Sample records for cerebral oxygen consumption

  1. Cerebral oxygen delivery and consumption during evoked neural activity

    Directory of Open Access Journals (Sweden)

    Alberto L Vazquez


    Full Text Available Increases in neural activity evoke increases in the delivery and consumption of oxygen. Beyond observations of cerebral tissue and blood oxygen, the role and properties of cerebral oxygen delivery and consumption during changes in brain function are not well understood. This work overviews the current knowledge of functional oxygen delivery and consumption and introduces recent and preliminary findings to explore the mechanisms by which oxygen is delivered to tissue as well as the temporal dynamics of oxygen metabolism. Vascular oxygen tension measurements have shown that a relatively large amount of oxygen exits pial arterioles prior to capillaries. Additionally, increases in cerebral blood flow (CBF induced by evoked neural activation are accompanied by arterial vasodilation and also by increases in arteriolar oxygenation. This increase contributes not only to the down-stream delivery of oxygen to tissue, but also to delivery of additional oxygen to extra-vascular spaces surrounding the arterioles. On the other hand, the changes in tissue oxygen tension due to functional increases in oxygen consumption have been investigated using a method to suppress the evoked CBF response. The functional decreases in tissue oxygen tension induced by increases in oxygen consumption are slow to evoked changes in CBF under control conditions. Preliminary findings obtained using flavoprotein autofluorescence imaging suggest cellular oxidative metabolism changes at a faster rate than the average changes in tissue oxygen. These issues are important in the determination of the dynamic changes in tissue oxygen metabolism from hemoglobin-based imaging techniques such as blood oxygenation-level dependent functional magnetic resonance imaging (fMRI.

  2. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia. (United States)

    Chi, O Z; Barsoum, S; Vega-Cotto, N M; Jacinto, E; Liu, X; Mellender, S J; Weiss, H R


    Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion.

  3. Cerebral oxygen extraction, oxygen consumption, and regional cerebral blood flow during the aura phase of migraine

    DEFF Research Database (Denmark)

    Friberg, L; Olesen, Jes; Lassen, N A


    The aura phase of migraine is associated with focal blood flow changes, but it has been largely unknown whether these changes are correlated to changes in the cerebral metabolism.......The aura phase of migraine is associated with focal blood flow changes, but it has been largely unknown whether these changes are correlated to changes in the cerebral metabolism....

  4. Low Cerebral Oxygen Consumption and Blood Flow in Patients With Cirrhosis and an Acute Episode of Hepatic Encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Bak, Lasse Kristoffer; Waagepetersen, Helle Sønderby


    BACKGROUND & AIMS: It is unclear whether patients with hepatic encephalopathy (HE) have disturbed brain oxygen metabolism and blood flow. METHODS: We measured cerebral oxygen metabolism rate (CMRO(2)) by using (15)O-oxygen positron emission tomography (PET), and cerebral blood flow (CBF) by using....../min in patients with HE, 0.47 +/- 0.02 in patients without HE, and 0.49 +/- 0.03 in healthy subjects. CMRO(2) and CBF were correlated, and both variables correlated negatively with arterial ammonia concentration. Analysis of regional values, using individual magnetic resonance co-registrations, showed...... that the reductions in CMRO(2) and CBF in patients with HE were essentially generalized throughout the brain. CONCLUSIONS: The observations imply that reduced cerebral oxygen consumption and blood flow in cirrhotic patients with an acute episode of overt HE are associated with HE and not cirrhosis as such...

  5. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism-Tuberous Sclerosis. (United States)

    Chi, Oak Z; Wu, Chang-Chih; Liu, Xia; Rah, Kang H; Jacinto, Estela; Weiss, Harvey R


    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long-Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow ((14)C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long-Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism.

  6. Smoking normalizes cerebral blood flow and oxygen consumption after 12-hour abstention

    DEFF Research Database (Denmark)

    Seyedi Vafaee, Manouchehr; Gjedde, Albert; Imamirad, Nasrin


    measurements of cerebral blood flow (CBF) and metabolic rate of oxygen (CMRO2) in 12 smokers who had refrained from smoking overnight, and in a historical group of nonsmokers, testing the prediction that overnight abstinence results in widespread, coupled reductions of CBF and CMRO2. At the end......Acute nicotine administration stimulates [14C]deoxyglucose trapping in thalamus and other regions of rat brain, but acute effects of nicotine and smoking on energy metabolism have rarely been investigated in human brain by positron emission tomography (PET). We obtained quantitative PET...... of the abstention period, global grey-matter CBF and CMRO2 were both reduced by 17% relative to nonsmokers. At 15 minutes after renewed smoking, global CBF had increased insignificantly, while global CMRO2 had increased by 11%. Regional analysis showed that CMRO2 had increased in the left putamen and thalamus...

  7. Cerebral oxygenation and hyperthermia

    Directory of Open Access Journals (Sweden)

    Anthony Richard Bain


    Full Text Available Hyperthermia is associated with marked reductions in cerebral blood flow (CBF. Increased distribution of cardiac output to the periphery, increases in alveolar ventilation and resultant hypocapnia each contribute to the fall in CBF during passive hyperthermia; however, their relative contribution remains a point of contention, and probably depends on the experimental condition (e.g. posture and degree of hyperthermia. The hyperthermia-induced hyperventilatory response reduces arterial CO2 pressure (PaCO2 causing cerebral vasoconstriction and subsequent reductions in flow. During supine passive hyperthermia, the majority of recent data indicate that reductions in PaCO2 may be the primary, if not sole, culprit for reduced CBF. On the other hand, during more dynamic conditions (e.g. hemorrhage or orthostatic challenges, an inability to appropriately decrease peripheral vascular conductance presents a condition whereby adequate cerebral perfusion pressure may be compromised secondary to reductions in systemic blood pressure. Although studies have reported maintenance of pre-frontal cortex oxygenation (assessed by near-infrared spectroscopy during exercise and severe heat stress, the influence of cutaneous blood flow is known to contaminate this measure. This review discusses the governing mechanisms associated with changes in CBF and oxygenation during moderate to severe (i.e. 1.0°C to 2.0°C increase in body core temperature levels of hyperthermia. Future research directions are provided.

  8. Cerebral Tissue Oxygenation during Immediate Neonatal Transition and Resuscitation (United States)

    Pichler, Gerhard; Schmölzer, Georg M.; Urlesberger, Berndt


    This article provides a review of cerebral tissue oxygenation during immediate transition after birth in human neonates. Recommended routine monitoring, especially if resuscitation is needed, during this period includes arterial oxygen saturation and heart rate measured by pulse oximetry and electrocardiogram. However, there is increasing interest to monitor in addition with near-infrared spectroscopy (NIRS) the oxygenation of the brain. There is a different pattern of increase between cerebral tissue oxygenation and arterial oxygen saturation during the immediate transition, with cerebral tissue oxygenation reaching a plateau faster than arterial oxygen saturation. Differences can be explained, since cerebral tissue oxygenation is not only affected by arterial oxygen saturation but also by cerebral blood flow, hemoglobin content, and cerebral oxygen consumption. Normal values have already been established for different devices, gestational ages, and modes of delivery in neonates without any medical support. Cerebral hypoxia during immediate transition might cause brain damage. In preterm neonates with cerebral hemorrhage evolving in the first week after birth, the cerebral tissue oxygenation is already lower in the first minutes after birth compared to preterm neonates without cerebral hemorrhage. Using cerebral NIRS in combination with intervention guidelines has been shown to reduce the burden of cerebral hypoxia in preterm neonates. Cerebral tissue oxygenation during immediate transition seems to have an impact on outcome, whereby NIRS monitoring is feasible and has the advantage of continuous, non-invasive recording. The impact of NIRS monitoring and interventions on short- and long-term outcomes still need to be evaluated. PMID:28280719

  9. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. (United States)

    Atkinson, Ian C; Thulborn, Keith R


    The reduction of molecular oxygen to water is the final step of oxidative phosphorylation that couples adenosine triphosphate production to the reoxidation of reducing equivalents formed during the oxidation of glucose to carbon dioxide. This coupling makes the cerebral metabolic rate of oxygen consumption (CMRO(2)) an excellent reflection of the metabolic health of the brain. A multi-nuclear magnetic resonance (MR) imaging based method for CMRO(2) mapping is proposed. Oxygen consumption is determined by applying a new three-phase metabolic model for water generation and clearance to the changing 17-oxygen ((17)O) labeled water MR signal measured using quantitative (17)O MR imaging during inhalation of (17)O-enriched oxygen gas. These CMRO(2) data are corrected for the regional brain tissue mass computed from quantitative 23-sodium MR imaging of endogenous tissue sodium ions to derive quantitative results of oxygen consumption in micromoles O(2)/g tissue/minute that agree with literature results reported from positron emission tomography. The proposed technique is demonstrated in the human brain using a 9.4 T MR scanner optimized for human brain imaging.

  10. Monitoring Cerebral Oxygenation in Neonates: An Update (United States)

    Dix, Laura Marie Louise; van Bel, Frank; Lemmers, Petra Maria Anna


    Cerebral oxygenation is not always reflected by systemic arterial oxygenation. Therefore, regional cerebral oxygen saturation (rScO2) monitoring with near-infrared spectroscopy (NIRS) is of added value in neonatal intensive care. rScO2 represents oxygen supply to the brain, while cerebral fractional tissue oxygen extraction, which is the ratio between rScO2 and systemic arterial oxygen saturation, reflects cerebral oxygen utilization. The balance between oxygen supply and utilization provides insight in neonatal cerebral (patho-)physiology. This review highlights the potential and limitations of cerebral oxygenation monitoring with NIRS in the neonatal intensive care unit. PMID:28352624

  11. Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping

    DEFF Research Database (Denmark)

    Seyedi Vafaee, Manouchehr; Vang, Kim; Bergersen, Linda H


    Rates of cerebral blood flow (CBF) and glucose consumption (CMR(glc)) rise in cerebral cortex during continuous stimulation, while the oxygen-glucose index (OGI) declines as an index of mismatched coupling of oxygen consumption (cerebral metabolic rate of oxygen-CMRO(2)) to CBF and CMR...

  12. Cerebral oxygen metabolism in patients with early Parkinson's disease

    DEFF Research Database (Denmark)

    Borghammer, Per; Cumming, Paul; Østergaard, Karen;


    AIM: Decreased activity of the mitochondrial electron transport chain (ETC) has been implicated in the pathogenesis of Parkinson's disease (PD). This model would most likely predict a decrease in the rate of cerebral oxygen consumption (CMRO(2)). To test this hypothesis, we compared CMRO(2...

  13. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation

    DEFF Research Database (Denmark)

    Madsen, P L; Hasselbalch, S G; Hagemann, L P;


    fraction of the activation-induced excess glucose uptake. These data confirm earlier reports that brain activation can induce resetting of the cerebral oxygen/glucose consumption ratio, and indicate that the resetting persists for a long period after cerebral activation has been terminated and physiologic...

  14. Transcranial laser stimulation improves human cerebral oxygenation



    Background and Objective Transcranial laser stimulation of the brain with near‐infrared light is a novel form of non‐invasive photobiomodulation or low‐level laser therapy (LLLT) that has shown therapeutic potential in a variety of neurological and psychological conditions. Understanding of its neurophysiological effects is essential for mechanistic study and treatment evaluation. This study investigated how transcranial laser stimulation influences cerebral hemodynamics and oxygenation in th...

  15. Spatial Variations in Vitreous Oxygen Consumption. (United States)

    Murali, Karthik; Kang, Dongyang; Nazari, Hossein; Scianmarello, Nicholas; Cadenas, Enrique; Tai, Yu-Chong; Kashani, Amir; Humayun, Mark


    We investigated the spatial variation of vitreous oxygen consumption in enucleated porcine eyes. A custom made oxygen source was fabricated that could be localized to either the mid or posterior vitreous cavity and steady state vitreous oxygen tension was measured as a function of distance from the source using a commercially available probe. The reaction rate constant of ascorbate oxidation was estimated ex vivo by measuring the change in oxygen tension over time using vitreous harvested from porcine eyes. Vitreous ascorbate from mid and posterior vitreous was measured spectrophotometrically. When the oxygen source was placed in either the mid-vitreous (N = 6) or the posterior vitreous (N = 6), we measured a statistically significant decrease in vitreous oxygen tension as a function of distance from the oxygen source when compared to control experiments without an oxygen source; (p<0.005 for mid-vitreous and p<0.018 for posterior vitreous at all distances). The mid-vitreous oxygen tension change was significantly different from the posterior vitreous oxygen tension change at 2 and 3mm distances from the respective oxygen source (p<0.001). We also found a statistically significant lower concentration of ascorbate in the mid-vitreous as compared to posterior vitreous (p = 0.02). We determined the reaction rate constant, k = 1.61 M(-1) s(-1) ± 0.708 M(-1) s(-1) (SE), of the oxidation of ascorbate which was modeled following a second order rate equation. Our data demonstrates that vitreous oxygen consumption is higher in the posterior vitreous compared to the mid-vitreous. We also show spatial variations in vitreous ascorbate concentration.

  16. Oxygen consumption by a coral reef sponge. (United States)

    Hadas, Eran; Ilan, Micha; Shpigel, Muki


    Oxygen consumption of the Red Sea coral reef sponge Negombata magnifica was measured using both incubation and steady-state methods. The latter method was found to be the more reliable because sponge activity remained stable over time. Oxygen consumption rate was measured during three levels of sponge activity: full activity, reduced activity and basal activity (starved). It was found that the active oxygen consumption rate of N. magnifica averaged 37.3+/-4.6 nmol O2 min(-1) g(-1) wet mass, which is within the upper range reported for other tropical marine sponges. Fully active N. magnifica individuals consumed an average of 41.8+/-3.2 nmol O2 min(-1) g(-1) wet mass. The mean basal respiration rate was 20.2+/-1.2 nmol O2 min(-1) g(-1) wet mass, which is 51.6+/-2.5% of the active respiration rate. Therefore, the oxygen used for water pumping was calculated to be at most 10.6+/-1.8 nmol O2 min(-1) g(-1) wet mass, which is 25.1+/-3.6% of the total respiration. Combined oxygen used for maintenance and water pumping activity was calculated to be 30.8 nmol O2 min(-1) g(-1) wet mass, which is approximately 74% of the sponge's total oxygen requirement. The remaining oxygen is directed to other physiological activities, mainly the energy requirement of growth. These findings suggest that only a relatively minor amount of energy is potentially available for growth, and thus might be a factor in controlling the growth rate of N. magnifica in oligotrophic coral reefs.

  17. Relationship Between Cerebral Oxygenation and Hemodynamic and Oxygen Transport Parameters in Surgery for Acquired Heart Diseases

    Directory of Open Access Journals (Sweden)

    A. I. Lenkin


    Full Text Available Objective: to evaluate the relationship between cerebral oxygenation and hemodynamic and oxygen transport parameters in surgical correction of concomitant acquired heart diseases. Subjects and methods. Informed consent was received from 40 patients who required surgery because of concomitant (two or more acquired heart defects. During procedure, perioperative monitoring of oxygen transport and cerebral oxygenation was performed with the aid of PiCCO2 monitor (Pulsion Medical Systems, Germany and a Fore-Sight cerebral oximeter (CASMED, USA. Anesthesia was maintained with propofol and fen-tanyl, by monitoring the depth of anesthesia. Early postoperative intensive therapy was based on the protocol for early targeted correction of hemodynamic disorders. Oxygen transport and cerebral oxygenation parameters were estimated intraopera-tively and within 24 postoperative hours. A statistical analysis including evaluation of Spearman correlations was performed with the aid of SPSS 15.0. Results. During perfusion, there was a relationship between cerebral oximetry values and hemat-ocrit levels, and oxygen partial pressure in the venous blood. Furthermore, a negative correlation between cerebral oximetry values and blood lactate levels was found 30 minutes after initiation of extracorporeal circulation (EC. During the study, there was a positive correlation between cerebral oxygenation and values of cardiac index, central venous saturation, and oxygen delivery index. There was a negative relationship between cerebral oxygenation and extravascular lung water at the beginning of surgery and a correlation between cerebral oximetry values and oxygenation index by the end of the first 24 postoperative hours. Conclusion. The cerebral oxygenation values correlate -with the main determinants of oxygen transport during EC and after cardiac surgical procedures. Cerebral oximetry may be used in early targeted therapy for the surgical correction of acquired combined

  18. Lipopolysaccharide infusion enhances dynamic cerebral autoregulation without affecting cerebral oxygen vasoreactivity in healthy volunteers

    DEFF Research Database (Denmark)

    Berg, Ronan Mg; Plovsing, Ronni R; Evans, Kevin A;


    Sepsis may be associated with disturbances in cerebral oxygen transport and cerebral haemodynamic function, thus rendering the brain particularly susceptible to hypoxia. The purpose of this study was to assess the impact of isocapnic hypoxia and hyperoxia on dynamic cerebral autoregulation...... in a human-experimental model of the systemic inflammatory response during the early stages of sepsis....

  19. Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise

    DEFF Research Database (Denmark)

    Nybo, Lars; Rasmussen, Peter


    Under resting conditions, the brain is protected against hypoxia because cerebral blood flow increases when the arterial oxygen tension becomes low. However, during strenuous exercise, hyperventilation lowers the arterial carbon dioxide tension and blunts the increase in cerebral blood flow, which...

  20. Cerebral aspects of neonatal extracorporeal membrane oxygenation: a review.

    NARCIS (Netherlands)

    Mol, A.C. de; Liem, K.D.; Heijst, A.F.J. van


    Background: Neonatal extracorporeal membrane oxygenation (ECMO) is a lifesaving therapeutic approach in newborns suffering from severe, but potentially reversible, respiratory insufficiency, mostly complicated by neonatal persistent pulmonary hypertension. However, cerebral damage, intracerebral hem

  1. Variable ATP yields and uncoupling of oxygen consumption in human brain

    DEFF Research Database (Denmark)

    Gjedde, Albert; Aanerud, Joel; Peterson, Ericka;


    The distribution of brain oxidative metabolism values among healthy humans is astoundingly wide for a measure that reflects normal brain function and is known to change very little with most changes of brain function. It is possible that the part of the oxygen consumption rate that is coupled...... to ATP turnover is the same in all healthy human brains, with different degrees of uncoupling explaining the variability of total oxygen consumption among people. To test the hypothesis that about 75% of the average total oxygen consumption of human brains is common to all individuals, we determined...... the variability in a large group of normal healthy adults. To establish the degree of variability in different regions of the brain, we measured the regional cerebral metabolic rate for oxygen in 50 healthy volunteers aged 21-66 and projected the values to a common age of 25.Within each subject and region, we...

  2. Prenatal tobacco exposure influences cerebral oxygenation in preterm infants

    NARCIS (Netherlands)

    Verhagen, Elise A.; ter Horst, Hendrik J.; Kooi, Elisabeth M. W.; Keating, Paul; van den Berg, Paul P.; Bos, Arend F.


    Aim: Our aim was to determine the influence of prenatal tobacco exposure on regional cerebral tissue oxygen saturation (r(c)SO(2)) and fractional tissue oxygen extraction (FTOE) in preterm infants. We hypothesized that as a result of vasoconstriction caused by prenatal tobacco exposure r(c)SO(2) wou

  3. Cerebral oxygenation is reduced during hyperthermic exercise in humans

    DEFF Research Database (Denmark)

    Rasmussen, P.; Nybo, Lars; Volianitis, Stefanos;


    Abstract Aim: Cerebral mitochondrial oxygen tension (P(mito)O(2)) is elevated during moderate exercise, while it is reduced when exercise becomes strenuous, reflecting an elevated cerebral metabolic rate for oxygen (CMRO(2)) combined with hyperventilation-induced attenuation of cerebral blood flow...... (CBF). Heat stress challenges exercise capacity as expressed by increased rating of perceived exertion (RPE). Methods: This study evaluated the effect of heat stress during exercise on P(mito)O(2) calculated based on a Kety-Schmidt-determined CBF and the arterial-to-jugular venous oxygen differences...... in eight males [27 +/- 6 years (mean +/- SD) and maximal oxygen uptake (VO(2max)) 63 +/- 6 mL kg(-1) min(-1)]. Results: The CBF, CMRO(2) and P(mito)O(2) remained stable during 1 h of moderate cycling (170 +/- 11 W, approximately 50% of VO(2max), RPE 9-12) in normothermia (core temperature of 37.8 +/- 0...

  4. Oxygen supply and consumption in soilless culture: evaluation of an oxygen simulation model for cucumber

    NARCIS (Netherlands)

    Baas, R.; Wever, G.; Koolen, A.J.; Tariku, E.; Stol, K.J.


    A soil oxygen simulation model (OXSI) was tested and evaluated for evaluating growing media with respect to aeration. In the model, local oxygen concentrations are calculated from coefficients of diffusion and consumption (respiration), assuming equilibrium conditions. Apparent oxygen diffusion coef

  5. Physiological meaning of cerebral oxygen saturation for piglet with hypoxia-ischemia (United States)

    Ding, Haishu; Huang, Lan; Jen, Chungchien; Hwang, Betau; Lee, Zhiguang; Teng, Yichao; Zheng, Meizhi


    The physiological meaning of cerebral oxygen saturation absolute values and the oxygen metabolism of piglet with hypoxia-ischemia (HIE) were researched. The subjects were two piglets. During the total experiment of hypoxia then recovery, the regional cerebral tissue oxygen (rScO2), pulse oxygen saturation (SpO2) were detected non-invasively and the jugular oxygen saturation (SjO2), arterial oxygen saturation (SaO2) were given invasively. The results show that because SjO2 was equal to or larger than rScO2 and SaO2 > ScO2, rScO2 cannot be determined by the weighted sum of SjO2 and SaO2 which had been presented in some papers. According to above-mentioned analysis, the ecchymoma and pathological changes of the vessels due to HIE may be another contribution of rScO2. SjO2 was correlated with SaO2 (R=0.996 and 0.962 for two piglets) and the values of (SaO2-SjO2) are close to constants (29.3+/-8% and 30.3+/-8%).It means that because the subjects were under anesthesia, the oxygen consumption of cerebral tissue kept constants.

  6. The effect of insulin and glucagon on splanchnic oxygen consumption

    DEFF Research Database (Denmark)

    Simonsen, Lene; Coker, Robert; A L Mulla, Nariman;


    The purpose of these experiments was to measure the influence of insulin and glucagon on the splanchnic oxygen consumption. Two experiments were performed.......The purpose of these experiments was to measure the influence of insulin and glucagon on the splanchnic oxygen consumption. Two experiments were performed....

  7. Development of a model to determine oxygen consumption when crawling. (United States)

    Pollard, J P; Heberger, J R; Dempsey, P G

    During a mine disaster or emergency, underground air can quickly become contaminated. In these circumstances, all underground mine workers are taught to don breathable air supply units at the first sign of an emergency. However, no contemporary oxygen consumption data is available for the purposes of designing breathing air supply equipment specifically for mine escape. Further, it would be useful to quantify the oxygen requirements of breathing air supply users for various escape scenarios. To address this need, 14 participants crawled a distance of 305 m each while their breath-by-breath oxygen consumption measurements were taken. Using these data, linear regression models were developed to determine peak and average oxygen consumption rates as well as total oxygen consumption. These models can be used by manufacturers of breathing air supply equipment to aid in the design of devices that would be capable of producing sufficient on-demand oxygen to allow miners to perform self-escape.

  8. Excess post hypoxic oxygen consumption in Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Plambech, M.; Deurs, Mikael van; Steffensen, J.F.;


    Atlantic cod Gadus morhua experienced oxygen deficit (DO2 ) when exposed to oxygen levels below their critical level (c. 73% of pcrit) and subsequent excess post-hypoxic oxygen consumption (CEPHO) upon return to normoxic conditions, indicative of an oxygen debt. The mean±s.e. CEPHO:DO2 was 6·9±1·......·9±1·5, suggesting that resorting to anaerobic energy production in severe hypoxia is energetically expensive...

  9. Effects of propofol versus sevoflurane on cerebral oxygenation and cognitive outcome in patients with impaired cerebral oxygenation

    Directory of Open Access Journals (Sweden)

    Guo JY


    Full Text Available Jun-ying Guo,1,* Jie-yu Fang,1,* San-rong Xu,2 Ming Wei,1 Wen-qi Huang1 1Department of Anesthesia, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 2Department of Anesthesia, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou, Fujian, People’s Republic of China *These authors contributed equally to this work Background: Postoperative neurocognitive dysfunction induced by anesthetics, particularly in elderly patients with impaired oxygenation, is a common complication of surgery and is eliciting increased interest in clinical practice. To investigate the effects of anesthetics on neurocognition, we compared the effects of propofol versus sevoflurane on cerebral oxygenation and cognitive outcome in patients with impaired cerebral oxygenation undergoing general anesthesia. Methods: Sixty-three patients with impaired cerebral oxygenation (jugular venous bulb oxygen saturation [SjvO2] <50% or cerebral blood flow/cerebral metabolic rate of oxygen ([CBF/CMRO2] ≤15% undergoing elective abdominal surgery were randomly allocated into propofol group (group P or sevoflurane group (group S. The clinical parameters and jugular venous bulb blood gas analysis were monitored throughout the surgical procedure. Cognitive function was assessed with the mini-mental state examination and Montreal Cognitive Assessment at day 1 and day 7 following surgery. S100β protein in plasma was measured using enzyme-linked immunosorbent assay. Results: The SjvO2 increased during anesthesia induction and surgery when compared to baseline but had no significant difference between group P and group S. When compared to baseline, the CBF/CMRO2 was increased only at the end of surgery and extubation in group P; however, the CBF/CMRO2 in group S was increased during anesthesia induction at 1 hour, 2 hours, end of surgery, and extubation. Furthermore, the CBF/CMRO2 in group S was significantly higher than that in group P during anesthesia

  10. T2’-Imaging to Assess Cerebral Oxygen Extraction Fraction in Carotid Occlusive Disease: Influence of Cerebral Autoregulation and Cerebral Blood Volume (United States)

    Deichmann, Ralf; Pfeilschifter, Waltraud; Hattingen, Elke; Singer, Oliver C.; Wagner, Marlies


    Purpose Quantitative T2'-mapping detects regional changes of the relation of oxygenated and deoxygenated hemoglobin (Hb) by using their different magnetic properties in gradient echo imaging and might therefore be a surrogate marker of increased oxygen extraction fraction (OEF) in cerebral hypoperfusion. Since elevations of cerebral blood volume (CBV) with consecutive accumulation of Hb might also increase the fraction of deoxygenated Hb and, through this, decrease the T2’-values in these patients we evaluated the relationship between T2’-values and CBV in patients with unilateral high-grade large-artery stenosis. Materials and Methods Data from 16 patients (13 male, 3 female; mean age 53 years) with unilateral symptomatic or asymptomatic high-grade internal carotid artery (ICA) or middle cerebral artery (MCA) stenosis/occlusion were analyzed. MRI included perfusion-weighted imaging and high-resolution T2’-mapping. Representative relative (r)CBV-values were analyzed in areas of decreased T2’ with different degrees of perfusion delay and compared to corresponding contralateral areas. Results No significant elevations in cerebral rCBV were detected within areas with significantly decreased T2’-values. In contrast, rCBV was significantly decreased (pperfusion delay and decreased T2’. Furthermore, no significant correlation between T2’- and rCBV-values was found. Conclusions rCBV is not significantly increased in areas of decreased T2’ and in areas of restricted perfusion in patients with unilateral high-grade stenosis. Therefore, T2’ should only be influenced by changes of oxygen metabolism, regarding our patient collective especially by an increase of the OEF. T2’-mapping is suitable to detect altered oxygen consumption in chronic cerebrovascular disease. PMID:27560515

  11. Oxygen consumption of rats with broad intestinal resection

    Directory of Open Access Journals (Sweden)

    Luz J.


    Full Text Available The study was performed to investigate possible alterations in oxygen consumption in an animal model with broad intestinal resection. Oxygen consumption and the thermal effect of a short meal were measured in rats subjected to short bowel syndrome. Four groups of rats were used. Group I was the control group, group II was sham operated, group III was submitted to 80% jejunum-ileum resection, and group IV was submitted to 80% jejunum-ileum resection with colon interposition. Ninety days after surgery, oxygen consumption was measured over a period of 6 h with the animals fasted overnight. The thermal effect of feeding was determined in another session of oxygen consumption measurement in animals fasted for 12 h. A 12-kcal meal was then introduced into the animal chamber and oxygen consumption was measured for a further 4 h. No differences in fasting oxygen consumption or in the thermal effect of the meal were detected among the groups studied. It is concluded that short bowel syndrome does not affect the overall energy expenditure of rats.

  12. Cerebral blood flow and oxygen metabolism in the Rett syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hideto; Fueki, Noboru; Suzuki, Hisaharu; Sakuragawa, Norio; Iio, Masaaki (National Central Hospital for Mental, Nervous and Muscular Disorders, Tokyo (Japan))


    Positron emission tomography (PET) was performed on six patients with the Rett syndrome and the results were compared with the concurrent clinical status of the patients. The cerebral metabolic rate of oxygen (CMRO{sub 2}) was low in five patients, and oxygen extraction fraction (OEF) was low in four patients; both had a tendency to decline with advancing age. Although the cause is unknown, it is suggested that impaired oxidative metabolism exists in the Rett syndrome. An analysis of the distribution among brain regions showed that the ratios of values for the frontal cortex to those for the temporal cortex for both the cerebral blood flow (CBF) and CMRO{sub 2} were lower than those for the controls, which may indicate the loss of of hyperfrontality in the Rett syndrome. Distribution of brain metabolism may be immature in the Rett syndrome. (author).

  13. Influence of remote ischemic preconditioning on cerebral oxygen metabolism and cerebral blood flow indexes of patients with ischemic cerebrovascular disease

    Institute of Scientific and Technical Information of China (English)

    Hui Lu; Ning-Ning Cui; Bin-Cheng Wang


    Objective:To study the influence of remote ischemic preconditioning on cerebral oxygen metabolism and cerebral blood flow indexes of patients with ischemic cerebrovascular disease. Methods:A total of 58 patients with ischemic cerebrovascular disease in our hospital from April 2015 to January 2016 were selected as the study object, and 58 patients were randomly divided into two groups, 29 patients in control group were treated with routine treatment, 29 patients in observation group were treated with remote ischemic preconditioning on the basic treatment of control group, then the cerebral oxygen metabolism and cerebral blood flow indexes of two groups before the treatment and at first, third and sixth month after the treatment were respectively detected and compared.Results:The cerebral oxygen metabolism and cerebral blood flow indexes of two groups before the treatment all showed no significant differences (allP>0.05), while the cerebral oxygen metabolism and cerebral blood flow indexes of observation group at first, third and sixth month after the treatment were all significantly better than those before the treatment, and the results were all significantly better than those of control group at the same time too (allP>0.05).Conclusions: The influence of remote ischemic preconditioning on cerebral oxygen metabolism and cerebral blood flow indexes of patients with ischemic cerebrovascular disease are better, and its application value for the patients with ischemic cerebrovascular disease is higher.

  14. Activated oxygen alters cerebral microvascular responses in newborn pigs

    Energy Technology Data Exchange (ETDEWEB)

    Leffler, C.W.; Busiia, D.W.; Armstead, W.M.; Mirro, R.; Thelin, O. (Univ. of Tennessee, Memphis (United States))


    In piglets, cerebral ischemia/reperfusion blocks prostanoid dependent cerebral vasodilation to hypercapnia (CO{sub 2}) and hypotension but not prostanoid independent dilation to isoproterenol (Isu) or constriction to norepinephrine (NE). Ischemia/reperfusion increases activated-O{sub 2} production by piglet brains. Using cranial windows in piglets, the authors investigated the hypothesis that activated oxygen can block prostanoid dependent cerebral vasodilator responses to CO{sub 2} and hypotension without altering responses to Isu and NE. Exposure to an activated oxygen generating system of xanthine oxidase, hypoxanthine, and Fe that made about 3 times the activated-O{sub 2} on the brain surface as ischemia/reperfusion caused reversible pial arteriolar dilation. After exposure, pial arteriolar dilation was reduced to CO{sub 2} and hypotension but not to Isu. NE constrictor responses were also unaltered. H{sub 2}O{sub 2} or H{sub 2}O{sub 2} + Fe caused constriction followed by reversible dilation. After exposure, pial arteriolar dilation in response to CO{sub 2} and hypotension was not altered. However, addition of xanthine oxidase and hypoxanthine with H{sub 2}O{sub 2} and Fe totally eliminated pial arteriolar dilator responses to CO{sub 2} and hypotension but did not decrease dilation caused by Isu or constriction caused by NE. The authors conclude that activated oxygen could produce the altered prostanoid dependent pial arteriolar responses observed following ischemia in piglets.

  15. Comparison of Cerebral Oxygen Saturation and Cerebral Perfusion Computed Tomography in Cerebral Blood Flow in Patients with Brain Injury. (United States)

    Trofimov, Alexey O; Kalentiev, George; Voennov, Oleg; Grigoryeva, Vera


    The purpose of this study was to determine the relationship between cerebral tissue oxygen saturation and cerebral blood volume in patients with traumatic brain injury. Perfusion computed tomography of the brain was performed in 25 patients with traumatic brain injury together with simultaneous SctO2 level measurement using cerebral near-infrared oxymetry. The mean age of the injured persons was 34.5±15.6 years (range 15-65); 14 men, 11 women. The Injury Severity Score (ISS) values were 44.4±9.7 (range 25-81). The Glasgow Coma Score (GCS) mean value before the study was 10.6±2.1 (range 5-13). SctO2 ranged from 51 to 89%, mean 62±8.2%. Cerebral blood volume (CBV) values were 2.1±0.67 ml/100 g (min 1.1; max 4.3 ml/100 g). Cerebral blood flow (CBF) was 31.99±13.6 ml/100 g×min. Mean transit time (MTT) values were 5.7±4.5 s (min 2.8; max 34.3 s). The time to peak (TTP) was 22.2±3.1 s. A statistically significant correlation was found between SctO2 level and cerebral blood volume (CBV) level (R=0.9; pperfusion.

  16. Cerebral oxygenation and metabolism during exercise following three months of endurance training in healthy overweight males

    DEFF Research Database (Denmark)

    Seifert, T; Rasmussen, P; Brassard, P


    Endurance training improves muscular and cardiovascular fitness, but the effect on cerebral oxygenation and metabolism remains unknown. We hypothesized that 3 mo of endurance training would reduce cerebral carbohydrate uptake with maintained cerebral oxygenation during submaximal exercise. Healthy...... with a lower plasma epinephrine concentration (P exercising at 70% of maximal oxygen uptake (approximately 211 W). Before training, both OCI (3.9 +/- 0.9) and DeltaP(Mito)O(2) (-22 mmHg) decreased (P ... attenuates the cerebral metabolic response to submaximal exercise, as reflected in a lower carbohydrate uptake and maintained cerebral oxygenation....

  17. Quantifying consumption rates of dissolved oxygen along bed forms (United States)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai


    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species, and the evaluation of these reaction rates is important to assess the fate of nutrients in riverine environments. In this work we analyze a series of flume experiments on oxygen demand in dune-shaped hyporheic sediments under losing and gaining flow conditions. We employ a new modeling code to quantify oxygen consumption rates from observed vertical profiles of oxygen concentration. The code accounts for transport by molecular diffusion and water advection, and automatically determines the reaction rates that provide the best fit between observed and modeled concentration values. The results show that reaction rates are not uniformly distributed across the streambed, in agreement with the expected behavior predicted by hyporheic exchange theory. Oxygen consumption was found to be highly influenced by the presence of gaining or losing flow conditions, which controlled the delivery of labile DOC to streambed microorganisms.

  18. Activation-induced resetting of cerebral oxygen and glucose uptake in the rat

    DEFF Research Database (Denmark)

    Madsen, P L; Linde, R; Hasselbalch, S G;


    In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose...... and oxygen in the awake rat. Global CBF was measured by the Kety-Schmidt technique, and the ratio between cerebral uptake rates for oxygen, glucose, and lactate was calculated from cerebral arterial-venous differences. During baseline conditions, rats were kept in a closed box designed to minimize...

  19. Neonatal cerebral oxygenation is not linked to foetal vasculitis and predicts intraventricular haemorrhage in preterm infants

    DEFF Research Database (Denmark)

    Sorensen, Line C; Maroun, Lisa L; Borch, Klaus;


    Aim: The aim of the study was to compare the cerebral tissue oxygenation index (c-TOI) measured by near infrared spectroscopy (NIRS) in infants with and without foetal vasculitis. Methods: Twenty-four infants with placental signs of a foetal inflammatory response (FIR), foetal vasculitis, were.......002). Conclusion: Cerebral oxygenation was not affected in the first day of life in preterm infants born with foetal vasculitis, while cerebral oxygenation in infants that later developed intraventricular haemorrhage was impaired....

  20. Neonatal cerebral oxygenation is not linked to foetal vasculitis and predicts intraventricular haemorrhage in preterm infants

    DEFF Research Database (Denmark)

    Sørensen, Line Carøe; Maroun, Lisa Leth; Borch, K.;


    AIM: The aim of the study was to compare the cerebral tissue oxygenation index (c-TOI) measured by near infrared spectroscopy (NIRS) in infants with and without foetal vasculitis. METHODS: Twenty-four infants with placental signs of a foetal inflammatory response (FIR), foetal vasculitis, were.......002). CONCLUSION: Cerebral oxygenation was not affected in the first day of life in preterm infants born with foetal vasculitis, while cerebral oxygenation in infants that later developed intraventricular haemorrhage was impaired Udgivelsesdato: 2008/11...

  1. Simple exercises that significantly increase cerebral blood flow and cerebral oxygenation

    CERN Document Server

    Gersten, Alexander; Raz, Amir; Fried, Robert


    We tested the hypothesis that simple exercises may significantly increase cerebral blood flow (CBF) and/or cerebral oxygenation. Eighteen subjects ranging in age from nineteen to thirty nine participated in a four-stage study during which measurements of end tidal CO_2 (EtCO2 - by capnometer) and local brain oxygenation (by near-infrared spectroscopy (NIRS) sensor) were taken. The four stages were 1) baseline, 2) breathing exercises, 3) solving an arithmetic problem, and 4) biofeedback. During the breathing exercises there was a significant increase in EtCO2 indicating a significant increase in global CBF. The increase in global CBF was estimated on the basis of a theoretical model. During the arithmetic and biofeedback tasks there was a significant increase in the local (Fp1) oxygenation, but it varied between the different participants. The results may lead to new clinical applications of CBF and brain oxygenation monitoring and behavioral control. We foresee future more detailed investigations in the contr...

  2. Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration (United States)

    Yamaguchi, Hiroichiro; Yamauchi, Hideto; Hazama, Shiro; Hamamoto, Hirotsugu; Inoue, Nobuhiro


    The cerebral circulation and metabolism of ten preoperative cardiac surgery patients were assessed. Alterations in regional cerebral blood flow (rCBF), measured by 123I-N- isopropyl-p-iodo-amphetamine single-photon emission computed tomography, and in cerebral oxygen metabolism, simultaneously detected by near-infrared spectroscopy (NIRS) before and after acetazolamide administration, were investigated. The rCBF (ml/min/100 g) increased significantly from 40.21 +/- 7.65 to 56.24 +/- 13.69 (p equals 0.001), and a significant increase in oxyhemoglobin (Oxy-Hb) of 13.9% (p equals 0.0022) and total hemoglobin (Total-Hb) of 5.7% (0.0047) along with a significant decrease in deoxyhemoglobin (Deoxy-Hb) of 8.9% (p equals 0.0414) were observed concomitantly. Thus, the Oxy-Hb/Total- Hb ratio (%Oxy-Hb) rose significantly from 67.26 +/- 9.82% to 72.98 +/- 8.09% (p equals 0.0022). Examination of the relationships between individual parameters showed that the percentage changes in rCBF and Oxy-Hb were significantly correlated (r equals 0.758, p equals 0.011). The percentage changes in rCBF and %Oxy-Hb were also correlated significantly (r equals 0.740, p equals 0.014). In conclusion, this evidence suggested that NIRS is able to detect relative changes in cerebral hemodynamics and reflect luxury perfusion induced by acetazolamide.

  3. Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade

    DEFF Research Database (Denmark)

    Seifert, T.; Rasmussen, P.; Secher, Niels H.


    AIM: Beta-blockers reduce exercise capacity by attenuated increase in cardiac output, but it remains unknown whether performance also relates to attenuated cerebral oxygenation. METHODS: Acting as their own controls, eight healthy subjects performed a continuous incremental cycle test to exhaustion...... with or without administration of the non-selective beta-blocker propranolol. Changes in cerebral blood flow velocity were measured with transcranial Doppler ultrasound and those in cerebral oxygenation were evaluated using near-infrared spectroscopy and the calculated cerebral mitochondrial oxygen tension...

  4. The effects of sevoflurane and propofol anesthesia on cerebral oxygenation in gynecological laparoscopic surgery


    Kim, Sung-Jin; Kwon, Jae Young; Cho, Ah-Reum; Kim, Hae Kyu; Kim, Tae Kyun


    Background Both the Trendelenburg position and pneumoperitoneum with carbon dioxide have been reported to increase intracranial pressure (ICP) and to alter cerebral blood flow or cerebral blood volume. Also anesthetic agents have variable effects on cerebral hemodynamics and ICP. The present study was conducted to determine whether regional cerebral oxygen saturation (rSO2) values differ between propofol and sevoflurane anesthesia during laparoscopic surgery in the Trendelenburg position. Met...

  5. Effect of balloon atrial septostomy on cerebral oxygenation in neonates with transposition of the great arteries

    NARCIS (Netherlands)

    van der Laan, Michelle E.; Verhagen, Elise A.; Bos, Arend F.; Berger, Rolf M. F.; Kooi, Elisabeth M. W.


    BACKGROUND: The aim of this study was to determine the effect of balloon atrial septostomy (BAS) on cerebral oxygenation in neonates with transposition of the great arteries (TGA). METHODS: In term neonates with TGA, regional cerebral tissue oxygen saturation (r(c)SO(2)) was measured using, near-inf

  6. Decavanadate induces mitochondrial membrane depolarization and inhibits oxygen consumption. (United States)

    Soares, S S; Gutiérrez-Merino, C; Aureliano, M


    Decavanadate induced rat liver mitochondrial depolarization at very low concentrations, half-depolarization with 39 nM decavanadate, while it was needed a 130-fold higher concentration of monomeric vanadate (5 microM) to induce the same effect. Decavanadate also inhibits mitochondrial repolarization induced by reduced glutathione in vitro, with an inhibition constant of 1 microM, whereas no effect was observed up to 100 microM of monomeric vanadate. The oxygen consumption by mitochondria is also inhibited by lower decavanadate than monomeric vanadate concentrations, i.e. 50% inhibition is attained with 99 M decavanadate and 10 microM monomeric vanadate. Thus, decavanadate is stronger as mitochondrial depolarization agent than as inhibitor of mitochondrial oxygen consumption. Up to 5 microM, decavanadate does not alter mitochondrial NADH levels nor inhibit neither F(O)F(1)-ATPase nor cytochrome c oxidase activity, but it induces changes in the redox steady-state of mitochondrial b-type cytochromes (complex III). NMR spectra showed that decameric vanadate is the predominant vanadate species in decavanadate solutions. It is concluded that decavanadate is much more potent mitochondrial depolarization agent and a more potent inhibitor of mitochondrial oxygen consumption than monomeric vanadate, pointing out the importance to take into account the contribution of higher oligomeric species of vanadium for the biological effects of vanadate solutions.

  7. Oxygen Consumption While Standing with Unstable Shoe Design

    Directory of Open Access Journals (Sweden)

    Gasser Benedikt A.


    Full Text Available Purpose. This study explored the effects of unstable shoe design on oxygen consumption. Methods. Oxygen consumption (VO2 and heart rate (HR were measured in 16 individuals while barefoot, wearing unstable shoes (Masai Barefoot Technology and wearing conventional sport shoes while standing and walking on a treadmill and for 5 individuals while walking around a 400 m track. Results. When wearing the MBT shoes, a significant (p < 0.01 increase of 9.3 ± 5.2% in VO2 was measured while standing quietly for 6 min. No differences in VO2 and HR were observed between the MBT shoes or weight-adjusted conventional shoes (to match the weight of the MBT shoes while walking on a treadmill. However, significant increases (p < 0.01 in VO2 (4.4 ± 8.2% and HR (3.6 ± 7.3% were observed for the MBT shoes compared with being barefoot. No significant differences in VO2 and HR were recorded while walking around a 400 m track either with MBT shoes, weight-adjusted conventional shoes or barefoot. Nonetheless, a comparison of the MBT shoes with barefoot revealed a tendency for VO2 to be higher when wearing the MBT shoes (7.1 ± 6.5%, p < 0.1 although HR was not significantly affected. Conclusions. The unstable shoe design predominantly effects oxygen consumption while standing, most likely due to increased muscle activity of the lower extremities.

  8. Comparative quantification of oxygen release by wetland plants: electrode technique and oxygen consumption model. (United States)

    Wu, Haiming; Liu, Jufeng; Zhang, Jian; Li, Cong; Fan, Jinlin; Xu, Xiaoli


    Understanding oxygen release by plants is important to the design of constructed wetlands for wastewater treatment. Lab-scale systems planted with Phragmites australis were studied to evaluate the amount of oxygen release by plants using electrode techniques and oxygen consumption model. Oxygen release rate (0.14 g O2/m(2)/day) measured using electrode techniques was much lower than that (3.94-25.20 gO2/m(2)/day) calculated using the oxygen consumption model. The results revealed that oxygen release by plants was significantly influenced by the oxygen demand for the degradation of pollutants, and the oxygen release rate increased with the rising of the concentration of degradable materials in the solution. The summary of the methods in qualifying oxygen release by wetland plants demonstrated that variations existed among different measuring methods and even in the same measuring approach. The results would be helpful for understanding the contribution of plants in constructed wetlands toward actual wastewater treatment.


    Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled Individual's physical activity level as described in an activity diary. Activity level is quantified via standardized val...

  10. Prognostic value of cerebral tissue oxygen saturation during neonatal extracorporeal membrane oxygenation (United States)

    Clair, Marie-Philippine; Rambaud, Jérôme; Flahault, Adrien; Guedj, Romain; Guilbert, Julia; Guellec, Isabelle; Durandy, Amélie; Demoulin, Maryne; Jean, Sandrine; Mitanchez, Delphine; Chalard, François; Sileo, Chiara; Carbajal, Ricardo; Renolleau, Sylvain


    Objectives Extracorporeal membrane oxygenation support is indicated in severe and refractory respiratory or circulatory failures. Neurological complications are typically represented by acute ischemic or hemorrhagic lesions, which induce higher morbidity and mortality. The primary goal of this study was to assess the prognostic value of cerebral tissue oxygen saturation (StcO2) on mortality in neonates and young infants treated with ECMO. A secondary objective was to evaluate the association between StcO2 and the occurrence of cerebral lesions. Study design This was a prospective study in infants < 3 months of age admitted to a pediatric intensive care unit and requiring ECMO support. Measurements The assessment of cerebral perfusion was made by continuous StcO2 monitoring using near-infrared spectroscopy (NIRS) sensors placed on the two temporo-parietal regions. Neurological lesions were identified by MRI or transfontanellar echography. Results Thirty-four infants <3 months of age were included in the study over a period of 18 months. The ECMO duration was 10±7 days. The survival rate was 50% (17/34 patients), and the proportion of brain injuries was 20% (7/34 patients). The mean StcO2 during ECMO in the non-survivors was reduced in both hemispheres (p = 0.0008 right, p = 0.03 left) compared to the survivors. StcO2 was also reduced in deceased or brain-injured patients compared to the survivors without brain injury (p = 0.002). Conclusion StcO2 appears to be a strong prognostic factor of survival and of the presence of cerebral lesions in young infants during ECMO. PMID:28278259

  11. Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. (United States)

    Ances, Beau M; Liang, Christine L; Leontiev, Oleg; Perthen, Joanna E; Fleisher, Adam S; Lansing, Amy E; Buxton, Richard B


    Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2). For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 +/- 0.07%) compared to the younger group (0.95 +/- 0.14%), despite the finding that the fractional CBF and CMRO(2) changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 +/- 0.4%) than younger subjects (6.5 +/- 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 +/- 4.8 mL/100 mL/min) compared to younger (59.6 +/- 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone.

  12. Cerebral blood oxygenation changes induced by visual stimulation in humans (United States)

    Wenzel, Rudiger; Obrig, Hellmuth; Ruben, Jan; Villringer, Kersten; Thiel, Andreas; Bernarding, Johannes; Dirnagl, Ulrich; Villringer, Arno


    We examined local changes of cerebral oxygenation in response to visual stimuli by means of near infrared spectroscopy. A sharply outlined colored moving stimulus which is expected to evoke a broad activation of the striate and prestriate cortex was presented to sixteen healthy subjects. Six of these subjects were also exposed to a colored stationary and a gray stationary stimulus. In two subjects the colored moving stimulus was tested against the colored stationary with an optode position presumably over area V5/MT. As a control condition, subjects performed a simple finger opposition task. Since the calcarine fissure varies greatly with respect to bony landmarks, optodes were positioned individually according to 3D reconstructed magnetic resonance imaging (MRI). Concentration changes in oxyhemoglobin (oxy-Hb) and deoxyhemoglobin (deoxy-Hb) were continuously monitored with a temporal resolution of 1 s, using an NIRO 500. In response to the visual stimulus, the grand average across all sixteen subjects resulted in a significant increase in oxy-Hb of 0.33 +/- 0.09 arbitrary units mirrored by a significant decrease in deoxy-Hb of -0.18 +/- 0.02 arbitrary units, while the motor control condition elicited no significant changes in any parameters. When the near infrared spectroscopy probes were positioned over area V5/MT, the drop of deoxy-Hb associated with the moving stimulus was significantly more pronounced than with the stationary stimulus in both subjects examined. No significant differences between the visual stimuli were observed at the optode position close to the calcarine fissure. The oxygenation changes observed in this study are consistent with the pattern we have reported for motor activation. They are in line with physiological considerations and functional MRI studies relying on blood oxygenation level-dependent contrast.

  13. Cerebral oxygen saturation: graded response to carbon dioxide with isoxia and graded response to oxygen with isocapnia.

    Directory of Open Access Journals (Sweden)

    W Alan C Mutch

    Full Text Available BACKGROUND: Monitoring cerebral saturation is increasingly seen as an aid to management of patients in the operating room and in neurocritical care. How best to manipulate cerebral saturation is not fully known. We examined cerebral saturation with graded changes in carbon dioxide tension while isoxic and with graded changes in oxygen tension while isocapnic. METHODOLOGY/PRINCIPAL FINDINGS: The study was approved by the Research Ethics Board of the University Health Network at the University of Toronto. Thirteen studies were undertaken in healthy adults with cerebral oximetry by near infrared spectroscopy. End-tidal gas concentrations were manipulated using a model-based prospective end-tidal targeting device. End-tidal carbon dioxide was altered ±15 mmHg from baseline in 5 mmHg increments with isoxia (clamped at 110±4 mmHg. End-tidal oxygen was changed to 300, 400, 500, 80, 60 and 50 mmHg under isocapnia (37±2 mmHg. Twelve studies were completed. The end-tidal carbon dioxide versus cerebral saturation fit a linear relationship (R(2 = 0.92±0.06. The end-tidal oxygen versus cerebral saturation followed log-linear behaviour and best fit a hyperbolic relationship (R(2 = 0.85±0.10. Cerebral saturation was maximized in isoxia at end-tidal carbon dioxide of baseline +15 mmHg (77±3 percent. Cerebral saturation was minimal in isocapnia at an end-tidal oxygen tension of 50 mmHg (61±3 percent. The cerebral saturation during normoxic hypocapnia was equivalent to normocapnic hypoxia of 60 mmHg. CONCLUSIONS/SIGNIFICANCE: Hypocapnia reduces cerebral saturation to an extent equivalent to moderate hypoxia.

  14. Higher cerebral oxygen saturation may provide higher urinary output during continuous regional cerebral perfusion

    Directory of Open Access Journals (Sweden)

    Tomoyasu Takahiro


    Full Text Available Abstract Objective We examined the hypothesis that higher cerebral oxygen saturation (rSO2 during RCP is correlated with urinary output. Methods Between December 2002 and August 2006, 12 patients aged 3 to 61 days and weighing 2.6 to 3.4 kg underwent aortic arch repair with RCP. Urinary output and rSO2 were analyzed retrospectively. Data were assigned to either of 2 groups according to their corresponding rSO2: Group A (rSO2 ≦ 75% and Group B (rSO2 Results Seven and 5 patients were assigned to Group A and Group B, respectively. Group A was characterized by mean radial arterial pressure (37.9 ± 9.6 vs 45.8 ± 7.8 mmHg; P = 0.14 and femoral arterial pressure (6.7 ± 6.1 vs 20.8 ± 14.6 mmHg; P = 0.09 compared to Group B. However, higher urinary output during CPB (1.03 ± 1.18 vs 0.10 ± 0.15 ml·kg-1·h-1; P = 0.03. Furthermore our results indicate that a higher dose of Chlorpromazine was used in Group A (2.9 ± 1.4 vs 1.7 ± 1.0 mg/kg; P = 0.03. Conclusion Higher cerebral oxygenation may provide higher urinary output due to higher renal blood flow through collateral circulation.

  15. Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Rasmussen, Peter; Siebenmann, Christoph


    regression analysis estimated the influence of extra-cerebral oxygenation as exemplified by skin oxygenation (Sskin O2 ) on Sc O2 in 21 healthy subjects exposed to whole-body exercise in hypoxia (Fi O2 = 12%; n = 10) and normoxia (n = 12), whole-body heating, hyperventilation (n = 21), administration...

  16. Effect of propofol and remifentanil on cerebral perfusion and oxygenation in pigs

    DEFF Research Database (Denmark)

    Mikkelsen, Mai Louise Grandsgaard; Ambrus, Rikard; Miles, James Edward;


    The objective of this review is to evaluate the existing literature with regard to the influence of propofol and remifentanil total intravenous anaesthesia (TIVA) on cerebral perfusion and oxygenation in healthy pigs. Anaesthesia has influence on cerebral haemodynamics and it is important not onl...

  17. Improved Quantification of Cerebral Vein Oxygenation Using Partial Volume Correction. (United States)

    Ward, Phillip G D; Fan, Audrey P; Raniga, Parnesh; Barnes, David G; Dowe, David L; Ng, Amanda C L; Egan, Gary F


    Purpose: Quantitative susceptibility mapping (QSM) enables cerebral venous characterization and physiological measurements, such as oxygen extraction fraction (OEF). The exquisite sensitivity of QSM to deoxygenated blood makes it possible to image small veins; however partial volume effects must be addressed for accurate quantification. We present a new method, Iterative Cylindrical Fitting (ICF), to estimate voxel-based partial volume effects for susceptibility maps and use it to improve OEF quantification of small veins with diameters between 1.5 and 4 voxels. Materials and Methods: Simulated QSM maps were generated to assess the performance of the ICF method over a range of vein geometries with varying echo times and noise levels. The ICF method was also applied to in vivo human brain data to assess the feasibility and behavior of OEF measurements compared to the maximum intensity voxel (MIV) method. Results: Improved quantification of OEF measurements was achieved for vessels with contrast to noise greater than 3.0 and vein radii greater than 0.75 voxels. The ICF method produced improved quantitative accuracy of OEF measurement compared to the MIV approach (mean OEF error 7.7 vs. 12.4%). The ICF method provided estimates of vein radius (mean error partial volume maps (root mean-squared error partial volume estimates from the ICF method.

  18. Modeling of cerebral oxygen transport based on in vivo microscopic imaging of microvascular network structure, blood flow and oxygenation

    Directory of Open Access Journals (Sweden)

    Louis Gagnon


    Full Text Available Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1 interpretation of functional Magnetic Resonance Imaging (fMRI signals, and (2 investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These bottom-up models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  19. Systemic oxygen delivery and consumption in dogs with heartworm disease. (United States)

    Kitagawa, H; Kitoh, K; Yasuda, K; Sasaki, Y


    To investigate systemic oxygen (O2) transport, we calculated the oxygen delivery index (Do2I), oxygen consumption index (Vo2I) and oxygen extraction ratio (ER) in dogs with heartworm (HW) disease. The Do2I was 770 +/- 331 ml/min/kg in dogs mildly affected with pulmonary HW disease showing respiratory signs, mild anemia and mild cardiac insufficiency (n = 34); 238 +/- 155 ml/min/kg in dogs with ascitic pulmonary HW disease (n = 7); and 577 +/- 320 ml/min/kg in dogs with caval syndrome (CS) which survived (n = 15) or died (n = 7) after surgical HW removal. The Do2I was lower (P < 0.01) in all HW-infected groups, especially in ascites and CS-non-surviving dogs, than in HW-free dogs (n = 11, 1041 +/- 264 ml/min/kg). The Vo2I was higher in some mildly affected dogs (161 +/- 88 ml/min/kg), and lower (P < 0.01) in ascitic dogs (45 +/- 53 ml/min/kg) than in HW-free dogs (123 +/- 44 ml/min/kg). The ER was higher (P < 0.01) in all HW-infected groups than in HW-free dogs. The Do2I correlated significantly with Vo2I (r = 0.84, P < 0.01), and the Vo2I correlated significantly with ER (r = 0.48, P < 0.01). The Do2I correlated significantly with arterial O2 tension (r = 0.33), serum LDH (r = -0.46) and CK (r = -0.46) activities, serum urea nitrogen (UN, r = -0.32) and lactic acid (LA, r = -0.39) concentrations and cardiac index (r = 0.64).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Effects of Goal-directed Volume Therapy on the Intracranial Pressure and the Balance of Cerebral Oxygen Consumption and Supply in Selective Neurosurgery%目标导向液体治疗在择期神经外科手术中对颅内压和脑氧供需平衡的影响

    Institute of Scientific and Technical Information of China (English)

    田胜兰; 周游; 冯丹


    Objective To investigate the effects of goal‐directed volume therapy (GDVT )on the intracranial pressure(ICP) and the balance of cerebral oxygen consumption and supply in selective neurosurgery. Methods Twenty‐four patients sched‐uled for intracranial tumor resection were randomly divided into 2 groups:conventional fluid management group (group C ,n=12) and GDVT group(group G ,n=12). Patients in group C received introperative fluid transfusion according to classical fluid management strategies while those in group G received GDT according to stroke volume variation (SVV) ,guided by Flotrac‐Vigileo system.Mean arterial pressure(MAP) ,heart rate(HR) ,cardiac index(CI) ,ICP ,SVV and jugular bulb oxygen saturation (SjvO2 )were recorded before the anesthesia induction(T1 ) ,at the moment of intubation(T2 ) ,at the moment of opening the hard meninges(T3),1hafteropeningthehardmeninges(T4),andattheendofthesurgery(T5).Thecerebraloxygenextractionra‐tio(CERO2 )was calculated. The duration of surgery ,crystalloid volume ,colloid volume ,blood transfusion volume ,urinary output and bleeding volume were recorded as well.Results The colloid transfusion volume ,the total fluid transfusion volume and uri‐nary output were significantly increased in group G when compared with those in group C (P0.05).Conclusion Goal‐directed fluid therapy optimizes the cardiac preload without increasing the ICP in selective neurosurgery ,and it also improves the balance of cerebral oxygen con‐sumption and supply.%目的:观察目标导向液体治疗在择期神经外科手术中对颅内压和脑氧供需平衡的影响。方法选择择期全麻下行开颅肿瘤切除术的患者24例,随机分为2组:常规输液组(C组,n=12)和目标导向液体治疗组(G组,n=12)。C组按经典输液方案进行术中液体管理;G组在Flortrac/Vigileo系统监测下,以每搏量变异度(SVV)为导向行液体治疗。分别于麻醉诱导前(T1

  1. A new method for measuring the oxygen diffusion constant and oxygen consumption rate of arteriolar walls. (United States)

    Sasaki, Nobuhiko; Horinouchi, Hirohisa; Ushiyama, Akira; Minamitani, Haruyuki


    Oxygen transport is believed to primarily occur via capillaries and depends on the oxygen tension gradient between the vessels and tissues. As blood flows along branching arterioles, the O(2) saturation drops, indicating either consumption or diffusion. The blood flow rate, the O(2) concentration gradient, and Krogh's O(2) diffusion constant (K) of the vessel wall are parameters affecting O(2)delivery. We devised a method for evaluating K of arteriolar wall in vivo using phosphorescence quenching microscopy to measure the partial pressure of oxygen in two areas almost simultaneously. The K value of arteriolar wall (inner diameter, 63.5 ± 11.9 μm; wall thickness, 18.0 ± 1.2 μm) was found to be 6.0 ± 1.2 × 10(-11) (cm(2)/s)(ml O(2)·cm(-3) tissue·mmHg(-1)). The arteriolar wall O(2) consumption rate (M) was 1.5 ± 0.1 (ml O(2)·100 cm(-3) tissue·min(-1)), as calculated using Krogh's diffusion equation. These results suggest that the arteriolar wall consumes a considerable proportion of the O(2) that diffuses through it.

  2. Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (Final Report, 2009) (United States)

    EPA announced the availability of the final report, Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates. This report provides a revised approach for calculating an individual's ventilation rate directly from their oxygen c...

  3. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions


    Schneider, Volker; Müller, Jonas; Schmidt, Dominik


    Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and t...

  4. Effect of meal and propranolol on whole body and splanchnic oxygen consumption in patients with cirrhosis

    DEFF Research Database (Denmark)

    Krag, Aleksander; Simonsen, Lene; Henriksen, Jens H


    Our aim was to measure whole body energy expenditure after a mixed liquid meal, with and without simultaneous propranolol infusion, in patients with cirrhosis. We also wanted to investigate the effect of propranolol on substrate fluxes and oxygen uptake in the tissues drained by the hepatic vein ...... as splanchnic oxygen uptake. The splanchnic reduction in oxygen consumption can explain almost the entire reduction in whole body oxygen consumption....

  5. Cerebral blood flow and oxygenation in infants after birth asphyxia. Clinically useful information?

    DEFF Research Database (Denmark)

    Greisen, Gorm


    The term 'luxury perfusion' was coined nearly 50 years ago after observation of bright-red blood in the cerebral veins of adults with various brain pathologies. The bright-red blood represents decreased oxygen extraction and hence the perfusion is 'luxurious' compared to oxygen needs. Gradual loss...

  6. Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex (United States)

    Mesquita, Rickson C.; Faseyitan, Olufunsho K.; Turkeltaub, Peter E.; Buckley, Erin M.; Thomas, Amy; Kim, Meeri N.; Durduran, Turgut; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Hamilton, Roy H.


    Transcranial magnetic stimulation (TMS) modulates processing in the human brain and is therefore of interest as a treatment modality for neurologic conditions. During TMS administration, an electric current passing through a coil on the scalp creates a rapidly varying magnetic field that induces currents in the cerebral cortex. The effects of low-frequency (1 Hz), repetitive TMS (rTMS) on motor cortex cerebral blood flow (CBF) and tissue oxygenation in seven healthy adults, during/after 20 min stimulation, is reported. Noninvasive optical methods are employed: diffuse correlation spectroscopy (DCS) for blood flow and diffuse optical spectroscopy (DOS) for hemoglobin concentrations. A significant increase in median CBF (33%) on the side ipsilateral to stimulation was observed during rTMS and persisted after discontinuation. The measured hemodynamic parameter variations enabled computation of relative changes in cerebral metabolic rate of oxygen consumption during rTMS, which increased significantly (28%) in the stimulated hemisphere. By contrast, hemodynamic changes from baseline were not observed contralateral to rTMS administration (all parameters, p>0.29). In total, these findings provide new information about hemodynamic/metabolic responses to low-frequency rTMS and, importantly, demonstrate the feasibility of DCS/DOS for noninvasive monitoring of TMS-induced physiologic effects.

  7. [Evaluation of cerebral oxygenation in newborns with prematurity apnea: new frequency domain NIR oximeter]. (United States)

    Pratesi, S; Donzelli, G


    Near infrared spectroscopy (NIRS) is a non invasive, portable, safe technique for monitoring cerebral oxygenation and haemodynamics. A new frequency-domain tissue oximeter based on a multi-distance measurement protocol is presented. The effects of apneic episodes on cerebral and peripheral arterial oxygen saturation (SatO2) in preterm newborns, as monitored by NIRS and by pulse oximetry, are reported. The study population consist of 5 preterms (26 to 30 weeks of gestational age), in the second week of postnatal age, affected by apnea of prematurity. NIRS and pulse oximetric measurements were made contemporarily for a 40-minutes period for each infant. All monitorized apneic events were associated with bradicardia, and resolved spontaneously or after tactile stimulation. As results: a) there was always cerebral deoxygenation in association with apneic events, b) the mean SatO2 as measured by NIRS was slightly lower than the pulse oximeter readings, c) cerebral SatO2 decreased faster and the absolute value of the cerebral SaO2 decrease was greater than that measured peripherally (mean value of 27 versus 13%), d) increases of cerebral deoxyhemoglobin and total hemoglobin and a decrease of oxyhemoglobin were also observed. These preliminary results show that peripheral oxygen saturation measurements as measured by pulse oximetry could not always reflect brain oxygenation.

  8. Excess postexercise oxygen consumption after aerobic exercise training. (United States)

    Sedlock, Darlene A; Lee, Man-Gyoon; Flynn, Michael G; Park, Kyung-Shin; Kamimori, Gary H


    Literature examining the effects of aerobic exercise training on excess postexercise oxygen consumption (EPOC) is sparse. In this study, 9 male participants (19-32 yr) trained (EX) for 12 wk, and 10 in a control group (CON) maintained normal activity. VO(2max), rectal temperature (T(re)), epinephrine, norepinephrine, free fatty acids (FFA), insulin, glucose, blood lactate (BLA), and EPOC were measured before (PRE) and after (POST) the intervention. EPOC at PRE was measured for 120 min after 30 min of treadmill running at 70% VO(2max). EX completed 2 EPOC trials at POST, i.e., at the same absolute (ABS) and relative (REL) intensity; 1 EPOC test for CON served as both the ABS and REL trial because no significant change in VO(2max) was noted. During the ABS trial, total EPOC decreased significantly (p EPOC during the REL trial; however, epinephrine was significantly lower, and norepinephrine and FFA, significantly higher, at endexercise after training. Results indicate that EPOC varies as a function of relative rather than absolute metabolic stress and that training improves the efficiency of metabolic regulation during recovery from exercise. Mechanisms for the decreased magnitude of EPOC in the ABS trial include decreases in BLA, T(re), and perhaps epinephrine-mediated hepatic glucose production and insulin-mediated glucose uptake.


    NARCIS (Netherlands)



    This study was performed because of observed differences between dye dilution cardiac output and the Fick cardiac output, calculated from estimated oxygen consumption according to LaFarge and Miettinen, and to find a better formula for assumed oxygen consumption. In 250 patients who underwent left a

  10. Determining oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus using an improved respirometer chamber (United States)

    Geng, Longwu; Jiang, Haifeng; Tong, Guangxiang; Xu, Wei


    Knowledge of oxygen consumption rates and asphyxiation points in fish is important to determine appropriate stocking and water quality management in aquaculture. The oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus were detected under laboratory conditions using an improved respirometer chamber. The results revealed that more accurate estimates can be obtained by adjusting the volume of the respirometer chamber, which may avoid system errors caused by either repeatedly adjusting fish density or selecting different equipment specifications. The oxygen consumption rate and asphyxiation point of C. mongolicus increased with increasing water temperature and decreasing fish size. Changes in the C. mongolicus oxygen consumption rate were divided into three stages at water temperatures of 11-33°C: (1) a low temperature oxygen consumption rate stage when water temperature was 11-19°C, (2) the optimum temperature oxygen consumption rate stage when water temperature was 19-23°C, and (3) a high temperature oxygen consumption rate stage when water temperature was > 27°C. The temperature quotients (Q10) obtained suggested that C. mongolicus preferred a temperature range of 19-23°C. At 19°C, C. mongolicus exhibited higher oxygen consumption rates during the day when the maximum values were observed at 10:00 and 14:00 than at night when the minimum occurred at 02:00.

  11. Oxygen, a key factor regulating cell behaviour during neurogenesis and cerebral diseases

    Directory of Open Access Journals (Sweden)

    Kuan eZhang


    Full Text Available Oxygen is vital to maintain the normal functions of alomost all the organs, especially for brain which is one of the heaviest oxygen consumers in the body. The important roles of oxygen on the brain are not only reflected in the development, but also showed in the pathological processes of many cerebral diseases. In the current review, we summarized the oxygen levels in brain tissues tested by real-time measurements during the embryonic and adult neurogenesis, the cerebral diseases or in the hyperbaric/hypobaric oxygen environment. Oxygen concentration is low in fetal brain (0.01%- 1% and in adult brain (1.5%-7%, decreased during stroke, and increased in hyperbaric oxygen environment. In addition, we reviewed the effects of oxygen tensions on the behaviors of neural stem cells (NSCs in vitro cultures at different oxygen concentration (2%-20% and in vivo niche during different pathological states and in hyperbaric/hypobaric oxygen environment. Moderate hypoxia (3%-10% is known can promote the proliferation of NSCs and enhance the differentiation of NSCs into the TH-positive neurons. Next, we briefly presented the oxygen-sensitive molecular mechanisms regulating NSCs proliferation and differentiation recently found including the Notch, BMP and Wnt pathways. Finally, the future perspectives about the roles of oxygen on brain and NSCs were given.

  12. Time-dependent changes in cerebral blood flow after acetazolamide loading into patients with hemodynamic cerebral ischemia. Relationship to cerebral oxygen metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Masakazu [Iwate Medical Univ., Morioka (Japan). School of Medicine


    The aim of this study was to clarify the relationship between time-dependent changes in cerebral blood flow (CBF) after acetazolamide loading and cerebral oxygen metabolism (CMRO{sub 2}). The subjects consisted of 30 patients with severe stenosis or occlusion of either internal carotid, middle cerebral, or vertebro-basilar artery. Regional CBF was measured at the resting state and 6, 16 and 30 minutes after intravenous administration of 1 gram of acetazolamide using the positron emission tomography in combination with the [{sup 15}O] H{sub 2}O bolus-injection method. Prior to CBF study, regional cerebral oxygen extraction fraction (OEF) was measured using the [{sup 15}O] O{sub 2} inhalation method. Regional CMRO{sub 2} was calculated based on CBF and OEF. According to the time-dependent changes in CBF responses to acetazolamide loading, the CBF responses are classified into good response type, paradoxical response type, and poor response type. Good response type (CBF increase rate more than 20% 6 minutes after acetazolamide loading), paradoxical response type (decrease of CBF 6 minutes after acetazolamide loading) and poor response type (CBF increase rate less than 20% 6 minutes after acetazolamide loading) were identified in 39, 11 and 10 areas, respectively. Brain areas with good response type showed normal OEF and normal CMRO{sub 2}. Brain areas with paradoxical response type showed increased OEF and normal CMRO{sub 2}. Brain areas with poor response type showed normal OEF and decreased CMRO{sub 2}. In view of these findings, the writer concludes that sequential measurement of cerebral blood flow (CBF) after acetazolamide loading enables one to know the regional cerebral oxygen metabolic state in patients with hemodynamic ischemia, and CBF should be measured at an early stage after the administration of acetazolamide to accurately detect misery perfusion. (author)

  13. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones I: Oxygen consumption rates and critical oxygen partial pressures (United States)

    Trueblood, Lloyd A.; Seibel, Brad A.


    Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91μmolg-1h-1 at 10°C and 12.62μmolg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.

  14. Maximal Oxygen Consumption is Reduced in Aquaporin-1 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Samer Al-Samir


    Full Text Available We have measured maximal oxygen consumption (V’O2,max of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9 and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that V’O2,max as determined by the Helox technique is reduced by ~ 16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of V’O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2 by pulse oximetry. Neither under normoxic (inspiratory O2 21% nor under hypoxic conditions (11% O2 is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of V’O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of V’O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced V’O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced V’O2,max, which constitutes a new phenotype of these mice.

  15. Prone position is associated with mild cerebral oxygen desaturation in elderly surgical patients.

    Directory of Open Access Journals (Sweden)

    Stacie Deiner

    Full Text Available PURPOSE: A variety of hemodynamic and respiratory alterations accompany patients in the prone position; however the effect of the prone position on intraoperative cerebral saturation has not been studied. We sought to examine whether the incidence of cerebral oxygen desaturation in elderly patients (≥68 years of age undergoing spine surgery in the prone position was more common than patients undergoing major surgery in the supine position. METHODS: We performed a retrospective cohort study of 205 patients; 63 patients underwent surgery in the prone position and 142 in the supine position. Patients were evaluated for cerebral desaturation with bilateral cerebral oximetry. The primary predictor was position, secondary were: length of the surgery, incidence and duration of cerebral desaturation episodes at several thresholds, average time of Bispectral index below threshold of 45 in minutes, average electroencephalogram suppression ratio >0, amount of blood transfused, and the incidence of hypotension and hypertension. RESULTS: Elderly spine surgery patients in the prone position were more than twice as likely to experience mild cerebral desaturation as patients in the supine position. Patients in the prone position had longer surgeries; however cerebral desaturation in the prone position was significantly more common even when adjusted for surgery time and the occurrence of intraoperative hypotension. CONCLUSION: Cerebral desaturation is related to the prone position in elderly surgery patients. Future studies are necessary to determine whether this translates to a higher incidence of postoperative cognitive dysfunction and delirium.

  16. Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy? (United States)

    Boas, D. A.; Strangman, G.; Culver, J. P.; Hoge, R. D.; Jasdzewski, G.; Poldrack, R. A.; Rosen, B. R.; Mandeville, J. B.


    We have measured the changes in oxy-haemoglobin and deoxy-haemoglobin in the adult human brain during a brief finger tapping exercise using near-infrared spectroscopy (NIRS). The cerebral metabolic rate of oxygen (CMRO2) can be estimated from these NIRS data provided certain model assumptions. The change in CMRO2 is related to changes in the total haemoglobin concentration, deoxy-haemoglobin concentration and blood flow. As NIRS does not provide a measure of dynamic changes in blood flow during brain activation, we relied on a Windkessel model that relates dynamic blood volume and flow changes, which has been used previously for estimating CMRO2 from functional magnetic resonance imaging (fMRI) data. Because of the partial volume effect we are unable to quantify the absolute changes in the local brain haemoglobin concentrations with NIRS and thus are unable to obtain an estimate of the absolute CMRO2 change. An absolute estimate is also confounded by uncertainty in the flow-volume relationship. However, the ratio of the flow change to the CMRO2 change is relatively insensitive to these uncertainties. For the finger tapping task, we estimate a most probable flow-consumption ratio ranging from 1.5 to 3 in agreement with previous findings presented in the literature, although we cannot exclude the possibility that there is no CMRO2 change. The large range in the ratio arises from the large number of model parameters that must be estimated from the data. A more precise estimate of the flow-consumption ratio will require better estimates of the model parameters or flow information, as can be provided by combining NIRS with fMRI.

  17. Cerebral oxygenation and haemodynamic effects induced by nimodipine in healthy subjects. (United States)

    Canova, Daniela; Roatta, Silvestro; Micieli, Giuseppe; Bosone, Daniele


    The cerebrovascular effects of nimodipine are still poorly understood even in the healthy condition; in particular, its effects on tissue oxygenation have never been investigated. The aim of the present study was to investigate changes in cerebral oxygenation and blood volume upon oral administration of nimodipine (90 mg) in the healthy condition. In eight subjects, changes in cerebral tissue oxygenation and blood volume were determined simultaneously with changes in blood velocity of the middle cerebral artery (VMCA) by using, respectively, near infrared spectroscopy (NIRS) and transcranial Doppler ultrasonography (TCD). The subjects also underwent noninvasive assessment of arterial blood pressure (ABP) and end-tidal CO2. TCD and NIRS CO2 reactivity indices were al-so extracted. Nimodipine significantly reduced ABP (11±13%) and increased heart rate, as well as NIRS oxygenation(6.0±4.8%) and blood volume indices (9.4±10.1%), while V(MCA) was not significantly decreased (2.0±3.5%). Nimodipine slightly but significantly reduced the V(MCA) response to changes in pCO2 whereas the CO2 reactivity of NIRS parameters was improved. The observed changes in cerebral tissue oxygenation and blood volume indicate nimodipine-induced cerebrovascular dilation and increased perfusion, while the effect on V(MCA)possibly results from dilation of the insonated artery. The present results cast doubt on the putative nimodipine-induced impairment of CO2 reactivity.

  18. Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects. (United States)

    Oussaidene, Kahina; Prieur, Fabrice; Tagougui, Semah; Abaidia, Abdelbasset; Matran, Regis; Mucci, Patrick


    The study examined whether the aerobic fitness level modifies the cerebral oxygenation response to incremental ramp exercise, and more specifically the decline in cerebral oxygenation from heavy exercise up to maximal intensities. 11 untrained (VO2max 47.3±4.0 mL min(-1) kg(-1)) and 13 endurance-trained (VO2max 61.2±8.0 mL min(-1) kg(-1)) healthy men performed a maximal ramp cycle exercise. Left prefrontal cortex oxygenation (ΔHbO2) was monitored by near-infrared spectroscopy. A cerebral oxygenation threshold decline (ThCOx) during exercise was determined. ThCox occurred in all subjects but for higher VO2 (mL min(-1) kg(-1)) in endurance-trained than in untrained subjects (Pexercise intensity corresponding to ThCOx, ΔHbO2 was higher in endurance-trained than in untrained subjects (Pexercise intensities in endurance-trained in relation with their higher VO2max than untrained men. These results demonstrated that aerobic fitness influences cerebral oxygenation during exercise.

  19. Reduction in Cerebral Oxygenation due to Patent Ductus Arteriosus Is Pronounced in Small-for-Gestational-Age Neonates

    NARCIS (Netherlands)

    Cohen, Emily; Dix, Laura; Baerts, Willem; Alderliesten, Thomas; Lemmers, Petra; van Bel, Frank


    BACKGROUND: A haemodynamically significant patent ductus arteriosus (hsPDA) reduces cerebral oxygenation in appropriate-for-gestational-age (AGA) preterm neonates. Reduced cerebral oxygenation has been associated with brain injury. Preterm small-for-gestational-age (SGA) neonates show higher cerebra

  20. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation

    DEFF Research Database (Denmark)

    Kim, S.G.; Rostrup, Egill; Larsson, H.B.;


    The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can b...

  1. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine) (and others)


    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author).

  2. Effect of propofol and remifentanil on cerebral perfusion and oxygenation in pigs

    DEFF Research Database (Denmark)

    Mikkelsen, Mai Louise Grandsgaard; Ambrus, Rikard; Miles, James Edward


    in human but also in veterinary anaesthesia to preserve optimal regulation of cerebral haemodynamics. Propofol and remifentanil are widely used in neuroanaesthesia and are increasingly used in experimental animal studies. In translational models, the pig has advantages compared to small laboratory animals......The objective of this review is to evaluate the existing literature with regard to the influence of propofol and remifentanil total intravenous anaesthesia (TIVA) on cerebral perfusion and oxygenation in healthy pigs. Anaesthesia has influence on cerebral haemodynamics and it is important not only...... and oxygenation (CPO). The evidence evaluated in this systematic review is limited, not focused on propofol and remifentanil and possibly influenced by factors of potential importance for CPO assessment. In one study of healthy pigs, CPO measures were within normal ranges following propofol...

  3. Impaired cerebral blood flow and oxygenation during exercise in type 2 diabetic patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Seifert, Thomas; Brassard, Patrice


    Endothelial vascular function and capacity to increase cardiac output during exercise are impaired in patients with type 2 diabetes (T2DM). We tested the hypothesis that the increase in cerebral blood flow (CBF) during exercise is also blunted and, therefore, that cerebral oxygenation becomes...... affected and perceived exertion increased in T2DM patients. We quantified cerebrovascular besides systemic hemodynamic responses to incremental ergometer cycling exercise in eight male T2DM and seven control subjects. CBF was assessed from the Fick equation and by transcranial Doppler-determined middle...... at higher workloads in T2DM patients and their work capacity and increase in cardiac output were only ~80% of that established in the control subjects. CBF and cerebral oxygenation were reduced during exercise in T2DM patients (P

  4. Uptake Rate of Cationic Mitochondrial Inhibitor MKT-077 Determines Cellular Oxygen Consumption Change in Carcinoma Cells


    John L Chunta; Vistisen, Kerry S.; Zeinab Yazdi; Braun, Rod D.


    OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mam...

  5. Low-dose alcohol consumption protects against transient focal cerebral ischemia in mice: possible role of PPARγ.

    Directory of Open Access Journals (Sweden)

    Hong Sun

    Full Text Available BACKGROUND: We examined the influence of low-dose alcohol consumption on cerebral ischemia/reperfusion (I/R injury in mice and a potential mechanism underlying the neuroprotective effect of low-dose alcohol consumption. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 J mice were fed a liquid diet without or with 1% alcohol for 8 weeks, orally treated with rosiglitazone (20 mg/kg/day, a peroxisome proliferator-activated receptor gamma (PPARγ-selective agonist, or GW9662 (3 mg/kg/day, a selective PPARγ antagonist, for 2 weeks. The mice were subjected to unilateral middle cerebral artery occlusion (MCAO for 90 minutes. Brain injury, DNA fragmentation and nuclear PPARγ protein/activity were evaluated at 24 hours of reperfusion. We found that the brain injury and DNA fragmentation were reduced in 1% alcohol-fed mice compared to nonalcohol-fed mice. Rosiglitazone suppressed the brain injury in nonalcohol-fed mice, but didn't alter the brain injury in alcohol-fed mice. In contrast, GW9662 worsened the brain injury in alcohol-fed mice, but didn't alter the brain injury in nonalcohol-fed mice. Nuclear PPARγ protein/activity at peri-infarct and the contralateral corresponding areas of the parietal cortex was greater in alcohol-fed mice compared to nonalcohol-fed mice. Using differentiated catecholaminergic (CATH.a neurons, we measured dose-related influences of chronic alcohol exposure on nuclear PPARγ protein/activity and the influence of low-dose alcohol exposure on 2-hour oxygen-glucose deprivation (OGD/24-hour reoxygenation-induced apoptosis. We found that low-dose alcohol exposure increased nuclear PPARγ protein/activity and protected against the OGD/reoxygenation-induced apoptosis. The beneficial effect of low-dose alcohol exposure on OGD/reoxygenation-induced apoptosis was abolished by GW9662. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that chronic consumption of low-dose alcohol protects the brain against I/R injury. The neuroprotective effect

  6. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery

    DEFF Research Database (Denmark)

    Nielsen, Henning B


    Near-infrared spectroscopy (NIRS) is used to monitor regional cerebral oxygenation (rScO2) during cardiac surgery but is less established during non-cardiac surgery. This systematic review aimed (i) to determine the non-cardiac surgical procedures that provoke a reduction in rScO2 and (ii...

  7. Effects of midazolam and morphine on cerebral oxygenation and hemodynamics in ventilated premature infants.

    NARCIS (Netherlands)

    Velden, A.A.E.M. van der; Hopman, J.C.W.; Klaessens, J.H.G.M.; Feuth, A.B.; Sengers, R.C.A.; Liem, K.D.


    BACKGROUND: Midazolam sedation and morphine analgesia are commonly used in ventilated premature infants. OBJECTIVES: To evaluate the effects of midazolam versus morphine infusion on cerebral oxygenation and hemodynamics in ventilated premature infants. METHODS: 11 patients (GA 26.6-33.0 weeks, BW 78

  8. Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates

    DEFF Research Database (Denmark)

    Sorensen, Line C; Greisen, Gorm


    The use of cerebral tissue oxygenation index (c-TOI) in a clinical setting is limited by doubts concerning the accuracy of the measurements. Since there is no gold standard, validation is difficult. Our modest aim was to quantify the precision of c-TOI doing repeated measurements by reapplying th...

  9. Effect of Solcoseryl on cadaveric split-skin oxygen consumption during 4 degrees C storage and in frozen biopsies. (United States)

    Alsbjörn, B F; Jensen, M G; Sørensen, B


    Oxygen consumption rate in cadaveric split-skin biopsies was investigated. Biopsies were harvested at different times postmortem and stored at different temperatures in either Solcoseryl (a protein-free bovine hemodialysate) or placebo-containing media. During the first week of storage Solcoseryl had no influence on oxygen consumption. However, in the second and third weeks the oxygen consumption was improved by Solcoseryl.

  10. Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake

    DEFF Research Database (Denmark)

    Dam, Gitte; Keiding, Susanne; Munk, Ole L


    Studies have shown decreased cerebral oxygen metabolism (CMRO(2)) and blood flow (CBF) in patients with cirrhosis with hepatic encephalopathy (HE). It remains unclear, however, whether these disturbances are associated with HE or with cirrhosis itself and how they may relate to arterial blood...... ammonia concentration and cerebral metabolic rate of blood ammonia (CMRA). We addressed these questions in a paired study design by investigating patients with cirrhosis during and after recovery from an acute episode of HE type C. CMRO(2), CBF, and CMRA were measured by dynamic positron emission...

  11. Cerebral perfusion, oxygenation and metabolism during exercise in young and elderly individuals

    DEFF Research Database (Denmark)

    Fisher, James P; Hartwich, Doreen; Seifert, Thomas


    artery blood velocity (MCA V(mean)), mean arterial pressure (MAP), cardiac output (CO) and the partial pressure of arterial carbon dioxide (PaCO(2)) were measured. Blood samples were obtained from the right internal jugular vein and brachial artery to determine concentration differences for oxygen (O(2......)), glucose and lactate across the brain. The molar ratio between the cerebral uptake of O(2) versus carbohydrate (O(2)-carbohydrate index; O(2) / [glucose + 0.5 lactate]; OCI), the cerebral metabolic rate of O(2) (CMRO(2)) and changes in mitochondrial O(2) tension (P(mito)O(2)) were calculated. W...

  12. Influence of intranasal and carotid cooling on cerebral temperature balance and oxygenation

    Directory of Open Access Journals (Sweden)

    Lars eNybo


    Full Text Available The present study evaluated the influence of intranasal cooling with balloon catheters, increased nasal ventilation, or percutaneous cooling of the carotid arteries on cerebral temperature balance and oxygenation in six healthy male subjects. Aortic arch and internal jugular venous blood temperatures were measured to assess the cerebral heat balance and corresponding paired blood samples were obtained to evaluate cerebral metabolism and oxygenation at rest, following 60 min of intranasal cooling, 5 min of nasal ventilation, and 15 min with carotid cooling. Intranasal cooling induced a parallel drop in jugular venous and arterial blood temperatures by 0.30 ± 0.08 ºC (mean ± SD, whereas nasal ventilation and carotid cooling failed to lower the jugular venous blood temperature. The magnitude of the arterio-venous temperature difference across the brain remained unchanged at - 0.33 ± 0.05 ºC following intranasal and carotid cooling, but increased to - 0.44 ± 0.11 ºC (P< 0.05 following nasal ventilation. Calculated cerebral capillary oxygen tension was 43 ± 3 mmHg at rest and remained unchanged during intranasal and carotid cooling, but decreased to 38 ± 2 mmHg (P< 0.05 following increased nasal ventilation. In conclusion, percutaneous cooling of the carotid arteries and intranasal cooling with balloon catheters are insufficient to influence cerebral oxygenation in normothermic subjects as the cooling rate is only 0.3 ºC per hour and neither intranasal nor carotid cooling is capable of inducing selective brain cooling.

  13. Oxygen Consumption during Underwater Fin Swimming Wearing Dry Suits (United States)


    ensur-d Hydration was encouraged and any exercise 2 or diving within 24 hours was prevented to avoid dehydration. Caffeine consumption was kept to a...experiment in maintaining homeostasis in a long distance underwater swimmer . U.S. Naval Medical Research Institute (Bethesda, MD) Report MR 005.13-4001.06, No

  14. Noninvasive cerebral blood oxygenation monitoring: clinical test of multiwavelength optoacoustic system (United States)

    Petrov, Y. Y.; Prough, D. S.; Petrova, I.; Patrikeev, I. A.; Cicenaite, I.; Esenaliev, R. O.


    Continuous monitoring of cerebral blood oxygenation is critically important for treatment of patients with life-threatening conditions like severe brain injury or during cardiac surgery. We designed and built a novel multiwavelength optoacoustic system for noninvasive, continuous, and accurate monitoring of cerebral blood oxygenation. We use an Optical Parametric Oscillator as a light source. We successfully tested the system in vitro as well as in vivo in large animals (sheep) through thick tissues overlying blood vessels which drain venous blood out of the brain (e.g., superior sagittal sinus or jugular vein). Here we present the results of clinical tests of the system for continuous noninvasive cerebral blood oxygenation monitoring in the internal jugular vein of healthy volunteers. We applied our custom-built optoacoustic probe (which incorporated a wide-band acoustic transducer and an optical fiber) to the neck area overlying the internal jugular vein. We performed measurements with volunteers at 18 wavelengths in the near-infrared spectral range. Despite a thick layer of overlying connective tissue and low energy used in the experiments, we recorded signals with high signal-to-noise ratios for all volunteers. We found that the temporal (independent of signal amplitude) parameters of recorded profiles for different levels of blood oxygenation correlated well with the spectrum of effective attenuation coefficients of blood.

  15. Excess post-hypoxic oxygen consumption is independent from lactate accumulation in two cyprinid fishes

    DEFF Research Database (Denmark)

    Genz, J.; Jyde, M.B.; Svendsen, Jon Christian


    the increase in oxygen consumption in fish required following strenuous exercise or low environmental oxygen availability has been frequently considered, the primary contributing mechanism remains unknown. This study utilized the close relationship but strongly divergent physiology between C. carpio and C....... carassius to examine the possible correlation between excess post-hypoxic oxygen consumption (EPHOC) and lactate accumulation. No difference in the EPHOC:O2 deficit ratio was observed between the two species after 2.5 h anoxia, with ratios of 2.0 ± 0.6 (C. carpio) and 1.3 ± 0.3 (C. carassius). As predicted...

  16. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    Directory of Open Access Journals (Sweden)

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  17. The role of blood flow distribution in the regulation of cerebral oxygen availability in fetal growth restriction. (United States)

    Luria, Oded; Bar, Jacob; Kovo, Michal; Malinger, Gustavo; Golan, Abraham; Barnea, Ofer


    Fetal growth restriction (FGR) elicits hemodynamic compensatory mechanisms in the fetal circulation. These mechanisms are complex and their effect on the cerebral oxygen availability is not fully understood. To quantify the contribution of each compensatory mechanism to the fetal cerebral oxygen availability, a mathematical model of the fetal circulation was developed. The model was based on cardiac-output distribution in the fetal circulation. The compensatory mechanisms of FGR were simulated and their effects on cerebral oxygen availability were analyzed. The mathematical analysis included the effects of cerebral vasodilation, placental resistance to blood flow, degree of blood shunting by the ductus venosus and the effect of maternal-originated placental insufficiency. The model indicated a unimodal dependency between placental blood flow and cerebral oxygen availability. Optimal cerebral oxygen availability was achieved when the placental blood flow was mildly reduced compared to the normal flow. This optimal ratio was found to increase as the hypoxic state of FGR worsens. The model indicated that cerebral oxygen availability is increasingly dependent on the cardiac output distribution as the fetus gains weight.

  18. Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running. (United States)

    Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.


    Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…

  19. Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress. (United States)

    Friederich-Persson, Malou; Thörn, Erik; Hansell, Peter; Nangaku, Masaomi; Levin, Max; Palm, Fredrik


    Diabetic nephropathy is strongly associated with both increased oxidative stress and kidney tissue hypoxia. The increased oxidative stress causes increased kidney oxygen consumption resulting in kidney tissue hypoxia. To date, it has been difficult to determine the role of kidney hypoxia, per se, for the development of nephropathy. We tested the hypothesis that kidney hypoxia, without confounding factors such as hyperglycemia or elevated oxidative stress, results in nephropathy. To induce kidney hypoxia, dinitrophenol (30 mg per day per kg bodyweight by gavage), a mitochondrial uncoupler that increases oxygen consumption and causes kidney hypoxia, was administered for 30 consecutive days to rats. Thereafter, glomerular filtration rate, renal blood flow, kidney oxygen consumption, kidney oxygen tension, kidney concentrations of glucose and glycogen, markers of oxidative stress, urinary protein excretion, and histological findings were determined and compared with vehicle-treated controls. Dinitrophenol did not affect arterial blood pressure, renal blood flow, glomerular filtration rate, blood glucose, or markers of oxidative stress but increased kidney oxygen consumption, and reduced cortical and medullary concentrations of glucose and glycogen, and resulted in intrarenal tissue hypoxia. Furthermore, dinitrophenol treatment increased urinary protein excretion, kidney vimentin expression, and infiltration of inflammatory cells. In conclusion, increased mitochondrial oxygen consumption results in kidney hypoxia and subsequent nephropathy. Importantly, these results demonstrate that kidney tissue hypoxia, per se, without confounding hyperglycemia or oxidative stress, may be sufficient to initiate the development of nephropathy and therefore demonstrate a new interventional target for treating kidney disease.

  20. Excess posthypoxic oxygen consumption in rainbow trout (Oncorhynchus mykiss): recovery in normoxia and hypoxia

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Steffensen, John Fleng; Aarestrup, Kim;


    Under certain conditions, a number of fish species may perform brief excursions into severe hypoxia and return to water with a higher oxygen content. The term severe hypoxia describes oxygen conditions that are below the critical oxygen saturation (S(crit)), defined here as the oxygen threshold...... at which the standard metabolic rate becomes dependent upon the ambient oxygen content. Using rainbow trout (Oncorhynchus mykiss (Walbaum, 1792), this study quantified the excess posthypoxic oxygen consumption (EPHOC) occurring after exposure to oxygen availability below S(crit). Tests showed that S......(crit) was 13.5% air saturation (O(2sat)). Fish were exposed to 10% O(2sat) for 0.97 h, and the EPHOC was quantified in normoxia (>= 95% O(2sat)) and hypoxia (30% O(2sat)) to test the hypothesis that reduced oxygen availability would decrease the peak metabolic rate (MO(2peak)) and prolong the duration...

  1. Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery

    Directory of Open Access Journals (Sweden)

    Henning Bay Nielsen


    Full Text Available Near-infrared spectroscopy (NIRS is used to monitor regional cerebral oxygenation (rScO2 during cardiac surgery but is less established during non-cardiac surgery. This systematic review aimed i to determine the non-cardiac surgical procedures that provoke a reduction in rScO2 and ii to evaluate whether an intraoperative reduction in rScO2 influences postoperative outcome. The PubMed and Embase database were searched from inception until April 30, 2013 and inclusion criteria were intraoperative NIRS determined rScO2 in adult patients undergoing non-cardiac surgery. The type of surgery and number of patients included were recorded. There was included 113 articles and evidence suggests that rScO2 is reduced during thoracic surgery involving single lung ventilation, major abdominal surgery, hip surgery, and laparascopic surgery with the patient placed in anti-Tredelenburg’s position. Shoulder arthroscopy in the beach chair and carotid endarterectomy with clamped internal carotid artery also cause pronounced cerebral desaturation. A >20% reduction in rScO2 coincides with indices of regional and global cerebral ischemia during carotid endarterectomy. Following thoracic surgery, major orthopedic and abdominal surgery the occurrence of postoperative cognitive dysfunction might be related to intraoperative cerebral desaturation. In conclusion, certain non-cardiac surgical procedures is associated with an increased risk for the occurrence of regional cerebral oxygenation. Evidence for an association between cerebral desaturation and postoperative outcome parameters other than cognitive dysfunction needs to be established.

  2. Correlation of brain tissue oxygen tension with cerebral near-infrared spectroscopy and mixed venous oxygen saturation during extracorporeal membrane oxygenation. (United States)

    Tyree, Kreangkai; Tyree, Melissa; DiGeronimo, Robert


    The aim of this prospective, animal study was to compare brain tissue oxygen tension (PbtO(2)) with cerebral near infrared spectroscopy (NIRS) and mixed venous oxygen saturation (SVO(2)) during venoarterial extracorporeal membrane oxygenation (VA ECMO) in a porcine model. This was accomplished using twelve immature piglets with surgically implanted catheters placed in the superficial cerebral cortex to measure brain PbtO(2) and microdialysis metabolites. The NIRS sensor was placed overlying the forehead to measure cerebral regional saturation index (rSO(2)i) while SVO(2) was measured directly from the ECMO circuit. Animals were placed on VA ECMO followed by an initial period of stabilization, after which they were subjected to graded hypoxia and recovery. Our results revealed that rSO(2)i and SVO(2) correlated only marginally with PbtO(2) (R(2)=0.32 and R(2)=0.26, respectively) while the correlation between rSO(2)i and SVO( 2) was significantly stronger (R(2)=0.59). Cerebral metabolites and rSO(2)i were significantly altered during attenuation of PbtO( 2), p<0.05). A subset of animals, following exposure to hypoxia, experienced markedly delayed recovery of both rSO(2)i and PbtO( 2) despite rapid normalization of SVO(2). Upon further analysis, these animals had significantly lower blood pressure (p=0.001), lower serum pH (p=0.01), and higher serum lactate (p=0.02). Additionally, in this subgroup, rSO(2)i correlated better with PbtO(2) (R(2)=0.76). These findings suggest that, in our ECMO model, rSO(2)i and SVO( 2) correlate reasonably well with each other, but not necessarily with brain PbtO(2) and that NIRS-derived rSO(2)i may more accurately reflect cerebral tissue hypoxia in sicker animals.

  3. Measurement of oxygen consumption during muscle flaccidity exercise by near-infrared spectroscopy (United States)

    Fukuda, K.; Fukawa, Y.


    Quantitative measurement oxygen consumption in the muscles is important to evaluate the effect of the exercise. Near-infrared spectroscopy (NIRS) is a noninvasive method for measuring muscle oxygenation. However, measurement results are affected by blood volume change due to changes in the blood pressure. In order to evaluate changes in blood volume and to improve measurement accuracy, we proposed a calculation method of three-wavelength measurement with considering the scattering factor and the measurement with monitoring blood flow for measuring the temporal change of the oxygen concentration more precisely. We applied three-wavelength light source (680nm, 808nm and 830nm) for the continued wave measurement. Two detectors (targeted detector and the reference detector) were placed near the target muscle and apart from it. We measured the blood flow by controlling the intravascular pressure and the oxygen consumption with the handgrip exercise in the forearm. The measured results show that the scattering factor contains the artifact at the surface and the blood flow in the artery and the vein in the same phase. The artifact and the blood flow in the same phase are reduced from the oxygenated and the deoxygenated hemoglobin densities. Thus our proposed method is effective for reducing the influence of the artifact and the blood flow in the same phase from the oxygen consumption measurement. Further, it is shown that the oxygen consumption is measured more accurately by subtracting the blood flow measured by the reference detector.

  4. New Molecular Knowledge Towards the Trigemino-Cardiac Reflex as a Cerebral Oxygen-Conserving Reflex

    Directory of Open Access Journals (Sweden)

    N. Sandu


    Full Text Available The trigemino-cardiac reflex (TCR represents the most powerful of the autonomous reflexes and is a subphenomenon in the group of the so-called “oxygen-conserving reflexes”. Within seconds after the initiation of such a reflex, there is a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF, with no changes in the cerebral metabolic rate of oxygen (CMRO2 or in the cerebral metabolic rate of glucose (CMRglc. Such an increase in regional CBF without a change of CMRO2 or CMRglc provides the brain with oxygen rapidly and efficiently. Features of the reflex have been discovered during skull base surgery, mediating reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus, which finally engage a small population of neurons in the cortex. This cortical center appears to be dedicated to transduce a neuronal signal reflexively into cerebral vasodilatation and synchronization of electrocortical activity; a fact that seems to be unique among autonomous reflexes. Sympathetic excitation is mediated by cortical-spinal projection to spinal preganglionic sympathetic neurons, whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to the brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Previous studies showed a great variability in the human TCR response, in special to external stimuli and individual factors. The TCR gives, therefore, not only new insights into novel therapeutic options for a range of disorders characterized by neuronal death, but also into the cortical and molecular organization of the brain.

  5. New molecular knowledge towards the trigemino-cardiac reflex as a cerebral oxygen-conserving reflex. (United States)

    Sandu, N; Spiriev, T; Lemaitre, F; Filis, A; Schaller, B


    The trigemino-cardiac reflex (TCR) represents the most powerful of the autonomous reflexes and is a subphenomenon in the group of the so-called "oxygen-conserving reflexes". Within seconds after the initiation of such a reflex, there is a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF), with no changes in the cerebral metabolic rate of oxygen (CMRO2) or in the cerebral metabolic rate of glucose (CMRglc). Such an increase in regional CBF without a change of CMRO2 or CMRglc provides the brain with oxygen rapidly and efficiently. Features of the reflex have been discovered during skull base surgery, mediating reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus, which finally engage a small population of neurons in the cortex. This cortical center appears to be dedicated to transduce a neuronal signal reflexively into cerebral vasodilatation and synchronization of electrocortical activity; a fact that seems to be unique among autonomous reflexes. Sympathetic excitation is mediated by cortical-spinal projection to spinal preganglionic sympathetic neurons, whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to the brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Previous studies showed a great variability in the human TCR response, in special to external stimuli and individual factors. The TCR gives, therefore, not only new insights into novel therapeutic options for a range of disorders characterized by neuronal death, but also into the cortical and molecular organization of the brain.

  6. Cerebral regional oxygen saturation monitoring in pediatric malfunctioning shunt patients☆,☆☆,★ (United States)

    Abramo, Thomas J.; Zhou, Chuan; Estrada, Cristina; Drayna, Patrick C.; Locklair, Matthew R.; Miller, Renee; Pearson, Matthew; Tulipan, Noel; Arnold, Donald H.


    Background Shunt malfunction produces increased intracranial pressure causing decreased cerebral regional perfusion and tissue O2sat. Cerebral regional oxygen saturation (rSO2) by near-infrared spectroscopy represents tissue perfusion and oxygen saturation. Cerebral rSO2 is used to detect cerebral ischemia in pediatric clinical settings. Objective The objective of the study was to determine the reliability of cerebral rSO2 in pediatric malfunctioning shunt. Methods A prospective observational study of pediatric patients presented to the pediatric emergency department was conducted. Confirmed malfunctioning shunt subjects had cerebral rSO2 monitoring. Results A total of 131 malfunctioning shunt subjects had cerebral rSO2 monitoring. Patient's central trend and intrasubject variability of cerebral rSO2 readings for left and right probe and malfunction sites (n = 131) are as follows: VariableOverall, mean SO2Distal, mean SO2Proximal, mean rSO2PLeft cerebral rSO2 trend69.1 (10.7)67.7 (9.81)70.0 (11.17).23Right cerebral rSO2 trend71.3 (9.6)70.5 (8.13)71.8 (10.40).42Left cerebral rSO2 variability3.57 (2.04)4.72 (2.55)2.88 (1.24)<.001Right cerebral rSO2 variability3.46 (1.95)3.77 (2.20)3.28 (1.77).19 Intrasubject left and right rSO2 Pearson correlation was −0.46 to 0.98 (mean ± SD, 0.35 ± 0.34; median, 0.34; interquartile range, 0.06–0.61). The correlation coefficients of 99 subjects between left and right rSO2 was significantly different (P < .001), suggesting that intrasubjects' left and right rSO2 are highly correlated. Sample mean difference between left and right rSO2 were −1.7% (95% confidence interval [CI], −1.8 to −1.6; P < .001) supporting overall left lower than right. Intraclass correlation for left rSO2 was 87.4% (95% CI, 87.2%−87.6%), and that for right rSO2 was 83.8% (95% CI, 83.8%−84%), showing intersubject differences accounting for the variation, and relative to intersubject variation, intrasubjects readings are consistent. Intrasubjects

  7. PET imaging of cerebral perfusion and oxygen metabolism in stroke

    Energy Technology Data Exchange (ETDEWEB)

    Pointon, O.; Yasaka, M.; Berlangieri, S.U.; Newton, M.R.; Thomas, D.L.; Chan, C.G.; Egan, G.F.; Tochon-Danguy, H.J.; O``Keefe, G.; Donnan, G.A.; McKay, W.J. [Austin Hospital, Melbourne, VIC (Australia). Centre for PET and Depts of Nuclear Medicine and Neurology


    Full text: Stroke remains a devastating clinical event with few therapeutic options. In patients with acute stroke, we studied the cerebral perfusion and metabolic patterns with {sup 15}O-CO{sub 2} or H{sub 2}O and {sup 15}O-O{sub 2} positron emission tomography and correlated these findings to the clinical background. Forty three patients underwent 45 studies 0-23 days post-stroke (mean 7 days). Fifteen patients showed luxury perfusion (Group A), 10 had matched low perfusion and metabolism (B) and 3 showed mixed pattern including an area of misery perfusion (C). Seventeen showed no relevant abnormality (D) and there were no examples of isolated misery perfusion. Twelve of the 15 in Group A had either haemorrhagic transformation on CT, re-opening on angiography, or a cardioembolic mechanism. In contrast only 5/10 in Group B, 0/3 in Group C and 2/17 in Group D had these features. Although 7/10 in group B had moderate or large size infarcts on CT the incidence of haemorrhagic transformation was low (2/10) and significant carotid stenoses were more common in those studied (5/8) compared with the other groups. Misery perfusion was not seen beyond five days. Thus, luxury perfusion seems to be related to a cardio-embolic mechanism or reperfusion. Matched low perfusion and metabolism was associated with a low rate of haemorrhagic transformation despite a high incidence of moderate to large size infarcts. Misery perfusion is an early phenomenon in the evolution of ischaemic stroke.

  8. Changes in cerebral blood oxygenation induced by active standing test in children with POTS and NMS. (United States)

    Endo, Ayumi; Fujita, Yukihiko; Fuchigami, Tatsuo; Takahashi, Shori; Mugishima, Hideo; Skatani, Kaoru


    Orthostatic dysregulation (OD) has been classified into subtypes by heart rate and blood pressure; however, the hemodynamics of brains have not yet been revealed. Therefore, we investigated changes in cerebral blood flow and oxygenation during an active standing test to clarify the pathophysiology of two subtypes: postural tachycardia syndrome (POTS) and neurally mediated syncope (NMS). We studied 31 children (15 boys, 16 girls; mean age, 14.0 ± 1.7 years) who presented with OD at the Department of Pediatrics and Child Health, Nihon University School of Medicine between 2009 and 2011. OD was diagnosed using the Japanese clinical guidelines for juvenile orthostatic dysregulation. After a 10-min resting period in the supine position, patients were asked to quickly stand up and keep upright for 10 min. Cerebral blood flow and cerebral oxygenation were measured using transcranial Doppler sonography and near-infrared spectroscopy. POTS showed a significant decrease of oxy-Hb and resistance index (RI), suggesting transient ischemia with maintainable cerebral autoregulation. NMS showed a decrease of oxy-Hb and an increase of RI, suggesting ischemia and impairment of autoregulation.

  9. Effects of autoregulation and CO2 reactivity on cerebral oxygen transport. (United States)

    Payne, S J; Selb, J; Boas, D A


    Both autoregulation and CO(2) reactivity are known to have significant effects on cerebral blood flow and thus on the transport of oxygen through the vasculature. In this paper, a previous model of the autoregulation of blood flow in the cerebral vasculature is expanded to include the dynamic behavior of oxygen transport through binding with hemoglobin. The model is used to predict the transfer functions for both oxyhemoglobin and deoxyhemoglobin in response to fluctuations in arterial blood pressure and arterial CO(2) concentration. It is shown that only six additional nondimensional groups are required in addition to the five that were previously found to characterize the cerebral blood flow response. A resonant frequency in the pressure-oxyhemoglobin transfer function is found to occur in the region of 0.1 Hz, which is a frequency of considerable physiological interest. The model predictions are compared with results from the published literature of phase angle at this frequency, showing that the effects of changes in breathing rate can significantly alter the inferred phase dynamics between blood pressure and hemoglobin. The question of whether dynamic cerebral autoregulation is affected under conditions of stenosis or stroke is then examined.

  10. Ventilation and oxygen consumption in the hagfish, Myxine glutinosa L

    DEFF Research Database (Denmark)



    Ventilation was measured directly in the hagfish, Myxine glutinosa L., by means of an electro-magnetic blood flowmeter. Ventilatory flow and frequency increased from 0.86 ± 0.27 mlmin-, and 18.2 ± 5.1min-, respectively, at 7°C to 1.70 ± 0.20 mlmin-, and 70.1 ± 9.5min- at 15 C. Standard oxygen...

  11. Closed versus open endotracheal suctioning in preterm infants: effects on cerebral oxygenation and blood volume. (United States)

    Mosca, F A; Colnaghi, M; Lattanzio, M; Bray, M; Pugliese, S; Fumagalli, M


    The aim of our study was to compare, using near-infrared spectroscopy (NIRS), the effects on cerebral intracellular oxygenation and cerebral blood volume (CBV) of closed endotracheal suctioning (CS), which permits continuous ventilation of the patient, with open endotracheal suctioning (OS), which requires disconnection from the ventilator. Eleven preterm infants were studied. Each patient underwent one CS, followed, after 60 min, by one OS, or vice versa, three times during the same day. Modifications in CBV and oxidized cytochrome oxidase (CytO2) were continuously detected by NIRS; arterial oxygen saturation (SaO2) heart rate (HR), transcutaneous carbon dioxide tension and mean arterial blood pressure were simultaneously recorded. Significant reductions in HR and SaO2 were observed following OS; the magnitude and duration of these negative effects of suctioning were significantly reduced with CS. In addition, the decrease in CBV was more pronounced than following CS. No changes in CytO2 concentration were seen.

  12. Transient hyperoxia does not affect regional cerebral tissue oxygen saturation in moderately preterm or term newborns

    DEFF Research Database (Denmark)

    Thing, Mira; Sørensen, Line Carøe; Pryds, Ole


    oxygen saturation (rStO2 ) and to evaluate whether any observed prolonged cerebral vasoconstriction was related to maturity. METHODS: The study included 30 infants with a postmenstrual age of more than 32 weeks, who were treated with nasal continuous positive airway pressure and a fraction of inspired......, with a mean difference of 1.37% (95% CI 0.15, 2.6). After the second oxygen exposure, rStO2 remained unchanged with a mean difference of -0.4% (95% CI -1.6, 0.78). Differences in rStO2 were not related to gestational age in either of the two hyperoxic episodes. CONCLUSION: We found no evidence to support...... the theory that transient hyperoxia induces prolonged cerebral vasoconstriction in infants with a postmenstrual age above 32 weeks....

  13. Is cerebral oxygenation negatively affected by infusion of norepinephrine in healthy subjects?

    DEFF Research Database (Denmark)

    Brassard, P.; Seifert, T.; Secher, Niels H.


    BACKGROUND: Vasopressor agents are commonly used to increase mean arterial pressure (MAP) in order to secure a pressure gradient to perfuse vital organs. The influence of norepinephrine on cerebral oxygenation is not clear. The aim of this study was to evaluate the impact of the infusion of norep......BACKGROUND: Vasopressor agents are commonly used to increase mean arterial pressure (MAP) in order to secure a pressure gradient to perfuse vital organs. The influence of norepinephrine on cerebral oxygenation is not clear. The aim of this study was to evaluate the impact of the infusion...... infused at 0.1 microg kg(-1) min(-1) [Sc(O2): 78 (75-94) to 69 (61-83)%; P cm s(-1); P

  14. Maternal antihypertensive drugs may influence cerebral oxygen extraction in preterm infants during the first days after birth

    NARCIS (Netherlands)

    Verhagen, Elise A.; Kooi, Elisabeth M. W.; van den Berg, Paul P.; Bos, Arend F.


    Objective: To determine whether maternal antihypertensive drugs influenced cerebral oxygenation in preterm infants during the first days after birth. Methods: We included 49 preterm infants (median gestational age 30.3 weeks, (range 26.0-31.9), birth weight 1250 g (560-2250)). Regional cerebral oxyg

  15. Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry. (United States)

    Kim, Eun Ran; Tong, Qingchun


    Global obesity epidemic demands more effective therapeutic treatments and better understanding of obesity pathophysiology. Since obesity results from energy imbalance, accurate quantification of energy intake and energy expenditure (EE) becomes an essential prerequisite to phenotype the cause for obesity development. Indirect calorimetry has long been used as one of the most established methods in EE quantification by detecting changes in levels of O2 consumption and CO2 production. In this article, we describe procedures and important considerations for an effective measurement using indirect calorimetry.

  16. Lung vital capacity and oxygen saturation in adults with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Lampe R


    Full Text Available Renée Lampe,1,2 Tobias Blumenstein,2 Varvara Turova,2 Ana Alves-Pinto2 1Markus Würth Stiftungsprofessur, Technical University of Munich, Munich, Germany; 2Research Unit for Cerebral Palsy and Children Neuroorthopaedics of the Buhl-Strohmaier Foundation, Orthopedic Department of the Clinic “rechts der Isar” of the Technical University of Munich, Munich, Germany Background: Individuals with infantile cerebral palsy have multiple disabilities. The most conspicuous syndrome being investigated from many aspects is motor movement disorder with a spastic gait pattern. The lung function of adults with spasticity attracts less attention in the literature. This is surprising because decreased thoracic mobility and longstanding scoliosis should have an impact on lung function. With increasing age and the level of disability, individuals become susceptible to lung infections and reflux illness, and these are accompanied by increased aspiration risk. This study examined, with different methods, to what extent adults with congenital cerebral palsy and acquired spastic paresis – following traumatic brain injury – showed restriction of lung function. It also assessed the contribution of disability level on this restriction.Methods: The oxygen saturation of 46 adults with a diagnosis of cerebral palsy was measured with an oximeter. Lung vital capacity was measured with a mobile spirometer and excursion of the thorax was clinically registered. The gross motor function levels and the presence or absence of scoliosis were determined.Results: A significantly positive correlation between lung vital capacity and chest expansion was established. Both the lung vital capacity and the thorax excursion decreased with increases in gross motor function level. Oxygen saturation remained within the normal range in all persons, in spite of reduced values of the measured lung parameters. No statistically significant dependency between lung vital capacity and oxygen

  17. Effects of Dental Methacrylates on Oxygen Consumption and Redox Status of Human Pulp Cells

    Directory of Open Access Journals (Sweden)

    Giuseppina Nocca


    Full Text Available Several studies have already demonstrated that the incomplete polymerization of resin-based dental materials causes the release of monomers which might affect cell metabolism. The aim of this study was to investigate the effects of triethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, urethane dimethacrylate, and 2-hydroxyethyl methacrylate on (1 cellular energy metabolism, evaluating oxygen consumption rate, glucose consumption, glucose 6-phosphate dehydrogenase activity, and lactate production, and (2 cellular redox status, through the evaluation of glutathione concentration and of the activities of enzymes regulating glutathione metabolism. Methods. Human pulp cells were used and oxygen consumption was measured by means of a Clark electrode. Moreover, reactive oxygen species production was quantified. Enzymatic activity and glucose and lactate concentrations were determined through a specific kit. Results. Triethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, and 2-hydroxyethyl methacrylate induced a decrease in oxygen consumption rate, an enhancement of glucose consumption, and lactate production, whilst glucose 6-phosphate dehydrogenase and glutathione reductase activity were not significantly modified. Moreover, the monomers induced an increase of reactive oxygen species production with a consequent increase of superoxide dismutase and catalase enzymatic activities. A depletion of both reduced and total glutathione was also observed. Conclusion. The obtained results indicate that dental monomers might alter energy metabolism and glutathione redox balance in human pulp cells.

  18. Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility

    Institute of Scientific and Technical Information of China (English)

    Wolf-BernhardSchill; KerstinDefosse; Hans-HilhelmKoyro; NorbertWeissmann


    Aim:To investigate the human sperm oxygen/energy consumption and zinc content in relation to motility.Methods:In washed spermatozoa from 67 ejaculates,the oxygen consumption was determined.Following calculation of the total oxygen consumed by the Ideal Gas Law,the energy consumption of spermatozoa was calculated.In addition,the zinc content of the sperm was determined using an atomic absorption spectrometer.The resulting data were correlated to the vitality and motility.Results:The oxygen consumption averaged 0.24μmol/106 sperm×24h,0.28μmol/106 live sperm×24h and 0.85μmol/106 live & motile sperm×24h.Further calculations revealed that sperm motility was the most energy consuming process(164.31mJ/106 motile spermatozoa×24h),while the oxygen consumption of the total spermatozoa was 46.06mJ/106 spermatozoa ×24h.The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations(r=-0.759;P<0.0001 and r=-0.441;P<0.0001,respectively).However,when correlating sperm energy consumption with the zinc content,a significant positive relation(r=0.323;P=0.01)was observed.Conclusion:Poorly motile sperm are actually wasting the available energy.Moreover,our data clearly support the “Geometric Clutch Model”of the oneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility,especially progressive motility.

  19. Hyperbaric oxygen combined with drug therapy in the treatment of acute cerebral infarction clinical analysis

    Institute of Scientific and Technical Information of China (English)

    Wen-Cui Lin; Kang Lin; Jing Wang; Shuai Li


    Objective:To explore the effects of hyperbaric oxygen combined with edaravone, salviae miltiorrhizae and ligustrazine and sodium ozagrel in the treatment of acute cerebral infarction clinical analysis.Methods: A total of 200 cases of acute cerebral infraction patients were randomly divided into observation group and control group. The control group was treated with edaravone, salvia miltiorrhizae and ligustrazine and sodium ozagrel; on the basis of treatment in control group, the observation group was combined with hyperbaric oxygen therapy. The neurological deficit scores were observed before and after treatment in patients of two groups, meanwhile the activities of daily living (ADL) and clinical effects were compared.Results: The total effective rate in observation group (92%) was significantly higher than control group (79%), the differences were statistically significant; the score of ADL in observation group after treatment was obviously higher than control group [(79.91±5.16)vs (61.62±5.60)], and the differences were statistically significant. The neurological deficit scores after treatment were obviously lower than the control group [(9.55±4.13)vs (15.46±4.92)], the differences were statistically significant.Conclusion: Hyperbaric oxygen combined with edaravone, salvia miltiorrhizae and ligustrazine and sodium ozagrel in the treatment of acute cerebral infarction can improve the symptoms of microcirculation and neurologic impairment, and improve the patient s quality of life.

  20. Effects of acetazolamide on cerebral blood flow and brain tissue oxygenation

    DEFF Research Database (Denmark)

    Lassen, N A; Friberg, L; Kastrup, J


    Oral administration of 1 g of acetazolamide to 8 normal subjects studied at sea level and in normoxia caused an acute increase in cerebral blood flow (CBF). During the subsequent prolonged oral treatment with 1 g of acetazolamide daily, CBF returned to normal within 2 days. The alveolar CO2 tension...... decreased gradually to 70% of the control value, indicating hyperventilation. At sea level hyperventilation will not increase brain oxygenation significantly in normal man, as the arterial oxygen content only increases minimally, while CBF is unchanged. At high altitude the beneficial effects...... of acetazolamide on the symptoms of acute mountain sickness may well be due to an improved oxygen supply to the brain, as hyperventilation will, at the low ambient PO2, cause a significant increase of the arterial oxygen content, while CBF presumably is unaffected by the drug. During hypoxia at high altitude...

  1. Oxygen Consumption and Swimming Performance in Hypoxia-Acclimated Rainbow Trout Salmo Gairdneri

    DEFF Research Database (Denmark)



    1. Swimming performance and oxygen consumption of normoxic (control) and hypoxia-acclimated (P002=40 mmHg) rainbow trout, Salmo gairdneri Richardson, were monitored at >145, 60 and 40mmHg. 2. Maximum swimming velocity at 40mmHg was reduced from >54.8cm s-1 to 41.4cm s1 in controls and to 40.6 cm s......Hg did not significantly change oxygen consumption in control animals, although no fish (control or hypoxia acclimated) completed swimming trials at 54.8cm s-1 in 40mmHg. 5. Oxygen consumption of hypoxia-acclimated fish at 5.5cm s-1 and 40 mmHg was significantly higher than oxygen uptake in normoxia...... at the same speed. This relative increase was not maintained, however, as oxygen consumption at higher swimming speeds was similar to that in normoxia. 6. Blood studies showed that hypoxia-acclimated fish had lower ATP concentrations and P50 values. While these factors may increase the blood oxygen loading...

  2. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard; Lauritzen, Martin


    Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head...... trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were...... recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins...

  3. Activity-dependent increases in local oxygen consumption correlate with post-synaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Joan


    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow. Activity-dependent rises in CMRO2 fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca2+ stimulate oxidative metabolism vi...

  4. Positron emission tomography in cerebrovascular disease: The relationship between regional cerebral blood flow, blood volume and oxygen metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Herold, S.


    Positron emission tomography in cerebrovascular disease has demonstrated the importance of the relationship between regional cerebral blood flow and the cerebral metabolic activity. In acute stroke it has been found that within the first hours after the onset of symptoms cerebral blood flow in the affected area is more depressed than cerebral oxygen utilisation. This relative preservation of oxygen utilisation results from an increase in the oxygen extraction ratio far above its normal value. However, the oxygen extraction fraction subsequently falls in the following days indicating the transition from a situation of possibly reversible ischaemia to irreversible infarction. In patients with carotid occlusive disease an increase in the oxygen extraction ratio has been observed only in very few cases. It has been shown, however, that at an earlier stage the relationship between CBF and CBV (as CBF/CBV-ratio) provides a sensitive measure of diminished perfusion pressure which could be helpful for the selection of patients for EC-IC bypass surgery. In patients with sickle cell anaemia it has been found that oxygen delivery to the brain is maintained by an increase in cerebral blood flow, whereas the oxygen extraction ratio is not increased despite the presence of a low oxygen affinity haemoglobin. Preliminary observations in classical migraine suggest an ischaemic situation during the attack.

  5. Effects of various anesthetic techniques and PaCO2 levels on cerebral oxygen balance in neurosurgical patients

    Institute of Scientific and Technical Information of China (English)

    陈绍洋; 王强; 熊利泽; 胡胜; 曾祥龙


    Objective: To assess the effects of various anesthetic techniques and PaCO2 levels on cerebral oxygen supply/consumption balance during craniotomy for removal of tumors, and to explore an anesthetic technique for neurosurgery and an appropriate degree of PaCO2 during neuroanesthesia. Methods: One hundred and fourteen patients with supratentorial tumors for elective craniotomy, ASA grade Ⅰ-Ⅱ, were randomly allocated to six groups. Patients were anesthetized with continuous intravenous infusion of 2% procaine 1.0 mg*kg-1*min-1 in Group Ⅰ, inhalation of 1.0%-1.5% isoflurane in Group Ⅱ, and infusion of 2% procaine 0.5 mg*kg-1*min-1 combined with inhalation of 0.5%-0.7% isoflurane in Group Ⅲ during the period of study. The end-tidal pressure of CO2 (PET CO2 )was maintained at 4.0 kPa in these 3 groups. In Group Ⅳ, Ⅴ and Ⅵ, the anesthetic technique was the same as that in Group Ⅰ but the PETCO2 was adjusted to 3.5, 4.0 and 4.5 kPa respectively for 60 min during which the study was performed. The radial arterial and retrograde jugular venous blood samples were obtained at the onset and the end of this study for determining jugular venous bulb oxygen saturation (SjvO2), arteriovenous oxygen content difference (AVDO2) and cerebral extraction of oxygen (CEO2). Results: In Group Ⅰ and Ⅲ SjvO2, AVDO2 and CEO2 remained stable. Although SjvO2 kept constant, AVDO2 and CEO2 decreased significantly (P<0.05) in Group Ⅱ. Moreover, AVDO2 and CEO2 in Group Ⅱ were significantly lower than those of Group Ⅲ (P<0.05). In Group Ⅳ, 60 min after hyperventilation, SjvO2 and jugular venous oxygen content(CjvO2) decreased markedly (P<0.01) while CEO2 increased significantly (P<0.01). In addition, SjvO2, CjvO2 and CEO2 in Group Ⅳ were significantly different from the corresponding parameters in Group Ⅴ and Group Ⅵ (P<0.05). In view of sustained excessive hyperventilation, SjvO2 was less than 50% in 37.5% patients of Group Ⅳ. Conclusion: Anesthesia with

  6. Cardiac output assessment using oxygen consumption estimated from the left ventricular pressure-volume area. (United States)

    Negroni, Jorge A; Lascano, Elena C; Bertolotti, Alejandro M; Gómez, Carmen B; Rodríguez Correa, Carlos A; Favaloro, Roberto R


    Use of a majority of structural variables (age, sex, height) to estimate oxygen consumption in the calculation of cardiac output (CO) by the Fick principle does not account for changes in physiological conditions. To improve this limitation, oxygen consumption was estimated based on the left ventricular pressure-volume area. A pilot study with 10 patients undergoing right cardiac catheterization showed that this approach was successful to estimate CO (r=0,73, vs. thermodilution measured CO). Further essays changing end-diastolic-volume in the pressure-volume area formula by body weight or body surface area showed that this last yielded the best correlation with the thermodilution measured CO (slope=1, ordinate =0.01 and r=0.93). These preliminary results indicate that use of a formula originated from the pressure-volume-area concept is a good alternative to estimate oxygen consumption for CO calculation.

  7. Differences in temperature, organic carbon and oxygen consumption among lowland streams

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Pedersen, N. L.


    with or without lakes, (ii) factors influencing the temperature dependence of oxygen consumption rate, (iii) consequences of higher temperature and organic content in lake outlets on oxygen consumption rate, and (iv) possible consequences of forecasted global warming on degradation of organic matter. 2. High...... concentrations of easily degradable dissolved (DOC) and particulate organic carbon (POC) were found in open streams downstream of plankton-rich lakes, while high concentrations of recalcitrant DOC were found in a forest brook draining a forest swamp. Concentrations of predominantly recalcitrant POC and DOC were...... low in a groundwater-fed forest spring. Overall, DOC concentration was two to 18 times higher than POC concentrations. 3. Oxygen consumption rate at 20 °C was higher during summer than winter, higher in open than shaded streams and higher in lake outlets than inlets. Rate was closely related...

  8. Cerebral Oxygenation and Oxygen Extraction in the Preterm Infant during Desaturation : Effects of Increasing FiO(2) to Assist Recovery

    NARCIS (Netherlands)

    Baerts, Willem; Lemmers, Petra M. A.; van Bel, Frank


    Background: In the clinical setting, episodes of desaturation in newborn infants are often treated by increasing the fraction of inspired oxygen (FiO(2)). Objectives: To study the effect of an increase in FiO(2) on cerebral oxygenation during recovery from desaturation, as measured by near-infrared

  9. Challenges in understanding the impact of blood pressure management on cerebral oxygenation in the preterm brain

    Directory of Open Access Journals (Sweden)

    Aminath eAzhan


    Full Text Available Systemic hypotension in preterm infants has been related to increased mortality, cerebrovascular lesions and neurodevelopmental morbidity. Treatment of hypotension with inotropic medications aims at preservation of end organ perfusion and oxygen delivery, especially the brain. The common inotropic medications in preterm infants include dopamine, dobutamine, adrenalin, with adjunctive use of corticosteroids in cases of refractory hypotension. Whether maintenance of mean arterial blood pressure (MAP by use of inotropic medication is neuroprotective or not remains unclear. This review explores the different inotropic agents and their effects on perfusion and oxygenation in the preterm brain, in clinical studies as well as in animal models. Dopamine and adrenalin, because of their -adrenergic vasoconstrictor actions, have raised concerns of reduction in cerebral blood flow (CBF. Several studies in hypotensive preterm infants have shown that dopamine elevates CBF together with increased MAP, in keeping with limited cerebro-autoregulation. Adrenaline is also effective in raising cerebral perfusion together with MAP in preterm infants. Experimental studies in immature animals show no cerebro-vasoconstrictive effects of dopamine or adrenaline, but demonstrate the consistent findings of increased cerebral perfusion and oxygenation with the use of dopamine, dobutamine and adrenaline, alongside with raised MAP. Both clinical and animal studies report the transitory effects of adrenaline in increasing plasma lactate, and blood glucose, which might render its use as a 2nd line therapy. To investigate the cerebral effects of inotropic agents in long-term outcome in hypotensive preterm infants, carefully designed prospective research possibly including preterm infants with permissive hypotension is required. Preterm animal models would be useful in investigating the relationship between the physiological effects of inotropes and histopathology outcomes in

  10. Luminescence spectroscopy of singlet oxygen enables monitoring of oxygen consumption in biological systems consisting of fatty acids. (United States)

    Gollmer, Anita; Regensburger, Johannes; Maisch, Tim; Bäumler, Wolfgang


    The interaction of singlet oxygen ((1)O2) generated in a photosensitized process with well-known reference photosensitizers Perinaphthenone (PN) and TMPyP is investigated in a model system consisting of fatty acids and the respective exogenous photosensitizer (PS) in solution by direct detection of the luminescence photons of (1)O2 at 1270 nm. Such a model system is a first approach to mimic the complex environment of (1)O2 in a biological cell which consists mainly of water, proteins, sugars and lipids. Firstly, the important issue of oxygen consumption is evaluated which has to be considered during luminescence detection of (1)O2. It is known that the luminescence signal of (1)O2 is dependent on the oxygen concentration of the environment. Cellular components such as lipids represent oxygen consumers due to peroxidation of their unsaturated double bonds. Secondly, the experimental conditions for this model system regarding oxygen consumption are optimized to estimate the rates and rate constants of the coupled system. Thirdly, the triplet decay of the PS can provide more precise information about the actual oxygen concentration close to the PS and can be used, therefore, as a more precise method to determine the oxygen concentration in more complex systems such as a biological cell. The aim is to get a better understanding of photosensitized reactions of (1)O2 with cellular components to further improve methodologies, in particular at a cellular level using luminescence spectroscopy. In conclusion, luminescence detection might be a helpful tool to monitor precisely and promptly changes in oxygen concentration in a complex environment.

  11. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury:not by immediately improving cerebral oxygen saturation and oxygen partial pressure

    Institute of Scientific and Technical Information of China (English)

    Bao-chun Zhou; Li-jun Liu; Bing Liu


    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO2) and oxygen partial pressure (PaO2). To test this idea, we compared two groups:a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO2 were measured. The controls were also examined for rSO2 and PaO2, but received no treatment. rSO2 levels in the patients did not differ signiifcantly after treatment, but levels before and after treatment were signiifcantly lower than those in the control group. PaO2 levels were signiifcantly decreased after the 30-minute HBO treatment. Our ifndings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  12. Monitorization of the effects of spinal anaesthesia on cerebral oxygen saturation in elder patients using near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Aysegul Kusku


    Full Text Available OBJECTIVE: Central blockage provided by spinal anaesthesia enables realization of many surgical procedures, whereas hemodynamic and respiratory changes influence systemic oxygen delivery leading to the potential development of series of problems such as cerebral ischemia, myocardial infarction and acute renal failure. This study was intended to detect potentially adverse effects of hemodynamic and respiratory changes on systemic oxygen delivery using cerebral oxymetric methods in patients who underwent spinal anaesthesia. METHODS: Twenty-five ASA I-II Group patients aged 65-80 years scheduled for unilateral inguinal hernia repair under spinal anaesthesia were included in the study. Following standard monitorization baseline cerebral oxygen levels were measured using cerebral oximetric methods. Standardized Mini Mental Test (SMMT was applied before and after the operation so as to determine the level of cognitive functioning of the cases. Using a standard technique and equal amounts of a local anaesthetic drug (15 mg bupivacaine 5% intratechal blockade was performed. Mean blood pressure (MBP, maximum heart rate (MHR, peripheral oxygen saturation (SpO2 and cerebral oxygen levels (rSO2 were preoperatively monitored for 60 min. Pre- and postoperative haemoglobin levels were measured. The variations in data obtained and their correlations with the cerebral oxygen levels were investigated. RESULTS: Significant changes in pre- and postoperative measurements of haemoglobin levels and SMMT scores and intraoperative SpO2 levels were not observed. However, significant variations were observed in intraoperative MBP, MHR and rSO2 levels. Besides, a correlation between variations in rSO2, MBP and MHR was determined. CONCLUSION: Evaluation of the data obtained in the study demonstrated that post-spinal decline in blood pressure and also heart rate decreases systemic oxygen delivery and adversely effects cerebral oxygen levels. However, this downward change did

  13. Contribution of Respiratory Muscle Oxygen Consumption to Breathing Limitation and Cyspnea

    Directory of Open Access Journals (Sweden)

    Pere Casan


    Full Text Available During exercise, the sustainable activity of large muscle groups is limited by oxygen delivery. The purpose of this study was to see whether the oxygen consumption of the respiratory muscles reaches a similar critical value under maximal resistive loading and hyperventilation. A secondary objective was to see whether dyspnea (estimated discomfort experienced with breathing using the Borg 0-10 scale and the oxygen consumption of the respiratory muscles are closely related across conditions. This would be expected if intramuscular sensory nerve fibres stimulated as a consequence of metabolic events contributed to this sensation. In six normal subjects the respiratory muscles were progressively activated by the addition of incremental inspiratory resistive loads to a maximum of 300 cm H20×s/L (SD=66.4, and incremental dead space to a maximum of 2638 mL (SD=452, associated with an increase in ventilation to 75.1 L/min (SD=29.79. Each increment was maintained for 5 mins to allow the measurement of oxygen uptake in a steady state. During resistive loading total oxygen consumption increased from 239 mL/min (SD=38.2 to 299 mL/min (SD=52.3 and dyspnea increased to "very severe" (Borg scale 7.5, SD=1.55. During dead space loading total oxygen consumption increased from 270 mL/min (SD=20.2 to 426 mL/min (SD=81.9 and dyspnea increased to "very severe" (7.1, SD=0.66. Oxygen cost of inspiratory muscle power was 25 mL/watt (95% confidence limits 16.7 to 34.3 with dead space loading and 91 mL/watt (95% confidence limits 54 to 128 with resistive loading. Oxygen consumption did not reach a critical common value in the two types of loading, 60 mL/min (SD 22.3 during maximal resistive loading and 156 mL/min (SD 82.4 during maximal dead space loading (P<0.05. Physiological factors limiting the respiratory muscles are not uniquely related to oxygen consumption and appear to be expressed through the activation of sensory structures, perceptually manifested as

  14. A novel approach to the assess biotic oxygen consumption in marine sediment communities (United States)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg


    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  15. Supplement and Consumption of Dissolved Oxygen and Their Seasonal Variations in Shrimp Pond

    Institute of Scientific and Technical Information of China (English)

    孙耀; 张淑芳; 陈聚法; 宋云利


    On the basis of the research of DO budget or kinetics in shrimp pond, the main influence process of DO and its seasonal variations are quantitatively described through redividing the budget process and modifying the quantitative method of the process. The percentages of oxygen demand of various processes in the total oxygen demand are different in shrimp cultivation seasons. It is showed that the dissolved oxygen demand of mini-organisms is the major affected factor of DO in this environment and approximately accounts for 64.1~74.1% of the total oxygen demand. In the early period of shrimp culture, the dissolved oxygen demand of allotrophic bacteria degrading organic matters is much lower than that of phytoplankton respiration. But in the midterrn and later period, it is about 50% of the total oxygen demand because of the higher water temperature and more serious self-pollution. The dissolved oxygen demand of sediment is lower and just 19.1~28.8%, while the percentage of shrimp oxygen demand is lower. The effect of phytoplankton on DO in shrimp culturing water has dualism. One is the oxygen producing process of photosynthesis and the other is the oxygen consumption process of respiration. It is estimated that the dissolved oxygen demand of phytoplankton respiration is approximately one-fifth of the oxygen produced by photosynthesis under normal illumination conditions. The dissolved oxygen demand of al lotrophic bacteria degrading organic matters and the total oxygen demand of sediment increase 4 times and 1.7 times respectively from the early period to the midterm and later period.Obviously, the DO of culturing water can be also greatly improved by controlling the selfpollution of organic matters during shrimp culture.

  16. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle (United States)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang


    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  17. High intensity aerobic interval training improves peak oxygen consumption in patients with metabolic syndrome: CAT

    Directory of Open Access Journals (Sweden)

    Alexis Espinoza Salinas


    Full Text Available Introduction A number of cardiovascular risk factors characterizes the metabolic syndrome: insulin resistance (IR, low HDL cholesterol and high triglycerides. The aforementioned risk factors lead to elevated levels of abdominal adipose tissue, resulting in oxygen consumption deficiency. Purpose To verify the validity and applicability of using high intensity interval training (HIIT in subjects with metabolic syndrome and to answer the following question: Can HIIT improve peak oxygen consumption? Method The systematic review "Effects of aerobic interval training on exercise capacity and metabolic risk factors in individuals with cardiometabolic disorders" was analyzed. Results Data suggests high intensity aerobic interval training increases peak oxygen consumption by a standardized mean difference of 3.60 mL/kg-1/min-1 (95% confidence interval, 0.28-4.91. Conclusion In spite of the methodological shortcomings of the primary studies included in the systematic review, we reasonably conclude that implementation of high intensity aerobic interval training in subjects with metabolic syndrome, leads to increases in peak oxygen consumption.

  18. The effect of external dummy transmitters on oxygen consumption and performance of swimming Atlantic cod

    DEFF Research Database (Denmark)

    Steinhausen, M.F.; Andersen, Niels Gerner; Steffensen, J.F.


    Decreased critical swimming speed and increased oxygen consumption (Mo-2) was found for externally tagged Atlantic cod Gadus morhua swimming at a high speed of 0 center dot 9 body length (total length, L-Gamma) s(-1). No difference was found in the standard metabolic rate, indicating...

  19. Tolerance, Oxygen Consumption and Ammonia Excretion ofOphiopholis sarsii vadicola in Different Temperatures and Salinities

    Institute of Scientific and Technical Information of China (English)

    FANG Jinghui; ZHANG Jihong; JIANG Zengjie; ZHAO Xuewei; JIANG Xu; DU Meirong; GAO Yaping


    There are more than 2000 species of brittle stars in the world. For most of them, many scientific questions including basic characteristics of eco-physiology are still unknown. In the present study,Ophiopholis sarsii vadicola acclimated at 15℃, salinity 31, were assessed for temperature and salinity tolerance. Its oxygen consumption and am-monia excretion were studied at different temperatures (5, 10, 15, 20, 25℃) and salinities (25, 30, 35).O. sarsii vadi-cola could tolerate 0–24℃ and no brittle star was dead in the salinity range of 19–48 in the experimental situation. Two-way ANOVA showed that the oxygen consumption and ammonia excretion normalized with both dry mass and wet mass,Q10, which is used to describe the temperature sensitivity of respiration, and moisture content were significantly affected by temperature and salinity, and the combined effects of the two factors were significant. Stepwise multiple regression analysis revealed that logarithmic oxygen consumption and ammonia excretion showed a significant positive relationship with logarithmic temperature and salinity. The logarithmic moisture content of the brittle stars showed an inverse relationship with logarithmic salinity, but a positive relationship with logarithmic temperature. This suggests that the tolerance of temperature and salinity of brittle stars is closely related to their living environment, and that the effects of temperature on oxygen consumption are more significant at higher salinity, and that the ammonia excretion is less affected by salinity at lower temperatures.

  20. Cerebral blood flow and oxygen metabolism in dementia with Lewy bodies

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yoshitomo; Takahashi, Satoshi; Yonezawa, Hisashi [Iwate Medical Univ., Morioka (Japan). School of Medicine


    Regional cerebral blood flow (rCBF), oxygen metabolism (rCMRO{sub 2}) and the oxygen extraction fraction (rOEF) were measured using the steady-state {sup 15}O technique and positron emission tomography (PET) in six patients with dementia with Lewy bodies (DLB), and compared with ten patients with Alzheimer disease (AD) and six normal controls. In the AD patients, rCBF and rCMRO{sub 2} were significantly decreased in the frontal, parietal, and temporal cortices compared with controls. In DLB patients, rCBF and rCMRO{sub 2} were decreased in the frontal, parietal, temporal, and occipital cortices compared with controls, and were decreased more diffusely than in AD patients. rCBF and rCMRO{sub 2} were significantly decreased in occipital cortex compared with AD patients. rOEF was significantly increased in the parieto-temporal cortex in AD patients compared with controls. In DLB patients, rOEF was significantly increased not only in the parieto-temporal cortex but also in the occipital and frontal cortices compared with controls, and was significantly increased in the occipital cortex compared with AD patients. The diffuse reduction of cerebral blood flow and oxygen metabolism including the occipital cortex may be related to visual hallucination and other visuospatial deficits frequently seen in DLB patients. The increase in rOEF may be mainly due to the reduction in the vascular bed associated with decreased activity in the vasodilatory cholinergic system. (author)

  1. Influence of moderate hypothermia on cerebral oxygenation in pigs with intracranial hypertension

    Institute of Scientific and Technical Information of China (English)

    Yinghui Bao; Yumin Liang; Jiyao Jiang; Qizhong Luo; Yicheng Lu


    BACKGROUND: Moderate hypothermia is one of the effective therapeutic methods for head injury in recent years, there are many mechanisms of moderate hypothermia for brain protection, and its influence on cerebral oxygenation is also one of them.OBJECTIVE: To observe the influence of moderate hypothermia on cerebral oxygenation of animals with acute intracranial hypertension, and further investigate the protective mechanism of moderate hypothermia. DESIGN: A randomized controlled trial.SETTING: Department of Neurosurgery, Renji Hospital affiliated to the Medical College of Shanghai Jiao Tong University.MATERIALS: Twenty healthy little pigs, either male or female, weighing 4.5 - 5.5 kg, were used. Neurotrend-typed multiparameter monitoring system (Diametrics Company, British); CMA/100micro-injection pump (Carnegie Company, Sweden).METHODS: The experiment was conducted in the Changzheng Hospital affiliated to the Second Military Medical University of Chinese PLA in November, 2001. The pigs were randomized into two groups: the normothermia group (control group, n =10) and moderate hypothermia group (n =10). ①Bilateral femoral arteries were separated, one was connected to pressometer for monitoring mean arterial pressure (MEP), and the other for analysis of blood gases [including peripheral blood Ph value, arterial partial pressure of carbon dioxide (PaCCh), arterial partial pressure of carbon dioxide (PaCO2), HCO3-].②Rectal temperature was monitored with mercurial thermometer.③Intracranial pressure was monitored using Camino optic ICP probe placed in the subdural space. ④Neurotrend multiparameter monitoring sensor was inserted into the white matter for about 4 cm to determine cerebral perfusion pressure (CPP, CPP=MAP(ICP), brain tissue partial oxygen pressure (PO2), partial pressure of carbon dioxide (PCCh), HCO3- and brain temperature. The rectal temperature of animals in the moderate hypothermia group was lowered to 34℃ using ice bags, and the body

  2. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. (United States)

    Rooks, Cherie R; Thom, Nathaniel J; McCully, Kevin K; Dishman, Rod K


    We conducted a systematic review and meta-regression analysis to quantify effects of exercise on brain hemodynamics measured by near-infrared spectroscopy (NIRS). The results indicate that acute incremental exercise (categorized relative to aerobic capacity (VO(2)peak) as low - <30% VO(2)peak; moderate - ≥30% VO(2)peak to <60% VO(2)peak; hard - ≥60% VO(2)peak to oxygenated hemoglobin (O(2)Hb) or other measures of oxygen level (O(2)Hbdiff) or saturation (SCO(2)) (0.92±0.67, 1.17), deoxygenated hemoglobin (dHb) (0.87±0.56, 1.19), and blood volume estimated by total hemoglobin (tHb) (1.21±0.84, 1.59). After peaking at hard intensities, cerebral oxygen levels dropped during very hard intensities. People who were aerobically trained attained higher levels of cortical oxygen, dHb, and tHb than untrained people during very hard intensities. Among untrained people, a marked drop in oxygen levels and a small increase in dHb at very hard intensities accompanied declines in tHb, implying reduced blood flow. In 6 studies of 222 patients with heart or lung conditions, oxygenation and dHb were lowered or unchanged during exercise compared to baseline. In conclusion, prefrontal oxygenation measured with NIRS in healthy people showed a quadratic response to incremental exercise, rising between moderate and hard intensities, then falling at very hard intensities. Training status influenced the responses. While methodological improvements in measures of brain oxygen are forthcoming, these results extend the evidence relevant to existing models of central limitations to maximal exercise.

  3. Validation of Fick cardiac output calculated with assumed oxygen consumption : a study of cardiac output during epoprostenol

    NARCIS (Netherlands)

    Bergstra, A; van den Heuvel, A F M; Zijlstra, F; Berger, R M F; Mook, G A; van Veldhuisen, D J


    OBJECTIVE: To test the validity of using assumed oxygen consumption for Fick cardiac output during administration of epoprostenol. METHODS: In 24 consecutive patients Fick cardiac output calculated with assumed oxygen consumption according to LaFarge and Miettinen (COLM) and according to Bergstra et

  4. Effect of Feeding-Fasting Cycles on Oxygen Consumption and Bioenergetics of Yellow Perch (United States)

    Chipps, Steven R.; Travis W. Schaeffer,; Daniel E. Spengler,; Casey W. Schoenebeck,; Michael L. Brown,


    We measured growth and oxygen consumption of age-1 yellow perch Perca flavescenssubjected to ad libitum (control) or variable feeding cycles of 2 (i.e., 2 d of feed, 2 d of deprivation), 6, or 12 d for a 72-d period. Individual, female yellow perch (initial weight = 51.9 ± 0.9 g [mean ± SE]) were stocked in 110-L aquaria to provide six replicates per treatment and fed measured rations of live fathead minnow Pimephales promelas. Consumption, absolute growth rate, growth efficiency, and oxygen consumption were similar among feeding regimens. However, growth trajectories for fish on the 2-d cycle were significantly lower than other feed–fast cycles. Hyperphagia occurred in all treatments. Bioenergetics model simulations indicated that consumption was significantly underestimated (t = 5.4, df = 4, P = 0.006), while growth was overestimated (t = −5.5, df = 4, P = 0.005) for fish on the 12-d cycle. However, model errors detected between observed and predicted values were low, ranging from −10.1% to +7.8%. We found that juvenile yellow perch exhibited compensatory growth (CG), but none of the feed–fast treatments resulted in growth overcompensation. Likewise, we found no evidence that respiration rates varied with CG, implying that yellow perch bioenergetics models could be used to predict the effects of feeding history and CG response on food consumption and fish growth.

  5. Dynamics of oxygen supply and consumption during mainstream large-scale composting in China. (United States)

    Zeng, Jianfei; Shen, Xiuli; Han, Lujia; Huang, Guangqun


    This study characterized some physicochemical and biological parameters to systematically evaluate the dynamics of oxygen supply and consumption during large-scale trough composting in China. The results showed that long active phases, low maximum temperatures, low organic matter losses and high pore methane concentrations were observed in different composting layers. Pore oxygen concentrations in the top, middle and bottom layers maintained oxygen was consumed at a stable respiration rate to a concentration of 5vol.% in no more than 99min and remained anaerobic in the subsequent static condition. The daily percentage of time under aerobic condition was no more than 14% of a single day. Therefore, improving FAS, adjusting aeration interval or combining turning with forced aeration was suggested to provide sufficient oxygen during composting.

  6. Effects of diving and oxygen on autonomic nervous system and cerebral blood flow. (United States)

    Winklewski, Pawel J; Kot, Jacek; Frydrychowski, Andrzej F; Nuckowska, Magdalena K; Tkachenko, Yurii


    Recreational scuba diving is a popular leisure activity with the number of divers reaching several millions worldwide. Scuba diving represents a huge challenge for integrative physiology. In mammalian evolution, physiological reflexes developed to deal with lack of oxygen, rather than with an excess, which makes adaptations to scuba diving more difficult to describe and understand than those associated with breath-hold diving. The underwater environment significantly limits the use of equipment to register the organism's functions, so, in most instances, scientific theories are built on experiments that model real diving to some extent, like hyperbaric exposures, dive reflexes or water immersion. The aim of this review is to summarise the current knowledge related to the influence exerted by physiological conditions specific to diving on the autonomic nervous system and cerebral blood flow. The main factors regulating cerebral blood flow during scuba diving are discussed as follows: 1) increased oxygen partial pressure; 2) immersion-related trigemino-cardiac reflexes and 3) exposure to cold, exercise and stress. Also discussed are the potential mechanisms associated with immersion pulmonary oedema.

  7. Cerebral oxygenation monitoring in patients with bilateral carotid stenosis undergoing urgent cardiac surgery: Observational case series

    Directory of Open Access Journals (Sweden)

    Dincer Aktuerk


    Full Text Available Background: Patients with significant bilateral carotid artery stenosis requiring urgent cardiac surgery have an increased risk of stroke and death. The optimal management strategy remains inconclusive, and the available evidence does not support the superiority of one strategy over another. Materials and Methods: A number of noninvasive strategies have been developed for minimizing perioperative stroke including continuous real-time monitoring of cerebral oxygenation with near-infrared spectroscopy (NIRS. The number of patients presenting with this combination (bilateral significant carotid stenosis requiring urgent cardiac surgery in any single institution will be small and hence there is a lack of large randomized studies. Results: This case series describes our early experience with NIRS in a select group of patients with significant bilateral carotid stenosis undergoing urgent cardiac surgery (n = 8. In contrast to other studies, this series is a single surgeon, single center study, where the entire surgery (both distal ends and proximal ends was performed during single aortic clamp technique, which effectively removes several confounding variables. NIRS monitoring led to the early recognition of decreased cerebral oxygenation, and corrective steps (increased cardiopulmonary bypass flow, increased pCO 2 , etc., were taken. Conclusion: The study shows good clinical outcome with the use of NIRS. This is our "work in progress," and we aim to conduct a larger study.

  8. Fantofarone (SR33557): effects on myocardial oxygen consumption and coronary blood flow. (United States)

    Hodeige, D; Chatelain, P; Manning, A


    We have investigated the effects of a novel calcium antagonist, fantofarone (SR 33557) on myocardial oxygen consumption (MO2C) and coronary blood flow in anaesthetized dogs during periods of normal and elevated heart rate. 25 micrograms/kg i.v. fantofarone induced a transient increase in coronary blood flow (+25% after 2 min; p MO2C (-50% after 5 min; p MO2C was reduced by 67% after 5 min (p MO2C was observed during the pacing periods (32% after 10 min; p MO2C consumption during periods of elevated heart rate.

  9. High oxygen consumption rates in the deep layers of the North Aegean Sea (eastern Mediterranean

    Directory of Open Access Journals (Sweden)



    Full Text Available Severe winter meteorological conditions promote dense water formation over the shelves of the North Aegean Sea. The newly formed dense water fills the deep basins of the North Aegean Sea, contributing to their ventilation and the downward transport of organic and inorganic material. The great bathymetric variability imposes limitations on the deep circulation and the communication between the various basins and makes the North Aegean Sea an appropriate area for the monitoring of oxygen consumption in the deep layers. Historical hydrographic data suggest that there was extensive production of dense water in the North Aegean Sea on two occasions during the last decade, the winters of 1987 and 1992-1993. Our data series from August 1986 to September 1989 and from March 1997 to February 1999, permitted us to follow, step by step, the oxygen consumption and the nutrient regeneration in the deep basins of the northern Aegean Sea during these periods of isolation. The organic matter reaching the bottom layer just after the deep water formation event is rich in labile and easily oxidizable material and its decomposition leads to a significant oxygen uptake during the first year of stagnation. The further decomposition of the remaining semi-labile and refractory material turns over on greater time scales, by consuming lesser amounts of oxygen. A more significant oxygen decrease is recorded in the eastern basin (Lemnos Basin of the North Aegean Trough, than in the central (Athos Basin and the western (North Sporades Basin ones and is attributed to the irregular contribution of the Black Sea Water (BSW to the water masses formed on the different shelves of the North Aegean Sea. Our results and the existing data on the Turkish straits showed that dissolved organic matter is the major constituent responsible for this high oxygen consumption. The slightly different particulate organic carbon fluxes to these depressions play a secondary role.

  10. Effects of pH management during deep hypothermic bypass on cerebral oxygenation:alpha-stat versus pH-stat

    Institute of Scientific and Technical Information of China (English)

    郦志军; 尹小妹; 叶箭


    Objective: There is a remarkable lack of scientific evidence to support the option to use alpha-stat or pH-stat management, as to which is more beneficial to brain protection during deep hypothermic CPB. This study examined cortical blood flow (CBF), cerebral oxygenation, and brain oxygen consumption in relation to deep hypothermic CPB with alpha-stat or pH-stat management. Methods: Twenty-two pigs were cooled with alpha-stat or pH-stat during CPB to 15℃ esophageal temperature. CBF and cerebral oxygenation were measured continuously with a laser flowmeter and near-infrared spectroscopy, respectively. Brain oxygen consumption was measured with standard laboratory techniques. Results: During CPB cooling, CBF was significantly decreased, about 52.2%±6.3% (P<0.01 vs 92.6%±6.5% of pH-stat) at 15℃ in alpha-stat,whereas there were no significant changes in CBF in pH-stat. While cooling down, brain oxygen extraction (OER) progressively decreased, about 9.5%±0.9% and 10.9%±1.5% at 15 ℃ in alpha-stat and pH-stat, respectively. At 31℃ the decreased value in pH-stat was lower than in alpha-stat (29.9%±2.7% vs 22.5%±1.9%; P<0.05). The ratio of CBF/OER were 2.0±0.3 in alpha-stat and pH-stat, respectively; it was kept in constant level in alpha-stat, and significantly increased by 19℃ to 15℃ in pH-stat (4.9±0.9 vs 2.3±0.4; P<0.01). In mild hypothermia, cerebral oxyhemoglobin and oxygen saturation in alpha-stat were greater than that in pH-stat (102.5%±1.4% vs 99.1%±0.7%; P<0.05). In deep hypothermia, brain oxygen saturation in pH-stat was greater than that in alpha-stat (99.2%±1.0% vs 93.8%±1.0%; P<0.01), and deoxyhemoglobin in pH-stat decreased more greatly than that in alpha-stat (28.7%±6.8% vs 54.1%±4.7%; P<0.05). Conclusions: In mild hypothermic CPB, brain tissue oxygen saturation was greater in alpha-stat than in pH-stat. However, cerebral oxygenation and brain tissue oxygen saturation were better in pH-stat than in alpha-stat during

  11. Oxygen consumption of cycle ergometry is nonlinearly related to work rate and pedal rate. (United States)

    Londeree, B R; Moffitt-Gerstenberger, J; Padfield, J A; Lottmann, D


    The purpose of the study was to develop an equation to predict the oxygen cost of cycle ergometry. Forty subjects performed an incremental cycle ergometer test on three occasions at 50, 70, or 90 rpm in a counterbalanced order. Work rate was incremented every 5 or 6 min when steady rate values were achieved. To ensure accurate work rates, ergometer resistance was calibrated and flywheel revolutions were electronically measured. Oxygen consumption was measured with a computer interfaced system which provided results every minute. Oxygen consumption (mL.min-1) was the dependent variable, and independent variables were work rate (WR in kgm.min-1), pedal rate (rpm), weight (Kg), and gender (males, 0; females, 1). The following nonlinear equation was selected; VO2 = 0.42.WR1.2 + 0.00061.rpm3 + 6.35.Wt + 0.1136.RPM50.WR-0.10144.RPM90-WR-52-Gender, R2 = 0.9961, Sy.x = 106 mL.min-1, where RPM50: 50 rpm = 1, and RPM90: 90 rpm = 1, else = 0. It was concluded that the oxygen cost of cycle ergometry is nonlinearly related to work rate and pedal rate, linearly related to weight, and that females use less oxygen for a particular work rate.

  12. Human Islet Oxygen Consumption Rate and DNA Measurements Predict Diabetes Reversal in Nude Mice


    Papas, K.K.; Colton, C. K.; Nelson, R. A.; Rozak, P.R.; Avgoustiniatos, E.S.; Scott, W. E.; Wildey, G. M.; Pisania, A.; Weir, G. C.; Hering, B. J.


    There is a need for simple, quantitative and prospective assays for islet quality assessment that are predictive of islet transplantation outcome. The current state-of-the-art athymic nude mouse bioassay is costly, technically challenging and retrospective. In this study, we report on the ability of 2 parameters characterizing human islet quality: (1) oxygen consumption rate (OCR), a measure of viable volume; and (2) OCR/DNA, a measure of fractional viability, to predict diabetes reversal in ...

  13. Locomotor-respiratory coupling patterns and oxygen consumption during walking above and below preferred stride frequency. (United States)

    O'Halloran, Joseph; Hamill, Joseph; McDermott, William J; Remelius, Jebb G; Van Emmerik, Richard E A


    Locomotor respiratory coupling patterns in humans have been assessed on the basis of the interaction between different physiological and motor subsystems; these interactions have implications for movement economy. A complex and dynamical systems framework may provide more insight than entrainment into the variability and adaptability of these rhythms and their coupling. The purpose of this study was to investigate the relationship between steady state locomotor-respiratory coordination dynamics and oxygen consumption [Formula: see text] of the movement by varying walking stride frequency from preferred. Twelve male participants walked on a treadmill at a self-selected speed. Stride frequency was varied from -20 to +20% of preferred stride frequency (PSF) while respiratory airflow, gas exchange variables, and stride kinematics were recorded. Discrete relative phase and return map techniques were used to evaluate the strength, stability, and variability of both frequency and phase couplings. Analysis of [Formula: see text] during steady-state walking showed a U-shaped response (P = 0.002) with a minimum at PSF and PSF - 10%. Locomotor-respiratory frequency coupling strength was not greater (P = 0.375) at PSF than any other stride frequency condition. The dominant coupling across all conditions was 2:1 with greater occurrences at the lower stride frequencies. Variability in coupling was the greatest during PSF, indicating an exploration of coupling strategies to search for the coupling frequency strategy with the least oxygen consumption. Contrary to the belief that increased strength of frequency coupling would decrease oxygen consumption; these results conclude that it is the increased variability of frequency coupling that results in lower oxygen consumption.

  14. Effect of remifentanil on mitochondrial oxygen consumption of cultured human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Siamak Djafarzadeh

    Full Text Available During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α. Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB. The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis. Our data suggest that

  15. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with {sup 15}O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Department of Nuclear Medicine and Radiology, Division of Brain Sciences, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-Machi, 980-8575, Aoba-Ku, Sendai (Japan); Kanno, Iwao [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Kato, Chietsugu [Department of Nuclear Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Sasaki, Toshiaki [Cyclotoron Research Center, Iwate Medical University, Morioka (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo (Japan); Ouchi, Yasuomi [Positron Medical Center, Hamamatsu Medical Center, Hamakita (Japan); Iida, Akihiko [Nagoya City Rehabilitation Center, Nagoya (Japan); Okazawa, Hidehiko [PET Unit, Research Institute, Shiga Medical Center, Moriyama (Japan); Hayashida, Kohei [Department of Radiology, National Cardiovascular Center, Suita, Osaka (Japan); Tsuyuguchi, Naohiro [Department of Neurosurgery, Osaka City University Medical School, Osaka (Japan); Ishii, Kazunari [Division of Imaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders, Himeji, Hyogo (Japan); Kuwabara, Yasuo [Department of Radiology, Faculty of Medicine, Kyushu University, Fukuoka (Japan); Senda, Michio [Department of Image-based Medicine, Institute of Biomedical Research and Innovation, Kobe (Japan)


    Measurement of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) by positron emission tomography (PET) with oxygen-15 labelled carbon dioxide (C{sup 15}O{sub 2}) or {sup 15}O-labelled water (H{sub 2}{sup 15}O), {sup 15}O-labelled carbon monoxide (C{sup 15}O) and {sup 15}O-labelled oxygen ({sup 15}O{sub 2}) is useful for diagnosis and treatment planning in cases of cerebrovascular disease. The measured values theoretically depend on various factors, which may differ between PET centres. This study explored the applicability of a database of {sup 15}O-PET by examining between-centre and within-centre variation in values. Eleven PET centres participated in this multicentre study; seven used the steady-state inhalation method, one used build-up inhalation and three used bolus administration of C{sup 15}O{sub 2} (or H{sub 2}{sup 15}O) and {sup 15}O{sub 2}. All used C{sup 15}O for measurement of CBV. Subjects comprised 70 healthy volunteers (43 men and 27 women; mean age 51.8{+-}15.1 years). Overall mean{+-}SD values for cerebral cortical regions were: CBF=44.4{+-}6.5 ml 100 ml{sup -1} min{sup -1}; CBV=3.8{+-}0.7 ml 100 ml{sup -1}; OEF=0.44{+-}0.06; CMRO{sub 2}=3.3{+-}0.5 ml 100 ml{sup -1} min{sup -1}. Significant between-centre variation was observed in CBV, OEF and CMRO{sub 2} by one-way analysis of variance. However, the overall inter-individual variation in CBF, CBV, OEF and CMRO{sub 2} was acceptably small. Building a database of normal cerebral haemodynamics obtained by the{sup 15}O-PET methods may be practicable. (orig.)

  16. Effects of transection of cervical sympathetic trunk on cerebral infarct volume and oxygen free radical levels in rats with focal cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Liangzhi Xiong; Yongxia Shi; Feng Xiao; Qingxiu Wang


    BACKGROUND: Stellate ganglion block (SGB) plays a protective role on the brain, but the precise mechanism of action is not clear.OBJECTIVE: To simulate SGB by transection of the cervical sympathetic trunk (TCST) and to investigate the TCST effects on changes in cerebral infarct volume and oxygen free radical levels in rats with focal cerebral ischemia/reperfusion injury.DESIGN, TIME AND SETTING: A complete randomized control animal experiment was performed at the Institute of Neurological Diseases of Taihe Hospital, Yunyang Medical College from February to December 2005.MATERIALS: A total of 101 healthy Wistar rats, weighing 280-320g, of both genders, aged 17-18 weeks, were used in this study. 2,3,5-triphenyltetrazolium chloride (TTC) was purchased from Changsha Hongyuan Biological Company. Superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) assay kits were provided by Nanjing Jiancheng Bioengineering Institute.METHODS: Rats were randomly divided into a TCST group, a model group and a sham operation group. Successful models were included in the final analysis, with at least 20 rats in each group. After TCST, rat models of focal cerebral ischemia/reperfusion injury were established in the TCST group by receiving middle cerebral artery occlusion (MCAO) by the intraluminal suture method for 2 hours, followed by 24 hours of reperfusion. Rat models of focal cerebral ischemia/reperfusion injury were made in the model group. Rats in the sham operation group underwent experimental procedures as for the model group, threading depth of 10mm, and middle cerebral artery was not ligated.MAIN OUTCOME MEASURES: Brain tissue sections of ten rats from each group were used to measure cerebral infarct volume by TTC staining. Brain tissue homogenate of another ten rats from each group was used to detect SOD activities, MDA contents and NO levels. Rat neurological function was assessed by neurobehavioral measures.RESULTS: Cerebral infarct volume was bigger in the

  17. Acute EPOC response in women to circuit training and treadmill exercise of matched oxygen consumption. (United States)

    Braun, W A; Hawthorne, W E; Markofski, M M


    The purpose of the study was to evaluate the effects of circuit training (CT) and treadmill exercise performed at matched rates of oxygen consumption and exercise duration on elevated post-exercise oxygen consumption (EPOC) in untrained women, while controlling for the menstrual cycle. Eight, untrained females (31.3 +/- 9.1 years; 2.04 +/- 0.26 l min(-1) estimated VO2max; BMI=24.6+/-3.9 kg/m2) volunteered to participate in the study. Testing was performed during the early follicular phase for each subject to minimize hormonal variability between tests. Subjects performed two exercise sessions approximately 28 days apart. Resting, supine energy expenditure was measured for 30 min preceding exercise and for 1 h after completion of exercise. Respiratory gas exchange data were collected continuously during rest and exercise periods via indirect calorimetry. CT consisted of three sets of eight common resistance exercises. Pre-exercise and exercise oxygen consumption was not different between testing days (P>0.05). Thus, exercise conditions were appropriately matched. Analysis of EPOC data revealed that CT resulted in a significantly higher (pEPOC period (pEPOC.

  18. Oxygen consumption and temperature control of premature infants in a double-wall incubator. (United States)

    Marks, K H; Lee, C A; Bolan, C D; Maisels, M J


    The effects of a double wall in a forced convection-heated incubator were studied on ten naked, nondistressed, premature infants by measuring their mean skin temperature, esophageal temperature, and oxygen consumption when they were in thermal steady state, with, and without, the double wall in place. The incubator air temperature was maintained within the recommended thermoneutral zone during the consecutive paired experiments. Ambient room temperature and relative humidity were constant and the infant's activity (quiet sleep) and postprandial state were the same in both conditions. Together with a significant rise in operative temperature (P less than .05) induced by the double wall (accounted for by a 0.9 C mean increased in incubator wall temperature nearest the baby), their mean skin temperature and esophageal temperatures increased (P less than .025), while a decrease in oxygen consumption occurred in nine of the ten infants (P less than .05). These findings suggest that the double wall reduced radiant and total heat loss from the baby by diminishing the temperature gradient between the skin and incubator surfaces and that metabolic heat production (oxygen consumption) was reduced when the double wall was in place.

  19. Protein expression and oxygen consumption rate of early postmortem mitochondria relate to meat tenderness. (United States)

    Grabež, V; Kathri, M; Phung, V; Moe, K M; Slinde, E; Skaugen, M; Saarem, K; Egelandsdal, B


    Oxygen consumption rate (OCR) of muscle fibers from bovine semimembranosus muscle of 41 animals was investigated 3 to 4 h and 3 wk postmortem. Significant relations (P meat. Tender (22.92 ± 2.2 N/cm2) and tough (72.98 ± 7.2 N/cm2) meat samples (4 samples each), separated based on their OCR measurements, were selected for proteomic studies using mitochondria isolated approximately 2.5 h postmortem. Twenty-six differently expressed proteins (P meat and 19 in tough meat. In tender meat, the more prevalent antioxidant and chaperon enzymes may reduce reactive oxygen species and prolong oxygen removal by the electron transport system (ETS). Glycolytic, Krebs cycle, and ETS enzymes were also more abundant in tender meat

  20. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!

    DEFF Research Database (Denmark)

    Steffensen, John Fleng


    a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption......Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have...

  1. Both superficial and deep zone articular chondrocyte subpopulations exhibit the Crabtree effect but have different basal oxygen consumption rates. (United States)

    Heywood, Hannah K; Knight, Martin M; Lee, David A


    In the absence of in vivo measurements, the oxygen concentration within articular cartilage is calculated from the balance between cellular oxygen consumption and mass transfer. Current estimates of the oxygen tension within articular cartilage are based on oxygen consumption data from full-depth tissue samples. However, superficial and deep cell subpopulations of articular cartilage express intrinsic metabolic differences. We test the hypothesis that the subpopulations differ with respect to their intrinsic oxygen consumption rate. Chondrocytes from the full cartilage thickness demonstrate enhanced oxygen consumption when deprived of glucose, consistent with the Crabtree phenomena. Chondrocyte subpopulations differ in the prevailing availability of oxygen and glucose, which decrease with distance from the cartilage-synovial fluid interface. Thus, we tested the hypothesis that the oxygen consumption of each subpopulation is modulated by nutrient availability, by examining the expression of the Crabtree effect. The deep cells had a greater oxygen consumption than the superficial cells (V(max) of 6.6 compared to 3.2 fmol/cell/h), consistent with our observations of mitochondrial volume (mean values 52.0 vs. 36.4 microm(3)/cell). Both populations expressed the Crabtree phenomena, with oxygen consumption increasing approximately 2.5-fold in response to glycolytic inhibition by glucose deprivation or 2-deoxyglucose. Over 90% of this increase was oligomycin-sensitive and thus accounted for by oxidative phosphorylation. The data contributes towards our understanding of chondrocyte energy metabolism and provides information valuable for the accurate calculation of the oxygen concentration that the cells experience in vivo. The work has further application to the optimisation of bioreactor design and engineered tissues.

  2. Liposome-encapsulated hemoglobin reduces the size of cerebral infarction in rats: effect of oxygen affinity. (United States)

    Fukumoto, Dai; Kawaguchi, Akira T; Haida, Munetaka; Yamano, Mariko; Ogata, Yoshitaka; Tsukada, Hideo


    Liposome-encapsulated hemoglobin (LEH) with a low oxygen affinity (l-LEH, P(50) = 45 mm Hg) was found to be protective in the rodent and primate models of ischemic stroke. This study investigated the role of LEH with a high O(2) affinity (h-LEH, P(50) = 10 mm Hg) in its protective effect on brain ischemia. The extent of cerebral infarction was determined 24 h after photochemically induced thrombosis of the middle cerebral artery from the integrated area of infarction detected by triphenyltetrazolium chloride staining in rats receiving various doses of h-LEH as well as l-LEH. Both h-LEH and l-LEH significantly reduced the extent of cortical infarction. h-LEH remained protective at a lower concentration (minimal effective dose [MED]: 0.08 mL/kg) than l-LEH (MED: 2 mL/kg) in the cortex. h-LEH reduced the infarction extent in basal ganglia as well (MED: 0.4 mL/kg), whereas l-LEH provided no significant protection. h-LEH provided better protection than l-LEH. The protective effect of both high- and low-affinity LEH may suggest the importance of its small particle size (230 nm) as compared to red blood cells. The superiority of h-LEH over l-LEH supports an optimal O(2) delivery to the ischemic penumbra as the mechanism of action in protecting against brain ischemia and reperfusion.

  3. Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects (United States)

    Durduran, Turgut; Zhou, Chao; Buckley, Erin M.; Kim, Meeri N.; Yu, Guoqiang; Choe, Regine; Gaynor, J. William; Spray, Thomas L.; Durning, Suzanne M.; Mason, Stefanie E.; Montenegro, Lisa M.; Nicolson, Susan C.; Zimmerman, Robert A.; Putt, Mary E.; Wang, Jiongjiong; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Licht, Daniel J.


    We employ a hybrid diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS) monitor for neonates with congenital heart disease (n=33). The NIRS-DCS device measured changes during hypercapnia of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations; cerebral blood flow (rCBFDCS); and oxygen metabolism (rCMRO2). Concurrent measurements with arterial spin-labeled magnetic resonance imaging (rCBFASL-MRI, n=12) cross-validate rCBFDCS against rCBFASL-MRI, showing good agreement (R=0.7, p=0.01). The study demonstrates use of NIRS-DCS on a critically ill neonatal population, and the results indicate that the optical technology is a promising clinical method for monitoring this population.

  4. Cerebral misery perfusion diagnosed using hypercapnic blood-oxygenation-level-dependent contrast functional magnetic resonance imaging: a case report

    Directory of Open Access Journals (Sweden)

    D'Souza Olympio


    Full Text Available Abstract Introduction Cerebral misery perfusion represents a failure of cerebral autoregulation. It is an important differential diagnosis in post-stroke patients presenting with collapses in the presence of haemodynamically significant cerebrovascular stenosis. This is particularly the case when cortical or internal watershed infarcts are present. When this condition occurs, further investigation should be done immediately. Case presentation A 50-year-old Caucasian man presented with a stroke secondary to complete occlusion of his left internal carotid artery. He went on to suffer recurrent seizures. Neuroimaging demonstrated numerous new watershed-territory cerebral infarcts. No source of arterial thromboembolism was demonstrable. Hypercapnic blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging was used to measure his cerebrovascular reserve capacity. The findings were suggestive of cerebral misery perfusion. Conclusions Blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging allows the inference of cerebral misery perfusion. This procedure is cheaper and more readily available than positron emission tomography imaging, which is the current gold standard diagnostic test. The most evaluated treatment for cerebral misery perfusion is extracranial-intracranial bypass. Although previous trials of this have been unfavourable, the results of new studies involving extracranial-intracranial bypass in high-risk patients identified during cerebral perfusion imaging are awaited. Cerebral misery perfusion is an important and under-recognized condition in which emerging imaging and treatment modalities present the possibility of practical and evidence-based management in the near future. Physicians should thus be aware of this disorder and of recent developments in diagnostic tests that allow its detection.

  5. ADRB2 gly16gly Genotype, Cardiac Output, and Cerebral Oxygenation in Patients Undergoing Anesthesia for Abdominal Aortic Aneurysm Surgery

    DEFF Research Database (Denmark)

    Staalso, Jonatan Myrup; Rokamp, Kim Zillo; Olesen, Niels D.


    BACKGROUND: Gly16arg polymorphism of the adrenergic [beta]2-receptor is associated with the elevated cardiac output (Q) in healthy gly16-homozygotic subjects. We questioned whether this polymorphism also affects Q and regional cerebral oxygen saturation (SCO2) during anesthesia in vascular surgic...

  6. Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: implications for BOLD-fMRI. (United States)

    Ances, Beau M; Leontiev, Oleg; Perthen, Joanna E; Liang, Christine; Lansing, Amy E; Buxton, Richard B


    Functional magnetic resonance imaging (fMRI) based on blood oxygenation level dependent (BOLD) signal changes is a sensitive tool for mapping brain activation, but quantitative interpretation of the BOLD response is problematic. The BOLD response is primarily driven by cerebral blood flow (CBF) changes, but is moderated by M, a scaling parameter reflecting baseline deoxyhemoglobin, and n, the ratio of fractional changes in CBF to cerebral metabolic rate of oxygen consumption (CMRO(2)). We compared M and n between cortical (visual cortex, VC) and subcortical (lentiform nuclei, LN) regions using a quantitative approach based on calibrating the BOLD response with a hypercapnia experiment. Although M was similar in both regions (~5.8%), differences in n (2.21+/-0.03 in VC and 1.58+/-0.03 in LN; Cohen d=1.71) produced substantially weaker (~3.7x) subcortical than cortical BOLD responses relative to CMRO(2) changes. Because of this strong sensitivity to n, BOLD response amplitudes cannot be interpreted as a quantitative reflection of underlying metabolic changes, particularly when comparing cortical and subcortical regions.

  7. Cerebral blood flow and oxygen metabolism in patients with dementia of the Alzheimer's type by position emission tomography using 0-15 steady state technique

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Shizuki; Kitamura, Shin; Ujike, Takashi; Terashi, Akiro; Iio, Masaaki.


    In 12 patients with dementia of the Alzheimer's type (DAT) and 5 age-matched healthy subjects, regional cerebral blood flow (rCBF), oxygen extraction fraction (rOEF), and cerebral oxygen consumption (rCMRO/sub 2/) were determined using positron emission tomography (PET) with 0-15 labeled CO/sub 2/ and O/sub 2/ inhalation method. There was a significant reduction in CMRO/sub 2/ of the temporal cortex in the group of mild DAT compared with the control group. In the group of moderate DAT, CBF of the temporal cortex and CMRO/sub 2/ of the temporal and parietal cortices were significantly reduced. The group of severe DAT showed a significantly reduced CBF and CMRO/sub 2/ in the frontal cortex, and a relatively spared occipital cortex in all stages. The results indicated that metabolic reduction in the temporal cortex first occurs, and that metabolic dysfunction in the parietal and frontal cortices results in blood flow reduction and deterioration of DAT. Right/left metabolic asymmetry in the temporal and parietal cortices was correlated with language and visuospatial functions. (Namekawa, K).

  8. Hyperbaric oxygen therapy for cerebral blood flow and electroencephalogram in patients with acute cerebral infarction Choice for therapeutic occasion

    Institute of Scientific and Technical Information of China (English)

    Lei Chen; Fei Li; Dexiang Gu


    BACKGROUND: Hyperbaric oxygen (HBO) therapy increases blood oxygen content, changes cerebral blood flow (CBF) and cerebral metabolism. Its therapeutic effects on cerebrovascular disease have been fully confirmed, but the occasion for HBO therapy is still unclear.OBJECTIVE: To observe the therapeutic effects of HBO therapy at different time on CBF and electroencephalogram (EEG) in patients with acute cerebral infarction (CI).DESIGN: Randomized controlled trial.SETTING: Department of Neurology, Shidong Hospital, Yangpu District of Shanghai.PARTICIPANTS: Ninety-six inpatients with acute CI, admitted to Department of Neurology, Shidong Hospital, Yangpu District of Shanghai from January 2001 to December 2006, were involved in this experiment. The involved participants met the diagnosis criteria of acute CI and confirmed by skull CT or MRI. They all were patients with moderate CI (16- 30 points) according to neurologic deficit score formulated by Chinese Medical Association. Informed consents of detected items and therapeutic regimen were obtained from all the involved participants. They were randomized into two groups with 48 in each:early-stage treatment group and advanced-stage treatment group. Among the 48 patients in the early-stage treatment group, 21 male and 27 female, aged 53 -68 years, 22 patients were found with basal ganglia infarction, 10 with brain lobe infarction, 16 with multiple infarction, 27 accompanied with hypertension and 2 accompanied with diabetes mellitus. Among the 48 patients in the advanced-stage treatment group, 23 male and 25 female, aged 52 - 71 years, 25 patients were found with basal ganglia infarction, 10 with brain lobe infarction, 12 with multiple infarction, 1 with brain stem infarction, 28 accompanied with hypertension and 1 accompanied with diabetes mellitus.METHODS: After admission, patients of two groups received routine drug treatment. ① Patients in the early-stage treatment group and advanced-stage treatment group began to

  9. Cerebral oxygenation and processed EEG response to clamping and shunting during carotid endarterectomy under general anesthesia. (United States)

    Perez, William; Dukatz, Christopher; El-Dalati, Sami; Duncan, James; Abdel-Rasoul, Mahmoud; Springer, Andrew; Go, Michael R; Dzwonczyk, Roger


    Clamping and shunting during carotid endarterectomy (CEA) surgery causes changes in cerebral blood flow. The purpose of this study was to assess and compare, side by side, the cerebral oxygenation (rSO2) and processed electroencephalogram (EEG) response bilaterally to carotid artery clamping and shunting in patients undergoing CEA under general anesthesia. With institutional approval and written informed consent, patients undergoing CEA under general anesthesia and routine carotid artery shunting were recorded bilaterally, simultaneously and continuously with an rSO2 and processed EEG monitor. The response of the monitors during carotid artery clamping and shunting were assessed and compared between monitors and bilaterally within each monitor. Sixty-nine patients were included in the study. At clamping the surgical-side and contralateral-side rSO2 dropped significantly below the baseline incision value (-17.6 and -9.4% respectively). After shunting, the contralateral-side rSO2 returned to baseline while the surgical-side rSO2 remained significantly below baseline (-9.0%) until the shunt was removed following surgery. At clamping the surgical-side and contralateral-side processed EEG also dropped below baseline (-19.9 and -20.6% respectively). However, following shunt activation, the processed EEG returned bilaterally to baseline. During the course of this research, we found the rSO2 monitor to be clinically more robust (4.4% failure rate) than the processed EEG monitor (20.0% failure rate). There was no correlation between the rSO2 or processed EEG changes that occurred immediately after clamping and the degree of surgical side stenosis measured pre-operatively. Both rSO2 and processed EEG respond to clamping and shunting during CEA. Cerebral oximetry discriminates between the surgical and contralateral side during surgery. The rSO2 monitor is more reliable in the real-world clinical setting. Future studies should focus on developing algorithms based on these

  10. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sandra C. [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chau, Mary D.L.; Yang, Qing [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Gauthier, Marie-Soleil [Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02140 (United States); Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Dole, William P., E-mail: [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States)


    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  11. High-CHO diet increases post-exercise oxygen consumption after a supramaximal exercise bout (United States)

    Ferreira, G.A.; Bertuzzi, R.; De-Oliveira, F.R.; Pires, F.O.; Lima-Silva, A.E.


    We investigated if carbohydrate (CHO) availability could affect the excess post-exercise oxygen consumption (EPOC) after a single supramaximal exercise bout. Five physically active men cycled at 115% of peak oxygen uptake (V̇O2 peak) until exhaustion with low or high pre-exercise CHO availability. The endogenous CHO stores were manipulated by performing a glycogen-depletion exercise protocol 48 h before the trial, followed by 48 h consuming either a low- (10% CHO) or a high-CHO (80% CHO) diet regime. Compared to the low-CHO diet, the high-CHO diet increased time to exhaustion (3.0±0.6 min vs 4.4±0.6, respectively, P=0.01) and the total O2 consumption during the exercise (6.9±0.9 L and 11.3±2.1, respectively, P=0.01). This was accompanied by a higher EPOC magnitude (4.6±1.8 L vs 6.2±2.8, respectively, P=0.03) and a greater total O2 consumption throughout the session (exercise+recovery: 11.5±2.5 L vs 17.5±4.2, respectively, P=0.01). These results suggest that a single bout of supramaximal exercise performed with high CHO availability increases both exercise and post-exercise energy expenditure. PMID:27783812

  12. Depressed cerebral oxygen metabolism in patients with chronic renal failure. A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Hirakata, Hideki; Kanai, Hidetoshi; Nakane, Hiroshi; Fujii, Ken-ichiro; Hirakata, Eriko; Ibayashi, Setsuro; Kuwabara, Yasuo; Deenitchna, S.S.; Fujishima, Masatoshi [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences


    In order to elucidate brain oxygen metabolism in uremic patients, the regional cerebral blood flow (rCBF), oxygen extraction (rOEF) and oxygen metabolism (rCMRO{sub 2}) were measured by positron emission tomography (PET) in both 10 hemodialysis patients (HD: male [m]/female [f]=2/8, age of 49{+-}3 [SEM] years old, HD duration of 113{+-}26 months) and 13 pre-dialysis renal failure patients (CRF: m/f=10/3, age of 61{+-}2 years old, serum creatinine (SCr) of 6.3{+-}1.0 mg/dl). Data were compared with 20 non-uremic subjects (Control: m/f=7/13, age of 62{+-}2 years old, SCr of 0.9{+-}0.1 mg/dl). They had no neurological abnormalities, congestive heart failure, history of cerebrovascular accident, diabetes mellitus, or symptomatic brain lesion on magnetic resonance imaging. The age of HD was significantly younger than the other groups (p<0.02) and the hemoglobin (Hb) levels in both HD (10.5{+-}0.5 g/dl) and CRF (9.8{+-}0.9) were significantly lower than that in Control (13.3{+-}0.3) (p<0.02). In the hemisphere, rCMRO{sub 2} in both HD (1.82{+-}0.10 ml/min/100 g) and CRF (1.95{+-}0.09) showed significantly lower values as compared to Control (2.23{+-}0.05) (p<0.01, respectively). Hemispheric rCBF in HD (35.6{+-}2.1 ml/100 g/min) and in CRF (36.1{+-}2.1) were not different from that in Control (31.8{+-}1.4). Hemispheric rOEF in CRF (45.7{+-}1.6%) was significantly higher than that in Control (40.5{+-}1.2%) (p<0.02), but that in HD (43.7{+-}1.9%) did not increase significantly. These tendencies were similar in all regions of interest, especially in the cerebral cortices, but not in the cerebellum. All PET parameters in the frontal cortices tended to show the lowest value in renal failure patients. For all HD patients, rCBF in both the frontal cortex and the white matter correlated inversely with HD duration (frontal cortex: r=-0.649, p<0.05; white matter: r=-0.706, p<0.02). Based on these data, it is concluded that brain oxygen metabolism is depressed in renal failure

  13. NODC Standard Format Seabed Oxygen Consumption from In-Situ Sources (F050) Data (1974-1978) (NODC Accession 0014186) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data type contains data from analyses of seabed oxygen consumption determined from measurements over a specified time interval of initial and final dissolved...

  14. [Effect of local sustained stress on general oxygen consumption in belt conveyer workers]. (United States)

    Nakamura, E; Taguchi, S; Fujiki, Y; Kanetaka, A; Nagata, H


    The modern mechanization and rationalization of production procedures have recently reduced the intensity of work in most factories. However, it has been pointed out that monotonous inactive work and/or co-operative work can in some sense impose stronger mental and physical stresses which may induce ill health in workers. In this study, assuming the assembly and adjustment of videotape-recorders on a belt conveyor to be representative of monotonous inactive and co-operative work, changes in oxygen consumption, heart rate, blood pressure, body temperature, critical flicker fusion and subjective symptoms of fatigue throughout a workday have been followed for six female workers engaged in this type of work. The main results obtained were as follows: The average oxygen consumption of six workers was 230 ml/min, almost unchanged during the work. The belt conveyor work indicated the metabolic rate of 0.3 in terms of relative metabolic rate. The net daily energy expenditure due to the work was only about 100 kcal. The average heart rate during assembly and adjustment were respectively, about 1.4 and 1.2 times the average heart rate at rest. The blood pressure and the rate of oxygen removal increased slightly as the work progressed in assembly work, but did not increase at all in adjustment work. The critical flicker fusion and body temperature showed little change during the work.

  15. Initial clinical experience with near-infrared spectroscopy in assessing cerebral tissue oxygen saturation in cerebral vasospasm before and after intra-arterial verapamil injection. (United States)

    Meng, Lingzhong; Settecase, Fabio; Xiao, Jifang; Yu, Zhaoxia; Flexman, Alana M; Higashida, Randall T


    Cerebral vasospasm is a devastating complication after subarachnoid hemorrhage. The use of cerebral tissue oxygen saturation (SctO2) to non-invasively assess changes in cerebral tissue perfusion induced by intra-arterial (IA) verapamil treatment has not been described to our knowledge. A total of 21 consecutive post-craniotomy patients scheduled for possible IA verapamil treatment of cerebral vasospasm were recruited. The effect of IA verapamil injection on SctO2 being continuously monitored on both the left and right forehead was investigated. Comparisons between changes in SctO2 monitored on the ipsilateral and contralateral forehead in relationship to the side of internal carotid artery (ICA) injection were performed. A total of 47 IA verapamil injections (15 left ICA, 18 right ICA, and 14 vertebral artery injections) during 18 neurointerventional procedures in 13 patients were analyzed. IA verapamil administration led to both increases and decreases in SctO2. Changes in SctO2 ipsilateral to the ICA injection side were more pronounced (p=0.02 and 0.07 for left and right ICA injections, respectively) and favored compared to contralateral SctO2 changes. We were unable to obtain reliable measurements on the side ipsilateral to the craniotomy during four procedures in three patients, presumably secondary to pneumocephalus. The local cerebral vasodilating effect of IA verapamil injection is suggested by the differential changes in SctO2 ipsilateral and contralateral to the ICA injection side. The inconsistent changes in SctO2 and the limitations of applying cerebral oximetry in this patient population needs to be recognized.

  16. The Effect of Neuromuscular Blockade on Oxygen Consumption and Energy Expenditure in Mechanically Ventilated Acute Respiratory Insufficiency Patients

    Directory of Open Access Journals (Sweden)

    Esra Yüksel


    Full Text Available Objective: The aim of this study is to investigate the effect of neuromuscular blockade on oxygen consumption and energy expenditure in sedated patients with acute respiratory failure who were followed under mechanical ventilation support. Material and Method: 21 acute respiratory failure patients under mechanical ventilation support were included in the study. All patients were sedated with propofol infusion to have a sedation level of 3 on the Ramsay scale. After adequate sedation and hemodynamic stability was achieved, baseline values of oxygen consumption, carbondioxide production and energy consumption of the patients were measured by indirect calorimetry device and recorded. Neuromuscular transmission was monitorized by TOF-Guard, and then 0,1 mg/kg bolus dose vecuronium was administered to the patients. When TOF 0, 25, 50, 90 values were obtained, oxygen, carbondioxide and energy consumption were measured by indirect calorimetry device and recorded. Results: No statistically significant difference were found between pre- and post-curarisation hemodynamic parameters, ventilation parameters, arterial blood gas values (p>0.05. A statistically significant decrease was observed between the oxygen consumption, carbondioxide production and energy consumption measured before curarisation and when TOF value was 0 (p0.05. Conclusion: It was concluded that the effect of neuromuscular blockage on reducing energy and oxygen consumption should be taken into consideration while calculating the daily energy need in intensive care in patients curarized at TOF 0 level. (Journal of the Turkish Society Intensive Care 2012; 10: 8-12

  17. Swimming for your life: locomotor effort and oxygen consumption during the green turtle (Chelonia mydas) hatchling frenzy. (United States)

    Booth, David T


    Swimming effort and oxygen consumption of newly emerged green turtle Chelonia mydas hatchlings was measured simultaneously and continuously for the first 18 h of swimming after hatchlings entered the water. Oxygen consumption was tightly correlated to swimming effort during the first 12 h of swimming indicating that swimming is powered predominantly by aerobic metabolism. The patterns of swimming effort and oxygen consumption could be divided into three distinct phases: (1) the rapid fatigue phase from 0 to 2 h when the mean swim thrust decreased from 45 to 30 mN and oxygen consumption decreased from 33 to 18 ml h(-1); (2) the slow fatigue phase from 2 to 12 h when the mean swim thrust decreased from 30 to 22 mN and oxygen consumption decreased from 18 to 10 ml h(-1); and (3) the sustained effort phase from 12 to 18 h when mean swim thrust averaged 22 mN and oxygen consumption averaged 10 ml h(-1). The decrease in mean swim thrust was caused by a combination of a decrease in front flipper stroke rate during a power stroking bout, a decrease in mean maximum thrust during a power stroking bout and a decrease in the proportion of time spent power stroking. Hence hatchlings maximise their swimming thrust as soon as they enter the water, a time when a fast swimming speed will maximise the chance of surviving the gauntlet of predators inhabiting the shallow fringing reef before reaching the relative safety of deeper water.

  18. Daily cycle in oxygen consumption by the sea anemone Nematostella vectensis Stephenson

    Directory of Open Access Journals (Sweden)

    Amy E. Maas


    Full Text Available In bilaterian animals, the circadian clock is intimately involved in regulating energetic metabolism. Although cnidarians exhibit diel behavioral rhythms including cycles in locomotor activity, tentacle extension and spawning, daily cycles in cnidarian metabolism have not been described. To explore a possible circadian metabolic cycle, we maintained the anemone Nematostella vectensis in a 12 h light/dark cycle, a reversed light cycle, or in constant darkness. Oxygen consumption rates were measured at intervals using an optical oxygen meter. Respiration rates responded to entrainment with higher rates during light periods. During a second experiment with higher temporal resolution, respiration rates peaked late in the light period. The diel pattern could be detected after six days in constant darkness. Together, our results suggest that respiration rates in Nematostella exhibit a daily cycle that may be under circadian control and that the cycle in respiration rate is not driven by the previously described nocturnal increase in locomotor activity in this species.

  19. Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo

    DEFF Research Database (Denmark)

    Mathiesen, Claus; Caesar, Kirsten; Thomsen, Kirsten Engelund


    Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF). Activity-dependent rises in CMRO(2) fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca(2+) stimulate oxidative...... and current source density analysis to study real-time Ca(2+) dynamics and transmembrane ionic currents in relation to CMRO(2) in the mouse cerebellar cortex in vivo. We report a direct correlation between CMRO(2) and summed (i.e., the sum of excitatory, negative currents during the whole stimulation period...

  20. The cerebral metabolic ratio is not affected by oxygen availability during maximal exercise in humans

    DEFF Research Database (Denmark)

    Volianitis, S.; Fabricius-Bjerre, A.; Overgaard, A.;


    .2% during exercise with an inspired O(2) fraction of 0.17 and 0.30, respectively. Whilst the increase in a-v lactate difference was attenuated by manipulation of cerebral O(2) availability, the cerebral metabolic ratio was not affected significantly. During maximal rowing, the cerebral metabolic ratio...

  1. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude (United States)

    Liu, Jie; Liu, Yang; Ren, Li-Hua; Li, Li; Wang, Zhen; Liu, Shan-Shan; Li, Su-Zhi; Cao, Tie-Sheng


    To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (‑17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution.

  2. Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage (United States)

    Lin, Pei-Yi; Hagan, Katherine; Fenoglio, Angela; Grant, P. Ellen; Franceschini, Maria Angela


    Low-grade germinal matrix-intraventricular hemorrhage (GM-IVH) is the most common complication in extremely premature neonates. The occurrence of GM-IVH is highly associated with hemodynamic instability in the premature brain, yet the long-term impact of low-grade GM-IVH on cerebral blood flow and neuronal health have not been fully investigated. We used an innovative combination of frequency-domain near infrared spectroscopy and diffuse correlation spectroscopy (FDNIRS-DCS) to measure cerebral oxygen saturation (SO2) and an index of cerebral blood flow (CBFi) at the infant’s bedside and compute an index of cerebral oxygen metabolism (CMRO2i). We enrolled twenty extremely low gestational age (ELGA) neonates (seven with low-grade GM-IVH) and monitored them weekly until they reached full-term equivalent age. During their hospital stay, we observed consistently lower CBFi and CMRO2i in ELGA neonates with low-grade GM-IVH compared to neonates without hemorrhages. Furthermore, lower CBFi and CMRO2i in the former group persists even after the resolution of the hemorrhage. In contrast, SO2 does not differ between groups. Thus, CBFi and CMRO2i may have better sensitivity than SO2 in detecting GM-IVH-related effects on infant brain development. FDNIRS-DCS methods may have clinical benefit for monitoring the evolution of GM-IVH, evaluating treatment response, and potentially predicting neurodevelopmental outcome.

  3. Quantitative measurement of cerebral oxygen extraction fraction using MRI in patients with MELAS.

    Directory of Open Access Journals (Sweden)

    Lei Yu

    Full Text Available OBJECTIVE: To quantify the cerebral OEF at different phases of stroke-like episodes in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS by using MRI. METHODS: We recruited 32 patients with MELAS confirmed by gene analysis. Conventional MRI scanning, as well as functional MRI including arterial spin labeling and oxygen extraction fraction imaging, was undertaken to obtain the pathological and metabolic information of the brains at different stages of stroke-like episodes in patients. A total of 16 MRI examinations at the acute and subacute phase and 19 examinations at the interictal phase were performed. In addition, 24 healthy volunteers were recruited for control subjects. Six regions of interest were placed in the anterior, middle, and posterior parts of the bilateral hemispheres to measure the OEF of the brain or the lesions. RESULTS: OEF was reduced significantly in brains of patients at both the acute and subacute phase (0.266 ± 0.026 and at the interictal phase (0.295 ± 0.009, compared with normal controls (0.316 ± 0.025. In the brains at the acute and subacute phase of the episode, 13 ROIs were prescribed on the stroke-like lesions, which showed decreased OEF compared with the contralateral spared brain regions. Increased blood flow was revealed in the stroke-like lesions at the acute and subacute phase, which was confined to the lesions. CONCLUSION: MRI can quantitatively show changes in OEF at different phases of stroke-like episodes. The utilization of oxygen in the brain seems to be reduced more severely after the onset of episodes in MELAS, especially for those brain tissues involved in the episodes.

  4. Brazilein inhibits neuronal inflammation induced by cerebral ischemia and oxygen-glucose deprivation through targeting NOD2 expression. (United States)

    Yan, Xiao-Jin; Chai, Yu-Shuang; Yuan, Zhi-Yi; Wang, Xin-Pei; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; DU, Li-Jun


    Brazilein is reported to have immunosuppressive effect on cardiovascular and cerebral-vascular diseases. The essential roles of innate immunity in cerebral ischemia are increasingly identified, but no studies concerning the influence of brazilein on the innate immunity receptors have been reported. The present study was designed to investigate the regulation of NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) by brazilein for its protection of neuron in cerebral ischemia in vivo and oxygen-glucose deprivation in vitro. The results showed that brazilein could reverse the elevated expression of NOD2 and TNFα (tumor necrosis factor alpha) elicited by cerebral ischemia and reperfusion. This reduction could also be detected in normal mice and C17.2 cells, indicating that this suppressive effect of brazilein was correlated with NOD2. The results from GFP reporter plasmid assay suggested brazilein inhibited NOD2 gene transcription. In conclusion, brazilein could attenuate NOD2 and TNFα expression in cerebral ischemia and NOD2 may be one possible target of brazilein for its immune suppressive effect in neuro-inflammation.

  5. 高压氧治疗脑梗死疗效观察%Observation of therapeutic effect of hyperbaric oxygen on cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    马维艳; 杨丽


    Background:Hypoxia and ischemia resulting from cerebral infarction can further cause a series of pathological changes such as hydrocephallus.Drug therapy can improve cerebral blood circulation and enhance flow volume and decrease infarction area.If hyperbaric oxygen is added,pathophysiological changes such as ischemia and hypoxia can be improved and normal metabolism of brain cells be restored.

  6. Effect of head rotation during surgery in the prone position on regional cerebral oxygen saturation

    DEFF Research Database (Denmark)

    Andersen, Johnny Dohn Holmgren; Baake, Gerben; Wiis, Julie Therese;


    BACKGROUND: Near-infrared spectroscopy (NIRS) has been used to study regional cerebral blood oxygen saturation (rScO2) in patients in the prone position. OBJECTIVES: We aimed to test the hypothesis that head rotation more than 45° would affect the rScO2. DESIGN: A prospective, controlled, single......-state anaesthesia with the head in the neutral position, rotated left, rotated right and returned to the neutral position. Each series consisted of three measurements: resting on the head support, during head lift (to relieve pressure on the tissue at the sensors) and returned to rest on the head support. MAIN...... OUTCOME MEASURES: The differences in rScO2 between the neutral and the turned head positions. RESULTS: For both left and right sensors, the median differences in rScO2 between neutral and left or right positions were between 0 and -1 with the head up (P = 0.14 to 0.84). The median differences...

  7. Wavelet analysis of cerebral oxygenation oscillations in the screening of Moyamoya disease. (United States)

    He, Ying; Jiang, Pengjun; Han, Shanshan; Wang, Rong; Li, Yue; Teng, Yichao; Gao, Tianxin


    Near-infrared spectroscopy (NIRS) was used to investigate the cerebral oxygenation of Moyamoya and healthy subjects. Continuous recordings of NIRS signals for 20 min (20 min signals) were obtained from 17 healthy subjects (age: 37.4 ± 11.3) and 17 Moyamoya subjects (age: 40.1 ± 11.2). Spectral analysis based on wavelet transformation identified five frequency intervals (I, 0.0095 Hz to 0.02 Hz; II, 0.02 Hz to 0.06 Hz; III, 0.06 Hz to 0.15 Hz; IV, 0.15 Hz to 0.40 Hz; and V, 0.40 Hz to 2.00 Hz) in the 20 min signals and three frequency intervals (III, 0.06 Hz to 0.15 Hz; IV, 0.15 Hz to 0.40 Hz; and V, 0.40 Hz to 2.00 Hz) in the 3 min signals (the first 3 min signals were continuously extracted from the 20 min signals). Significant differences (p Moyamoya disease. As a potential screening method for Moyamoya disease, the simple threshold method exhibited 73.5% accuracy.

  8. Neurotrophin-3 promotes cell death induced in cerebral ischemia, oxygen-glucose deprivation, and oxidative stress: possible involvement of oxygen free radicals. (United States)

    Bates, Brian; Hirt, Lorenz; Thomas, Sunu S; Akbarian, Schahram; Le, Dean; Amin-Hanjani, Sepideh; Whalen, Michael; Jaenisch, Rudolf; Moskowitz, Michael A


    To explore the role of neurotrophin-3 (NT-3) during cerebral ischemia, NT-3-deficient brains were subjected to transient focal ischemia. Conditional mutant brains produced undetectable amounts of NT-3 mRNA, whereas the expression of the neurotrophin, BDNF, the NT-3 receptor, TrkC, and the nonselective, low-affinity neurotrophin receptor p75NTR, were comparable to wild-type. Baseline absolute blood flow, vascular and neuroanatomical features, as well as physiological measurements were also indistinguishable from wild-type. Interestingly, the absence of NT-3 led to a significantly decreased infarct volume 23 h after middle cerebral artery occlusion. Consistent with this, the addition of NT-3 to primary cortical cell cultures exacerbated neuronal death caused by oxygen-glucose deprivation. Coincubation with the oxygen free radical chelator, trolox, diminished potentiation of neuronal death. NT-3 also enhanced neuronal cell death and the production of reactive oxygen species caused by oxidative damage inducing agents. We conclude that endogenous NT-3 enhanced neuronal injury during acute stroke, possible by increasing oxygen-radical mediated cell death.

  9. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy. (United States)

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St Lawrence, Keith


    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268 ± 0.8340 mLO2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  10. A new method to measure local oxygen consumption in human skeletal muscle during dynamic exercise using near-infrared spectroscopy. (United States)

    Binzoni, Tiziano; Cooper, Chris E; Wittekind, Anna L; Beneke, Ralph; Elwell, Clare E; Van De Ville, Dimitri; Leung, Terence S


    Near infrared spectroscopy (NIRS) can readily report on changes in blood volume and oxygenation. However, it has proved more problematic to measure real-time changes in blood flow and oxygen consumption. Here we report the development of a novel method using NIRS to measure local oxygen consumption in human muscle. The method utilizes the blood volume changes induced by the muscle pump during rhythmically contracting exercising skeletal muscle. We found that the saturation of the blood during the contraction phase was lower than that during the relaxation phase. The calculated oxygen drop was then divided by the contraction time to generate a value for the muscle oxygen consumption in the optical region of interest. As a test we measured the muscle oxygen consumption in the human vastus lateralis during exercise on a cycle ergometer by 11 trained male athletes (32 +/- 11 years old) at 40% and 110% peak aerobic power. We saw an increase from 13.78 micromol 100 g(-1) min(-1) to 19.72 micromol 100 g(-1) min(-1) with the increase in power. The measurements are theoretically exempt from usual NIRS confounders such as myoglobin and adipose tissue and could provide a useful tool for studying human physiology.

  11. Gait transition and oxygen consumption in swimming striped surfperch Embiotoca lateralis Agassiz

    DEFF Research Database (Denmark)

    Cannas, M.; Schaefer, J.; Domenici, P.


    A flow-through respirometer and swim tunnel was used to estimate the gait transition speed (Up-c) of striped surfperch Embiotoca lateralis, a labriform swimmer, and to investigate metabolic costs associated with gait transition. The Up-c was defined as the lowest speed at which fish decrease...... the use of pectoral fins significantly. While the tail was first recruited for manoeuvring at relatively low swimming speeds, the use of the tail at these low speeds [as low as 0·75 body (fork) lengths s-1, LF s-1) was rare (..., either in addition to pectoral fins or during burst-and-coast mode. Oxygen consumption increased exponentially with swimming speeds up to gait transition, and then levelled off. Similarly, cost of transport (CT) decreased with increasing speed, and then levelled off near Up-c. When speeds =Up...

  12. Myocardial Oxygen Consumption and Efficiency in Aortic Valve Stenosis Patients With and Without Heart Failure

    DEFF Research Database (Denmark)

    Hansson, Nils Henrik Stubkjær; Sörensen, Jens; Harms, Hendrik Johannes;


    .61, respectively; Pnormal MVO2 and MEE (ie, the ability to convert energy into stroke work); however, patients with left ventricular ejection fraction strain greater than -12%; or paradoxical low-flow, low......BACKGROUND: Myocardial oxygen consumption (MVO2) and its coupling to contractile work are fundamentals of cardiac function and may be involved causally in the transition from compensated left ventricular hypertrophy to failure. Nevertheless, these processes have not been studied previously...... in patients with aortic valve stenosis (AS). METHODS AND RESULTS: Participants underwent (11)C-acetate positron emission tomography, cardiovascular magnetic resonance, and echocardiography to measure MVO2 and myocardial external efficiency (MEE) defined as the ratio of left ventricular stroke work...

  13. Validating the relationship between 3-dimensional body acceleration and oxygen consumption in trained Steller sea lions. (United States)

    Volpov, Beth L; Rosen, David A S; Trites, Andrew W; Arnould, John P Y


    We tested the ability of overall dynamic body acceleration (ODBA) to predict the rate of oxygen consumption ([Formula: see text]) in freely diving Steller sea lions (Eumetopias jubatus) while resting at the surface and diving. The trained sea lions executed three dive types-single dives, bouts of multiple long dives with 4-6 dives per bout, or bouts of multiple short dives with 10-12 dives per bout-to depths of 40 m, resulting in a range of activity and oxygen consumption levels. Average metabolic rate (AMR) over the dive cycle or dive bout calculated was calculated from [Formula: see text]. We found that ODBA could statistically predict AMR when data from all dive types were combined, but that dive type was a significant model factor. However, there were no significant linear relationships between AMR and ODBA when data for each dive type were analyzed separately. The potential relationships between AMR and ODBA were not improved by including dive duration, food consumed, proportion of dive cycle spent submerged, or number of dives per bout. It is not clear whether the lack of predictive power within dive type was due to low statistical power, or whether it reflected a true absence of a relationship between ODBA and AMR. The average percent error for predicting AMR from ODBA was 7-11 %, and standard error of the estimated AMR was 5-32 %. Overall, the extensive range of dive behaviors and physiological conditions we tested indicated that ODBA was not suitable for estimating AMR in the field due to considerable error and the inconclusive effects of dive type.

  14. Oxygen consumption and heart rate responses to isolated ballet exercise sets. (United States)

    Rodrigues-Krause, Josianne; Dos Santos Cunha, Giovani; Alberton, Cristine Lima; Follmer, Bruno; Krause, Mauricio; Reischak-Oliveira, Alvaro


    Ballet stage performances are associated with higher cardiorespiratory demand than rehearsals and classes. Hence, new interest is emerging to create periodized training that enhances dancers' fitness while minimizing delayed exercise-induced fatigue and possible injuries. Finding out in what zones of intensity dancers work during different ballet movements may support the use of supplemental training adjusted to the needs of the individual dancer. Therefore, the main purpose of this study was to describe dancers' oxygen consumption (VO2) and heart rate (HR) responses during the performance of nine isolated ballet exercise sets, as correlated with their first and second ventilatory thresholds (VT1 and VT2). Twelve female ballet dancers volunteered for the study. Their maximum oxygen consumption (VO2max), VT1, and VT2 were determined by use of an incremental treadmill test. Nine sets of ballet movements were assessed: pliés, tendus, jetés, rond de jambes, fondus, grand adage (adage), grand battements, temps levés, and sautés. The sets were randomly executed and separated by 5 minute rest periods. ANOVA for repeated measurements followed by the Bonferroni Post-hoc test were applied (p ballet sets. This stratification followed closely, but not exactly, the variation in HR. For example, rond de jambes (156.8 ± 19 b·min(-1)) did not show any significant difference from all the other ballet sets, nor VT1 or VT2. It is concluded that the workloads of isolated ballet sets, based on VO2 responses, vary between low and moderate aerobic intensity in relation to dancers' VT1 and VT2. However, ballet set workloads may be higher when based on HR responses, due to the intermittent and isometric components of dance.

  15. Effect of 29 days of simulated microgravity on maximal oxygen consumption and fat-free mass of rats (United States)

    Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Rahman, Zia; Tipton, Charles M.


    Effects of a 29-days exposure to simulated microgravity on the values of maximal oxygen consumption and fat-free mass (FFM) and on the mechanical efficiency of running were investigated in rats randomly assigned to one of three regimens: head-down suspension (HDS) at 45 deg, horizontal suspension (HS), or cage control (CC). Before suspension and on days 7, 14, 21, and 28, five exercise performance tests were carried out, with measurements related to maximal oxygen consumption, treadmill run time, and mechanical efficiency. It was found that maximal oxygen consumption of both HDS and HS groups decreased significantly at day 7, after which the HDS rats remained decreased while the HS rats returned to presuspension values. Apparent mechanical efficiency in the HDS and HS groups decreased by 22-35 percent during the experimental period, and FFM decreased significantly.

  16. Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radiactive waste repository. (United States)

    Yang, Changbing; Samper, Javier; Molinero, Jorge; Bonilla, Mercedes


    Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Aspö underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.

  17. Emperor penguin oxygen consumption, heart rate and plasma lactate levels during graded swimming exercise. (United States)

    Kooyman, G L; Ponganis, P J


    Oxygen consumption (VO2), heart rate and blood chemistry were measured in four emperor penguins, Aptenodytes forsteri (Gray), during graded swimming exercise. The maximum VO2 obtained, 52 ml O2 kg-1 min-1, was 7.8 times the measured resting VO2 of 6.7 ml O2 kg-1 min-1 and 9.1 times the predicted resting VO2. As the swimming effort rose, a linear increase in surface and submerged heart rates (fH) occurred. The highest average maximum surface and submersion heart rates of any bird were 213 and 210 beats min-1, respectively. No increase in plasma lactate concentrations occurred until VO2 was greater than 25 ml O2 kg-1 min-1. At the highest VO2 values measured, plasma lactate concentration reached 9.4 mmol l-1. In comparison with other animals of approximately the same mass, the aerobic capacity of the emperor penguin is less than those of the emu and dog but about the same as those of the seal, sea lion and domestic goat. For aquatic animals, a low aerobic capacity seems to be consistent with the needs of parsimonious oxygen utilization while breath-holding.

  18. A Study of Real-time Peak Oxygen Consumption and Six-minute Walk Test

    Institute of Scientific and Technical Information of China (English)

    Guolin Zhang; Lan Guo; He Li; Jingzhuang Mai; Zhi Liu; Sixian Huang


    To assess the relationship between peak oxygen consumption( PVO2 ) and the ambulation distance in six-minute walk test (6MWT)among the healthy subjects.Methods The 51 healthy subjects were recruited for the six-minute walk test.Data of pulmonary gas exchange breath by breath,such as VO2,VCO2 were real-time measured with wireless remote sensing K4B2,so to study the relationship between peak oxygen uptake and the ambulation distance.Results It was noticed that there was a positive linear correlation between the ambulation distance and PVO2 ( r =0.619,P <0.001 ) in six-minute walk test.The regression equation was set up (VO2/kg =0.05D-6.331,P <0.001 ).PVO2 > PVCO2 ,R < 1 were found,which suggested that 6MWT was a test below anaerobic threshold.Conclusions There was a closely positive linear correlation between the ambulation distance and PVO2,which is safety,convenient and valuable for the evaluation of cardiopulmonary function and the treatment of cardiopulmonary rehabilitation.

  19. Effect of micro- and macroencapsulation on oxygen consumption by pancreatic islets. (United States)

    Cornolti, Roberta; Figliuzzi, Marina; Remuzzi, Andrea


    Immunoisolation of pancreatic islets is extensively investigated for glycemic control in diabetic experimental animals. We previously reported that subcutaneous xenotransplantation of bovine islets protected by a selective polysulfone membrane successfully controlled glycemia in diabetic rats for up to 20 days. We then wondered whether immunoisolated islets have adequate oxygen supply in this device, where only diffusive transport allows cell function and survival. Here we set up an experimental technique to measure oxygen consumption rate (OCR) using a Clark's electrode inserted in a glass thermostated chamber connected to a data recorder and acquisition system. Bovine islets were isolated from 6-month-old calves, encapsulated in sodium alginate microcapsules or inserted in polysulfone hollow fibers. After 1 and 2 days in culture a series of measurements was performed using free islets (at normal or high-glucose concentration), islets encapsulated in microcapsules, or in hollow fibers. In free islets OCR averaged from 2.0 +/- 0.8 pmol/IEQ/min at low-glucose concentration and from 2.5 +/- 1.0 pmol/IEQ/min at high-glucose concentration (p hollow fibers was comparable, and not significantly different from that measured in free islets. Two days after isolation OCR averaged 2.3 +/- 0.6 in free islets, 2.3 +/- 0.9 in alginate microcapsules, and 2.2 +/- 0.7 pmol/IEQ/min in hollow fibers. These results show that OCR by bovine islets is comparable to that previously reported for other species. OCR increases in islets stimulated with high glucose and may be considered as a functional index. Moreover, islet encapsulation in alginate microcapsule, as well as in hollow fiber membranes, did not significantly affect in vitro OCR, suggesting adequate islet oxygenation in these conditions.

  20. Relationship between oxygen consumption kinetics and BODE Index in COPD patients

    Directory of Open Access Journals (Sweden)

    Borghi-Silva A


    Full Text Available Audrey Borghi-Silva,1 Thomas Beltrame,1,2 Michel Silva Reis,1 Luciana Maria Malosá Sampaio,3 Aparecida Maria Catai,1 Ross Arena,4 Dirceu Costa31Cardiopulmonary Physiotherapy Laboratory, Nucleus of Research in Physical Exercise, Federal University of São Carlos, São Carlos, SP, Brazil; 2Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON, Canada; 3Rehabilitation Sciences Master’s Program, Universidade Nove de Julho, Sao Paulo, SP, Brazil; 4Division of Physical Therapy, Department of Orthopedics, Division of Cardiology, Department of Internal Medicine, and Latin American and Iberian Institute, University of New Mexico, Albuquerque, NM, USABackground and objective: Patients with chronic obstructive pulmonary disease (COPD present with reduced exercise capacity due to impaired oxygen consumption (VO2, caused primarily by pulmonary dysfunction and deleterious peripheral adaptations. Assuming that COPD patients present with slower VO2 and heart rate (HR on-kinetics, we hypothesized that this finding is related to disease severity as measured by the BODE Index. In this context, the present study intends to evaluate the relationship between VO2 uptake on-kinetics during high-intensity exercise and the BODE Index in patients with COPD.Methods: Twenty males with moderate-to-severe stable COPD and 13 healthy control subjects matched by age and sex were evaluated. COPD patients were screened by the BODE Index and then underwent an incremental cardiopulmonary exercise test and a constant speed treadmill session at 70% of maximal intensity for 6 minutes. The onset of the exercise (first 360 seconds response for O2 uptake and HR was modeled according to a monoexponential fit.Results: Oxygen consumption and HR on-kinetics were slower in the COPD group compared with controls. Additionally, VO2 on-kinetic parameters revealed a strong positive correlation (r = 0.77, P < 0.05 with BODE scores and a moderate negative correlation with

  1. The oxygen consumption rates of different life stages of the endoparasitic nematode

    Directory of Open Access Journals (Sweden)

    Willie van Aardt


    Full Text Available The oxygen consumption rates of different life stages of the endoparasitic nematode, Pratylenchus zeae (Nematoda: Tylenchida during non- and post-anhydrobiosisPratylenchus zeae, widely distributed in tropical and subtropical regions, is an endoparasite in roots of maize and other crop plants. The nematode is attracted to plant roots by CO2 and root exudates and feeds primarily on cells of the root cortex, making channels and openings where the eggs are deposited, with the result that secondary infection occurs due to bacteria and fungi. Nothing is known about the respiration physiology of this nematode and how it manages to survive during dry seasons. To measure the oxygen consumption rate (VO2 of individual P. zeae (less than half a millimeter long, a special measuring technique namely Cartesian diver micro-respirometry was applied. The Cartesian divers were machined from Perspex, and proved to be more accurate to measure VO2 compared with heavier glass divers used in similar experiments on free living nematodes. An accuracy of better than one nanoliter of oxygen consumed per hour was achieved with a single P. zeae inside the diver. Cartesian diver micro-respirometry measurements are based in principle on the manometric changes that occur in a fl otation tube in a manometer set-up when oxygen is consumed by P. zeae and CO2 from the animal is chemically absorbed. VO2 was measured for eggs (length: < 0.05 mm, larvae (length: 0.36 mm and adults (length: 0.47 mm before induction to anhydrobiosis. P. zeae from infected maize roots were extracted and exposed aseptically to in vitro maize root cultures in a grow cabinet at 50 % to 60% relative humidity at 28 ºC using eggs, larvae and adults. VO2 was also measured for post-anhydrobiotic eggs, larvae and adults by taking 50 individuals, eggs and larvae from the culture and placing them in Petri-dishes with 1% agar/water to dry out for 11 days at 28 ºC and 50% relative humidity. The VO2 was measured

  2. Frontal lobe oxygenation is maintained during hypotension following propofol-fentanyl anesthesia

    NARCIS (Netherlands)

    P. Nissen; J.J. van Lieshout; H.B. Nielsen; N.H. Secher


    Near-infrared spectroscopy (NIRS) assesses cerebral oxygen saturation (Sco2) as a balance between cerebral oxygen delivery and consumption. In 71 patients, we evaluated whether marked reduction in mean arterial pressure (MAP) during propofol-fentanyl anesthesia induction affects frontal lobe Sco2. T

  3. Comparative effects of isoproterenol and dopamine on myocardial oxygen consumption, blood flow distribution and total body oxygen consumption in conscious lambs with and without an aortopulmonary left to right shunt

    NARCIS (Netherlands)

    Bartelds, B; Gratama, JWC; Meuzelaar, KJ; Dalinghaus, M; Koers, JH; Heikens, WF; Zijlstra, WG; Kuipers, JRG


    Objectives. We sought to study the effects of catecholamines on myocardial oxygen consumption ((V) over dot O-2)), regional blood flows and total body (V) over dot O-2, in lambs with circulatory congestion. Background. Catecholamines are often used to support cardiovascular function in children with

  4. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care. (United States)

    Ciaffoni, Luca; O'Neill, David P; Couper, John H; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A


    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible.

  5. A novel isotopic fractionation during dissolved oxygen consumption in mesopelagic waters inferred from observation and model simulation of dissolved oxygen δ18O in open oceanic regions (United States)

    Nakayama, N.; Oka, A.; Gamo, T.


    Oxygen isotopic ratio (δ18O) of dissolved oxygen is a useful for bioactive tracer of the subsurface aphotic (mesopelagic) ocean since it varies nonlinearly related to oxygen consumption via stoichiometry of organic matter decomposition. Therefore, along with global circulation model (GCM), observed δ18O and their vertical/geographical distribution can be effectively used to quantitatively determine how marine biological and ocean physical processes contribute to varying dissolved oxygen (DO) concentration in the ocean, in particular mesopelagic zone where pronounced biological activity alters DO concentration significantly. In the central north Pacific Ocean and Indian Ocean, including Arabian Sea, one of the few regions in the open ocean which has oxygen minimum zone (OMZ, a layer with severely depleted DO), vertical profiles of DO and δ18O were observed. These observed data are compared with a GCM simulation in which a constant isotopic fractionation factor of DO by marine biological respiration and a fixed Redfield molar ratio between P and O are assumed. Even in the Arabian Sea OMZ, relationship between DO and δ18O was found to be similar to those observed in other open oceans, indicating that no specific oxygen consumption process occurred in the OMZ. Using the GCM model, we attempted to reproduce the observed overall relationship between DO and δ18O, but it failed when we adopted the previously reported isotopic fractionation factor: Discrepancy became larger when oxygen saturation level decreased, in particular in thermocline water (at 20% oxygen saturation level, modeled δ18O was heavier than observed values by +7‰). Sensitivity simulations with the GCM model revealed that (1) simply changing the intensity of oxygen consumption by respiration/organic matter decomposition nor physical processes (diffusion and/or advection) could explain the observed relationship between DO and δ18O, (2) applying a smaller isotopic fractionation for deep waters

  6. The SafeBoosC Phase II Randomised Clinical Trial : A Treatment Guideline for Targeted Near-Infrared-Derived Cerebral Tissue Oxygenation versus Standard Treatment in Extremely Preterm Infants

    NARCIS (Netherlands)

    Pellicer, Adelina; Greisen, Gorm; Benders, Manon; Claris, Olivier; Dempsey, Eugene; Fumagalli, Monica; Gluud, Christian; Hagmann, Cornelia; Hellstroem-Westas, Lena; Hyttel-Sorensen, Simon; Lemmers, Petra; Naulaers, Gunnar; Pichler, Gerhard; Roll, Claudia; van Bel, Frank; van Oeveren, Wim; Skoog, Maria; Wolf, Martin; Austin, Topun


    Near-infrared spectroscopy-derived regional tissue oxygen saturation of haemoglobin (rSto(2)) reflects venous oxygen saturation. If cerebral metabolism is stable, rSto(2) can be used as an estimate of cerebral oxygen delivery. The SafeBoosC phase II randomised clinical trial hypothesises that the bu

  7. Comparison of cerebral oxygen saturation in premature infants by near-infrared spatially resolved spectroscopy: observations on probe-dependent bias

    DEFF Research Database (Denmark)

    Sorensen, Line C; Leung, Terence S; Greisen, Gorm


    Spatially resolved spectroscopy (SRS) allows the estimation of absolute tissue oxygen saturation, the ratio of oxygenated to total hemoglobin concentration, which may facilitate the comparison of results among patients. Eighty-two premature infants were included over two years. The cerebral tissue...

  8. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB; Sagemann, J.;


    remineralization were monitored through consumption of oxygen and reduction of (SO42-)-S-35. At each of the 4 sites, the temperature response of the initial step of organic carbon remineralization was similar to that of the terminal steps. Although optimum temperatures were always well above ambient environmental...

  9. Regional myocardial oxygen consumption estimated by carbon-11 acetate and positron emission tomography before and after repetitive ischemia

    DEFF Research Database (Denmark)

    Kofoed, K F; Hansen, P R; Holm, S


    Preserved myocardial oxygen consumption estimated by carbon 11-acetate and positron emission tomography (PET) in myocardial regions with chronic but reversibly depressed contractile function in patients with ischemic heart disease have been suggested to be caused by repeated short episodes of acu...

  10. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    Directory of Open Access Journals (Sweden)

    Kuan Zhang

    Full Text Available Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG of the hippocampus and the sub-ventricular zone (SVZ of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCsin vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr and DG (approximately 10 Torr were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr. Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  11. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo. (United States)

    Zhang, Kuan; Zhou, Yanzhao; Zhao, Tong; Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling


    Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  12. Reduction in Post-Marathon Peak Oxygen Consumption: Sign of Cardiac Fatigue in Amateur Runners? (United States)

    Sierra, Ana Paula Rennó; da Silveira, Anderson Donelli; Francisco, Ricardo Contesini; Barretto, Rodrigo Bellios de Mattos; Sierra, Carlos Anibal; Meneghelo, Romeu Sergio; Kiss, Maria Augusta Peduti Dal Molin; Ghorayeb, Nabil; Stein, Ricardo


    Background Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. Objective To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. Methods The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. Results The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). Conclusions In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur. PMID:26760783

  13. Coupling of cerebral blood flow and oxygen metabolism is conserved for chromatic and luminance stimuli in human visual cortex. (United States)

    Leontiev, Oleg; Buracas, Giedrius T; Liang, Christine; Ances, Beau M; Perthen, Joanna E; Shmuel, Amir; Buxton, Richard B


    The ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation in the capacity for oxygen metabolism. The goal of this study was to test whether CBF/CMRO(2) coupling differed when these subpopulations of neurons were preferentially stimulated, using chromatic and luminance stimuli to preferentially stimulate either the blob or interblob regions. A dual-echo spiral arterial spin labeling (ASL) technique was used to measure CBF and BOLD responses simultaneously in 7 healthy human subjects. When the stimulus contrast levels were adjusted to evoke similar CBF responses (mean 65.4% ± 19.0% and 64.6% ± 19.9%, respectively for chromatic and luminance contrast), the BOLD responses were remarkably similar (1.57% ± 0.39% and 1.59% ± 0.35%) for both types of stimuli. We conclude that CBF-CMRO(2) coupling is conserved for the chromatic and luminance stimuli used, suggesting a consistent coupling for blob and inter-blob neuronal populations despite the difference in CO concentration.

  14. The Effect of Equal Ratio Ventilation on Oxygenation, Respiratory Mechanics, and Cerebral Perfusion Pressure During Laparoscopy in the Trendelenburg Position. (United States)

    Jo, Youn Yi; Kim, Ji Young; Chang, Young Jin; Lee, Sehwan; Kwak, Hyun Jeong


    The aim of this study was to investigate the effects of equal ratio ventilation (ERV) on oxygenation, respiratory mechanics, and the cerebral perfusion pressure during pneumoperitoneum in the Trendelenburg position. Thirty patients undergoing laparoscopic low anterior resection (25 to 65 y) were enrolled. Mechanical ventilator was set to volume-controlled mode at an inspiratory to expiratory (I:E) ratio of 1:2 with a tidal volume of 8 mL/kg of ideal body weight with a 5 cm H2O positive end-expiratory pressure. Twenty minutes after pneumoperitoneum in the Trendelenburg position, the I:E ratio was changed to 1:1 for 20 minutes and then restored to 1:2. No significant changes in arterial oxygen tension and respiratory compliance after adopting ERV. Mean arterial pressure and cerebral perfusion pressure decreased significantly over time after adopting the Trendelenburg position during pneumoperitoneum (P=0.014 and 0.005, respectively). In conclusion, there was no improvement in oxygenation or respiratory mechanics with ERV.

  15. Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO₂. (United States)

    Ferreira, Vicente; Carrascon, Vanesa; Bueno, Mónica; Ugliano, Maurizio; Fernandez-Zurbano, Purificación


    Fifteen Spanish red wines extensively characterized in terms of SO2, color, antioxidant indexes, metals, and polyphenols were subjected to five consecutive sensor-controlled cycles of air saturation at 25 °C. Within each cycle, O2 consumption rates cannot be interpreted by simple kinetic models. Plots of cumulated consumed O2 made it possible to define a fast and highly wine-dependent initial O2 consumption rate and a second and less variable average O2 consumption rate which remains constant in saturations 2 to 5. Both rates have been satisfactorily modeled, and in both cases they were independent of Fe and SO2 and highly dependent on Cu levels. Average rates were also related to Mn, pH, Folin, protein precipitable proanthocyanidins (PPAs), and polyphenolic profile. Initial rates were strong and negatively correlated to SO2 consumption, indicating that such an initial rate is either controlled by an unknown antioxidant present in some wines or affected by a poor real availability of SO2. Remaining unreacted SO2 is proportional to initial combined SO2 and to final free acetaldehyde.

  16. Pectoral fin beat frequency predicts oxygen consumption during spontaneous activity in a labriform swimming fish (Embiotoca lateralis)

    DEFF Research Database (Denmark)

    Tudorache, Christian; Jordan, Anders D.; Svendsen, Jon Christian


    The objective of this study was to identify kinematic variables correlated with oxygen consumption during spontaneous labriform swimming. Kinematic variables (swimming speed, change of speed, turning angle, turning rate, turning radius and pectoral fin beat frequency) and oxygen consumption (MO2......) of spontaneous swimming in Embiotoca lateralis were measured in a circular arena using video tracking and respirometry, respectively. The main variable influencing MO2 was pectoral fin beat frequency (r (2) = 0.71). No significant relationship was found between swimming speed and pectoral fin beat frequency...... consumption patterns are likely to be quite different in field situation compared to a small lab tank. In addition, our methods could be useful to measure metabolic costs of growth and development, or bioassays for possible toxicological effects on fish....

  17. Effect of sevoflurane and propofol on cerebral oxygen metabolism in cardiopulmonary bypass and postoperative neurological function injury

    Institute of Scientific and Technical Information of China (English)

    Zhu Zhu; Wei-Wei Li


    Objective:To study the effect of sevoflurane and propofol on cerebral oxygen metabolism in cardiopulmonary bypass (CPB) and postoperative neurological function injury.Methods:A total of 48 cases of patients who received mitral valve replacement under CPB in our hospital were selected and randomly divided into sevoflurane group (S group) and propofol group (P group) who received sevoflurane-based intravenous inhalational anesthesia and propofol-based total intravenous anesthesia respectively, cerebral oxygen metabolism indexes were determined before CPB started (T0), when nasopharyngeal temperature fell to a constant low temperature (T1), when CPB ended (T2) and 1 h after CPB ended (T3) respectively during operation, and serum neurological function, cardiac function and liver function injury molecules were determined after operation.Results: Intraoperative SjvO2, AVDO2, O2ER and rSO2 were not significantly different between two groups, SjvO2 at T1 significantly increased, AVDO2 and O2ER significantly decreased and rSO2 didn’t change significantly, SjvO2 at T2 significantly decreased, AVDO2 and O2ER significantly increased and rSO2 didn’t change significantly; postoperative serum NSE, S100β, Aβ, Glu, Asp and Gly levels of S group were significantly lower than those of P group, and CK-MB, LDH, cTnI, ALT and AST levels were not significantly different from those of P group.Conclusion:Both sevoflurane and propofol can maintain the balance of cerebral oxygen metabolism in mitral valve replacement under CPB and protect the cardiac function and liver function, but sevoflurane has more ideal protective effect on postoperative neurological function.

  18. Cerebral tissue oxygenation index and superior vena cava blood flow in the very low birth weight infant.

    LENUS (Irish Health Repository)

    Moran, M


    BACKGROUND: Superior vena cava (SVC) flow assesses blood flow from the upper body, including the brain. Near infrared spectroscopy (NIRS) provides information on brain perfusion and oxygenation. AIM: To assess the relationship between cerebral tissue oxygenation index (cTOI) and cardiac output measures in the very low birth weight (VLBW) infant in the first day of life. METHODS: A prospective observational cohort study. Neonates with birth weight less than 1500 g (VLBW) were eligible for enrollment. Newborns with congenital heart disease, major congenital malformations and greater than Papile grade1 Intraventricular Haemorrhage on day 1 of life were excluded. Echocardiographic evaluation of SVC flow was performed in the first 24 h of life. Low SVC flow states were defined as a flow less than 40 mL\\/kg\\/min. cTOI was measured using NIRO 200 Hamamatsu. RESULTS: Twenty-seven VLBW neonates had both echocardiography and NIRS performed. The median (range) gestation was 29\\/40 (25 + 3 to 31 + 5 weeks) and median birth weight was 1.2 kg (0.57-1.48 kg). The mean (SD) TOI was 68.1 (7.9)%. The mean (SD) SVC flow was 70.36(39.5) mLs\\/kg\\/min. The correlation coefficient of cerebral tissue oxygenation and SVC flow was r = 0.53, p-value 0.005. There was a poor correlation between right and left ventricular output and cTOI which is not surprising considering the influence of intra- and extracardiac shunts. CONCLUSION: There is a positive relationship between cerebral TOI values and SVC flow in the very low birth infant on day one of life.

  19. Sulfur Isotope Trends in Archean Microbialite Facies Record Early Oxygen Production and Consumption (United States)

    Zerkle, A.; Meyer, N.; Izon, G.; Poulton, S.; Farquhar, J.; Claire, M.


    The major and minor sulfur isotope composition (δ34S and Δ33S) of pyrites preserved in ~2.65-2.5 billion-year-old (Ga) microbialites record localized oxygen production and consumption near the mat surface. These trends are preserved in two separate drill cores (GKF01 and BH1-Sacha) transecting the Campbellrand-Malmani carbonate platform (Ghaap Group, Transvaal Supergroup, South Africa; Zerkle et al., 2012; Izon et al., in review). Microbialite pyrites possess positive Δ33S values, plotting parallel to typical Archean trends (with a Δ33S/δ34S slope of ~0.9) but enriched in 34S by ~3 to 7‰. We propose that these 34S-enriched pyrites were formed from a residual pool of sulfide that was partially oxidized via molecular oxygen produced by surface mat-dwelling cyanobacteria. Sulfide, carrying the range of Archean Δ33S values, could have been produced deeper within the microbial mat by the reduction of sulfate and elemental sulfur, then fractionated upon reaction with O2 produced by oxygenic photosynthesis. Preservation of this positive 34S offset requires that: 1) sulfide was only partially (50­­-80%) consumed by oxidation, meaning H2S was locally more abundant (or more rapidly produced) than O2, and 2) the majority of the sulfate produced via oxidation was not immediately reduced to sulfide, implying either that the sulfate pool was much larger than the sulfide pool, or that the sulfate formed near the mat surface was transported and reduced in another part of the system. Contrastingly, older microbialite facies (> 2.7 Ga; Thomazo et al., 2013) appear to lack these observed 34S enrichments. Consequently, the onset of 34S enrichments could mark a shift in mat ecology, from communities dominated by anoxygenic photosynthesizers to cyanobacteria. Here, we test these hypotheses with new spatially resolved mm-scale trends in sulfur isotope measurements from pyritized stromatolites of the Vryburg Formation, sampled in the lower part of the BH1-Sacha core. Millimeter

  20. Effects of Walking with Blood Flow Restriction on Excess Post-exercise Oxygen Consumption. (United States)

    Mendonca, G V; Vaz, J R; Pezarat-Correia, P; Fernhall, B


    This study determined the influence of walking with blood flow restriction (BFR) on the excess post-exercise oxygen consumption (EPOC) of healthy young men. 17 healthy young men (22.1±2.9 years) performed graded treadmill exercise to assess VO2peak. In a randomized fashion, each participant performed 5 sets of 3-min treadmill exercise at their optimal walking speed with 1-min interval either with or without BFR. Participants were then seated in a chair and remained there for 30 min of recovery. Expired gases were continuously monitored during exercise and recovery. BFR increased the O2 cost of walking as well as its relative intensity and cumulative O2 deficit (pEPOC magnitude after walking with BFR was greater than in the non-BFR condition (pEPOC. The EPOC magnitude was no longer different between conditions after controlling for the differences in relative intensity and in the cumulative O2 deficit (p>0.05). These data indicate that walking with BFR increases the magnitude of EPOC. Moreover, they also demonstrate that such increment in EPOC is likely explained by the effects of BFR on walking relative intensity and cumulative O2 deficit.

  1. Respiratory water loss and oxygen consumption in newborn infants during phototherapy. (United States)

    Kjartansson, S; Hammarlund, K; Riesenfeld, T; Sedin, G


    Respiratory water loss was measured together with oxygen consumption (VO2) and carbon dioxide production (VCO2) in 11 full-term and eight preterm infants (mean gestational age 34 weeks, range 31-36 weeks) before and during 1 h of phototherapy. The method for determination of respiratory water loss, VO2 and VCO2 was based on an open flow-through system with a mass spectrometer for measurement of gas concentrations. All infants were studied naked in an incubator with an ambient relative humidity of 50% and with a controlled environment with respect to temperature and air velocity. The infants were calm during the measurements. Before phototherapy, in term infants respiratory water loss was 4.4 (SD 0.7) mg/kg min and VO2 5.9 (0.9) ml/kg min and in preterm infants respiratory water loss was 4.7 (0.8) mg/kg min and VO2 6.1 (0.8) ml/kg min. No significant difference was found between values obtained during or after 1 h of phototherapy and those obtained before.

  2. Comparison of a kayaking ergometer protocol with an arm crank protocol for evaluating peak oxygen consumption. (United States)

    Forbes, Scott C; Chilibeck, Philip D


    The purpose of this study was to compare a kayak ergometer protocol with an arm crank protocol for determining peak oxygen consumption (V(.-)O2). On separate days in random order, 10 men and 5 women (16-24 years old) with kayaking experience completed the kayak ergometer protocol and a standardized arm crank protocol. The kayak protocol began at 70 strokes per minute and increased by 10 strokes per minute every 2 minutes until volitional fatigue. The arm crank protocol consisted of a crank rate of 70 revolutions per minute, initial loading of 35 W and subsequent increases of 35 W every 2 minutes until volitional fatigue. The results showed a significant difference (p kayak ergometer and the arm crank protocols for relative peak V(.-)O2 (47.5 +/- 3.9 ml x kg(-1) x min(-1) vs. 44.2 +/- 6.2 ml x kg(-1) x min(-1)) and absolute peak V(.-)O2 (3.38 L x min(-1) +/- 0.53 vs. 3.14 +/- 0.64 L x min(-1)). The correlation between kayak and arm crank protocol was 0.79 and 0.90, for relative and absolute V(.-)O2 peak, respectively (both p kayak ergometer may be due to the greater muscle mass involved compared to the arm crank ergometer. The kayak ergometer protocol may therefore be more specific to the sport of kayaking than an arm crank protocol.

  3. [Diazepam (valium). Changes in haemodynamics, myocardial oxygen consumption and vascular tone (author's transl)]. (United States)

    Hempelmann, G; Seitz, W; Piepenbrock, S


    In 30 patients with congenital or acquired heart disease the haemodynamic effects of diazepam (Valium) 0.3 mg/kg were investigated during surgical procedures under neuroleptanalgesia. The following parameters were measured or calculated: Heart rate (HR), arterial pressure (-Part, Psyst, Pdiast), pulmonary artery pressure (-PAP), right (-PRA) and left atrial pressure (-PLA), left ventricular pressure (PLV), left ventricular enddiastolic pressure (PLVED), left ventricular peak dp/dt (dp/dtmax), cardiac output (CO), cardiac index (CI), stroke volume (SV), stroke index (SI), total systemic resistance (TSR), total pulmonary resistance (TPR), work index of the right (RVWI) and left ventricle (LVWI). In comparison with a control group (n = 36) diazepam caused a decrease in arterial pressure cardiac index, stroke index, right and left atrial pressure and dp/dtmax. This, however, was mainly attributable to vasodilatation and not to a negative inotropic effect, which is of only minor importance with diazepam. These haemodynamic changes resulted in a reduction in myocardial oxygen consumption. Diazepam is a valuable drug in neuroleptanalgesia, when an increase in blood pressure can not be controlled by fentanyl or droperidol.

  4. Effect of temperature on toxicity of deltamethrin and oxygen consumption by Porcellio scaber Latr (Isopoda). (United States)

    Unkiewicz-Winiarczyk, Aneta; Gromysz-Kałkowska, Kazimiera


    This study describes the toxicity of deltamethrin, in relation to its LD50 value, as well as variation in respiratory metabolism of the isopod species Porcellio scaber Latr kept at 3 temperature values (10, 22 and 30ºC). The low LD50 values obtained indicate that deltamethrin is a highly toxic pyrethroid for the crustacean tested, particularly at 10ºC. We also observed that, in all the 3 experimental temperatures, the deltamethrin toxicity was lower in females than in males. Particularly distinct differences between both sexes were visible at 10 and 30ºC, i.e. temperatures that are too low and too high for the species studied. Oxygen uptake measurement showed an increase in respiratory metabolism directly after intoxication. The most substantial increase, 64% in males and 80% in females, was observed at the temperature 10ºC, whereas at the other temperatures, it did not exceed 20%. During the successive experimental days, the respiratory consumption in P. scaber had a tendency to decrease, which was more visible at 10 and 30ºC, compared to the optimal temperature 22ºC.

  5. Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Gersing, Alexandra S.; Schwaiger, Benedikt J. [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); University of California, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Ankenbrank, Monika; Toth, Vivien; Bauer, Jan S.; Zimmer, Claus [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Janssen, Insa [Technical University Munich, Department of Neurosurgery, Munich (Germany); Kooijman, Hendrik [Philips Healthcare, Hamburg (Germany); Wunderlich, Silke [Technical University Munich, Department of Neurology, Munich (Germany); Preibisch, Christine [Technical University Munich, Klinikum rechts der Isar, Department of Neuroradiology, Munich (Germany); Technical University Munich, Department of Neurology, Munich (Germany)


    MR-derived cerebral metabolic rate of oxygen utilization (CMRO{sub 2}) has been suggested to be analogous to PET-derived CMRO{sub 2} and therefore may be used for detection of viable tissue at risk for infarction. The purpose of this study was to evaluate MR-derived CMRO{sub 2} mapping in acute ischemic stroke in relation to established diffusion- and perfusion-weighted imaging. In 23 patients (mean age 63 ± 18.7 years, 11 women) with imaging findings for acute ischemic stroke, relative oxygen extraction fraction was calculated from quantitative transverse relaxation times (T2, T2*) and relative cerebral blood volume using a quantitative blood oxygenation level dependent (BOLD) approach in order to detect a local increase of deoxyhemoglobin. Relative CMRO{sub 2} (rCMRO{sub 2}) maps were calculated by multiplying relative oxygen extraction fraction (rOEF) by cerebral blood flow, derived from PWI. After co-registration, rCMRO{sub 2} maps were evaluated in comparison with apparent diffusion coefficient (ADC) and time-to-peak (TTP) maps. Mean rCMRO{sub 2} values in areas with diffusion-restriction or TTP/ADC mismatch were compared with rCMRO{sub 2} values in the contralateral tissue. In tissue with diffusion restriction, mean rCMRO{sub 2} values were significantly decreased compared to perfusion-impaired (17.9 [95 % confidence interval 10.3, 25.0] vs. 58.1 [95 % confidence interval 50.1, 70.3]; P < 0.001) and tissue in the contralateral hemisphere (68.2 [95 % confidence interval 61.4, 75.0]; P < 0.001). rCMRO{sub 2} in perfusion-impaired tissue showed no significant change compared to tissue in the contralateral hemisphere (58.1 [95 % confidence interval 50.1, 70.3] vs. 66.7 [95 % confidence interval 53.4, 73.4]; P = 0.34). MR-derived CMRO{sub 2} was decreased within diffusion-restricted tissue and stable within perfusion-impaired tissue, suggesting that this technique may be adequate to reveal different pathophysiological stages in acute stroke. (orig.)

  6. Cardiovascular determinants of maximal oxygen consumption in upright and supine posture at the end of prolonged bed rest in humans. (United States)

    Bringard, Aurélien; Pogliaghi, Silvia; Adami, Alessandra; De Roia, Gabriela; Lador, Frédéric; Lucini, Daniela; Pizzinelli, Paolo; Capelli, Carlo; Ferretti, Guido


    We tested the hypothesis that, after bed rest, maximal oxygen consumption ( VO₂max ) decreases more upright than supine, because of adequate cardiovascular response supine, but not upright. On 9 subjects, we determined VO₂max and maximal cardiac output (Q ) upright and supine, before and after (reambulation day upright, the following day supine) 35-day bed rest, by classical steady state protocol. Oxygen consumption, heart rate (f(H)) and stroke volume (Q(st)) were measured by a metabolic cart, electrocardiography and Modelflow from pulse pressure profiles, respectively. We computed Q as f(H) times Q(st), and systemic oxygen flow ( QaO₂) as Q. times arterial oxygen concentration, obtained after haemoglobin and arterial oxygen saturation measurements. Before bed rest, all parameters at maximal exercise were similar upright and supine. After bed rest, VO₂max was lower (pcardiovascular response (i) did not affect VO₂max supine, (ii) partially explained the VO₂max decrease upright, and (iii) caused the VO₂max differences between postures. We speculate that impaired peripheral oxygen transfer and/or utilisation may explain the VO₂max decrease supine and the fraction of VO₂max decrease upright unexplained by cardiovascular responses.

  7. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production (United States)

    Singla, Rohit; Chowdhury, Kanchan


    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  8. Acute and chronic effects of parathion and 2,4 D on the oxygen consumption of Chasmagnathus granulata (Decapoda, Brachyura). (United States)

    Rodríguez, E M; Monserrat, J M


    The effect of two pesticides widely used in Argentina on the oxygen consumption of the estuarine crab Chasmagnathus granulata was studied. Constant pressure respirometers were employed to estimate the rate of oxygen consumption per weight unit of animals treated previously with each pesticide, both acute (96 h) and chronically (15 and 30 days). Crabs exposed to parathion -an organophosphorate insecticide that causes the inhibition of acetylcholinesterase- show an increase of oxygen consumption at 0.5 ppm under acute exposure, and at 10 ppb under a chronic one. On the other hand, crabs exposed to 2,4 D (an herbicide) did not show changes in their consumption after an acute exposure, but those exposed chronically did show an increase at low concentration (5 ppm) followed by a relative decrease at the highest concentration (50 ppm). The results obtained for parathion are in accordance with the abnormal cholinergic excitation that it may exert on crustacean nervous system. The effect of 2,4 D was consistent with its uncoupler action at respiratory chain level, at low concentrations, while a possible Krebs cycle enzymes inhibition might be occurring at higher concentrations of that pesticide, as in other crustacean species. The faster action of parathion, respect to 2,4 D, is explained by its neurotoxic nature.

  9. Temperature induced variation in oxygen consumption of juvenile and adult stage of the dog conch Laevistrombus canarium (Linnaeus 1758) (United States)

    Hassan, Wan Nurul Husna Wan; Amin, S. M. Nurul; Ghaffar, Mazlan Abd; Cob, Zaidi Che


    Laevistrombus canarium Linnaeus, 1758 is one of the important edible sea snail within the western Johor Straits, Malaysia. In this study, the impact of temperature on oxygen consumption (MO2) of L. canarium based on their ontogenetic changes (juvenile and adult) was measured in the laboratory condition at 22.0, 26.0, 30.0 and 34.0°C. Measurement of MO2 were taken every 1 s for 60 min on 4.20 - 34.00 g dog conch using respirometry chamber. All experiments were carried out in static conditions in five replicates with one snail per chambers. The results of oxygen consumption showed that juvenile dog conch respired at the rate of 0.163 ml h-1 and adult respired at the rate of 0.119 ml h-1. Consequently, the oxygen consumption in juvenile and adult dog conch was expressed as a total energy spends. The results indicates that total energy spend for oxygen consumed (ml h-1) of L. canarium at different temperature regimes (22.0 to 34.0°C) slightly increased over time period (0.63 ± 0.12 to 3.24 ± 0.05 J h-1) respectively. This finding of the present study suggested L. canarium is well adapted for life in high temperature environment.

  10. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements. (United States)

    Nelson, J A


    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included.

  11. Relationship of efficiency indices with performance, heart rate, oxygen consumption, blood parameters, and estimated heat production in Nellore steers. (United States)

    Chaves, A S; Nascimento, M L; Tullio, R R; Rosa, A N; Alencar, M M; Lanna, D P


    The objective of this study was to examine the relationship of efficiency indices with performance, heart rate, oxygen consumption, blood parameters, and estimated heat production (EHP) in Nellore steers. Eighteen steers were individually lot-fed diets of 2.7 Mcal ME/kg DM for 84 d. Estimated heat production was determined using oxygen pulse (OP) methodology, in which heart rate (HR) was monitored for 4 consecutive days. Oxygen pulse was obtained by simultaneously measuring HR and oxygen consumption during a 10- to 15-min period. Efficiency traits studied were feed efficiency (G:F) and residual feed intake (RFI) obtained by regression of DMI in relation to ADG and midtest metabolic BW (RFI). Alternatively, RFI was also obtained based on equations reported by the NRC's to estimate individual requirement and DMI (RFI calculated by the NRC [1996] equation [RFI]). The slope of the regression equation and its significance was used to evaluate the effect of efficiency indices (RFI, RFI, or G:F) on the traits studied. A mixed model was used considering RFI, RFI, or G:F and pen type as fixed effects and initial age as a covariate. For HR and EHP variables, day was included as a random effect. There was no relationship between efficiency indices and back fat depth measured by ultrasound or daily HR and EHP ( > 0.05). Because G:F is obtained in relation to BW, the slope of G:F was positive and significant ( consumption per beat was not related to G:F; however, it was lower for RFI- and RFI-efficient steers, and consequently, oxygen volume (mL·min·kg) and OP (μL O·beat·kg) were also lower ( 0.05); however, G:F-efficient steers showed lower hematocrit and hemoglobin concentrations ( consumption and OP were detected, indicating that the OP methodology may be useful to predict growth efficiency.

  12. The preliminary study of Ultraviolet-Irradiated and Oxygenated Blood Transfusion Therapy(UOBT) for Experimental Cerebral Infarction of Animal Brain Model

    Institute of Scientific and Technical Information of China (English)

    Su Xiu-Chu; Feng You-Qi; Zhou gang; Wu jun-yi


    In this presented study, we have developed a photochemical model of cerebral in farction in rabbit with stable and reproducible infarct size and extent. This model is similar to the pathological changes in human cerebral infarction. Using this model, therapeutic effects and mechanisms of UOBT on brain ischemic injury were invetigated in rabbits following the photochemical infarcnon The results showed that UOBT could significantly reduce the mtarcted size, and improve the cerebral blood flow compared with the control animals treated with non-u-radiated ad non-oxygenated blood transfusion. These data suggest that the UOBT may have a therapeutic potential for clinical rehabilitation effect in stroke treatment

  13. Oxygen supply to the fetal cerebral circulation in hypoplastic left heart syndrome: a simulation study based on the theoretical models of fetal circulation. (United States)

    Sakazaki, Sayaka; Masutani, Satoshi; Sugimoto, Masaya; Tamura, Masanori; Kuwata, Seiko; Kurishima, Clara; Saiki, Hirofumi; Iwamoto, Yoichi; Ishido, Hirotaka; Senzaki, Hideaki


    Hypoxia due to congenital heart diseases (CHDs) adversely affects brain development during the fetal period. Head circumference at birth is closely associated with neuropsychiatric development, and it is considerably smaller in newborns with hypoplastic left heart syndrome (HLHS) than in normal newborns. We performed simulation studies on newborns with CHD to evaluate the cerebral circulation during the fetal period. The oxygen saturation of cerebral blood flow in newborns with CHD was simulated according to a model for normal fetal circulation in late pregnancy. We compared the oxygen saturation of cerebral blood flow between newborns with tricuspid atresia (TA; a disease showing univentricular circulation and hypoplasia of the right ventricle), those with transposition of the great arteries (TGA; a disease showing abnormal mixing of arterial and venous blood), and those with HLHS. The oxygen saturation of cerebral blood flow in newborns with normal circulation was 75.7 %, whereas it was low (49.5 %) in both newborns with HLHS and those with TA. Although the oxygen level is affected by the blood flow through the foramen ovale, the oxygen saturation in newborns with TGA was even lower (43.2 %). These data, together with previous reports, suggest that the cerebral blood flow rate is decreased in newborns with HLHS, and the main cause was strongly suspected to be retrograde cerebral perfusion through a patent ductus arteriosus. This study provides important information about the neurodevelopmental prognosis of newborns with HLHS and suggests the need to identify strategies to resolve this unfavorable cerebral circulatory state in utero.

  14. Effects of tetramethylpyrazine on serum S100β protein, neuron specific enolase, superoxdie dismutase and malondialdehyde content and cerebral oxygen supply-consumption balance and energy metabolism in patients during supratentorial tumor resection%川芎嗪对幕上肿瘤切除术患者血清S100β蛋白、神经元特异性烯醇化酶、超氧化物歧化酶、丙二醇含量及氧供需与能量代谢的影响

    Institute of Scientific and Technical Information of China (English)

    李凤仙; 徐世元; 皇甫秀萍; 张庆国; 许睿; 雷洪伊


    Objective To evaluate the effects of intraoperative tetramethylpyrazine infusion on serum S100β protein (S100β),neuron-specific enolase (NSE),superoxdie dismutase (SOD) and malondialdehyde (MDA) content and cerebral oxygen supply-consumption balance and energy metabolism in patients during supratentorial tumor resection.Methods Twenty-four patients undergone supratentorial tumor resection,ASA Ⅰ-Ⅱ degree,age 18-65,were randomly divided into control group (Group A,n=12) and the TMP group (Group B,n=12).Group B received 0.9% sodium chloride 250 ml contained tetramethylpyrazine 80 mg in 20 min when the dural open,while group A was given the same amount of 0.9% sodium chloride.Blood samples were taken from artery and jugular venous bulb simultaneously before induction of anesthesia (T1),after intubation(T2),opening dura instantly (T3),1 h after opening dura (T4),at the closure of dura (T5),and 24 h after operation (T6),for analyzing the blood-gas and calculating the content of artery blood oxygen,saturation of internal jugular venous bulb blood oxygen,content of internal jugular venous bulb blood oxygen,content of artery-internal differences in oxygen and cerebral extraction ratio oxygen.Glucose extraction ratio,cerebral lactate acid extraction rate,lactate oxygen index.Concentration of internal jugular venous bulb serum S100β,NSE,SOD,MDA.The data of mean artery pressure,heart rate,hematocrit and hemoglobin were recorded at the same time intervals.Results ① Compared with T1 [ (36±5)%,(35±5)%] the cerebral extraction ratio oxygen in both groups were significant decrease at T2 [(24±6)%,(25±5)%],but increased at T6 [(42±5)%,(41±6)% ](P<0.05).There were no differences between group A and B at each time intervals.② Compared with T1 [ (6.0±1.0)vol%,(6.4±1.1)vol% ],there were significant decrease at T2 [ (4.2±1.1)vol%,(4.5±1.0)vol% ] for the internal jugular venous bulb blood oxygen in both groups,and also at T5 (5.3±0.8)vol


    Institute of Scientific and Technical Information of China (English)



    Objective:To determine the effect of hyperbaric oxygenation(HBO) on treating acute cerebral infarction(ACI). Methods: We randomly divided 60 patients with acute cerebral infarction into the treatment group and the control group. Hyperbaric oxygenation treatment was applied in the treatment group as routine drug therapy was used. The neurological function, living ability, clinical therapeutic effectiveness and hemorrheology changes of pa tients in the two groups before and after treatment were observed and evaluated. Results: The indexes of treatment were obviously improved one month after treatment (P < 0.05 ). Clinical effective rate was 93.3 % in this group,which was obviously higher than that of the control group(P < 0.05). Conclusion: Hyperbaric oxygenation can accelerate the recovery of neurological function of patients with acute cerebral infarction.

  16. Effect of hypertensive reperfusion on the changes between cerebral oxygen delivery and uptake after cardiac arrest and resuscitation in dogs

    Institute of Scientific and Technical Information of China (English)

    杜权; 马永达; 葛衡江; 刘怀琼; 李阳


    Objective: To study the changes between cerebral oxygen (O2) delivery and uptake in dogs resuscitated under normotension or hypertension for 4 h. Methods: The model of ventricular fibrillation of 8 min in 12 dogs was made,followed by open cardiopulmonary resuscitation, reperfnsion with normal or high mean arterial pressure (MAP), and controlled ventilation to 4 h. Animals were randomly assigned into Group NT (normotensive reperfusion, n = 6) and Group HT(hypertensive reperfusion, n = 6). Cerebral arteriovenous (sagittal sinus) O2 content difference (Ca-ssO2) and venous(sagittal sinus) PO2(PssO2) were determined before cardiac arrest (CA) and 30, 60, 120, and 240 min after CA. Results: In Group NT, Ca-ssO2 was lower at 30 min ( P < 0.05) but higher at 240 min ( P < 0.01 ) after CA than that before CA. In Group HT, Ca-ssO2 was not significantly different from that in Group NT before CA but was lower than that in Group NT at 30 min after CA ( P < 0.01 ). Ca-ssO2 was not significantly different in Group NT and HT thereafter. In both groups,PssO2 was both higher at 30 min after reperfnsion ( P < 0.01 ) and at 240 min after reperfnsion lower ( P < 0.05) than those before CA .At 30 min after reperfusion, PssO2 was higher (P<0.01) in Group HT than that in Group NT, with insignificant difference between two groups. Conclusion: Cerebral O2 delivery and uptake are mismatched after CA and resuscitation. Hypertensive reperfusion improves oxygen delivery to the brain early after CA.

  17. Hyperbaric oxygen in the treatment of hypertension- induced cerebral hemorrhage on 34 cases%高血压脑出血术后高压氧治疗34例

    Institute of Scientific and Technical Information of China (English)

    程晋成; 沈月萍; 王水平; 吴杨


    @@ INTRODUCTION In this study,we investigated effect of hyperbaric oxygen(HBO) on the hypertension- induced basio- cerebral hemorrhage.The affected patients often showed signs of cerebral circulation disorder,spasm of vessels,insufficiency of cerebral blood supply and intracranial hypertension.

  18. Effects of Ag nanoparticles on survival and oxygen consumption of zebra fish embryos, Danio rerio. (United States)

    Cowart, Dominique A; Guida, Stephanie M; Shah, S Ismat; Marsh, Adam G


    Ultrafine silver (Ag) particles, defined as having one dimension in 1-100 nanometer (nm) size range, pose a unique threat to aquatic ecosystems due to their wide use in the healthcare and commercial industries. Previous studies have demonstrated some consequences of nanosilver exposure for earlier life stages of aquatic organisms, but few focus on the effects on metabolic processes such as oxygen consumption. Additionally, few authors have tackled the issue of how size, shape and composition of nanosilver particles are important in determining their level of bioactivity and biodistribution in the aquatic environment. In this study, embryos of the zebra fish, Danio rerio, (n = 2373) were exposed to varying concentrations of two Ag particle sizes, 12 and 21 nm, at time points 24 and 48 h after fertilization. The 12 nm particles were found to be more bioactive with a lethal dose 50 (LD(50)) concentration of 15.8 μg/mL compared to 50.1 μg/mL for 21 nm particles. The effective dose level (ED) was measured as 12.6 μg/mL for the 12 nm particles and 5.0 μg/mL for the 21 nm particles. Using survival curves, we found that in terms of number of particles in suspension, 21 nm particles have a greater impact on survival than 12 nm particles. Our measured respiration rates for 24 and 48 h embryos (n = 528) exposed to 0 0.02-0.14 mg/mL Ag showed no active upregulation of an energetically expensive detoxification pathway at this early point in development. Results from this study illustrate that advancements in the development of environmentally friendly nanoparticles can only occur if there is continued research to identify the most bioactive characteristics of these metallic particles.

  19. A program of moderate physical training for Wistar rats based on maximal oxygen consumption. (United States)

    Leandro, Carol Góis; Levada, Adriana Cristina; Hirabara, Sandro Massao; Manhães-de-Castro, Raul; De-Castro, Célia Barbosa; Curi, Rui; Pithon-Curi, Tânia Cristina


    Moderate physical training is often associated with improved cardiorespiratory fitness in athletes and the general population. In animals, studies are designed to investigate basic physiology that could be invasive and uncomfortable for humans. The standardization of an exercise training protocol for rats based on maximal consumption of oxygen (VO(2)max) is needed. This study validated a program of moderate physical training for Wistar rats based on VO(2)max determined once a week. A 10-stage treadmill running test was developed to measure VO(2)max through an indirect, open circuit calorimeter. Thirty male Wistar rats (210-226 g) were randomly assigned to either a nontrained group or a trained group. The animals were evaluated weekly to follow their VO(2)max during 8 weeks of moderate training and to adjust the intensity of the protocol of training. The soleus muscle was removed for determination of citrate synthase activity. Trained animals maintained their values of VO(2)max during a moderate running training and showed a significant less body weight gain. An increase of 42% in citrate synthase activity of the soleus muscle from trained rats was found after the training program. Our study presents a protocol of moderate physical training for Wistar rats based on VO(2)max. Peripheral adaptations such as the values of citrate synthase activity also responded to the moderate training program imposed as observed for VO(2)max. Other studies can use our protocol of moderate training to study the physiologic adaptations underlying this specific intensity of training. It will provide support for study with humans.

  20. RSI: oxygen consumption, blood flow, and reoxygenation in patients suffering RSI measured by noninvasive optical spectroscopy (United States)

    Thijssen, Dick H. J.; van Uden, Caro J. T.; Krijgsman, Hans; Colier, Willy N. J. M.


    Background: Repetitive Strain Injury (RSI) is a major problem in nowadays health care and creates high financial costs and personal distress. Average prevalence rates in the Netherlands vary from 20-40% of the working population. Insight into the patho-physiological mechanism of RSI is important in order to establish adequate treatment and prevention programs. Objective: The aim of this study was to gain insight in muscle oxygen consumption (mVO2), blood flow (BF), and reoxygenation (ReOx) in the forearm of computer workers with stage III Repetitive Strain Injury (RSI). Method: We have used continuous wave infrared spectroscopy (NIRS) to measure these variables. Measurements were conducted on the extensor and flexor muscle in both arms as well in RSI-patients (n=10) as in control subjects (n=21). A protocol of increased isometric repetitive contraction in a handgrip ergonometer was used with increasing levels of strength. Results: mVO2 in the extensor muscle in RSI-subjects (dominant side) was increased compared to control subjects and compared to the non-dominant side (pmuscle). However, there was a tendency towards statistical significance (p=0.065). BF in rest was equal in both groups, however after exercise it tended to be increased. Half-time recovery (T ») was measured during only one part of the protocol and it was significantly increased (p<0.05). Conclusion: mVO2 in RSI is impaired. BF and ReOx did not show difference between both groups. Future research should aim at a microvascular dysfunction in RSI.

  1. Oxygen consumption and ammonia-N excretion of Meretrix meretrix in different temperature and salinity

    Institute of Scientific and Technical Information of China (English)


    Effects of temperatures and salinities on oxygen consumption and ammonia-N excretion rate of clam Meretrix meretrix were studied in laboratory from Oct. 2003 to Jan. 2004. Two schemes were designed in incremented temperature at 10, 15, 20, 25℃ at 31.5 salinity and in incremented salinity at l6.0, 21.0, 26.0, 31.5,36.0, and 41.0 at 20℃, all for 8-10 days. From 10 to 25℃, both respiration and excretion rate were increased.One-way ANOVA analysis demonstrated significant difference (P<0.01) in physiological parameters in this temperature range except between 15 and 20℃. The highest Q10 thermal coefficient value (12.27) was acquired between 10 and 15℃, and about 1 between 15 and 20℃, indicating M. meretrix could well acclimate to temperature changes in this range. Salinity also had significant effects on respiration and excretion rate (P<0.05).The highest values of respiration and excretion rate of M. meretrix were recorded at 16.0 salinity (20℃). These two physiological parameters decreased as salinity increased until reached the minimum Q10 value at 31.5 (20℃),then again, these parameters increased with increasing salinity from 31.5 to 41.0. M. meretrix can catabolize body protein to cope with osmotic pressure stress when environmental salinity is away from its optimal range.No significant difference was observed between 26.0 and 36.0 in salinity (P>0.05), suggesting that a best metabolic salinity range for this species is between 26.0 and 36.0.

  2. Islet Oxygen Consumption Rate (OCR Dose Predicts Insulin Independence in Clinical Islet Autotransplantation.

    Directory of Open Access Journals (Sweden)

    Klearchos K Papas

    Full Text Available Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR in predicting clinical islet autotransplant (IAT insulin independence (II. IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity.Membrane integrity staining (FDA/PI, OCR normalized to DNA (OCR/DNA, islet equivalent (IE and OCR (viable IE normalized to recipient body weight (IE dose and OCR dose, and OCR/DNA normalized to islet size index (ISI were used to characterize autoislet preparations (n = 35. Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis.Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001. These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC = 0.94 for IE dose and 0.96 for OCR dose. FDA/PI (AUC = 0.49 and OCR/DNA (AUC = 0.58 did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72.Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.

  3. Effects of Acute Bleeding Followed by Hydroxyethyl Starch 130/0.4 or a Crystalloid on Propofol Concentrations, Cerebral Oxygenation, and Electroencephalographic and Haemodynamic Variables in Pigs

    Directory of Open Access Journals (Sweden)

    Aura Silva


    Full Text Available Bleeding changes the haemodynamics, compromising organ perfusion. In this study, the effects of bleeding followed by replacement with hydroxyethyl starch 130/0.4 (HES or lactated Ringer’s (LR on cerebral oxygenation and electroencephalogram-derived parameters were investigated. Twelve young pigs under propofol-remifentanil anaesthesia were bled 30 mL/kg and, after a 20-minute waiting period, volume replacement was performed with HES (GHES; N=6 or LR (GRL; N=6. Bleeding caused a decrease of more than 50% in mean arterial pressure (P<0.01 and a decrease in cerebral oximetry (P=0.039, bispectral index, and electroencephalogram total power (P=0.04 and P<0.01, resp., while propofol plasma concentrations increased (P<0.01. Both solutions restored the haemodynamics and cerebral oxygenation similarly and were accompanied by an increase in electroencephalogram total power. No differences between groups were found. However, one hour after the end of the volume replacement, the cardiac output (P=0.03 and the cerebral oxygenation (P=0.008 decreased in the GLR and were significantly lower than in GHES (P=0.02. Volume replacement with HES 130/0.4 was capable of maintaining the cardiac output and cerebral oxygenation during a longer period than LR and caused a decrease in the propofol plasma concentrations.

  4. Effects of Acute Bleeding Followed by Hydroxyethyl Starch 130/0.4 or a Crystalloid on Propofol Concentrations, Cerebral Oxygenation, and Electroencephalographic and Haemodynamic Variables in Pigs (United States)

    Venâncio, Carlos; Souza, Almir P.; Ferreira, Luísa Maria; Branco, Paula Sério; de Pinho, Paula Guedes; Amorim, Pedro; Ferreira, David A.


    Bleeding changes the haemodynamics, compromising organ perfusion. In this study, the effects of bleeding followed by replacement with hydroxyethyl starch 130/0.4 (HES) or lactated Ringer's (LR) on cerebral oxygenation and electroencephalogram-derived parameters were investigated. Twelve young pigs under propofol-remifentanil anaesthesia were bled 30 mL/kg and, after a 20-minute waiting period, volume replacement was performed with HES (GHES; N = 6) or LR (GRL; N = 6). Bleeding caused a decrease of more than 50% in mean arterial pressure (P < 0.01) and a decrease in cerebral oximetry (P = 0.039), bispectral index, and electroencephalogram total power (P = 0.04 and P < 0.01, resp.), while propofol plasma concentrations increased (P < 0.01). Both solutions restored the haemodynamics and cerebral oxygenation similarly and were accompanied by an increase in electroencephalogram total power. No differences between groups were found. However, one hour after the end of the volume replacement, the cardiac output (P = 0.03) and the cerebral oxygenation (P = 0.008) decreased in the GLR and were significantly lower than in GHES (P = 0.02). Volume replacement with HES 130/0.4 was capable of maintaining the cardiac output and cerebral oxygenation during a longer period than LR and caused a decrease in the propofol plasma concentrations. PMID:24971192

  5. Near-infrared spectroscopy determined cerebral oxygenation with eliminated skin blood flow in young males

    DEFF Research Database (Denmark)

    Hirasawa, Ai; Kaneko, Takahito; Tanaka, Naoki;


    was applied to the temporal artery, estimated O2Hb was not affected by elimination of SkBF during handgrip exercise (P = 0.666) or the cognitive task (P = 0.105). These findings suggest that the algorithm with the individual correction factor allows for evaluation of changes in an accurate cerebral...

  6. Prediction method for the volume of the excess post-exercise oxygen consumption (EPOC) following supramaximal exercise. (United States)

    Stefanova, D


    Short (up to 60 s) supramaximal (about 400 W on the average) exercise is accompanied by specific biochemical processes in the working muscles and by a general increase in energy metabolism. Outwardly, this is manifested by an excess post-exercise oxygen consumption (EPOC). Since its actual measurement is time consuming and associated sometimes with difficulties, we propose a fixed 3-min test for EPOC prediction. The measured volumes of oxygen consumption are related to the corresponding periods in a coordinate system as reciprocal values. The linear equation, whose parameters were calculated by the method of least squares or were determined graphically, provided for prediction of the EPOC volume with satisfactory accuracy and precision. The obtained increase of the predicted values over the actually measured values was below 5%, and the correlation coefficient r = 0.98. Other parameters of the recovery process were also calculated, such as tau (half-time) of EPOC and the rate constant k.

  7. Oxygen consumption by oak chips in a model wine solution; Influence of the botanical origin, toast level and ellagitannin content. (United States)

    Navarro, María; Kontoudakis, Nikolaos; Giordanengo, Thomas; Gómez-Alonso, Sergio; García-Romero, Esteban; Fort, Francesca; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Zamora, Fernando


    The botanical origin, toast level and ellagitannin content of oak chips in a model wine solution have been studied in terms of their influence on oxygen consumption. French oak chips released significantly higher amounts of ellagitannins than American oak chips at any toast level. The release of ellagitannins by oak chips decreased as the toast level increased in the French oak but this trend was not so clear in American oak. Oxygen consumption rate was clearly related to the level of released ellagitannins. Therefore, oak chips should be chosen for their potential to release ellagitannins release should be considered, not only because they can have a direct impact on the flavor and body of the wine, but also because they can protect against oxidation.

  8. Effect of Azoxystrobin on Oxygen Consumption and cyt b Gene Expression of Colletotrichum capsici from Chilli Fruits

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu; JIN Li-hua; ZHOU Ming-guo


    Azoxystrobin acts as an inhibitor of electron transport by binding to the Qo center of cytochrome b (cyt b).Resistance to azoxystrobin was usually caused by the point mutation of cyt b gene or by the induction of alternative respiration.Oxygen consumption test for mycelia of Colletotrichura capsici showed that azoxystrobin inhibited mycelial respiration within 12 h; however,as time went on,the respiration of the mycelia recovered when the mycelia were treated with azoxystrobin and salicylhydroxamic acid (SHAM,a known inhibitor of alternative respiration),and the oxygen consumption of the mycelia could not be inhibited.Meanwhile,cytochrome b (cyt b) gene expression increased with the recovery of myeelial respiration.The increased cyt b gene expression might play a role in the development of resistance to azoxystrobin in C.capsici.

  9. Elevated global cerebral blood flow, oxygen extraction fraction and unchanged metabolic rate of oxygen in young adults with end-stage renal disease: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Gang; Lou, Yaxian; Pan, Zhiying; Liu, Ya [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Nanjing University of Aeronautics and Astronautics, College of Aivil Aviation, Nanjing, Jiangsu (China); Wen, Jiqiu; Li, Xue; Zhang, Zhe [Medical School of Nanjing University, National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, Jiangsu (China); Lu, Hanzhang [University of Texas Southwestern Medical Center, Advanced Imaging Research Center, Dallas, TX (United States); Liu, Wei [Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Guangdong (China); Liu, Hui [Siemens MR NEA Collaboration, Siemens Ltd., Shanghai (China); Chen, Huijuan; Kong, Xiang; Luo, Song; Jiang, Xiaolu; Zhang, Zongjun; Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China)


    To noninvasively assess global cerebral blood flow (CBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) in young adults with end-stage renal disease (ESRD). Thirty-six patients and 38 healthy volunteers were included and took part in MR examinations, blood and neuropsychological tests. CBF and OEF were measured by phase-contrast and T2-relaxation-under-spin-tagging MRI techniques, respectively. CMRO{sub 2} was computed from CBF, OEF and hematocrit according to Fick's principle. Correlations were performed between MR measurements, blood biochemistry measurements and neuropsychological test scores. Compared with controls, ESRD patients had elevated CBF (72.9 ± 12.5 vs. 63.8 ± 8.5 ml min{sup -1} 100 g{sup -1}, P < 0.001), elevated OEF (47.2 ± 10.2 vs. 35.8 ± 5.4 %, P < 0.001), but unaffected CMRO{sub 2} (199.5 ± 36.4 vs. 193.8 ± 28.6 μmol O{sub 2} min{sup -1} 100 g{sup -1}, P = 0.879). Hematocrit negatively correlated with CBF (r = -0.640, P < 0.001) and OEF (r = -0.701, P < 0.001), but not with CMRO{sub 2}. Altered neuropsychological test scores of ESRD patients were associated with OEF and CBF, but not with CMRO{sub 2}. There were weak relationships between eGFR and hematocrit (r = 0.308, P = 0.068) or CBF (r = 0.318, P = 0.059). Our findings suggested that anaemic young adults with ESRD may afford higher CBF and OEF to maintain a normal CMRO{sub 2}. Despite this compensatory process, however, cognitive function was still impaired and its severity was correlated with their CBF and OEF abnormality. (orig.)

  10. PTP1B regulates non-mitochondrial oxygen consumption via RNF213 to promote tumour survival during hypoxia (United States)

    Banh, Robert S.; Cojocari, Dan; Rahman, Anas Abdel; Pawling, Judy; Zhang, Wei; Sinha, Ankit; Rose, Christopher M.; Isasa, Marta; Zhang, Shuang; Wu, Ronald; Virtanen, Carl; Hitomi, Toshiaki; Habu, Toshiyuki; Sidhu, Sachdev S.; Koizumi, Akio; Wilkins, Sarah E.; Kislinger, Thomas; Gygi, Steven P.; Schofield, Christopher J.; Dennis, James W.; Wouters, Bradly G.; Neel, Benjamin G.


    Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-Tyrosine Phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, though the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2+ xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2+ BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The Moyamoya disease gene product RNF213 , an E3 ligase, is negatively regulated by PTP1B in HER2+ BC cells. RNF213 knockdown reverses the effects of PTP1B-deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2+ BC cells, and partially restores tumourigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2+ BC, and possibly other malignancies, in the hypoxic tumour microenvironment. PMID:27323329

  11. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming. (United States)

    Lee, C G; Farrell, A P; Lotto, A; Hinch, S G; Healey, M C


    The present study measured the excess post-exercise oxygen cost (EPOC) following tests at critical swimming speed (Ucrit) in three stocks of adult, wild, Pacific salmon (Oncorhynchus sp.) and used EPOC to estimate the time required to return to their routine level of oxygen consumption (recovery time) and the total oxygen cost of swimming to Ucrit. Following exhaustion at Ucrit, recovery time was 42-78 min, depending upon the fish stock. The recovery times are several-fold shorter than previously reported for juvenile, hatchery-raised salmonids. EPOC varied fivefold among the fish stocks, being greatest for Gates Creek sockeye salmon (O. nerka), which was the salmon stock that had the longest in-river migration, experienced the warmest temperature and achieved the highest maximum oxygen consumption compared with the other salmon stocks that were studied. EPOC was related to Ucrit, which in turn was directly influenced by ambient test temperature. The non-aerobic cost of swimming to Ucrit was estimated to add an additional 21.4-50.5% to the oxygen consumption measured at Ucrit. While these non-aerobic contributions to swimming did not affect the minimum cost of transport, they were up to three times higher than the value used previously for an energetic model of salmon migration in the Fraser River, BC, Canada. As such, the underestimate of non-aerobic swimming costs may require a reevaluation of the importance of how in-river barriers like rapids and bypass facilities at dams, and year-to-year changes in river flows and temperatures, affect energy use and hence migration success.

  12. Transfer and consumption of oxygen during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens in an airlift bioreactor. (United States)

    Rossi, Márcio José; Nascimento, Francisco Xavier; Giachini, Admir José; Oliveira, Vetúria Lopes; Furigo, Agenor


    The study had the objective of examining the aspects involved in the cultivation of ectomycorrhizal fungi for the production of commercially sustainable inoculant to attend the demands of the seedling nursery industry. It focused on certain parameters, such as the oxygen consumption levels, during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens CBMAI 1472, which was performed in a 5-L airlift bioreactor. The dynamic method was employed to determine the volumetric coefficient for the oxygen transfer (k L a) and the specific oxygen uptake rate (Q O2 ). The results indicate that specific growth rates (μ X ) and oxygen consumption decline rapidly with time, affected mainly by increases in biomass concentration (X). Increases in X are obtained primarily by increases in the size of pellets that are formed, altering, consequently, the cultivation dynamics. This is the result of natural increases in transferring resistance that are observed in these environments. Therefore, to avoid critical conditions that affect viability and the productivity of the process, particular settings are discussed.

  13. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaCO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Murkin, J.M.; Farrar, J.K.; Tweed, W.A.; McKenzie, F.N.; Guiraudon, G.


    Measurement of /sup 133/Xe clearance and effluent cerebral venous blood sampling were used in 38 patients to determine the effects of cardiopulmonary bypass, and of maintaining temperature corrected or noncorrected PaCO/sub 2/ at 40 mm Hg on regulation of cerebral blood flow (CBF) and flow/metabolism coupling. After induction of anesthesia with diazepam and fentanyl, mean CBF was 25 ml X 100 g-1 X min-1 and cerebral oxygen consumption, 1.67 ml X 100 g-1 X min-1. Cerebral oxygen consumption during nonpulsatile cardiopulmonary bypass at 26 degrees C was reduced to 0.42 ml X 100 g-1 X min-1 in both groups. CBF was reduced to 14-15 ml X 100 g-1 X min-1 in the non-temperature-corrected group (n = 21), was independent of cerebral perfusion pressure over the range of 20-100 mm Hg, but correlated with cerebral oxygen consumption. In the temperature-corrected group (n = 17), CBF varied from 22 to 32 ml X 100 g-1 X min-1, and flow/metabolism coupling was not maintained (i.e., CBF and cerebral oxygen consumption varied independently). However, variation in CBF correlated significantly with cerebral perfusion pressure over the pressure range of 15-95 mm Hg. This study demonstrates a profound reduction in cerebral oxygen consumption during hypothermic nonpulsatile cardiopulmonary bypass. When a non-temperature-corrected PaCO/sub 2/ of approximately 40 mm Hg was maintained, CBF was lower, and analysis of pooled data suggested that CBF regulation was better preserved, i.e., CBF was independent of pressure changes and dependent upon cerebral oxygen consumption.

  14. Prediction of oxygen consumption in cardiac rehabilitation patients performing leg ergometry (United States)

    Alvarez, John Gershwin

    The purpose of this study was two-fold. First, to determine the validity of the ACSM leg ergometry equation in the prediction of steady-state oxygen consumption (VO2) in a heterogeneous population of cardiac patients. Second, to determine whether a more accurate prediction equation could be developed for use in the cardiac population. Thirty-one cardiac rehabilitation patients participated in the study of which 24 were men and 7 were women. Biometric variables (mean +/- sd) of the participants were as follows: age = 61.9 +/- 9.5 years; height = 172.6 +/- 1.6 cm; and body mass = 82.3 +/- 10.6 kg. Subjects exercised on a MonarchTM cycle ergometer at 0, 180, 360, 540 and 720 kgm ˙ min-1. The length of each stage was five minutes. Heart rate, ECG, and VO2 were continuously monitored. Blood pressure and heart rate were collected at the end of each stage. Steady state VO 2 was calculated for each stage using the average of the last two minutes. Correlation coefficients, standard error of estimate, coefficient of determination, total error, and mean bias were used to determine the accuracy of the ACSM equation (1995). The analysis found the ACSM equation to be a valid means of estimating VO2 in cardiac patients. Simple linear regression was used to develop a new equation. Regression analysis found workload to be a significant predictor of VO2. The following equation is the result: VO2 = (1.6 x kgm ˙ min-1) + 444 ml ˙ min-1. The r of the equation was .78 (p equation. The analysis found the ACSM and new equation to significantly (p equation was found to significantly (p equations were compared based on correlation coefficients, coefficients of determinations, SEEs, total error, and mean bias the new equation was found to have equal or better accuracy at all workloads. The final form of the new equation is: VO2 (ml ˙ min-1) = (kgm ˙ min-1 x 1.6 ml ˙ kgm-1) + (3.5 ml ˙ kg-1 ˙ min-1 x body mass in kg) + 156 ml ˙ min-1.

  15. Real-time changes in brain tissue oxygen during endovascular treatment of cerebral vasospasm

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Bache, Søren; Stavngaard, Trine


    minute-by-minute changes in brain tissue oxygen during balloon angioplasty and intraarterial administration of vasodilators in three patients.Our results confirm that endovascular intervention is capable of not only resolving angiographic vasospasm, but also of normalizing values of brain tissue oxygen...

  16. N2O consumption by low-nitrogen soil and its regulation by water and oxygen

    NARCIS (Netherlands)

    Wu, D.M.; Dong, W.X.; Oenema, O.; Wang, Y.Y.; Trebs, I.; Hu, C.S.


    Soils can be a source and sink for atmospheric nitrous oxide (N2O). Consumption of N2O has been reported for anoxic soils and sediments rich in organic matter and depleted in nitrates (NO3-), and also for some dry, oxic soils. However, the mechanisms and controls of N2O consumption in dry soil are n

  17. Oxygen consumption and ammonia excretion of the searobin Prionotus punctatus (Scorpaeniformes, Triglidae at two different temperatures

    Directory of Open Access Journals (Sweden)

    Vicente Gomes


    Full Text Available Routine oxygen consumption and ammonia excretion were measured at 20ºC and 25ºC in the searobin Prionotus punctatus collected in Ubatuba region (22º30'S, SP, Brazil, in western South Atlantic, to investigate energy expenditure and losses through metabolic processes. IndividuaIs ranging from 1.00g to 88.47g and from 1.79g to 56.50g were used in experiments at 20ºC and 25ºC, respectively. At 20ºC and 25ºC, the averages of weight-specific oxygen consumption for the weight class of 1.00 - 10.00g, common to both temperatures, were 162.46µ 39.51 µ.10z/g/h and 200.47µ 92.46 µ.10z/g/h, respectively; for the weight class of 50.01 - 60.00g these values were 112.30 µ 22.84 µ.10z/g/h and 114.60 µ 20.36 µ.10zlg/h. At 20ºC and 25ºC, the averages of weight-specific ammonia excretion for the weight class of 1.00 to 1O.00g were 1.03 µ 0.37 fJ.M/g/h and 1.21 µ 0.65 µ.M/g/h, respectively; for the weight class of 50.01 -60.00g these values were 0.68 µ 0.13 fJ.M/g/h and 0.60 µ 0.22 µ.M/g/h. The energy budget for the species was calculated at both temperatures using the experimental data and a model for marine teleosts proposed in the literature.O consumo de oxigênio de rotina e a excreção de amônia de Prionotus punctatus coletados na região de Ubatuba (22º30'S, SP, Brasil, foram medidos a 20ºC e 25ºC, para avaliar os gastos e perdas de energia com os processos metabólicos. Foram utilizados indivíduos variando de 1,00g a 88,47g e de 1,79g a 56,50g, em experimentos a 20ºC e 25ºC, respectivamente. As médias de consumo específico de oxigênio a 20ºC e 25ºC para a classe de peso de 1,00 - 10,00g, comum a ambas as temperaturas, foram 162,46µ 39,51 µ.10z/g/h e 200,47 µ 92,46 µ.10z/g/h, respectivamente; para a classe de peso de 50,01 - 60,00g esses valores foram 112,30 µ 22,84 µ.10z/g/h e 114,60 µ 20,36 µ.10z/g/h. A 20ºC e 25ºC, as médias de excreção específica de amônia para a classe de peso de 1,00 a 10,00g foram 1

  18. Brain nonoxidative carbohydrate consumption is not explained by export of an unknown carbon source

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nyberg, Nils; Jaroszewski, Jerzy W;


    Brain activation provokes nonoxidative carbohydrate consumption and during exercise it is dominated by the cerebral uptake of lactate resulting in that up to approximately 1 mmol/ 100 g of glucose equivalents cannot be accounted for by cerebral oxygen uptake. The fate of this 'extra' carbohydrate...... be accounted for by changes in the NMR-derived plasma metabolome across the brain.Journal of Cerebral Blood Flow & Metabolism advance online publication, 24 February 2010; doi:10.1038/jcbfm.2010.25....

  19. Changes in cerebral haemodynamics, regional oxygen saturation and amplitude-integrated continuous EEG during hypoxia-ischaemia and reperfusion in newborn piglets

    NARCIS (Netherlands)

    Ioroi, T; Peeters-Scholte, C; Post, [No Value; Groenendaal, F; van Bel, F


    Perinatal asphyxia models are necessary to obtain knowledge of the pathophysiology of hypoxia-ischaemia (HI) and to test potential neuroprotective strategies. The present study was performed in newborn piglets to obtain information about simultaneous changes in cerebral oxygenation and haemodynamics

  20. In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy (United States)

    Deng, Zilin; Wang, Zhen; Yang, Xiaoquan; Luo, Qingming; Gong, Hui


    Stroke is a devastating disease. The changes in cerebral hemodynamics and oxygen metabolism associated with stroke play an important role in pathophysiology study. But the changes were difficult to describe with a single imaging modality. Here the changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and oxygen saturation (SO2) were yielded with laser speckle imaging (LSI) and photoacoustic microscopy (PAM) during and after 3-h acute focal ischemic rats. These hemodynamic measures were further synthesized to deduce the changes in oxygen extraction fraction (OEF). The results indicate that all the hemodynamics except CBV had rapid declines within 40-min occlusion of middle cerebral artery (MCAO). CBV in arteries and veins first increased to the maximum value of 112.42±36.69% and 130.58±31.01% by 15 min MCAO; then all the hemodynamics had a persistent reduction with small fluctuations during the ischemic. When ischemia lasted for 3 h, CBF in arteries, veins decreased to 17±14.65%, 24.52±20.66%, respectively, CBV dropped to 62±18.56% and 59±18.48%. And the absolute SO2 decreased by 40.52±22.42% and 54.24±11.77%. After 180-min MCAO, the changes in hemodynamics and oxygen metabolism were also quantified. The study suggested that combining LSI and PAM provides an attractive approach for stroke detection in small animal studies.

  1. How to Get Hyperbaric Oxygen Therapy for Children with Cerebral Palsy or Brain Injury: Navigating Insurance Denials, Red Tape, and Other Challenges (United States)

    Console, Richard P., Jr.


    Medical professionals who use hyperbaric oxygen therapy (HBOT) say that recent studies, as well as anecdotal evidence, indicate that this treatment significantly improves the lives of many children with cerebral palsy and other types of chronic brain injury. So why do many children with these diagnoses not have access to this treatment? Simply…

  2. Simple model of dissolved oxygen consumption in a bay within high organic loading: an applied remediation tool. (United States)

    Ahumada, Ramón; Vargas, José; Pagliero, Liliana


    San Vicente Bay is a coastal shallow embayment in Central Chile with multiple uses, one of which is receiving wastewater from industrial fisheries, steel mill effluents, and domestic sewage. A simulation model was developed and applied to dissolved oxygen consumption by organic residues released into this embayment. Three compartments were established as function of: depth, circulation and outfall location. The model compartments had different volumes, and their oxygen saturation value was used as baseline. The parameters: (a) BOD5 of the industrial and urban effluents, (b) oxygen demand by organic sediments, (c) respiration, (d) photosynthesis and (e) re-aeration were included in the model. Iteration results of the model showed severe alterations in Compartment 1, with a decrease of 65% in the oxygen below saturation. Compartment 2 showed a small decline (10%) and compartment 3 did not show apparent changes in oxygen values. Measures recommended for remediation were to decrease the BOD5 loading by 30% in the affected sector. Iteration of the model for 200 h following recommendations derived from the preceding results produced an increase in saturation of 60% (5 ml O2 L(-1)), which suggested an improvement of the environmental conditions.

  3. Mode of exercise and sex are not important for oxygen consumption during and in recovery from sprint interval training. (United States)

    Townsend, Logan K; Couture, Katie M; Hazell, Tom J


    Most sprint interval training (SIT) research involves cycling as the mode of exercise and whether running SIT elicits a similar excess postexercise oxygen consumption (EPOC) response to cycling SIT is unknown. As running is a more whole-body-natured exercise, the potential EPOC response could be greater when using a running session compared with a cycling session. The purpose of the current study was to determine the acute effects of a running versus cycling SIT session on EPOC and whether potential sex differences exist. Sixteen healthy recreationally active individuals (8 males and 8 females) had their gas exchange measured over ∼2.5 h under 3 experimental sessions: (i) a cycle SIT session, (ii) a run SIT session, and (iii) a control (CTRL; no exercise) session. Diet was controlled. During exercise, both SIT modes increased oxygen consumption (cycle: male, 1.967 ± 0.343; female, 1.739 ± 0.296 L·min(-1); run: male, 2.169 ± 0.369; female, 1.791 ± 0.481 L·min(-1)) versus CTRL (male, 0.425 ± 0.065 L·min(-1); female, 0.357 ± 0.067; P EPOC was not significantly different between modes of exercise or males and females (P > 0.05). Our data demonstrate that the mode of exercise during SIT (cycling or running) is not important to O2 consumption and that males and females respond similarly.

  4. In vitro culture and oxygen consumption of NSCs in size-controlled neurospheres of Ca-alginate/gelatin microbead

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kedong, E-mail: [State Key Laboratory of Fine Chemicals, Dalian R and D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Yanfei; Li, Shixiao; Wu, Meiling; Wu, Yixing [State Key Laboratory of Fine Chemicals, Dalian R and D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China); Lim, Mayasari [Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (Singapore); Liu, Tianqing, E-mail: [State Key Laboratory of Fine Chemicals, Dalian R and D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024 (China)


    Neural stem cells (NSCs) forming neurospheres in a conventional culture tend to develop necrotic/apoptotic centers due to mass transport limitations. In this study, the internal pore structure of calcium-alginate/gelatin (CAG) microbeads was tuned and controlled to provide a suitable three-dimensional environment supporting NSC proliferation. Direct impact of three-dimensional space availability was quantified by oxygen consumption rates of NSCs and cells were cultured in three different methods: neurospheres, single cell suspension of NSCs, and encapsulated NSCs in microbeads. Our results showed that encapsulated NSCs in CAG microbeads maintained higher cell viability than in conventional culture. In addition, NSCs encapsulated in CAG microbeads preserved their original stemness and continued to express nestin, CNPase, GFAP and β-tubulin-III post-encapsulation. Oxygen consumption rates of encapsulated NSCs in CAG microbeads were the lowest as compared to the other two culture methods. The optimal cell density supporting high cell proliferation in CAG microbeads was found to be 1.5 × 10{sup 5} cells/mL. The glucose consumption curve suggests that encapsulated NSCs in microbeads had a slower growth profile. This study presents an alternative method in hybrid microbead preparation to generate a highly favorable three-dimensional cell carrier for NSCs and was successfully applied for its effective in vitro expansion. - Highlights: • CAG microbeads effectively restricted the size of neurospheres.

  5. Effect of esmolol infusion on myocardial oxygen consumption during extubation and quality of recovery in elderly patients undergoing general anesthesia: randomized, double blinded, clinical trial

    Directory of Open Access Journals (Sweden)

    Sherif A. ELokda


    Conclusions: Esmolol is a safe, effective and well-tolerated drug that can be used in elderly patients undergoing general anesthesia to reduce the myocardial oxygen consumption and improve the quality of recovery.

  6. The collaboration of Antoine and Marie-Anne Lavoisier and the first measurements of human oxygen consumption. (United States)

    West, John B


    Antoine Lavoisier (1743-1794) was one of the most eminent scientists of the late 18th century. He is often referred to as the father of chemistry, in part because of his book Elementary Treatise on Chemistry. In addition he was a major figure in respiratory physiology, being the first person to recognize the true nature of oxygen, elucidating the similarities between respiration and combustion, and making the first measurements of human oxygen consumption under various conditions. Less well known are the contributions made by his wife, Marie-Anne Lavoisier. However, she was responsible for drawings of the experiments on oxygen consumption when the French revolution was imminent. These are of great interest because written descriptions are not available. Possible interpretations of the experiments are given here. In addition, her translations from English to French of papers by Priestley and others were critical in Lavoisier's demolition of the erroneous phlogiston theory. She also provided the engravings for her husband's textbook, thus documenting the extensive new equipment that he developed. In addition she undertook editorial work, for example in preparing his posthumous memoirs. The scientific collaboration of this husband-wife team is perhaps unique among the giants of respiratory physiology.

  7. Modeling the fluid-dynamics and oxygen consumption in a porous scaffold stimulated by cyclic squeeze pressure. (United States)

    Ferroni, Marco; Giusti, Serena; Nascimento, Diana; Silva, Ana; Boschetti, Federica; Ahluwalia, Arti


    The architecture and dynamic physical environment of tissues can be recreated in-vitro by combining 3D porous scaffolds and bioreactors able to apply controlled mechanical stimuli on cells. In such systems, the entity of the stimuli and the distribution of nutrients within the engineered construct depend on the micro-structure of the scaffolds. In this work, we present a new approach for optimizing computational fluid-dynamics (CFD) models for the investigation of fluid-induced forces generated by cyclic squeeze pressure within a porous construct, coupled with oxygen consumption of cardiomyocytes. A 2D axial symmetric macro-scaled model of a squeeze pressure bioreactor chamber was used as starting point for generating time dependent pressure profiles. Subsequently the fluid movement generated by the pressure fields was coupled with a complete 3D micro-scaled model of a porous protein cryogel. Oxygen transport and consumption inside the scaffold was evaluated considering a homogeneous distribution of cardiomyocytes throughout the structure, as confirmed by preliminary cell culture experiments. The results show that a 3D description of the system, coupling a porous geometry and time dependent pressure driven flow with fluid-structure-interaction provides an accurate and meaningful description of the microenvironment in terms of shear stress and oxygen distribution than simple stationary 2D models.

  8. The effect of Sub-maximal exercise-rehabilitation program on cardio-respiratory endurance indexes and oxygen pulse in patients with spastic cerebral palsy

    Directory of Open Access Journals (Sweden)

    M Izadi


    Full Text Available Background: Physical or cardio-respiratory fitness are of the best important physiological variables in children with cerebral palsy (CP, but the researches on exercise response of individuals with CP are limited. Our aim was to determine the effect of sub-maximal rehabilitation program (aerobic exercise on maximal oxygen uptake, oxygen pulse and cardio- respiratory physiological variables of children with moderate to severe spastic cerebral palsy diplegia and compare with able-bodied children. Methods: In a controlled clinical trial study, 15 children with diplegia spastic cerebral palsy, were recruited on a voluntarily basis (experimental group and 18 subjects without neurological impairments selected as control group. In CP group, aerobic exercise program performed on the average of exercise intensity (144 beat per minute of heart rate, 3 times a week for 3 months. The time of each exercise session was 20-25 minutes. Dependent variables were measured in before (pretest and after (post test of rehabilitation program through Mac Master Protocol on Tantories cycle ergometer in CP group and compared with the control group. Results: The oxygen pulse (VO2/HR during ergometery protocol was significantly lower in CP group than normal group (P<0.05. No significant statistical difference in maximal oxygen uptake (VO2 max was found between groups. The rehabilitation program leads to little increase of this variable in CP group. After sub-maximal exercise in pretest and post test, the heart rate of patient group was greater than control group, and aerobic exercise leads to significant decrease in heart rate in CP patients(P<0.05. Conclusion: The patients with spastic cerebral palsy, because of high muscle tone, severe spasticity and involuntarily movements have higher energy cost and lower aerobic fitness than normal people. The rehabilitation exercise program can improve physiological function of muscle and cardio-respiratory endurance in these

  9. The relationship between oxygen consumption rate and viability of in vivo-derived pig embryos vitrified by the micro volume air cooling method. (United States)

    Sakagami, N; Nishida, K; Misumi, K; Hirayama, Y; Yamashita, S; Hoshi, H; Misawa, H; Akiyama, K; Suzuki, C; Yoshioka, K


    The aim of this study was to assess the viability of vitrified-warmed in vivo-derived pig embryos after measuring the oxygen consumption rate. Six days after artificial insemination, blastocysts were collected from gilts and vitrified by the micro volume air cooling method. The oxygen consumption rate was measured in 60 vitrified-warmed embryos, which were then cultured for 48h to assess the viability. The survival (re-expansion) rate of embryos after warming was 85.0%. The average oxygen consumption rate of embryos immediately after warming was greater in embryos which could re-expand during subsequent culture (F=0.75±0.04) than that in those which failed to re-expand (F=0.33±0.05). Moreover, the oxygen consumption rate of vitrified-warmed embryos was greater in the hatched (F=0.88±0.06) than that in the not-hatched group (F=0.53±0.04). When the oxygen consumption rate of the vitrified-warmed embryos and the numbers of viable and dead cells in embryos were determined, there was a positive correlation between the oxygen consumption rate and the number of live cells (Pconsumption rate were surgically transferred into uterine horns of two recipients. Both of the recipients become pregnant and farrowed 12 healthy piglets. These results demonstrate that the oxygen consumption rate of vitrified-warmed pig embryos can be related to the number of live cells and that the measurement of oxygen consumption of embryos after cryopreservation may be useful for estimating embryo survivability.

  10. Comparison of Assessment of Oxygen Consumption, Etest, and CLSI M38-A2 Broth Microdilution Methods for Evaluation of the Susceptibility of Aspergillus fumigatus to Posaconazole▿ (United States)

    Araujo, Ricardo; Espinel-Ingroff, Ana


    Posaconazole MICs for 50 Aspergillus fumigatus isolates with distinct genotypes were determined by three methods. MICs were ≥0.5 μg/ml for 5, 11, and 15 strains by the CLSI reference M38-A2, Etest (48-h), and oxygen consumption methods, respectively. The levels of categorical agreement between the results obtained by the CLSI method and those obtained by the oxygen consumption and Etest methods were 80 and 84%, respectively. PMID:19704132

  11. The Effect of Patient-Specific Cerebral Oxygenation Monitoring on Postoperative Cognitive Function: A Multicenter Randomized Controlled Trial (United States)

    Ellis, Lucy; Murphy, Gavin J; Culliford, Lucy; Dreyer, Lucy; Clayton, Gemma; Downes, Richard; Nicholson, Eamonn; Stoica, Serban; Reeves, Barnaby C


    Background Indices of global tissue oxygen delivery and utilization such as mixed venous oxygen saturation, serum lactate concentration, and arterial hematocrit are commonly used to determine the adequacy of tissue oxygenation during cardiopulmonary bypass (CPB). However, these global measures may not accurately reflect regional tissue oxygenation and ischemic organ injury remains a common and serious complication of CPB. Near-infrared spectroscopy (NIRS) is a noninvasive technology that measures regional tissue oxygenation. NIRS may be used alongside global measures to optimize regional perfusion and reduce organ injury. It may also be used as an indicator of the need for red blood cell transfusion in the presence of anemia and tissue hypoxia. However, the clinical benefits of using NIRS remain unclear and there is a lack of high-quality evidence demonstrating its efficacy and cost effectiveness. Objective The aim of the patient-specific cerebral oxygenation monitoring as part of an algorithm to reduce transfusion during heart valve surgery (PASPORT) trial is to determine whether the addition of NIRS to CPB management algorithms can prevent cognitive decline, postoperative organ injury, unnecessary transfusion, and reduce health care costs. Methods Adults aged 16 years or older undergoing valve or combined coronary artery bypass graft and valve surgery at one of three UK cardiac centers (Bristol, Hull, or Leicester) are randomly allocated in a 1:1 ratio to either a standard algorithm for optimizing tissue oxygenation during CPB that includes a fixed transfusion threshold, or a patient-specific algorithm that incorporates cerebral NIRS monitoring and a restrictive red blood cell transfusion threshold. Allocation concealment, Internet-based randomization stratified by operation type and recruiting center, and blinding of patients, ICU and ward care staff, and outcome assessors reduce the risk of bias. The primary outcomes are cognitive function 3 months after

  12. Relationship between level of forage intake, blood flow and oxygen consumption by splanchnic tissues of sheep fed a tropical grass forage. (United States)

    Hentz, F; Kozloski, G V; Zeni, D; Brun, M V; Stefanello, S


    Four Polwarth castrated male sheep (42 ± 4.4 kg live weight (LW) surgically implanted with chronic indwelling catheters into the mesenteric, portal and hepatic veins, housed in metabolism cages and offered Cynodon sp. hay at rates (g of dry matter (DM)/kg LW) of 7, 14, 21 or ad libitum, were used in a 4 × 4 Latin square experiment to evaluate the effect of the level of forage intake on blood flow and oxygen consumption by the portal-drained viscera (PDV), liver and total splanchnic tissues (ST). The portal blood flow and the oxygen consumption by PDV linearly increased at increased organic matter (OM) intake. No effect of level of OM intake was obtained for the hepatic artery blood flow and oxygen consumption by liver. As a consequence, the level of OM intake only tended to directly affect hepatic blood flow and oxygen consumption by total ST. Oxygen consumption was linearly and positively related to blood flow across PDV, liver and total ST. The heat production by PDV and total ST, as proportion of metabolizable energy (ME) intake, decreased curvilinearly at increased ME intake. In conclusion, the oxygen consumption by PDV, but not by liver, was directly related to the level of forage intake by sheep. Moreover, when ingested at levels below maintenance, most of ME was spent as heat produced by ST.

  13. Optimal concentration and time window for proliferation and differentiation of neural stem cells from embryonic cerebral cortex:5% oxygen preconditioning for 72 hours

    Institute of Scientific and Technical Information of China (English)

    Li-li Yuan; Ying-jun Guan; Deng-dian Ma; Hong-mei Du


    Hypoxia promotes proliferation and differentiation of neural stem cells from embryonic day 12 rat brain tissue, but the concentration and time of hypoxic preconditioning are controversial. To address this, we cultured neural stem cells isolated from embryonic day 14 rat cerebral cortex in 5% and 10% oxygenin vitro. MTT assay, neurosphere number, and immunolfuorescent staining found that 5% or 10% oxygen preconditioning for 72 hours improved neural stem cell viability and proliferation. With prolonged hypoxic duration (120 hours), the proportion of apoptotic cells increased. Thus, 5% oxygen preconditioning for 72 hours promotes neural stem cell prolif-eration and neuronal differentiation. Our ifndings indicate that the optimal concentration and duration of hypoxic preconditioning for promoting proliferation and differentiation of neural stem cells from the cerebral cortex are 5% oxygen for 72 hours.

  14. Effect of temperature on excess post-exercise oxygen consumption in juvenile southern catfish (Silurus meridionalis Chen) following exhaustive exercise. (United States)

    Zeng, Ling-Qing; Zhang, Yao-Guang; Cao, Zhen-Dong; Fu, Shi-Jian


    The effects of temperature on resting oxygen consumption rate (MO2rest) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise (chasing) were measured in juvenile southern catfish (Silurus meridionalis) (8.40±0.30 g, n=40) to test whether temperature has a significant influence on MO2rest, maximum post-exercise oxygen consumption rate (MO2peak) and EPOC and to investigate how metabolic scope (MS: MO2peak - MO2rest) varies with acclimation temperature. The MO2rest increased from 64.7 (10°C) to 160.3 mg O2 h(-1) kg(-1) (25°C) (PEPOC varied from 32.9 min at 10°C to 345 min at 20°C, depending on the acclimation temperatures. The MS values of the lower temperature groups (10 and 15°C) were significantly smaller than those of the higher temperature groups (20, 25 and 30°C) (PEPOC varied ninefold among all of the temperature groups and was the largest for the 20°C temperature group (about 422.4 mg O2 kg(-1)). These results suggested that (1) the acclimation temperature had a significant effect on maintenance metabolism (as indicated by MO2rest) and the post-exercise metabolic recovery process (as indicated by MO2peak, duration and magnitude of EPOC), and (2) the change of the MS as a function of acclimation temperature in juvenile southern catfish might be related to their high degree of physiological flexibility, which allows them to adapt to changes in environmental conditions in their habitat in the Yangtze River and the Jialing River.

  15. Episodes of apnea and bradycardia in the preterm newborn: impact on cerebral oxygenation measured by near-infrared spectrophotometry (United States)

    Van Huffel, Sabine; Craemers, Johan; Lenaerts, Bart; Daniels, Hans; Naulaers, Gunnar; Casaer, Paul


    The objective of this study is to evaluate the effect of episodes of apneas and/or mild bradycardia (heart rate decreases of 10 to 20% or more) on cerebral oxyhemoglobin (HbO2) and reduced hemoglobin (Hb) concentration as measured by Near Infrared Spectrophotometry (NIRS). Measurements were carried out on 7 preterm infants who experienced apneic and bradycardiac events. It is shown how to characterize these events using time-frequency analysis. In addition to NIRS (performed with a NIRO-500 from Hamamatsu, Japan), the heart rate, ECG, peripheral arterial oxygen saturation (measured at the foot) and respiration (abdominal and thoracic pressure, and nasal airflow) were continuously recorded. The impact of apneic events and periodic breathing on these measurements reveals the clinical relevance of NIRS. In particular, we investigate whether these changes in heart rate and respiration also influence HbO2 and reduced Hb concentration in neonatal brain. These changes are characterized, as well as their relationships with the other simultaneously recorded signals such as peripheral arterial oxygen saturation.

  16. AquaResp® - free open-source software for measuring oxygen consumption of resting aquatic animals

    DEFF Research Database (Denmark)

    Steffensen, John Fleng


    Resp" is a free open-source software program developed to measure the oxygen consumption of aquatic animals using intermittent flow techniques. This free program is based on Microsoft Excel, and uses the MCC Universal Library and a data acquisition board to acquire analogue readings from up to four input ports......Resp was developed with the intention of automating data acquisition and control by programming in commonly-available software (Microsoft Excel) and allowing customization by the user without restrictions. The program has been tested in different laboratories for an extended period Email addressforcorrespondence...

  17. AquaResp® — free open-source software for measuring oxygen consumption of resting aquatic animals

    DEFF Research Database (Denmark)

    Svendsen, Morten Bo S.; Skov, Peter Vilhelm; Bushnell, Peter G.

    AquaResp® is a free open-source software program developed to measure the oxygen consumption of aquatic animals using intermittent flow techniques. This free program is based on Microsoft Excel, and uses the MCC Universal Library and a data acquisition board to acquire analogue readings from up...... manufacturers. AquaResp was developed with the intention of automating data acquisition and control by programming in commonly-available software (Microsoft Excel) and allowing customization by the user without restrictions. The program has been tested in different laboratories for an extended period...

  18. Comparable cerebral oxygenation patterns in younger and older adults during dual-task walking with increasing load

    Directory of Open Access Journals (Sweden)

    Sarah A. Fraser


    Full Text Available The neuroimaging literature on dual-task gait clearly demonstrates increased prefrontal cortex (PFC involvement when performing a cognitive task while walking. However, findings from direct comparisons of the cerebral oxygenation patterns of younger (YA and older (OA adults during dual-task walking are mixed and it is unclear how YA and OA respond to increasing cognitive load (difficulty while walking. This functional near infra-red (fNIRS study examined cerebral oxygenation of YA and OA during self-paced dual-task treadmill walking at two different levels of cognitive load (auditory n-back. Changes in accuracy (% as well as oxygenated (HbO and deoxygenated (HbR hemoglobin were examined. For the HbO and HbR measures, eight regions of interest (ROIs were assessed: the anterior and posterior dorsolateral and ventrolateral PFC (aDLPFC, pDLPFC, aVLPFC, pVLPFC in each hemisphere. Nineteen YA (M = 21.83 yrs and 14 OA (M = 66.85 yrs walked at a self-selected pace while performing auditory 1-back and 2-back tasks. Walking alone (single motor: SM and performing the cognitive tasks alone (single cognitive: SC were compared to dual-task walking (DT = SM + SC. In the behavioural data, participants were more accurate in the lowest level of load (1-back compared to the highest (2-back; p ˂ .001. YA were more accurate than OA overall (p = .009, and particularly in the 2-back task (p = .048. In the fNIRS data, both younger and older adults had task effects (SM < DT in specific ROIs for ∆HbO (3 YA, 1 OA and ∆HbR (7 YA, 8 OA. After controlling for walk speed differences, direct comparisons between YA and OA did not reveal significant age differences, but did reveal a difficulty effect in HbO in the left aDLPFC (p = .028 and significant task effects (SM < DT in HbR for 6 of the 8 ROIs. Findings suggest that YA and OA respond similarly to manipulations of cognitive load when walking on a treadmill at a self-selected pace.

  19. Impact of wine production on the fractionation of copper and iron in Chardonnay wine: Implications for oxygen consumption. (United States)

    Rousseva, Michaela; Kontoudakis, Nikolaos; Schmidtke, Leigh M; Scollary, Geoffrey R; Clark, Andrew C


    Copper and iron in wine can influence oxidative, reductive and colloidal stability. The current study utilises a solid phase extraction technique to fractionate these metals into hydrophobic, cationic and residual forms, with quantification by ICP-OES. The impact of aspects of wine production on the metal fractions was examined, along with the relationship between metal fractions and oxygen decay rates. Addition of copper and iron to juice, followed by fermentation, favoured an increase in all of their respective metal fractions in the wine, with the largest increase observed for the cationic form of iron. Bentonite fining of the protein-containing wines led to a significant reduction in the cationic fraction of copper and an increase in the cationic form of iron. Total copper correlated more closely with oxygen consumption in the wine compared to total iron, and the residual and cationic forms of copper provided the largest contribution to this impact.

  20. Near-infrared spectroscopy assessed cerebral oxygenation during open abdominal aortic aneurysm repair

    DEFF Research Database (Denmark)

    Sørensen, H.; Nielsen, H. B.; Secher, N H


    intend to adjust ventilation according end-tidal CO2 tension (EtCO2) and here evaluated to what extent that strategy maintains frontal lobe oxygenation (ScO2) as determined by near infrared spectroscopy. For 44 patients [5 women, aged 70 (48-83) years] ScO2, mean arterial pressure (MAP), EtCO2...

  1. Increased cerebral oxygen extraction capacity in patients with Alzheimer’s disease

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Gyldensted, Louise; Nagenthiraja, Kartheeban;

    Vascular risk factors are suspected to play a role in the etiology of Alzheimer’s disease. Recently, a model that relates capillary dysfunction to the development of AD was proposed [1]. The model predicts that increased capillary dysfunction leads to increased oxygen extraction in order to support...

  2. Inspired Carbon Dioxide During Hypoxia: Effects on Task Performance and Cerebral Oxygen Saturation

    NARCIS (Netherlands)

    Dorp, E. van; Los, M.; Dirven, P.; Sarton, E.; Valk, P.; Teppema, L.; Stienstra, R.; Dahan, A.


    Introduction: Exposure to a hypoxic environment has a deleterious effect on physiological and mental functions. We studied the effect of added inspired CO2 during artificially induced hypoxic normobaric hypoxia (oxygen saturation ∼80%) on complex task performance. Methods: In random order, 22 health

  3. Combined administration of hyperbaric oxygen and hydroxocobalamin improves cerebral metabolism after acute cyanide poisoning in rats

    DEFF Research Database (Denmark)

    Hansen, M B; Olsen, Niels Vidiendal; Hyldegaard, O


    Hyperbaric oxygen therapy (HBOT) or intravenous hydroxocobalamin (OHCob) both abolish cyanide (CN)-induced surges in interstitial brain lactate and glucose concentrations. HBOT has been shown to induce a delayed increase in whole blood CN concentrations, whereas OHCob may act as an intravascular CN...

  4. Oxygen consumption by a sediment bed for stagnant water: comparison to SOD with fluid flow. (United States)

    Higashino, Makoto


    A model of sedimentary oxygen demand (SOD) for stagnant water in a lake or a reservoir is presented. For the purposes of this paper, stagnant water is defined as the bottom layer of stratified water columns in relatively unproductive systems that are underlain by silt and sand-dominated sediments with low-organic carbon (C) and nitrogen (N). The modeling results are compared to those with fluid flow to investigate how flow over the sediment surface raises SOD compared to stagnant water, depending on flow velocity and biochemical activity in the sediment. SOD is found to be substantially limited by oxygen transfer in the water column when water is stagnant. When flow over the sediment surface is present, SOD becomes larger than that for stagnant water, depending on flow velocity and the biochemical oxygen uptake rate in the sediment. Flow over the sediment surface causes an insignificant raise in SOD when the biochemical oxygen uptake rate is small. The difference between SOD with fluid flow and SOD for stagnant water becomes significant as the biochemical oxygen uptake rate becomes larger, i.e. SOD is 10-100 times larger when flow over the sediment surface is present.

  5. The responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain)

    DEFF Research Database (Denmark)

    Epping, E.H.G.; Kühl, Michael


    We have evaluated the effects of short-term changes in incident irradiance and temperature on oxygenic photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat from the Ebro Delta, Spain, in which Microcoleus chthonoplastes was the dominant phototrophic organism. The mat...... production, and oxygen consumption in the aphotic layer of the mat. The lowest surface irradiance that resulted in detectable rates of gross photosynthesis increased with increasing temperature from 50 mmol photons m22 s21 at 158C to 500 mmol photons m22 s21 at 308C. These threshold irradiances were also...... apparent from the areal rates of net oxygen production and point to the shift of M. chthonoplastes from anoxygenic to oxygenic photosynthesis and stimulation of sulphide production and oxidation rates at elevated temperatures. The rate of net oxygen production per unit area of mat at maximum irradiance, J0...

  6. A novel method of combining blood oxygenation and blood flow sensitive magnetic resonance imaging techniques to measure the cerebral blood flow and oxygen metabolism responses to an unknown neural stimulus.

    Directory of Open Access Journals (Sweden)

    Aaron B Simon

    Full Text Available Simultaneous implementation of magnetic resonance imaging methods for Arterial Spin Labeling (ASL and Blood Oxygenation Level Dependent (BOLD imaging makes it possible to quantitatively measure the changes in cerebral blood flow (CBF and cerebral oxygen metabolism (CMRO(2 that occur in response to neural stimuli. To date, however, the range of neural stimuli amenable to quantitative analysis is limited to those that may be presented in a simple block or event related design such that measurements may be repeated and averaged to improve precision. Here we examined the feasibility of using the relationship between cerebral blood flow and the BOLD signal to improve dynamic estimates of blood flow fluctuations as well as to estimate metabolic-hemodynamic coupling under conditions where a stimulus pattern is unknown. We found that by combining the information contained in simultaneously acquired BOLD and ASL signals through a method we term BOLD Constrained Perfusion (BCP estimation, we could significantly improve the precision of our estimates of the hemodynamic response to a visual stimulus and, under the conditions of a calibrated BOLD experiment, accurately determine the ratio of the oxygen metabolic response to the hemodynamic response. Importantly we were able to accomplish this without utilizing a priori knowledge of the temporal nature of the neural stimulus, suggesting that BOLD Constrained Perfusion estimation may make it feasible to quantitatively study the cerebral metabolic and hemodynamic responses to more natural stimuli that cannot be easily repeated or averaged.

  7. A novel method of combining blood oxygenation and blood flow sensitive magnetic resonance imaging techniques to measure the cerebral blood flow and oxygen metabolism responses to an unknown neural stimulus. (United States)

    Simon, Aaron B; Griffeth, Valerie E M; Wong, Eric C; Buxton, Richard B


    Simultaneous implementation of magnetic resonance imaging methods for Arterial Spin Labeling (ASL) and Blood Oxygenation Level Dependent (BOLD) imaging makes it possible to quantitatively measure the changes in cerebral blood flow (CBF) and cerebral oxygen metabolism (CMRO(2)) that occur in response to neural stimuli. To date, however, the range of neural stimuli amenable to quantitative analysis is limited to those that may be presented in a simple block or event related design such that measurements may be repeated and averaged to improve precision. Here we examined the feasibility of using the relationship between cerebral blood flow and the BOLD signal to improve dynamic estimates of blood flow fluctuations as well as to estimate metabolic-hemodynamic coupling under conditions where a stimulus pattern is unknown. We found that by combining the information contained in simultaneously acquired BOLD and ASL signals through a method we term BOLD Constrained Perfusion (BCP) estimation, we could significantly improve the precision of our estimates of the hemodynamic response to a visual stimulus and, under the conditions of a calibrated BOLD experiment, accurately determine the ratio of the oxygen metabolic response to the hemodynamic response. Importantly we were able to accomplish this without utilizing a priori knowledge of the temporal nature of the neural stimulus, suggesting that BOLD Constrained Perfusion estimation may make it feasible to quantitatively study the cerebral metabolic and hemodynamic responses to more natural stimuli that cannot be easily repeated or averaged.

  8. Nitrification and its oxygen consumption along the turbid Changjiang River plume

    Directory of Open Access Journals (Sweden)

    S. S.-Y. Hsiao


    Full Text Available Nitrification rates of bulk water (NRb and particle free (NRpf, particle > 3 μm eliminated were determined along the Changjiang River plume in August 2011 by nitrogen isotope tracer technique. Dissolved oxygen (DO, community respiration rate (CR, nutrients, dissolved organic nitrogen, total suspended matter (TSM, particulate organic carbon/nitrogen (POC/PON, acid-leachable iron and manganese on suspended particles and both archaeal and β-proteobacterial amoA abundance on size-fractioned particle (> 3 μm and 0.22–3 μm were measured. The NRb ranged from undetectable up to 4.6 μmol L−1 d−1 peaking at salinity of ~ 29. NRb values were positively correlated with ammonia concentration suggesting the importance of substrate in nitrification. In river mouth and inner plume, NRb was much higher than NRpf indicating nitrifying bacteria is mainly particle-associated, which was supported by amoA gene abundance and regression analysis of TSM and NRb. The estimated oxygen demand of nitrification accounted for 0.4% to 317% of CR. The nitrification oxygen demand is much higher than Redfield model's estimation (23% indicating that oxygen might not be the sole oxidant though DO was sufficient (> 58 μmol kg−1. The excess nitrification oxygen demand showed tendency to occur at lower DO samples accompanying with higher acid-leachable Fe/Mn, which implied reactive Fe3+/Mn4+ may play a role as oxidant in nitrification process. Stoichiometric calculation suggested reactive Fe on particles was even 10-fold the oxidant demand for complete ammonia oxidation along all areas of the plume. The involvement of reactive iron and manganese in nitrification process in oxygenated water further complicated the nitrogen cycling in turbid river plume.

  9. Cold-induced vasodilatation of finger and maximal oxygen consumption of young female athletes born in Hokkaido (United States)

    Moriya, Kiyoshi; Nakagawa, Koya


    To determine whether there is a direct correlation between endurance capacity and cold tolerance, maximal oxygen consumption (VO2max), and cold-induced vasodilatation (CIVD), we measured these factors in 14 young female athletes born in Hokkaido, Japan's northernmost island. We determined the VO2max by a standard incremental test on a cycle ergometer and measured the oxygen consumption (VO2) by means of the Douglas-bag method. We determined the CIVD reaction by measuring the skin temperature of the left middle finger during immersion in cold water at 0°C for 20 min. The athletes showed significant positive correlations between VO2max, expressed as l/min, and CIVD as well as other peripheral cold tolerance indexes (resistance index against frostbite and CIVD index). The body weight VO2max (VO2max/kg body weight) failed to correlate significantly with either the CIVD or with other cold tolerance indexes. These results suggest that CIVD in females may depend on factors other than those determined in this study, in addition to the functional spread of the vascular beds in peripheral tissues, including striated muscle; it is known that the size and the vascular bed in this tissue are affected by exercise training and that this results in the elevation of VO2max and VO2max/kg body weight.

  10. Measurement of oxygen consumption in children undergoing cardiac catheterization: comparison between mass spectrometry and the breath-by-breath method. (United States)

    Guo, Long; Cui, Yong; Pharis, Scott; Walsh, Mark; Atallah, Joseph; Tan, Meng-Wei; Rutledge, Jennifer; Coe, J Y; Adatia, Ian


    Accurate measurement of oxygen consumption (VO2) is important to precise calculation of blood flow using the Fick equation. This study aimed to validate the breath-by-breath method (BBBM) of measuring oxygen consumption VO2 compared with respiratory mass spectroscopy (MS) for intubated children during cardiac catheterization. The study used MS and BBBM to measure VO2 continuously and simultaneously for 10 min in consecutive anesthetized children undergoing cardiac catheterization who were intubated with a cuffed endotracheal tube, ventilated mechanically, and hemodynamically stable, with normal body temperature. From 26 patients, 520 data points were obtained. The mean VO2 was 94.5 ml/min (95 % confidence interval [CI] 65.7-123.3 ml/min) as measured by MS and 91.4 ml/min (95 % CI 64.9-117.9 ml/min) as measured by BBBM. The mean difference in VO2 measurements between MS and BBBM (3.1 ml/min; 95 % CI -1.7 to +7.9 ml/min) was not significant (p = 0.19). The MS and BBBM VO2 measurements were highly correlated (R (2) = 0.98; P measure VO2 in anesthetized intubated children undergoing cardiac catheterization. The two methods demonstrated excellent agreement. However, BBBM may be more suited to clinical use with children.

  11. Effect of Carbamate, Organophosphate, and Avermectin Nematicides on Oxygen Consumption by Three Meloidogyne spp. (United States)

    Nordmeyer, D; Dickson, D W


    Second-stage juveniles (I2) of Meloidogyne arenaria consumed more oxygen (P nematicide used. Except for aldicarb, there was no differential sensitivity among the three nematode species. Meloidogyne javanica had a greater percentage decrease (P nematicides were positively correlated (P

  12. Aerobic training in children with cerebral palsy. (United States)

    Nsenga, A L; Shephard, R J; Ahmaidi, S; Ahmadi, S


    Rehabilitation is a major goal for children with cerebral palsy, although the potential to enhance cardio-respiratory fitness in such individuals remains unclear. This study thus compared current cardio-respiratory status between children with cerebral palsy and able-bodied children, and examined the ability to enhance the cardio-respiratory fitness of children with cerebral palsy by cycle ergometer training. 10 children with cerebral palsy (Gross Motor Function Classification System levels I and II) participated in thrice-weekly 30 min cycle ergometer training sessions for 8 weeks (mean age: 14.2±1.9 yrs). 10 additional subjects with cerebral palsy (mean age: 14.2±1.8 yrs) and 10 able-bodied subjects (mean age: 14.1±2.1 yrs) served as controls, undertaking no training. All subjects undertook a progressive cycle ergometer test of cardio-respiratory fitness at the beginning and end of the 8-week period. Cardio-respiratory parameters [oxygen intake V˙O2), ventilation V ˙ E) and heart rate (HR)] during testing were measured by Cosmed K4 b gas analyzer. The children with cerebral palsy who engaged in aerobic training improved their peak oxygen consumption, heart rate and ventilation significantly (pchildren with cerebral palsy can benefit significantly from cardio-respiratory training, and such training should be included in rehabilitation programs.

  13. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise. (United States)

    Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio


    Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.

  14. Nitrification and its oxygen consumption along the turbid Chang Jiang River plume (United States)

    Hsiao, S. S.-Y.; Hsu, T.-C.; Liu, J.-w.; Xie, X.; Zhang, Y.; Lin, J.; Wang, H.; Yang, J.-Y. T.; Hsu, S.-C.; Dai, M.; Kao, S.-J.


    Nitrification is a series of processes that oxidizes ammonia to nitrate, which contributes to hypoxia development in coastal oceans, especially in eutrophicated regions. The nitrification rate of bulk water (NRb) and particle free water (NRpf, particle > 3 μm eliminated) were determined along the Chang Jiang River plume in August 2011 by nitrogen isotope tracer technique. Measurements of dissolved oxygen (DO), community respiration rate (CR), nutrients, dissolved organic nitrogen (DON), total suspended matter (TSM), particulate organic carbon/nitrogen (POC / PON), acid-leachable iron and manganese on suspended particles and both archaeal and β-proteobacterial ammonia monooxygenase subunit A gene (amoA) abundance on size-fractioned particles (> 3 μm and 0.22-3 μm) were conducted. The NRb ranged from undetectable up to 4.6 μmol L-1 day-1, peaking at a salinity of ~ 29. NRb values were positively correlated with ammonium concentration, suggesting the importance of substrate in nitrification. In the river mouth and the inner plume, NRb was much higher than NRpf, indicating that the nitrifying microorganism is mainly particle associated, which was supported by its significant correlation with amoA gene abundance and TSM concentration. The estimated oxygen demands of nitrification accounted for 0.32 to 318% of CR, in which 50% samples demanded more oxygen than that predicted by by the Redfield model (23%), indicating that oxygen might not be the sole oxidant though DO was sufficient (> 58 μmol kg-1) throughout the observation period. The excess nitrification-associated oxygen demand (NOD) showed a tendency to occur at lower DO samples accompanied by higher acid-leachable Fe / Mn, which implied reactive Fe3+ / Mn4+ may play a role as oxidant in the nitrification process. Stoichiometric calculation suggested that reactive Fe on particles was 10 times the oxidant demand required to complete ammonia oxidation in the entire plume. The potential involvement of reactive

  15. Effect of olive mill wastewaters on the oxygen consumption by activated sludge microorganisms: an acute toxicity test method. (United States)

    Paixão, S M; Anselmo, A M


    The test for inhibition of oxygen consumption by activated sludge (ISO 8192-1986 (E)) was evaluated as a tool for assessing, the acute toxicity of olive mill wastewaters (OMW). According to the ISO test, information generated by this method may be helpful in estimating the effect of a test material on bacterial communities in the aquatic environment, especially in aerobic biological treatment systems. However, the lack of standardized bioassay methodology for effluents imposed that the test conditions were modified and adapted. The experiments were conducted in the presence or absence of an easily biodegradable carbon source (glucose) with different contact times (20 min and 24 h). The results obtained showed a remarkable stimulatory effect of this effluent to the activated sludge microorganisms. In fact, the oxygen uptake rate values increase with increasing effluent concentrations and contact times up to 0.98 microl O(2) h(-1) mg(-1) dry weight for a 100% OMW sample, 24 h contact time, with blanks exhibiting an oxygen uptake rate of ca. 1/10 of this value (0.07-0.10). It seems that the application of the ISO test as an acute toxicity test for effluents should be reconsidered, with convenient adaptation for its utilization as a method of estimating the effect on bacterial communities present in aerobic biological treatment systems.


    Institute of Scientific and Technical Information of China (English)


    The respiration metabolismand excretion of marinebivalves were studied by different researchers[1—6].Themetabolic rate of bivalves is influenced by a number ofvariables,includingtemperature,body size,oxygen ten-sion,food concentration,reproductive state,activityleveland physiological condition.The excreted metabolites ofbivalves include ammonia,urea,uric acid and others,with ammonia comprising70%of the total excretion.Solenaia oleivorais a proper freshwater bivalve in China.For the consumer it has the follo...

  17. Total, chemical, and biological oxygen consumption of the sediments in the Ziya River watershed, China. (United States)

    Rong, Nan; Shan, Baoqing


    Sediment oxygen demand (SOD) is a critical dissolved oxygen (DO) sink in many rivers. Understanding the relative contributions of the biological and chemical components of SOD would improve our knowledge of the potential environmental harm SOD could cause and allow appropriate management systems to be developed. A various inhibitors addition technique was conducted to measure the total, chemical, and biological SOD of sediment samples from 13 sites in the Ziya River watershed, a severely polluted and anoxic river system in the north of China. The results showed that the major component of SOD was chemical SOD due to iron predominate. The ferrous SOD accounted for 21.6-78.9 % of the total SOD and 33.26-96.79 % of the chemical SOD. Biological SOD represented 41.13 % of the overall SOD averagely. Sulfide SOD accounted for 1.78-45.71 % of the total SOD and it was the secondary predominate of the chemical SOD. Manganous SOD accounted for 1.2-16.6 % of the total SOD and it was insignificant at many sites. Only four kinds of benthos were collected in the Ziya River watershed, resulting from the low DO concentration in the sediment surface due to SOD. This study would be helpful for understanding and preventing the potential sediment oxygen depletion during river restoration.

  18. Double-tracer autoradiographic study of protein synthesis and glucose consumption in rats with focal cerebral ischemia

    DEFF Research Database (Denmark)

    Christensen, Thomas; Balchen, T; Bruhn, T;


    A double-tracer autoradiographic method for simultaneous measurement of regional glucose utilization (rCMRglc) and regional protein synthesis (PS) in consecutive brain sections is described and applied to study the metabolism of the ischemic penumbra 2 h after occlusion of the middle cerebral...

  19. Reduced blood flow response to acetazolamide reflects pre-existing vasodilation and decreased oxygen metabolism in major cerebral arterial occlusive disease

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Hiroshi; Okazawa, Hidehiko; Kishibe, Yoshihiko; Sugimoto, Kanji; Takahashi, Masaaki [Research Institute, Shiga Medical Center, 5-4-30 Moriyama, Moriyama-city, Shiga 524-8524 (Japan)


    A decrease in the cerebral blood flow (CBF) response to acetazolamide may indicate an increase in cerebral blood volume (CBV) caused by reduced perfusion pressure in patients with major cerebral artery steno-occlusive lesions. However, a decrease in cerebral metabolic rate of oxygen (CMRO{sub 2}) caused by ischemic changes may also decrease the CBF response to acetazolamide by decreasing the production of carbon dioxide. The purpose of this study was to determine whether the values of CBV and CMRO{sub 2} are independent predictors of the CBF response to acetazolamide in major cerebral arterial occlusive disease. We used positron emission tomography to study 30 patients with major cerebral artery steno-occlusive lesions. The CBF response to acetazolamide was assessed by measuring baseline CBF and CBF 10 min after an intravenous injection of 1 g of acetazolamide. Multivariate analysis was used to test the independent predictive value of the CBV and CMRO{sub 2} at baseline with respect to the percent change in CBF during acetazolamide administration. Both increased CBV and decreased CMRO{sub 2} were significant and independent predictors of the reduced CBF response to acetazolamide. CBV accounted for 25% of the variance in the absolute change in CBF during acetazolamide administration and 42% of the variance in the percent change in CBF, whereas CMRO{sub 2} accounted for 19% and 4% of the variance, respectively. In patients with major cerebral arterial occlusive disease, a decrease in CMRO{sub 2} may contribute to the reduced CBF response to acetazolamide, although an increase in CBV appears to be the major contributing factor. (orig.)


    Daland, G A; Isaacs, R


    1. The oxygen consumption of blood of normal individuals, when the hemoglobin is saturated with oxygen, is practically zero within the limits of experimental error of the microspirometer used. 2. The oxygen consumed in a microspirometer by the blood of patients with chronic myelogenous leucemia with a high white blood cell count, and of one with leucocytosis from sepsis, was proportional to the number of adult polymorphonuclear neutrophils in the blood. 3. No correlation could be made between the rate of oxygen absorption and the total number of white blood cells in the blood, or the total number of immature cells, or the number of red blood cells, or the amount of oxyhemoglobin. 4. The blood of patients with chronic myelogenous leucemia continued to use oxygen in the microspirometer longer than that of normal individuals, and the hemoglobin, in the leucemic bloods, became desaturated even though exposed to air. 5. In blood in which the bulk. of the cells were immature and the mature cells few, the oxygen consumption was lower than in blood in which the mature cells predominated. The rate of oxygen consumption of the immature cells was relatively low as compared to the mature. 6. The slower rate of oxygen absorption by the immature leucocytes in chronic myelogenous leucemia as compared to the mature cells, places them, in accord with Warburg's reports, in the class of the malignant tissues in this respect rather than in the group of young or embryonic cells.

  1. Functional imaging of muscle oxygenation and oxygen consumption in the knee extensor muscles during isometric contractions by spatially resolved near-infrared spectroscopy (United States)

    Kek, Khai Jun; Miyakawa, Takahiro; Kudo, Nobuki; Yamamoto, Katsuyuki


    In this study, we showed that exercise type- and intensity-dependent regional differences in muscle oxygenation and oxygen consumption rate (Vo II) of the knee extensor muscles could be imaged in real time with a multi-channel spatially resolved near-infrared spectroscopy (SR-NIRS) imaging device. Healthy subjects performed isometric knee extension exercise for 30 s (without- or with-leg-press action) at different exercise intensities [10%, 40% and 70% of maximum voluntary contraction (MVC)]. "Separation-type" probes were attached to the skin over the major knee extensor muscles: vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM). Placement of the probes enabled simultaneously measurement of 12 sites over a skin area of about 30 cm2 (temporal resolution = 0.25 s). Local Vo II of each muscle, resting Vo II (Vo II, rest) and recovery Vo II (Vo II, rec ), were determined with arterial occlusion before the start and after the end of contraction, respectively. There was no significant difference between the values of Vo II rest, in the muscles. However, during knee extension exercise without-leg-press action, Vo II rec, value of the RF was significantly greater than the values of the VL and VM at all exercise intensities. In contrast, during exercise with-leg-press action, Vo II rec, values of the RF and VM were greater than those of the VL, especially during exercise at 40% and 70% MVC. In summary, the regional differences in muscle oxygenation and Vo II of the knee extensor muscles, probably due to the differences in relative contributions of muscles to exercise and in muscle architecture, were imaged using SR-NIRS.

  2. Rates of oxygen consumption and tolerance of hypoxia and desiccation in Chinese black sleeper (Bostrichthys sinensis) and mudskipper (Boleophthalmus pectinirostris) embryos

    Institute of Scientific and Technical Information of China (English)

    CHEN Shixi; HONG Wanshu; ZHANG Qiyong; WU Renxie; WANG Qiong


    The rates of oxygen consumption, tolerance of hypoxia and desiccation of the Chinese black sleeper (Bostrichthys sinensis) and mudskipper (Boleophthalmus pectinirostris) embryos were investigated. The pattern of oxygen consumption of the Chinese black sleeper embryos was similar to that of the mudskipper ones. The lowest rates of oxygen consumption[(1.65±0.66)nmol/(ind.·h)] of the Chinese black sleeper embryos 16 h after fertilization and the lowest rates of oxygen consumption [(0.79±0.08)nmol/(ind.·h)] of the mudskipper embryos 6 h after fertilization were recorded, respectively. Then the rates of oxygen consumption of these two species embryos increased gradually until hatching [(8.26±1.70)nmol/(ind.·h)in the Chinese black sleeper, (2.69±0.23)nmol/(ind.·h) in mudskipper]. After exposure to hypoxia water (0.16 mg/dm3), bradycardia of the embryos occurred in both the Chinese black sleeper and the mudskipper. However, the Chinese black sleeper embryos survived approximately 45 min longer than the mudskipper ones. After exposure to desiccation at a relative humidity of 58%, bradycardia of the embryos was observed in both the Chinese black sleeper and the mudskipper, and the Chinese black sleeper embryos lived approximately 9 min longer than the mudskipper ones.

  3. Intermediates of Krebs cycle correct the depression of the whole body oxygen consumption and lethal cooling in barbiturate poisoning in rat. (United States)

    Ivnitsky, Jury Ju; Schäfer, Timur V; Malakhovsky, Vladimir N; Rejniuk, Vladimir L


    Rats poisoned with one LD50 of thiopental or amytal are shown to increase oxygen consumption when intraperitoneally given sucinate, malate, citrate, alpha-ketoglutarate, dimethylsuccinate or glutamate (the Krebs cycle intermediates or their precursors) but not when given glucose, pyruvate, acetate, benzoate or nicotinate (energy substrates of other metabolic stages etc). Survival was increased with succinate or malate from control groups, which ranged from 30-83% to 87-100%. These effects were unrelated to respiratory depression or hypoxia as judged by little or no effect of succinate on ventilation indices and by the lack of effect of oxygen administration. Body cooling of comatose rats at ambient temperature approximately 19 degrees C became slower with succinate, the rate of cooling correlated well with oxygen consumption decrease. Succinate had no potency to modify oxygen consumption and body temperature in intact rats. A condition for antidote effect of the Krebs intermediate was sufficiently high dosage (5 mmol/kg), further dose increase made no odds. Repeated dosing of succinate had more marked protective effect, than a single one, to oxygen consumption and tended to promote the attenuation of lethal effect of barbiturates. These data suggest that suppression of whole body oxygen consumption with barbiturate overdose could be an important contributor to both body cooling and mortality. Intermediates of Krebs cycle, not only succinate, may have a pronounced therapeutic effect under the proper treatment regimen. Availability of Krebs cycle intermediates may be a limiting factor for the whole body oxygen consumption in barbiturate coma, its role in brain needs further elucidation.

  4. Oxygen Consumption of Elite Distance Runners on an Anti-Gravity Treadmill®

    Directory of Open Access Journals (Sweden)

    David K.P. McNeill, John R. Kline, Hendrick D. de Heer, J. Richard Coast


    Full Text Available Lower body positive pressure (LBPP, or ‘anti-gravity’ treadmills® have become increasingly popular among elite distance runners. However, to date, few studies have assessed the effect of body weight support (BWS on the metabolic cost of running among elite runners. This study evaluated how BWS influenced the relationship between velocity and metabolic cost among 6 elite male distance runners. Participants ran three- 16 minute tests consisting of 4 stages of 4 minutes at 8, 7, 6 and 5 min·mile−1 pace (3.35, 3.84, 4.47 and 5.36 m·s−1, while maintaining an aerobic effort (Respiratory Exchange Ratio ≤1.00. One test was run on a regular treadmill, one on an anti-gravity treadmill with 40% BWS and one with 20% BWS being provided. Expired gas data were collected and regression equations used to determine and compare slopes. Significant decreases in oxygen uptake (V̇O2 were found with each increase in BWS (p < 0.001. At 20% BWS, the average decrease in net VO2 was greater than proportional (34%, while at 40% BWS, the average net reduction in VO2 was close to proportional (38%. Across velocities, the slope of the relationship between VO2 and velocity (ΔV̇O2/Δv was steeper with less support. The slopes at both the 20% and 40% BWS conditions were similar, especially when compared to the regular treadmill. Variability in VO2 between athletes was much greater on the LBPP treadmill and was greater with increased levels of BWS. In this study we evaluated the effect of body weight support on V̇O2 among elite distance runners. We have shown that oxygen uptake decreased with support, but not in direct proportion to that support. Further, because of the high variability in oxygen uptake between athletes on the LBPP treadmill, prediction equations may not be reliable and other indicators (heart rate, perceived exertion or directly measured oxygen uptake should be used to guide training intensity when training on the LBPP treadmill.

  5. Continuos incremental field test to estimate velocity and maximal oxygen consumption in non-expert runners


    José A. Bragada; Moreno, R; Barbosa, Tiago M


    Parameters such as a maximal oxygen uptake (VO2max) and velocity at which VO2max occurs (VelVO2max) are often used to training control purposes to enhance runner’s performance. This study had two purposes: (i) determine the relationship between VelVO2max obtained in continuous incremental filed test (CIFT) and VelVO2max determined on a treadmill in a laboratory; and (II) verify if it is possible to estimate the VO2max based on CIFT velocity

  6. Effects of Repetitive Hyperbaric Oxygen Treatment in Patients with Acute Cerebral Infarction: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Cheng-Hsin Chen


    Full Text Available The role of hyperbaric oxygen therapy (HBOT in the treatment of acute ischemic stroke is controversial. This prospective study assessed the efficacy and safety of HBOT as adjuvant treatment on 46 acute ischemic stroke in patients who did not receive thrombolytic therapy. The HBOT group (n=16 received conventional medical treatment with 10 sessions of adjunctive HBOT within 3–5 days after stroke onset, while the control group (n=30 received the same treatment but without HBOT. Early (around two weeks after onset and late (one month after onset outcomes (National Institutes of Health Stroke Scale, NIHSS scores and efficacy (changes of NIHSS scores of HBOT were evaluated. The baseline clinical characteristics were similar in both groups. Both early and late outcomes of the HBOT group showed significant difference (P≤0.001. In the control group, there was only significant difference in early outcome (P=0.004. For early efficacy, there was no difference when comparing changes of NIHSS scores between the two groups (P=0.140 but there was statistically significant difference when comparing changes of NIHSS scores at one month (P≤0.001. The HBOT used in this study may be effective for patients with acute ischemic stroke and is a safe and harmless adjunctive treatment.

  7. Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury. (United States)

    He, Guoqian; Xu, Wenming; Tong, Linyan; Li, Shuaishuai; Su, Shiceng; Tan, Xiaodan; Li, Changqing


    Autophagic (type II) cell death has been suggested to play pathogenetic roles in cerebral ischemia. Growth arrest and DNA damage response 45b (Gadd45b) has been shown to protect against rat brain ischemia injury through inhibiting apoptosis. However, the relationship between Gadd45b and autophagy in cerebral ischemia/reperfusion (I/R) injury remains uncertain. The aim of this study is to investigate the effect of Gadd45b on autophagy. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) model of rat primary cortex neurons, and lentivirus interference used to silence Gadd45b expression. Cell viability and injury assay were performed using CCK-8 and LDH kit. Autophagy activation was monitored by expression of ATG5, LC3, Beclin-1, ATG7 and ATG3. Neuron apoptosis was monitored by expression of Bcl-2, Bax, cleaved caspase3, p53 and TUNEL assay. Neuron neurites were assayed by double immunofluorescent labeling with Tuj1 and LC3B. Here, we demonstrated that the expression of Gadd45b was strongly up-regulated at 24 h after 3 h OGD treatment. ShRNA-Gadd45b increased the expression of autophagy related proteins, aggravated OGD/R-induced neuron cell apoptosis and neurites injury. ShRNA-Gadd45b co-treatment with autophagy inhibitor 3-methyladenine (3-MA) or Wortmannin partly inhibited the ratio of LC3II/LC3I, and slightly ameliorated neuron cell apoptosis under OGD/R. Furthermore, shRNA-Gadd45b inhibited the p-p38 level involved in autophagy, but increased the p-JNK level involved in apoptosis. ShRNA-Gadd45b co-treatment with p38 inhibitor obviously induced autophagy. ShRNA-Gadd45b co-treatment with JNK inhibitor alleviated neuron cell apoptosis. In conclusion, our data suggested that Gadd45b inhibited autophagy and apoptosis under OGD/R. Gadd45b may be a common regulatory protein to control autophagy and apoptosis.

  8. The effects of physical fitness and body composition on oxygen consumption and heart rate recovery after high-intensity exercise. (United States)

    Campos, E Z; Bastos, F N; Papoti, M; Freitas Junior, I F; Gobatto, C A; Balikian Junior, P


    The aim of this study was to investigate the potential relationship between excess post-exercise oxygen consumption (EPOC), heart rate recovery (HRR) and their respective time constants (tvo2 and t HR) and body composition and aerobic fitness (VO2max) variables after an anaerobic effort. 14 professional cyclists (age=28.4±4.8 years, height=176.0±6.7 cm, body mass=74.4±8.1 kg, VO2max=66.8±7.6 mL·kg - 1·min - 1) were recruited. Each athlete made 3 visits to the laboratory with 24 h between each visit. During the first visit, a total and segmental body composition assessment was carried out. During the second, the athletes undertook an incremental test to determine VO2max. In the final visit, EPOC (15-min) and HRR were measured after an all-out 30 s Wingate test. The results showed that EPOC is positively associated with % body fat (r=0.64), total body fat (r=0.73), fat-free mass (r=0.61) and lower limb fat-free mass (r=0.55) and negatively associated with HRR (r= - 0.53, pEPOC after high-intensity exercise. Even in short-term exercise, the major metabolic disturbance due to higher muscle mass and total muscle mass may increase EPOC. However, body fat impedes HRR and delays recovery of oxygen consumption after effort in highly trained athletes.

  9. In vitro measurements of oxygen consumption rates in hTERT-RPE cells exposed to low levels of red light (United States)

    Wigle, Jeffrey C.; Castellanos, Cherry C.


    Exposure to 2.88 J/cm2 of red light induces an adaptive response against a lethal pulse of 2.0 μm laser radiation in hTERT-RPE cells in vitro, but not in a knockdown mutant for vascular endothelial growth factor c (VEGF-C). The generally accepted initiation sequence for photobiomodulation is that absorption of red light by cytochome c oxidase (CCOX) of the electron transport chain increases the binding affinity of CCOX for O2 vs. nitric oxide (NO). This results in displacement of NO by O2 in the active site of CCOX, thereby increasing cellular respiration and intracellular ATP. We've previously reported that red-light exposure induces a small, but consistently reproducible, increase in NO levels in these cells. But the relative importance of NO and oxidative phosphorylation is unclear because little is known about the relative contributions of NO and ATP to the response. However, if NO dissociation from CCOX actually increases oxidative phosphorylation, one should see a corresponding increase in oxygen consumption. A Seahorse Extracellular Flux Analyzer was used to measure oxygen consumption rates (OCR) in normal and mutant cells as a proxy for oxidative phosphorylation. Both basal respiration and maximum respiration rates in normal cells are significantly higher than in the mutant. The normal cells have a significant amount of "excess capacity," whereas the VEGF-C(KD) have little or none. The OCR in exposed normal cells is lower than in unexposed cells when measured immediately after exposure. The exposures used for these experiments had no effect on the OCR in mutant cells.

  10. The effects of interval- vs. continuous exercise on excess post-exercise oxygen consumption and substrate oxidation rates in subjects with type 2 diabetes

    DEFF Research Database (Denmark)

    Karstoft, Kristian; Wallis, Gareth A; Pedersen, Bente K


    ), substrate oxidation rates and lipid metabolism in the hours following exercise in subjects with type 2 diabetes (T2D). METHODS: Following an overnight fast, ten T2D subjects (M/F: 7/3; age=60.3±2.3years; body mass index (BMI)=28.3±1.1kg/m(2)) completed three 60-min interventions in a counterbalanced...... concentrations, and glycerol kinetics were increased comparably during and after IW and CW compared to CON. CONCLUSIONS: Interval exercise results in greater EPOC than oxygen-consumption matched continuous exercise during a post-exercise MMTT in subjects with T2D, whereas effects on substrate oxidation and lipid......BACKGROUND: For unknown reasons, interval training often reduces body weight more than energy-expenditure matched continuous training. We compared the acute effects of time-duration and oxygen-consumption matched interval- vs. continuous exercise on excess post-exercise oxygen consumption (EPOC...

  11. Effect of Arachidonic Acid on the Rate of Oxygen Consumption in Isolated Cardiomyocytes from Intact Rats and Animals with Ischemic or Diabetic Injury to the Heart. (United States)

    Egorova, M V; Kutsykova, T V; Afanas'ev, S A; Popov, S V


    We studied the rate of oxygen consumption by isolated cardiomyocytes from intact rats and animals with experimental myocardial infarction or streptozotocin-induced diabetes mellitus. The measurements were performed in standard incubation medium under various conditions of oxygenation and after addition of arachidonic acid (20 μmol/liter). Under normoxic conditions, arachidonic acid improves respiration of cardiomyocytes from intact animals, but reduces this parameter in cells isolated from animals with pathologies. The intensity of O2 consumption by cardiomyocytes from intact rats and animals with pathologies was shown to decrease during hypoxia. Addition of arachidonic acid aggravated inhibition of respiration for cardiomyocytes from intact rats and specimens with myocardial infarction, but had no effect in diabetes mellitus. The effect of arachidonic acid on oxygen consumption rate is probably mediated by a nonspecific mechanism realized at the mitochondrial level.

  12. Validation of measurement protocols to assess oxygen consumption and blood flow in the human forearm by near-infrared spectroscopy (United States)

    Van Beekvelt, Mireille C. P.; Colier, Willy N.; van Engelen, Baziel G. M.; Hopman, Maria T. E.; Wevers, Ron A.; Oeseburg, Berend


    Near infrared spectroscopy (NIRS) has been used to monitor oxygenation changes in muscle. Quantitative values for O2 consumption, blood flow and venous saturation have been reported by several investigators. The amount of these measurements is, however, still limited and complete validation has not yet been established. The aim of this study was to investigate the different NIRS methods to calculate O2 consumption (VO2) and forearm blood flow (FBF) and to validate the data with the accepted method of strain-gauge plethysmography and blood sampling. Thirteen subjects were tested in rest and during static isometric handgrip exercise at 10% MVC. The NIRS optodes were positioned on the flexor region of the arm. A significant correlation was found between plethysmograph data and NIRS [tHb] during venous occlusion in rest (r EQ 0.925 - 0.994, P exercise (r equals 0.895 - 0.990, P exercise. It seems that although NIRS is a good qualitative monitoring technique, quantification is difficult due to the great variability that is found between the subjects.

  13. Contributions to elevated metabolism during recovery: dissecting the excess postexercise oxygen consumption (EPOC) in the desert iguana (Dipsosaurus dorsalis). (United States)

    Hancock, Thomas V; Gleeson, Todd T


    The excess postexercise oxygen consumption (EPOC), a measure of recovery costs, is known to be large in ectothermic vertebrates such as the desert iguana (Dipsosaurus dorsalis), especially after vigorous activity. To analyze the cause of these large recovery costs in a terrestrial ectotherm, Dipsosaurus were run for 15 s at maximal-intensity (distance 35.0+/-1.9 m; 2.33+/-0.13 m s(-1)) while O(2) uptake was monitored via open-flow respirometry. Muscle metabolites (adenylates, phosphocreatine, and lactate) were measured at rest and after 0, 3, 10, and 60 min of recovery. Cardiac and ventilatory activity during rest and recovery were measured, as were whole-body lactate and blood lactate, which were used to estimate total muscle activity. This vigorous activity was supported primarily by glycolysis (65%) and phosphocreatine hydrolysis (29%), with only a small contribution from aerobic metabolism (2.5%). Aerobic recovery lasted 43.8+/-4.6 min, and EPOC measured 0.166+/-0.025 mL O(2) g(-1). This was a large proportion (98%) of the total suprabasal metabolic cost of the activity to the animal. The various contributions to EPOC after this short but vigorous activity were quantified, and a majority of EPOC was accounted for. The two primary causes of EPOC were phosphocreatine repletion (32%-50%) and lactate glycogenesis (30%-47%). Four other components played smaller roles: ATP repletion (8%-13%), elevated ventilatory activity (2%), elevated cardiac activity (2%), and oxygen store resaturation (1%).

  14. Fat-free Mass and Excess Post-exercise Oxygen Consumption in the 40 Minutes after Short-duration Exhaustive Exercise in Young Male Japanese Athletes


    Tahara, Yasuaki; Moji, Kazuhiko; Honda, Sumihisa; Nakao, Rieko; Tsunawake, Noriaki; Fukuda, Rika; Aoyagi, Kiyoshi; Mascie-Taylor, Nicholas


    The relationship between fat-free mass (FFM) and excess post-exercise oxygen consumption (EPOC) has not been well researched because of the relatively small number of subjects studied. This study investigated the effects of FFM on EPOC and EPOC/maximum oxygen consumption. 250 Japanese male athletes between 16 and 21 years old from Nagasaki prefecture had their EPOC measured up to 40 minutes after short-duration exhaustive exercise. The value was named as EPOC_. The proportions of EPOC up to 1...

  15. The effect of adrenaline and high Ca2+ on the mechanical performance and oxygen consumption of the isolated perfused trout (Oncorhynchus mykiss) heart

    DEFF Research Database (Denmark)

    Rytter, Dorte; Gesser, Hans


    In heart muscle from mammals, catecholamines frequently evoke an oxygen waste and reduce efficiency. It was examined if this also applies to fish in which heart muscle activity is often restricted by oxygen availability. In the isolated perfused heart from rainbow trout, adrenaline (0.5 micro......M) increased power output by approximately 97%, when afterload was adjusted to maximum both before and after adrenaline addition, and by approximately 68%, when afterload remained at the maximum obtained before adrenaline addition. Oxygen consumption was enhanced by a similar amount (approximately 70%) in both...... situations. Hence, efficiency, i.e. power output/oxygen consumption, increased significantly from 25 to 30% for the heart always exposed to maximal afterload, whereas it stayed unchanged at 24% for the heart exposed to control afterload only. Adrenaline increases the Ca2+ activity participating in activation...

  16. Anti-neuroinflammatory and antioxidant effects of N-acetyl cysteine in long-term consumption of artificial sweetener aspartame in the rat cerebral cortex

    Directory of Open Access Journals (Sweden)

    Afaf Abbass Sayed Saleh


    Long term consumption of the artificial sweetener aspartame (ASP induced large increments in cortical inflammation and oxidative stress. Daily oral NAC administration can significantly reverse brain-derived neurotrophic factor (BDNF levels, blocked the cyclooxygenase-2 (COX-2 and prostaglandin E2 (PGE2 production with selective attenuation in expression of proinflammatory cytokines of interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α in the rat cerebral cortex. Also, NAC can significantly replenish and correct intracellular glutathione (GSH levels, modulate the elevated levels of total nitric oxide (TNO and lipid peroxidation (LPO. Conclusions: The present results amply support the concept that the brain oxidative stress and inflammation coexist in experimental animals chronically treated with aspartame and they represent two distinct therapeutic targets in ASP toxicity. The present data propose that NAC attenuated ASP neurotoxicity and improved neurological functions, suppressed brain inflammation, and oxidative stress responses and may be a useful strategy for treating ASP-induced neurotoxicity.

  17. The effects of different ventilator modes on cerebral tissue oxygen saturation in patients with bidirectional superior cavopulmonary connection

    Directory of Open Access Journals (Sweden)

    Ayda Türköz


    Full Text Available Aims and Objectives: We used near-infrared spectroscopy to document changes in cerebral tissue oxygen saturation (SctO 2 in response to ventilation mode alterations after bidirectional Glenn (BDG; superior cavopulmonary connection procedure. We also determined whether spontaneous ventilation have a beneficial effect on hemodynamic status, lactate and SctO 2 when compared with other ventilation modes. Materials and Methods: 20 consecutive patients undergoing BDG were included. We measured SctO 2 during three ventilator modes (intermittent positive-pressure ventilation [IPPV]; synchronized intermittent mandatory ventilation [SIMV]; and continuous positive airway pressure + pressure support ventilation [CPAP + PSV]. We, also, measured mean airway pressure (AWP, arterial blood gases, lactate and systolic arterial pressures (SAP. Results: There was no change in SctO 2 in IPPV and SIMV modes; the SctO 2 measured during CPAP + PSV and after extubation increased significantly (60.5 ± 11, 61 ± 10, 65 ± 10, 66 ± 11 respectively ( P < 0.05. The differences in the SAP measured during IPPV and SIMV modes was insignificant; the SAP increased significantly during CPAP + PSV mode and after extubation compared with IPPV and SIMV (109 ± 11, 110 ± 12, 95 ± 17, 99 ± 13 mmHg, respectively ( P < 0.05. Mean AWP did not change during IPPV and SIMV modes, mean AWP decreased significantly during CPAP + PSV mode (14 ± 4, 14 ± 3, 10 ± 1 mmHg, respectively ( P < 0.01. Conclusions: The SctO 2 was higher during CPAP + PSV ventilation and after extubation compared to IPPV and SIMV modes of ventilation. The mean AWP was lower during CPAP + PSV ventilation compared to IPPV and SIMV modes of ventilation.

  18. Effects of oxygen and glucose deprivation on the expression and distribution of neuronal and inducible nitric oxide synthases and on protein nitration in rat cerebral cortex. (United States)

    Alonso, David; Serrano, Julia; Rodríguez, Ignacio; Ruíz-Cabello, Jesús; Fernández, Ana Patricia; Encinas, Juan Manuel; Castro-Blanco, Susana; Bentura, María Luisa; Santacana, María; Richart, Ana; Fernández-Vizarra, Paula; Uttenthal, Lars Otto; Rodrigo, José


    Changes in the nitric oxide (NO) system of the rat cerebral cortex were investigated by immunohistochemistry, immunoblotting, NO synthase (NOS) activity assay, and magnetic resonance imaging (MRI) in an experimental model of global cerebral ischemia and reperfusion. Brains were perfused transcardially with an oxygenated plasma substitute and subjected to 30 minutes of oxygen and glucose deprivation, followed by reperfusion for up to 12 hours with oxygenated medium containing glucose. A sham group was perfused without oxygen or glucose deprivation, and a further group was treated with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) before and during perfusion. Global ischemia led to cerebrocortical injury as shown by diffusion MRI. This was accompanied by increasing morphologic changes in the large type I interneurons expressing neuronal NOS (nNOS) and the appearance of nNOS immunoreactivity in small type II neurons. The nNOS-immunoreactive band and calcium-dependent NOS activity showed an initial increase, followed by a fall after 6 hours of reperfusion. Inducible NOS immunoreactivity appeared in neurons, especially pyramidal cells of layers IV-V, after 4 hours of reperfusion, with corresponding changes on immunoblotting and in calcium-independent NOS activity. Immunoreactive protein nitrotyrosine, present in the nuclear area of neurons in nonperfused controls and sham-perfused animals, showed changes in intensity and distribution, appearing in the neuronal processes during the reperfusion period. Prior and concurrent L-NAME administration blocked the changes on diffusion MRI and attenuated the morphologic changes, suggesting that NO and consequent peroxynitrite formation during ischemia-reperfusion contributes to cerebral injury.

  19. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils

    DEFF Research Database (Denmark)

    Montero, Maria; Nielsen, Marianne; Rønn, Lars Christian B;


    PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD......) and in transient global cerebral ischemia in gerbils. For in vitro studies, hippocampal slice cultures derived from 7-day-old mice and grown for 14 days, were submersed in oxygen-glucose deprived medium for 30 min and exposed to PNQX for 24 h, starting together with OGD, immediately after OGD, or 2 h after OGD...... ischemia in gerbils in vivo and oxygen-glucose deprivation in mouse hippocampal slice cultures....

  20. Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation (United States)

    Papademetriou, Maria D.; Tachtsidis, Ilias; Elliot, Martin J.; Hoskote, Aparna; Elwell, Clare E.


    Assessing noninvasively cerebral autoregulation, the protective mechanism of the brain to maintain constant cerebral blood flow despite changes in blood pressure, is challenging. Infants on life support system (ECMO) for cardiorespiratory failure are at risk of cerebral autoregulation impairment and consequent neurological problems. We measured oxyhaemoglobin concentration (HbO2) by multichannel (12 channels) near-infrared spectroscopy (NIRS) in six infants during sequential changes in ECMO flow. Wavelet cross-correlation (WCC) between mean arterial pressure (MAP) and HbO2 was used to construct a time-frequency representation of the concordance between the two signals to assess the nonstationary aspect of cerebral autoregulation and investigate regional variations. Group data showed that WCC increases with decreasing ECMO flow indicating higher concordance between MAP and HbO2 and demonstrating loss of cerebral autoregulation at low ECMO flows. Statistically significant differences in WCC were observed between channels placed on the right and left scalp with channels on the right exhibiting higher values of WCC suggesting that the right hemisphere was more susceptible to disruption of cerebral autoregulation. Multichannel NIRS in conjunction with wavelet analysis methods can be used to assess regional variations in dynamic cerebral autoregulation with important clinical application in the management of critically ill children on life support systems.

  1. Oxygen consumption rate of freshwater pearl mussel (Hyriopsis cumingii) reared in ponds%池塘养殖三角帆蚌的耗氧率

    Institute of Scientific and Technical Information of China (English)

    郑侠飞; 王岩


    Oxygen consumption rate is an important physiological parameter for evaluating the adaptation and influence of aquatic animals to the surrounding environment.The oxygen consumption rate of bivalve is dependent on various internal and external factors,such as developmental stage,body mass and sexual cycle stage,geographic latitude,season,temperature oscillation,feeding condition,oxygen saturation in water,and tidal conditions.Therefore,oxygen consumption rate of bivalve measured in situ is more accurate in reflecting metabolic intensity of the bivalve in natural habitat than that measured under laboratory condition.In this study,oxygen consumption rate of freshwater pearl mussel Hyriopsis cumingii with different mussel sizes was measured in situ using flow through respirometry.The mussels included one-year-old (shell lengths were 52 and 77 mm respectively) and two-year-old (shell lengths were 69,87 and 102 mm respectively) ones.The measurement lasted for 3 days,during which the mussels were put in respirometers and aerated well water flow through the respirometers.Water samples were collected at the inlet and outlet of respirometers at 0:00,6:00,12:00 and 18:00 every day,and dissolved oxygen was analyzed with the Winkler method.During the measurement,water temperature was (22.7 ± 0.7) ℃,and pH was 8.07 ± 0.02,and dissolved oxygen concentration in water flowing into the respirometers was (6.05± 0.52) mg/L.The results showed that the mass-specific oxygen consumption rate decreased with the increase of body mass of the mussels.When the shell lengths were 52,77,69,87 and 102 mm,the oxygen consumption rate of per unit mass was (27.85±7.15),(17.94±4.89),(18.76±6.55),(14.26±3.24) and (14.25±2.51) mg/(kg·h),respectively.The individual oxygen consumption rate [CI/(mg/(individual.d))] significantly correlated to mussel mass (m/g) and shell length (L/mm),and the regression equation was lg CI =0.781 lg m-0.051 (R2 =0.826,n =43,P<0.05) or lg CI =2.648 lg L-4 (R2 =0

  2. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard


    responses of synaptic activity (LFP), CBF, tpO2 and CMRO2 in the TC network. Also the impact on neurovascular and neurometabolic coupling were examined. Last but not least the influence of CSD on ongoing (baseline) CBF and CMRO2 was examined. The results demonstrate a long lasting effect of CSD on baseline...

  3. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus). (United States)

    Pasparakis, Christina; Mager, Edward M; Stieglitz, John D; Benetti, Daniel; Grosell, Martin


    The timing and location of the 2010 Deepwater Horizon (DWH) incident within the Gulf of Mexico resulted in crude oil exposure of many commercially and ecologically important fish species, such as mahi-mahi (Coryphaena hippurus), during the sensitive early life stages. Previous research has shown that oil exposure during the embryonic stage of predatory pelagic fish reduces cardiac function - a particularly important trait for fast-swimming predators with high aerobic demands. However, it is unclear whether reductions in cardiac function translate to impacts on oxygen consumption in these developing embryos and larvae. A 24-channel optical-fluorescence oxygen-sensing system for high-throughput respiration measurements was used to investigate the effects of oil exposure, temperature and developmental stage on oxygen consumption rates in embryonic and larval mahi-mahi. Oil-exposed developing mahi-mahi displayed increased oxygen consumption, despite clear cardiac deformities and bradycardia, confirming oxygen uptake and delivery from a source other than the circulatory system. In addition to metabolic rate measurements, nitrogenous waste excretion was measured to test the hypothesis that increased energy demand was fueled by protein catabolism. This is the first study to our knowledge that demonstrates increased energy demand and energy depletion in oil-exposed developing mahi-mahi.

  4. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  5. Effects of the Oxygen-Carrying Solution OxyVita C on the Cerebral Microcirculation and Systemic Blood Pressures in Healthy Rats

    Directory of Open Access Journals (Sweden)

    Rania Abutarboush


    Full Text Available The use of hemoglobin-based oxygen carriers (HBOC as oxygen delivering therapies during hypoxic states has been hindered by vasoconstrictive side effects caused by depletion of nitric oxide (NO. OxyVita C is a promising oxygen-carrying solution that consists of a zero-linked hemoglobin polymer with a high molecular weight (~17 MDa. The large molecular weight is believed to prevent extravasation and limit NO scavenging and vasoconstriction. The aim of this study was to assess vasoactive effects of OxyVita C on systemic blood pressures and cerebral pial arteriole diameters. Anesthetized healthy rats received four intravenous (IV infusions of an increasing dose of OxyVita C (2, 25, 50, 100 mg/kg and hemodynamic parameters and pial arteriolar diameters were measured pre- and post-infusion. Normal saline was used as a volume-matched control. Systemic blood pressures increased (P ≤ 0.05 with increasing doses of OxyVita C, but not with saline. There was no vasoconstriction in small (<50 µm and medium-sized (50–100 µm pial arterioles in the OxyVita C group. In contrast, small and medium-sized pial arterioles vasoconstricted in the control group. Compared to saline, OxyVita C showed no cerebral vasoconstriction after any of the four doses evaluated in this rat model despite increases in blood pressure.

  6. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students. (United States)

    Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina

    Nintendo Wii, Sony Playstation Move, and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.

  7. Cerebral oxygenation after birth

    DEFF Research Database (Denmark)

    Hessel, Trine W; Hyttel-Sorensen, Simon; Greisen, Gorm


    .19 p = 86.2% (CI 85.0-87.4%) for INVOS and FORE-SIGHT, respectively. The within-subject standard deviation during steady-state repeated measurements was 4.8% ± 0.86 for INVOS and 2.8% ± 0.5 for FORE-SIGHT. CONCLUSION...

  8. The Influence of Endothelial Function and Myocardial Ischemia on Peak Oxygen Consumption in Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Simon L. Bacon


    Full Text Available Impaired endothelial function has been shown to limit exercise in coronary artery disease (CAD patients and has been implicated in myocardial ischemia. However, the association of endothelial function and ischemia on peak exercise oxygen consumption (VO2 has not been previously reported. A total of 116 CAD patients underwent standard exercise stress testing, during which VO2 was measured. On a separate day, endothelial-dependent and -independent function were assessed by ultrasound using flow-mediated arterial vasodilation (FMD and sublingual glyceryl trinitrate administration (GTNMD of the brachial artery. Patients with exercise-induced myocardial ischemia had lower FMD than nonischemic patients (3.64±0.57 versus 4.98±0.36, P=.050, but there was no difference in GTNMD (14.11±0.99 versus 15.47±0.63, P=.249. Analyses revealed that both FMD (P=.006 and GTNMD (P=.019 were related to peak VO2. However, neither the presence of ischemia (P=.860 nor the interaction of ischemia with FMD (P=.382 and GTNMD (P=.151 was related to peak VO2. These data suggest that poor endothelial function, potentially via impaired NO production and smooth muscle dysfunction, may be an important determinant of exercise capacity in patients with CAD, independent of myocardial ischemia.

  9. High- and moderate-intensity aerobic exercise and excess post-exercise oxygen consumption in men with metabolic syndrome. (United States)

    Larsen, I; Welde, B; Martins, C; Tjønna, A E


    Physical activity is central in prevention and treatment of metabolic syndrome. High-intensity aerobic exercise can induce larger energy expenditure per unit of time compared with moderate-intensity exercise. Furthermore, it may induce larger energy expenditure at post-exercise recovery. The aim of this study is to compare the excess post-exercise oxygen consumption (EPOC) in three different aerobic exercise sessions in men with metabolic syndrome. Seven men (age: 56.7 ± 10.8) with metabolic syndrome participated in this crossover study. The sessions consisted of one aerobic interval (1-AIT), four aerobic intervals (4-AIT), and 47-min continuous moderate exercise (CME) on separate days, with at least 48 h between each test day. Resting metabolic rate (RMR) was measured pre-exercise and used as baseline value. EPOC was measured until baseline metabolic rate was re-established. An increase in O2 uptake lasting for 70.4 ± 24.8 min (4-AIT), 35.9 ± 17.3 min (1-AIT), and 45.6 ± 17.3 min (CME) was observed. EPOC were 2.9 ± 1.7 L O2 (4-AIT), 1.3 ±  .1 L O2 (1-AIT), and 1.4 ± 1.1 L O2 (CME). There were significant differences (P EPOC was highest after 4-AIT. These data suggest that exercise intensity has a significant positive effect on EPOC in men with metabolic syndrome.

  10. Excess postexercise oxygen consumption is unaffected by the resistance and aerobic exercise order in an exercise session. (United States)

    Oliveira, Norton L; Oliveira, Jose


    The main purpose of this study was to compare the magnitude and duration of excess postexercise oxygen consumption (EPOC) after 2 exercise sessions with different exercise mode orders, resistance followed by aerobic exercise (R-A); aerobic by resistance exercise (A-R). Seven young men (19.6 ± 1.4 years) randomly underwent the 2 sessions. Aerobic exercise was performed on a treadmill for 30 minutes (80-85% of reserve heart rate). Resistance exercise consisted of 3 sets of 10 repetition maximum on 5 exercises. Previous to the exercise sessions, V(O2), heart rate, V(CO2), and respiratory exchange rate (RER) were measured for 15 minutes and again during recovery from exercise for 60 minutes. The EPOC magnitude was not significantly different between R-A (5.17 ± 2.26 L) and A-R (5.23 ± 2.48 L). Throughout the recovery period (60 minutes), V(O2) and HR values were significantly higher than those observed in the pre-exercise period (p EPOC magnitude and duration. Therefore, it is not necessary for an individual to consider the EPOC when making the decision as to which exercise mode is better to start a training session.

  11. The study on oxygen consumption rate in juvenile tench (Tinca tinca)%丁(鱼岁)幼鱼耗氧率研究

    Institute of Scientific and Technical Information of China (English)

    徐连伟; 董宏伟; 郭维士


    The effects of weight, temperature, salinity, pH, body color and photoperiod on oxygen consumption rate were studied at (20 ±0. 5)℃ in this paper, with juvenile tench Tinea tinea samples of (126. 9~151. 6) g body weight and (21. 7~22. 6) cm body length. The results showed that diurnal rhythm of the consumption was observed in the experiment, the two oxygen consumption peaks occurred at nearly 6;00 and 18;00. The oxygen consumption ( Y ' ) increased with body weight ( W) increasing, while the oxygen consumption rate ( Y) decreased with the body weight increasing, the correlation formulas was Y ' = 0. 6787W0.697(r =0.9995)and Y = 0.6807W-0.3034(r = -0.9983). And the oxygen consumption and the oxygen consumption rate (Y) raised with the increase of water temperature ( T) from 15℃ to 30℃ (the correlation formulas was Y= 0. 106T0.4688, r = 0. 9943 ) and decreased with the increase of pH from 6. 0 to 9. 0. When salinity changed from 0 to 9, the oxygen consumption rate raised in the beginning then decreased. And the oxygen consumption rate was effected by body color and photoperiod significantly ( P <0.05).%研究了体重、水温、盐度、pH、光周期和体色对丁(鱼岁)(Tinca tinca)幼鱼耗氧率的影响.结果表明:在水温(20±0.5)℃下,丁(鱼岁)[体重(126.9151.6)g,体长(21.71 ~22.64) cm]的耗氧率有明显的昼夜节律性,一昼夜出现两个耗氧高峰,分别在6:00和18:00;耗氧率(Y)与体重(W)呈负相关,关系式为:Y=0.6807W-0.3034(r=-0.9983);耗氧量(Y’)与体重呈正相关,关系式为:Y'=0.6787W0.697(r=0.9995).在(15~ 30)℃水温范围内,耗氧率(Y)随着水温(T)的上升而增大,关系式为:Y =0.106T0.4688(r =0.9943).盐度升高(0~9),耗氧率先升高后降低.耗氧率随着pH值(6.0 ~9.0)的升高而降低.体色和光周期对丁(鱼岁)耗氧率有显著的影响(P<0.05).

  12. Advanced cerebral monitoring in neurocritical care

    Directory of Open Access Journals (Sweden)

    Barazangi Nobl


    Full Text Available New cerebral monitoring techniques allow direct measurement of brain oxygenation and metabolism. Investigation using these new tools has provided additional insight into the understanding of the pathophysiology of acute brain injury and suggested new ways to guide management of secondary brain injury. Studies of focal brain tissue oxygen monitoring have suggested ischemic thresholds in focal regions of brain injury and demonstrated the interrelationship between brain tissue oxygen tension (P bt O 2 and other cerebral physiologic and metabolic parameters. Jugular venous oxygen saturation (SjVO 2 monitoring may evaluate global brain oxygen delivery and consumption, providing thresholds for detecting brain hypoperfusion and hyperperfusion. Furthermore, critically low values of P bt O 2 and SjVO 2 have also been predictive of mortality and worsened functional outcome, especially after head trauma. Cerebral microdialysis measures the concentrations of extracellular metabolites which may be relevant to cerebral metabolism or ischemia in focal areas of injury. Cerebral blood flow may be measured in the neurointensive care unit using continuous methods such as thermal diffusion and laser Doppler flowmetry. Initial studies have also attempted to correlate findings from advanced neuromonitoring with neuroimaging using dynamic perfusion computed tomography, positron emission tomography, and Xenon computed tomography. Additionally, new methods of data acquisition, storage, and analysis are being developed to address the increasing burden of patient data from neuromonitoring. Advanced informatics techniques such as hierarchical data clustering, generalized linear models, and heat map dendrograms are now being applied to multivariable patient data in order to better develop physiologic patient profiles to improve diagnosis and treatment.

  13. Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer (United States)

    Diop, Mamadou; Wright, Eric; Toronov, Vladislav; Lee, Ting-Yim; St. Lawrence, Keith


    Broadband continuous-wave near-infrared spectroscopy (CW-NIRS) is an attractive alternative to time-resolved and frequency-domain techniques for quantifying cerebral blood flow (CBF) and oxygen metabolism in newborns. However, efficient light collection is critical to broadband CW-NIRS since only a small fraction of the injected light emerges from any given area of the scalp. Light collection is typically improved by optimizing the contact area between the detection system and the skin by means of light guides with large detection surface. Since the form-factor of these light guides do not match the entrance of commercial spectrometers, which are usually equipped with a narrow slit to improve their spectral resolution, broadband NIRS spectrometers are typically custom-built. Nonetheless, off-the-shelf spectrometers have attractive advantages compared to custom-made units, such as low cost, small footprint, and wide availability. We demonstrate that off-the-shelf spectrometers can be easily converted into suitable instruments for deep tissue spectroscopy by improving light collection, while maintaining good spectral resolution, and reducing measurement noise. The ability of this approach to provide reliable cerebral hemodynamics was illustrated in a piglet by measuring CBF and oxygen metabolism under different anesthetic regimens.

  14. Repetitive Transcranial Magnetic Stimulation Changes Cerebral Oxygenation on the Left Dorsolateral Prefrontal Cortex in Bulimia Nervosa: A Near-Infrared Spectroscopy Pilot Study. (United States)

    Sutoh, Chihiro; Koga, Yasuko; Kimura, Hiroshi; Kanahara, Nobuhisa; Numata, Noriko; Hirano, Yoshiyuki; Matsuzawa, Daisuke; Iyo, Masaomi; Nakazato, Michiko; Shimizu, Eiji


    Previous studies showed that food craving in eating disorders can be weakened with high-frequency repetitive transcranial magnetic stimulation (rTMS) on the left dorsolateral prefrontal cortex (DLPFC). The aims of this study were to assess cerebral oxygenation change induced with rTMS and to assess the short-term impact of rTMS on food craving and other bulimic symptoms in patients with bulimia nervosa (BN). Eight women diagnosed with BN according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria participated in this study. We measured haemoglobin concentration changes in the DLPFC with near-infrared spectroscopy during cognitive tasks measuring self-regulatory control in response to food photo stimuli, both at baseline and after a single session of rTMS. Subjective ratings for food cravings demonstrated significant reduction. A significant decrease in cerebral oxygenation of the left DLPFC was also observed after a single session of rTMS. Measurement with NIRS after rTMS intervention may be applicable for discussing the mechanisms underlying rTMS modulation in patients with BN.

  15. The effect of dietary restriction and menstrual cycle on excess post-exercise oxygen consumption (EPOC) in young women. (United States)

    Fukuba, Y; Yano, Y; Murakami, H; Kan, A; Miura, A


    The purpose of this study was to evaluate the effect of acute dietary restriction on excess post-exercise oxygen consumption (EPOC) in young women at two different phases of the menstrual cycle. Five young sedentary women (age 21-22 years) participated in this study. Each subject visited the laboratory eight times for measurement of EPOC. They performed cycle ergometer exercise for 60 min at a work rate corresponding to approximately 70% of VO2max under each four different conditions (i.e. standard diet/follicular phase (SF), standard diet/luteal phase (SL), restricted diet/follicular phase (RF) and restricted diet/luteal phase (RL)). The exercise was performed in the morning and VO2 was measured for the last 15 min of each hour for 7 h after the exercise. As a control, VO2 was also measured with an identical time schedule under the same four conditions but without exercise. EPOC was calculated as the difference of the VO2-time integral for 7 h between the exercise and control trial days in each of the four conditions (i.e. SL, SF, RL and RF). The diet was precisely controlled during 2 days (i.e. the test day and the day preceding it). The standard diet was 1600 kcal day-1 and the restricted diet was half of the standard diet. A two-way (dietary and menstrual cycle factors) ANOVA indicated that EPOC was significantly affected only by the dietary factor. The dietary restriction decreased EPOC compared to the standard dietary condition (SF 8.6 +/- 2.1, RF 5.3 +/- 1.6, SL 8.9 +/- 4.8, RL 4.0 +/- 1.2 l). These data indicate that for young sedentary women, EPOC is significantly lowered by prior acute dietary restriction but is not influenced by different phases of the menstrual cycle.

  16. Effect of meal size on excess post-exercise oxygen consumption in fishes with different locomotive and digestive performance. (United States)

    Fu, Shi-Jian; Zeng, Ling-Qing; Li, Xiu-Ming; Pang, Xu; Cao, Zhen-Dong; Peng, Jiang-Lan; Wang, Yu-Xiang


    Effects of feeding on pre-exercise VO(2) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise were investigated in sedentary southern catfish, active herbivorous grass carp, omnivorous crucian carp, and sluggish omnivorous darkbarbel catfish to test whether feeding had different effects on EPOC and to compare EPOC in fishes with different ecological habits. For fasting fish, the pre-exercise and peak post-exercise VO(2) were higher and recovery rates were faster in crucian carp and grass carp compared to those of darkbarbel catfish and southern catfish. EPOC magnitudes of grass carp and southern catfish were significantly larger than those of crucian carp and darkbarbel catfish. Feeding had no significant effect on peak post-exercise VO(2), recovery rate, and EPOC magnitude in grass carp. Both the pre-exercise and peak post-exercise VO(2) increased with meal size, while the EPOC magnitude and duration decreased significantly in the larger meal size groups of crucian carp and southern catfish. In darkbarbel catfish, both the pre-exercise and peak post-exercise VO(2) increased with meal size, but the VO(2) increment elicited by exercise was larger in feeding groups compared with the fasting group. These results suggest that (1) the characteristics of the post-exercise VO(2) profile, such as peak post-exercise VO(2) and recovery rate, were closely related to the activity of fishes, whereas the EPOC magnitude was not and (2) the effects of feeding on EPOC were more closely related to the postprandial increase in VO(2).

  17. Antepartum cardiorespiratory fitness (CRF) quantification by estimation of maximal oxygen consumption (Vo2 max) in pregnant South Indian women. (United States)

    Chakaravertty, Biswajit; Parkavi, K; Coumary, Sendhil A; Felix, A J W


    The aim of the study was to calculate the maximal oxygen consumption (Vo2max) for pregnant women of varying trimesters and to quantify the cardiorespiratory fitness (CRF)with the objective of being able to determine the exercise dose for antenatal women which can be prescribed to achieve optimal exercise benefits during various trimesters. A study group comprising 64 pregnant women with uncomplicated singleton pregnancy and control group with 77 non-pregnant women were subjected to Cooper's 12 minutes walk test. From the distance covered in 12 minutes, Vo2max was calculated. The Vo2max values were statistically analysed between the non-pregnant and pregnant and also its variability among the trimesters. Percentile tables of Vo2max were drawn and multiple comparisons were applied. Results show that the Vo2max values among non-pregnant and first trimester ranges between 18 and 22 ml/kg/minute. Trimesters II and III had a range of Vo2max values between 16-20 and 14-18 ml/kg/minute respectively. The CRF of pregnant women significantly reduced to 6%, 9% and 18% in each trimester respectively when compared with the reference table framed out of non-pregnant Vo2max values. Among the study group the reduction in Vo2max values had no statistical significance between first 2 trimesters but trimester III significantly differs from other trimesters. The exercise prescription cannot be the same for pregnant and non-pregnant women. Even among the pregnant women, III trimester needs separate exercise prescription from the other two trimesters as CRF is markedly compromised towards term.

  18. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria. (United States)

    Chowdhury, Subir Roy; Djordjevic, Jelena; Albensi, Benedict C; Fernyhough, Paul


    Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30-35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer's disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances.


    Directory of Open Access Journals (Sweden)

    Martin Burtscher


    Full Text Available L-arginine-L-aspartate is widely used by athletes for its potentially ergogenic properties. However, only little information on its real efficacy is available from controlled studies. Therefore, we evaluated the effects of prolonged supplementation with L-arginine-L-aspartate on metabolic and cardiorespiratory responses to submaximal exercise in healthy athletes by a double blind placebo-controlled trial. Sixteen healthy male volunteers (22 ± 3 years performed incremental cycle spiroergometry up to 150 watts before and after intake of L-arginine-L-aspartate (3 grams per day or placebo for a period of 3 weeks. After intake of L-arginine-L-aspartate, blood lactate at 150 watts dropped from 2.8 ± 0.8 to 2.0 ± 0.9 mmol·l-1 (p < 0.001 and total oxygen consumption during the 3-min period at 150 watts from 6.32 ± 0.51 to 5.95 ± 0.40 l (p = 0.04 compared to placebo (2.7 ± 1.1 to 2.7 ± 1.4 mmol·l-1; p = 0.9 and 6.07 ± 0.51 to 5.91 ± 0.50 l; p = 0.3. Additionally, L-arginine-L-aspartate supplementation effected an increased fat utilisation at 50 watts. L-arginine and L-aspartate seem to have induced synergistic metabolic effects. L-arginine might have reduced lactic acid production by the inhibition of glycolysis and L-aspartate may have favoured fatty acid oxidation. Besides, the results indicate improved work efficiency after L-arginine-L-aspartate intake. The resulting increases of submaximal work capacity and exercise tolerance may have important implications for athletes as well as patients

  20. Cardiorespiratory fitness level correlates inversely with excess post-exercise oxygen consumption after aerobic-type interval training

    Directory of Open Access Journals (Sweden)

    Matsuo Tomoaki


    Full Text Available Abstract Background The purpose of this study was to reveal any association between cardiorespiratory fitness level and excess post-exercise oxygen consumption (EPOC using three cycling protocols with varying degrees of exercise intensity, i.e., sprint interval training (SIT, high-intensity interval aerobic training (HIAT, and continuous aerobic training (CAT. Findings Ten healthy men, aged 20 to 31 years, attended a cross-over experiment and completed three exercise sessions: SIT consisting of 7 sets of 30-s cycling at 120% VO2max with a 15-s rest between sets; HIAT consisting of 3 sets of 3-min cycling at 80~90% VO2max with a 2-min active rest at 50% VO2max between sets; and CAT consisting of 40 min of cycling at 60~65% VO2max. During each session, resting VO2, exercise VO2, and a 180-min post-exercise VO2 were measured. The net exercise VO2 during the SIT, HIAT, and CAT averaged 14.7 ± 1.5, 31.8 ± 4.1, and 71.1 ± 10.0 L, and the EPOCs averaged 6.8 ± 4.0, 4.5 ± 3.3, and 2.9 ± 2.8 L, respectively. The EPOC with SIT was greater than with CAT (P P = 0.12. Correlation coefficients obtained between subjects’ VO2max and the ratio of EPOC to net exercise VO2 for SIT, HIAT, and CAT were −0.61 (P = 0.06, -0.79 (P P = 0.23, respectively. Conclusions Our data suggest that cardiorespiratory fitness level correlates negatively with the magnitude of EPOC, especially when performing aerobic-type interval training.

  1. Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds

    DEFF Research Database (Denmark)

    Herskin, J; Steffensen, JF


    Tail beat frequency of sea bass, Dicentrarchus labrax (L.) (23.5 ± 0·5 cm, LT), swimming at the front of a school was significantly higher than when swimming at the rear, for all water velocities tested from 14·8 to 32 cm s-1. The logarithm of oxygen consumption rate, and the tail beat frequency...... of solitary swimming sea bass (28·8 ± 0·4 cm, LT), were each correlated linearly with swimming speed, and also with one another. The tail beat frequency of individual fish was 9-14% lower when at the rear of a school than when at the front, corresponding to a 9-23% reduction in oxygen consumption rate....

  2. Influence of different production strategies on the stability of color, oxygen consumption and metmyoglobin reducing activity of meat from Ningxia Tan sheep. (United States)

    Gao, Xiaoguang; Wang, Zhenyu; Miao, Jing; Xie, Li; Dai, Yan; Li, Xingmin; Chen, Yong; Luo, Hailing; Dai, Ruitong


    Fifty male Ningxia Tan sheep were randomly divided into five groups (10 per group). Different feeding strategies were applied to each group for 120 days prior to slaughter. The sheep belong to five groups were pastured for 0 h (feedlot-fed), 2h, 4h, 8h, 12h per day on a natural grazing ground, respectively. M. semitendinosus muscle from Tan sheep was obtained after slaughter. Instrumental color, pH values, oxygen consumption rate, metmyoglobin reducing activity and relative metmyoglobin percentages were analyzed after 1, 3, 5, 7 and 9 days of refrigerated storage. Long-term daily grazing and herbage-based diet were conducive to maintain a lower oxygen consumption rate, higher metmyoglobin reducing activity and lower metmyoglobin accumulation. The combination of pasture-fed and feedlot-fed was conducive to weight gain, and at the same time, increased the color stability of the meat from Ningxia Tan sheep.

  3. Seasonal and Geographical Differences in Oxygen Consumption with Temperature of Cerastoderma glaucum(Poiret) and a Comparison with C. edule(L.) (United States)

    Wilson, J. G.; Elkaim, B.


    A comparison was made of the oxygen consumption over the temperature range 5-45 °C ofCerastoderma glaucum(Poiret) with season [summer (S) and winter (W)] and with latitude [Ireland (I), France (F)]. Maximum oxygen consumption rates for IW, IS, FW and FS groups were measured at 10-20 °C, 20-30 °C, 15-25 °C and 20-35 °C, respectively, reflecting the differences in the water temperatures at the time of collection of 5·5, 21·0, 6·7 and 23·5 °C respectively. Upper temperature limits were estimated at between 40 and 45 °C for the FS, FW and IS groups and between 35 and 40 °C for the IW group. The oxygen consumption rates of both the summer groups were substantially lower than the winter rates at the same temperature, indicating a considerable degree of reverse acclimation. However the rates of the French (FW, FS) groups were lower at low temperatures, but consistently higher at high temperatures than those of the Irish (IS, IW) groups, indicating no latitudinal compensation. A major difference, that is the restriction of the Irish (IS, IW) population to one age cohort compared to at least three in the French (FS, FW) population was confirmed. Overall, the French animals, especially the smaller individuals, were slightly heavier (dry flesh weight) than their Irish counterparts. In comparison withCerastoderma edule(L.),C. glaucumhad markedly lower oxygen consumption rates at high temperatures in both summer groups, although the distinction was much less clear in the winter groups. High summer temperatures in lagoons and similar habitats could therefore be a major factor separating the distributions of the two species.

  4. Alterations in Oxygen Consumption, Respiratory Quotient, and Heat Production in Long-Lived GHRKO and Ames Dwarf Mice, and Short-Lived bGH Transgenic Mice


    Westbrook, Reyhan; Bonkowski, Michael S.; Strader, April D.; Bartke, Andrzej


    Growth hormone (GH) signaling influences longevity in mice, with decreased GH signaling associated with longer life span and increased GH signaling with shortened life span. A proposed mechanism through which GH signaling influences life span postulates that decreased GH signaling lowers metabolic rate, thus slowing aging by decreasing production of damaging free radicals. The influence of altered GH signaling on metabolism was tested by monitoring oxygen consumption (VO2), respiratory quotie...

  5. Power Consumption, Mixing Time, and Oxygen Mass Transfer in a Gas-Liquid Contactor Stirred with a Dual Impeller for Different Spacing

    Directory of Open Access Journals (Sweden)

    Hayder Mohammed Issa


    Full Text Available Multiple or dual impellers are widely implemented in stirred contactors used in various biological processes like fermentation, water treatment, and pharmaceutical production. The spacing between impellers is considered as a crucial factor in designing of these types of contactors resulting in variation of oxygen mass transfer, mixing time, or power consumption for such biological system. A study of three parts was conducted to characterize the effect of the spacing between impellers on the most important parameters that related to biological contactor performance: oxygen mass transfer coefficient kla from the gas phase (air to the liquid phase (water, mixing time, and power consumption for different operating rotational speeds (1.67–3.33 rps and for three different spacing positions. The used impellers system in the study is a dual impeller system which consists of an inverted and bladed rotated cone (IBRC and a pitched-blade up-flow propeller (PBPU. The experimental results showed that the shorter spacing (the lower PBPU in a higher position is more convenient, as the achieved oxygen mass transfer coefficient has showed an improvement in its values with lower mixing time and with a slight alteration in power consumption.

  6. 澳洲银鲈鱼苗耗氧率和窒息点观测%Oxygen Consumption and Asphyxiated Point Oberservztion of

    Institute of Scientific and Technical Information of China (English)

    雷建军; 肖俊军; 杨琼; 王卉; 张益峰


      应用密封流水装置测定澳洲银鲈的耗氧率和窒息点.结果表明:在水温24~28℃范围内,平均体长6.7cm的澳洲银鲈鱼苗耗氧率为0.235~0.304 mg/g・h,随水温升高而升高.在26℃时,鱼苗规格大小与耗氧率呈负相关.适温范围内,同一规格鱼苗窒息点随水温升高而升高;同一水温下,窒息点随体长增加而降低.%  Application of sealing water device for determination of Bidyanus bidyanus oxygen consumption and asphyxiated point. The results show that:at the temperature of 24~28℃, the average body length of 6.7cm. Bidyanus bidyanus fry oxygen consumption of 0.235~0.304 mg/g•h, with the water rising. In 26℃, fry specifications size and rate of oxygen consumption was negatively related to. Suitable temperature range, the same specifications fry choke points with water temperature and elevated temperatures; the same, asphyxiated point decreased with body length.

  7. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans

    DEFF Research Database (Denmark)

    Trangmar, Steven J; Chiesa, Scott T; Stock, Christopher G


    venous noradrenaline, and falling arterial carbon dioxide tension (P aCO 2) (R(2) ≥ 0.41, P ≤ 0.01) whereas CCA flow and conductance were related to elevated blood temperature. In conclusion, dehydration accelerated the decline in CBF by decreasing P aCO 2 and enhancing vasoconstrictor activity. However......Intense exercise is associated with a reduction in cerebral blood flow (CBF), but regulation of CBF during strenuous exercise in the heat with dehydration is unclear. We assessed internal (ICA) and common carotid artery (CCA) haemodynamics (indicative of CBF and extra-cranial blood flow), middle...... cerebral artery velocity (MCA Vmean), arterial-venous differences and blood temperature in 10 trained males during incremental cycling to exhaustion in the heat (35°C) in control, dehydrated and rehydrated states. Dehydration reduced body mass (75.8 ± 3 vs. 78.2 ± 3 kg), increased internal temperature (38...

  8. Near-infrared spectroscopy assessed cerebral oxygenation during open abdominal aortic aneurysm repair: relation to end-tidal CO2 tension. (United States)

    Sørensen, H; Nielsen, H B; Secher, N H


    During open abdominal aortic aneurism (AAA) repair cerebral blood flow is challenged. Clamping of the aorta may lead to unintended hyperventilation as metabolism is reduced by perfusion of a smaller part of the body and reperfusion of the aorta releases vasodilatory substances including CO2. We intend to adjust ventilation according end-tidal CO2 tension (EtCO2) and here evaluated to what extent that strategy maintains frontal lobe oxygenation (ScO2) as determined by near infrared spectroscopy. For 44 patients [5 women, aged 70 (48-83) years] ScO2, mean arterial pressure (MAP), EtCO2, and ventilation were obtained retrospectively from the anesthetic charts. By clamping the aorta, ScO2 and EtCO2 were kept stable by reducing ventilation (median, -0.8 l min(-1); interquartile range, -1.1 to -0.4; P body is reperfused.

  9. The significance of changes in cerebral oxygen and glucose metabolism in patients with cerebral hemorrhage caused by acute hypertension%急性高血压脑出血患者脑糖氧代谢变化及意义

    Institute of Scientific and Technical Information of China (English)

    马骏; 陈锷峰; 屠传建; 钱辉; 骆明; 顾志伟; 张建民


    Objective To study the clinical significance of early changes in cerebral oxygen and glucose metabolism in patients with cerebral hemorrhage and with Glasgow coma score (GCS) of 5-8 caused by acute hypertension in order to find relationship between those changes and prognosis.Methods From January 1,2011 to June 30,2012,a cohort of 43 patients with cerebral hemorrhage caused by acute hypertension were enrolled for retrospective study.Radial artery and internal jugular vein were separately cannulated retrogradely for collecting blood for blood gas analysis and blood glucose tests carried out 24 hours after the onset of the cerebral hemorrhage and then every 6-8 hours and as any major changes in physical signs of patients occurred.And this monitoring kept for consecutive 3 days.The data of these laboratory findings were analyzed and calculated to determine internal jugular vein oxygen saturation (SjVO2),cerebral oxygen utilization rate (CEO2),cerebral arterio-venous oxygen difference (AVDO2),arterio-venous blood glucose difference (V-Aglu),arterio-venous lactic acid difference (V-Alac) and absolute value of carbon dioxide pressure difference between jugular vein and artery (V-APCO2).All patients met the diagnostic criteria of hypertensive cerebral hemorrhage revised by the 4th National Academic Conference on cerebrovascular disease in 1995 requiring diagnosis confirmed by brain CT,admitted within 24 hours of onset,Glasgow coma score (GCS) 5-8 and a history of hypertension.Exclusion criteria were:cerebral hemorrhage caused by traumatic intracranial hematoma,spontaneous subarachnoid hemorrhage,arteriovenous malformation and Moyamoya disease,intracranial tumor apoplexy,cerebral bleeding derived from the disturbance of blood coagulation system,and cerebral hemorrhagic infarction.According to the short-term prognosis,the patients were divided into the death group and the survival group.Then the differences in biomarkers mentioned above between two groups were compared to

  10. Reduced cerebral oxygen–carbohydrate index during endotracheal intubation in vascular surgical patients

    DEFF Research Database (Denmark)

    Fabricius-Bjerre, Andreas; Overgaard, Anders; Winther-Olesen, Marie


    Brain activation reduces balance between cerebral consumption of oxygen versus carbohydrate as expressed by the so-called cerebral oxygen-carbohydrate-index (OCI). We evaluated whether preparation for surgery, anaesthesia including tracheal intubation and surgery affect OCI. In patients undergoing.......2 versus 0.7 ± 0.2 mmol l(-1) , Pintubation (P... to 4.6 ± 1.4 during surgery and to 5.6 ± 1.7 in the recovery room. In conclusion, preparation for surgery and tracheal intubation decrease OCI that recovers during surgery under the influence of sensory blockade....

  11. Improvement of oxygen supply by an artificial carrier in combination with normobaric oxygenation decreases the volume of tissue hypoxia and tissue damage from transient focal cerebral ischemia

    NARCIS (Netherlands)

    Seiffge, David J.; Lapina, Natalia E.; Tsagogiorgas, Charalambos; Theisinger, Bastian; Henning, Robert H.; Schilling, Lothar


    Tissue hypoxia may play an important role in the development of ischemic brain damage. In the present study we investigated in a rat model of transient focal brain ischemia the neuroprotective effects of increasing the blood oxygen transport capacity by applying a semifluorinated alkane (SFA)-contai

  12. Oxygen and coke oven gas (COG) consumption optimization at hot stove of Usiminas blast furnace 3; Otimizacao do consumo de oxigenio e GCO nos regeneradores do alto forno 3 da Usiminas

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Marco Antonio; Bastos, Moises Hofer [Usiminas, Ipatinga, MG (Brazil)


    This paper presents the model developed for determination of the correlation between oxygen and coke oven gas (COG) consumption in the hot stove at Usiminas blast furnace 3, the applicability and results obtained. (author)

  13. Comparison of oxygen consumption rates in minimally transformed BALB/3T3 and virus-transformed 3T3B-SV40 cells. (United States)

    Leznev, E I; Popova, I I; Lavrovskaja, V P; Evtodienko, Y V


    In the recent years, bioenergetics of tumor cells and particularly cell respiration have been attracting great attention because of the involvement of mitochondria in apoptosis and growing evidence of the possibility to diagnose and treat cancer by affecting the system of oxidative phosphorylation in mitochondria. In the present work, a comparative study of oxygen consumption in 3T3B-SV40 cells transformed with oncovirus SV40 and parental BALB/3T3 cells was conducted. Such fractions of oxygen consumption as "phosphorylating" respiration coupled to ATP synthesis, "free" respiration not coupled to ATP synthesis, and "reserve" or hidden respiration observed in the presence of protonophore were determined. Maximal respiration was shown to be only slightly decreased in 3T3B-SV40 cells as compared to BALB/3T3. However, in the case of certain fractions of cellular respiration, the changes were significant. "Phosphorylating" respiration was found to be reduced to 54% and "reserve" respiration, on the contrary, increased up to 160% in virus-transformed 3T3B-SV40 cells. The low rate of "phosphorylating" respiration and high "reserve" respiration indicate that under normal incubation conditions the larger part of mitochondrial respiratory chains of the virus-transformed cells is in the resting state (i.e. there is no electron transfer to oxygen). The high "reserve" respiration is suggested to play an important role in preventing apoptosis of 3T3B-SV40 cells.

  14. Downstream signaling of reactive oxygen species, protein kinase C epsilon translocation and delayed neuroprotection in sevoflurane preconditioned rats following cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Zhi Ye; Qulian Guo; E Wang; Yundan Pan; Qing Li; Honghao Zhou


    BACKGROUND: Brief exposure to the anesthetic sevoflurane results in delayed neuroprotection.However, few studies have addressed delayed neuroprotection after preconditioning with a single administration of sevoflurane.OBJECTIVE: To explore the relationship between a single preconditioning administration of sevoflurane and reactive oxygen species production and protein kinase C-epsilon (PKC- ε ) translocation.DESIGN, TIME, AND SETTING: The randomized, controlled, animal experiment was conducted at the Central Laboratory, Xiangya Hospital, Central South University, China from November 2007 to April 2008.MATERIALS: A total of 120 healthy, male, Sprague Dawley rats were equally and randomly assigned into five groups: sham operation, ischemia/reperfusion, sevoflurane, 2-mercaptopropionylglycine (2-MPG, a selective reactive oxygen species scavenger) + sevoflurane (MPG + sevoflurane), and MPG. Sevoflurane (Baxter, USA) and MPG (Sigma, USA) were used in this study.METHODS: Intervention consisted of three procedures. (1) MPG injection: a selective reactive oxygen species scavenger, MPG (20 mg/kg), was infused into the rat caudal vein in the MPG and MPG + sevoflurane groups. (2) Sevoflurane preconditioning: 30 minutes following MPG injection,rats in the sevoflurane and MPG + sevoflurane groups breathed a mixed gas of 2.4% sevoflurane and 97.6% oxygen for 60 minutes. Rats in the sham operation, ischemia/reperfusion, and MPG groups breathed 100% pure oxygen for 60 minutes. (3) Ischemia/reperfusion: 24 hours after sevoflurane or pure oxygen preconditioning, middle cerebral artery occlusion models were established in the ischemia/reperfusion, sevoflurane, MPG + sevoflurane, and MPG groups.Following 2 hours ischemia/6 hours and 24 hours reperfusion, the carotid artery was separated, but the middle cerebral artery was not occluded, in the sham operation group.MAIN OUTCOME MEASURES: In the ischemic hemisphere, PKC-ε translocation in the rat parietal cortex was measured by Western

  15. [Noninvasive, continuous monitoring of artificial respiration in premature and newborn infants by the constant measurement of respiratory minute volume, oxygen consumption and carbon dioxide release]. (United States)

    Leidig, E; Noller, F; Mentzel, H


    A system of instrumentation for the continuous measurement of the respiratory gases during assisted ventilation of neonates and premature infants based upon "breath-by-breath-method" is described. The four respiratory parameters flow (V), ventilation pressure (p), oxygen-concentration and carbon dioxide-concentration are measured. These datas are processed by a computer to generate a continuous display of the respiratory minute volume, the tidal volume, the breath rate, the oxygen consumption and the carbon dioxide production. All parameters are stored and can be displayed or plotted as trends. The flow-measurement is performed using hot-wire-anemometry. The very small flow sensor is adapted directly to the tube. Next to this sensor, the respiratory gas for the analysis of the O2- and CO2- concentration is suctioned off continuously. First clinical experience in mechanically ventilated newborns is characterized.

  16. Blood-Oxygenation-Level-Dependent-(BOLD- Based R2′ MRI Study in Monkey Model of Reversible Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Jing Zhang


    Full Text Available Objective. To investigate the value of BOLD-based reversible transverse relaxation rate (R2′ MRI in detecting ischemic penumbra (IP in a monkey model of reversible middle cerebral artery occlusion (MCAO and time evolution of relative R2′ (rR2′ in infarcted core, IP, and oligemia. Materials and Methods. 6 monkeys were used to make MCAO by the microcatheter method. MR scans were performed at 0 h (1 h after MCAO, 1 h, 3 h, 6 h, 12 h, 24 h, and 48 h after reperfusion. R2′ was calculated using quantitative T2 and T2∗ maps. Ischemic area was subdivided into infracted core, IP and oligemia. rR2′ was calculated respectively. Results. Reversible MCAO model for 4/6 monkeys was made successfully. rR2′ values were significantly different at each time point, being highest in oligemia followed by IP and infarcted core (<.05. With reperfusion time evolution, rR2′ in infarcted core showed a decreased trend: sharply decreased within 6 hours and maintained at 0 during 6–48 hours (<.05. rR2′ values in IP and oligemia showed similar increased trend: sharply increased within 6 hours, maintained a plateau during 6–24 hours, and slightly increased until 48 hours. Conclusion. BOLD-based R2′ MRI can be used to describe changes of cerebral oxygen extract in acute ischemic stroke, and it can provide additional information in detecting IP. The time evolution rR2′ in infarcted core, IP, and oligemia is in accordance with the underlying pathophysiology.

  17. Variations of brain edema and neurological function of rat models of cerebral infarction after hyperbaric oxygen therapy%高压氧干预脑梗死模型大鼠脑水肿及神经功能变化

    Institute of Scientific and Technical Information of China (English)



    sweling in rats after middle cerebral artery occlusion, and discuss the possible mechanism of action underlying the neuroprotective effects of hyperbaric oxygen therapy in rats with cerebral infraction. METHODS:Sixty adult female rat models of cerebral infarction were successfuly established by middle cerebral artery occlusion using suture method and then randomly divided into the sham, cerebral infarction and hyperbaric oxygen therapy groups (n=20 rats/group). At 3 days after middle cerebral artery occlusion, apoptosis of nerve cels in the infract area of rats in each group was detected by TUNEL method. At 72 hours after middle cerebral artery occlusion, the gene transcription and protein expression of aquaporin 4/9 and matrix metaloproteinases 9/2 in the peri-infarct area were detected by RT-PCR and western blot analysis. The pathomorphological change in the infract area was observed by hematoxylin-eosin staining. The expression level of glial fibrilary acidic protein was detected by immunohistochemistry. At 24 hours and 3 days after hyperbaric oxygen therapy and at 1 and 2 weeks after middle cerebral artery occlusion, neurological behaviors were evaluated using Longa behavioral scores. RESULTS AND CONCLUSION:After 1, 2 days of hyperbaric oxygen therapy, Longa behavioral scores in the hyperbaric oxygen therapy group were significantly lower than those in the cerebral infarction group (P < 0.05). At 3 days after middle cerebral artery occlusion, cel apoptosis index in the hyperbaric oxygen therapy group was significantly lower than that in the cerebral infarction group (P < 0.05). At 72 hours after middle cerebral artery occlusion, the aquaporin 4/9, matrix metaloproteinases 9/2 gene and protein expression in the hyperbaric oxygen group were significantly lower than those in the cerebral infarction group (P < 0.05). These results suggest that hyperbaric oxygen therapy can play its protective role by decreasing apoptosis of nerve cels in the infarct area and lessening

  18. Fat-free mass and excess post-exercise oxygen consumption in the 40 minutes after short-duration exhaustive exercise in young male Japanese athletes. (United States)

    Tahara, Yasuaki; Moji, Kazuhiko; Honda, Sumihisa; Nakao, Rieko; Tsunawake, Noriaki; Fukuda, Rika; Aoyagi, Kiyoshi; Mascie-Taylor, Nicholas


    The relationship between fat-free mass (FFM) and excess post-exercise oxygen consumption (EPOC) has not been well researched because of the relatively small number of subjects studied. This study investigated the effects of FFM on EPOC and EPOC/maximum oxygen consumption. 250 Japanese male athletes between 16 and 21 years old from Nagasaki prefecture had their EPOC measured up to 40 minutes after short-duration exhaustive exercise. The value was named as EPOC40 min. The proportions of EPOC up to 1, 3, 6, 10, and 25 minutes to EPOC40 min were calculated and named as P1, P3, P6, P10, and P25, respectively. Body size and composition, VO2max and resting metabolic rate (RMR) were also measured. Mean EPOC40 min was 9.04 L or 158 ml/kg FFM. EPOC40 min was related to FFM (r=0.55, pEPOC40 min to VO2max was related to FFM (r=0.28, pEPOC40 min/FFM, EPOC40 min/VO2max, and FFM. Athletes who had larger FFM had larger EPOC40 40 min and EPOC40 40 min/VO2max, and smaller P1, P3, P10, and P25.

  19. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption (United States)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.


    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  20. Use of oxygen consumption and ammonium excretion to evaluate the sublethal toxicity of cadmium and zinc on Litopenaeus schmitti (Burkenroad, 1936, Crustacea). (United States)

    Barbieri, Edison


    Penaeid shrimps are important resources for worldwide fisheries and aquaculture. In Brazil, Litopenaeus schmitti (L. schmitti) is a important commercially exploited species and is an ideal animal for studying the impairment caused by the effects of heavy metals that are often detected in coastal areas. The main purpose of the present study was to detect the acute toxicity of cadmium and zinc to L. schmitti and investigate their effects on oxygen consumption and ammonium excretion, investigations that have not been carried out in this species before. First, the acute toxicity of cadmium and zinc to L. schmitti 24, 48, 72, and 96-hour medium lethal concentration was examined, which resulted in the following values: 0.98, 0.54, 0.32, and 0.18 mg/L for cadmium and 1.64, 1.22, 0.86, and 0.31 mg/L for zinc. Furthermore, we also found that exposure of shrimp to cadmium and zinc caused an inhibition in oxygen consumption of 55.92 and 44.09%, respectively, relative to the control. However, after separate exposure to cadmium and zinc, elevations in ammonium excretion were obtained, which were 174.28 and 162.5% higher than the control, respectively.

  1. Changes in serum cellular adhesion molecule and matrix metalloproteinase-9 levels in patients with cerebral infarction following hyperbaric oxygen therapy A case and intergroup control study

    Institute of Scientific and Technical Information of China (English)

    Renliang Zhao; Chunxia Wang; Yongjun Wang


    BACKGROUND: Animal studies have confirmed that hyperbaric oxygen (HBO) therapy can reduce matrix metalloproteinase activity and blood brain barrier permeability, thereby exhibiting neuroprotective effects. However, at present, consensus does not exist in terms of its clinical efficacy. OBJECTIVE: To validate the significance of changes in serum cellular adhesion molecule and MMP-9 levels in patients with cerebral infarction following HBO therapy. DESIGN, TIME AND SETTING: This randomized, controlled, neurobiochemical study was performed at the Department of Neurology, Affiliated Hospital of Qingdao University Medical College between December 2002 and March 2006. PARTICIPANTS: A total of 112 patients with acute cerebral infarction of internal carotid artery, comprising 64 males and 48 females, averaging (67 ± 11) years, were recruited and randomized to a HBO group (n = 50) and a routine treatment group (n = 62). An additional 30 gender- and age-matched normal subjects, consisting of 17 males and 13 females, averaging (63 ± 9) years, were enrolled as control subjects. METHODS: The routine treatment group received routine drug treatment and rehabilitation exercise. HBO treatment was additionally performed in the HBO group, once a day, for a total of 10 days. MAIN OUTCOME MEASURES: Serum levels of soluble intercellular adhesion molecule, soluble vascular cell adhesion molecule, soluble E-selectin, and matrix metalloproteinase-9 were detected by enzyme linked immunosorbent assay. RESULTS: Upon admission, serum levels of soluble intercellular adhesion molecule, soluble vascular cell adhesion molecule, soluble E-selectin, and matrix metalloproteinase-9 were significantly increased in patients with cerebral infarction, compared with control subjects (P < 0.01). Following HBO and routine treatments, serum levels of the above-mentioned indices were significantly reduced in the HBO and routine treatment groups (P < 0.01). Moreover, greater efficacy was observed in the HBO

  2. Cerebral effects of commonly used vasopressor-inotropes: a study in newborn piglets.

    Directory of Open Access Journals (Sweden)

    Gitte H Hahn

    Full Text Available BACKGROUND: Despite widespread use in sick infants, it is still debated whether vasopressor-inotropes have direct cerebral effects that might affect neurological outcome. We aimed to test direct cerebrovascular effects of three commonly used vasopressor-inotropes (adrenaline, dopamine and noradrenaline by comparing the responses to those of nonpharmacologically induced increases in blood pressure. We also searched for reasons for a mismatch between the response in perfusion and oxygenation. METHODS: Twenty-four piglets had long and short infusions of the three vasopressor-inotropes titrated to raise mean arterial blood pressure (MAP 10 mmHg in random order. Nonpharmacological increases in MAP were induced by inflation of a balloon in the descending aorta. We measured cerebral oxygenation (near-infrared spectroscopy, perfusion (laser-Doppler, oxygen consumption (co-oximetry of arterial and superior sagittal sinus blood, and microvascular heterogeneity (side stream dark field video microscopy. RESULTS: Vasopressor-inotropes increased cerebral oxygenation significantly less (p≤0.01 compared to non-pharmacological MAP increases, whereas perfusion was similar. Furthermore, cerebral total hemoglobin concentration increased significantly less during vasopressor-inotrope infusions (p = 0.001. These physiologic responses were identical between the three vasopressor-inotropes (p>0.05. Furthermore, they induced a mild, although insignificant increase in cerebral metabolism and microvascular heterogeneity (p>0.05. Removal of the scalp tissue did not influence the mismatch (p>0.05. CONCLUSION: We demonstrated a moderate vasopressor-inotrope induced mismatch between cerebral perfusion and oxygenation. Scalp removal did not affect this mismatch, why vasopressor-inotropes appear to have direct cerebral actions. The statistically nonsignificant increases in cerebral metabolism and/or microvascular heterogeneity may explain the mismatch. Alternatively, it

  3. Consumo de oxigênio pós-prandial de juvenis do pampo Trachinotus marginatus Postprandial oxygen consumption of juvenile pompano Trachinotus marginatus

    Directory of Open Access Journals (Sweden)

    Viviana Lisboa Cunha


    Full Text Available Para determinar a viabilidade do cultivo de uma espécie, é importante o conhecimento dos fatores limitantes para sua produção. Conhecer a taxa de consumo de oxigênio pós-prandial pode auxiliar na determinação da freqüência alimentar ideal para as espécies cultivadas. O objetivo deste trabalho foi estudar a taxa de consumo de oxigênio pós-prandial para juvenis do pampo Trachinotus marginatus. A avaliação do consumo de oxigênio foi feita a 24°C e 33‰, com pampos (9,64±0,2g alimentados com 12% da biomassa por dia com dieta NRD INVE (59% proteína. Foi observado um pico de consumo de oxigênio 30min após a alimentação (1,06mgO2 g-1 h-1 e seu retorno ao nível de jejum (0,79mgO2 g-1 h-1 depois de decorridos mais 120min. A alimentação de juvenis de pampo pode ser realizada com uma freqüência de aproximadamente oito vezes por dia, pois a cada 2,5h a taxa de consumo de oxigênio já não mostra a elevação característica da fase pós-prandial, sugerindo que os processos de digestão e assimilação dos nutrientes estejam finalizados.In order to determine the viability of new species for aquaculture, it is important to know the limiting factors for its production. The knowledge about postprandial oxygen consumption of fish is useful to estimate the time for returning to appetite and allows to estimate the proper feeding frequency. The objective of this research was to study the postprandial oxygen consumption of juvenile pompano Trachinotus marginatus. Oxygen consumption rate was determined at 24°C and 33‰ and fish (9.64±0.2g were fed daily with 12% total of biomass NRD INVE diet (59% protein. Postprandial increase in oxygen consumption was observed 30min after feeding (1.06mgO2 g-1 h-1, and it returned to the routine metabolic rate (0.79mgO2 g-1 h-1 within the next 120min. According to these results, it seems appropriated to feed juvenile pompano 8 times per day, because every 2.5h the oxygen consumption rate declines to

  4. Functional linkage between N acquisition strategies and aeration capacities of hydrophytes for efficient oxygen consumption in roots. (United States)

    Nakamura, Motoka; Nakamura, Takatoshi; Tsuchiya, Takayoshi; Noguchi, Ko


    We evaluated the specific strategies of hydrophytes for root O(2) consumption in relation to N acquisition and investigated whether the strategies varied depending on the aeration capacity. Aeration capacity of roots is an important factor for determining hypoxia tolerance in plants. However, some hydrophytes possessing quite different aeration capacities often co-occur in wetlands, suggesting that root O(2) consumption also strongly affects hypoxia tolerance. We cultivated Phragmites australis with high aeration capacity and Zizania latifolia with low aeration capacity in hypoxic conditions with NH(4)(+) or NO(3)(-) treatment and compared the growth, N uptake, N assimilation and root respiration between the two species. In Z. latifolia grown with NH(4)(+) treatment, high N uptake activity and restrained root growth led to sufficient N acquisition and decrease in whole-root respiration rate. These characteristics consequently compensated for the low aeration capacity. In contrast, in P. australis, low N uptake activity was compensated by active root growth, but the whole-root respiration rate was high. This high root respiration rate was allowed by the high aeration capacity. The O(2) consumption-related traits of hydrophyte roots were closely correlated with N acquisition strategies, which consequently led to a compensational relationship with the root aeration capacity. It is likely that this functional linkage plays an important role as a core mechanism in the adaptation of plants to hypoxic soils.

  5. Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I. (United States)

    Tapia, E; Sánchez-Lozada, L G; García-Niño, W R; García, E; Cerecedo, A; García-Arroyo, F E; Osorio, H; Arellano, A; Cristóbal-García, M; Loredo, M L; Molina-Jijón, E; Hernández-Damián, J; Negrette-Guzmán, M; Zazueta, C; Huerta-Yepez, S; Reyes, J L; Madero, M; Pedraza-Chaverrí, J


    The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl β-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.

  6. The effects of breathing a helium-oxygen gas mixture on maximal pulmonary ventilation and maximal oxygen consumption during exercise in acute moderate hypobaric hypoxia. (United States)

    Ogawa, Takeshi; Calbet, Jose A L; Honda, Yasushi; Fujii, Naoto; Nishiyasu, Takeshi


    To test the hypothesis that maximal exercise pulmonary ventilation (VE max) is a limiting factor affecting maximal oxygen uptake (VO2 max) in moderate hypobaric hypoxia (H), we examined the effect of breathing a helium-oxygen gas mixture (He-O(2); 20.9% O(2)), which would reduce air density and would be expected to increase VE max. Fourteen healthy young male subjects performed incremental treadmill running tests to exhaustion in normobaric normoxia (N; sea level) and in H (atmospheric pressure equivalent to 2,500 m above sea level). These exercise tests were carried out under three conditions [H with He-O(2), H with normal air and N] in random order. VO2 max and arterial oxy-hemoglobin saturation (SaO(2)) were, respectively, 15.2, 7.5 and 4.0% higher (all p max, 171.9 ± 16.1 vs. 150.1 ± 16.9 L/min; VO2 max, 52.50 ± 9.13 vs. 48.72 ± 5.35 mL/kg/min; arterial oxyhemoglobin saturation (SaO(2)), 79 ± 3 vs. 76 ± 3%). There was a linear relationship between the increment in VE max and the increment in VO2 max in H (r = 0.77; p VO2 max, both groups showed increased VE max and SaO(2) in H with He-O(2), but VO2 max was increased only in the high VO2 max group. These findings suggest that in acute moderate hypobaric hypoxia, air-flow resistance can be a limiting factor affecting VE max; consequently, VO2 max is limited in part by VE max especially in subjects with high VO2 max.

  7. Simultaneous Real-Time Monitoring of Oxygen Consumption and Hydrogen Peroxide Production in Cells Using Our Newly Developed Chip-Type Biosensor Device (United States)

    Prasad, Ankush; Kikuchi, Hiroyuki; Inoue, Kumi Y.; Suzuki, Makoto; Sugiura, Yamato; Sugai, Tomoya; Tomonori, Amano; Tada, Mika; Kobayashi, Masaki; Matsue, Tomokazu; Kasai, Shigenobu


    All living organisms bear its defense mechanism. Immune cells during invasion by foreign body undergoes phagocytosis during which monocyte and neutrophil produces reactive oxygen species (ROS). The ROS generated in animal cells are known to be involved in several diseases and ailments, when generated in excess. Therefore, if the ROS generated in cells can be measured and analyzed precisely, it can be employed in immune function evaluation and disease detection. The aim of the current study is to introduce our newly developed chip-type biosensor device with high specificity and sensitivity. It comprises of counter electrode and working electrodes I and II. The counter electrode is a platinum plate while the working electrodes I and II are platinum microelectrode and osmium-horseradish peroxidase modified gold electrode, respectively which acts as oxygen and hydrogen peroxide (H2O2) detection sensors. Simultaneous measurement of oxygen consumption and H2O2 generation were measured in animal cells under the effect of exogenous addition of differentiation inducer, phorbol 12-myristate 13-acetate. The results obtained showed considerable changes in reduction currents in the absence and presence of inducer. Our newly developed chip-type biosensor device is claimed to be a useful tool for real-time monitoring of the respiratory activity and precise detection of H2O2 in cells. It can thus be widely applied in biomedical research and in clinical trials being an advancement over other H2O2 detection techniques. PMID:27065878

  8. Iodinated contrast media inhibit oxygen consumption in freshly isolated proximal tubular cells from elderly humans and diabetic rats: Influence of nitric oxide. (United States)

    Liss, Per; Hansell, Peter; Fasching, Angelica; Palm, Fredrik


    Objectives Mechanisms underlying contrast medium (CM)-induced nephropathy remain elusive, but recent attention has been directed to oxygen availability. The purpose of this study was to evaluate the effect of the low-osmolar CM iopromide and the iso-osmolar CM iodixanol on oxygen consumption (QO2) in freshly isolated proximal tubular cells (PTC) from kidneys ablated from elderly humans undergoing nephrectomy for renal carcinomas and from normoglycemic or streptozotocin-diabetic rats. Materials PTC were isolated from human kidneys, or kidneys of normoglycemic or streptozotocin-diabetic rats. QO2 was measured with Clark-type microelectrodes in a gas-tight chamber with and without each CM (10 mg I/mL medium). L-NAME was used to inhibit nitric oxide (NO) production caused by nitric oxide synthase. Results Both CM reduced QO2 in human PTC (about -35%) which was prevented by L-NAME. PTC from normoglycemic rats were unaffected by iopromide, whereas iodixanol decreased QO2 (-34%). Both CM decreased QO2 in PTC from diabetic rats (-38% and -36%, respectively). L-NAME only prevented the effect of iopromide in the diabetic rat PTC. Conclusions These observations demonstrate that CM can induce NO release from isolated PTC in vitro, which affects QO2. Our results suggest that the induction of NO release and subsequent effect on the cellular oxygen metabolism are dependent on several factors, including CM type and pre-existing risk factors for the development of CM-induced nephropathy.

  9. Maximal oxygen consumption increases with temperature in the European eel (Anguilla anguilla) through increased heart rate and arteriovenous extraction (United States)

    Claësson, Débora; Wang, Tobias; Malte, Hans


    Global warming results in increasing water temperature, which may represent a threat to aquatic ectotherms. The rising temperature affects ecology through physiology, by exerting a direct limiting effect on the individual. The mechanism controlling individual thermal tolerance is still elusive, but some evidence shows that the heart plays a central role, and that insufficient transport of oxygen to the respiring tissues may determine the thermal tolerance of animals. In this study, the influence of the heart in thermal limitation was investigated by measurements of aerobic scope in the European eel (Anguilla anguilla) together with measurements of cardiac output during rest and activity. Aerobic capacity was not limited by an acutely increased temperature in the European eel. Oxygen demand was met by an increase in heart rate and arteriovenous extraction. These findings suggest that thermal tolerance during exposure to acute temperature changes is not defined by oxygen transport capacity in the eel, and other mechanisms may play a central role in limiting thermal tolerance in these fish.

  10. Rate of change in cerebral oxygenation and blood pressure in response to passive changes in posture: a comparison between pure autonomic failure patients and controls. (United States)

    Tachtsidis, Ilias; Elwell, Clare E; Leung, Terence S; Bleasdale-Barr, Katharine; Hunt, Katharine; Toms, Nathan; Smith, Martin; Mathias, Christopher J; Delpy, David T


    The cardiovascular and cerebrovascular responses to head-up postural change are compromised in pure autonomic failure (PAF) patients because of sympathetic denervation. The aim of this study was to characterize the rate of change of systemic mean blood pressure (MBP) and cerebral haemodynamics in response to passive posture changes. Nine PAF patients and 9 age-matched controls took part in this study. MBP and oxy- (O2Hb), deoxy-haemoglobin (HHb), and tissue oxygenation index (TOI) on the forehead were continuously monitored non-invasively using the Portapres and near-infrared spectroscopy (NIRS), respectively. From visual inspection of the haemoglobin difference signal (Hb(diff) = O2Hb-HHb), seven distinct phases were marked (1: supine, 2: start passive tilt, 3: head up to 60 degrees degrees, 4: end of tilt, 5: tilt reversal, 6: return to supine, 7: rest); the same time points were used for all of the other signals. For each phase, the slope was calculated using a linear regression algorithm. Significant differences were found between PAF patients and controls in the Hb(diff) slope magnitudes for phases 3 (P rate of change suggest differences in blood vessel resistance related to sympathetic activation.

  11. The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity. (United States)

    Piercy, Joanna; Rogers, Kip; Reichert, Michelle; Andrade, Denis V; Abe, Augusto S; Tattersall, Glenn J; Milsom, William K


    The present study determined whether EEG and/or EMG recordings could be used to reliably define activity states in the Brazilian black and white tegu lizard (Tupinambis merianae) and then examined the interactive effects of temperature and activity states on strategies for matching O2 supply and demand. In a first series of experiments, the rate of oxygen consumption (VO2), breathing frequency (fR), heart rate (fH), and EEG and EMG (neck muscle) activity were measured in different sleep/wake states (sleeping, awake but quiet, alert, or moving). In general, metabolic and cardio-respiratory changes were better indictors of the transition from sleep to wake than were changes in the EEG and EMG. In a second series of experiments, the interactive effects of temperature (17, 27 and 37 °C) and activity states on fR, tidal volume (VT), the fraction of oxygen extracted from the lung per breath (FIO2-FEO2), fH, and the cardiac O2 pulse were quantified to determine the relative roles of each of these variables in accommodating changes in VO2. The increases in oxygen supply to meet temperature- and activity-induced increases in oxygen demand were produced almost exclusively by increases in fH and fR. Regression analysis showed that the effects of temperature and activity state on the relationships between fH, fR and VO2 was to extend a common relationship along a single curve, rather than separate relationships for each metabolic state. For these lizards, the predictive powers of fR and fH were maximized when the effects of changes in temperature, digestive state and activity were pooled. However, the best r(2) values obtained were 0.63 and 0.74 using fR and fH as predictors of metabolic rate, respectively.

  12. Election Spin Resonance Studies of Free Radical Formation and Oxygen Consumption of Lens Epithelium During Ultraviolet Exposure

    Institute of Scientific and Technical Information of China (English)


    A long life election spin resonance (ESR) signal at g=2.0006 was observed in the normal lens epithelium and cortical fibers. During ultraviolet (UV) exposure, a new ESR signal at g = 2.0060 was found in the lens epithelium. But this specific signal was not detected in the lens cortical fibers. This suggested that lens epithelial cells were more susceptible to the free radical formation which was induced by UV light. By means of ESR spin probe oxymetry, the oxygen uptake of lens epithelial cells was meas...

  13. An Exercise Protocol Designed to control Energy Expenditure and to have a Positive Impact on Maximal Oxygen Consumption for Long-Term Space Missions (United States)

    Matsuo, Tomoaki; Ohkawara, Kazunori; Seino, Satoshi; Shimojo, Nobutake; Yamada, Shin; Ohshima, Hiroshi; Tanaka, Kiyoji; Mukai, Chiaki


    Maximal oxygen consumption decreases during spaceflight, and astronauts also experience controversial weight loss. Future space missions require a more efficient exercise program to maintain work efficiency and to control increased energy expenditure (EE). We have been developing two types of original exercise training protocols which are better suited to astronauts’ daily routine exercise during long-term spaceflight: sprint interval training (SIT) and high-intensity interval aerobic training (HIAT). In this study, we compared the total EE, including excess post-exercise energy expenditure (EPEE), induced by our interval cycling protocols with the total EE of a traditional, continuous aerobic training (CAT). In the results, while the EPEEs after the SIT and HIAT were greater than after the CAT, the total EE for an entire exercise/rest session with the CAT was the greatest of our three exercise protocols. The SIT and HIAT would be potential protocols to control energy expenditure for long space missions.

  14. Angiotensin II inhibits ADH-stimulated cAMP: role on O2- and transport-related oxygen consumption in the loop of Henle. (United States)

    Silva, G B; Juncos, L I; Baigorria, S T; Garcia, N H


    Dehydration and acute reductions of blood pressure increases ADH and Ang II levels. These hormones increase transport along the distal nephron. In the thick ascending limb (TAL) ADH increases transport via cAMP, while Ang II acts via superoxide (O2-). However, the mechanism of interaction of these hormones in this segment remains unclear. The aim of this study was to explore ADH/Ang II interactions on TAL transport. For this, we measured the effects of ADH/Ang II, added sequentially to TAL suspensions from Wistar rats, on oxygen consumption (QO2) -as a transport index-, cAMP and O2-. Basal QO2 was 112+-5 nmol O2/min/mg protein. Addition of ADH (1nM) increased QO2 by 227 percent. In the presence of ADH, Ang II (1nM) elicited a QO2 transient response. During an initial 3.1+-0.7 minutes after adding Ang II, QO2 decreased 58 percent (p less than 0.03 initial vs. ADH) and then rose by 188 percent (p less than 0.03 late vs initial Ang II). We found that Losartan blocked the initial effects of Ang II and the latter blocked ADH and forskolin-stimulated cAMP. The NOS inhibitor L-NAME or the AT2 receptor antagonist PD123319 showed no effect on transported related oxygen consumption. Then, we assessed the late period after adding Ang II. The O2- scavenger tempol blocked the late Ang II effects on QO2, while Ang II increased O2- production during this period. We conclude that 1) Ang II has a transient effect on ADH-stimulated transport; 2) this effect is mediated by AT1 receptors; 3) the initial period is mediated by decreased cAMP and 4) the late period is mediated by O2-.

  15. Uptake of water-soluble gasoline fractions and their effect on oxygen consumption in aquatic stages of the mosquito (Ades aegypti (L. ))

    Energy Technology Data Exchange (ETDEWEB)

    Berry, W.O.; Brammer, J.D.; Bee, D.E.


    Oxygen consumption in aquatic stages of the mosquito (Aedes aegypti (L)) was measured following a 24-h pretreatment in sublethal doses of water-soluble fractions from whole gasoline or its individual components (benzene, toluene and xylenes). A significant increase in O/sub 2/ consumption occurred in treated-fed larvae following exposure to water-soluble fractions from either 1 ml gasoline/liter water or a mixture of 0.2 ml benzene and 0.2 ml toluene/litre water. No significant differences in respiration were observed in either unfed larvae or fed larvae pretreated with the separate fractions or combinations of xylenes with benzene or toluene. Uptake and discharge of toluene by 4th-instar larvae were measured in solutions containing water-soluble amounts of H/sup 3/ toluene alone and in combination with benzene. These experiments suggest that water-soluble gasoline fractions are taken up by food particles and assimilated by the insects via feeding. The respiratory response of the larvae appears to be due to a synergistic effect of benzene and toluene that may affect cell permeability.

  16. Expensive cerebral blood flow measurements alone are useless and misinformative in comatose patients: a comprehensive alternative Medidas dispendiosas apenas de fluxo sanguíneo cerebral são inúteis e desinformativas em estados de coma: uma alternativa abrangente

    Directory of Open Access Journals (Sweden)

    Julio Cruz


    Full Text Available Since the first report addressing quantification of cerebral blood flow (CBF, concomitant assessment of cerebral oxygen consumption was also carried out. Over the years, however, some investigators have emphatically and mistakenly addressed cerebral ischemia in comatose patients, on the basis of CBF measurements alone. In contrast, we have repeatedly reported that ischemia in these patients must be precisely evaluated based on CBF-metabolism coupling or uncoupling, rather than CBF alone. Based on these previous findings, we therefore propose a comprehensive alternative approach, namely the evaluation of brain ischemia in comatose patients based on cerebral metabolic parameters, such as cerebral extraction of oxygen or cerebral lactate release, without expensive CBF measurements.Desde o primeiro artigo apresentando quantificação de fluxo sanguíneo cerebral (FSC, também se avaliou o consumo cerebral de oxigênio. Todavia, ao longo dos anos, alguns investigadores têm enfaticamente e erroneamente destacado a isquemia cerebral em pacientes comatosos, baseando-se apenas em medidas do FSC. Em contrapartida, temos repetidamente destacado que a avaliação de isquemia cerebral nestes pacientes deve ser baseada no conceito de acoplamento ou desacoplamento entre metabolismo cerebral e FSC, ao invés de alterações no FSC apenas. Baseando-se nestes achados prévios, aqui propomos uma abordagem alternativa e abrangente, a qual envolve a avaliação de isquemia cerebral em pacientes comatosos baseando-se em parâmetros metabólicos cerebrais, tais como a extração cerebral de oxigênio ou a liberação cerebral de lactato, sem medidas dispendiosas de FSC.

  17. Development of a new oxygen consumption rate assay in cultures of Acanthamoeba (Protozoa: Lobosea) and its application to evaluate viability and amoebicidal activity in vitro. (United States)

    Heredero-Bermejo, I; Criado-Fornelio, A; Soliveri, J; Díaz-Martín, J A; Matilla-Fuentes, J; Sánchez-Arias, J A; Copa-Patiño, J L; Pérez-Serrano, J


    A new fluorometric method has been developed for measuring the oxygen consumption rate (OCR) of Acanthamoeba cultures in microplates and for screening molecules with amoebicidal activity against this microorganism. The use of a biofunctional matrix (containing an oxygen-sensitive fluorogenic probe) attached to the microplate wells allowed continuous measurement of OCR in the medium, hence assessment of amoebic growth. The new OCR method applied to cell viability yielded a linear relationship and monitoring was much quicker than with indirect viability assays previously used. In addition, two drugs were tested in a cytotoxicity assay monitored by the new OCR viability test. With this procedure, the standard amoebicidal drug chlorhexidine digluconate showed an IC50 of 3.53 + 1.3 mg/l against Acanthamoeba polyphaga and 3.19 + 1.2 mg/l against Acanthamoeba castellanii, whereas a cationic dendrimer [G1Si(NMe3+)4] showed an IC50 of 6.42 + 1.3 mg/l against A. polyphaga. These data agree with previous studies conducted in our laboratory. Therefore, the new OCR method has proven powerful and quick for amoebicidal drug screening and is likely to be applied in biochemical studies concerning protozoa respiration and metabolism.

  18. HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Kurosh Ameri


    Full Text Available Hypoxia-inducible gene domain family member 1A (HIGD1A is a survival factor induced by hypoxia-inducible factor 1 (HIF-1. HIF-1 regulates many responses to oxygen deprivation, but viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF-1α. HIGD1A is induced in these HIF-deficient extreme environments and interacts with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK activity, and lower cellular ROS levels. Importantly, HIGD1A decreases tumor growth but promotes tumor cell survival in vivo. The human Higd1a gene is located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the Higd1a gene promoter is differentially methylated in human cancers, preventing its hypoxic induction. However, when hypoxic tumor cells are confronted with glucose deprivation, DNA methyltransferase activity is inhibited, enabling HIGD1A expression, metabolic adaptation, and possible dormancy induction. Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology.

  19. Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers

    Energy Technology Data Exchange (ETDEWEB)

    Christel, Wibke [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Department of Commerce, Industry and Agriculture, Danish Environmental Protection Agency, 1401 Copenhagen C (Denmark); Zhu, Kun [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Hoefer, Christoph [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Kreuzeder, Andreas [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Land Salzburg, Natur- und Umweltschutz, Gewerbe (Abteilung 5), Michael-Pacher-Straße 36, 5020 Salzburg (Austria); Santner, Jakob [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Bruun, Sander; Magid, Jakob [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Jensen, Lars Stoumann, E-mail: [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark)


    Organic fertilisation inevitably leads to heterogeneous distribution of organic matter and nutrients in soil, i.e. due to uneven surface spreading or inhomogeneous incorporation. The resulting localised hotspots of nutrient application will induce various biotic and abiotic nutrient turnover processes and fixation in the residuesphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids were incubated for three weeks between layers of non-amended, P-depleted soil. Spatial and temporal changes in and around the amendment layers were simultaneously investigated in this study using a sandwich sensor consisting of a planar oxygen optode and multi-element diffusive gradients in thin films (DGT) gels, combined with GHG emission measurements. After three weeks of incubation, the soil containing a layer amended with manure solids had a lower overall O{sub 2} content and had emitted significantly more CO{sub 2} than the non-amended control or the char-amended soil. The P availability from manure solids was initially higher than that from the char, but decreased over time, whereas from the char-amended layer P availability increased in the same period. In both treatments, increases in P availability were confined to the amended soil layer and did not greatly affect P availability in the directly adjacent soil layers during the three-week incubation. These results highlight the importance of placing organic P fertilisers close to where the plant roots will grow in

  20. Improved cerebral energetics and ketone body metabolism in db/db mice. (United States)

    Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D; Waagepetersen, Helle S


    It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate for cerebral glucose hypometabolism and unravel the functionality of cerebral mitochondria in type 2 diabetes mellitus. Acutely isolated cerebral cortical and hippocampal slices of db/db mice were incubated in media containing [U-(13)C]glucose, [1,2-(13)C]acetate or [U-(13)C]β-hydroxybutyrate and tissue extracts were analysed by mass spectrometry. Oxygen consumption and ATP synthesis of brain mitochondria of db/db mice were assessed by Seahorse XFe96 and luciferin-luciferase assay, respectively. Glucose hypometabolism was observed for both cerebral cortical and hippocampal slices of db/db mice. Significant increased metabolism of [1,2-(13)C]acetate and [U-(13)C]β-hydroxybutyrate was observed for hippocampal slices of db/db mice. Furthermore, brain mitochondria of db/db mice exhibited elevated oxygen consumption and ATP synthesis rate. This study provides evidence of several changes in brain energy metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism.

  1. Effect of ultraviolet blood irradiation and oxygenation on nerve function and function of the red blood cell membrane pump in patients with acute cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Jiaquan Wang; Chun Mao; Kaifu Ma; Shiqing Wang


    BACKGROUND: Ultraviolet blood irradiation and oxygenation (UBIO) has obtained better clinical effect in treating acute cerebral infarction, but the mechanism underlying this effect remains unclear.OBJECTIVE: To observe the effect of UBIO on the nerve function and activities of K+-Na+-ATPase and Ca2+-Mg2+-ATPase activities on the red blood cell (RBC) membrane of patients with acute cerebral infarction.DESIGN: A randomized and controlled study.SETTING: Department of Neurology, Xiangfan Central Hospital.PARTICIPANTS: From January 2000 to December 2001, excluding those above 70 years old, 58 cases of 700 patients with acute cerebral infarction admitted in the Department of Neurology, Xiangfan Central Hospital, were recruited and divided into two groups according to the random number table: UBIO treated group (n=28), including 17 males and 11 females, aged 40-68 years; and control group (n=30), including 20males and 10 females, aged 44-69 years. All the patients agreed to participate in the therapeutic program and detected items. The general informations were comparable without obvious differences between the two groups (P > 0.05).METHODS: ① The patients in both groups received routine treatments, besides, those in the UBIO treated group were given UBIO treatment by using the XL-200 type therapeutic apparatus produced in Shijiazhuang, whose ultraviolet wave was set at 253.7 nm with the energy density of 0.568 J/m2 per second, UBIO treatment started from the second day after admission, once every other day, with a single course consisting of 5-7 treatments. ② In the UBIO treated group, the venous blood was sampled before and after the first, third and the completion of the treatment course respectively, the venous blood was taken at each corresponding time point in the control group. After centrifugation of the blood at 10 000 rounds per minute,the RBC membrane was separated and then the activities of K+-Na+-ATPase and Ca2+-Mg2+-ATPase were detected by means of

  2. Improved cerebral oxygenation response and executive performance as a function of cardiorespiratory fitness in older women: a fNIRS study

    Directory of Open Access Journals (Sweden)

    Cédric T Albinet


    Full Text Available Cardiorespiratory fitness has been shown to protect and enhance cognitive and brain functions, but little is known about the cortical mechanisms that underlie these changes in older adults. In this study, functional NIRS was used to investigate variations in oxyhemoglobin ([HbO2] and in deoxyhemoglobin ([HHb] in the dorsolateral prefrontal cortex (DLPFC during the performance of an executive control task in older women with different levels of cardiorespiratory fitness (VO2max. Thirty-four women aged 60-77 years were classified as high-fit and low-fit based on VO2max measures. They all performed a control counting task and the Random Number Generation (RNG task at two different paces (1 number / 1 s and 1 number / 1.5 s, allowing to manipulate task difficulty, while hemodynamic responses in the bilateral DLPFCs were recorded using continuous-wave NIRS. The behavioral data revealed that the high-fit women showed significantly better performance on the RNG tasks compared with the low-fit women. The high-fit women showed significant increases in [HbO2] responses in both left and right DLPFCs during the RNG task, while the low-fit women showed significantly less activation in the right DLPFC compared with the right DLPFC of the high-fit women and compared with their own left DLPFC. At the level of the whole sample, increases in the [HbO2] responses in the right DLPFC were found to mediate in part the relationship between VO2max level and executive performance during the RNG task at 1.5 s but not at 1 s. These results provide support for the cardiorespiratory fitness hypothesis and suggest that higher levels of aerobic fitness in older women are related to increased cerebral oxygen supply to the DLPFC, sustaining better cognitive performance.


    Directory of Open Access Journals (Sweden)

    Fransiska Rungkat Zakaria


    Full Text Available Chronic Obstructive Pulmonary Disease (COPD is one of the leading cause of death in the world that represents an important public health problem. Oxygenated water is water added with high concentration of oxygen such that the oxygen concentration is higher than normal water. The objective of this study was to assess the influence of oxygenated water consumption on the alteration of proinflammatory cytokines (TNF-α, IL1-β, and IL6 and antioxidant capacity of COPD patients. Sixteen COPD patients were allowed to drink 385 mL oxygenated water two times a day for 21 days. The alteration of proinflammatory cytokines and antioxidant capacity are measured by comparing plasma concentration before and after intervention. The results suggest that oxygenated water consumption significantly reduce proinflammatory cytokines plasma (TNF-α, IL1-β, and IL6 at 5% significance level with 81.25% of respondents having lower TNF-α, 75% of respondents with lower IL-1β, and 62.25% of respondents having lower the IL-6 in plasma concentration after 21 days intervention. There were 43.75% of respondents with decreased antioxidant capacity concentration. However, it was not significant at the 5% level significance. Decrease in antioxidant capacity was probably a resulted from poordiet and drugs consumption during the intervention period.

  4. Physique, body composition and maximum oxygen consumption of selected soccer players of Kunimi High School, Nagasaki, Japan. (United States)

    Tahara, Yasuaki; Moji, Kazuhiko; Tsunawake, Noriaki; Fukuda, Rika; Nakayama, Masao; Nakagaichi, Masaki; Komine, Tadatoshi; Kusano, Yosuke; Aoyagi, Kiyoshi


    This study evaluates the physical and physiological ability of selected soccer players of Kunimi High School in Nagasaki Prefecture, Japan. The Kunimi team is famous for its intensive training, and had won the championship of the All Japan High School Soccer Tournament six times by 2003. We measured physique, body composition, and maximal oxygen uptake of 72 members aged between 16 and 18 years old between 1986 and 1994. They consisted of 66 outfield players (12 forward players, 23 midfielders, 31 defenders) and 6 goalkeepers. Body density was measured by the under-water weighing method, and Brozek's equation was applied to calculate percentage body fat (%Fat, %), fat-free mass (FFM, kg), FFM/height (FFM/Ht, kg.m(-1)), and FFM index (FFM/Ht(3), kg.m(-3)). The following results were obtained: 1. The average of 66 outfield players was 172.7 cm of height, 64.6 kg of weight, 54.0 cm of girth of thigh, and 90.0 cm of girth of hip, 9.3% of %Fat, 58.6 kg of FFM, 33.9 kg.m(-1) of FFM/Ht and 113.8 kg.m(-3) of FFM index. The mean vital capacity was 4.25 L and total lung capacity was 5.58 L. The mean maximal ventilation was 138.7 L.min(-1), VO(2)max was 3.95 L.min(-1), and VO(2)max/Wt was 61.4 2. Goalkeepers were taller and heavier than outfielders, and had a smaller mean value of VO(2)max/Wt than outfielders (pphysiques.

  5. Hyperventilation, cerebral perfusion, and syncope

    DEFF Research Database (Denmark)

    Immink, R V; Pott, F C; Secher, N H


    dioxide (PaCO2) and oxygen (PaO2) partial pressures so that hypercapnia/hypoxia increases and hypocapnia/hyperoxia reduces global cerebral blood flow. Cerebral hypoperfusion and TLOC have been associated with hypocapnia related to HV. Notwithstanding pronounced cerebrovascular effects of PaCO2...

  6. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants. (United States)

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela


    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  7. Clinical study of early hyperbaric oxygen therapy for cerebral resuscitation%早期应用高压氧进行脑复苏的临床研究

    Institute of Scientific and Technical Information of China (English)

    潘树义; 孟祥恩; 李铭鑫; 张禹; 吕艳; 杨晨; 张良; 刘文成


    Objective To observe the effect of early hyperbaric oxygen (HBO) therapy on cerebral resuscitation and to provide good evidence and method for the treatment of cerebral resuscitation.Methods The patients responded to cardiac pulmonary resuscitation (CPR) were divided into 2 groups,the early HBO group( within one week of onset) and the delayed HBO group (after 1 week of onset).All the patients were given routine medicinal treatment coupled with HBO therapy.The exposure pressure of HBO and the course of treatment were all the same,only the time point of HBO intervention was different.Evaluation was made by using "the Revised 2001 PVS Criteria for Diagnosis and Treatment" ( the Nanjing Criteria).Consciousness of the patients was evaluated both before HBO therapy and 6 months after onset.Results Of the 18 patients who received early HBO therapy,4 patients recovered and returned to normal life (effective),5 patients became fully conscious,but with minor disability (effective),and 9 patients became vegetable (ineffective),with a total effective rate of 50.0%.Of the 53 patients with delayed HBO therapy,9 patients recovered and returned to normal life (effective),15 patients became fully conscious,but with minor disability (effective),and 29 patients became vegetable (ineffective),with a total effective rate of 45.3%.No significant differences could be seen in effective rates between the 2 groups (P >0.05).However,statistical significance could be noted,when effective rates of the 2 groups were compared with those presented in domestic and international reports (2%-10% ) ( P < 0.05 ).Conclusions In-time HBO therapy could improve prognosis of some patients following cardiac resuscitation,protect neural cells,and improve the intelligence of patients,however,early and ultra-early HBO therapy could not increase the effective rate of cerebral resuscitation.%目的 观察早期高压氧( hyperbaric oxygen,HBO)治疗对脑复苏成功率的影响,为临床脑复苏

  8. Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter (United States)

    Szczapa, Tomasz; Karpiński, Łukasz; Moczko, Jerzy; Weindling, Michael; Kornacka, Alicja; Wróblewska, Katarzyna; Adamczak, Aleksandra; Jopek, Aleksandra; Chojnacka, Karolina; Gadzinowski, Janusz


    The aim of this study is to compare a two-wavelength light emitting diode-based tissue oximeter (INVOS), which is designed to show trends in tissue oxygenation, with a four-wavelength laser-based oximeter (FORE-SIGHT), designed to deliver absolute values of tissue oxygenation. Simultaneous values of cerebral tissue oxygenation (StO2) are measured using both devices in 15 term and 15 preterm clinically stable newborns on the first and third day of life. Values are recorded simultaneously in two periods between which oximeter sensor positions are switched to the contralateral side. Agreement between StO2 values before and after the change of sensor position is analyzed. We find that mean cerebral StO2 values are similar between devices for term and preterm babies, but INVOS shows StO2 values spread over a wider range, with wider standard deviations than shown by the FORE-SIGHT. There is relatively good agreement with a bias up to 3.5% and limits of agreement up to 11.8%. Measurements from each side of the forehead show better repeatability for the FORE-SIGHT monitor. We conclude that performance of the two devices is probably acceptable for clinical purposes. Both performed sufficiently well, but the use of FORE-SIGHT may be associated with tighter range and better repeatability of data.

  9. Analysis and comparison of oxygen consumption of HepG2 cells in a monolayer and three-dimensional high density cell culture by use of a matrigrid®. (United States)

    Weise, Frank; Fernekorn, Uta; Hampl, Jörg; Klett, Maren; Schober, Andreas


    By the use of a MatriGrid® we have established a three-dimensional high density cell culture. The MatriGrid® is a culture medium permeable, polymeric scaffold with 187 microcavities. In these cavities (300 μm diameter and 207 μm deep) the cells can growth three-dimensionally. For these experiments we measured the oxygen consumption of HepG2 cell cultures in order to optimize cultivation conditions. We measured and compared the oxygen consumption, growth rate and vitality under three different cultivation conditions: monolayer, three-dimensional static and three-dimensional actively perfused. The results show that the cells in a three-dimensional cell culture consume less oxygen as in a monolayer cell culture and that the actively perfused three-dimensional cell culture in the MatriGrid® has a similar growth rate and vitality as the monolayer culture.

  10. The Online Morphology Control and Dynamic Studies on Improving Vitamin B12 Production by Pseudomonas denitrificans with Online Capacitance and Specific Oxygen Consumption Rate. (United States)

    Wang, Ze-Jian; Shi, Hui-Lin; Wang, Ping


    The relationship between the morphological character of Pseudomonas denitrificans and vitamin B12 synthesis based on real-time capacitance measurement and online specific oxygen consumption rate (Q O2) control was established for enhancing vitamin B12 production. Results demonstrated that the threshold Q O2 value lower than 2.0 mmol/gDCW/l would greatly stimulate the state transfer from the cell number growth phase to the cell elongation phase and promote rapid vitamin B12 biosynthesis, while the vitamin B12 biosynthesis rate could also be inhibited when the rate of cell's length-to-width ratio (ratio-LW) was higher than 10:1. Furthermore, the optimal morphology controlling strategy was achieved based on online Q O2 control, which increases the appropriate active cell numbers at the former phase, and then control the elongation of ratio-LW no more than 10:1 at the vitamin B12 biosynthesis phase. The maximal vitamin B12 production reached 239.7 mg/l at 168 h, which was improved by 14.7 % compared with the control (208 mg/l). This online controlling strategy would be effectively applied for improving industrial vitamin B12 fermentation.

  11. Delayed Effects of Remote Limb Ischemic Preconditioning on Maximum Oxygen Consumption, Lactate Release and Pulmonary Function Tests in Athletes and non-Athletes

    Directory of Open Access Journals (Sweden)

    Mahnaz Momeni


    Full Text Available Background: Remote Ischemic Preconditioning (RIPC improves exercise performance, and since this phenomenon has two phases, the aim of the current study was to investigate the delayed effects of remote ischemic preconditioning on cardiopulmonary function in athletes and non-athletes. Materials and Methods: 25 male and female students were studied in two main athletes and non-athletes groups. RIPC was induced by using 3 cycles of alternative 5 minutes ischemia and 5 minutes reperfusion at arms of participants. Cardiopulmonary tests were measured before, after and 24 hours after inducing remote ischemic preconditioning. Maximum oxygen consumption (VO2max estimated by using queen steps test. Results: Analysis of data demonstrated that delayed RIPC in non-athletes group caused significant improvement in Forced Expiratory Volume in one second (FEV1 and Maximum Voluntary Ventilation (MVV and noticeable improvement in some other parameters of pulmonary function tests. Moreover, it decreased systolic blood pressure and heart rate and decreased lactate release in both groups especially athletes group but it had no significant effect on VO2max of both groups. Conclusion: Delayed RIPC improves cardiovascular function of athletes and pulmonary function of non-athletes subjects. Thus, it can be considered as a good replacement for doping to improve sports performance of subjects in sports tournaments.

  12. Acute ascorbic acid ingestion increases skeletal muscle blood flow and oxygen consumption via local vasodilation during graded handgrip exercise in older adults. (United States)

    Richards, Jennifer C; Crecelius, Anne R; Larson, Dennis G; Dinenno, Frank A


    Human aging is associated with reduced skeletal muscle perfusion during exercise, which may be a result of impaired endothelium-dependent dilation and/or attenuated ability to blunt sympathetically mediated vasoconstriction. Intra-arterial infusion of ascorbic acid (AA) increases nitric oxide-mediated vasodilation and forearm blood flow (FBF) during handgrip exercise in older adults, yet it remains unknown whether an acute oral dose can similarly improve FBF or enhance the ability to blunt sympathetic vasoconstriction during exercise. We hypothesized that 1) acute oral AA would improve FBF (Doppler ultrasound) and oxygen consumption (V̇o2) via local vasodilation during graded rhythmic handgrip exercise in older adults (protocol 1), and 2) AA ingestion would not enhance sympatholysis in older adults during handgrip exercise (protocol 2). In protocol 1 (n = 8; 65 ± 3 yr), AA did not influence FBF or V̇o2 during rest or 5% maximal voluntary contraction (MVC) exercise, but increased FBF (199 ± 13 vs. 248 ± 16 ml/min and 343 ± 24 vs. 403 ± 33 ml/min; P vasodilation.

  13. Crew Cerebral Oxygen Monitor Project (United States)

    National Aeronautics and Space Administration — This Phase II SBIR proposal is aimed at developing a non-invasive, optical method for monitoring crew member state of awareness in operational environments. All...

  14. Crew Cerebral Oxygen Monitor Project (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal is aimed at developing a non-invasive, optical method for monitoring the state of consciousness of crew members in operational...

  15. 重症先天性心脏病围术期氧供量和氧耗量的变化%Changes in perioperative oxygen delivery and oxygen consumption in high-risk surgical patients with congenital heart disease

    Institute of Scientific and Technical Information of China (English)

    欧阳川; 卿恩明; 高宇翔; 李书闻; 刘亚光


    was induced with diazepam, fentanyl and pancuronium and maintained with inhalation of low concentration of isoflurane( <1%) and intermittent boluses of fentanyl. After tracheal intubation the patients were mechanically ventilated and blood gases were maintained within the normal range. Swan-Ganz catheter was inserted via internal jugular vein. Cardiac output was measured by thermodilution method. Blood samples were taken from artery and pulmonary artery (mixed venous blood) for determination of oxygen saturation. Cardiac index(CI), oxygen delivery ( DO2 ), oxygen consumption ( VO2 ) and oxygen extraction ratio ( ERO2 ) were calculated during CPB, 30min after CPB, at the end of operation, 2h and 16h after operation while dobutamine and/or milrinone were being continuously infused. Results 1.DO2 and VO2 were highly correlated during CPB (r = 0.861) and 30 min after CPB ( r = 0.811) . 2. CI, DO2 and VO2 were significantly lower during CPB than those at 30min after CPB. There was no significant different in ERO2 between the two intervals. 3. CI>3L.min-1 @m-2, DO2 >550ml.min-1 @m-2 and VO2 >120 ml@min-1 @-2m-2 were observed at the termination of CPB, the end of operation and 2h and 16h after operation.Conclusions 1. Pathologic DO2 dependent VO2 exists during the perioperative period of open heartsurgery. 2.Dobutamine can improve tissue oxygenation by increasing O2 extraction from hemoglobin after restoration of spontaneous heart beat.3.CI must be maintained above 3 1 @ min-1 @ m-2 after CPB. It is difficult to maintain DO2, VO2, CI at supernormal level by continuous infusion of dobutamine or milrinone after CPB. 4. It is necessary to continue inotropic agent therapy after operation until circulation recovers completely.[Key Words] Heart defects, congenital; Cardiac surgical procedures; Oxygen consumption

  16. Ataque cerebral


    Takeuchi Tan, Yuri; Fundación Valle de Lili


    ¿Qué es un ataque cerebral?/¿Qué tipos de ataque cerebral existen?/¿Cuáles son los síntomas de un ataque cerebral?/Factores de riesgo para un ataque cerebral/Tratamiento médico del ataque cerebral/¿por qué es importante acudir temprano cuando se presentan las señales de alarma?/ Manejo preventivo del ataque cerebral isquémico/Tratamiento quirúrgico del ataque cerebral/Enfermedad vascular cerebral hemorrágica/¿Cómo está constituido el grupo de ataque cerebral de la fundación Clínica Valle d...

  17. Measurement of forearm oxygen consumption

    DEFF Research Database (Denmark)

    Astrup, A; Simonsen, L; Bülow, J


    glucose. Heating increased rectal temperature by 0.6 degrees C, and plasma norepinephrine levels were increased compared with the control experiments. The present study explains the conflicting reports on glucose-induced thermogenesis in skeletal muscle and warns against heating the contralateral hand...

  18. Physiological activation of the human cerebral cortex during auditory perception and speech revealed by regional increases in cerebral blood flow

    DEFF Research Database (Denmark)

    Lassen, N A; Friberg, L


    Specific types of brain activity as sensory perception auditory, somato-sensory or visual -or the performance of movements are accompanied by increases of blood flow and oxygen consumption in the cortical areas involved with performing the respective tasks. The activation patterns observed...... by measuring regional cerebral blood flow CBF after intracarotid Xenon-133 injection are reviewed with emphasis on tests involving auditory perception and speech, and approach allowing to visualize Wernicke and Broca's areas and their contralateral homologues in vivo. The completely atraumatic tomographic CBF...

  19. Cerebral Palsy. Fact Sheet = La Paralisis Cerebral. Hojas Informativas Sobre Discapacidades. (United States)

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet on cerebral palsy is written in both English and Spanish. First, it provides a definition of cerebral palsy and considers various causes (e.g., an insufficient amount of oxygen reaching the fetal or newborn brain). The fact sheet then offers incidence figures and explains characteristics of the three main types of cerebral palsy:…

  20. Growth Index and Oxygen Consumption Rate in the Period of Post-embryonic Development of Onychodactylus fischeri%爪鲵生长与耗氧率的胚后发育

    Institute of Scientific and Technical Information of China (English)

    晁贺; 张永冈; 王勇; 梁传成; 王丽文


    [ Objective ] In order to reveal the relationship between body weight, length and age in the period of post-embryonic development of Onychodactylus fischeri, the relationship between oxygen consumption rate and body weight with oxygen consumption rate in different developmental stages. [Method] We observed 139 Onychodactylus fischeri in the period of post-embryonic development, measured their body weight and body length to conduct the clustering analysis by the way of using mathematical statistics; then we determined the oxygen consumption rate of larval , subadult and adult Onychodactylus fischeri in the resting state with the enclosed energy metabolism analyzer. [ Result ] The results showed that the average body weight and length were both positively correlated to age; In resting state, the adult Onychodactylus fischeri had the lowest oxygen consumption rate, whereas the subadult had the highest oxygen consumption rate, and negatively correlated to the body weight. [Conclusion ] The growth and oxygen consumption rate of the Onychodactylus fischeri in the period of post-embryonic development shows the characteristics of the cold water streams animals.%[目的]揭示爪鲵(Onychodactylus fischeri)胚后生长发育过程中体重、体长与年龄的关系,探讨不同发育阶段的耗氧率及体重与耗氧率的关系.[方法]对139尾爪鲵的胚后发育进行观察,测量其体重、体长,运用数理统计法进行聚类分析;应用封闭式能量代谢仪测定静息状态下幼体、亚成体、成体爪鲵的耗氧率.[结果]在一定范围内,爪鲵的体长、体重与年龄,体重与体长均呈正向指数相关,且相关性达显著水平;在静息状态下,亚成体爪鲵的耗氧率最高,成体最低,而且耗氧率与体重呈负指数相关,相关性达显著水平.[结论]爪鲵生长与耗氧率的胚后发育表现出冷水溪流型动物的特点.

  1. GABAA Receptor-Mediated Bidirectional Control of Synaptic Activity, Intracellular Ca2+, Cerebral Blood Flow, and Oxygen Consumption in Mouse Somatosensory Cortex In Vivo

    DEFF Research Database (Denmark)

    Jessen, Sanne Barsballe; Brazhe, Alexey; Lind, Barbara Lykke


    of GABA is incompletely understood. Here we performed in vivo studies in mice to investigate how THIP (which tonically activates extrasynaptic GABAARs) and Zolpidem (a positive allosteric modulator of synaptic GABAARs) impact stimulation-induced ΔCBF, ΔCMRO2, local field potentials (LFPs), and fluorescent...... cytosolic Ca2+ transients in neurons and astrocytes. Low concentrations of THIP increased ΔCBF and ΔCMRO2 at low stimulation frequencies. These responses were coupled to increased synaptic activity as indicated by LFP responses, and to Ca2+ activities in neurons and astrocytes. Intermediate and high...... concentrations of THIP suppressed ΔCBF and ΔCMRO2 at high stimulation frequencies. Zolpidem had similar but less-pronounced effects, with similar dependence on drug concentration and stimulation frequency. Our present findings suggest that slight increases in both synaptic and extrasynaptic GABAAR activity might...

  2. Cerebral near infrared spectroscopy oximetry in extremely preterm infants

    DEFF Research Database (Denmark)

    Hyttel-Sorensen, Simon; Pellicer, Adelina; Alderliesten, Thomas;


    OBJECTIVE: To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. DESIGN: Phase II randomised, single blinded, parallel clinical trial. SETTING: Eight tertiary neonatal intensive care units...

  3. Cerebral Palsy (United States)

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  4. Comparison of Estimations Versus Measured Oxygen Consumption at Rest in Patients With Heart Failure and Reduced Ejection Fraction Who Underwent Right-Sided Heart Catheterization. (United States)

    Chase, Paul J; Davis, Paul G; Wideman, Laurie; Starnes, Joseph W; Schulz, Mark R; Bensimhon, Daniel R


    Cardiac output during right-sided heart catheterization is an important variable for patient selection of advanced therapies (cardiac transplantation and left ventricular assist device implantation). The Fick method to determine cardiac output is commonly used and typically uses estimated oxygen consumption (VO2) from 1 of 3 published empirical formulas. However, these estimation equations have not been validated in patients with heart failure and reduced ejection fraction (HFrEF). The objectives of the present study were to determine the accuracy of 3 equations for estimating VO2 compared with direct measurement of VO2 and determine the extent clinically significant error occurred in calculating cardiac output of patients with HFrEF. Breath-by-breath measurements of VO2 from 44 patients who underwent cardiac catheterization (66% men; age, 65 ± 11 years, left ventricular ejection fraction, 22 ± 6%) were compared with the derived estimations of LaFarge and Miettinen, Dehmer et al, and Bergstra et al. Single-sample t tests found only the mean difference between the estimation of LaFarge and Miettinen and the measured VO2 to be nonsignificant (-10.3 ml/min ± 6.2 SE, p = 0.053). Bland-Altman plots demonstrated unacceptably large limits of agreement for all equations. The rate of ≥25% error in the equations by LaFarge and Miettinen, Dehmer et al, and Bergstra et al occurred in 11%, 23%, and 45% of patients, respectively. Misclassification of cardiac index derived from each equation for 2 clinically important classifications: cardiogenic shock-21%, 23%, and 32% and hypoperfusion-16%, 16%, and 25%; respectively. In conclusion, these findings do not support the use of these empiric formulas to estimate the VO2 at rest in patients with HFrEF who underwent right-sided heart catheterization.

  5. Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin ☆


    Kolyva, Christina; Ghosh, Arnab; Tachtsidis, Ilias; Highton, David; Chris E Cooper; Smith, Martin; Elwell, Clare E.


    The redox state of cerebral mitochondrial cytochrome c oxidase monitored with near-infrared spectroscopy (Δ[oxCCO]) is a signal with strong potential as a non-invasive, bedside biomarker of cerebral metabolic status. We hypothesised that the higher mitochondrial density of brain compared to skin and skull would lead to evidence of brain-specificity of the Δ[oxCCO] signal when measured with a multi-distance near-infrared spectroscopy (NIRS) system. Measurements of Δ[oxCCO] as well as of concen...

  6. Cerebral malaria Malaria cerebral

    Directory of Open Access Journals (Sweden)

    Silvia Blair Trujillo


    Full Text Available Is the most common complication of P. falciparum malaria; nearly 90% of people who have suffered CM can recover without neurological problems. Currently there are four hypotheses that explain pathogenesis of CM: cytoadherence and sequestering of parasitized red blood cells to cerebral capillaries; rosette formation and parasitized red blood cells agglutination; production of cytokines and activation of second messengers and opening of the blood-brain barrier. However the main question remains to be answered; how the host-parasite interaction in the vascular space interferes transiently with cerebral function? Recently, the beta amyloid precursor peptide has been employed as marker of neural injury in CM. It is expected that the beta amyloid precursor peptide will help to understand the pathogenesis of CM in complicated patients of endemic areas of Colombia. La malaria Cerebral (MC es la complicación más frecuente de la malaria por P. falciparum; aproximadamente el 90% de las personas que la han padecido se recuperan completamente sin secuelas neurológicas. Aún no se conoce con claridad su patogénesis pero se han postulado cuatro hipótesis o mecanismos posibles: 1 citoadherencia y secuestro de glóbulos rojos parasitados en la microvasculatura cerebral; 2 formación de rosetas y aglutinación de glóbulos rojos parasitados; 3 producción de citoquinas y activación de segundos mensajeros y, 4 apertura de la barrera hematoencefálica. Sin embargo, queda un interrogante sin resolver aún: ¿qué proceso se lleva a cabo para que el parásito, desde el espacio microvascular, pueda interferir transitoriamente con la función cerebral? Recientemente se ha utilizado el precursor de la proteína b-Amiloide como un marcador de daño neuronal en MC; este precursor será de gran ayuda en futuras investigaciones realizadas en nuestro medio que aporten información para comprender la patogénesis de la MC.

  7. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy (United States)

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially a...


    Institute of Scientific and Technical Information of China (English)

    XU Qiao-Qing; LIU Jun; HUANG Hua-Wei


    The effects of water temperature on oxygen consumption rate and ammonia excretion rate of Solenaia oleivora were studied in the laboratory. The results showed that, under controlled conditions and ambient temperatures 15-30℃, the relationship between oxygen consumption rate (O) [mg/h] and dry weight of soft tissue (W) [g] can be represented by an allometric equation O = aWb, while the relationship between ammonia excretion rate (N) [ μg/h] and dry weight of soft tissue (W) [ g] follows also an allometric equation N = cWb. It is indicated that both metabolic rates are correlated positively with water temperature. High temperature can reduce the level of protein metabolism. The linear regression among oxygen consumption rate (O), temperature (T) and dry weight of soft tissue (W) can be described by the equation O = -0.6513 + 0.0532T+ 0. 1073W, and for ammonia this relation is N = 32.1626- 1.0566T + 1.3222W, the multiple relation coefficient was 0.9642 and 0.8921, respectively.

  9. Influence of Matrices on Oxygen Sensing of Three Sensing Films with Chemically Conjugated Platinum Porphyrin Probes and Preliminary Application for Monitoring of Oxygen Consumption of Escherichia coli (E. coli)


    Tian, Yanqing; Shumway, Bradley R.; Gao, Weimin; Youngbull, Cody; Holl, Mark R.; Johnson, Roger H.; Meldrum, Deirdre R.


    Oxygen sensing films were synthesized by a chemical conjugation of functional platinum porphyrin probes in silica gel, polystyrene (PS), and poly(2-hydroxyethyl methacrylate) (PHEMA) matrices. Responses of the sensing films to gaseous oxygen and dissolved oxygen were studied and the influence of the matrices on the sensing behaviors was investigated. Silica gel films had the highest fluorescence intensity ratio from deoxygenated to oxygenated environments and the fastest response time to oxyg...


    Directory of Open Access Journals (Sweden)

    M. Izadi


    Full Text Available AbstractObjectiveChildren suffering from Cerebral Palsy (CP, exhibit movement limitations and physiological abnormalities as compared to normal individuals.The objective of this study was to assess mechanical efficiency and certain cardiovascular indices before and after an exercise-rehabilitation program in children with dipelegia spastic cerebral palsy (experimental group in comparison with able-bodied children(controls. Material and MethodsIn this study, 15 spastic cerebral palsy (dipelegic children participated in an exercise-rehabilitation program, three days a week for three months with an average 144bpm of heart rate. The mechanical efficiency (net, gross, rest and submaximal heart rate and maximal oxygen consumption(VO2max weremeasured before (pretest and after (posttest exercise program on the cycle ergometer according to the Macmaster ergometer protocol. Then control group, of 18 normal children underwent the exercise program and were assessed, following which results of the 2 groups were compared using SPSS for statistical analysis (P ResultsMechanical efficiency (net, gross increased significantly in CP patients after the exercise-rehabilitation program; reults did not alter significantly for the controls.Rest and submaximal heart rate in CP patients decreased significantly after exercise program. Maximal oxygen consumption, which remained unchanged in patients following the exercise program, was similar in patients and controls after the program. ConclusionCerebral palsy patients, because of their high muscle tone, severe degree of spasticity, and involuntary movements are physically more incapacitated and need more energy than normal able-bodied individuals.Rehabilitation and aerobic exercise can be effective in improving their cardiovascular fitness and muscle function and increasing their mechanical efficiency.Keywords: spastic cerebral palsy, maximal oxygen consumption, heart rate, mechanical efficiency, rehabilitation.

  11. 早期脓毒症大鼠脑氧代谢与乳酸的变化%Preliminary study of cerebral oxygen metabolism and change of blood lactate in early stage of sepsis in rats

    Institute of Scientific and Technical Information of China (English)

    钱欣; 郑峥; 汤罗嘉; 陈锋


    Objective To observe the change of cerebral oxygen metablism and the level of blood lactate in early stage of sepsis in rats.Method Sixty-four SD rats were randomly(random number)divided into septic group and control group.The sepsis model of rat was made by lipopolysaccharide (LPS,10 mg/kg)injected intra-abdominally,and rats of control group were treated with the same amount of physiological saline instead.And each group was further divided into 4 sub-groups of4 h,6 h,12 h and 24 h after treatment.At each interval,blood samples were obtained via jugular vein for detecting blood oxygen saturation (Sjv02)and blood lactate(LA).The blood oxygen saturation(Sa02)of ventral aorta was also measured.Arteriovenous oxygen content difference (AVD02) and oxygen extraction fraction (OEF) were studied.These four variables were analyzed and compared between two groups.Results The AVD02 and OEF in sepsis group were higher than those in control groups of 3 h,6 h and 12 h (P0.05).LA in sepsis group was higher than that in control group in each interval (P0.05).脓毒症组各时间点LA含量与对照组相比均有不同程度升高,差异具有统计学意义(P<0.05).结论 脓毒症早期可出现脑贯注及脑氧摄取的增强;Sjv02,AVDO2,OEF结合LA水平的监测,能更准确的评估脓毒症早期脑供氧、耗氧和脑贯注状态.

  12. Frontal lobe oxygenation is maintained during hypotension following propofol-fentanyl anesthesia

    DEFF Research Database (Denmark)

    Nissen, P.; Lieshout, J.J. van; Nielsen, H.B.


    Near-infrared spectroscopy (NIRS) assesses cerebral oxygen saturation (Sco2) as a balance between cerebral oxygen delivery and consumption. In 71 patients, we evaluated whether marked reduction in mean arterial pressure (MAP) during propofol-fentanyl anesthesia induction affects frontal lobe Sco2....... The NIRS-determined arm muscle oxygenation (Smo2), heart rate (HR), and cardiac output (CO) were monitored, endtidal carbon dioxide tension was controlled at 3.5 to 4.5 kPa, and central blood volume was maintained. Before anesthesia, the median (range) MAP, HR, and CO were 93 mm Hg (61-126 mm Hg), 76 beats......, the median (range) NIRS-determined Smo2 also decreased (73% [54%-94%] to 71% [52%-87%]), whereas Sco2 increased from 67% (46%-93%) to 74% (48%-95%) (P anesthesia induction, variables recovered and remained at preanesthetic levels during surgery. The findings...

  13. Research on the effect of remifentanil on cerebral oxygen metabolism and cerebral blood flow of patients with severe brain injury%瑞芬太尼对重型颅脑损伤患者脑氧代谢及脑血流的影响

    Institute of Scientific and Technical Information of China (English)



    Objective To investigate the effect of remifentanil on cerebral oxygen metabolism and cerebral blood flow of patients with severe brain injury.Methods Retrospective analysis of the clinical data of the 64 cases with severe head injury ad-mitted to our hospital was processed. According to the anesthetic drugs ,64 cases were divided into treatment group and control group ,the control group was treated with fentanyl for anesthesia ,the treatment group was treated with remifentanil for anes-thesia. Cerebral oxygen metabolism and hemodynamic indexes of the two groups before anesthesia and after anesthesia for 10min were compared.Results Before anesthesia ,brain oxygen metabolism and hemodynamic parameters of the two groups were not significantly different ,P>0.05 ;10 min after anesthesia ,CERO2 of the treatment group was significantly higher than that of the control group ,CjvO2 ,Da-jvO2 are significantly lower than that of the control group ,P<0.05;Qmean ,Wv of the treatment group were significantly higher than those of the control group ;DR was significantly lower than that of the control group ,P<0.05.Conclusion Remifentanil anesthesia for patients with severe head injury surgery can improve cerebral oxygen metabolism and cerebral blood flow ,has high security.%目的:探讨瑞芬太尼对重型颅脑损伤患者脑氧代谢的影响。方法回顾性分析我院收治的64例重型颅脑损伤患者的临床资料,根据麻醉药物不同分为治疗组和对照组,对照组采用芬太尼麻醉,治疗组采用瑞芬太尼麻醉,比较2组患者麻醉前、麻醉后10 min时脑氧代谢指标和血流动力学指标。结果麻醉前2组患者的脑氧代谢指标和血流动力学指标比较均无显著性差异(P>0.05);麻醉后10 min治疗组CERO2显著高于对照组,CjvO2、Da-jvO2均显著低于对照组(P<0.05);治疗组Qmean、Wv显著高于对照组,DR显著低于对照组(P<0.05)。结论瑞芬太尼在重型颅脑损

  14. Induction of microcin B17 formation in Escherichia coli ZK650 by limitation of oxygen and glucose is independent of glucose consumption rate. (United States)

    Gao, Q; Fang, A; Demain, A L


    We examined the consumption of glucose from the media in which Escherichia coli ZK650 was grown. This organism, which produces the polypeptide antibiotic microcin B17 best under conditions of limiting supplies of glucose and air, was grown with a low level of glucose (0.5 mg/ml) as well as a high level (5.0 mg/ml) under both high and low aeration. Glucose consumption rates were virtually identical under both high and low aeration. Thus, glucose consumption rate is not a regulating factor in microcin B17 formation.

  15. Water flow requirements related to oxygen consumption in juveniles of Oplegnathus insignis Requerimientos de flujo de agua en función del consumo de oxígeno en juveniles de Oplegnathus insignis

    Directory of Open Access Journals (Sweden)

    Elio Segovia


    Full Text Available In this study the oxygen consumption rate in four groups of Oplegnathus insignis was examined under three different water temperatures 13, 18 and 23°C. Average weight of each group of fish was 9.5, 198, 333 and 525 g respectively. Oxygen consumption was measured in a respirometer of 18.8 L capacity and results show that at the same water temperature occurs an inverse relationship between body weight and oxygen consumption whereas for same body weight (W in kg the respiration rate varies proportionally with temperature rise (T in °C. The generalized equation of oxygen consumption (Ro in routine metabolism was determined as: Ro (mg O2 kg-1 h-1 = [85.229 + (10.03 T]-(221.344 W. The information it is analized with regard to establishing quantitative relationships that allow a more precise specification of the water flow requirements and renewal rates in open flow systems without oxygenation, considering aspects such as body weight, respiratory rate, temperature and stocking density.Se determinó la tasa de consumo de oxígeno de Oplegnathus insignis en cuatro grupos de peces bajo tres temperaturas diferentes: 13, 18 y 23°C. El peso promedio de cada grupo de peces fue de 9,5, 198, 333 y 523 g respectivamente. El consumo de oxígeno se determinó en un respirómetro de 18,8 L de capacidad y los resultados muestran que a una misma temperatura ocurre una relación inversa entre el peso corporal (W en kg y el consumo de oxígeno, mientras que para un mismo peso corporal la tasa respiratoria varía proporcionalmente con el ascenso de temperatura (T en °C. La ecuación generalizada que representa el consumo de oxígeno (Ro en metabolismo de rutina se determinó como: Ro (mg O2 kg-1 h-1 = [85.229 + (10.03 T]-(221.344 W. Se analizó la información en relación a establecer las relaciones cuantitativas que permitan una especificación más exacta de los requerimientos de flujo de agua y tasas de renovación en sistemas de flujo abierto y sin oxigenaci

  16. Cerebral energy metabolism during induced mitochondrial dysfunction

    DEFF Research Database (Denmark)

    Nielsen, T H; Bindslev, TT; Pedersen, S M


    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes in...... in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets....

  17. Neuroprotective effect of high-dose hyperbaric oxygenation on rats with acute cerebral infarction in super-early stage Curative comparison between 9-hour and 18-hour therapeutic protocols

    Institute of Scientific and Technical Information of China (English)


    BACKGROUND: Previously, only single short-time low-dose hyperbaric oxygenation (HBO) protocol was administrated to treat acute ischemic stroke in early stage and the conflicting results were obtained. There are few studies to report the outcome of administering long-time (can cover all the natural pathologic progression period) high-dose HBO to treat the disease.OBJECTIVE: To evaluate the therapeutic effect between two kinds of high-dose hyperbaric oxygenation on super-early stage of acute permanent middle cerebral artery occlusion (MCAO) in rats.DESIGN: A randomized controlled experimental study.SETTING: Beijing Tiantan Hospital, Capital Medical University; Beijing Research Institute of Neurosurgery.MATERIALS: Seventy-four male SD rats, aged 2.5 months old, weighing (280±20) g, were provided by the Animal Institute, Chinese Academy of Medical Sciences. Hyperbaric oxygenation device was hyperbaric air cabin in which there was a self-made pure oxygen animal experimental cabin (made in China).METHODS: This experiment was carried out in the municipal laboratory of Beijing Tiantan Hospital affiliated to Capital Medical University and Beijing Research Institute of Neurosurgery. ① Experimental intervention: All the rats were developed into models of permanent MCAO by suture embolism. Then, they were randomly divided into two HBO groups (9hours and 18 hours) and control group, with 24 rats in each as well as 3-hour ultrastructure control group, with 2 rats. After being modeled for 3 hours, rats in the two HBO groups stayed in the hyperbaric cabin for 9 hours and 18 hours,separately. Rats in the 9-hour HBO group inhaled pure oxygen at hours 1, 3, 5, 7 and 9, and hyperbaric air at hours 2, 4, 6 and 8. Rats in the 18-hour HBO group inhaled pure oxygen at hours 1, 3, 5, 7, 9, 11, 13, 15 and 17, and hyperbaric air at hours 2, 4, 6, 8, 10 12, 14, 16 and 18. After being created into models, rats in the control group and 3-hour ultrastructure control group breathed room air.

  18. Cerebral blood flow response to functional activation

    DEFF Research Database (Denmark)

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill


    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only...

  19. Head position change is not associated with acute changes in bilateral cerebral oxygenation in stable preterm infants during the first three days of life (United States)

    Liao, Steve Ming-Che; Rao, Rakesh; Mathur, Amit M.


    Objective Several recent intraventricular hemorrhage prevention bundles include midline head positioning to prevent potential disturbances in cerebral hemodynamics. We aimed to study the impact of head position change on regional cerebral saturations (SctO2) in preterm infants (< 30 weeks GA) during the first three days of life. Study Design Bilateral SctO2 was measured by near infrared spectroscopy. The infant's head was turned sequentially to each side from midline (baseline) in thirty-minute intervals while keeping the body supine. Bilateral SctO2 before and after each position change were compared using paired t-test. Results In relatively stable preterm infants (gestational age 26.5±1.7 weeks, birth weight 930±220g; n=20), bilateral SctO2 remained within normal range (71.1% - 75.3%) when the head was turned from midline position to either side. Conclusion Stable preterm infants tolerated brief changes in head position from midline without significant alternation in bilateral SctO2; the impact on critically ill infants needs further evaluation. PMID:25282608

  20. 通气程度对颅脑损伤患者脑氧供需平衡的影响%Effect of hyperventilation on cerebral oxygen supply-demand balance in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    程明华; 许映娜


    BACKGROUND: Inadequate hyperventilation may trigger cerebrovascular contraction and lead to lowered cerebral perfusion and oxygen supply-demand imbalance.OBJECTIVE: To investigate the influence of hyperventilation on oxygen saturation in the internal jugular vein, difference in oxygen and lactic acid contents between the cerebral arteries and veins in patients with serious traumatic brain injury.DESIGN: Case analysis.SETTING: Department of Anesthesiology, First Hospital Affiliated to Shantou University.PARTICIPANTS: Sixteen patients who received emergency operations in the First Hospital Affiliated to Shantou University between January and July 2002.METHODS: Patients with traumatic brain injury underwent operation under general anesthesia, and the PaCO2 was maintained at 30 mm Hg for 15 minutes by regulating the respiration rate, followed by decrease to 25 mm Hg, maintained for 15 minutes before restoration to 30 mm Hg for 15 minutes. The fractional concentration of inspired oxygen was adjusted to maintain blood PaO2 at around 100-150 mm Hg, and the blood sample was collected from the artery and internal jugular vein 15 minutes after adjustment of PaCO2 for blood gas analysis. The PaO2 was then increased to 200-250 mm Hg by increasing the fractional concentration of inspired oxygen, and the PaCO2 was adjusted from 30 to 25 and then back to 30 mm Hg in the described manner, and the oxygen saturation in the internal jugular vein, difference in oxygen and lactic acid contents between the arteries and the veins were measured.MAIN OUTCOME MEASURES: Influence of blood PaO2 and PaCO2 on oxygen saturation in the internal jugular vein, difference in oxygen and lactic acid contents between the arteries and the veins.RESULTS: Sixteen patients met the diagnostic criteria and completed data collection. The arterial PaCO2 decreased from 30 to 25 mm Hg when arterial blood oxygen pressure increased from 100-150 to 200-250 mm Hg, which leads to obvious decrease of oxygen saturation

  1. Correlation of oxygen consumption, cytochrome c oxidase, and cytochrome c oxidase subunit I gene expression in the termination of larval diapause in the bamboo borer, Omphisa fuscidentalis. (United States)

    Singtripop, Tippawan; Saeangsakda, Manasawan; Tatun, Nujira; Kaneko, Yu; Sakurai, Sho


    The moth Omphisa fuscidentalis (Lepidoptera, Pyralidae) is a univoltine insect with a larval diapause period lasting up to 9 months. We studied changes in O(2) consumption in conjunction with cytochrome c oxidase activity and cytochrome c oxidase subunit I (cox1) gene expression. O(2) consumption changed within a day, showing a supradian rhythm with a ca.12-h cycle at 25 degrees C. During the first two-thirds of the diapause period, from October to March, O(2) consumption was constant until January and then increased by March. Topical application of methoprene, a juvenile hormone analog (JHA), to diapausing larvae terminated the diapause and was associated with an increase in O(2) consumption rate at diapause termination. In JHA-treated larvae, cytochrome c oxidase activity in fat bodies was high at the beginning of the prepupal period and highest at pupation. cox1 expression in fat bodies displayed a transient peak 8 days after JHA application and peaked in the prepupal period. Taken together, our results show that the break of diapause by JHA is associated with the activation of cox1, bringing about an increase in cytochrome c oxidase activity, followed by an increase in O(2) consumption rate.

  2. Effects of Chinese herbal monomers on oxidative phosphorylation and membrane potential in cerebral mitochondria isolated from hypoxia-exposed rats in vitro

    Institute of Scientific and Technical Information of China (English)

    Weihua Yan; Junze Liu


    Mitochondrial dysfunction is the key pathogenic mechanism of cerebral injury induced by high-altitude hypoxia. Some Chinese herbal monomers may exert anti-hypoxic effects through enhancing the efficiency of oxidative phosphorylation. In this study, effects of 10 kinds of Chinese herbal monomers on mitochondrial respiration and membrane potential of cerebral mitochondria isolated from hypoxia-exposed rats in vitro were investigated to screen anti-hypoxic drugs. Rats were exposed to a low-pressure environment of 405.35 mm Hg (54.04 kPa) for 3 days to establish high-altitude hypoxic models. Cerebral mitochondria were isolated and treated with different concentrations of Chinese herbal monomers (sinomenine, silymarin, glycyrrhizic acid, baicalin, quercetin, ginkgolide B, saffron, piperine, ginsenoside Rg1 and oxymatrine) for 5 minutes in vitro. Mitochondrial oxygen consumption and membrane potential were measured using a Clark oxygen electrode and the rhodamine 123 fluorescence analysis method, respectively. Hypoxic exposure significantly decreased the state 3 respiratory rate, respiratory control rate and mitochondrial membrane potential, and significantly increased the state 4 respiratory rate. Treatment with saffron, ginsenoside Rg1 and oxymatrine increased the respiratory control rate in cerebral mitochondria isolated from hypoxia-exposed rats in dose-dependent manners in vitro, while ginsenoside Rg1, piperine and oxymatrine significantly increased the mitochondrial membrane potential in cerebral mitochondria from hypoxia-exposed rats. The Chinese herbal monomers saffron, ginsenoside Rg1, piperine and oxymatrine could thus improve cerebral mitochondrial disorders in oxidative phosphorylation induced by hypobaric hypoxia exposure in vitro.

  3. Cytotoxic effects of 109 reference compounds on rat H4IIE and human HepG2 hepatocytes. III: Mechanistic assays on oxygen consumption with MitoXpress and NAD(P)H production with Alamar Blue™. (United States)

    Schoonen, Willem G E J; Stevenson, Joe C R; Westerink, Walter M A; Horbach, G Jean


    In vitro toxicity screening can reduce the attrition rate of drug candidates in the pharmaceutical industry in the early development process. The focus in this study is to compare the sensitivity for cytotoxicity of a time-resolved fluoro metric oxygen probe with that of a fluoro metric Alamar Blue™ (AB) assay. Both assays measure mitochondrial activity by either oxygen consumption (LUX-A65N-1 (MitoXpress, Luxcel) probe) or NADH/FADH conversion (AB). Both assays were carried out with increasing concentrations of 109 reference compounds using rat H4IIE and human HepG2 hepatocytes at incubation periods of 24, 48 and 72 h. Prior to this study, the influence on medium with either glucose or galactose was studied to analyze the rate of glycolysis and oxygen consumption, which latter process may be impaired in hepatoma cells. Inhibitors of oxygen consumption in combination with a glucose up-take inhibitor showed the largest consumption rate differences in the presence of 5mM of glucose. The choice for the 109 reference compounds was based on the so-called Multicentre Evaluation for In vitro Cytotoxicity (MEIC) and on diverse drug categories. For 59 toxic reference compounds, an evaluation for both assays was carried up to 10(-3)M. Toxicity was demonstrated with MitoXpress for 23 (39%) and 36 (61%) compounds in H4IIE and HepG2 cells, respectively, and with AB for 44 (75%) and 40 (68%) compounds. For 50 more pharmaceutical drugs more physiological concentrations were used up to 3.16×10(-5)M, and only 19 (38%) of these compounds appeared to be toxic in both assays. In conclusion, overall 63 (58%) and 60 (55%) compounds showed toxic effects with the MitoXpress and AB assays on rat H4IIE and human HepG2 hepatocytes, respectively. AB assays were more sensitive with respect to H4IIE cells and MitoXpress assays with respect to HepG2 cells. At all tested time intervals, MitoXpress showed its sensitivity, while AB is more sensitive at 48 and 72 h. With AB more toxic compounds

  4. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.


    . At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery...

  5. Early biomarkers of brain injury and cerebral hypo- and hyperoxia in the SafeBoosC II trial

    DEFF Research Database (Denmark)

    Plomgaard, Anne M; Alderliesten, Thomas; Austin, Topun


    BACKGROUND: The randomized clinical trial, SafeBoosC II, examined the effect of monitoring of cerebral oxygenation by near-infrared spectroscopy combined with a guideline on treatment when cerebral oxygenation was out of the target range. Data on cerebral oxygenation was collected in both the int...

  6. Medida da diferença artério-venosa de oxigênio na monitorização de pacientes com hemorragia subaracnóidea por aneurisma cerebral Measurement of arteriovenous oxygen difference in the monitoring of patients with subarachnoid haemorrhage due to cerebral aneurysm

    Directory of Open Access Journals (Sweden)

    Ronaldo Sérgio Santana Pereira


    Full Text Available A diferença artério-venosa de oxigênio (DAVO2, pelo fato de estar relacionada com o metabolismo cerebral, reflete alterações que ocorrem em determinadas situações patológicas, entre elas as causadas pela hemorragia subaracnóidea espontânea (HSAE. Com a finalidade de avaliar a relação entre alterações na DAVO2 com o quadro clínico e a evolução de pacientes com HSAE, devido à ruptura de aneurisma cerebral, este método foi utilizado em 30 pacientes portadores desta patologia, admitidos na Unidade de Neurocirurgia do HBDF. A HSAE foi confirmada por CT de crânio em 17 pacientes e por punção lombar em 13. Dezoito pacientes foram admitidos com Hunt & Hess (H&H I ou II, sete com H&H III e cinco com H&H IV ou V. A medida da DAVO2 baseou-se na equação de Fick e os resultados clínicos foram avaliados pela escala de seqüelas de Glasgow. Dezenove pacientes apresentaram DAVO2 normais (inicialmente e durante a evolução, sendo que três faleceram; cinco tiveram valores de DAVO2 sempre baixos e três faleceram; os restantes seis pacientes tiveram valores da DAVO2 sempre elevados e dois faleceram. Os pacientes com DAVO2 normais tiveram melhor evolução clínica e índice de mortalidade menor, quando comparados com os pacientes com valores anormais da DAVO2 (pThe arterious venous oxygen difference (AVDO2 due to the close relationship with cerebral metabolic rate of oxygen and cerebral blood flow shows metabolic alterations that occur in some pathological situations in the brain including subarachnoid haemorrhage. The AVDO2 was calculated by the Fick equation and the results evaluated by the Glasgow outcome scale. Measurements of arteriojugular oxygen difference were carried out in 30 patients with subarachnoid haemorrhage due to rupture of intracranial aneurysms, as an attempt to monitor the relationship between changes in AVDO2, clinical picture, and evolution of the patients. The subarachnoid haemorrhage was diagnosed by CT scan in

  7. Observation of postoperative rehabilitation efficacy of hyperbaric oxygen on brain tumors, cerebral aneurysms%高压氧对脑肿瘤、脑动脉瘤术后康复疗效的观察

    Institute of Scientific and Technical Information of China (English)



    Objective To investigate the clinical effect of hyperbaric oxygen (HBO) in the treatment of brain tumors and cerebral aneurysms. Methods 200 patients with brain tumors or cerebral aneurysms in our hospital from 2009 December to 2013 December were selected, they were divided into two groups according to the different treatments. 100 cases with brain tumors or cerebral aneurysms were as the observation group that treated by HBO. 100 cases with similar disease were as the control group that treated without HBO. The two groups were both given conventional drug treatment .Checked cerebral vasospasm (CVS) by head color Doppler ultrasound, evaluated clinical recovery by neurological function and activities of daily living assessment, the clinical efficacy were compared and analyzed. Results The NF score and Barthel score of the two groups had no significant difference before the treatment (P>0.05);the NF score and Barthel score of the two groups had significant difference after the treatment (P 0.05), Middle cerebral artery flow velocity and CVS of the two groups had significant difference after the treatment(P<0.05). Conclusion HBO comprehensive treatment effect is remarkable, it can reduce neurological deficits, improve the quality of patients' life, it should be introduced.%目的:探讨高压氧(HBO)治疗脑肿瘤、脑动脉瘤术后康复的临床疗效。方法选取我院2009年12月~2013年12月收治的脑肿瘤、脑动脉瘤术后患者200例,根据治疗方法不同分为两组,将100例HBO治疗的脑肿瘤、脑动脉瘤术后患者设为观察组,将病情相似未作HBO治疗的100例患者设为对照组,两组均常规药物治疗。采用头颅彩色多普勒超声检查患者脑血管痉挛(CVS)情况,并采用神经功能缺损评分和日常生活活动能力评定评判患者临床恢复情况,并对临床疗效进行对比分析。结果两组患者治疗前NF评分和Barthel评分比较差异无统计学意义(P>0.05

  8. Vasoespasmo cerebral

    Directory of Open Access Journals (Sweden)

    Antonio A. F. de Salles


    Full Text Available Vasoespasmo cerebral ocorre em patologias como enxaqueca, hemorragia subaracnóidea, trauma de crânio, após isquemia e/ou hipoxia. A fisiopatologia do vasoespasmo cerebral nestas patologias não está completamente desvendada. Neste artigo são analisados os fatores neuroquímicos e morfológicos responsáveis pelo controle circulatório cerebral. As alterações circulatórias que seguem a hemorragia subaracnóidea são utilizadas como exemplo. Conclui-se que fatores bioquímicos, fisiológicos e morfológicos são responsáveis pelas manifestações vasculares que ocorrem após a hemorragia subaracnóidea. Alternativas de tratamento do vasoespasmo cerebral são discutidas.

  9. Effect of thyroxine on cellular oxygen-consumption and glucose uptake: evidence of an effect of total T4 and not "free T4"

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E


    in human mononuclear blood cells. Cells were incubated in protein free medium and in human serum totally depleted of thyroid hormones by resin treatment and fixed amounts of T4 (total T4 = 0-50-100-5000 nmol/l; free T4 = 0-5-11-5600 pmol/l) were added. Thyroxine stimulated glucose uptake and oxygen...

  10. 高压氧辅助药物治疗动脉粥样硬化脑血管痉挛随机对照研究%Effect of hyperbaric oxygen combined with drug on patients with atherosclerotic cerebral vasospasm

    Institute of Scientific and Technical Information of China (English)



    目的:分析高压氧辅助药物治疗动脉粥样硬化脑血管痉挛的效果。方法选择在本院接受住院治疗的动脉粥样硬化脑血管痉挛患者作为研究对象,分别给予单纯药物治疗及高压氧辅助药物治疗,比较有效率、血液学指标、基底动脉管径及NO、NOS、Ca2+含量等。结果观察组有效率(97.06%)、基底动脉管径[(4.98±1.35)mm]、NO [(59.43±11.48)μmol/L]、NOS[(98.43±14.38)kU/L]均明显高于对照组;胆固醇[(3.12±0.72)mmol/L]、甘油三酯[(1.27±0.41)mmol/L]、血小板计数[(112.74±13.36)×109/L]、血黏度[(1.21±0.37) mPa · s]、[Ca2+(17.07±1.65)g/μmol]明显低于对照组( P<0.05)。结论高压氧辅助药物可有效提高动脉粥样硬化脑血管痉挛患者的临床疗效,优化血液学指标,升高基底动脉管径、NO及NOS ,减少Ca2+含量,具有积极的临床意义。%Objective To analyze the efficacy of hyperbaric oxygen combined with drug on patients with atherosclerotic cerebral vasospasm. Methods Patients with atherosclerotic cerebral vasospasm admitted to our hospital were chosen as re-search subjects ,and divided into observation group and control group. The control group was given drug therapy alone and the observation group was given hyperbaric oxygen combined with drug therapy. The efficiency of treatment ,hematological index , and basilar artery diameter ,NO ,NOS ,Ca2+ level of the two groups were compared. Results The efficacy rate (97.06% ) ,bas-al artery diameter(4.98 ± 4.98) mm ,NO(59.43 ± 11.48)μmol/L ,NO (98.43 ± 14.38) kU/L of observation group were sig-nificantly higher than those of the control group ;Cholesterol(3.12 ± 0.72) mmol/L ,triglycerides(1.27 ± 0.41) mmol/L , platelet count(112.74 ± 13.36)109/L ,blood viscosity(1.21 ± 0.37 )mPa · s ,Ca2+ (17.07 ± 1.65) g/μmol were significantly lower than those of the control group(P<0.05).Conclusion Hyperbaric oxygen

  11. Cerebral Paragonimiasis. (United States)

    Miyazaki, I


    The first case of cerebral paragonimiasis was reported by Otani in Japan in 1887. This was nine years after Kerbert's discovery of the fluke in the lungs of Bengal tigers and seven years after a human pulmonary infection by the fluke was demonstrated by Baelz and Manson. The first case was a 26-year-old man who had been suffering from cough and hemosputum for one year. The patient developed convulsive seizures with subsequent coma and died. The postmortem examination showed cystic lesions in the right frontal and occipital lobes. An adult fluke was found in the occipital lesion and another was seen in a gross specimen of normal brain tissue around the affected occipital lobe. Two years after Otani's discovery, at autopsy a 29-year-old man with a history of Jacksonian seizure was reported as having cerebral paragonimiasis. Some time later, however, it was confirmed that the case was actually cerebral schistosomiasis japonica. Subsequently, cases of cerebral paragonimiasis were reported. However, the majority of these cases were not confirmed histologically. It was pointed out that some of these early cases were probably not Paragonimus infection. After World War II, reviews as well as case reports were published. Recently, investigations have been reported from Korea, with a clinicla study on 62 cases of cerebral paragonimiasis seen at the Neurology Department of the National Medical Center, Seoul, between 1958 and 1964. In 1971 Higashi described a statistical study on 105 cases of cerebral paragonimiasis that had been treated surgically in Japan.

  12. Wearable wireless cerebral oximeter (Conference Presentation) (United States)

    Zhang, Xin; Jiang, Tianzi


    Cerebral oximeters measure continuous cerebral oxygen saturation using near-infrared spectroscopy (NIRS) technology noninvasively. It has been involved into operating room setting to monitor oxygenation within patient's brain when surgeons are concerned that a patient's levels might drop. Recently, cerebral oxygen saturation has also been related with chronic cerebral vascular insufficiency (CCVI). Patients with CCVI would be benefited if there would be a wearable system to measure their cerebral oxygen saturation in need. However, there has yet to be a wearable wireless cerebral oximeter to measure the saturation in 24 hours. So we proposed to develop the wearable wireless cerebral oximeter. The mechanism of the system follows the NIRS technology. Emitted light at wavelengths of 740nm and 860nm are sent from the light source penetrating the skull and cerebrum, and the light detector(s) receives the light not absorbed during the light pathway through the skull and cerebrum. The amount of oxygen absorbed within the brain is the difference between the amount of light sent out and received by the probe, which can be used to calculate the percentage of oxygen saturation. In the system, it has one source and four detectors. The source, located in the middle of forehead, can emit two near infrared light, 740nm and 860nm. Two detectors are arranged in one side in 2 centimeters and 3 centimeters from the source. Their measurements are used to calculate the saturation in the cerebral cortex. The system has included the rechargeable lithium battery and Bluetooth smart wireless micro-computer unit.

  13. The coupling of cerebral blood flow and oxygen metabolism with brain activation is similar for simple and complex stimuli in human primary visual cortex. (United States)

    Griffeth, Valerie E M; Simon, Aaron B; Buxton, Richard B


    Quantitative functional MRI (fMRI) experiments to measure blood flow and oxygen metabolism coupling in the brain typically rely on simple repetitive stimuli. Here we compared such stimuli with a more naturalistic stimulus. Previous work on the primary visual cortex showed that direct attentional modulation evokes a blood flow (CBF) response with a relatively large oxygen metabolism (CMRO2) response in comparison to an unattended stimulus, which evokes a much smaller metabolic response relative to the flow response. We hypothesized that a similar effect would be associated with a more engaging stimulus, and tested this by measuring the primary human visual cortex response to two contrast levels of a radial flickering checkerboard in comparison to the response to free viewing of brief movie clips. We did not find a significant difference in the blood flow-metabolism coupling (n=%ΔCBF/%ΔCMRO2) between the movie stimulus and the flickering checkerboards employing two different analysis methods: a standard analysis using the Davis model and a new analysis using a heuristic model dependent only on measured quantities. This finding suggests that in the primary visual cortex a naturalistic stimulus (in comparison to a simple repetitive stimulus) is either not sufficient to provoke a change in flow-metabolism coupling by attentional modulation as hypothesized, that the experimental design disrupted the cognitive processes underlying the response to a more natural stimulus, or that the technique used is not sensitive enough to detect a small difference.

  14. Effects of Yunnan Baiyao through inner layer of cerebral dura mater on cerebral perfusion and oxygen metabolism in rabbits with severe traumatic brain injury%硬脑膜夹层导入云南白药对兔重型颅脑创伤后脑灌注和氧代谢的影响

    Institute of Scientific and Technical Information of China (English)

    徐震; 吕晓皑; 尹利明; 竺国充; 张昕; 李徐; 陈祖鹏


    Objective: To explore the effects of Yunnan Baiyao through inner layer of cerebral dura mater on cerebral perfusion and oxygen metabolism in rabbits with severe traumatic brain injury. Methods: 40 New Zealand white rabbits were divided into cerebral dura mater Yunnan Baiyao group(A group), intravenous Mannitol group(B group), oral Yunnan Baiyao group (C group) and control group(D group). Record ICP, CPP and MABP. TCD measured cerebral blood flow volume. Monitor blood gas analysis in femora) artery and internal jugular venous bulb, accounting the CEO2 and D-values of glucose and lactic acid between artery and venous bulb. Results: From 12 to 36 hour after therapy: the ICP of A was highter than B, the CPP and CBFV were lower than B (P<0.05). At 48 hour: the ICP of A was highter than B and lower than C and D, the CPP was lower than B and highter than Cand D, while the CBFV of A was highter than C and D(P<0.05). From 60 to 96 hour: the ICP of A was lower than C and D, the CPP of A was highter than C and D, the CBFV of A was highter than B, C and D(P<0.05). From 36 to 96: The Glua-jv and CEO2 of A were highter than B, C and D, while the Lacjv-a was lower than B, C and D(P<0.05). Conclusion: Yunnan Baiyao through cerebral dura mater can reach effective treatment concentration in brain. By increasing the efficiency of oxygen metabolism of brain it can ameliorate brain cell hypoxia and energy metabolism handicap, adjust cerebral microcirculation, thus improves cytotoxic brain edema, decreases cerebral blood flow resistance, reduces ICP and increase the CPP and CBFV.%目的:探讨硬脑膜夹层应用云南白药对兔重型颅脑创伤后颅内压、脑血流量和脑代谢的影响.方法:将40只雄性新西兰大白兔分为硬脑膜夹层云南白药组(A组)、静脉甘露醇组(B组)、口服云南白药组(C组)和空白组(D组),制作重型颅脑创伤模型,行颅内压(ICP)监测,记录平均动脉压(MABP),计算脑灌注压(CPP),经颅多普勒(TCD)测定脑

  15. Rehabilitation of teenagers of patients by a cerebral paralysis by facilities of physical culture

    Directory of Open Access Journals (Sweden)

    Vindiuk P.A.


    Full Text Available Influence of physical exercises is investigated in combination with mobile games on power supply of organism of teenagers of patients by a cerebral paralysis. In research took part 16 schoolchildren of teens with the spastic cerebral paralysis. For determination of their functional preparedness multivariable express diagnostics of S.A. Dushanin was utillized. It is recommended in the lessons of physical culture to include the specially organized mobile games, elements of cross-country race preparation and employment on exercise bicycle. It is set that an early and successive rehabilitation and physical education is instrumental in maximally complete renewal of the lost functions. It is marked that the index of maximal consumption of oxygen was increased on 7,4%, to the aerobic economy - on 3,1%. It is set that the lessons of physical culture in growth of indexes of functional preparation were instrumental.

  16. 早期高压氧治疗对急性颅脑外伤患者失语症的疗效观察%Effects of early hyperbaric oxygen therapy on alogia in acute cerebral injury

    Institute of Scientific and Technical Information of China (English)

    林瑛; 李泉清; 刘代娣; 杨静; 张其清


    目的 研究早期高压氧(HBO)治疗对急性颅脑外伤患者失语症的疗效.方法 将2004年1月至2007年8月在我院住院的62例急性颅脑外伤患者分为HBO治疔组和常规治疗组,常规治疗组采用临床常规治疗,HBO治疗组在常规治疗的基础上,实施24~48次HBO治疗,并且在治疗结束后1年内每3个月进行1次随访.在治疗前、后分别采用西方失语成套测试法(western aphasia,WAB)检测并进行CT检查,对他们的语言功能和恢复情况进行评价和比较.结果 HBO治疗组显效率(83.8%)显著高于常规治疗组(54.8%),经x2检验P<0.05;CT检查证实患者病变部位阻塞的血管已经恢复冉通或已获得重建.结论 早期HBO治疗有利于促进或恢复患者的语言功能.%Objective To investigate the effects of early hyperbaric oxygen therapy on aphasia in acute cerebral injury. Methods Sixty-two patients with acute cerebral injury were admitted into the hospital from January 2004 to August 2007. They were randomly divided into the hyperbaric oxygen (HBO) group and the control group. The control group was administered with routine treatment other than HBO, while the HBO group was given 24-48 sessions of HBO treatment in addition to routine treatment. To know how they recovered, clinical follow-ups were made every 3 months, one year after the patients terminated treatment. The linguistic function of the patients was evaluated and compared by using Western Aphasia Battery (WAB) and CT before and after HBO therapy. Results Results showed that the HBO exposure group had obviously better results when it was compared with the control group ( 83. 8% : 54. 8% ). And test showed that P < 0, 05. CT examination demonstrated that the blocked vessels in the affected area were either recovered or repaired. Conclusions Early HBO therapy will help to improve or recover the linguistic function of patients with acute cerebral injury.

  17. Traumatic brain ischemia during neuro intensive care: myth rather than fact Isquemia cerebral tráumatica durante neuro terapia intensiva: mito ao invés de fato

    Directory of Open Access Journals (Sweden)

    Julio Cruz


    Full Text Available In non-missile severe acute brain trauma, brain ischemia was a frequent finding in cadavers. Studies during neuro intensive care, however, have failed to disclose brain ischemia under most circumstances, except when cerebral hemodynamic and metabolic parameters have been misinterpreted, or when cerebral blood flow (CBF alone has been addressed in a biased fashion, without mandatory metabolic data. Indeed, comprehensive and unbiased studies focusing on global cerebral metabolic activity have invariably revealed a condition of normal coupling between reduced CBF and oxygen consumption in the early postinjury hours, which is then followed by a prolonged, sustained pattern of relative cerebral hyperperfusion (the opposite of ischemia. Accordingly, traumatic brain ischemia during intensive care represents myth rather than fact.Em traumatismo cerebral agudo grave excluindo-se ferimentos por arma de fogo, isquemia cerebral foi achado frequente em cadáveres. Entretanto, estudos durante neuro terapia intensiva não têm revelado isquemia cerebral, exceto quando parâmetros hemodinâmicos e metabólicos cerebrais tem sido mal interpretados, ou quando fluxo sanguíneo cerebral (FSC sozinho tem sido enfocado de forma tendenciosa, sem dados metabólicos mandatórios. De fato, estudos abrangentes e não tendenciosos enfocando a atividade metabólica cerebral têm invariavelmente revelado uma condição de ajustamento normal entre FSC e consumo cerebral de oxigênio reduzidos nas primeiras horas após o traumatismo, um padrão seguido de prolongada hiperperfusão relativa (o oposto da isquemia. Assim sendo, isquemia cerebral traumática durante terapia intensiva representa um mito ao invés de um fato.

  18. Effects of reactive oxygen species on metabolism monitored by longitudinal {sup 1}H single voxel MRS follow-up in patients with mitochondrial disease or cerebral tumors

    Energy Technology Data Exchange (ETDEWEB)

    Constans, J M; Collet, S; Hossu, G; Courtheoux, P [MRI Unit, Caen University Hospital, Caen, Normandy (France); Guillamo, J S; Lechapt-Zalcman, E; Valable, S [CERVOxy Group, CI-NAPS, UMR 6232 CI-NAPS, Cyceron, Caen, Normandy (France); Lacombe, S; Houee Levin, C [Paris-Sud 11 University-CNRS, Orsay (France); Gauduel, Y A [LOA, Ecole Polytechnique - ENSTA ParisTech, Palaiseau (France); Dou, W [Tsinghua University, Beijing (China); Ruan, S [CReSTIC EA 3804, IUT Troyes, Troyes (France); Barre, L [GDMTEP, Group CI-NAPS, UMR 6232 CI-NAPS, Cyceron, Caen (France); Rioult, F [CNRS UMR 6072, GREYC, Caen, Normandy (France); Derlon, J M [Neurosurgery and Neurology, Caen University Hospital, Caen, Normandy (France); Chapon, F [Pathology, Caen University Hospital, Caen, Normandy (France); Fong, V [Caen University (France); Kauffmann, F, E-mail: [Mathematics LMNO CNRS UMR 6139, Caen University, Caen, Normandy (France)


    Free radicals, or Reactive Oxygen Species (ROS), have an effect on energy and glycolytic metabolism, mitochondrial function, lipid metabolism, necrosis and apoptosis, cell proliferation, and infiltration. These changes could be monitored longitudinally (every 4 months over 6 years) in humans with glial brain tumors (low and high grade) after therapy, using conventional magnetic resonance imaging (MRI) and spectroscopy (MRS) and MR perfusion. Some examples of early clinical data from longitudinal follow-up monitoring in humans of energy and glycolytic metabolism, lipid metabolism, necrosis, proliferation, and infiltration measured by conventional MRI, MRS and perfusion, and positron emission tomography (PET) are shown in glial brain tumors after therapy. Despite the difficulty, the variability and unknown factors, these repeated measurements give us a better insight into the nature of the different processes, tumor progression and therapeutic response.

  19. Vasoespasmo cerebral



    Vasoespasmo cerebral ocorre em patologias como enxaqueca, hemorragia subaracnóidea, trauma de crânio, após isquemia e/ou hipoxia. A fisiopatologia do vasoespasmo cerebral nestas patologias não está completamente desvendada. Neste artigo são analisados os fatores neuroquímicos e morfológicos responsáveis pelo controle circulatório cerebral. As alterações circulatórias que seguem a hemorragia subaracnóidea são utilizadas como exemplo. Conclui-se que fatores bioquímicos, fisiológicos e morfológi...

  20. Cerebral hemodynamics in patients with obstructive sleep apnea syndrome monitored with near-infrared spectroscopy (NIRS) during positive airways pressure (CPAP) therapy: a pilot study (United States)

    Zhang, Zhongxing; Schneider, Maja; Laures, Marco; Fritschi, Ursula; Lehner, Isabella; Qi, Ming; Khatami, Ramin


    In obstructive sleep apnea syndrome (OSA) the periodic reduction or cessation of breathing due to narrowing or occlusion of the upper airway during sleep leads to daytime symptoms and increased cardiovascular risk, including stroke. The higher risk of stroke is related to the impairment in cerebral vascular autoregulation. Continuous positive airways pressure (CPAP) therapy at night is the most effective treatment for OSA. However, there is no suitable bedside monitoring method evaluating the treatment efficacy of CPAP therapy, especially to monitor the recovery of cerebral hemodynamics. NIRS is ideally suited for non-invasive monitoring the cerebral hemodynamics during sleep. In this study, we will for first time assess dynamic changes of cerebral hemodynamics during nocturnal CPAP therapy in 3 patients with OSA using NIRS. We found periodic oscillations in HbO2, HHb, tissue oxygenation index (TOI) and blood volume associated with periodic apnea events without CPAP in all OSA patients. These oscillations were gradually attenuated and finally eliminated with the stepwise increments of CPAP pressures. The oscillations were totally eliminated in blood volume earlier than in other hemodynamic parameters. These results suggested that 1) the cerebral hemodynamic oscillations induced by OSA events can effectively be attenuated by CPAP therapy, and 2) blood flow and blood volume recovered first during CPAP therapy, followed by the recovery of oxygen consumption. Our study suggested that NIRS is a useful tool to evaluate the efficacy of CPAP therapy in patients with OSA bedside and in real time.

  1. High oxygen consumption rates and scale loss indicate elevated aggressive behaviour at low rearing density, while elevated brain serotonergic activity suggest chronic stress at high rearing densities in farmed rainbow trout Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Laursen, Danielle Caroline; Silva, P.I.M.; Larsen, Bodil Katrine;


    of a previous study,where levels of crowding where determined using the spatial distribution of fish in two-tank systems. An un-crowded low density of 25 kg m−3, the highest density accepted by the fish without showing indications of crowding stress of 80 kg m−3 as the intermediate density, and the highest...... density accepted by the fish showing indications of crowding stress of 140 kg m−3 as the high density were investigated. The aimof the present study was to examine the effect of being held at these densities on indicators of welfare. This was achieved through oxygen consumption measurements using...... automated respirometry, recording fin erosion, determining scale loss and analysing plasma cortisol and brain serotonergic activity levels. The results obtained in the present study indicated that at the lowest density the fish had the space and opportunity to display their natural aggressive behaviour...

  2. 酸性高锰酸钾法测定化学需氧量的方法及技巧%The method and skill of measuring chemical oxygen consumption with acid kali permanganate method

    Institute of Scientific and Technical Information of China (English)



    It pointed out that Acid Kali Permanganate method was common method to measure chemical oxygen consumption (COD) in water. Several methods of measuring COD were compared and analyzed experirnentally, combined with working experience, and some operating sug-gestions were proposed, so as to make measured result error reduce to minimum.%指出酸性高锰酸钾法测定化学需氧量是饮用水中COD测定的常用方法,就该测定的几种方法进行了对比试验和分析,结合工作经验,提出了一些操作建议,从而使得测定结果的相对误差减小.

  3. Application of extracorporeal membrane oxygenation to cardiopulmonary cerebral resuscitation%体外膜肺氧合在心肺脑复苏中的应用

    Institute of Scientific and Technical Information of China (English)

    蒋崇慧; 黄子通; 谢钢; 李斌飞; 宁晔; 吴美英; 郑伟华; 尹刚; 赵双彪


    Objective To investigate the effects and values of extracorporeal membrane oxygenation (EC-MO) used in patients after cardiac arrest. Method During five years period from June 2002 to June 2007,fifteen cases taken for cardiopulmonary resuscitation were treated by using ECMO in the emergency department and ICU. All the measures for disgnosis and treatment were observed to the guidelines for cardiopulmonary resuscitation and emergency cardiovasculat care set by the American Heart Association in 2005, and ECMO was applied in addition. The study was a self-comparison trial. The biomarkers including heart rate (HR), mean arterial pressure (MAP), central venous pressure( CVP) , arterial partial oxygen pressure (PaO2), arterial partial pressure of carbon dioxide ( PCQ2), oxygen saturation (SaO2), hydrogen power (PH), and concentration of lactic acid were taken and assayed before and 10 min, 1 h,6 h, 12 h, and 24 h after treatment. Differences between the results of measurements were analysed by t -test for matched pairs using SPSS version 10.0 software package. Neurological sequelae was also observed and described. Results Ten minutes after ECMO treatment, MAP rose dramatically (P 的标准诊治方案进行救治,同时行体外膜肺氧合(ECMO)治疗.采用治疗前后自身对照的方法,监测ECMO治疗前、ECMO治疗后10 min、1 h、6 h、12 h、24 h,患者的心率、平均动脉压、中心静脉压(eve);并抽取桡动脉血检测动脉血氧分压、二氧化碳分压、血氧饱和度、酸碱度、动脉血乳酸含量等指标;统计数据以((x)±s)表示,采用SPSS 10.0统计软件包进行t检验,以P<0.05为差异具有统计学意义;同时就患者的神经性后遗症进行了观察和描述.结果 平均动脉压在ECMO治疗后10min比ECMO治疗前明显升高(P<0.01),ECMO治疗后1 h比ECMO治疗后10 min有所升高(P<0.05);CVP在ECMO治疗后10 min比ECMO治疗前,ECMO治疗后1 h比ECMO治疗后10 min有所降低(P<0.05);经ECMO治疗后10

  4. 温度对黑鱾幼鱼耗氧率和排氨率的影响%Influence of Temperature on Oxygen Consumption and Ammonia Excretion of Juvenile Girella melanichthys

    Institute of Scientific and Technical Information of China (English)

    唐道军; 徐善良; 马斌


    本文研究了温度对饱食和饥饿状态下黑纪(Girella melanichthys)幼鱼耗氧率和排氨率的影响.结果表明:在温度为15~30℃范围内,黑纪幼鱼在饱食状态下的耗氧率、饥饿状态下的耗氧率、饱食状态下的排氨率和摄食率均随温度的升高而增加(P<0.01),30℃时达到最大,温度为32℃时,均下降;在温度为15~32℃范围内,黑鱾幼鱼在饥饿状态下的排氨率随温度升高而增加(P<0.01),32℃时达到最大.多项指标表明黑纪幼鱼生长适温在30℃左右.%In this paper the influence of temperature on oxygen consumption and ammonia excretion of juvenile Girella melanichthys in hunger and satiety were studied. The results show that rate of oxygen consumption in both fasting and over fed fish, rate of ammonia excretion in the fasting fish is increased with the temperature between 15℃ and 30℃ ( P < 0. 01 ) and reaches to the peak at 30℃. While the rate is decreased when the temperature is at 32℃. For fasting fish, the ammonia excretion go up with temperature ascending in the range between 15℃ to 32℃ (P <0. 01) , and arrives to the peak at 32℃ . The results confirm that 30℃ is the optimal temperature for the fish growth.

  5. Oxygen consumption of Litopenaeus vannamei juveniles in heterotrophic medium with zero water exchange Consumo de oxigênio de juvenis de Litopenaeus vannamei em meio heterotrófico sem renovação de água

    Directory of Open Access Journals (Sweden)

    Luis Vinatea


    Full Text Available This work aimed at determining the dissolved oxygen consumption rate of Litopenaeus vannamei juveniles maintained in a microbial biofloc raceway system at high density with no aeration. Three 4 L bottles were filled for each treatment, sealed hermetically, and placed in an enclosed greenhouse raceway system. Four shrimp (13.2±1.42 g were assigned to two sets of the bottles, which underwent the following treatments: light conditions with no shrimp; dark conditions with no shrimp; light conditions with shrimp; and dark conditions with shrimp. Dissolved oxygen content was measured every 10 min for 30 min. A quadratic behavior was observed in dissolved oxygen concentration over time. Significant differences for oxigen consumption were observed only at 10 and 20 min between shrimp maintained in the dark and those under light conditions. At 10 min, a higher value was observed in shrimp maintained under light, and at 20 min, in the dark. Significant differences between 10 and 20 min and between 10 and 30 min were observed when oxygen consumption was analyzed over time in the presence of light. Under dark conditions there were significant differences only between 20 and 30 min. Lethal oxygen concentration (0.65 mg L-1 would be reached in less than one hour either under light or dark conditions with no aeration.O objetivo deste trabalho foi determinar o consumo de oxigênio dissolvido (OD de juvenis de Litopenaeus vannamei mantidos em sistema de cultivo de bioflocs bacterianos em alta densidade e ausência de aeração. Três garrafas de 4 L foram preenchidas para cada tratamento, fechadas hermeticamente e colocadas em sistema de cultivo fechado. Quatro camarões (13,2±1,42 g foram colocados em dois dos conjuntos de garrafas. Os tratamentos aplicados foram: luminosidade, sem camarões; escuro, sem camarões; luminosidade, com camarões; escuro, com camarões. A concentração de oxigênio dissolvido foi determinada a cada 10 min durante 30 min. Foi

  6. The impact of oxygen consumption by the shrimp Litopenaeus vannamei according to body weight, temperature, salinity and stocking density on pond aeration: a simulation - doi: 10.4025/actascibiolsci.v33i2.7018 The impact of oxygen consumption by the shrimp Litopenaeus vannamei according to body weight, temperature, salinity and stocking density on pond aeration: a simulation - doi: 10.4025/actascibiolsci.v33i2.7018

    Directory of Open Access Journals (Sweden)

    Rafael Arantes


    Full Text Available A simulation was conducted to determinate the impact caused by the combination of Litopenaeus vannamei respiratory rate (mg O2 shrimp-1 h-1, the behavior of SOTR (kg O2 h-1 of mechanical aerators as a function of salinity, as well as the oxygen consumption rate of the pond water and soil (mg O2 L-1 h-1 on the aeration of shrimp ponds (1, 10, 50 and 100 ha stocked with different densities (10, 40 and 120 shrimp m-2, salinities (1, 13, 25 and 37 ppt, temperatures (20, 25 and 30°C, and shrimp wet weight (5, 10, 15 and 20 g. Results showed that under lower salinity, with larger shrimp, and higher stocking density, higher will be the quantity of required 2-HP aerators to keep dissolved oxygen over 50% saturation. In addition, under low salinity, with 5 and 10 g shrimp, independent of stocking density, more aerators per hectare are required and electricity cost is higher at 20°C and salinity 1 ppt. Less aerators and lower electricity cost was observed at 30°C, salinities of 25 and 37 ppt, and shrimp of 15 and 20 g.A simulation was conducted to determinate the impact caused by the combination of Litopenaeus vannamei respiratory rate (mg O2 shrimp-1 h-1, the behavior of SOTR (kg O2 h-1 of mechanical aerators as a function of salinity, as well as the oxygen consumption rate of the pond water and soil (mg O2 L-1 h-1 on the aeration of shrimp ponds (1, 10, 50 and 100 ha stocked with different densities (10, 40 and 120 shrimp m-2, salinities (1, 13, 25 and 37 ppt, temperatures (20, 25 and 30°C, and shrimp wet weight (5, 10, 15 and 20 g. Results showed that under lower salinity, with larger shrimp, and higher stocking density, higher will be the quantity of required 2-HP aerators to keep dissolved oxygen over 50% saturation. In addition, under low salinity, with 5 and 10 g shrimp, independent of stocking density, more aerators per hectare are required and electricity cost is higher at 20°C and salinity 1 ppt. Less aerators and lower electricity cost was

  7. Changes of regional cerebral blood oxygenation in recognizing Chinese characters in children with Chinese dyslexia%汉语阅读障碍儿童汉字识别过程中脑血氧的变化

    Institute of Scientific and Technical Information of China (English)

    宋然然; 吴汉荣


    化量明显高于对照组(0.073 0,-0.072 1,F=15.59,P<0.01).结论:汉字认知过程阅读障碍儿童左前额叶皮层虽然激活,但相对正常儿童,激活的程度和激活模式均有差异,提示特定脑区功能异常可能是阅读障碍发生的生物学基础.%BACKGROUND: Dyslexia is the most common in the study of learning disabilities, it can affect various aspects of children, including behaviors,cognition, emotion, social adaptation, etc., and seriously block their obtaining of knowledge and improvement of ability in children.OBJECTIVE: To study the changing law of regional cerebral blood oxygenation in children with Chinese dyslexia in the process of recognizing Chinese characters, and investigate the neurophysiological basis of dyslexia in children.DESIGN: A case-control study.SETTING: Department of Child and Adolescent Health and Maternal Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology.PARTICIPANTS: The study was carried out in Huazhong University of Science and Technology from June to September in 2003. Forty-five primary students of 8 to 12 years old, who were grade 3 to 5 in Wuhan city,were enrolled in this study, including 26 dyslexic children (dyslexia group)and 19 normal readers (control group). All the enrolled children were righthanded. Informed consents were obtained from all the participants and their parents (guardians) after explanation of aims and steps of this study.METHODS: The functional near-infrared imager (fNIRI) was applied to detect the changes of cerebral blood oxygenation in left prefrontal lobe of dyslexic children and normal children in the primary processing (viewing passively, reading aloud, producing an action word) and secondary processing of Chinese characters (outputting task, action words association) of Chinese characters.MAIN OUTCOME MEASURES: The changes of cerebral blood oxygenation in the primary processing and secondary processing of Chinese characters were observed in both

  8. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Derong Cui

    Full Text Available BACKGROUND: Propofol exerts protective effects on neuronal cells, in part through the inhibition of programmed cell death. Autophagic cell death is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. We therefore studied whether propofol could attenuate the formation of autophagosomes, and if so, whether the inhibition of autophagic cell death mediates the neuroprotective effects observed with propofol. METHODOLOGY/PRINCIPAL FINDINGS: The cell model was established by depriving the cells of oxygen and glucose (OGD for 6 hours, and the rat model of ischemia was introduced by a transient two-vessel occlusion for 10 minutes. Transmission electron microscopy (TEM revealed that the formation of autophagosomes and autolysosomes in both neuronal PC12 cells and pyramidal rat hippocampal neurons after respective OGD and ischemia/reperfusion (I/R insults. A western blot analysis revealed that the autophagy-related proteins, such as microtubule-associated protein 1 light chain 3 (LC3-II, Beclin-1 and class III PI3K, were also increased accordingly, but cytoprotective Bcl-2 protein was decreased. The negative effects of OGD and I/R, including the formation of autophagosomes and autolysosomes, the increase in LC3-II, Beclin-1 and class III PI3K expression and the decline in Bcl-2 production were all inhibited by propofol and specific inhibitors of autophagy, such as 3-methyladenine (3-MA, LY294002 and Bafilomycin A1 (Baf,. Furthermore, in vitro OGD cultures and in vivo I/R rats showed an increase in cell survival following the administration of propofol, as assessed by an MTT assay or histochemical analyses. CONCLUSIONS/SIGNIFICANCE: Our data suggest that propofol can markedly attenuate autophagic processes via the decreased expression of autophagy-related proteins in vitro and in vivo. This inhibition improves cell survival, which provides a novel explanation for the pleiotropic effects of

  9. Adenosine mediates decreased cerebral metabolic rate and increased cerebral blood flow during acute moderate hypoxia in the near-term fetal sheep. (United States)

    Blood, Arlin B; Hunter, Christian J; Power, Gordon G


    Exposure of the fetal sheep to moderate to severe hypoxic stress results in both increased cortical blood flow and decreased metabolic rate. Using intravenous infusion of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist that is permeable to the blood brain barrier, we examine the role of adenosine A1 receptors in mediating cortical blood flow and metabolic responses to moderate hypoxia. The effects of DPCPX blockade are compared to controls as well as animals receiving intravenous 8-(p-sulfophenyl)-theophylline) (8-SPT), a non-selective adenosine receptor antagonist which has been found to be blood brain barrier impermeable. Laser Doppler flow probes, tissue PO2, and thermocouples were implanted in the cerebral cortices of near-term fetal sheep. Catheters were placed in the brachial artery and sagittal sinus vein for collection of samples for blood gas analysis. Three to seven days later responses to a 30-min period of fetal hypoxemia (arterial PO2 10-12 mmHg) were studied with administration of 8-SPT, DPCPX, or vehicle. Cerebral metabolic rate was determined by calculation of both brain heat production and oxygen consumption. In response to hypoxia, control experiments demonstrated a 42 +/- 7 % decrease in cortical heat production and a 35 +/- 10 % reduction in oxygen consumption. In contrast, DPCPX infusion during hypoxia resulted in no significant change in brain heat production or oxygen consumption, suggesting the adenosine A1 receptor is involved in lowering metabolic rate during hypoxia. The decrease in cerebral metabolic rate was not altered by 8-SPT infusion, suggesting that the response is not mediated by adenosine receptors located outside the blood brain barrier. In response to hypoxia, control experiments demonstrated a 35 +/- 7 % increase in cortical blood flow. DPCPX infusion did not change this increase in cortical blood flow, however 8-SPT infusion attenuated increases in flow, indicating that hypoxic

  10. Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca2+ Entry and Ca2+-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation (United States)

    Chen, Jin; Li, Zhaozhong; Hatcher, Jeffery T.; Chen, Qing-Hui; Chen, Li; Wurster, Robert D.; Chan, Sic L.; Cheng, Zixi


    Transient receptor potential canonical 6 (TRPC6) channels are permeable to Na+ and Ca2+ and are widely expressed in the brain. In this study, the role of TRPC6 was investigated following ischemia/reperfusion (I/R) and oxygen-glucose deprivation (OGD). We found that TRPC6 expression was increased in wild-type (WT) mice cortical neurons following I/R and in primary neurons with OGD, and that deletion of TRPC6 reduced the I/R-induced brain infarct in mice and the OGD- /neurotoxin-induced neuronal death. Using live-cell imaging to examine intracellular Ca2+ levels ([Ca2+]i), we found that OGD induced a significant higher increase in glutamate-evoked Ca2+ influx compared to untreated control and such an increase was reduced by TRPC6 deletion. Enhancement of TRPC6 expression using AdCMV-TRPC6-GFP infection in WT neurons increased [Ca2+]i in response to glutamate application compared to AdCMV-GFP control. Inhibition of N-methyl-d-aspartic acid receptor (NMDAR) with MK801 decreased TRPC6-dependent increase of [Ca2+]i in TRPC6 infected cells, indicating that such a Ca2+ influx was NMDAR dependent. Furthermore, TRPC6-dependent Ca2+ influx was blunted by blockade of Na+ entry in TRPC6 infected cells. Finally, OGD-enhanced Ca2+ influx was reduced, but not completely blocked, in the presence of voltage-dependent Na+ channel blocker tetrodotoxin (TTX) and dl-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) blocker CNQX. Altogether, we concluded that I/R-induced brain damage was, in part, due to upregulation of TRPC6 in cortical neurons. We postulate that overexpression of TRPC6 following I/R may induce neuronal death partially through TRPC6-dependent Na+ entry which activated NMDAR, thus leading to a damaging Ca2+ overload. These findings may provide a potential target for future intervention in stroke-induced brain damage.

  11. Simulation model for oxygen consumption flux and prediction of methane oxidation in landfill cover soil%覆盖层氧气消耗通量模型及甲烷氧化能力预测

    Institute of Scientific and Technical Information of China (English)

    邢志林; 赵天涛; 陈新安; 车轮; 张丽杰; 全学军


    填埋场覆盖层生物气扩散规律和甲烷氧化能力的评估是甲烷减排研究的重要组成部分。以数值模拟方法分析了氧气在覆盖层中的扩散规律,得到了指数方程形式的氧气扩散模型(R2范围0.8941~0.9975);通过检测有机碳和甲烷浓度变化进一步考察了模拟覆盖层不同深度的甲烷氧化能力,证实了在0.05~0.25 m范围内甲烷氧化活性最高;以Fick定律和轴向扩散模型推导了模拟覆盖层中氧气消耗通量模型,该模型计算得到的氧气消耗通量与覆盖层中微生物甲烷氧化经验方程相比无显著差异;结合以上模型推演出覆盖层甲烷消耗通量模型,与实际检测值相比,预测结果理想(R2=0.9983)。该成果可为揭示填埋场覆盖层生物气扩散规律、强化甲烷氧化能力以及预测甲烷排放提供新的思路和理论依据。%Diffusion process of biogas and evaluation of methane oxidation in landfill cover soil are important parts of research on methane emission. Diffusion process of oxygen in landfill cover soil was analyzed by simulation, and an oxygen diffusion model fitted by exponential equation (0.8941oxygen consumption flux model in landfill cover was derived on the basis of Fick’s law and axial dispersion model. There was no significant difference between fitted values by oxygen consumption flux model and derived values by empirical equation of biological methane oxidation. Based on the above model, a methane consumption flux model was derived finally, and the prediction was consistent with detection. These results provided new ideas and theoretical basis for revealing biogas diffusion process in landfill cover soil

  12. Sustainable Consumption

    DEFF Research Database (Denmark)

    Røpke, Inge


    The intention of this chapter is to explore the role of consumption and consumers in relation to sustainability transition processes and wider systemic transformations. In contrast to the individualistic focus in much research on sustainable consumption, the embeddedness of consumption activities...... in wider social, economic and technological frameworks is emphasised. In particular, the chapter is inspired by practice theory and transition theory. First, various trends in consumption are outlined to highlight some of the challenges for sustainability transitions. Then, it is discussed how consumption...... patterns are shaped over time and what should be considered in sustainability strategies. While discussions on consumption often take their point of departure in the perspective of the individual and then zoom to the wider context, the present approach is the opposite. The outline starts with the basic...

  13. Cerebral hemodynamics: concepts of clinical importance

    Directory of Open Access Journals (Sweden)

    Edson Bor-Seng-Shu


    Full Text Available Cerebral hemodynamics and metabolism are frequently impaired in a wide range of neurological diseases, including traumatic brain injury and stroke, with several pathophysiological mechanisms of injury. The resultant uncoupling of cerebral blood flow and metabolism can trigger secondary brain lesions, particularly in early phases, consequently worsening the patient's outcome. Cerebral blood flow regulation is influenced by blood gas content, blood viscosity, body temperature, cardiac output, altitude, cerebrovascular autoregulation, and neurovascular coupling, mediated by chemical agents such as nitric oxide (NO, carbon monoxide (CO, eicosanoid products, oxygen-derived free radicals, endothelins, K+, H+, and adenosine. A better understanding of these factors is valuable for the management of neurocritical care patients. The assessment of both cerebral hemodynamics and metabolism in the acute phase of neurocritical care conditions may contribute to a more effective planning of therapeutic strategies for reducing secondary brain lesions. In this review, the authors have discussed concepts of cerebral hemodynamics, considering aspects of clinical importance.

  14. 七氟醚-瑞芬太尼麻醉对缺血型烟雾病脑血管重建术患者脑氧供需平衡的影响%Effects of sevoflurane-remifentanil anesthesia on the balance between cerebral oxygen supply and demand during cerebral revascularization for ischemic moyamoya disease

    Institute of Scientific and Technical Information of China (English)

    梁发; 崔伟华; 何颖; 焦希平; 王嵘; 张东; 韩如泉


    目的 评价七氟醚-瑞芬太尼麻醉对缺血型烟雾病脑血管重建术患者脑氧供需平衡的影响.方法 择期行颞浅动脉-大脑中动脉分支吻合术的缺血型烟雾病患者40例,性别不限,年龄19~ 59岁,BMI 19~ 25 kg/m2,ASA分级Ⅰ或Ⅱ级,Suzuki分期≥3.采用随机数字表法,将患者随机分为2组(n=20):异丙酚-瑞芬太尼组(PR组)和七氟醚-瑞芬太尼组(SR组).麻醉诱导:靶控输注异丙酚,血浆靶浓度5 μg/ml,静脉注射芬太尼3 μg/kg和罗库溴铵0.6 mg/kg.气管插管后行机械通气,麻醉维持:SR组吸入七氟醚(呼气末浓度1.0% ~ 1.7%),PR组TCI异丙酚,血浆靶浓度3~4 μg/ml,2组均TCI瑞芬太尼,血浆靶浓度3.5 ng/ml,维持BIS值40 ~ 60,间断静脉注射罗库溴铵0.3 mg/kg.分别于麻醉诱导前(T0)、血管阻断前10 min (T1)、血管阻断后10 min (T2)、血管吻合-开放后10 min (T3)时记录局部脑氧饱和度(rSO2).结果 与T0时比较,PR组T3时术侧rSO2升高,SR组T1-3时术侧和非术侧rSO2升高(P<0.05或0.01);与PR组比较,SR组T1时术侧rSO2升高(P<0.05),非术侧rSO2差异无统计学意义(P>0.05).结论 对于缺血型烟雾病脑血管重建术患者,七氟醚复合瑞芬太尼麻醉可维持良好的脑氧供需平衡状态,且与异丙酚复合瑞芬太尼麻醉的效果相似.%Objective To evaluate the effects of sevoflurane-remifentanil anesthesia on the balance between cerebral oxygen supply and demand during cerebral revascularization for ischemic moyamoya disease by monitoring regional cerebral O2 saturation (rSO2) with near infrared spectroscopy.Methods Forty patients of both sexes aged 19-59 yr with a body mass index of 19-25 kg/m2 undergoing superficial temporal artery-middle cerebral artery anastomosis were randomly allocated into 2 groups (n =20 each):propofol-remifentanil group (group PR) and sevoflurane-remifentanil group (group SR).Radial artery was cannulated for direct BP monitoring and blood sampling

  15. Brain nonoxidative carbohydrate consumption is not explained by export of an unknown carbon source: evaluation of the arterial and jugular venous metabolome

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Nyberg, Nils; Jaroszewski, Jerzy W.;


    Brain activation provokes nonoxidative carbohydrate consumption and during exercise it is dominated by the cerebral uptake of lactate resulting in that up to approximately 1 mmol/ 100 g of glucose equivalents cannot be accounted for by cerebral oxygen uptake. The fate of this 'extra' carbohydrate...... uptake is unknown, but it may be that brain metabolism is balanced by a yet-unidentified substance(s). This study used a nuclear magnetic resonance-based metabolomics approach to plasma samples obtained from the brachial artery and the right internal jugular vein in 16 healthy young males to identify...... carbon species going to and from the brain. We observed a carbohydrate accumulation of 255+/-37 micromol/100 g glucose equivalents at exhaustion not accounted for by the oxygen uptake. Although the cumulated uptake was lower than earlier observed, the results show that glucose and lactate are responsible...

  16. Cerebral blood flow in the neonate. (United States)

    Vutskits, Laszlo


    Ensuring adequate oxygenation of the developing brain is the cornerstone of neonatal critical care. Despite decades of clinical research dedicated to this issue of paramount importance, our knowledge and understanding regarding the physiology and pathophysiology of neonatal cerebral blood flow are still rudimentary. This review primarily focuses on currently available human clinical and experimental data on cerebral blood flow and autoregulation in the preterm and term infant. Limitations of systemic blood pressure values as surrogates for monitoring adequate cerebral oxygen delivery are discussed. Particular emphasis is placed on the high interindividual variability in cerebral blood flow values, vasoreactivity, and autoregulatory thresholds making the applications of normative values highly questionable. Technical and ethical difficulties to conduct such trials leave us with a near complete lack of knowledge on how pharmacological and surgical interventions impact on cerebral autoregulation. The ensemble of these works argues for the necessity of highly individualized care by taking advantage of continuous bedside monitoring of cerebral circulation. They also point to the urgent need for further studies addressing the exciting but difficult issue of cerebral blood flow autoregulation in the neonate.

  17. Do optimal prognostic thresholds in continuous physiological variables really exist? Analysis of origin of apparent thresholds, with systematic review for peak oxygen consumption, ejection fraction and BNP.

    Directory of Open Access Journals (Sweden)

    Alberto Giannoni

    Full Text Available BACKGROUND: Clinicians are sometimes advised to make decisions using thresholds in measured variables, derived from prognostic studies. OBJECTIVES: We studied why there are conflicting apparently-optimal prognostic thresholds, for example in exercise peak oxygen uptake (pVO2, ejection fraction (EF, and Brain Natriuretic Peptide (BNP in heart failure (HF. DATA SOURCES AND ELIGIBILITY CRITERIA: Studies testing pVO2, EF or BNP prognostic thresholds in heart failure, published between 1990 and 2010, listed on Pubmed. METHODS: First, we examined studies testing pVO2, EF or BNP prognostic thresholds. Second, we created repeated simulations of 1500 patients to identify whether an apparently-optimal prognostic threshold indicates step change in risk. RESULTS: 33 studies (8946 patients tested a pVO2 threshold. 18 found it prognostically significant: the actual reported threshold ranged widely (10-18 ml/kg/min but was overwhelmingly controlled by the individual study population's mean pVO2 (r = 0.86, p<0.00001. In contrast, the 15 negative publications were testing thresholds 199% further from their means (p = 0.0001. Likewise, of 35 EF studies (10220 patients, the thresholds in the 22 positive reports were strongly determined by study means (r = 0.90, p<0.0001. Similarly, in the 19 positives of 20 BNP studies (9725 patients: r = 0.86 (p<0.0001. Second, survival simulations always discovered a "most significant" threshold, even when there was definitely no step change in mortality. With linear increase in risk, the apparently-optimal threshold was always near the sample mean (r = 0.99, p<0.001. LIMITATIONS: This study cannot report the best threshold for any of these variables; instead it explains how common clinical research procedures routinely produce false thresholds. KEY FINDINGS: First, shifting (and/or disappearance of an apparently-optimal prognostic threshold is strongly determined by studies' average pVO2, EF or BNP. Second

  18. Cerebral oximetry in cardiac anesthesia (United States)

    Vretzakis, George; Georgopoulou, Stauroula; Stamoulis, Konstantinos; Stamatiou, Georgia; Tsakiridis, Kosmas; Katsikogianis, Nikolaos; Kougioumtzi, Ioanna; Machairiotis, Nikolaos; Tsiouda, Theodora; Mpakas, Andreas; Beleveslis, Thomas; Koletas, Alexander; Siminelakis, Stavros N.; Zarogoulidis, Konstantinos


    Cerebral oximetry based on near-infrared spectroscopy (NIRS) is increasingly used during the perioperative period of cardiovascular operations. It is a noninvasive technology that can monitor the regional oxygen saturation of the frontal cortex. Current literature indicates that it can stratify patients preoperatively according their risk. Intraoperatively, it provides continuous information about brain oxygenation and allows the use of brain as sentinel organ indexing overall organ perfusion and injury. This review focuses on the clinical validity and applicability of this monitor for cardiac surgical patients. PMID:24672700

  19. Cerebral blood flow and metabolism during isoflurane-induced hypotension in patients subjected to surgery for cerebral aneurysms

    DEFF Research Database (Denmark)

    Madsen, J B; Cold, G E; Hansen, E S;


    Cerebral blood flow and cerebral metabolic rate for oxygen were measured during isoflurane-induced hypotension in 10 patients subjected to craniotomy for clipping of a cerebral aneurysm. Flow and metabolism were measured 5-13 days after the subarachnoid haemorrhage by a modification of the classi......Cerebral blood flow and cerebral metabolic rate for oxygen were measured during isoflurane-induced hypotension in 10 patients subjected to craniotomy for clipping of a cerebral aneurysm. Flow and metabolism were measured 5-13 days after the subarachnoid haemorrhage by a modification......). Controlled hypotension to an average MAP of 50-55 mm Hg was induced by increasing the dose of isoflurane, and maintained at an inspired concentration of 2.2 +/- 0.2%. This resulted in a significant decrease in CMRO2 (to 1.73 +/- 0.16 ml/100 g min-1), while CBF was unchanged. After the clipping...

  20. Establishing and Verifying the Prediction Equation of the Teenagers' Daily Physical Activities Oxygen Consumption%青少年日常体力活动摄氧量预测方程的建立和检验∗

    Institute of Scientific and Technical Information of China (English)

    周铁成; 王海; 朱琳


    Purpose:This study aims at establishing an economical and effective equation suitable for the measurement of the Chinese teenagers' oxygen consumption when doing their daily physical activities. Methods:90 teenagers between the age of 11 to 14 were divided into two groups:the experimental (60) and the validation (30), and each group was evenly composed of males and females. The experimental group was tested by a 6-speed-grades incremental load treadmill exercise with the be-ginning speed of 3~8km/h and each grade lasting for 5 minutes. A regression equation was established regarding the meas-ured values of Cosmed K4b2 as dependent variables and the ages, sexes, heights, weights, BMI, body fat rate and lean body mass as the independent variables. The validation group exercised in normal conditions and the effectiveness of the prediction equation was verified by the paired-samples T test, while the Bland-Altman method was applied to check the systematic de-viation of the oxygen consumption of the prediction equation in normal conditions. Results: The prediction equation can be written as:Y(mL/min) =15. 404 × load heart rate+23. 514 × weight(kg) -194. 592 × sex-1735. 307;The Male=1,The Female=2;Equation R2=0.601,SEE=398.15,F Verification P0.05)be-tween the prediction equation established and Li Haiyan 's. There is a moderate correlation between this prediction equation ( For the male R=0. 728,P0.05),自建的预测方程(男R=0.728,P<0.001;女R=0.603,P<0.001)与实测值存在中度相关,且相关系数均高于李海燕预测方程(男R=0.636,P<0.001;女R=0.568,P<0.001);所建预测方程95%的残差均落在Bland-Alt-man图±1.96SD区间内,表明方程有较好的预测能力。结论:自建摄氧量预测方程有效,比同类摄氧量预测方程更经济、有效,更适用于青少年的日常体力活动摄氧量的预测。

  1. Effects of Salinity and Light on Oxygen Consumption Rate and Ammonia Excretion Rate of Tegillarca granosa%盐度和光照对泥蚶耗氧率和排氨率的影响

    Institute of Scientific and Technical Information of China (English)

    熊安安; 袁星; 汪先进; 林; 黄建荣; 黎祖福


    为了解盐度对泥蚶(Tegillarca granosa)生理活动的影响,探究其昼夜活动节律,在室内实验条件下,控制水温25℃,采用静水养殖法,以耗氧率和排氨率分别作为呼吸和排泄的生理指标,研究了20、24、28、30、32共计5个盐度梯度下泥蚶的呼吸和排泄强度,同时对泥蚶在光照条件和暗处理下的呼吸与排泄强度进行了测定。结果表明,泥蚶耗氧率和排氨率随着盐度的升高均先上升、后下降,耗氧率为0.33~0.48 mg/(g·h),排氨率为0.044~0.067 mg/(g·h);泥蚶在盐度28的环境下呼吸和排泄强度最高,且不同盐度下耗氧率之间、排氨率之间差异显著(P <0.05)。暗处理下泥蚶的耗氧率在0.42~0.53 mg/(g·h),排氨率在0.049~0.057 mg/(g·h);光照条件下泥蚶的耗氧率在0.40~0.44 mg/(g·h),排氨率为0.042~0.051 mg/(g·h);暗处理条件下呼吸与排泄强度比光照条件下的更高,但2种状态下耗氧率和排氨率差异均不显著(P >0.05);表明实验条件下泥蚶对光照和暗处理反应不明显,即泥蚶不存在明显的昼夜节律现象。%Tegillarca granosa,also called the blood clam,is an important species in traditional shellfish farming, high in nutrient content and economic value.Respiration and excretion rates are typically used to indicate their lev-el of physiological activity.To better understand the metabolic intensity and circadian rhythms of T.granosa under different environmental conditions,we investigated the effects of salinity and light on the physiological activity of T. granosa and the results provide a theoretical basis for scientific culture.Physiological indices of respiration and ex-cretion were expressed by oxygen consumption rate and ammonia excretion rate.In August,2014,healthy blood clams were randomly assigned to five groups,acclimated to and then tested in

  2. Dynamics of activity free radical oxidation reactions in students with cerebral palsy results over the course of the educational process

    Directory of Open Access Journals (Sweden)

    Makarova E.V.


    Full Text Available The dynamics of changes activity of reactions is studied freely radical oxidize for students with the consequences of child's cerebral paralysis. 20 students took part in an experiment. Found that the course of study they have more active free radical oxidation reactions and decreases the activity of antiradical protection. Given the use of additional physical activity in aerobic training indicators intracellular antioxidant defense system increased, decreased content of reaction products of lipid peroxidation. However, increased rates of maximum oxygen consumption and increased tolerance of students with cerebral palsy to the consequences of physical activity. It is set that the pathological changes of metabolism for students ground the necessity of application of the differentiated physical loadings. The optimum forms of physical rehabilitation of the aerobic training is the dosed walking, medical swimming, dosed after distance, sometimes and by the corner of getting up pedestrian ascents. Loading is increased due to a volume, but not intensity of exercises.

  3. Assembling consumption

    DEFF Research Database (Denmark)

    Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies...... the investigative tools offered by assemblage theory, actor-network theory and non-representational theory. Clear theoretical explanation and methodological innovation, alongside empirical applications of these emerging frameworks will offer readers new and refreshing perspectives on consumer culture and market...... societies. This is an essential reading for both seasoned scholars and advanced students of markets, economies and social forms of consumption....

  4. 不同麻醉方法对重症颅脑损伤患者脑氧代谢的影响%Effect of different anesthesia methods on cerebral oxygen metabolism in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)



    Objective To investigate the effects of different anesthesia methods on cerebral oxygen metabolism in patients with severe traumatic brain injury.Methods Forty-five patients with severe traumatic brain injury from March 2011 to March 2013 were divided into propofol intravenous anesthesia group(group A),sevoflurane inhalation anesthesia group(group B) and intravenous inhalational anesthesia group (group C) by random digits table method with 15 cases each.The mean artery pressure (MAP),heart rate (HR) before anesthesia,immediately after tracheal intubation,2 minutes after intubation,10 min and 30 min after operation set and operation end were observed.The oxygen content of jugular venous (SjvO2),jugular bulb venous oxygen content (Da-jvO2) and cerebral metabolic rate for oxygen (CERO2) before anesthesia induction,immediately finish anesthesia induction,30 min and 1 h after operation set and operatin end were calculated.Results The SjvO2 values in three groups were at 30 min,1 h after operation set and operation end was higher than that before anesthesia induction (group A:0.662 ±0.077,0.689 ±0.067,0.685 ±0.066 vs.0.623 ±0.083; group B:0.661 ±0.074,0.681 ±0.072,0.661 ±0.069 vs.0.598 ±0.092; group C:0.715 ± 0.072,0.743 ± 0.070,0.713 ± 0.075 vs.0.631 ± 0.078),and there was significant difference (P < 0.05).The Da-jvO2 values,CERO2 at 30 min,1 h after operation set and operation end was lower than that before anesthesia induction in three groups [group A:Da-jvO2:(41.2 ± 6.3),(41.6 ± 8.1),(44.2 ± 6.3) ml/L vs.(49.2 ± 9.2) ml/L,CERO2:(33.0 ± 1.9)%,(32.7 ± 2.0)%,(32.3 ± 1.9)% vs.(36.0 ±2.3)%; group B:Da-jvO2:(41.8 ± 5.6),(40.2 ± 6.9),(41.8 ± 5.6) ml/L vs.(51.3 ± 8.6) ml/L,CERO2:(33.2 ±2.1)%,(33.0 ±2.6)%,(32.8 ±2.1)% vs.(34.7 ±3.1)% ; group C:Da-jvO2:(39.5 ±6.8),(38.7 ±7.0),(40.2 ±6.8) ml/L vs.(48.8 ±9.7) ml/L,CERO2:(31.8 ±2.9)%,(31.5 ±3.1)%,(32.9 ±2.3)% vs.(35.1 ± 2.9)%],and there was significant difference (P

  5. Effects of fluid restriction in combination with small dose of norepinephrine on cerebral oxygen metabolism in elderly patients undergoing gastrointestinal surgery%限制性输液复合小剂量去甲肾上腺素对胃肠道手术老年患者脑氧代谢的影响

    Institute of Scientific and Technical Information of China (English)

    邱晓东; 居斌华; 叶卉; 陆新健; 景亮; 汤文浩


    Objective To evaluate the effects of fluid restriction in combination with small dose of norepinephrine on cerebral oxygen metabolism in elderly patients undergoing gastrointestinal surgery.Methods Forty elderly patients of both sexes,aged 65-80 yr,with body mass index of 18-24 kg/m2,of ASA physical status Ⅰ or Ⅱ (NYHA Ⅰ or Ⅱ),with left ventricular ejection fraction≥50%,undergoing elective gastrointestinal surgery,were randomly divided into 2 groups (n =20 each) using a random number table:routine fluid administration group (group S) and restricted fluid administration + small dose of norepinephrine group (group RN).In group S,lactated Ringer's solution was given routinely,ephedrine 5 mg (per time) was injected intravenously,and MAP was maintained ≥ 65 mmHg during operation.In group RN,lactated Ringer's solution was infused intravenously at 5 ml · kg-1 · h-1 starting from 30 min before anesthesia,norepinephrine was infused intravenously at 0.01-0.03 μg · kg-1 · min-1 after induction of anesthesia,and MAP was maintained ≥ 65 mmHg.Intraoperative blood loss was replaced with the equal volume of 6% hydroxyethyl starch 130/0.4 sodium chloride injection in both groups.At 5 min before skin incision,1 and 2 h after skin incision and postanesthesia care unit discharge time,arterial and jugular bulb venous blood samples were obtained for blood gas analysis,and arterial oxygen content,jugular bulb venous oxygen content,arteriovenous oxygen content difference,cerebral oxygen extraction rate,and the ratio of cerebral blood flow to cerebral oxygen metabolic rate were calculated.Results There were no significant differences between the two groups in arterial oxygen content,jugular bulb venous oxygen content,arteriovenous oxygen content difference,cerebral oxygen extraction rate,and the ratio of cerebral blood flow to cerebral oxygen metabolic rate.Conclusion Fluid restriction combined with small dose of norepinephrine produces no effects on cerebral oxygen

  6. Cerebral near infrared spectroscopy oximetry in extremely preterm infants

    DEFF Research Database (Denmark)

    Hyttel-Sørensen, Simon; Pellicer, Adelina; Alderliesten, Thomas


    in eight European countries. PARTICIPANTS: 166 extremely preterm infants born before 28 weeks of gestation: 86 were randomised to cerebral NIRS monitoring and 80 to blinded NIRS monitoring. The only exclusion criterion was a decision not to provide life support. INTERVENTIONS: Monitoring of cerebral...... oxygenation using NIRS in combination with a dedicated treatment guideline during the first 72 hours of life (experimental) compared with blinded NIRS oxygenation monitoring with standard care (control). MAIN OUTCOME MEASURES: The primary outcome measure was the time spent outside the target range of 55......-85% for cerebral oxygenation multiplied by the mean absolute deviation, expressed in %hours (burden of hypoxia and hyperoxia). One hour with an oxygenation of 50% gives 5%hours of hypoxia. Secondary outcomes were all cause mortality at term equivalent age and a brain injury score assessed by cerebral...

  7. Sustainable consumption

    DEFF Research Database (Denmark)

    Prothero, Andrea; Dobscha, Susan; Freund, Jim


    This essay explores sustainable consumption and considers possible roles for marketing and consumer researchers and public policy makers in addressing the many sustainability challenges that pervade our planet. Future research approaches to this interdisciplinary topic need to be comprehensive...

  8. Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Eriksen, Vibeke R; Hahn, Gitte H; Greisen, Gorm


    The aim was to compare two conventional methods used to describe cerebral autoregulation (CA): frequency-domain analysis and time-domain analysis. We measured cerebral oxygenation (as a surrogate for cerebral blood flow) and mean arterial blood pressure (MAP) in 60 preterm infants. In the frequency...

  9. Conspicuous Consumption

    Institute of Scientific and Technical Information of China (English)


    China validated a new consumption tax policy on April 1 that levies higher taxes on luxury goods such as yachts and limousines, as well as wooden disposable chopsticks and wooden flooring. This marked the most profound change in the consumption tax since 1994 and is thought to be the first step in an overall tax reform in the country. Consumer tariffs, which are handed over to state coffers, consist of excise taxes and the taxes on imported goods collected by customs agencies.

  10. Cerebral Palsy: General Information. Fact Sheet Number 2 = La Paralisis Cerebral: Informacion General. Fact Sheet Number 18. (United States)

    Interstate Research Associates, McLean, VA.

    This fact sheet on cerebral palsy is offered in both English and Spanish. First, it provides a definition and considers various causes (e.g., an insufficient amount of oxygen reaching the fetal or newborn brain). The fact sheet then offers incidence figures and explains characteristics of the three main types of cerebral palsy: spastic, athetoid,…

  11. The isoflavone-rich fraction of the crude extract of the Puerariae flower increases oxygen consumption and BAT UCP1 expression in high-fat diet-fed mice. (United States)

    Kamiya, Tomoyasu; Nagamine, Rika; Sameshima-Kamiya, Mayu; Tsubata, Masahito; Ikeguchi, Motoya; Takagaki, Kinya


    Puerariae flower extract (PFE) is a crude extract of the Kudzu flower. Previous studies have shown that PFE supplementation exerts anti-obesity and anti-fatty liver effects in high-fat diet-fed mice. In this study, we aimed to identify the PFE components responsible for these effects and to determine their influence on energy expenditure and uncoupling protein 1 (UCP1) expression. Experiments were conducted on C57BL/6J male mice classified into 3 groups: (1) high-fat diet-fed (HFD), (2) high-fat diet-fed given PFE (HFD + PFE), and (3) high-fat diet-fed given the PFE isoflavone-rich fraction (HFD + ISOF). All groups were fed for 42 days. The HFD + PFE and HFD + ISOF groups showed significant resistance to increases in body weight, hepatic triglyceride level, and visceral fat compared to the HFD group. These groups also exhibited significant increases in oxygen consumption and UCP1-positive brown adipose tissue (BAT) area. Our results demonstrate that the active ingredients in PFE are present in the ISOF and that these compounds may increase energy expenditure by upregulation of BAT UCP1 expression. These findings provide valuable information regarding the anti-obesity effects of isoflavones.

  12. The Effects of XINSHU Oral Liquid on Hemodynamics and Oxygen Consumption of Myocardium in Dog Hearts%心舒口服液对麻醉犬心脏血流动力学的影响

    Institute of Scientific and Technical Information of China (English)

    郭涛; 宋洪涛; 韦平; 丁丽馨; 牟平; 刘建勋; 尚晓泓; 王刚


    目的 探讨心舒口服液对心脏功能的药理作用机理。方法 采用麻醉犬冠脉血流量,左室作功能力和心肌耗氧量等指标的变化,研究心舒口服液对心肌作用机理。结果 心舒口服液可以明显增加冠脉血流量,改善心肌收缩功能。结论 心舒口服液对心脏功能有明显调节和改善作用,为进一步临床研究提供实验依据。%Aim To investigate the pharmacological action mechanisms of XINSHU oral liquid on heart functions in dog.Methods The varieties of the following parameters were used to study its action mechanisms on myocardium,such as coronary blood flow,the work ability of left ventricular and myocardial oxygen consumption of normal anaesthetic dogs.Results XINSHU oral liqrid could enhance coronary blood flow and improve the myocardial systolic functions significantly.Conclusion It shows that the heart functions of dogs could be adjusted and improved by XINSHU oral liquid,which would provide experimental grounds for further clinical study.

  13. Sympathetic influence on cerebral blood flow and metabolism during exerci