin PlyBt33, and both the N- and C-termini,were expressed in Escherichia coli and then purified. The lytic activities of PlyBt33 and its N-terminus were tested on bacteria. Both regions exhibited lytic activity, although PlyBt33 showed a higher lytic activity than the N-terminus. PlyBt33 exhibited activity against all Bacillus strains tested from five different species, but was not active against Gram-negative bacteria. Optimal conditions for PlyBt33 reactivity were pH 9.0 and 50°C. PlyBt33 showed high thermostability, with 40% of initial activity remaining following 1 h of treatment at 60°C. The C-terminus of PlyBt33 bound to B. thuringiensis strain HD-73 and Bacillus subtilis strain 168. This cell wall binding domain might be novel, as its amino acid sequence showed little similarity to previously reported endolysins. Conclusions PlyBt33 showed potential as a novel antimicrobial agent at a relatively high temperature and had a broad lytic spectrum within the Bacillus genus. The C-terminus of PlyBt33 might be a novel kind of cell wall binding domain.

  14. A novel mosquitocidal Bacillus thuringiensis strain LLP29 isolated from the phylloplane of Magnolia denudata

    Czech Academy of Sciences Publication Activity Database

    Zhang, L.; Huang, E.; Lin, J.; Gelbič, Ivan; Zhang, Q.; Guan, Y.; Huang, T.; Guan, X.

    2010-01-01

    Roč. 165, č. 2 (2010), s. 133-141 ISSN 0944-5013 R&D Projects: GA MŠk 2B08003 Grant - others:United Fujian Provincial Health and Education Project for Tackling Key Research(CN) WKJ2008-2-44; Talented Youth Project of Fujian Province(CN) 2008F3012; Educational Department of Fujian Province(CN) JA08080; Fujian Agriculture and Forestry University(CN) 08A01 Institutional research plan: CEZ:AV0Z50070508 Keywords : Bacillus thuringiensis * cyt1 * mosquito Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.958, year: 2010

  15. [Experiments with Bacillus thuringiensis protoplasts. I. Isolation of protoplasts and their reversion to bacillary form].

    Science.gov (United States)

    Tsenin, A N; Nesterenko, A V; Rybchin, V N; Potokin, I L; Pisarevskiĭ, Iu S

    1983-04-01

    A method for protoplastization of crystal- and spore-forming Bacillus thuringiensis bacterian and consequent cell wall regeneration on a solid hypertonic medium is presented. Up to 50% of the protoplasts prepared were viable and formed colonies under special conditions; at the same time, less than 0,01% of the cells treated with lysozyme were resistant to the osmotic shock; bacterial autolytic system takes part in protoplasts formation. Electron microscopic studies of protoplasts and cells confirm the fact of cell wall removal and support the proposed mechanism of protoplast formation.

  16. Avances en el desarrollo de formulaciones insecticidas a base de bacillus thuringiensis

    OpenAIRE

    Rosas-García, Ninfa María

    2008-01-01

    El desarrollo de las formulaciones insecticidas elaboradas a base de la bacteria Bacillus thuringiensis es una tecnología centenaria que ha recibido un fuerte impacto en décadas recientes. La mezcla de esporas y cristales, que es el principio activo de estas preparaciones, ha sido objeto de estudio constante y en ello se destaca la búsqueda de cepas cada vez más potentes o mejoradas. Así mismo, los materiales utilizados incluyen una amplia variedad de ingredientes completamente biodegradables...

  17. Isolation of strains of Bacillus thuringiensis insecticidal biological activity against Ceratitis capitata

    International Nuclear Information System (INIS)

    Hmaied, Ezzedine; Ben Mbarek, Wael

    2010-01-01

    The present work is to study the effect of toxins (δ-endotoxins) extracted from strains of Bacillus thuringiensis isolated from the mud on the fly Sabkhat Dejoumi Ceratitis capitata, a pest of citrus and fruit trees. Among 51 isolated tested, 15 showed a very significant insecticidal activity, characterized by mortality rates exceeding 80 pour cent. These mortality rates are caused by endotoxins of Bt revealed variability between them. The preliminary results of this study encourage us towards the characterization of the insecticidal activity produced by strains of Bt for large scale application.

  18. Isolation and Molecular Characterization of Potential Plant Growth Promoting Bacillus cereus GGBSTD1 and Pseudomonas spp. GGBSTD3 from Vermisources

    Directory of Open Access Journals (Sweden)

    Balayogan Sivasankari

    2014-01-01

    Full Text Available Vermicompost was prepared from leaf materials of Gliricidia sepium + Cassia auriculata + Leucaena leucocephala with cow dung (1 : 1 : 2 using Eudrilus eugeniae (Kinberg and Eisenia fetida for 60 days. Nineteen bacterial strains which have the capability to fix nitrogen, solubilize inorganic phosphate, and produce phytohormones were isolated from vermicompost, vermisources, and earthworm (fore, mid, and hind guts and tested for plant growth studies. Among the bacterial strains only five strains had both activities; among the five Bacillus spp. showed more nitrogen fixing activity and Pseudomonas spp. showed more phosphate solubilizing activity. Hence these bacterial strains were selected for further molecular analysis and identified Bacillus cereus GGBSTD1 and Pseudomonas spp. GGBSTD3. Plant growth studies use these two organisms separately and as consortium (Bacillus cereus + Pseudomonas spp. in (1 : 1 ratio at different concentrations using Vigna unguiculata (L. Walp. at different day intervals. The germination percent, shoot length, root length, leaf area, chlorophyll a content of the leaves, chlorophyll b content of the leaves, total chlorophyll content of the leaves, fresh weight of the whole plant, and dry weight of the whole plant were significantly enhanced by the consortium (Bacillus cereus + Pseudomonas spp. of two organisms at 5 mL concentrations on the 15th day compared to others.

  19. Structural elucidation of the nonclassical secondary cell wall polysaccharide from Bacillus cereus ATCC 10987. Comparison with the polysaccharides from Bacillus anthracis and B. cereus type strain ATCC 14579 reveals both unique and common structural features.

    Science.gov (United States)

    Leoff, Christine; Choudhury, Biswa; Saile, Elke; Quinn, Conrad P; Carlson, Russell W; Kannenberg, Elmar L

    2008-10-31

    Nonclassical secondary cell wall polysaccharides constitute a major cell wall structure in the Bacillus cereus group of bacteria. The structure of the secondary cell wall polysaccharide from Bacillus cereus ATCC 10987, a strain that is closely related to Bacillus anthracis, was determined. This polysaccharide was released from the cell wall with aqueous hydrogen fluoride (HF) and purified by gel filtration chromatography. The purified polysaccharide, HF-PS, was characterized by glycosyl composition and linkage analyses, mass spectrometry, and one- and two-dimensional NMR analysis. The results showed that the B. cereus ATCC 10987 HF-PS has a repeating oligosaccharide consisting of a -->6)-alpha-GalNAc-(1-->4)-beta-ManNAc-(1-->4)-beta-GlcNAc-(1--> trisaccharide that is substituted with beta-Gal at O3 of the alpha-GalNAc residue and nonstoichiometrically acetylated at O3 of the N-acetylmannosamine (ManNAc) residue. Comparison of this structure with that of the B. anthracis HF-PS and with structural data obtained for the HF-PS from B. cereus type strain ATCC 14579 revealed that each HF-PS had the same general structural theme consisting of three HexNAc and one Hex residues. A common structural feature in the HF-PSs from B. cereus ATCC 10987 and B. anthracis was the presence of a repeating unit consisting of a HexNAc(3) trisaccharide backbone in which two of the three HexNAc residues are GlcNAc and ManNAc and the third can be either GlcNAc or GalNAc. The implications of these results with regard to the possible functions of the HF-PSs are discussed.

  20. Crystallization and preliminary crystallographic analysis of the NheA component of the Nhe toxin from Bacillus cereus

    International Nuclear Information System (INIS)

    Phung, Danh; Ganash, Magdah; Sedelnikova, Svetlana E.; Lindbäck, Toril; Granum, Per Einar; Artymiuk, Peter J.

    2012-01-01

    The NheA component of the B. cereus Nhe toxin was overexpressed in E. coli, purified and crystallized. Diffraction data were collected and processed to 2.05 Å resolution. The nonhaemolytic enterotoxin (Nhe) of Bacillus cereus plays a key role in cases of B. cereus food poisoning. The toxin is comprised of three different proteins: NheA, NheB and NheC. Here, the expression in Escherichia coli, purification and crystallization of the NheA protein are reported. The protein was crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant. The crystals of NheA diffracted to 2.05 Å resolution and belonged to space group C2, with unit-cell parameters a = 308.7, b = 58.2, c = 172.9 Å, β = 110.6°. Calculation of V M values suggests that there are approximately eight protein molecules per asymmetric unit