WorldWideScience

Sample records for cerebral motor cortex

  1. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress.

    Directory of Open Access Journals (Sweden)

    Francisco Bruno Teixeira

    Full Text Available Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies, GFAP (a marker of astrocytes and Iba1 (microglia marker in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.

  2. The changes of regional cerebral blood flow: successful pain relief of intractable CRPS type II patients by motor cortex stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J. A.; Son, H. S.; Kim, S. H.; Jung, S. G [The Catholic University of Korea, Seoul (Korea, Republic of)

    2004-07-01

    Authors report the effectiveness of MCS in extraordinarily extended pain due to intractable CRPS type II and rCBF study result for mechanism of pain control by MCS. A 43-year-old male presented severe spontaneous burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. Authors planned MCS as a neuromodulation therapy for this intractable peripheral neuropathic pain patient because further neurodestructive procedure did not work anymore and have a potential risk of further aggrevation of neuopathic pain. We performed baseline and stimulation brain perfusion SPECT using 20 mCi of Tc-99m ECD. The baseline CBD studies were done with stimulator 'off' state and stimulation studies were done after stimulator 'on' with satisfactory pain relief. For the stimulation study, the radioisotope was injected immediately after pain-relief and the images were taken about 50 minutes after injection of radioisotope. In resting rCBF in the patient was compared with normal control datas, we found significant increase in rCBF in the bilateral prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, left temporooccipital area. When rCBF datas obtained after alleviation of pain with stimulator 'on' . there were significant increase in rCBF in bilateral prefrontal cortex and left temporoocipital area. After subtraction of ECD SPECT, we found significant increase in rCBF in the right premotor and supplementary motor cortex left sensorimotor cortex, right cingulated cortex, right posterior insular cortex, right anterior limb of internal capsule. left orbitofrontal cortex and right pyramidal tract in cerebral peduncle. Authors report exellent pain control by MCS in a case of severe CRPS type II with hemibody involvement and regional cerebral blood flow changes according to successful pain control.

  3. Chronic Ethanol Exposure during Adolescence in Rats Induces Motor Impairments and Cerebral Cortex Damage Associated with Oxidative Stress

    OpenAIRE

    Francisco Bruno Teixeira; Luana Nazaré da Silva Santana; Fernando Romualdo Bezerra; Sabrina De Carvalho; Enéas Andrade Fontes-Júnior; Rui Daniel Prediger; Maria Elena Crespo-López; Cristiane Socorro Ferraz Maia; Rafael Rodrigues Lima

    2014-01-01

    Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, in...

  4. Therapeutic effects of functional electrical stimulation on motor cortex in children with spastic Cerebral Palsy.

    Science.gov (United States)

    Mukhopadhyay, R; Mahadevappa, M; Lenka, P K; Biswas, A

    2015-01-01

    In the present study we have evaluated the electroencephalogram (EEG) signal recorded during ankle dorsal and plantar flexion in children with spastic Cerebral Palsy (CP) after Functional Electrical Stimulation (FES) of the Tibialis Anterior (TA) muscles. The intervention group had 10 children with spastic diaplegic/hemiplegic CP within the age group of 5 to 14 years of age who received both FES for 30 minutes and the conventional physiotherapy for 30 minutes a day, while the control group had 5 children who received only conventional physiotherapy for 60(30 + 30) minutes a day only. Both group were treated for 5 days a week, up to 12 weeks. The EEG data were analyzed for Peak Alpha Frequency (PAF), sensorimotor rhythm (SMR), mu wave suppression and power spectral density (PSD) of all the bands. The results showed a decrease in SMR and mu wave suppression in the intervention group as compared to the control group, indicating a positive/greater improvement in performance of motor activities. Therefore, from this study we could conclude that FES combined with conventional physiotherapy improves the motor activity in children with spastic CP.

  5. Effect of Transcranial Direct Current Stimulation over the Primary Motor Cortex on Cerebral Blood Flow: A Time Course Study Using Near-infrared Spectroscopy.

    Science.gov (United States)

    Takai, Haruna; Tsubaki, Atsuhiro; Sugawara, Kazuhiro; Miyaguchi, Shota; Oyanagi, Keiichi; Matsumoto, Takuya; Onishi, Hideaki; Yamamoto, Noriaki

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that is applied during stroke rehabilitation. The purpose of this study was to examine diachronic intracranial hemodynamic changes using near-infrared spectroscopy (NIRS) during tDCS applied to the primary motor cortex (M1). Seven healthy volunteers were tested during real stimulation (anodal and cathodal) and during sham stimulation. Stimulation lasted 20 min and NIRS data were collected for about 23 min including the baseline. NIRS probe holders were positioned over the entire contralateral sensory motor area. Compared to the sham condition, both anodal and cathodal stimulation resulted in significantly lower oxyhemoglobin (O2Hb) concentrations in the contralateral premotor cortex (PMC), supplementary motor area (SMA), and M1 (pstimulation was significantly lower than that during the sham condition (pstimulation was lower than that during anodal stimulation (pstimulation was significantly higher than the concentrations during both cathodal stimulation and the sham condition (p<0.05). The factor of time did not demonstrate significant differences. These results suggest that both anodal and cathodal tDCS cause widespread changes in cerebral blood flow, not only in the area immediately under the electrode, but also in other areas of the cortex.

  6. Effects of aging on motor cortex excitability.

    Science.gov (United States)

    Oliviero, A; Profice, P; Tonali, P A; Pilato, F; Saturno, E; Dileone, M; Ranieri, F; Di Lazzaro, V

    2006-05-01

    To determine whether aging is associated with changes in excitability of the cerebral cortex, we evaluated the excitability of the motor cortex with transcranial magnetic stimulation (TMS). We compared TMS related measures obtained in a group of young people with those of a group of old people. Motor evoked potential (MEP) amplitude was significantly smaller in older than in younger controls (1.3+/-0.8 mV versus 2.7+/-1.1 mV; p<0.0071). Mean cortical silent period (CSP) duration was shorter in older than in younger controls (87+/-29 ms versus 147+/-39 ms; p<0.0071). SP duration/MEP amplitude ratios were similar in both groups. Our results are consistent with an impaired efficiency of some intracortical circuits in old age.

  7. Spared Primary Motor Cortex and the Presence of MEP in Cerebral Palsy Dictate the Responsiveness to tDCS During Gait Training

    Directory of Open Access Journals (Sweden)

    Luanda Collange Grecco

    2016-07-01

    Full Text Available The current priority of investigations involving transcranial direct current stimulation (tDCS and neurorehabilitation is to identify biomarkers associated with the positive results of the interventions such that respondent and non-respondent patients can be identified in the early phases of treatment. The aims were to determine whether; 1 present motor evoked potential (MEP and, 2 injuries involving the primary motor cortex, are associated with tDCS-enhancement in functional outcome following gait training in children with cerebral palsy (CP. We reviewed the data from our parallel, randomized, sham-controlled, double-blind studies. Fifty-six children with spastic CP received gait training (either treadmill training or virtual reality training and tDCS (active or sham. Univariate and multivariate logistic regression analyses were employed to identify clinical, neurophysiologic and neuroanatomic predictors associated with the responsiveness to treatment with tDCS. MEP presence during the initial evaluation and the subcortical injury were associated with positive effects in the functional results. The logistic regression revealed that present MEP was a significant predictor for the six-minute walk test (p=0.003 and gait speed (p=0.028, whereas the subcortical injury was a significant predictor of gait kinematics (p=0.013 and gross motor function (p = 0.021. In this preliminary study involving children with CP, two important prediction factors of good responses to anodal tDCS combined with gait training were identified. Apparently, MEP (integrity of the corticospinal tract and subcortical location of the brain injury exerted different influences on aspects related to gait, such as velocity and kinematics.

  8. [The motor organization of cerebral cortex and the role of the mirror neuron system. Clinical impact for rehabilitation].

    Science.gov (United States)

    Sallés, Laia; Gironès, Xavier; Lafuente, José Vicente

    2015-01-06

    The basic characteristics of Penfield homunculus (somatotopy and unique representation) have been questioned. The existence of a defined anatomo-functional organization within different segments of the same region is controversial. The presence of multiple motor representations in the primary motor area and in the parietal lobe interconnected by parieto-frontal circuits, which are widely overlapped, form a complex organization. Both features support the recovery of functions after brain injury. Regarding the movement organization, it is possible to yield a relevant impact through the understanding of actions and intentions of others, which is mediated by the activation of mirror-neuron systems. The implementation of cognitive functions (observation, image of the action and imitation) from the acute treatment phase allows the activation of motor representations without having to perform the action and it plays an important role in learning motor patterns. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  9. Learning in the Rodent Motor Cortex.

    Science.gov (United States)

    Peters, Andrew J; Liu, Haixin; Komiyama, Takaki

    2017-07-25

    The motor cortex is far from a stable conduit for motor commands and instead undergoes significant changes during learning. An understanding of motor cortex plasticity has been advanced greatly using rodents as experimental animals. Two major focuses of this research have been on the connectivity and activity of the motor cortex. The motor cortex exhibits structural changes in response to learning, and substantial evidence has implicated the local formation and maintenance of new synapses as crucial substrates of motor learning. This synaptic reorganization translates into changes in spiking activity, which appear to result in a modification and refinement of the relationship between motor cortical activity and movement. This review presents the progress that has been made using rodents to establish the motor cortex as an adaptive structure that supports motor learning.

  10. The Age of Human Cerebral Cortex Neurons

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  11. Functional involvement of cerebral cortex in human narcolepsy.

    Science.gov (United States)

    Oliviero, A; Della Marca, G; Tonali, P A; Pilato, F; Saturno, E; Dileone, M; Versace, V; Mennuni, G; Di Lazzaro, V

    2005-01-01

    The pathophysiology of human narcolepsy is still poorly understood. The hypoactivity of some neurotransmitter systems has been hypothesised on the basis of the canine model. To determine whether narcolepsy is associated with changes in excitability of the cerebral cortex, we assessed the excitability of the motor cortex with transcranial magnetic stimulation (TMS) in 13 patients with narcolepsy and in 12 control subjects. We used several TMS paradigms that can provide information on the excitability of the motor cortex. Resting and active motor thresholds were higher in narcoleptic patients than in controls and intracortical inhibition was more pronounced in narcoleptic patients. No changes in the other evaluated measures were detected. These results are consistent with an impaired balance between excitatory and inhibitory intracortical circuits in narcolepsy that leads to cortical hypoexcitability. We hypothesise that the deficiency of the excitatory hypocretin/orexin-neurotransmitter-system in narcolepsy is reflected in changes of cortical excitability since circuits originating in the lateral hypothalamus and in the basal forebrain project widely to the neocortex, including motor cortex. This abnormal excitability of cortical networks could be the physiological correlate of excessive daytime sleepiness and it could be the substrate for allowing dissociated states of wakefulness and sleep to emerge suddenly while patients are awake, which constitute the symptoms of narcolepsy.

  12. Circuit changes in motor cortex during motor skill learning.

    Science.gov (United States)

    Papale, Andrew E; Hooks, Bryan M

    2018-01-01

    Motor cortex is important for motor skill learning, particularly the dexterous skills necessary for our favorite sports and careers. We are especially interested in understanding how plasticity in motor cortex contributes to skill learning. Although human studies have been helpful in understanding the importance of motor cortex in learning skilled tasks, animal models are necessary for achieving a detailed understanding of the circuitry underlying these behaviors and the changes that occur during training. We review data from these models to try to identify sites of plasticity in motor cortex, focusing on rodents asa model system. Rodent neocortex contains well-differentiated motor and sensory regions, as well as neurons expressing similar genetic markers to many of the same circuit components in human cortex. Furthermore, rodents have circuit mapping tools for labeling, targeting, and manipulating these cell types as circuit nodes. Crucially, the projection from rodent primary somatosensory cortex to primary motor cortex is a well-studied corticocortical projection and a model of sensorimotor integration. We first summarize some of the descending pathways involved in making dexterous movements, including reaching. We then describe local and long-range circuitry in mouse motor cortex, summarizing structural and functional changes associated with motor skill acquisition. We then address which specific connections might be responsible for plasticity. For insight into the range of plasticity mechanisms employed by cortex, we review plasticity in sensory systems. The similarities and differences between motor cortex plasticity and critical periods of plasticity in sensory systems are discussed. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Laminar fate specification in the cerebral cortex

    Science.gov (United States)

    Gaspard, Nicolas

    2011-01-01

    The cerebral cortex is composed of hundreds of different types of neurons, which underlie its ability to perform highly complex neural processes. How this astonishing cell diversity is generated during development constitutes a major challenge in developmental neurosciences, with important implications for neurological diseases. Here we review some recent and exciting advances in this field, from the description of the cellular processes at the origin of cortical neuron diversity, to the dissection of the molecular logic underlying fate selection in cortical neurons. PMID:21655334

  14. Motor Cortex Reorganization across the Lifespan

    Science.gov (United States)

    Plowman, Emily K.; Kleim, Jeffrey A.

    2010-01-01

    The brain is a highly dynamic structure with the capacity for profound structural and functional change. Such neural plasticity has been well characterized within motor cortex and is believed to represent one of the neural mechanisms for acquiring and modifying motor behaviors. A number of behavioral and neural signals have been identified that…

  15. Cell Counts in Cerebral Cortex of an Autistic Patient.

    Science.gov (United States)

    Coleman, Paul D.; And Others

    1985-01-01

    Numbers of neurons and glia were counted in the cerebral cortex of one case of autism and two age- and sex-matched controls. Cell counts were made in primary auditory cortex, Broca's speech area, and auditory association cortex. No consistent differences in cell density were found between brains of autistic and control patients. (Author/CL)

  16. Does intrinsic motivation enhance motor cortex excitability?

    Science.gov (United States)

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research. © 2016 Society for Psychophysiological Research.

  17. Spectroscopic biomarkers of motor cortex developmental plasticity in hemiparetic children after perinatal stroke.

    Science.gov (United States)

    Carlson, Helen L; MacMaster, Frank P; Harris, Ashley D; Kirton, Adam

    2017-03-01

    Perinatal stroke causes hemiparetic cerebral palsy and lifelong motor disability. Bilateral motor cortices are key hubs within the motor network and their neurophysiology determines clinical function. Establishing biomarkers of motor cortex function is imperative for developing and evaluating restorative interventional strategies. Proton magnetic resonance spectroscopy (MRS) quantifies metabolite concentrations indicative of underlying neuronal health and metabolism in vivo. We used functional magnetic resonance imaging (MRI)-guided MRS to investigate motor cortex metabolism in children with perinatal stroke. Children aged 6-18 years with MRI-confirmed perinatal stroke and hemiparetic cerebral palsy were recruited from a population-based cohort. Metabolite concentrations were assessed using a PRESS sequence (3T, TE = 30 ms, voxel = 4 cc). Voxel location was guided by functional MRI activations during finger tapping tasks. Spectra were analysed using LCModel. Metabolites were quantified, cerebral spinal fluid corrected and compared between groups (ANCOVA) controlling for age. Associations with clinical motor performance (Assisting Hand, Melbourne, Box-and-Blocks) were assessed. Fifty-two participants were studied (19 arterial, 14 venous, 19 control). Stroke participants demonstrated differences between lesioned and nonlesioned motor cortex N-acetyl-aspartate [NAA mean concentration = 10.8 ± 1.9 vs. 12.0 ± 1.2, P motor cortex NAA and creatine were strongly correlated with motor performance in children with arterial but not venous strokes. Interrogation of motor cortex by fMRI-guided MRS is feasible in children with perinatal stroke. Metabolite differences between hemispheres, stroke types and correlations with motor performance support functional relevance. MRS may be valuable in understanding the neurophysiology of developmental neuroplasticity in cerebral palsy. Hum Brain Mapp 38:1574-1587, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley

  18. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Directory of Open Access Journals (Sweden)

    Olesya eMokienko

    2013-11-01

    Full Text Available Background: Motor imagery (MI is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms.Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI.Subjects and methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years were either trained with an MI-based BCI (BCI-trained, n = 5 or received no BCI training (n = 6, controls. Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS.Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17% during MI, which was also observed only in BCI-trained subjects.Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.

  19. Selective Long-term Reorganization of the Corticospinal Projection from the Supplementary Motor Cortex following Recovery from Lateral Motor Cortex Injury

    Science.gov (United States)

    McNeal, David W.; Darling, Warren G.; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; Solon, Kathryn M.; Hynes, Stephanie M.; Pizzimenti, Marc A.; Rotella, Diane; Vanadurongvan, Tyler; Morecraft, Robert J.

    2013-01-01

    Brain injury affecting the frontal motor cortex or its descending axons often causes contralateral upper extremity paresis. Although recovery is variable, the underlying mechanisms supporting favorable motor recovery remain unclear. Since the medial wall of the cerebral hemisphere is often spared following brain injury and recent functional neuroimaging studies in patients indicate a potential role for this brain region in the recovery process, we investigated the long-term effects of isolated lateral frontal motor cortical injury on the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2). Following injury to the arm region of the primary motor (M1) and lateral premotor (LPMC) cortices, upper extremity recovery is accompanied by terminal axon plasticity in the contralateral CSP but not the ipsilateral CSP from M2. Furthermore, significant contralateral plasticity occurs only in lamina VII and dorsally within lamina IX. Thus, selective intraspinal sprouting transpires in regions containing interneurons, flexor-related motor neurons and motor neurons supplying intrinsic hand muscles which all play important roles in mediating reaching and digit movements. Following recovery, subsequent injury of M2 leads to reemergence of hand motor deficits. Considering the importance of the CSP in humans and the common occurrence of lateral frontal cortex injury, these findings suggest that spared supplementary motor cortex may serve as an important therapeutic target that should be considered when designing acute and long-term post-injury patient intervention strategies aimed to enhance the motor recovery process following lateral cortical trauma. PMID:20034062

  20. Motor cortex neuroplasticity following brachial plexus transfer.

    Science.gov (United States)

    Dimou, Stefan; Biggs, Michael; Tonkin, Michael; Hickie, Ian B; Lagopoulos, Jim

    2013-01-01

    In the past decade, research has demonstrated that cortical plasticity, once thought only to exist in the early stages of life, does indeed continue on into adulthood. Brain plasticity is now acknowledged as a core principle of brain function and describes the ability of the central nervous system to adapt and modify its structural organization and function as an adaptive response to functional demand. In this clinical case study we describe how we used neuroimaging techniques to observe the functional topographical expansion of a patch of cortex along the sensorimotor cortex of a 27-year-old woman following brachial plexus transfer surgery to re-innervate her left arm. We found bilateral activations present in the thalamus, caudate, insula as well as across the sensorimotor cortex during an elbow flex motor task. In contrast we found less activity in the sensorimotor cortex for a finger tap motor task in addition to activations lateralized to the left inferior frontal gyrus and thalamus and bilaterally for the insula. From a pain perspective the patient who had experienced extensive phantom limb pain (PLP) before surgery found these sensations were markedly reduced following transfer of the right brachial plexus to the intact left arm. Within the context of this clinical case the results suggest that functional improvements in limb mobility are associated with increased activation in the sensorimotor cortex as well as reduced PLP.

  1. Motor cortex neuroplasticity following brachial plexus transfer

    Directory of Open Access Journals (Sweden)

    Stefan eDimou

    2013-08-01

    Full Text Available In the past decade, research has demonstrated that cortical plasticity, once thought only to exist in the early stages of life, does indeed continue on into adulthood. Brain plasticity is now acknowledged as a core principle of brain function and describes the ability of the central nervous system to adapt and modify its structural organization and function as an adaptive response to functional demand. In this clinical case study we describe how we used neuroimaging techniques to observe the functional topographical expansion of a patch of cortex along the sensorimotor cortex of a 27 year-old woman following brachial plexus transfer surgery to re-innervate her left arm. We found bilateral activations present in the thalamus, caudate, insula as well as across the sensorimotor cortex during an elbow flex motor task. In contrast we found less activity in the sensorimotor cortex for a finger tap motor task in addition to activations lateralised to the left inferior frontal gyrus and thalamus and bilaterally for the insula. From a pain perspective the patient who had experienced extensive phantom limb pain before surgery found these sensations were markedly reduced following transfer of the right brachial plexus to the intact left arm. Within the context of this clinical case the results suggest that functional improvements in limb mobility are associated with increased activation in the sensorimotor cortex as well as reduced phantom limb pain.

  2. The Neural Mechanism Exploration of Adaptive Motor Control: Dynamical Economic Cell Allocation in the Primary Motor Cortex.

    Science.gov (United States)

    Li, Wei; Guo, Yangyang; Fan, Jing; Ma, Chaolin; Ma, Xuan; Chen, Xi; He, Jiping

    2017-05-01

    Adaptive flexibility is of significance for the smooth and efficient movements in goal attainment. However, the underlying work mechanism of the cerebral cortex in adaptive motor control still remains unclear. How does the cerebral cortex organize and coordinate the activity of a large population of cells in the implementation of various motor strategies? To explore this issue, single-unit activities from the M1 region and kinematic data were recorded simultaneously in monkeys performing 3D reach-to-grasp tasks with different perturbations. Varying motor control strategies were employed and achieved in different perturbed tasks, via the dynamic allocation of cells to modulate specific movement parameters. An economic principle was proposed for the first time to describe a basic rule for cell allocation in the primary motor cortex. This principle, defined as the Dynamic Economic Cell Allocation Mechanism (DECAM), guarantees benefit maximization in cell allocation under limited neuronal resources, and avoids committing resources to uneconomic investments for unreliable factors with no or little revenue. That is to say, the cells recruited are always preferentially allocated to those factors with reliable return; otherwise, the cells are dispatched to respond to other factors about task. The findings of this study might partially reveal the working mechanisms underlying the role of the cerebral cortex in adaptive motor control, wherein is also of significance for the design of future intelligent brain-machine interfaces and rehabilitation device.

  3. Genetic influences on thinning of the cerebral cortex during development

    NARCIS (Netherlands)

    van Soelen, I.L.C.; Brouwer, R.M.; van Baal, G.C.M.; Schnack, H.G.; Peper, J.S.; Collins, D.L.; Evans, A.C.; Kahn, R.S.; Boomsma, D.I.; Hulshoff Pol, H.E.

    2012-01-01

    During development from childhood to adulthood the human brain undergoes considerable thinning of the cerebral cortex. Whether developmental cortical thinning is influenced by genes and if independent genetic factors influence different parts of the cortex is not known. Magnetic resonance brain

  4. Motor Cortex Stimulation in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Marisa De Rose

    2012-01-01

    Full Text Available Motor Cortex Stimulation (MCS is less efficacious than Deep Brain Stimulation (DBS in Parkinson's disease. However, it might be proposed to patients excluded from DBS or unresponsive to DBS. Ten patients with advanced PD underwent unilateral MCS contralaterally to the worst clinical side. A plate electrode was positioned over the motor cortex in the epidural space through single burr hole after identification of the area with neuronavigation and neurophysiological tests. Clinical assessment was performed by total UPDRS, UPDRS III total, UPDRS III-items 27–31, UPDRS IV, and UPDRS II before implantation in off-medication and on-medication states and after surgery at 1, 3, 6, 12, 18, 24, and 36 months in on-medication/on-stimulation and off-medication/on-stimulation states. We assessed changes of quality of life, throughout the Parkinson's disease quality of life scale (PDQoL-39, and the dose of anti-Parkinson's disease medications, throughout the Ldopa equivalent daily dose (LEDD. During off-medication state, we observed moderate and transitory reduction of total UPDRS and UPDRS total scores and significant and long-lasting improvement in UPDRS III items 27–31 score for axial symptoms. There was marked reduction of UPDRS IV score and LEDD. PDQL-39 improvement was also significant. No important complications and adverse events occurred.

  5. Cholinesterase inhibition improves blood flow in the ischemic cerebral cortex.

    Science.gov (United States)

    Scremin, O U; Li, M G; Scremin, A M; Jenden, D J

    1997-01-01

    The ability of central cholinesterase inhibition to improve cerebral blood flow in the ischemic brain was tested in Sprague-Dawley rats with tandem occlusion of left middle cerebral and common carotid arteries. Cerebral blood flow was measured with lodo- 14C-antipyrine autoradiography in 170 regions of cerebral cortex. The regional distribution of blood flow was characterized in normal animals by cerebral blood flow maxima in the temporal regions. After 2 h ischemia, minimum cerebral blood flow values were found in the lateral frontal and parietal areas on the left hemisphere, and a new maximum was found in the right hemisphere in an area approximately symmetrical to the ischemic focus. Heptyl-physostigmine (eptastigmine), a carbamate cholinesterase inhibitor with prolonged time of action improved cerebral blood flow in most regions, with the exception of the ischemic core. The drug also enhanced the ischemia-induced rostral shift of cerebral blood flow maxima in the right hemisphere. The effects of eptastigmine were more marked 24 h after ischemia. Discriminant analysis showed that data from only 22 regions was sufficient to achieve 100% accuracy in classifying all cases into the various experimental conditions. The redistribution of cerebral blood flow to the sensorimotor area of the right hemisphere of animals with cerebral ischemia, a phenomenon possibly related to recovery of function, was also enhanced by eptastigmine.

  6. Motor demand-dependent activation of ipsilateral motor cortex.

    Science.gov (United States)

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  7. Concurrent TMS to the primary motor cortex augments slow motor learning

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  8. The motor cortex and its role in phantom limb phenomena.

    Science.gov (United States)

    Reilly, Karen T; Sirigu, Angela

    2008-04-01

    Limb amputation results in plasticity of connections between the brain and muscles; the cortical motor representation of the missing limb seemingly disappears. The disappearance of the hand's motor representation is, however, difficult to reconcile with evidence that a perceptual representation of the missing limb persists in the form of a phantom limb endowed with sensory and motor qualities. Here, we argue that despite considerable reorganization within the motor cortex of upper-limb amputees, the representation of the amputated hand does not disappear. We hypothesize that two levels of hand-movement representation coexist within the primary motor cortex; at one level, limb movements are specified in terms of arm and hand motor commands, and at another level, limb movements are specified as muscles synergies. We propose that primary motor cortex reorganization after amputation concerns primarily the upper limb's muscular map but not its motor command map and that the integrity of the motor command map underlies the existence of the phantom limb.

  9. Hypoperfusion of cerebral cortex in renal hypertensive rats.

    Science.gov (United States)

    Wall, K M; Gross, P M

    1991-05-01

    Morphometric and physiological measurements in the parietal cortex of rats with 2-kidney-1-clip renal hypertension and their normotensive controls indicated a 23% increase in capillary bed volume accompanied by a 32% reduction in the rate of cortical blood flow in the renal hypertensive animals. From these measures, we estimated an 83% increase in the duration of blood transit through the cortical capillary network of renal hypertensive rats, a new expression of altered microvascular function in the brain of this hypertensive model. The rate of glucose utilization in the cerebral cortex of renal hypertensive animals was not different from that observed for normotensive animals. Thus, for capillary networks in cerebral cortex of renal hypertensive rats, we demonstrated markedly reduced rates of perfusion independent of tissue metabolic factors, despite expansion of capillary bed volume.

  10. Microglia in the Cerebral Cortex in Autism

    Science.gov (United States)

    Tetreault, Nicole A.; Hakeem, Atiya Y.; Jiang, Sue; Williams, Brian A.; Allman, Elizabeth; Wold, Barbara J.; Allman, John M.

    2012-01-01

    We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had…

  11. Cholinergic receptor alterations in the cerebral cortex of spinal cord injured rat

    Directory of Open Access Journals (Sweden)

    R. Chinthu

    2017-07-01

    Full Text Available Many areas of the cerebral cortex process sensory information or coordinate motor output necessary for control of movement. Disturbances in cortical cholinergic system can affect locomotor coordination. Spinal cord injury causes severe motor impairment and disturbances in cholinergic signalling can aggravate the situation. Considering the impact of cortical cholinergic firing in locomotion, we focussed the study in understanding the cholinergic alterations in cerebral cortex during spinal cord injury. The gene expression of key enzymes in cholinergic pathway - acetylcholine esterase and choline acetyl transferase showed significant upregulation in the cerebral cortex of spinal cord injured group compared to control with the fold increase in expression of acetylcholine esterase prominently higher than cholineacetyl transferase. The decreased muscarinic receptor density and reduced immunostaining of muscarinic receptor subtypes along with down regulated gene expression of muscarinic M1 and M3 receptor subtypes accounts for dysfunction of metabotropic acetylcholine receptors in spinal cord injury group. Ionotropic acetylcholine receptor alterations were evident from the decreased gene expression of alpha 7 nicotinic receptors and reduced immunostaining of alpha 7 nicotinic receptors in confocal imaging. Our data pin points the disturbances in cortical cholinergic function due to spinal cord injury; which can augment the locomotor deficits. This can be taken into account while devising a proper therapeutic approach to manage spinal cord injury.

  12. Motor cortex changes in spinal cord injury: a TMS study.

    Science.gov (United States)

    Saturno, Eleonora; Bonato, Claudio; Miniussi, Carlo; Lazzaro, Vincenzodi; Callea, Leonardo

    2008-12-01

    Using paired pulse transcranial magnetic stimulation (TMS) paradigms, we studied cortical excitability in a patient with spinal cord lesion. During posterior tibial nerve stimulation, the contextual flexion of hand fingers contralateral to the stimulated lower limb had suggested a change in motor cortex excitability. Results showed a decrease in the activity of motor cortex inhibitory circuits. This could suggest that in spinal cord injury, just as in stroke and peripheral deafferentation, a disinhibition of latent synapses within the motor cortex and the rewriting of a new motor map can occur.

  13. High membrane protein oxidation in the human cerebral cortex.

    Science.gov (United States)

    Granold, Matthias; Moosmann, Bernd; Staib-Lasarzik, Irina; Arendt, Thomas; Del Rey, Adriana; Engelhard, Kristin; Behl, Christian; Hajieva, Parvana

    2015-01-01

    Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old animals, and adult rat hippocampus and cortex subjected or not subjected to cerebral ischemia. Most tissues showed relatively similar levels of protein oxidation. However, human cortex was affected by severe membrane protein oxidation, while exhibiting lower than average cytoplasmic protein oxidation. In contrast, ex vivo autooxidation of murine cortical tissue primarily induced aqueous protein oxidation, while in vivo biological aging or cerebral ischemia had no major effect on brain protein oxidation. The unusually high levels of membrane protein oxidation in the human cortex were also not predicted by lipid peroxidation, as the levels of isoprostane immunoreactivity in human samples were considerably lower than in rodent tissues. Our results indicate that the aged human cortex is under steady pressure from specific and potentially detrimental membrane protein oxidation. The pronounced difference between humans, mice and rats regarding the primary site of cortical oxidation might have contributed to the unresolved difficulties in translating into therapies the wealth of data describing successful antioxidant neuroprotection in rodents. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. High membrane protein oxidation in the human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Matthias Granold

    2015-04-01

    Full Text Available Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old animals, and adult rat hippocampus and cortex subjected or not subjected to cerebral ischemia. Most tissues showed relatively similar levels of protein oxidation. However, human cortex was affected by severe membrane protein oxidation, while exhibiting lower than average cytoplasmic protein oxidation. In contrast, ex vivo autooxidation of murine cortical tissue primarily induced aqueous protein oxidation, while in vivo biological aging or cerebral ischemia had no major effect on brain protein oxidation. The unusually high levels of membrane protein oxidation in the human cortex were also not predicted by lipid peroxidation, as the levels of isoprostane immunoreactivity in human samples were considerably lower than in rodent tissues. Our results indicate that the aged human cortex is under steady pressure from specific and potentially detrimental membrane protein oxidation. The pronounced difference between humans, mice and rats regarding the primary site of cortical oxidation might have contributed to the unresolved difficulties in translating into therapies the wealth of data describing successful antioxidant neuroprotection in rodents.

  15. Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington's disease.

    Science.gov (United States)

    Nana, Alissa L; Kim, Eric H; Thu, Doris C V; Oorschot, Dorothy E; Tippett, Lynette J; Hogg, Virginia M; Synek, Beth J; Roxburgh, Richard; Waldvogel, Henry J; Faull, Richard L M

    2014-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease characterized by neuronal degeneration in the basal ganglia and cerebral cortex, and a variable symptom profile. Although progressive striatal degeneration is known to occur and is related to symptom profile, little is known about the cellular basis of symptom heterogeneity across the entire cerebral cortex. To investigate this, we have undertaken a double blind study using unbiased stereological cell counting techniques to determine the pattern of cell loss in six representative cortical regions from the frontal, parietal, temporal, and occipital lobes in the brains of 14 Huntington's disease cases and 15 controls. The results clearly demonstrate a widespread loss of total neurons and pyramidal cells across all cortical regions studied, except for the primary visual cortex. Importantly, the results show that cell loss is remarkably variable both within and between Huntington's disease cases. The results also show that neuronal loss in the primary sensory and secondary visual cortices relate to Huntington's disease motor symptom profiles, and neuronal loss across the associational cortices in the frontal, parietal and temporal lobes is related to both Huntington's disease motor and to mood symptom profiles. This finding considerably extends a previous study (Thu et al., Brain, 2010; 133:1094-1110) which showed that neuronal loss in the primary motor cortex was related specifically to the motor symptom profiles while neuronal loss in the anterior cingulate cortex was related specifically to mood symptom profiles. The extent of cortical cell loss in the current study was generally related to the striatal neuropathological grade, but not to CAG repeat length on the HTT gene. Overall our findings show that Huntington's disease is characterized by a heterogeneous pattern of neuronal cell loss across the entire cerebrum which varies with symptom profile.

  16. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke.

    Science.gov (United States)

    Pariente, J; Loubinoux, I; Carel, C; Albucher, J F; Leger, A; Manelfe, C; Rascol, O; Chollet, F

    2001-12-01

    In order to determine the influence of a single dose of fluoxetine on the cerebral motor activation of lacunar stroke patients in the early phase of recovery, we conducted a prospective, double-blind, crossover, placebo-controlled study on 8 patients with pure motor hemiparesia. Each patient underwent two functional magnetic resonance imaging (fMRI) examinations: one under fluoxetine and one under placebo. The first was performed 2 weeks after stroke onset and the second a week later. During the two fMRI examinations, patients performed an active controlled motor task with the affected hand and a passive one conducted by the examiner with the same hand. Motor performance was evaluated by motor tests under placebo and under fluoxetine immediately before the examinations to investigate the effect of fluoxetine on motor function. Under fluoxetine, during the active motor task, hyperactivation in the ipsilesional primary motor cortex was found. Moreover, fluoxetine significantly improved motor skills of the affected side. We found that a single dose of fluoxetine was enough to modulate cerebral sensory-motor activation in patients. This redistribution of activation toward the motor cortex output activation was associated with an enhancement of motor performance.

  17. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones

    Science.gov (United States)

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later

  18. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones

    Directory of Open Access Journals (Sweden)

    Suzana eHerculano-Houzel

    2013-10-01

    Full Text Available How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005 to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes – with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (see companion paper and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity

  19. Modulation of sensory and motor cortex activity during speech preparation.

    Science.gov (United States)

    Mock, Jeffrey R; Foundas, Anne L; Golob, Edward J

    2011-03-01

    Previous studies have shown that speaking affects auditory and motor cortex responsiveness, which may reflect the influence of motor efference copy. If motor efference copy is involved, it would also likely influence auditory and motor cortical activity when preparing to speak. We tested this hypothesis by using auditory event-related potentials and transcranial magnetic stimulation (TMS) of the motor cortex. In the speech condition subjects were visually cued to prepare a vocal response to a subsequent target, which was compared to a control condition without speech preparation. Auditory and motor cortex responsiveness at variable times between the cue and target were probed with an acoustic stimulus (Experiment 1, tone or consonant-vowels) or motor cortical TMS (Experiment 2). Acoustic probes delivered shortly before targets elicited a fronto-central negative potential in the speech condition. Current density analysis showed that auditory cortical activity was attenuated at the beginning of the slow potential in the speech condition. Sensory potentials in response to probes had shorter latencies (N100) and larger amplitudes (P200) when consonant-vowels matched the sound of cue words. Motor cortex excitability was greater in the speech than in the control condition at all time points before picture onset. The results suggest that speech preparation induces top-down regulation of sensory and motor cortex responsiveness, with different time courses for auditory and motor systems. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Top-Down Control of Motor Cortex Ensembles by Dorsomedial Prefrontal Cortex

    OpenAIRE

    Narayanan, Nandakumar S.; Laubach, Mark

    2006-01-01

    Dorsomedial prefrontal cortex is critical for the temporal control of behavior. Dorsomedial prefrontal cortex might alter neuronal activity in areas such as motor cortex to inhibit temporally inappropriate responses. We tested this hypothesis by recording from neuronal ensembles in rodent dorsomedial prefrontal cortex during a delayed-response task. One-third of dorsomedial prefrontal neurons were significantly modulated during the delay period. The activity of many of these neurons was predi...

  1. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex.

    Science.gov (United States)

    Herbst, Eric A F; Holloway, Graham P

    2016-07-01

    The present study investigated the impact of acute exercise on stimulating mitochondrial respiratory function in mouse cerebral cortex. Where pyruvate-stimulated respiration was not affected by acute exercise, glutamate respiration was enhanced following the exercise bout. Additional assessment revealed that this affect was dependent on the presence of malate and did not occur when substituting glutamine for glutamate. As such, our results suggest that glutamate oxidation is enhanced with acute exercise through activation of the malate-aspartate shuttle.

  2. Photoacoustic detection of functional responses in the motor cortex of awake behaving monkey during forelimb movement

    Science.gov (United States)

    Jo, Janggun; Zhang, Hongyu; Cheney, Paul D.; Yang, Xinmai

    2012-11-01

    Photoacoustic (PA) imaging was applied to detect the neuronal activity in the motor cortex of an awake, behaving monkey during forelimb movement. An adult macaque monkey was trained to perform a reach-to-grasp task while PA images were acquired through a 30-mm diameter implanted cranial chamber. Increased PA signal amplitude results from an increase in regional blood volume and is interpreted as increased neuronal activity. Additionally, depth-resolved PA signals enabled the study of functional responses in deep cortical areas. The results demonstrate the feasibility of utilizing PA imaging for studies of functional activation of cerebral cortex in awake monkeys performing behavioral tasks.

  3. Neural substrate of dynamic Bayesian inference in the cerebral cortex.

    Science.gov (United States)

    Funamizu, Akihiro; Kuhn, Bernd; Doya, Kenji

    2016-12-01

    Dynamic Bayesian inference allows a system to infer the environmental state under conditions of limited sensory observation. Using a goal-reaching task, we found that posterior parietal cortex (PPC) and adjacent posteromedial cortex (PM) implemented the two fundamental features of dynamic Bayesian inference: prediction of hidden states using an internal state transition model and updating the prediction with new sensory evidence. We optically imaged the activity of neurons in mouse PPC and PM layers 2, 3 and 5 in an acoustic virtual-reality system. As mice approached a reward site, anticipatory licking increased even when sound cues were intermittently presented; this was disturbed by PPC silencing. Probabilistic population decoding revealed that neurons in PPC and PM represented goal distances during sound omission (prediction), particularly in PPC layers 3 and 5, and prediction improved with the observation of cue sounds (updating). Our results illustrate how cerebral cortex realizes mental simulation using an action-dependent dynamic model.

  4. Similarities between GCS and human motor cortex: complex movement coordination

    Science.gov (United States)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  5. Motor cortex inhibition: a marker of ADHD behavior and motor development in children.

    Science.gov (United States)

    Gilbert, D L; Isaacs, K M; Augusta, M; Macneil, L K; Mostofsky, S H

    2011-02-15

    Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset behavioral diagnosis in which children often fail to meet age norms in development of motor control, particularly timed repetitive and sequential movements, motor overflow, and balance. The neural substrate of this motor delay may include mechanisms of synaptic inhibition in or adjacent to the motor cortex. The primary objective of this study was to determine whether transcranial magnetic stimulation (TMS)-evoked measures, particularly short interval cortical inhibition (SICI), in motor cortex correlate with the presence and severity of ADHD in childhood as well as with commonly observed delays in motor control. In this case-control study, behavioral ratings, motor skills, and motor cortex physiology were evaluated in 49 children with ADHD (mean age 10.6 years, 30 boys) and 49 typically developing children (mean age 10.5 years, 30 boys), all right-handed, aged 8-12 years. Motor skills were evaluated with the Physical and Neurological Examination for Subtle Signs (PANESS) and the Motor Assessment Battery for Children version 2. SICI and other physiologic measures were obtained using TMS in the left motor cortex. In children with ADHD, mean SICI was reduced by 40% (p motor development scores were 59% worse in children with ADHD (p motor skill development in children.

  6. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease.

    Science.gov (United States)

    Di Lazzaro, V; Oliviero, A; Pilato, F; Saturno, E; Dileone, M; Marra, C; Daniele, A; Ghirlanda, S; Gainotti, G; Tonali, P A

    2004-04-01

    Recent transcranial magnetic stimulation (TMS) studies demonstrate that motor cortex excitability is increased in Alzheimer's disease (AD) and that intracortical inhibitory phenomena are impaired. The aim of the present study was to determine whether hyperexcitability is due to the impairment of intracortical inhibitory circuits or to an independent abnormality of excitatory circuits. We assessed the excitability of the motor cortex with TMS in 28 patients with AD using several TMS paradigms and compared the data of cortical excitability (evaluated by measuring resting motor threshold) with the amount of motor cortex disinhibition as evaluated using the test for motor cortex cholinergic inhibition (short latency afferent inhibition) and GABAergic inhibition (short latency intracortical inhibition). The data in AD patients were also compared with that from 12 age matched healthy individuals. The mean resting motor threshold was significantly lower in AD patients than in controls. The amount of short latency afferent inhibition was significantly smaller in AD patients than in normal controls. There was also a tendency for AD patients to have less pronounced short latency intracortical inhibition than controls, but this difference was not significant. There was no correlation between resting motor threshold and measures of either short latency afferent or intracortical inhibition (r = -0.19 and 0.18 respectively, NS). In 14 AD patients the electrophysiological study was repeated after a single oral dose of the cholinesterase inhibitor rivastigmine. Resting motor threshold was not significantly modified by the administration of rivastigmine. In contrast, short latency afferent inhibition from the median nerve was significantly increased by the administration of rivastigmine. The change in threshold did not seem to correlate with dysfunction of inhibitory intracortical cholinergic and GABAergic circuits, nor with the central cholinergic activity. We propose that the

  7. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    Science.gov (United States)

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  8. Limb distribution, motor impairment, and functional classification of cerebral palsy

    NARCIS (Netherlands)

    Gorter, J.A.; Rosenbaum, P.L.

    2004-01-01

    This study explored the relationships between the Gross Motor Function Classification System (GMFCS), limb distribution, and type of motor impairment. Data used were collected in the Ontario Motor Growth study, a longitudinal cohort study with a population-based sample of children with cerebral

  9. Physiology, anatomy, and plasticity of the cerebral cortex in relation to musical instrument performance

    Science.gov (United States)

    Tramo, Mark Jude

    2004-05-01

    The acquisition and maintenance of fine-motor skills underlying musical instrument performance rely on the development, integration, and plasticity of neural systems localized within specific subregions of the cerebral cortex. Cortical representations of a motor sequence, such as a sequence of finger movements along the keys of a saxophone, take shape before the figure sequence occurs. The temporal pattern and spatial coordinates are computed by networks of neurons before and during the movements. When a finger sequence is practiced over and over, performance gets faster and more accurate, probably because cortical neurons generating the sequence increase in spatial extent, their electrical discharges become more synchronous, or both. By combining experimental methods such as single- and multi-neuron recordings, focal stimulation, microanatomical tracers, gross morphometry, evoked potentials, and functional imaging in humans and nonhuman primates, neuroscientists are gaining insights into the cortical physiology, anatomy, and plasticity of musical instrument performance.

  10. Functional involvement of cerebral cortex in adult sleepwalking.

    Science.gov (United States)

    Oliviero, A; Della Marca, G; Tonali, P A; Pilato, F; Saturno, E; Dileone, M; Rubino, M; Di Lazzaro, V

    2007-08-01

    The pathophysiology of adult sleepwalking is still poorly understood. However, it is widely accepted that sleepwalking is a disorder of arousal. Arousal circuits widely project to the cortex, including motor cortex. We hypothesized that functional abnormality of these circuits could lead to changes in cortical excitability in sleepwalkers, even during wakefulness. We used transcranial magnetic stimulation (TMS) to examine the excitability of the human motor cortex during wakefulness in a group of adult sleepwalkers. When compared with the healthy control group, short interval intracortical inhibition (SICI), cortical silent period (CSP) duration, and short latency afferent inhibition (SAI) were reduced in adult sleepwalkers during wakefulness. Mean CSP duration was shorter in patients than in controls (80.9 +/- 41 ms vs. 139.4 +/- 37 ms; p = 0.0040). Mean SICI was significantly reduced in patients than in controls (73.5 +/- 38.4% vs. 36.7 +/- 13.1%; p = 0.0061). Mean SAI was also significantly reduced in patients than in controls (65.8 +/- 14.2% vs. 42.8 +/- 16.9%; p = 0.0053). This neurophysiological study suggests that there are alterations in sleepwalkers consistent with an impaired efficiency of inhibitory circuits during wakefulness. This inhibitory impairment could represent the neurophysiological correlate of brain "abnormalities" of sleepwalkers like "immaturity" of some neural circuits, synapses, or receptors.

  11. Long-term motor cortex stimulation for phantom limb pain.

    Science.gov (United States)

    Pereira, Erlick A C; Moore, Tom; Moir, Liz; Aziz, Tipu Z

    2015-04-01

    We present the long-term course of motor cortex stimulation to relieve a case of severe burning phantom arm pain after brachial plexus injury and amputation. During 16-year follow-up the device continued to provide efficacious analgesia. However, several adjustments of stimulation parameters were required, as were multiple pulse generator changes, antibiotics for infection and one electrode revision due to lead migration. Steady increases in stimulation parameters over time were required. One of the longest follow-ups of motor cortex stimulation is described; the case illustrates challenges and pitfalls in neuromodulation for chronic pain, demonstrating strategies for maintaining analgesia and overcoming tolerance.

  12. Motor learning in animal models of Parkinson's disease: Aberrant synaptic plasticity in the motor cortex.

    Science.gov (United States)

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R; Ding, Jun B

    2017-04-01

    In Parkinson's disease (PD), dopamine depletion causes major changes in the brain, resulting in the typical cardinal motor features of the disease. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time of PD progression. Models of PD in which dopamine tone in the brain is chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this article, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo time-lapse imaging and motor skill behavior assays. In combination with previous studies, a role of the motor cortex in skill learning and the impairment of this ability with the loss of dopamine are becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in PD, with the possibility of targeting the motor cortex for future PD therapeutics. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  13. Prestimulus oscillatory activity over motor cortex reflects perceptual expectations.

    Science.gov (United States)

    de Lange, Floris P; Rahnev, Dobromir A; Donner, Tobias H; Lau, Hakwan

    2013-01-23

    When perceptual decisions are coupled to a specific effector, preparatory motor cortical activity may provide a window into the dynamics of the perceptual choice. Specifically, previous studies have observed a buildup of choice-selective activity in motor regions over time reflecting the integrated sensory evidence provided by visual cortex. Here we ask how this choice-selective motor activity is modified by prior expectation during a visual motion discrimination task. Computational models of decision making formalize decisions as the accumulation of evidence from a starting point to a decision bound. Within this framework, expectation could change the starting point, rate of accumulation, or the decision bound. Using magneto-encephalography in human observers, we specifically tested for changes in the starting point in choice-selective oscillatory activity over motor cortex. Inducing prior expectation about motion direction biased subjects' perceptual judgments as well as the choice-selective motor activity in the 8-30 Hz frequency range before stimulus onset; the individual strength of these behavioral and neural biases were correlated across subjects. In the absence of explicit expectation cues, spontaneous biases in choice-selective activity were evident over motor cortex. These also predicted eventual perceptual choice and were, at least in part, induced by the choice on the previous trial. We conclude that both endogenous and explicitly induced perceptual expectations bias the starting point of decision-related activity, before the accumulation of sensory evidence.

  14. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    Science.gov (United States)

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  15. Parietal transcranial direct current stimulation modulates primary motor cortex excitability.

    Science.gov (United States)

    Rivera-Urbina, Guadalupe Nathzidy; Batsikadze, Giorgi; Molero-Chamizo, Andrés; Paulus, Walter; Kuo, Min-Fang; Nitsche, Michael A

    2015-03-01

    The posterior parietal cortex is part of the cortical network involved in motor learning and is structurally and functionally connected with the primary motor cortex (M1). Neuroplastic alterations of neuronal connectivity might be an important basis for learning processes. These have however not been explored for parieto-motor connections in humans by transcranial direct current stimulation (tDCS). Exploring tDCS effects on parieto-motor cortical connectivity might be functionally relevant, because tDCS has been shown to improve motor learning. We aimed to explore plastic alterations of parieto-motor cortical connections by tDCS in healthy humans. We measured neuroplastic changes of corticospinal excitability via motor evoked potentials (MEP) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after tDCS over the left posterior parietal cortex (P3), and 3 cm posterior or lateral to P3, to explore the spatial specificity of the effects. Furthermore, short-interval intracortical inhibition/intracortical facilitation (SICI/ICF) over M1, and parieto-motor cortical connectivity were obtained before and after P3 tDCS. The results show polarity-dependent M1 excitability alterations primarily after P3 tDCS. Single-pulse TMS-elicited MEPs, M1 SICI/ICF at 5 and 7 ms and 10 and 15 ms interstimulus intervals (ISIs), and parieto-motor connectivity at 10 and 15 ms ISIs were all enhanced by anodal stimulation. Single pulse-TMS-elicited MEPs, and parieto-motor connectivity at 10 and 15 ms ISIs were reduced by cathodal tDCS. The respective corticospinal excitability alterations lasted for at least 120 min after stimulation. These results show an effect of remote stimulation of parietal areas on M1 excitability. The spatial specificity of the effects and the impact on parietal cortex-motor cortex connections suggest a relevant connectivity-driven effect. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Tangential migration of neurons in the developing cerebral cortex.

    Science.gov (United States)

    O'Rourke, N A; Sullivan, D P; Kaznowski, C E; Jacobs, A A; McConnell, S K

    1995-07-01

    The mammalian cerebral cortex is divided into functionally distinct areas. Although radial patterns of neuronal migration have been thought to be essential for patterning these areas, direct observation of migrating cells in cortical brain slices has revealed that cells follow both radial and nonradial pathways as they travel from their sites of origin in the ventricular zone out to their destinations in the cortical plate (O'Rourke, N.A., Dailey, M.E., Smith, S.J. and McConnell, S.K. (1992) Science 258, 299-302). These findings suggested that neurons may not be confined to radial migratory pathways in vivo. Here, we have examined the patterns of neuronal migration in the intact cortex. Analysis of the orientations of [3H]thymidine-labeled migrating cells suggests that nonradial migration is equally common in brain slices and the intact cortex and that it increases during neurogenesis. Additionally, cells appear to follow nonradial trajectories at all levels of the developing cerebral wall, suggesting that tangential migration may be more prevalent than previously suspected from the imaging studies. Immunostaining with neuron-specific antibodies revealed that many tangentially migrating cells are young neurons. These results suggest that tangential migration in the intact cortex plays a pivotal role in the tangential dispersion of clonally related cells revealed by retroviral lineage studies (Walsh, C. and Cepko, C. L. (1992) Science 255, 434-440). Finally, we examined possible substrata for nonradial migration in dorsal cortical regions where the majority of glia extend radially. Using confocal and electron microscopy, we found that nonradially oriented cells run perpendicular to glial processes and make glancing contacts with them along their leading processes. Thus, if nonradial cells utilize glia as a migratory substratum they must glide across one glial fiber to another. Examination of the relationships between migratory cells and axons revealed axonal

  17. Transcranial direct current stimulation of the motor cortex in waking resting state induces motor imagery.

    Science.gov (United States)

    Speth, Jana; Speth, Clemens; Harley, Trevor A

    2015-11-01

    This study investigates if anodal and cathodal transcranial direct current stimulation (tDCS) of areas above the motor cortex (C3) influences spontaneous motor imagery experienced in the waking resting state. A randomized triple-blinded design was used, combining neurophysiological techniques with tools of quantitative mentation report analysis from cognitive linguistics. The results indicate that while spontaneous motor imagery rarely occurs under sham stimulation, general and athletic motor imagery (classified as athletic disciplines), is induced by anodal tDCS. This insight may have implications beyond basic consciousness research. Motor imagery and corresponding motor cortical activation have been shown to benefit later motor performance. Electrophysiological manipulations of motor imagery could in the long run be used for rehabilitative tDCS protocols benefitting temporarily immobile clinical patients who cannot perform specific motor imagery tasks - such as dementia patients, infants with developmental and motor disorders, and coma patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The posterior parietal cortex (PPC) mediates anticipatory motor control.

    Science.gov (United States)

    Krause, Vanessa; Weber, Juliane; Pollok, Bettina

    2014-01-01

    Flexible and precisely timed motor control is based on functional interaction within a cortico-subcortical network. The left posterior parietal cortex (PPC) is supposed to be crucial for anticipatory motor control by sensorimotor feedback matching. Intention of the present study was to disentangle the specific relevance of the left PPC for anticipatory motor control using transcranial direct current stimulation (tDCS) since a causal link remains to be established. Anodal vs. cathodal tDCS was applied for 10 min over the left PPC in 16 right-handed subjects in separate sessions. Left primary motor cortex (M1) tDCS served as control condition and was applied in additional 15 subjects. Prior to and immediately after tDCS, subjects performed three tasks demanding temporal motor precision with respect to an auditory stimulus: sensorimotor synchronization as measure of anticipatory motor control, interval reproduction and simple reaction. Left PPC tDCS affected right hand synchronization but not simple reaction times. Motor anticipation was deteriorated by anodal tDCS, while cathodal tDCS yielded the reverse effect. The variability of interval reproduction was increased by anodal left M1 tDCS, whereas it was reduced by cathodal tDCS. No significant effects on simple reaction times were found. The present data support the hypothesis that left PPC is causally involved in right hand anticipatory motor control exceeding pure motor implementation as processed by M1 and possibly indicating subjective timing. Since M1 tDCS particularly affects motor implementation, the observed PPC effects are not likely to be explained by alterations of motor-cortical excitability. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Neural Dynamics and Information Representation in Microcircuits of Motor Cortex

    Directory of Open Access Journals (Sweden)

    Yasuhiro eTsubo

    2013-05-01

    Full Text Available The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs, in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.

  20. Functional activation of the cerebral cortex related to sensorimotor adaptation of reactive and voluntary saccades.

    Science.gov (United States)

    Gerardin, Peggy; Miquée, Aline; Urquizar, Christian; Pélisson, Denis

    2012-07-16

    Potentially dangerous events in the environment evoke automatic ocular responses, called reactive saccades. Adaptation processes, which maintain saccade accuracy against various events (e.g. growth, aging, neuro-muscular lesions), are to date mostly relayed to cerebellar activity. Here we demonstrate that adaptation of reactive saccades also involves cerebral cortical areas. Moreover, we provide the first identification of the neural substrates of adaptation of voluntary saccades, representing the complement to reactive saccades for the active exploration of our environment. An fMRI approach was designed to isolate adaptation from saccade production: an adaptation condition in which the visual target stepped backward 50 ms after saccade termination was compared to a control condition where the same target backstep occurred 500 ms after saccade termination. Subjects were tested for reactive and voluntary saccades in separate sessions. Multi-voxel pattern analyses of fMRI data from previously-defined regions of interests (ROIs) significantly discriminated between adaptation and control conditions for several ROIs. Some of these areas were revealed for adaptation of both saccade categories (cerebellum, frontal cortex), whereas others were specifically related to reactive saccades (temporo-parietal junction, hMT+/V5) or to voluntary saccades (medial and posterior areas of intra-parietal sulcus). These findings critically extend our knowledge on brain motor plasticity by showing that saccadic adaptation relies on a hitherto unknown contribution of the cerebral cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Walking the talk--speech activates the leg motor cortex.

    Science.gov (United States)

    Liuzzi, Gianpiero; Ellger, Tanja; Flöel, Agnes; Breitenstein, Caterina; Jansen, Andreas; Knecht, Stefan

    2008-09-01

    Speech may have evolved from earlier modes of communication based on gestures. Consistent with such a motor theory of speech, cortical orofacial and hand motor areas are activated by both speech production and speech perception. However, the extent of speech-related activation of the motor cortex remains unclear. Therefore, we examined if reading and listening to continuous prose also activates non-brachiofacial motor representations like the leg motor cortex. We found corticospinal excitability of bilateral leg muscle representations to be enhanced by speech production and silent reading. Control experiments showed that speech production yielded stronger facilitation of the leg motor system than non-verbal tongue-mouth mobilization and silent reading more than a visuo-attentional task thus indicating speech-specificity of the effect. In the frame of the motor theory of speech this finding suggests that the system of gestural communication, from which speech may have evolved, is not confined to the hand but includes gestural movements of other body parts as well.

  2. Seeing fearful body language rapidly freezes the observer's motor cortex.

    Science.gov (United States)

    Borgomaneri, Sara; Vitale, Francesca; Gazzola, Valeria; Avenanti, Alessio

    2015-04-01

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time similar reductions occur in the human motor cortex and whether they originate from excitatory or inhibitory processes. Using single-pulse and paired-pulse transcranial magnetic stimulation (TMS), here we tested the hypothesis that the observer's motor cortex implements extremely fast suppression of motor readiness when seeing emotional bodies - and fearful body expressions in particular. Participants observed pictures of body postures and categorized them as happy, fearful or neutral while receiving TMS over the right or left motor cortex at 100-125 msec after picture onset. In three different sessions, we assessed corticospinal excitability, short intracortical inhibition (SICI) and intracortical facilitation (ICF). Independently of the stimulated hemisphere and the time of the stimulation, watching fearful bodies suppressed ICF relative to happy and neutral body expressions. Moreover, happy expressions reduced ICF relative to neutral actions. No changes in corticospinal excitability or SICI were found during the task. These findings show extremely rapid bilateral modulation of the motor cortices when seeing emotional bodies, with stronger suppression of motor readiness when seeing fearful bodies. Our results provide neurophysiological support for the evolutionary notions that emotion perception is inherently linked to action systems and that fear-related cues induce an urgent mobilization of motor reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    Science.gov (United States)

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  4. Language and Motor Speech Skills in Children with Cerebral Palsy

    Science.gov (United States)

    Pirila, Silja; van der Meere, Jaap; Pentikainen, Taina; Ruusu-Niemi, Pirjo; Korpela, Raija; Kilpinen, Jenni; Nieminen, Pirkko

    2007-01-01

    The aim of the study was to investigate associations between the severity of motor limitations, cognitive difficulties, language and motor speech problems in children with cerebral palsy. Also, the predictive power of neonatal cranial ultrasound findings on later outcome was investigated. For this purpose, 36 children (age range 1 year 10 months…

  5. Language and motor speech skills in children with cerebral palsy

    NARCIS (Netherlands)

    Pirila, Sija; van der Meere, Jaap; Pentikainen, Taina; Ruusu-Niemi, Pirjo; Korpela, Raija; Kilpinen, Jenni; Nieminen, Pirkko; Ruusu-Niemin, P; Kilpinen, R

    2007-01-01

    The aim of the study was to investigate associations between the severity of motor limitations, cognitive difficulties, language and motor speech problems in children with cerebral palsy. Also, the predictive power of neonatal cranial ultrasound findings on later outcome was investigated. For this

  6. Stem/progenitor cells in the cerebral cortex of the human preterm: a resource for an endogenous regenerative neuronal medicine?

    Directory of Open Access Journals (Sweden)

    Laura Vinci

    2016-04-01

    Full Text Available The development of the central nervous system represents a very delicate period of embryogenesis. Premature interruption of neurogenesis in human preterm newborns can lead to motor deficits, including cerebral palsy, and significant cognitive, behavioral or sensory deficits in childhood. Preterm infants also have a higher risk of developing neurodegenerative diseases later in life. In the last decade, great importance has been given to stem/progenitor cells and their possible role in the development and treatment of several neurological disorders. Several studies, mainly carried out on experimental models, evidenced that immunohistochemistry may allow the identification of different neural and glial precursors inside the developing cerebral cortex. However, only a few studies have been performed on markers of human stem cells in the embryonic period.This review aims at illustrating the importance of stem/progenitor cells in cerebral cortex during pre- and post-natal life. Defining the immunohistochemical markers of stem/progenitor cells in the human cerebral cortex during development may be important to develop an “endogenous” target therapy in the perinatal period. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  7. Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex

    Directory of Open Access Journals (Sweden)

    Ming-Kuei eLu

    2012-09-01

    Full Text Available The cerebellum is crucially important for motor control and motor adaptation. Recent non-invasive brain stimulation studies have indicated the possibility to alter the excitability of the cerebellum and its projections to the contralateral motor cortex, with behavioral consequences on motor control and motor adaptation. Here we sought to induce bidirectional spike-timing dependent plasticity (STDP-like modifications of motor cortex (M1 excitability by application of paired associative stimulation (PAS in healthy subjects. Conditioning stimulation over the right lateral cerebellum (CB preceded focal TMS of the left M1 hand area at an interstimulus interval of 2 ms (CB→M1 PAS2ms, 6 ms (CB→M1 PAS6ms or 10 ms (CB→M1 PAS10ms or randomly alternating intervals of 2 and 10 ms (CB→M1 PASControl. Effects of PAS on M1 excitability were assessed by the motor evoked potential (MEP amplitude, short-interval intracortical inhibition (SICI, intracortical facilitation (ICF and cerebellar-motor cortex inhibition (CBI in the first dorsal interosseous muscle of the right hand. CB→M1 PAS2ms resulted in MEP potentiation, CB→M1 PAS6ms and CB→M1 PAS10ms in MEP depression, and CB→M1 PASControl in no change. The MEP changes lasted for 30-60 min after PAS. SICI and CBI decreased non-specifically after all PAS protocols, while ICF remained unaltered. The physiological mechanisms underlying these MEP changes are carefully discussed. Findings support the notion of bidirectional STDP-like plasticity in M1 mediated by associative stimulation of the cerebello-dentato-thalamo-cortical pathway and M1. Future studies may investigate the behavioral significance of this plasticity.

  8. The lateralization of motor cortex activation to action words

    Directory of Open Access Journals (Sweden)

    Olaf eHauk

    2011-11-01

    Full Text Available What determines the laterality of activation in motor cortex for words whose meaning is related to bodily actions? It has been suggested that the neuronal representation of the meaning of action-words is shaped by individual experience. However, core language functions are left-lateralized in the majority of both right- and left-handers. It is still an open question to what degree connections between left-hemispheric core language areas and right-hemispheric motor areas can play a role in semantics. We investigated laterality of brain activation using fMRI in right- and left-handed participants in response to visually presented hand-related action-words, namely uni- and bi-manual actions (such as "throw" and "clap". These stimulus groups were matched with respect to general (hand-action-relatedness, but differed with respect to whether they are usually performed with the dominant hand or both hands. We may expect generally more left-hemispheric motor-cortex activation for hand-related words in both handedness groups, with possibly more bilateral activation for bimanual words as well as left-handers. In our study, both participant groups activated motor cortex bilaterally for bi-manual words. Interestingly, both groups also showed a left-lateralized activation pattern to uni-manual words. We argue that this reflects the effect of left-hemispheric language dominance on the formation of semantic brain circuits on the basis of Hebbian correlation learning.

  9. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Murzin, Vyacheslav [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Nguyen, Tanya T. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Dale, Anders M. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-04-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  10. Low-Frequency Repetitive Transcranial Magnetic Stimulation Targeted to Premotor Cortex Followed by Primary Motor Cortex Modulates Excitability Differently Than Premotor Cortex or Primary Motor Cortex Stimulation Alone.

    Science.gov (United States)

    Chen, Mo; Deng, Huiqiong; Schmidt, Rebekah L; Kimberley, Teresa J

    2015-12-01

    The excitability of primary motor cortex (M1) can be modulated by applying low-frequency repetitive transcranial magnetic stimulation (rTMS) over M1 or premotor cortex (PMC). A comparison of inhibitory effect between the two locations has been reported with inconsistent results. This study compared the response secondary to rTMS applied over M1, PMC, and a combined PMC + M1 stimulation approach which first targets stimulation over PMC then M1. Ten healthy participants were recruited for a randomized, cross-over design with a one-week washout between visits. Each visit consisted of a pretest, an rTMS intervention, and a post-test. Outcome measures included short interval intracortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP). Participants received one of the three interventions in random order at each visit including: 1-Hz rTMS at 90% of resting motor threshold to: M1 (1200 pulses), PMC (1200 pulses), and PMC + M1 (600 pulses each, 1200 total). PMC + M1 stimulation resulted in significantly greater inhibition than the other locations for ICF (P = 0.005) and CSP (P stimulation may modulate brain excitability differently from PMC or M1 alone. CSP was the assessment measure most sensitive to changes in inhibition and was able to distinguish between different inhibitory protocols. This work presents a novel procedure that may have positive implications for therapeutic interventions. © 2015 International Neuromodulation Society.

  11. Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals.

    Directory of Open Access Journals (Sweden)

    Akira Sagari

    Full Text Available Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed.We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman's rank correlations.Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC and supplementary motor area (SMA showed negative correlations.We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.

  12. Is one motor cortex enough for two hands?

    Science.gov (United States)

    Fiori, Simona; Staudt, Martin; Pannek, Kerstin; Borghetti, Davide; Biagi, Laura; Scelfo, Danilo; Rose, Stephen E; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea

    2015-10-01

    We report on a patient with mirror movements sustained by a mono-hemispheric fast control of bilateral hand muscles and normal hand function. Transcranial magnetic stimulation of the right motor cortex evoked contractions of muscles in both hands while no responses were observed from the left hemisphere. Somatosensory-evoked potentials, functional magnetic resonance, and diffusion tractography showed evidence of sensorimotor dissociation and asymmetry of corticospinal projections, suggestive of reorganization after early unilateral left brain lesion. This is the first evidence that, in certain rare conditions, good hand function is possible with ipsilateral corticospinal reorganization, supporting the role of unexplored mechanisms of motor recovery. © 2015 Mac Keith Press.

  13. Maturation of inhibitory and excitatory motor cortex pathways in children.

    Science.gov (United States)

    Walther, Michael; Berweck, Steffen; Schessl, Joachim; Linder-Lucht, Michaela; Fietzek, Urban M; Glocker, Franz X; Heinen, Florian; Mall, Volker

    2009-08-01

    To study intracortical inhibition and facilitation with paired-pulse transcranial magnetic stimulation in children, adolescents and adults. Paired-pulse transcranial magnetic stimulation (interstimulus intervals (ISI): 1, 3, 5, 10 and 20 ms) was applied over the primary motor cortex (M1) in 30 healthy subjects (range 6-30 years, median age 15 years and 8 months, SD 7,9) divided in three groups: adults (>or=18 years), adolescents (> 10 and childhood and adulthood. Reduced GABAergic inhibition may facilitate neuronal plasticity and motor learning in children.

  14. Comparison of Electrical and Ultrasound Neurostimulation in Rat Motor Cortex.

    Science.gov (United States)

    Gulick, Daniel W; Li, Tao; Kleim, Jeffrey A; Towe, Bruce C

    2017-12-01

    Ultrasound (US) is known to non-invasively stimulate and modulate brain function; however, the mechanism of action is poorly understood. This study tested US stimulation of rat motor cortex (100 W/cm2, 200 kHz) in combination with epidural cortical stimulation. US directly evoked hindlimb movement. This response occurred even with short US bursts (3 ms) and had short latency (10 ms) and long refractory (3 s) periods. Unexpectedly, the epidural cortical stimulation hindlimb response was not altered during the 3-s refractory period of the US hindlimb response. This finding suggests that the US refractory period is not a general suppression of motor cortex, but rather the recovery time of a US-specific mechanism. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  15. Neurofeedback-based functional near-infrared spectroscopy upregulates motor cortex activity in imagined motor tasks.

    Science.gov (United States)

    Lapborisuth, Pawan; Zhang, Xian; Noah, Adam; Hirsch, Joy

    2017-04-01

    Neurofeedback is a method for using neural activity displayed on a computer to regulate one's own brain function and has been shown to be a promising technique for training individuals to interact with brain-machine interface applications such as neuroprosthetic limbs. The goal of this study was to develop a user-friendly functional near-infrared spectroscopy (fNIRS)-based neurofeedback system to upregulate neural activity associated with motor imagery, which is frequently used in neuroprosthetic applications. We hypothesized that fNIRS neurofeedback would enhance activity in motor cortex during a motor imagery task. Twenty-two participants performed active and imaginary right-handed squeezing movements using an elastic ball while wearing a 98-channel fNIRS device. Neurofeedback traces representing localized cortical hemodynamic responses were graphically presented to participants in real time. Participants were instructed to observe this graphical representation and use the information to increase signal amplitude. Neural activity was compared during active and imaginary squeezing with and without neurofeedback. Active squeezing resulted in activity localized to the left premotor and supplementary motor cortex, and activity in the motor cortex was found to be modulated by neurofeedback. Activity in the motor cortex was also shown in the imaginary squeezing condition only in the presence of neurofeedback. These findings demonstrate that real-time fNIRS neurofeedback is a viable platform for brain-machine interface applications.

  16. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans

    NARCIS (Netherlands)

    Williams, D; Tijssen, M; van Bruggen, G; Bosch, A; Insola, A; Di Lazzaro, V; Mazzone, P; Oliviero, A; Quartarone, A; Speelman, H; Brown, P

    2002-01-01

    We test the hypothesis that interaction between the human basal ganglia and cerebral cortex involves activity in multiple functional circuits characterized by their frequency of oscillation, phase characteristics, dopamine dependency and topography. To this end we took recordings from

  17. Early developmental actions of endocrine disruptors on the hypothalamus, hippocampus, and cerebral cortex.

    OpenAIRE

    Parent, Anne-Simone; NAVEAU, Elise; Gerard, Arlette; Bourguignon, Jean-Pierre; Gary L Westbrook

    2011-01-01

    Sex steroids and thyroid hormones play a key role in the development of the central nervous system. The critical role of these hormonal systems may explain the sensitivity of the hypothalamus, the cerebral cortex, and the hippocampus to endocrine-disrupting chemicals (EDC). This review examines the evidence for endocrine disruption of glial-neuronal functions in the hypothalamus, hippocampus, and cerebral cortex. Focus was placed on two well-studied EDC, the insecticide dichlorodiphenyltrichl...

  18. Radial Structure Scaffolds Convolution Patterns of Developing Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Mir Jalil Razavi

    2017-08-01

    Full Text Available Commonly-preserved radial convolution is a prominent characteristic of the mammalian cerebral cortex. Endeavors from multiple disciplines have been devoted for decades to explore the causes for this enigmatic structure. However, the underlying mechanisms that lead to consistent cortical convolution patterns still remain poorly understood. In this work, inspired by prior studies, we propose and evaluate a plausible theory that radial convolution during the early development of the brain is sculptured by radial structures consisting of radial glial cells (RGCs and maturing axons. Specifically, the regionally heterogeneous development and distribution of RGCs controlled by Trnp1 regulate the convex and concave convolution patterns (gyri and sulci in the radial direction, while the interplay of RGCs' effects on convolution and axons regulates the convex (gyral convolution patterns. This theory is assessed by observations and measurements in literature from multiple disciplines such as neurobiology, genetics, biomechanics, etc., at multiple scales to date. Particularly, this theory is further validated by multimodal imaging data analysis and computational simulations in this study. We offer a versatile and descriptive study model that can provide reasonable explanations of observations, experiments, and simulations of the characteristic mammalian cortical folding.

  19. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    Science.gov (United States)

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  20. Cervical Spondylotic Myelopathy: Metabolite Changes in the Primary Motor Cortex after Surgery.

    Science.gov (United States)

    Aleksanderek, Izabela; McGregor, Stuart M K; Stevens, Todd K; Goncalves, Sandy; Bartha, Robert; Duggal, Neil

    2017-03-01

    Purpose To characterize longitudinal metabolite alterations in the motor cortex of patients with cervical spondylotic myelopathy (CSM) by using proton magnetic resonance (MR) spectroscopy and to evaluate white matter integrity with diffusion-tensor imaging in patients who are recovering neurologic function after decompression surgery. Materials and Methods Informed written consent was obtained for all procedures and the study was approved by Western University's Health Sciences Research Ethics Board. Twenty-eight patients with CSM and 10 healthy control subjects were prospectively recruited and underwent two separate 3-T MR imaging examinations 6 months apart. Patients with CSM underwent surgery after the first examination. N-acetylaspartate (NAA), an indicator of neuronal mitochondrial function, normalized to creatine (Cr) levels were measured from the motor cortex contralateral to the greater functional deficit side in the patient group and on both sides in the control group. Fractional anisotropy and mean diffusivity were measured by means of diffusion-tensor imaging in the white matter adjacent to the motor and sensory cortices of the hand and the entire cerebral white matter. Clinical data were analyzed by using Student t tests. Results In patients with CSM, NAA normalized to Cr (NAA/Cr) levels were significantly lower 6 months after surgery (1.48 ± 0.08; P .05) between the patient and control groups in all measured regions at all time points. Conclusion NAA/Cr levels decreased in the motor cortex in patients with CSM 6 months after successful surgery. Intact white matter integrity with decreased NAA/Cr levels suggests that mitochondrial metabolic dysfunction persists after surgery. (©) RSNA, 2016 Online supplemental material is available for this article.

  1. Skilled motor learning does not enhance long-term depression in the motor cortex in vivo.

    Science.gov (United States)

    Cohen, Jeremy D; Castro-Alamancos, Manuel A

    2005-03-01

    Learning of motor skills may occur as a consequence of changes in the efficacy of synaptic connections in the primary motor cortex. We investigated if learning in a reaching task affects the excitability, short-term plasticity, and long-term plasticity of horizontal connections in layers II-III of the motor cortex. Because training in this task requires animals to be food-deprived, we compared the trained animals with similarly food-deprived untrained animals and normal controls. The results show that the excitability, short-term plasticity, and long-term plasticity of the studied horizontal connections were unaffected by motor learning. However, stress-related effects produced by food deprivation and handling significantly enhanced the expression of long-term depression in these pathways. These results are compatible with the hypothesis that the acquisition of a complex motor skill produces bi-directional changes in synaptic strength that are distributed throughout the complex neural networks of motor cortex, which remains synaptically balanced during learning. The results are incompatible with the idea that learning causes large unidirectional changes in the population response of these neural networks, which may occur instead during certain behavioral states, such as stress.

  2. Transformation of Cortex-wide Emergent Properties during Motor Learning.

    Science.gov (United States)

    Makino, Hiroshi; Ren, Chi; Liu, Haixin; Kim, An Na; Kondapaneni, Neehar; Liu, Xin; Kuzum, Duygu; Komiyama, Takaki

    2017-05-17

    Learning involves a transformation of brain-wide operation dynamics. However, our understanding of learning-related changes in macroscopic dynamics is limited. Here, we monitored cortex-wide activity of the mouse brain using wide-field calcium imaging while the mouse learned a motor task over weeks. Over learning, the sequential activity across cortical modules became temporally more compressed, and its trial-by-trial variability decreased. Moreover, a new flow of activity emerged during learning, originating from premotor cortex (M2), and M2 became predictive of the activity of many other modules. Inactivation experiments showed that M2 is critical for the post-learning dynamics in the cortex-wide activity. Furthermore, two-photon calcium imaging revealed that M2 ensemble activity also showed earlier activity onset and reduced variability with learning, which was accompanied by changes in the activity-movement relationship. These results reveal newly emergent properties of macroscopic cortical dynamics during motor learning and highlight the importance of M2 in controlling learned movements. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism

    Directory of Open Access Journals (Sweden)

    Turner Katherine C

    2006-10-01

    Full Text Available Abstract Background Autism is a neurodevelopmental disorder affecting sociocommunicative behavior, but also sensorimotor skill learning, oculomotor control, and executive functioning. Some of these impairments may be related to abnormalities of the caudate nuclei, which have been reported for autism. Methods Our sample was comprised of 8 high-functioning males with autism and 8 handedness, sex, and age-matched controls. Subjects underwent functional MRI scanning during performance on simple visuomotor coordination tasks. Functional connectivity MRI (fcMRI effects were identified as interregional blood oxygenation level dependent (BOLD signal cross-correlation, using the caudate nuclei as seed volumes. Results In the control group, fcMRI effects were found in circuits with known participation of the caudate nuclei (associative, orbitofrontal, oculomotor, motor circuits. Although in the autism group fcMRI effects within these circuits were less pronounced or absent, autistic subjects showed diffusely increased connectivity mostly in pericentral regions, but also in brain areas outside expected anatomical circuits (such as visual cortex. Conclusion These atypical connectivity patterns may be linked to developmental brain growth disturbances recently reported in autism and suggest inefficiently organized functional connectivity between caudate nuclei and cerebral cortex, potentially accounting for stereotypic behaviors and executive impairments.

  4. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke.

    Science.gov (United States)

    Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L

    2018-01-01

    Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2  = 0.36-0.46) and gait speed (R 2  = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Longitudinal study of motor performance and its relation to motor capacity in children with cerebral palsy

    NARCIS (Netherlands)

    Eck, van M.; Dallmeijer, A.J.; Voorman, J.M.; Becher, J.G.

    2009-01-01

    AIM: The aim of this study was to describe the course of motor performance and analyse its relationship with motor capacity over a period of 3 years in 104 children (66 males, 38 females; 43% of those initially invited) with cerebral palsy (CP) aged 9, 11, and 13 years at the start of the study.

  6. Longitudinal Study of Motor Performance and Its Relation to Motor Capacity in Children with Cerebral Palsy

    Science.gov (United States)

    van Eck, Mirjam; Dallmeijer, Annet J.; Voorman, Jeanine M.; Becher, Jules G.

    2009-01-01

    Aim: The aim of this study was to describe the course of motor performance and analyse its relationship with motor capacity over a period of 3 years in 104 children (66 males, 38 females; 43% of those initially invited) with cerebral palsy (CP) aged 9, 11, and 13 years at the start of the study. Forty-one had hemiplegia, 42 diplegia, 21…

  7. From motor cortex to visual cortex: the application of noninvasive brain stimulation to amblyopia.

    Science.gov (United States)

    Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F

    2012-04-01

    Noninvasive brain stimulation is a technique for inducing changes in the excitability of discrete neural populations in the human brain. A current model of the underlying pathological processes contributing to the loss of motor function after stroke has motivated a number of research groups to investigate the potential therapeutic application of brain stimulation to stroke rehabilitation. The loss of motor function is modeled as resulting from a combination of reduced excitability in the lesioned motor cortex and an increased inhibitory drive from the nonlesioned hemisphere over the lesioned hemisphere. This combination of impaired neural function and pathological suppression resonates with current views on the cause of the visual impairment in amblyopia. Here, we discuss how the rationale for using noninvasive brain stimulation in stroke rehabilitation can be applied to amblyopia, review a proof-of-principle study demonstrating that brain stimulation can temporarily improve amblyopic eye function, and propose future research avenues. Copyright © 2010 Wiley Periodicals, Inc.

  8. Modulation of the motor cortex during singing-voice perception.

    Science.gov (United States)

    Lévêque, Yohana; Schön, Daniele

    2015-04-01

    Several studies on action observation have shown that the biological dimension of movement modulates sensorimotor interactions in perception. In the present fMRI study, we tested the hypothesis that the biological dimension of sound modulates the involvement of the motor system in human auditory perception, using musical tasks. We first localized the vocal motor cortex in each participant. Then we compared the BOLD response to vocal, semi-vocal and non-vocal melody perception, and found greater activity for voice perception in the right sensorimotor cortex. We additionally ran a psychophysiological interaction analysis with the right sensorimotor as a seed, showing that the vocal dimension of the stimuli enhanced the connectivity between the seed region and other important nodes of the auditory dorsal stream. Finally, the participants' vocal ability was negatively correlated to the voice effect in the Inferior Parietal Lobule. These results suggest that the biological dimension of singing-voice impacts the activity within the auditory dorsal stream, probably via a facilitated matching between the perceived sound and the participant motor representations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Directory of Open Access Journals (Sweden)

    Jason B Carmel

    2014-06-01

    Full Text Available The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST—is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that ten days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay.

  10. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Science.gov (United States)

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  11. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Rashedinia, Marzieh; Lari, Parisa [Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Abnous, Khalil, E-mail: Abnouskh@mums.ac.r [Pharmaceutical Research Center, Department of Medicinal Chemistry, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Hosseinzadeh, Hossein, E-mail: Hosseinzadehh@mums.ac.ir [Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2013-10-01

    Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased.

  12. Local anesthetics inhibit glutamate release from rat cerebral cortex synaptosomes.

    Science.gov (United States)

    Lin, Tzu-Yu; Chung, Chih-Yang; Lu, Cheng-Wei; Huang, Shu-Kuei; Shieh, Jiann-Sing; Wang, Su-Jane

    2013-09-01

    Local anesthetics have been widely used for regional anesthesia and the treatment of cardiac arrhythmias. Recent studies have also demonstrated that low-dose systemic local anesthetic infusion has neuroprotective properties. Considering the fact that excessive glutamate release can cause neuronal excitotoxicity, we investigated whether local anesthetics might influence glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Results showed that two commonly used local anesthetics, lidocaine and bupivacaine, exhibited a dose-dependent inhibition of 4-AP-evoked release of glutamate. The effects of lidocaine or bupivacaine on the evoked glutamate release were prevented by the chelation of extracellular Ca²⁺ ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyl-oxyaspartate did not have any effect on the action of lidocaine or bupivacaine. Both lidocaine and bupivacaine reduced the depolarization-induced increase in [Ca²⁺]C but did not alter 4-AP-mediated depolarization. Furthermore, the inhibitory effect of lidocaine or bupivacaine on evoked glutamate release was prevented by blocking the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channels, but it was not affected by blocking of the ryanodine receptors or the mitochondrial Na⁺/Ca²⁺ exchange. Inhibition of protein kinase C (PKC) and protein kinase A (PKA) also prevented the action of lidocaine or bupivacaine. These results show that local anesthetics inhibit glutamate release from rat cortical nerve terminals. This effect is linked to a decrease in [Ca²⁺]C caused by Ca²⁺ entry through presynaptic voltage-dependent Ca²⁺ channels and the suppression of the PKA and PKC signaling cascades. Copyright © 2013 Wiley Periodicals, Inc.

  13. Mapping phantom movement representations in the motor cortex of amputees.

    Science.gov (United States)

    Mercier, Catherine; Reilly, Karen T; Vargas, Claudia D; Aballea, Antoine; Sirigu, Angela

    2006-08-01

    Limb amputation results in plasticity of connections between the brain and muscles, with the cortical motor representation of the missing limb seemingly shrinking, to the presumed benefit of remaining body parts that have cortical representations adjacent to the now-missing limb. Surprisingly, the corresponding perceptual representation does not suffer a similar fate but instead persists as a phantom limb endowed with sensory and motor qualities. How can cortical reorganization after amputation be reconciled with the maintenance of a motor representation of the phantom limb in the brain? In an attempt to answer this question we explored the relationship between the cortical representation of the remaining arm muscles and that of phantom movements. Using transcranial magnetic stimulation (TMS) we systematically mapped phantom movement perceptions while simultaneously recording stump muscle activity in three above-elbow amputees. TMS elicited sensations of movement in the phantom hand when applied over the presumed hand area of the motor cortex. In one subject the amplitude of the perceived movement was positively correlated with the intensity of stimulation. Interestingly, phantom limb movements that the patient could not produce voluntarily were easily triggered by TMS, suggesting that the inability to voluntarily move the phantom is not equivalent to a loss of the corresponding movement representation. We suggest that hand movement representations survive in the reorganized motor area of amputees even when these cannot be directly accessed. The activation of these representations is probably necessary for the experience of phantom movement.

  14. Functional evaluation of cerebral cortex in dementia with Lewy bodies.

    Science.gov (United States)

    Di Lazzaro, Vincenzo; Pilato, Fabio; Dileone, Michele; Saturno, Eleonora; Profice, Paolo; Marra, Camillo; Daniele, Antonio; Ranieri, Federico; Quaranta, Davide; Gainotti, Guido; Tonali, Pietro A

    2007-08-15

    Neurochemical investigations have demonstrated central cholinergic dysfunction in patients with dementia with Lewy bodies (DLB). Central cholinergic circuits of the human brain can be tested non-invasively by coupling peripheral nerve stimulation with transcranial magnetic stimulation of the contralateral motor cortex. This test, named short latency afferent inhibition has been shown in healthy subjects to be sensitive to the blockage of muscarinic acetylcholine receptors and it is impaired in patients with Alzheimer disease (AD), a cholinergic form of dementia, while it is normal in non-cholinergic forms of dementia such as fronto-temporal dementia. We evaluated short latency afferent inhibition in a group of patients with DLB and compared the data with that from a group of AD patients and a control group of age-matched healthy individuals. Short latency afferent inhibition was significantly reduced in DLB and AD patients. The findings suggest that this method can be used as a non-invasive test for the assessment of cholinergic pathways in patients with dementia and may represent a useful additional tool for discriminating between cholinergic and non-cholinergic forms of dementia.

  15. Representation of individual forelimb muscles in primary motor cortex.

    Science.gov (United States)

    Hudson, Heather M; Park, Michael C; Belhaj-Saïf, Abderraouf; Cheney, Paul D

    2017-07-01

    Stimulus-triggered averaging (StTA) of forelimb muscle electromyographic (EMG) activity was used to investigate individual forelimb muscle representation within the primary motor cortex (M1) of rhesus macaques with the objective of determining the extent of intra-areal somatotopic organization. Two monkeys were trained to perform a reach-to-grasp task requiring multijoint coordination of the forelimb. EMG activity was simultaneously recorded from 24 forelimb muscles including 5 shoulder, 7 elbow, 5 wrist, 5 digit, and 2 intrinsic hand muscles. Microstimulation (15 µA at 15 Hz) was delivered throughout the movement task and individual stimuli were used as triggers for generating StTAs of EMG activity. StTAs were used to map the cortical representations of individual forelimb muscles. As reported previously (Park et al. 2001), cortical maps revealed a central core of distal muscle (wrist, digit, and intrinsic hand) representation surrounded by a horseshoe-shaped proximal (shoulder and elbow) muscle representation. In the present study, we found that shoulder and elbow flexor muscles were predominantly represented in the lateral branch of the horseshoe whereas extensors were predominantly represented in the medial branch. Distal muscles were represented within the core distal forelimb representation and showed extensive overlap. For the first time, we also show maps of inhibitory output from motor cortex, which follow many of the same organizational features as the maps of excitatory output. NEW & NOTEWORTHY While the orderly representation of major body parts along the precentral gyrus has been known for decades, questions have been raised about the possible existence of additional more detailed aspects of somatotopy. In this study, we have investigated this question with respect to muscles of the arm and show consistent features of within-arm (intra-areal) somatotopic organization. For the first time we also show maps of how inhibitory output from motor cortex is

  16. Peripheral nerve injury induces glial activation in primary motor cortex

    Directory of Open Access Journals (Sweden)

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  17. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    Science.gov (United States)

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  18. Motor cortex compensates for lack of sensory and motor experience during auditory speech perception.

    Science.gov (United States)

    Schmitz, Judith; Bartoli, Eleonora; Maffongelli, Laura; Fadiga, Luciano; Sebastian-Galles, Nuria; D'Ausilio, Alessandro

    2018-01-06

    Listening to speech has been shown to activate motor regions, as measured by corticobulbar excitability. In this experiment, we explored if motor regions are also recruited during listening to non-native speech, for which we lack both sensory and motor experience. By administering Transcranial Magnetic Stimulation (TMS) over the left motor cortex we recorded corticobulbar excitability of the lip muscles when Italian participants listened to native-like and non-native German vowels. Results showed that lip corticobulbar excitability increased for a combination of lip use during articulation and non-nativeness of the vowels. Lip corticobulbar excitability was further related to measures obtained in perception and production tasks showing a negative relationship with nativeness ratings and a positive relationship with the uncertainty of lip movement during production of the vowels. These results suggest an active and compensatory role of the motor system during listening to perceptually/articulatory unfamiliar phonemes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Are there excitability changes in the hand motor cortex during speech in left-handed subjects?

    Science.gov (United States)

    Tokimura, Hiroshi; Tokimura, Yoshika; Arita, Kazunori

    2012-01-01

    Hemispheric dominance was investigated in left-handed subjects using single transcranial magnetic stimulation to assess the possible effect of forced change in the dominant hand. Single transcranial magnetic stimuli were delivered randomly over the hand area of the left or right motor cortex of 8 Japanese self-declared left-handed adult volunteers. Electromyographic responses were recorded in the relaxed first dorsal interosseous muscle while the subjects read aloud. Laterality quotient calculated by the Edinburgh Inventory ranged from -100 to -5.26 and laterality index calculated from motor evoked potentials ranged from -86.2 to 38.8. There was no significant correlation between laterality quotient and laterality index. Mean data values across all 8 subjects indicated significant increases only in the left hand. Our ratio analysis of facilitation of the hand motor potentials showed that 2 each of the 8 self-declared left-handers were right- and left-hand dominant and the other 4 were bilateral-hand dominant. Speech dominancy was localized primarily in the right cerebral hemisphere in left-handed subjects, but some individuals exhibited bilateral or left dominance, possibly attributable to the forced change of hand preference for writing in childhood. Our findings suggest changes in the connections between the speech and hand motor areas.

  20. ASPECTS OF MOTOR DEVELOPMENT IN CHILDREN WITH CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    Erna Žgur

    2017-01-01

    Full Text Available Child’s motor development is not an isolated process but it rather involves numerous other developmental aspects, such as cognitive and conative. The research is focused on defining the developmental principles of motor abilities and skills in children with prominent motor deficits who were diagnosed with cerebral palsy (CP. The research compares the motor maturity between two groups of children with CP; the younger group (up to 10 years of age and the older group (10 – 16 years of age. The research included 78 primary school children with different forms of CP (diplegia, hemiplegia, mixed forms, aged between 6 and 16. The discriminant analysis used in the research showed that there is a statistically significant relationship between age and motor maturity in children with CP. The structural matrix confirmed the different hierarchical representation of the motor components (strength, coordination, precision and graphomotor skills for the selected motor model, in relation to children’s age. The function of explosive strength showed significant differences between younger and older children as regards their motor maturity. We can conclude that there is a significant developmental difference between the groups of younger and older children with CP, in relation to their motor maturity (different hierarchical representation, with the most obvious difference in motor ability of explosive strength.

  1. Effects of Theta Burst Stimulation on Suprahyoid Motor Cortex Excitability in Healthy Subjects.

    Science.gov (United States)

    Lin, Tuo; Jiang, Lisheng; Dou, Zulin; Wu, Cheng; Liu, Feng; Xu, Guangqing; Lan, Yue

    Continuous theta burst stimulation (cTBS) and intermittent TBS (iTBS) are powerful patterns of repetitive transcranial magnetic stimulation (rTMS), with substantial potential for motor function rehabilitation post-stroke. However, TBS of suprahyoid motor cortex excitability has not been investigated. This study investigated TBS effects on suprahyoid motor cortex excitability and its potential mechanisms in healthy subjects. Thirty-five healthy subjects (23 females; mean age = 21.66 ± 1.66 years) completed three TBS protocols on separate days, separated by at least one week. A stereotaxic neuronavigation system facilitated accurate TMS positioning. Left and right suprahyoid motor evoked potentials (SMEP) were recorded using single-pulse TMS from the contralateral suprahyoid motor cortex before stimulation (baseline) and 0, 15, and 30 min after stimulation. The SMEP latency and amplitude were analyzed via repeated measures analysis of variance. cTBS suppressed ipsilateral suprahyoid motor cortex excitability and activated the contralateral suprahyoid motor cortex. iTBS facilitated ipsilateral suprahyoid motor cortex excitability; however, it did not affect the contralateral excitability. iTBS eliminated the inhibitory effect caused by cTBS applied to the contralateral suprahyoid motor cortex. TBS had no significant effect on the latencies of bilateral SMEP. TBS effects on suprahyoid motor cortex excitability lasted a minimum of 30 min. TBS effectively regulates suprahyoid motor cortex excitability. Suppression of excitability in one hemisphere leads to further activation of the corresponding contralateral motor cortex. iTBS reverses the inhibitory effect induced by cTBS of the contralateral suprahyoid motor cortex. Copyright © 2016. Published by Elsevier Inc.

  2. Counterfactual thinking affects the excitability of the motor cortex.

    Science.gov (United States)

    Vicario, Carmelo M; Rafal, Robert D; Avenanti, Alessio

    2015-04-01

    Evidence suggests that monetary reward and affective experiences induce activity in the cortical motor system. Nevertheless, it is unclear whether counterfactual thinking related to wrong choices that lead to monetary loss and regret affects motor excitability. Using transcranial magnetic stimulation (TMS) of the motor cortex, we measured corticospinal excitability of 2 groups of healthy humans asked to actively guess the winning key among two possible alternatives (choice group); or passively assist to monetary outcomes randomly selected by the computer program (follow group). Results document a selective increment of the corticospinal excitability when a monetary loss outcome followed the key selection (i.e., in the choice group). On the other hand, no change in corticospinal excitability was found when participants passively assisted to a monetary loss randomly selected by the computer program (i.e., follow group). These findings suggest that counterfactual thinking and the negative emotional experiences arising from choices causing monetary loss--i.e., "I would have won instead of lost money if I'd made a different choice"--are mapped in the motor system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Where does TMS Stimulate the Motor Cortex? Combining Electrophysiological Measurements and Realistic Field Estimates to Reveal the Affected Cortex Position

    DEFF Research Database (Denmark)

    Bungert, Andreas; Antunes, André; Espenhahn, Svenja

    2016-01-01

    of functionally and histologically distinct subareas, this also renders the hypotheses on the physiological TMS effects uncertain. We use the finite element method (FEM) and magnetic resonance image-based individual head models to get realistic estimates of the electric field induced by TMS. The field changes...... in different subparts of the motor cortex are compared with electrophysiological threshold changes of 2 hand muscles when systematically varying the coil orientation in measurements. We demonstrate that TMS stimulates the region around the gyral crown and that the maximal electric field strength in this region......Much of our knowledge on the physiological mechanisms of transcranial magnetic stimulation (TMS) stems from studies which targeted the human motor cortex. However, it is still unclear which part of the motor cortex is predominantly affected by TMS. Considering that the motor cortex consists...

  4. Specialization in pyramidal cell structure in the sensory-motor cortex of the Chacma baboon (Papio ursinus) with comparative notes on macaque and vervet monkeys.

    Science.gov (United States)

    Elston, Guy N; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul R; Defelipe, Javier

    2005-09-01

    The systematic study of pyramidal cell structure has revealed new insights into specialization of the phenotype in the primate cerebral cortex. Regional specialization in the neuronal phenotype may influence patterns of connectivity and the computational abilities of the circuits they compose. The comparative study of pyramidal cells in homologous cortical areas is beginning to yield data on the evolution and development of such specialized circuitry in the primate cerebral cortex. Recently, we have focused our efforts on sensory-motor cortex. Based on our intracellular injection methodology, we have demonstrated a progressive increase in the size of, the branching structure in, and the spine density of the basal dendritic trees of pyramidal cells through somatosensory areas 3b, 1, 2, 5, and 7 in the macaque and vervet monkeys. In addition, we have shown that pyramidal cells in premotor area 6 are larger, more branched, and more spinous than those in the primary motor cortex (MI or area 4) in the macaque monkey, vervet monkey, and baboon. Here we expand the basis for comparison by studying the basal dendritic trees of layer III pyramidal cells in these same sensory-motor areas in the chacma baboon. The baboon was selected because it has a larger cerebral cortex than either the macaque or vervet monkeys; motor cortex has expanded disproportionately in these three species; and motor cortex in the baboon reportedly has differentiated to include a new cortical area not present in either the macaque or vervet monkeys. We found, as in monkeys, a progressive increase in the morphological complexity of pyramidal cells through areas 3b, 5, and 7, as well as from area 4 to area 6, suggesting that areal specialization in microcircuitry was likely to be present in a common ancestor of primates. In addition, we found subtle differences in the extent of the interareal differences in pyramidal cell structure between homologous cortical areas in the three species. Copyright 2005

  5. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study

    National Research Council Canada - National Science Library

    Stern, William M; Desikan, Mahalekshmi; Hoad, Damon; Jaffer, Fatima; Strigaro, Gionata; Sander, Josemir W; Rothwell, John C; Sisodiya, Sanjay M

    2016-01-01

    .... Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms...

  6. Primary Auditory Cortex is Required for Anticipatory Motor Response.

    Science.gov (United States)

    Li, Jingcheng; Liao, Xiang; Zhang, Jianxiong; Wang, Meng; Yang, Nian; Zhang, Jun; Lv, Guanghui; Li, Haohong; Lu, Jian; Ding, Ran; Li, Xingyi; Guang, Yu; Yang, Zhiqi; Qin, Han; Jin, Wenjun; Zhang, Kuan; He, Chao; Jia, Hongbo; Zeng, Shaoqun; Hu, Zhian; Nelken, Israel; Chen, Xiaowei

    2017-06-01

    The ability of the brain to predict future events based on the pattern of recent sensory experience is critical for guiding animal's behavior. Neocortical circuits for ongoing processing of sensory stimuli are extensively studied, but their contributions to the anticipation of upcoming sensory stimuli remain less understood. We, therefore, used in vivo cellular imaging and fiber photometry to record mouse primary auditory cortex to elucidate its role in processing anticipated stimulation. We found neuronal ensembles in layers 2/3, 4, and 5 which were activated in relationship to anticipated sound events following rhythmic stimulation. These neuronal activities correlated with the occurrence of anticipatory motor responses in an auditory learning task. Optogenetic manipulation experiments revealed an essential role of such neuronal activities in producing the anticipatory behavior. These results strongly suggest that the neural circuits of primary sensory cortex are critical for coding predictive information and transforming it into anticipatory motor behavior. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. The role of plastic changes in the motor cortex and spinal cord for motor learning

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Lundbye-Jensen, Jesper

    2010-01-01

    Adaptive changes of the efficacy of neural circuitries at different sites of the central nervous system is the basis of acquisition of new motor skills. Non-invasive human imaging and electrophysiological experiments have demonstrated that the primary motor cortex and spinal cord circuitries...... are key players in the early stages of skill acquisition and consolidation of motor learning. Expansion of the cortical representation of the trained muscles, changes in corticomuscular coupling and changes in stretch reflex activity are thus all markers of neuroplastic changes accompanying early skill...... acquisition. We have shown in recent experiments that sensory feedback from the active muscles play a surprisingly specific role at this stage of learning. Following motor skill training, repeated activation of sensory afferents from the muscle that has been involved in a previous training session, interfered...

  8. Genomic divergence and brain evolution: How regulatory DNA influences development of the cerebral cortex.

    Science.gov (United States)

    Silver, Debra L

    2016-02-01

    The cerebral cortex controls our most distinguishing higher cognitive functions. Human-specific gene expression differences are abundant in the cerebral cortex, yet we have only begun to understand how these variations impact brain function. This review discusses the current evidence linking non-coding regulatory DNA changes, including enhancers, with neocortical evolution. Functional interrogation using animal models reveals converging roles for our genome in key aspects of cortical development including progenitor cell cycle and neuronal signaling. New technologies, including iPS cells and organoids, offer potential alternatives to modeling evolutionary modifications in a relevant species context. Several diseases rooted in the cerebral cortex uniquely manifest in humans compared to other primates, thus highlighting the importance of understanding human brain differences. Future studies of regulatory loci, including those implicated in disease, will collectively help elucidate key cellular and genetic mechanisms underlying our distinguishing cognitive traits. © 2015 WILEY Periodicals, Inc.

  9. Motor cortex electric stimulation for the treatment of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Walter J. Fagundes-Pereyra

    2010-12-01

    Full Text Available OBJECTIVE: Motor cortex stimulation (MCS is considered to be an effective treatment for chronic neuropathic pain. The aim of the present study was to assess the efficacy of MCS for treating neuropathic pain. METHOD: 27 patients with chronic neuropathic pain were operated. Electrodes were implanted with the use of an stereotactic frame. Electrophysiological evaluations (motor stimulation and somatosensory evoked potentials were performed, with guidance by means of three-dimensional reconstruction of magnetic resonance images of the brain. 10 patients (37% presented central neuropathic pain (post-stroke pain and 17 others (63% presented peripheral neuropathic pain (brachial plexus avulsion, phantom limb pain or trigeminal pain. RESULTS: In 15 patients (57.7% the pain relief was 50% or more; while in ten patients (38.5%, more than 60% of the original pain was relieved. No differences were found in relation to central and peripheral neuropathic pain (p=0.90, pain location (p=0.81, presence of motor deficit (p=0.28 and pain duration (p=0.72. No major complications were observed. CONCLUSION: MCS was efficient for treating patients presenting chronic central or peripheral neuropathic pain.

  10. Genetic and Molecular Approaches to Study Neuronal Migration in the Developing Cerebral Cortex.

    Science.gov (United States)

    Dudok, Jacobus J; Leonards, Pim E G; Wijnholds, Jan

    2017-05-05

    The migration of neuronal cells in the developing cerebral cortex is essential for proper development of the brain and brain networks. Disturbances in this process, due to genetic abnormalities or exogenous factors, leads to aberrant brain formation, brain network formation, and brain function. In the last decade, there has been extensive research in the field of neuronal migration. In this review, we describe different methods and approaches to assess and study neuronal migration in the developing cerebral cortex. First, we discuss several genetic methods, techniques and genetic models that have been used to study neuronal migration in the developing cortex. Second, we describe several molecular approaches to study aberrant neuronal migration in the cortex which can be used to elucidate the underlying mechanisms of neuronal migration. Finally, we describe model systems to investigate and assess the potential toxicity effect of prenatal exposure to environmental chemicals on proper brain formation and neuronal migration.

  11. Preliminary study on sarcoglycan sub-complex in rat cerebral and cerebellar cortex.

    Science.gov (United States)

    Vermiglio, Giovanna; Runci, Michele; Scibilia, Antonino; Biasini, Fiammetta; Cutroneo, Giuseppina

    2012-01-01

    The sarcoglycan sub-complex is a protein system which plays a key role in sarcolemma stabilization during muscle activity. Although numerous studies have been conducted on this system, there are few data about its localization in non-muscular tissues. On this basis we carried out an indirect immunofluorescence study on normal rat cerebral and cerebellar cortex. In particular, we carried out single localization reactions to analyze if these proteins are present in brain and double localization reactions between sarcoglycans and either SMI-32 or GFAP to verify if they are expressed both in neurons and glial cells. We found that all tested sarcoglycans are present both in cerebral and cerebellar cortex and that they are expressed both in neurons and glial cells. The typical staining pattern of all sarcoglycans is represented by "spot-like" fluorescence, with spots of 0.5-2 microm average diameter laid out mainly around the soma of the cells. The main difference about sarcoglycans expression between cerebral and cerebellar cortex is that in the cerebellar cortex the sarcoglycans positivity is detectable only in an area which is likely to correspond to Purkinje cells layer. The presence of sarcoglycans in cerebral and cerebellar cortex and their disposition mainly around the soma of the cells suggest a role of these proteins in cellular signalling and in regulating postsynaptic receptor assembly mainly in axo-somatic synapses.

  12. Supplementary motor area-primary motor cortex facilitation in younger but not older adults.

    Science.gov (United States)

    Green, Peta E; Ridding, Michael C; Hill, Keith D; Semmler, John G; Drummond, Peter D; Vallence, Ann-Maree

    2017-12-29

    Growing evidence implicates a decline in white matter integrity in the age-related decline in motor control. Functional neuroimaging studies show significant associations between functional connectivity in the cortical motor network, including the supplementary motor area (SMA), and motor performance. Dual-coil transcranial magnetic stimulation studies show facilitatory connections between SMA and the primary motor cortex (M1) in younger adults. Here, we investigated whether SMA-M1 facilitation is affected by age and whether the strength of SMA-M1 facilitation is associated with bilateral motor control. Dual-coil transcranial magnetic stimulation was used to measure SMA-M1 connectivity in younger (N = 20) and older adults (N = 18), and bilateral motor control was measured with the assembly subtest of the Purdue Pegboard and clinical measures of dynamic balance. SMA-M1 facilitation was seen in younger but not older adults, and a significant positive association was found between SMA-M1 facilitation and bimanual performance. These results show that SMA-M1 facilitation is reduced in older adults compared to younger adults and provide evidence of the functional importance of SMA-M1 facilitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Location of the primary motor cortex in schizencephaly.

    Science.gov (United States)

    Lee, H K; Kim, J S; Hwang, Y M; Lee, M J; Choi, C G; Suh, D C; Lim, T H

    1999-01-01

    Functional reorganization of the brain can result from congenital brain disorders as well as from brain infarction. The purpose of our study was to use functional MR imaging to determine whether reorganization of brain function occurs in patients with schizencephaly. Four patients with schizencephaly (three right-handed, one ambidextrous) presented with seizures. Associated lesions included agenesis of the corpus callosum (n = 1) and absence of the septum pellucidum (n = 1). Functional MR imaging was performed in each patient using a single-section fast low-angle shot (FLASH) blood oxygen level-dependent (BOLD) technique at 1.5 T in a standard head coil. The motor cortex was initially identified on an axial T1-weighted anatomic image. Thirty consecutive images were obtained during a motor task consisting of repetitive finger-to-thumb opposition. The percentage of change in increased signal intensity was calculated for the primary motor area. An ipsilateral activation index was used to compare the affected with the unaffected hemisphere. The percentage of change in increased signal intensity in the area of activation ranged from 4.8% +/- 0.9 to 9.2% +/- 1.2 (mean, 5.6% +/- 1.5). The ipsilateral activation index in the affected hemisphere was 0.00 to 0.38, whereas that in the unaffected hemisphere was 15.4 to infinity. The difference in the ipsilateral activation index between each hemisphere was considered significant. Our results showed increased activation in the unaffected hemisphere in patients with schizencephaly, which may reflect functional reorganization of the motor area in patients with this congenital disorder.

  14. Computer modeling of Motor Cortex Stimulation: Effects of Anodal, Cathodal and Bipolar Stimulation

    NARCIS (Netherlands)

    Manola, L.; Holsheimer, J.; Buitenweg, Jan R.; Veltink, Petrus H.

    2007-01-01

    Motor cortex stimulation (MCS) is a promising clinical technique for treatment of chronic pain. However, optimization of the therapeutic efficacy is hampered since it is not known how electrically activated neural structures in the motor cortex can induce pain relief. Furthermore, multiple neural

  15. Continuous theta-burst stimulation of the primary motor cortex in essential tremor

    DEFF Research Database (Denmark)

    Hellriegel, Helge; Schulz, Eva M; Siebner, Hartwig R

    2012-01-01

    We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation.......We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation....

  16. Close Interrelation of Motor Development and Cognitive Development and of the Cerebellum and Prefrontal Cortex.

    Science.gov (United States)

    Diamond, Adele

    2000-01-01

    Argues that motor and cognitive development may be fundamentally interrelated. Summarizes evidence of close co-activation of the neocerebellum and dorsolateral prefrontal cortex in functional neuroimaging, similarities in the cognitive sequelae of damage to dorsolateral prefrontal cortex and the neocerebellum, motor deficits in…

  17. The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs.

    Science.gov (United States)

    Falk, Dean; Lepore, Frederick E; Noe, Adrianne

    2013-04-01

    Upon his death in 1955, Albert Einstein's brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein's entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein's sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein's brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein's brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein's parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein's brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein's brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci.

  18. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China); Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Qiu, Mingguo; Zhang, Jingna; Zhang, Ye; Sang, Linqiong [Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Liu, Chen; Yang, Jun [Third Military Medical University, Department of Radiology, Southwest Hospital, Chongqing (China); Yan, Rubing [Third Military Medical University, Department of Rehabilitation, Southwest Hospital, Chongqing (China); Zheng, Xiaolin [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China)

    2014-04-15

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  19. High membrane protein oxidation in the human cerebral cortex

    OpenAIRE

    Granold, Matthias; Moosmann, Bernd; Staib-Lasarzik, Irina; Arendt, Thomas; del Rey, Adriana; Engelhard, Kristin; Behl, Christian; Hajieva, Parvana

    2014-01-01

    Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old anim...

  20. Possible involvements of glutamate and adrenergic receptors on acute toxicity of methylphenidate in isolated hippocampus and cerebral cortex of adult rats.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2017-04-01

    Neurodegeneration induced by methylphenidate (MPH), as a central stimulant with unknown long-term consequences, in adult rats' brain and the possible mechanisms involved were studied. Rats were acutely treated with MPH in the presence and absence of some receptor antagonists such as ketamine, topiramate, yohimbine, and haloperidol. Motor activity and anxiety level in rats were monitored. Antioxidant and inflammatory parameters were also measured in isolated hippocampus and cerebral cortex. MPH-treated groups (10 and 20 mg/kg) demonstrated anxiety-like behavior and increased motor activity. MPH significantly increased lipid peroxidation, GSSG content, IL-1β and TNF-α levels in isolated tissues, and also significantly reduced GSH content, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in hippocampus and cerebral cortex. Pretreatment of animals by receptor antagonists caused inhibition of MPH-induced motor activity disturbances and anxiety-like behavior. Pretreatment of animals by ketamine, topiramate, and yohimbine inhibited the MPH-induced oxidative stress and inflammation; it significantly decreased lipid peroxidation, GSSG level, IL-1β and TNF-α levels and increased GSH content, SOD, GPx, and GR activities in hippocampus and cerebral cortex of acutely MPH-treated rats. Pretreatment with haloperidol did not cause any change in MPH-induced oxidative stress and inflammation. In conclusion, acute administration of high doses of MPH can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in hippocampus and cerebral cortex of adult rats and these changes might probably be mediated by glutamate (NMDA or AMPA) and/or α2 -adrenergic receptors. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  1. Reward anticipation modulates primary motor cortex excitability during task preparation.

    Science.gov (United States)

    Bundt, Carsten; Abrahamse, Elger L; Braem, Senne; Brass, Marcel; Notebaert, Wim

    2016-11-15

    Task preparation has been associated with a transient suppression of corticospinal excitability (CSE) before target onset, but it is an open question to what extent CSE suppression during task preparation is susceptible to motivational factors. Here, we examined whether CSE suppression is modulated by reward anticipation, and, if so, how this modulation develops over time. We administered a cue-target delay paradigm in which 1000ms before target onset a cue was presented indicating whether or not reward could be obtained for fast and accurate responses in a Simon task. Single-pulse transcranial magnetic stimulation was applied over left primary motor cortex (M1) during the delay period (400, 600, or 800ms after cue onset) or 200ms after target onset, and electromyography was obtained from the right first dorsal interosseous muscle. Behaviorally, the anticipation of reward improved performance (i.e. faster reaction times). Most importantly, during reward anticipation we observed a linear decrease of motor evoked potential amplitudes that was absent when no reward was anticipated. This suggests that reward anticipation modulates CSE during task preparation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. CRYOPRESERVATION OF FRESHLY ISOLATED SYNAPTOSOMES PREPARED FROM THE CEREBRAL-CORTEX OF RATS

    NARCIS (Netherlands)

    GLEITZ, J; BEILE, A; WILFFERT, B; TEGTMEIER, F

    In the present study, we established a cryopreservation method for freshly isolated synaptosomes prepared from the cerebral cortex of rats. Freshly prepared synaptosomes were either shock-frozen or frozen under temperature-controlled conditions using a programmable temperature controller. Each group

  3. Effects of Mercury Chloride on the Cerebral Cortex of Adult Wistar Rats

    African Journals Online (AJOL)

    Mercury is among the heavy metals that have been reported to cause devastating health problem worldwide. The primary site of action of mercury chloride is the central nervous system. This study investigated the effect of mercury chloride on the cerebral cortex of adult wistar rats. Twenty-four (24) adult wistar rats were used ...

  4. Motor Cortex Stimulation for Pain Relief: Do Corollary Discharges Play a Role?

    Science.gov (United States)

    Brasil-Neto, Joaquim P

    2016-01-01

    Both invasive and non-invasive motor cortex stimulation techniques have been successfully employed in the treatment of chronic pain, but the precise mechanism of action of such treatments is not fully understood. It has been hypothesized that a mismatch of normal interaction between motor intention and sensory feedback may result in central pain. Sensory feedback may come from peripheral nerves, vision and also from corollary discharges originating from the motor cortex itself. Therefore, a possible mechanism of action of motor cortex stimulation might be corollary discharge reinforcement, which could counterbalance sensory feedback deficiency. In other instances, primary deficiency in the production of corollary discharges by the motor cortex might be the culprit and stimulation of cortical motor areas might then be beneficial by enhancing production of such discharges. Here we review evidence for a possible role of motor cortex corollary discharges upon both the pathophysiology and the response to motor cortex stimulation of different types of chronic pain. We further suggest that the right dorsolateral prefrontal cortex (DLPC), thought to constantly monitor incongruity between corollary discharges, vision and proprioception, might be an interesting target for non-invasive neuromodulation in cases of chronic neuropathic pain.

  5. Interactions between Pain and the Motor Cortex: Insights from Research on Phantom Limb Pain and Complex Regional Pain Syndrome

    OpenAIRE

    Mercier, Catherine; Léonard, Guillaume

    2011-01-01

    Purpose: Pain is a significantly disabling problem that often interacts with other deficits during the rehabilitation process. The aim of this paper is to review evidence of interactions between pain and the motor cortex in order to attempt to answer the following questions: (1) Does acute pain interfere with motor-cortex activity? (2) Does chronic pain interfere with motor-cortex activity, and, conversely, does motor-cortex plasticity contribute to chronic pain? (3) Can the induction of moto...

  6. An automated pipeline for cortical surface generation and registration of the cerebral cortex

    Science.gov (United States)

    Li, Wen; Ibanez, Luis; Gelas, Arnaud; Yeo, B. T. Thomas; Niethammer, Marc; Andreasen, Nancy C.; Magnotta, Vincent A.

    2011-03-01

    The human cerebral cortex is one of the most complicated structures in the body. It has a highly convoluted structure with much of the cortical sheet buried in sulci. Based on cytoarchitectural and functional imaging studies, it is possible to segment the cerebral cortex into several subregions. While it is only possible to differentiate the true anatomical subregions based on cytoarchitecture, the surface morphometry aligns closely with the underlying cytoarchitecture and provides features that allow the surface of the cortex to be parcellated based on the sulcal and gyral patterns that are readily visible on the MR images. We have developed a fully automated pipeline for the generation and registration of cortical surfaces in the spherical domain. The pipeline initiates with the BRAINS AutoWorkup pipeline. Subsequently, topology correction and surface generation is performed to generate a genus zero surface and mapped to a sphere. Several surface features are then calculated to drive the registration between the atlas surface and other datasets. A spherical diffeomorphic demons algorithm is used to co-register an atlas surface onto a subject surface. A lobar based atlas of the cerebral cortex was created from a manual parcellation of the cortex. The atlas surface was then co-registered to five additional subjects using a spherical diffeomorphic demons algorithm. The labels from the atlas surface were warped on the subject surface and compared to the manual raters. The average Dice overlap index was 0.89 across all regions.

  7. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    Science.gov (United States)

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  8. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories.

    Science.gov (United States)

    Herzfeld, David J; Pastor, Damien; Haith, Adrian M; Rossetti, Yves; Shadmehr, Reza; O'Shea, Jacinta

    2014-09-01

    We investigated the contributions of the cerebellum and the motor cortex (M1) to acquisition and retention of human motor memories in a force field reaching task. We found that anodal transcranial direct current stimulation (tDCS) of the cerebellum, a technique that is thought to increase neuronal excitability, increased the ability to learn from error and form an internal model of the field, while cathodal cerebellar stimulation reduced this error-dependent learning. In addition, cathodal cerebellar stimulation disrupted the ability to respond to error within a reaching movement, reducing the gain of the sensory-motor feedback loop. By contrast, anodal M1 stimulation had no significant effects on these variables. During sham stimulation, early in training the acquired motor memory exhibited rapid decay in error-clamp trials. With further training the rate of decay decreased, suggesting that with training the motor memory was transformed from a labile to a more stable state. Surprisingly, neither cerebellar nor M1 stimulation altered these decay patterns. Participants returned 24hours later and were re-tested in error-clamp trials without stimulation. The cerebellar group that had learned the task with cathodal stimulation exhibited significantly impaired retention, and retention was not improved by M1 anodal stimulation. In summary, non-invasive cerebellar stimulation resulted in polarity-dependent up- or down-regulation of error-dependent motor learning. In addition, cathodal cerebellar stimulation during acquisition impaired the ability to retain the motor memory overnight. Thus, in the force field task we found a critical role for the cerebellum in both formation of motor memory and its retention. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. [Expression of CaMK II delta in cerebral cortex following traumatic brain injury].

    Science.gov (United States)

    Pan, Hong; Zhang, Jing-Jing; Xu, Dong-Dong; Gu, Zhen-Yong; Tao, Lu-Yang; Zhang, Ming-Yang

    2014-06-01

    To observe the time-course expression of calcium-calmodulin dependent protein kinase II delta (CaMK II delta) in cerebral cortex after traumatic brain injury (TBI). The TBI rat model was established. The expression of CaMK II delta in cerebral cortex around injured area was tested by Western blotting and immunohistochemical staining. Western blotting revealed expression of CaMK II delta in normal rat brain cortex. It gradually increased after TBI, peaked after 3 days, and then returned to normal level. The result of immunohistochemical staining was consistent with that of Western blotting. The expression of CaMK II delta around injured area after TBI increased initially and then decreased. It could be used as a new indicator for wound age determination following TBI.

  10. Early developmental actions of endocrine disruptors on the hypothalamus, hippocampus, and cerebral cortex.

    Science.gov (United States)

    Parent, Anne-Simone; Naveau, Elise; Gerard, Arlette; Bourguignon, Jean-Pierre; Westbrook, Gary L

    2011-01-01

    Sex steroids and thyroid hormones play a key role in the development of the central nervous system. The critical role of these hormonal systems may explain the sensitivity of the hypothalamus, the cerebral cortex, and the hippocampus to endocrine-disrupting chemicals (EDC). This review examines the evidence for endocrine disruption of glial-neuronal functions in the hypothalamus, hippocampus, and cerebral cortex. Focus was placed on two well-studied EDC, the insecticide dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCB). DDT is involved in neuroendocrine disruption of the reproductive axis, whereas polychlorinated biphenyls (PCB) interact with both the thyroid hormone- and sex steroid-dependent systems and disturb the neuroendocrine control of reproduction and development of hippocampus and cortex. These results highlight the impact of EDC on the developing nervous system and the need for more research in this area.

  11. Sox11 Balances Dendritic Morphogenesis with Neuronal Migration in the Developing Cerebral Cortex.

    Science.gov (United States)

    Hoshiba, Yoshio; Toda, Tomohisa; Ebisu, Haruka; Wakimoto, Mayu; Yanagi, Shigeru; Kawasaki, Hiroshi

    2016-05-25

    The coordinated mechanisms balancing promotion and suppression of dendritic morphogenesis are crucial for the development of the cerebral cortex. Although previous studies have revealed important transcription factors that promote dendritic morphogenesis during development, those that suppress dendritic morphogenesis are still largely unknown. Here we found that the expression levels of the transcription factor Sox11 decreased dramatically during dendritic morphogenesis. Our loss- and gain-of-function studies using postnatal electroporation and in utero electroporation indicate that Sox11 is necessary and sufficient for inhibiting dendritic morphogenesis of excitatory neurons in the mouse cerebral cortex during development. Interestingly, we found that precocious suppression of Sox11 expression caused precocious branching of neurites and a neuronal migration defect. We also found that the end of radial migration induced the reduction of Sox11 expression. These findings indicate that suppression of dendritic morphogenesis by Sox11 during radial migration is crucial for the formation of the cerebral cortex. Because dendritic morphology has profound impacts on neuronal information processing, the mechanisms underlying dendritic morphogenesis during development are of great interest. Our loss- and gain-of-function studies indicate that Sox11 is necessary and sufficient for inhibiting dendritic morphogenesis of excitatory neurons in the mouse cerebral cortex during development. Interestingly, we found that precocious suppression of Sox11 expression caused a neuronal migration defect. These findings indicate that suppression of dendritic morphogenesis by Sox11 during radial migration is crucial for the formation of the cerebral cortex. Copyright © 2016 the authors 0270-6474/16/365775-10$15.00/0.

  12. Effect of tactile stimulation on primary motor cortex excitability during action observation combined with motor imagery.

    Science.gov (United States)

    Tanaka, Megumi; Kubota, Shinji; Onmyoji, Yusuke; Hirano, Masato; Uehara, Kazumasa; Morishita, Takuya; Funase, Kozo

    2015-07-23

    We aimed to investigate the effects of the tactile stimulation to an observer's fingertips at the moment that they saw an object being pinched by another person on the excitability of observer's primary motor cortex (M1) using transcranial magnetic stimulation (TMS). In addition, the above effects were also examined during action observation combined with the motor imagery. Motor evoked potentials (MEP) were evoked from the subjects' right first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles. Electrical stimulation (ES) inducing tactile sensation was delivered to the subjects' first and second fingertips at the moment of pinching action performed by another person. Although neither the ES nor action observation alone had significant effects on the MEP amplitude of the FDI or ADM, the FDI MEP amplitude which acts as the prime mover during pinching was reduced when ES and action observation were combined; however, no such changes were seen in the ADM. Conversely, that reduced FDI MEP amplitude was increased during the motor imagery. These results indicated that the M1 excitability during the action observation of pinching action combined with motor imagery could be enhanced by the tactile stimulation delivered to the observer's fingertips at the moment corresponding to the pinching being observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Motor association cortex activity in Parkinson`s disease. A functional MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Yukiko [Yamaguchi Univ., Ube (Japan). School of Medicine

    1998-08-01

    The purpose of this study was to examine the activation of motor association cortex using functional magnetic resonance imaging (fMRI) in patients with Parkinson`s disease (PD) and control subjects during performed hand movements. There were 26 patients with PD (12 patients with Hoehn and Yahr stage I-II, 14 patients with stage III) and 8 control subjects. Functional imaging was performed using a 1.5 tesla MRI system equipped with a single-shot, echo-planar pulse sequence. The significant signal changes were observed within the primary sensorimotor area, the supplementary motor area (SMA), and the parietal association area in both PD and control subjects. In PD subjects, the SMA was less activated than in control subjects; there were significant differences in the number of pixels activated in SMA between control and Yahr III group (p<0.01), and between Yahr I-II and Yahr III group (p<0.01). Our results demonstrated that movement related cerebral activity in the SMA is reduced in PD subjects, consistent with previously published data using other methods. It is well known from anatomical studies that one of the major cortical outputs of the basal ganglia is the SMA. This may explain the hypoactivation of the SMA in PD. Studies using fMRI provide a promising method not only for localizing cortical activation related to voluntary movements but also for investigating pathophysiology of movement disorders. (author)

  14. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    Directory of Open Access Journals (Sweden)

    Jared B Smith

    2013-01-01

    Full Text Available Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor (MI cortex, but the relative topography of these afferent projections has not been established. Intracranial microstimulation (ICMS evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC and in the primary (SI and secondary (SII somatosensory cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial (AGm and lateral agranular (AGl cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker motor cortex is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor output region located more medially in AGm proper.

  15. Haptic fMRI: accurately estimating neural responses in motor, pre-motor, and somatosensory cortex during complex motor tasks.

    Science.gov (United States)

    Menon, Samir; Yu, Michelle; Kay, Kendrick; Khatib, Oussama

    2014-01-01

    Haptics combined with functional magnetic resonance imaging (Haptic fMRI) can non-invasively study how the human brain coordinates movement during complex manipulation tasks, yet avoiding associated fMRI artifacts remains a challenge. Here, we demonstrate confound-free neural activation measurements using Haptic fMRI for an unconstrained three degree-of-freedom motor task that involves planning, reaching, and visually guided trajectory tracking. Our haptic interface tracked subjects' hand motions, velocities, and accelerations (sample-rate, 350Hz), and provided continuous realtime visual feedback. During fMRI acquisition, we achieved uniform response latencies (reaching, 0.7-1.1s; tracking, 0.4-0.65s); minimized hand jitter (neural activation across cortex; unreliable motions and response latencies, which reduce statistical power; and task-correlated head motion, which causes spurious fMRI activation. Haptic fMRI can thus reliably elicit and localize heterogeneous neural activation for different tasks in motor (movement), pre-motor (planning), and somatosensory (limb displacement) cortex, demonstrating that it is feasible to use the technique to study how the brain achieves three dimensional motor control.

  16. Induction of plasticity in the human motor cortex by pairing an auditory stimulus with TMS

    Directory of Open Access Journals (Sweden)

    Paul Fredrick Sowman

    2014-06-01

    Full Text Available Acoustic stimuli can cause a transient increase in the excitability of the motor cortex. The current study leverages this phenomenon to develop a method for testing the integrity of auditorimotor integration and the capacity for auditorimotor plasticity. We demonstrate that appropriately timed transcranial magnetic stimulation (TMS of the hand area, paired with auditorily mediated excitation of the motor cortex, induces an enhancement of motor cortex excitability that lasts beyond the time of stimulation. This result demonstrates for the first time that paired associative stimulation (PAS -induced plasticity within the motor cortex is applicable with auditory stimuli. We propose that the method developed here might provide a useful tool for future studies that measure auditory-motor connectivity in communication disorders.

  17. Neural population dynamics in human motor cortex during movements in people with ALS.

    Science.gov (United States)

    Pandarinath, Chethan; Gilja, Vikash; Blabe, Christine H; Nuyujukian, Paul; Sarma, Anish A; Sorice, Brittany L; Eskandar, Emad N; Hochberg, Leigh R; Henderson, Jaimie M; Shenoy, Krishna V

    2015-06-23

    The prevailing view of motor cortex holds that motor cortical neural activity represents muscle or movement parameters. However, recent studies in non-human primates have shown that neural activity does not simply represent muscle or movement parameters; instead, its temporal structure is well-described by a dynamical system where activity during movement evolves lawfully from an initial pre-movement state. In this study, we analyze neuronal ensemble activity in motor cortex in two clinical trial participants diagnosed with Amyotrophic Lateral Sclerosis (ALS). We find that activity in human motor cortex has similar dynamical structure to that of non-human primates, indicating that human motor cortex contains a similar underlying dynamical system for movement generation.

  18. Cerebral cortex dose sparing for glioblastoma patients: IMRT versus robust treatment planning.

    Science.gov (United States)

    Exeli, Ann-Katrin; Kellner, Daniel; Exeli, Lukas; Steininger, Phil; Wolf, Frank; Sedlmayer, Felix; Deutschmann, Heinz

    2018-02-06

    To date, patients with glioblastoma still have a bad median overall survival rate despite radiation dose-escalation and combined modality treatment. Neurocognitive decline is a crucial adverse event which may be linked to high doses to the cortex. In a planning study, we investigated the impact of dose constraints to the cerebral cortex and its relation to the organs at risk for glioblastoma patients. Cortical sparing was implemented into the optimization process for two planning approaches: classical intensity-modulated radiotherapy (IMRT) and robust treatment planning. The plans with and without objectives for cortex sparing where compared based on dose-volume histograms (DVH) data of the main organs at risk. Additionally the cortex volume above a critical threshold of 28.6 Gy was elaborated. Furthermore, IMRT plans were compared with robust treatment plans regarding potential cortex sparing. Cortical dose constraints result in a statistically significant reduced cerebral cortex volume above 28.6 Gy without negative effects to the surrounding organs at risk independently of the optimization technique. For IMRT we found a mean volume reduction of doses beyond the threshold of 19%, and 16% for robust treatment planning, respectively. Robust plans delivered sharper dose gradients around the target volume in an order of 3 - 6%. Aside from that the integration of cortical sparing into the optimization process has the potential to reduce the dose around the target volume (4 - 8%). We were able to show that dose to the cerebral cortex can be significantly reduced both with robust treatment planning and IMRT while maintaining clinically adequate target coverage and without corrupting any organ at risk. Robust treatment plans delivered more conformal plans compared to IMRT and were superior in regards to cortical sparing.

  19. Cerebral Cortex Expression of Gli3 Is Required for Normal Development of the Lateral Olfactory Tract

    Science.gov (United States)

    Amaniti, Eleni-Maria; Kelman, Alexandra; Mason, John O.; Theil, Thomas

    2015-01-01

    Formation of the lateral olfactory tract (LOT) and innervation of the piriform cortex represent fundamental steps to allow the transmission of olfactory information to the cerebral cortex. Several transcription factors, including the zinc finger transcription factor Gli3, influence LOT formation by controlling the development of mitral cells from which LOT axons emanate and/or by specifying the environment through which these axons navigate. Gli3 null and hypomorphic mutants display severe defects throughout the territory covered by the developing lateral olfactory tract, making it difficult to identify specific roles for Gli3 in its development. Here, we used Emx1Cre;Gli3fl/fl conditional mutants to investigate LOT formation and colonization of the olfactory cortex in embryos in which loss of Gli3 function is restricted to the dorsal telencephalon. These mutants form an olfactory bulb like structure which does not protrude from the telencephalic surface. Nevertheless, mitral cells are formed and their axons enter the piriform cortex though the LOT is shifted medially. Mitral axons also innervate a larger target area consistent with an enlargement of the piriform cortex and form aberrant projections into the deeper layers of the piriform cortex. No obvious differences were found in the expression patterns of key guidance cues. However, we found that an expansion of the piriform cortex temporally coincides with the arrival of LOT axons, suggesting that Gli3 affects LOT positioning and target area innervation through controlling the development of the piriform cortex. PMID:26509897

  20. Contribution of primary motor cortex to compensatory balance reactions

    Directory of Open Access Journals (Sweden)

    Bolton David A E

    2012-08-01

    Full Text Available Abstract Background Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS to temporarily suppress the hand area of primary motor cortex (M1 in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs. Results Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles. Conclusions Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.

  1. Acute aerobic exercise modulates primary motor cortex inhibition.

    Science.gov (United States)

    Mooney, Ronan A; Coxon, James P; Cirillo, John; Glenny, Helen; Gant, Nicholas; Byblow, Winston D

    2016-12-01

    Aerobic exercise can enhance neuroplasticity although presently the neural mechanisms underpinning these benefits remain unclear. One possible mechanism is through effects on primary motor cortex (M1) function via down-regulation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The aim of the present study was to examine how corticomotor excitability (CME) and M1 intracortical inhibition are modulated in response to a single bout of moderate intensity aerobic exercise. Ten healthy right-handed adults were participants. Single- and paired-pulse transcranial magnetic stimulation was applied over left M1 to obtain motor-evoked potentials in the right flexor pollicis brevis. We examined CME, cortical silent period (SP) duration, short- and long-interval intracortical inhibition (SICI, LICI), and late cortical disinhibition (LCD), before and after acute aerobic exercise (exercise session) or an equivalent duration without exercise (control session). Aerobic exercise was performed on a cycle ergometer for 30 min at a workload equivalent to 60 % of maximal cardiorespiratory fitness (VO2 peak; heart rate reserve = 75 ± 3 %, perceived exertion = 13.5 ± 0.7). LICI was reduced at 10 (52 ± 17 %, P = 0.03) and 20 min (27 ± 8 %, P = 0.03) post-exercise compared to baseline (13 ± 4 %). No significant changes in CME, SP duration, SICI or LCD were observed. The present study shows that GABAB-mediated intracortical inhibition may be down-regulated after acute aerobic exercise. The potential effects this may have on M1 plasticity remain to be determined.

  2. Functional Magnetic Resonance Imaging of Motor Cortex: Hemispheric Asymmetry and Handedness

    Science.gov (United States)

    Kim, Seong-Gi; Ashe, James; Hendrich, Kristy; Ellermann, Jutta M.; Merkle, Hellmut; Ugurbil, Kamil; Georgopoulos, Apostolos P.

    1993-07-01

    A hemispheric asymmetry in the functional activation of the human motor cortex during contralateral (C) and ipsilateral (I) finger movements, especially in right-handed subjects, was documented with nuclear magnetic resonance imaging at high field strength (4 tesla). Whereas the right motor cortex was activated mostly during contralateral finger movements in both right-handed (C/I mean area of activation = 36.8) and left-handed (C/I = 29.9) subjects, the left motor cortex was activated substantially during ipsilateral movements in left-handed subjects (C/I = 5.4) and even more so in right-handed subjects (C/I = 1.3).

  3. Effects of oral motor therapy in children with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Seray Nural Sigan

    2013-01-01

    Full Text Available Aim: Oral motor dysfunction is a common issue in children with cerebral palsy (CP. Drooling, difficulties with sucking, swallowing, and chewing are some of the problems often seen. In this study, we aimed to research the effect of oral motor therapy on pediatric CP patients with feeding problems. Materials and Methods: Included in this single centered, randomized, prospective study were 81 children aged 12-42 months who had been diagnosed with CP, had oral motor dysfunction and were observed at the Pediatric Neurology outpatient clinic of the Children′s Health and Diseases Department, Istanbul Medical Faculty, Istanbul University. Patients were randomized into two groups: The training group and the control group. One patient from the training group dropped out of the study because of not participating regularly. Following initial evaluation of all patients by a blinded physiotherapist and pedagogue, patients in the training group participated in 1 h oral motor training sessions with a different physiotherapist once a week for 6 months. All patients kept on routine physiotherapy by their own physiotherapists. Oral motor assessment form, functional feeding assessment (FFA subscale of the multidisciplinary feeding profile (MFP and the Bayley scales of infant development (BSID-II were used to evaluate oral motor function, swallowing, chewing, the gag reflex, the asymmetrical tonic neck reflex, tongue, jaw, and mouth function, severity of drooling, aspiration, choking, independent feeding and tolerated food texture during the initial examination and 6 months later. Results: When the initial and post-therapy FFA and BSID-II scores received by patients in the training and the study group were compared, the training group showed a statistically significant improvement (P < 0.05. Conclusion: Oral motor therapy has a beneficial effect on feeding problems in children with CP.

  4. Motor cortex stimulation for Parkinson's disease: a modelling study

    Science.gov (United States)

    Zwartjes, Daphne G. M.; Heida, Tjitske; Feirabend, Hans K. P.; Janssen, Marcus L. F.; Visser-Vandewalle, Veerle; Martens, Hubert C. F.; Veltink, Peter H.

    2012-10-01

    Chronic motor cortex stimulation (MCS) is currently being investigated as a treatment method for Parkinson's disease (PD). Unfortunately, the underlying mechanisms of this treatment are unclear and there are many uncertainties regarding the most effective stimulation parameters and electrode configuration. In this paper, we present a MCS model with a 3D representation of several axonal populations. The model predicts that the activation of either the basket cell or pyramidal tract (PT) type axons is involved in the clinical effect of MCS. We propose stimulation protocols selectively targeting one of these two axon types. To selectively target the basket cell axons, our simulations suggest using either cathodal or bipolar stimulation with the electrode strip placed perpendicular rather than parallel to the gyrus. Furthermore, selectivity can be increased by using multiple cathodes. PT type axons can be selectively targeted with anodal stimulation using electrodes with large contact sizes. Placing the electrode epidurally is advisable over subdural placement. These selective protocols, when practically implemented, can be used to further test which axon type should be activated for clinically effective MCS and can subsequently be applied to optimize treatment. In conclusion, this paper increases insight into the neuronal population involved in the clinical effect of MCS on PD and proposes strategies to improve this therapy.

  5. Interactions between Pain and the Motor Cortex: Insights from Research on Phantom Limb Pain and Complex Regional Pain Syndrome.

    Science.gov (United States)

    Mercier, Catherine; Léonard, Guillaume

    2011-01-01

    Pain is a significantly disabling problem that often interacts with other deficits during the rehabilitation process. The aim of this paper is to review evidence of interactions between pain and the motor cortex in order to attempt to answer the following questions: (1) Does acute pain interfere with motor-cortex activity? (2) Does chronic pain interfere with motor-cortex activity, and, conversely, does motor-cortex plasticity contribute to chronic pain? (3) Can the induction of motor plasticity by means of motor-cortex stimulation decrease pain? (4) Can motor training result in both motor-cortex reorganization and pain relief? Acute experimental pain has been clearly shown to exert an inhibitory influence over the motor cortex, which can interfere with motor learning capacities. Current evidence also suggests a relationship between chronic pain and motor-cortex reorganization, but it is still unclear whether one causes the other. However, there is growing evidence that interventions aimed at normalizing motor-cortex organization can lead to pain relief. Interactions between pain and the motor cortex are complex, and more studies are needed to understand these interactions in our patients, as well as to develop optimal rehabilitative strategies.

  6. Interactions between Pain and the Motor Cortex: Insights from Research on Phantom Limb Pain and Complex Regional Pain Syndrome

    Science.gov (United States)

    Léonard, Guillaume

    2011-01-01

    ABSTRACT Purpose: Pain is a significantly disabling problem that often interacts with other deficits during the rehabilitation process. The aim of this paper is to review evidence of interactions between pain and the motor cortex in order to attempt to answer the following questions: (1) Does acute pain interfere with motor-cortex activity? (2) Does chronic pain interfere with motor-cortex activity, and, conversely, does motor-cortex plasticity contribute to chronic pain? (3) Can the induction of motor plasticity by means of motor-cortex stimulation decrease pain? (4) Can motor training result in both motor-cortex reorganization and pain relief? Summary of Key Points: Acute experimental pain has been clearly shown to exert an inhibitory influence over the motor cortex, which can interfere with motor learning capacities. Current evidence also suggests a relationship between chronic pain and motor-cortex reorganization, but it is still unclear whether one causes the other. However, there is growing evidence that interventions aimed at normalizing motor-cortex organization can lead to pain relief. Conclusions: Interactions between pain and the motor cortex are complex, and more studies are needed to understand these interactions in our patients, as well as to develop optimal rehabilitative strategies. PMID:22654236

  7. Cerebral cortex hyperthyroidism of newborn mct8-deficient mice transiently suppressed by lat2 inactivation.

    Directory of Open Access Journals (Sweden)

    Bárbara Núñez

    Full Text Available Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2 cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8, in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3'-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3'-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.

  8. Comparison of descending volleys evoked by transcranial and epidural motor cortex stimulation in a conscious patient with bulbar pain.

    Science.gov (United States)

    Di Lazzaro, V; Oliviero, A; Pilato, F; Saturno, E; Dileone, M; Meglio, M; Cioni, B; Papacci, F; Tonali, P A; Rothwell, J C

    2004-04-01

    To compare the pattern of activation of motor cortex produced by transcranial magnetic stimulation and epidural electrical stimulation. The spinal volleys evoked by transcranial magnetic stimulation and epidural electrical stimulation over the cerebral motor cortex were recorded from an electrode inserted into the cervical epidural space of one conscious subject who also had a cortical epidural electrode over the motor area. The volleys were termed D- and I-waves according to their latency. Magnetic stimulation was performed with a figure-of-eight coil and the induced current flowed either in a postero-anterior (PA) or in latero-medial (LM) direction. At active motor threshold intensity LM magnetic stimulation evoked a D wave whereas PA stimulation evoked an I(1) wave with later I waves being recruited at increasing stimulus intensities. Electrical epidural stimulation evoked both a D wave and I waves. However, the D wave evoked by electrical epidural stimulation had a longer latency than the LM D wave, suggesting either a more proximal site of activation of the pyramidal axon or activation of slightly faster conducting set of corticospinal fibres by LM stimulation. The I3 wave evoked by electrical epidural stimulation also had a longer latency than the PA I3-wave Epidural stimulation of the motor cortex can produce repetitive excitation of corticospinal neurones. The order of recruitment of the volleys, and the latency of the D and I3 waves may be slightly different to that seen after transcranial magnetic stimulation. Our findings suggest that there may be subtle differences in the populations of neurones activated by the two forms of stimulation.

  9. Attention, motor control and motor imagery in schizophrenia: implications for the role of the parietal cortex.

    Science.gov (United States)

    Danckert, James; Saoud, Mohamed; Maruff, Paul

    2004-10-01

    Many recent models of schizophrenia have attempted to explain the so-called first-rank symptoms in terms of a breakdown in the self-monitoring of thoughts and behaviours. These models have focused on the most common symptom of schizophrenia auditory hallucinations-suggesting that they may represent disordered self-monitoring of internal speech. As such, much attention has been given to the role of the temporal and frontal cortices in the clinical presentation of patients with schizophrenia. In this review, we examine the role of the posterior parietal cortex (PPC) in schizophrenia within the context of recent models of self-monitoring deficits in these patients. Attentional dysfunctions and certain impairments of motor control and motor imagery all point towards the involvement of the parietal cortex in the disorder. In particular, we suggest that patients experiencing passivity phenomena (e.g., delusions of control) may have particular impairments of parietal function related to poor utilisation of forward models of intended actions. We also present a novel hypothesis that suggests differential impairments of the left and right parietal cortices in schizophrenia may help explain many of the first-rank symptoms of the disorder.

  10. Motor imagery training in hemiplegic cerebral palsy: a potentially useful therapeutic tool for rehabilitation

    NARCIS (Netherlands)

    Steenbergen, B.; Craje, Céline; Nilsen, D.M.; Gordon, A.M.

    2009-01-01

    Converging evidence indicates that motor deficits in cerebral palsy (CP) are related not only to problems with execution, but also to impaired motor planning. Current rehabilitation mainly focuses on alleviating compromised motor execution. Motor imagery is a promising method of training the more

  11. Cathodal, anodal or bifocal stimulation of the motor cortex in the management of chronic pain?

    NARCIS (Netherlands)

    Holsheimer, J.; Nguyen, J.-P.; Lefaucheur, J.-P.; Manola, L.; Sakas, D.E.; Simpson, B.A

    The conditions of motor cortex stimulation (MCS) applied with epidural electrodes, in particular monopolar (cathodal or anodal) and bipolar stimulation, are discussed. The results of theoretical studies, animal experiments and clinical studies lead to similar conclusions. Basically, cortical nerve

  12. Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence.

    Science.gov (United States)

    Schomers, Malte R; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann

    2015-10-01

    Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., "pool" or "tool"). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed "tool" relative to "pool" responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. © The Author 2014. Published by Oxford University Press.

  13. Motor Threshold: A Possible Guide to Optimizing Stimulation Parameters for Motor Cortex Stimulation.

    Science.gov (United States)

    Slotty, Philipp J; Chang, Stephano; Honey, Christopher R

    2015-10-01

    No widely accepted programming guidelines for motor cortex stimulation (MCS) exist. We propose that an individual's effective stimulation voltage can be predicted as their percentage of motor threshold (PMT). Seven patients already successfully treated with MCS for neuropathic pain were included. Patients received stimulation that was the same as their baseline PMT ("medium"), 10% higher ("high") or 10% lower ("low") in a blinded, randomized study. Outcome was assessed after 14 days with the visual analogue scale for pain, the McGill pain questionnaire, and the SF-36 questionnaire. The best treatment response (mean VAS 3.4) was seen with the medium setting which was at a mean of 62% PMT. High and low settings both resulted in a significant increase in pain compared with the medium setting (mean VAS 6.0 and 6.3, respectively) and a significant decrease in SF-36 scores. No significant difference in pain control was observed between the high and low settings. The mean time from changes in treatment settings to reported change in pain level was 2.9 days (±1.0 day). We propose that the PMT represents an important parameter that measures the degree to which MCS may be affecting the motor cortex. A mean PMT of 62% was required for effective pain relief. Higher settings did not result in increased therapeutic efficacy but rather in a significant increase in pain. Targeting therapy to a PMT level may speed initial programming, allow more consistent longitudinal follow-up, and be a basis for a standardized programming paradigm. © 2015 International Neuromodulation Society.

  14. Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex

    DEFF Research Database (Denmark)

    Skytt, Dorte Marie; Madsen, Karsten Kirkegaard; Pajecka, Kamilla

    2010-01-01

    Astrocyte cultures were prepared from cerebral cortex of new-born and 7-day-old mice and additionally, the cultures from new-born animals were passaged as secondary cultures. The cultures were characterized by immunostaining for the astrocyte markers glutamine synthetase (GS), glial fibrillary...... of the astrocyte marker proteins. The metabolic pattern of the cultures from 7-day-old animals of the labeled substrates was comparable to that seen previously in astrocyte cultures prepared from new-born mouse brain showing pronounced glycolytic and oxidative metabolism of glucose. Glutamate was metabolized both...... cerebral cortex of 7-day-old mice have metabolic and functional properties indistinguishable from those of classical astrocyte cultures prepared from neocortex of new-born animals. This provides flexibility with regard to preparation and use of these cultures for a variety of purposes....

  15. Substance P signalling in primary motor cortex facilitates motor learning in rats.

    Directory of Open Access Journals (Sweden)

    Benjamin Hertler

    Full Text Available Among the genes that are up-regulated in response to a reaching training in rats, Tachykinin 1 (Tac1-a gene that encodes the neuropeptide Substance P (Sub P-shows an especially strong expression. Using Real-Time RT-PCR, a detailed time-course of Tac1 expression could be defined: a significant peak occurs 7 hours after training ended at the first and second training session, whereas no up-regulation could be detected at a later time-point (sixth training session. To assess the physiological role of Sub P during movement acquisition, microinjections into the primary motor cortex (M1 contralateral to the trained paw were performed. When Sub P was injected before the first three sessions of a reaching training, effectiveness of motor learning became significantly increased. Injections at a time-point when rats already knew the task (i.e. training session ten and eleven had no effect on reaching performance. Sub P injections did not influence the improvement of performance within a single training session, but retention of performance between sessions became strengthened at a very early stage (i.e. between baseline-training and first training session. Thus, Sub P facilitates motor learning in the very early phase of skill acquisition by supporting memory consolidation. In line with these findings, learning related expression of the precursor Tac1 occurs at early but not at later time-points during reaching training.

  16. Immunohistochemical investigation of neuronal injury in cerebral cortex of cobra-envenomed rats

    OpenAIRE

    RAHMY, T. R.; Hassona, I.A.

    2004-01-01

    The immunohistochemical expression of neuron-specific enolase, NSE (a cytoplasmic glycolytic enzyme of the neurons), synaptophysin, SYN (a major membrane glycoprotein of synaptic vesicles), and Bcl-2 (anti-apoptotic protein) were determined in cerebral cortex of rats envenomed with neurotoxic venom from Egyptian cobra. Male rats were intramuscularly (IM) injected with a single injection of either physiological saline solution or ½ LD50 or LD50 of cobra venom and sacrificed 24, 48, or 72 hr af...

  17. Developmental Sex Differences in the Metabolism of Cardiolipin in Mouse Cerebral Cortex Mitochondria

    OpenAIRE

    Acaz-Fonseca, Estefan?a; Ortiz-Rodriguez, Ana; Lopez-Rodriguez, Ana B.; Garcia-Segura, Luis M.; Astiz, Mariana

    2017-01-01

    Cardiolipin (CL) is a mitochondrial-specific phospholipid. CL content and acyl chain composition are crucial for energy production. Given that estradiol induces CL synthesis in neurons, we aimed to assess CL metabolism in the cerebral cortex (CC) of male and female mice during early postnatal life, when sex steroids induce sex-dimorphic maturation of the brain. Despite the fact that total amount of CL was similar, its fatty acid composition differed between males and females at birth. In male...

  18. Immunohistochemical investigation of neuronal injury in cerebral cortex of cobra-envenomed rats

    Directory of Open Access Journals (Sweden)

    T.R. Rahmy

    2004-01-01

    Full Text Available The immunohistochemical expression of neuron-specific enolase, NSE (a cytoplasmic glycolytic enzyme of the neurons, synaptophysin, SYN (a major membrane glycoprotein of synaptic vesicles, and Bcl-2 (anti-apoptotic protein were determined in cerebral cortex of rats envenomed with neurotoxic venom from Egyptian cobra. Male rats were intramuscularly (IM injected with a single injection of either physiological saline solution or ½ LD50 or LD50 of cobra venom and sacrificed 24, 48, or 72 hr after envenoming. Formalin-fixed paraffin sections were immunohistochemically studied by avidin-biotin-peroxidase complex method. Neuron histological structure and isolation of genomic DNA were also detected. The results showed a dose and time-dependent increase in NSE and SYN immunoreactivity in cerebral cortex of envenomed rats except in 72 hr high dose envenoming, where decreased SYN was observed. On the other hand, low dose venom induced high Bcl-2 expression 24 hr after envenoming, while the high dose decreased Bcl-2 protein expression. Temporal and spatial Bcl-2 expression was accompanied by DNA fragmentation in cerebral cortex of all envenomed rats, although no serious histological alterations were noticed. These results suggest that cobra venom may lead to neuronal injury and impairment of axonal transport as ascertained by alterations in NSE and SYN immunoreactivity. It could also indicate that venom alters the molecular machinery of apoptosis by inhibiting Bcl-2 expression; however, some vulnerable cells have the ability to overcome this by increasing Bcl-2 protein. These immunohistochemical investigations can be used as tools for detecting neuronal abnormalities even before the occurrence of any histological alterations in case of cerebral cortex neurotoxicity.

  19. The response of cerebral cortex to haemorrhagic damage: experimental evidence from a penetrating injury model.

    Directory of Open Access Journals (Sweden)

    Sivaraman Purushothuman

    Full Text Available Understanding the response of the brain to haemorrhagic damage is important in haemorrhagic stroke and increasingly in the understanding the cerebral degeneration and dementia that follow head trauma and head-impact sports. In addition, there is growing evidence that haemorrhage from small cerebral vessels is important in the pathogenesis of age-related dementia (Alzheimer's disease. In a penetration injury model of rat cerebral cortex, we have examined the neuropathology induced by a needlestick injury, with emphasis on features prominent in the ageing and dementing human brain, particularly plaque-like depositions and the expression of related proteins. Needlestick lesions were made in neo- and hippocampal cortex in Sprague Dawley rats aged 3-5 months. Brains were examined after 1-30 d survival, for haemorrhage, for the expression of hyperphosphorylated tau, Aβ, amyloid precursor protein (APP, for gliosis and for neuronal death. Temporal cortex from humans diagnosed with Alzheimer's disease was examined with the same techniques. Needlestick injury induced long-lasting changes-haem deposition, cell death, plaque-like deposits and glial invasion-along the needle track. Around the track, the lesion induced more transient changes, particularly upregulation of Aβ, APP and hyperphosporylated tau in neurons and astrocytes. Reactions were similar in hippocampus and neocortex, except that neuronal death was more widespread in the hippocampus. In summary, experimental haemorrhagic injury to rat cerebral cortex induced both permanent and transient changes. The more permanent changes reproduced features of human senile plaques, including the formation of extracellular deposits in which haem and Aβ-related proteins co-localised, neuronal loss and gliosis. The transient changes, observed in tissue around the direct lesion, included the upregulation of Aβ, APP and hyperphosphorylated tau, not associated with cell death. The findings support the

  20. Histopathologic Effect of Prenatal Topiramate Exposure on Rat Cerebral Cortex and Hippocampus

    Directory of Open Access Journals (Sweden)

    Hagar A Hashish

    2014-04-01

    Material and methods: 12 female pregnant rats were divided into control and treated groups, 6 rats in each group. The treated group was given topiramate dissolved in tap water, from day 0 of pregnancy till the delivery, through oral route in dose of 200mg/kg. The control group received tap water at the same time. In the end of the treatment, the cerebral cortex and the hippocampus were stained with hematoxylin and eosin (H and E and immnunohistochemically for glial fibrillary acidic protein (GFAP. Results: The control rat cerebral cortex showed that granule cells were small cell with dense cytoplasm, pyramidal cells appeared with triangular cell body, light cytoplasm and small nucleus. Strong GFAP positive immunostaining was detected in the astrocytes in both granule cell and pyramidal cell layers. The pyramidal cells in Cornu Ammonis showed characteristic palisade arrangement, with lightly stained cytoplasm and central nucleus. Granule cells of the dentate gyrus were rounded, packed, dense. Strong GFAP positive immunostaining was detected in the astrocytes in both pyramidal cell and granule cell layers. In treated rats, granule and pyramidal cells in the cerebral cortex and hippocampus were disorganized with signs of degeneration. Faint GFAP positive immunostaining was detected in the astrocytes in granule and pyramidal cell layers. Conclusion: Long-term daily use of topiramate during pregnancy can lead to noticeable pathological neurotoxic effect in the cerebral cortex and hippocampus which may be implicated in cognitive affection. Neurological effect of topiramate necessitates further investigations. [J Interdiscipl Histopathol 2014; 2(2.000: 61-68

  1. Neurofilament and glial alterations in the cerebral cortex in amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Troost, D.; Sillevis Smitt, P. A.; de Jong, J. M.; Swaab, D. F.

    1992-01-01

    According to the literature, only minor nonspecific histopathological lesions are present in the motor cortex in up to 90% of the amyotrophic lateral sclerosis (ALS) patients. These observations, however, have so far been based mainly on conventional staining techniques. An exception to this is the

  2. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  3. The importance of video editing in automated image analysis in studies of the cerebral cortex.

    Science.gov (United States)

    Terry, R D; Deteresa, R

    1982-03-01

    Editing of the video image in computerized image analysis is readily accomplished with the appropriate apparatus, but slows the assay very significantly. In dealing with the cerebral cortex, however video editing is of considerable importance in that cells are very often contiguous to one another or are partially superimposed, and this gives an erroneous measurement unless those cells are artificially separated. Also important is elimination of vascular cells from consideration by the automated counting apparatus. A third available mode of editing allows the filling-in of the cytoplasm of cell bodies which are not fully stained with sufficient intensity to be wholly detected. This study, which utilizes 23 samples, demonstrates that, in a given area of a histologic section of cerebral cortex, the number of small cells is greater and the number of large neurons is smaller with editing than without. In that not all cases follow this general pattern, inadequate editing may lead to significant errors on individual specimens as well as to the calculated mean. Video editing is therefore an essential part of the morphometric study of cerebral cortex by means of automated image analysis.

  4. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice.

    Science.gov (United States)

    Dono, R; Texido, G; Dussel, R; Ehmke, H; Zeller, R

    1998-08-03

    Fibroblast growth factor-2 (FGF-2) has been implicated in various signaling processes which control embryonic growth and differentiation, adult physiology and pathology. To analyze the in vivo functions of this signaling molecule, the FGF-2 gene was inactivated by homologous recombination in mouse embryonic stem cells. FGF-2-deficient mice are viable, but display cerebral cortex defects at birth. Bromodeoxyuridine pulse labeling of embryos showed that proliferation of neuronal progenitors is normal, whereas a fraction of them fail to colonize their target layers in the cerebral cortex. A corresponding reduction in parvalbumin-positive neurons is observed in adult cortical layers. Neuronal defects are not limited to the cerebral cortex, as ectopic parvalbumin-positive neurons are present in the hippocampal commissure and neuronal deficiencies are observed in the cervical spinal cord. Physiological studies showed that FGF-2-deficient adult mice are hypotensive. They respond normally to angiotensin II-induced hypertension, whereas neural regulation of blood pressure by the baroreceptor reflex is impaired. The present genetic study establishes that FGF-2 participates in controlling fates, migration and differentiation of neuronal cells, whereas it is not essential for their proliferation. The observed autonomic dysfunction in FGF-2-deficient adult mice uncovers more general roles in neural development and function.

  5. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.

    Science.gov (United States)

    Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R

    2013-10-10

    Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (pmotor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Evidence for an early innate immune response in the motor cortex of ALS.

    Science.gov (United States)

    Jara, Javier H; Genç, Barış; Stanford, Macdonell J; Pytel, Peter; Roos, Raymond P; Weintraub, Sandra; Mesulam, M Marsel; Bigio, Eileen H; Miller, Richard J; Özdinler, P Hande

    2017-06-26

    Recent evidence indicates the importance of innate immunity and neuroinflammation with microgliosis in amyotrophic lateral sclerosis (ALS) pathology. The MCP1 (monocyte chemoattractant protein-1) and CCR2 (CC chemokine receptor 2) signaling system has been strongly associated with the innate immune responses observed in ALS patients, but the motor cortex has not been studied in detail. After revealing the presence of MCP1 and CCR2 in the motor cortex of ALS patients, to elucidate, visualize, and define the timing, location and the extent of immune response in relation to upper motor neuron vulnerability and progressive degeneration in ALS, we developed MCP1-CCR2-hSOD1(G93A) mice, an ALS reporter line, in which cells expressing MCP1 and CCR2 are genetically labeled by monomeric red fluorescent protein-1 and enhanced green fluorescent protein, respectively. In the motor cortex of MCP1-CCR2-hSOD1(G93A) mice, unlike in the spinal cord, there was an early increase in the numbers of MCP1+ cells, which displayed microglial morphology and selectively expressed microglia markers. Even though fewer CCR2+ cells were present throughout the motor cortex, they were mainly infiltrating monocytes. Interestingly, MCP1+ cells were found in close proximity to the apical dendrites and cell bodies of corticospinal motor neurons (CSMN), further implicating the importance of their cellular interaction to neuronal pathology. Similar findings were observed in the motor cortex of ALS patients, where MCP1+ microglia were especially in close proximity to the degenerating apical dendrites of Betz cells. Our findings reveal that the intricate cellular interplay between immune cells and upper motor neurons observed in the motor cortex of ALS mice is indeed recapitulated in ALS patients. We generated and characterized a novel model system, to study the cellular and molecular basis of this close cellular interaction and how that relates to motor neuron vulnerability and progressive degeneration in

  7. Cerebral hemorrhage without manifest motor paralysis. Reports of 5 cases

    Energy Technology Data Exchange (ETDEWEB)

    Taketani, T.; Dohi, I.; Miyazaki, T.; Handa, A. (Central Hospital of JNR, Tokyo (Japan))

    1982-01-01

    Before the introduction of computerized tomography (CT) there were some cases of intracerebral bleeding who were wrongly diagnosed as hypertensive encephalopathy or senile psychosis. We here report 5 cases who did not show any sign of motor paralysis. The clinical aspects of these cases were nausea and vomiting with dizziness (case 1), nausea and vomiting with slight headache (case 2), agnosia of left side with several kinds of disorientation (case 3), nausea and vomiting (case 4), and visual disturbance of right, lower quadrant (case 5). All of these cases showed no motor paralysis or abnormal reflex activities. By examination with CT each of them exhibited a high density area in the subcortical area of the right parietal lobe, the subcortical area of the right occipital lobe, the right temporal and parietal lobe, rather small portion of the left putamen and external capsule, and the subcortical area of left occipital lobe, respectively. Patients of cerebral hemorrhage without motor or sensory disturbances might often be taken for some psychic abnormality. We here have emphasized the importance of CT in such a group of patients. But for this technique, most of them would not be given adequate treatment and might be exposed to lifethreatening situations.

  8. Brain Damage and Motor Cortex Impairment in Chronic Obstructive Pulmonary Disease: Implication of Nonrapid Eye Movement Sleep Desaturation.

    Science.gov (United States)

    Alexandre, Francois; Heraud, Nelly; Sanchez, Anthony M J; Tremey, Emilie; Oliver, Nicolas; Guerin, Philippe; Varray, Alain

    2016-02-01

    Nonrapid eye movement (NREM) sleep desaturation may cause neuronal damage due to the withdrawal of cerebrovascular reactivity. The current study (1) assessed the prevalence of NREM sleep desaturation in nonhypoxemic patients with chronic obstructive pulmonary disease (COPD) and (2) compared a biological marker of cerebral lesion and neuromuscular function in patients with and without NREM sleep desaturation. One hundred fifteen patients with COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] grades 2 and 3), resting PaO2 of 60-80 mmHg, aged between 40 and 80 y, and without sleep apnea (apnea-hypopnea index sleep recordings. In addition, twenty-nine patients (substudy) were assessed i) for brain impairment by serum S100B (biological marker of cerebral lesion), and ii) for neuromuscular function via motor cortex activation and excitability and maximal voluntary quadriceps strength measurement. A total of 51.3% patients (n = 59) had NREM sleep desaturation (NREMDes). Serum S100B was higher in the NREMDes patients of the substudy (n = 14): 45.1 [Q1: 37.7, Q3: 62.8] versus 32.9 [Q1: 25.7, Q3: 39.5] pg.ml(-1) (P = 0.028). Motor cortex activation and excitability were lower in NREMDes patients (both P = 0.03), but muscle strength was comparable between groups (P = 0.58). Over half the nonhypoxemic COPD patients exhibited NREM sleep desaturation associated with higher values of the cerebral lesion biomarker and lower neural drive reaching the quadriceps during maximal voluntary contraction. The lack of muscle strength differences between groups suggests a compensatory mechanism(s). Altogether, the results are consistent with an involvement of NREM sleep desaturation in COPD brain impairment. The study was registered at www.clinicaltrials.gov as NCT01679782. © 2016 Associated Professional Sleep Societies, LLC.

  9. Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study

    Energy Technology Data Exchange (ETDEWEB)

    Berger, B.; Trottier, S.; Verney, C.; Gaspar, P.; Alvarez, C.

    1988-07-01

    The regional density and laminar distribution of dopamine (DA) and serotonin (5-HT) afferents were investigated in the cerebral cortex of cynomolgus monkeys using a radioautographic technique that is based on the high affinity uptake capacity of these aminergic neurons. Large vibratome sections, 50 micron thick, were incubated with (3H) DA (0.2 microM) and desipramine (5 microM) or with unlabeled norepinephrine (5 microM) and (3H) 5-HT (0.6 microM), which allowed for the specific labeling of the DA and 5-HT innervations, respectively. After fixation, these sections were dried, defatted, and radioautographed by dipping. Semiquantitative data on the DA innervation also were provided by counting (3H) DA-labeled axonal varicosities in radioautographs from 4-micron-thick sections of the slices obtained after epon embedding. The DA innervation was widespread and differed in density and laminar distribution in the agranular and granular cortices. DA afferents were densest in the anterior cingulate (area 24) and the motor areas (areas 4, 6, and supplementary motor area (SMA)). In the latter they displayed a trilaminar pattern of distribution, predominating in layers I, IIIa, and V-VI, with characteristic cluster-like formations in layer IIIa, especially in the medial part of motor areas. In the granular prefrontal (areas 46, 9, 10, 11, 12), parietal (areas 1, 2, 3, 5, 7), temporal (areas 21, 22), and posterior cingulate (area 23) cortices, DA afferents were less dense and showed a bilaminar pattern of distribution, predominating in the depth of layer I and in layers V-VI; density in layers II, III, and IV was only 20% of that in layer I. The lowest density was in the visual cortex, particularly in area 17, where the DA afferents were almost restricted to layer I.

  10. TRH regulates action potential shape in cerebral cortex pyramidal neurons.

    Science.gov (United States)

    Rodríguez-Molina, Víctor; Patiño, Javier; Vargas, Yamili; Sánchez-Jaramillo, Edith; Joseph-Bravo, Patricia; Charli, Jean-Louis

    2014-07-07

    Thyrotropin releasing hormone (TRH) is a neuropeptide with a wide neural distribution and a variety of functions. It modulates neuronal electrophysiological properties, including resting membrane potential, as well as excitatory postsynaptic potential and spike frequencies. We explored, with whole-cell patch clamp, TRH effect on action potential shape in pyramidal neurons of the sensorimotor cortex. TRH reduced spike and after hyperpolarization amplitudes, and increased spike half-width. The effect varied with dose, time and cortical layer. In layer V, 0.5µM of TRH induced a small increase in spike half-width, while 1 and 5µM induced a strong but transient change in spike half-width, and amplitude; after hyperpolarization amplitude was modified at 5µM of TRH. Cortical layers III and VI neurons responded intensely to 0.5µM TRH; layer II neurons response was small. The effect of 1µM TRH on action potential shape in layer V neurons was blocked by G-protein inhibition. Inhibition of the activity of the TRH-degrading enzyme pyroglutamyl peptidase II (PPII) reproduced the effect of TRH, with enhanced spike half-width. Many cortical PPII mRNA+ cells were VGLUT1 mRNA+, and some GAD mRNA+. These data show that TRH regulates action potential shape in pyramidal cortical neurons, and are consistent with the hypothesis that PPII controls its action in this region. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery.

    Science.gov (United States)

    Chiew, Mark; LaConte, Stephen M; Graham, Simon J

    2012-05-15

    Functional MRI neurofeedback (fMRI NF) is an emerging technique that trains subjects to regulate their brain activity while they manipulate sensory stimulus representations of fMRI signals in "real-time". Here we report an fMRI NF study of brain activity associated with kinesthetic motor imagery (kMI), analyzed using partial least squares (PLS), a multivariate analysis technique. Thirteen healthy young adult subjects performed kMI involving each hand separately, with NF training targeting regions of interest (ROIs) in the left and right primary motor cortex (M1). Throughout, subjects attempted to maximize a laterality index (LI) of brain activity-the difference in activity between the contralateral ROI (relative to the hand involved in kMI) and the ipsilateral M1 ROI-while receiving real-time updates on a visual display. Six of 13 subjects were successful in increasing the LI value, whereas the other 7 were not successful and performed similarly to 5 control subjects who received sham NF training. Ability to suppress activity in the ipsilateral M1 ROI was the primary driver of successful NF performance. Multiple PLS analyses depicted activated networks of brain regions involved with imagery, self-awareness, and feedback processing, and additionally showed that activation of the task positive network was correlated with task performance. These results indicate that fMRI NF of kMI is capable of modulating brain activity in primary motor regions in a subset of the population. In the future, such methods may be useful in the development of NF training methods for enhancing motor rehabilitation following stroke. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Corticospinal tract atrophy and motor fMRI predict motor preservation after functional cerebral hemispherectomy.

    Science.gov (United States)

    Wang, Anthony C; Ibrahim, George M; Poliakov, Andrew V; Wang, Page I; Fallah, Aria; Mathern, Gary W; Buckley, Robert T; Collins, Kelly; Weil, Alexander G; Shurtleff, Hillary A; Warner, Molly H; Perez, Francisco A; Shaw, Dennis W; Wright, Jason N; Saneto, Russell P; Novotny, Edward J; Lee, Amy; Browd, Samuel R; Ojemann, Jeffrey G

    2018-01-01

    OBJECTIVE The potential loss of motor function after cerebral hemispherectomy is a common cause of anguish for patients, their families, and their physicians. The deficits these patients face are individually unique, but as a whole they provide a framework to understand the mechanisms underlying cortical reorganization of motor function. This study investigated whether preoperative functional MRI (fMRI) and diffusion tensor imaging (DTI) could predict the postoperative preservation of hand motor function. METHODS Thirteen independent reviewers analyzed sensorimotor fMRI and colored fractional anisotropy (CoFA)-DTI maps in 25 patients undergoing functional hemispherectomy for treatment of intractable seizures. Pre- and postoperative gross hand motor function were categorized and correlated with fMRI and DTI findings, specifically, abnormally located motor activation on fMRI and corticospinal tract atrophy on DTI. RESULTS Normal sensorimotor cortical activation on preoperative fMRI was significantly associated with severe decline in postoperative motor function, demonstrating 92.9% sensitivity (95% CI 0.661-0.998) and 100% specificity (95% CI 0.715-1.00). Bilaterally robust, symmetric corticospinal tracts on CoFA-DTI maps were significantly associated with severe postoperative motor decline, demonstrating 85.7% sensitivity (95% CI 0.572-0.982) and 100% specificity (95% CI 0.715-1.00). Interpreting the fMR images, the reviewers achieved a Fleiss' kappa coefficient (κ) for interrater agreement of κ = 0.69, indicating good agreement (p motor function can be identified prior to hemispherectomy, where fMRI or DTI suggests that cortical reorganization of motor function has occurred prior to the operation.

  13. The role of hearing ability and speech distortion in the facilitation of articulatory motor cortex.

    Science.gov (United States)

    Nuttall, Helen E; Kennedy-Higgins, Daniel; Devlin, Joseph T; Adank, Patti

    2017-01-08

    Excitability of articulatory motor cortex is facilitated when listening to speech in challenging conditions. Beyond this, however, we have little knowledge of what listener-specific and speech-specific factors engage articulatory facilitation during speech perception. For example, it is unknown whether speech motor activity is independent or dependent on the form of distortion in the speech signal. It is also unknown if speech motor facilitation is moderated by hearing ability. We investigated these questions in two experiments. We applied transcranial magnetic stimulation (TMS) to the lip area of primary motor cortex (M1) in young, normally hearing participants to test if lip M1 is sensitive to the quality (Experiment 1) or quantity (Experiment 2) of distortion in the speech signal, and if lip M1 facilitation relates to the hearing ability of the listener. Experiment 1 found that lip motor evoked potentials (MEPs) were larger during perception of motor-distorted speech that had been produced using a tongue depressor, and during perception of speech presented in background noise, relative to natural speech in quiet. Experiment 2 did not find evidence of motor system facilitation when speech was presented in noise at signal-to-noise ratios where speech intelligibility was at 50% or 75%, which were significantly less severe noise levels than used in Experiment 1. However, there was a significant interaction between noise condition and hearing ability, which indicated that when speech stimuli were correctly classified at 50%, speech motor facilitation was observed in individuals with better hearing, whereas individuals with relatively worse but still normal hearing showed more activation during perception of clear speech. These findings indicate that the motor system may be sensitive to the quantity, but not quality, of degradation in the speech signal. Data support the notion that motor cortex complements auditory cortex during speech perception, and point to a role

  14. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    NARCIS (Netherlands)

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral

  15. Effect of motor imagery in children with unilateral cerebral palsy: fMRI study.

    Science.gov (United States)

    Chinier, Eva; N'Guyen, Sylvie; Lignon, Grégoire; Ter Minassian, Aram; Richard, Isabelle; Dinomais, Mickaël

    2014-01-01

    Motor imagery is considered as a promising therapeutic tool for rehabilitation of motor planning problems in patients with cerebral palsy. However motor planning problems may lead to poor motor imagery ability. The aim of this functional magnetic resonance imaging study was to examine and compare brain activation following motor imagery tasks in patients with hemiplegic cerebral palsy with left or right early brain lesions. We tested also the influence of the side of imagined hand movement. Twenty patients with clinical hemiplegic cerebral palsy (sixteen males, mean age 12 years and 10 months, aged 6 years 10 months to 20 years 10 months) participated in this study. Using block design, brain activations following motor imagery of a simple opening-closing hand movement performed by either the paretic or nonparetic hand was examined. During motor imagery tasks, patients with early right brain damages activated bilateral fronto-parietal network that comprise most of the nodes of the network well described in healthy subjects. Inversely, in patients with left early brain lesion brain activation following motor imagery tasks was reduced, compared to patients with right brain lesions. We found also a weak influence of the side of imagined hand movement. Decreased activations following motor imagery in patients with right unilateral cerebral palsy highlight the dominance of the left hemisphere during motor imagery tasks. This study gives neuronal substrate to propose motor imagery tasks in unilateral cerebral palsy rehabilitation at least for patients with right brain lesions.

  16. Direction of movement is encoded in the human primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Carolien M Toxopeus

    Full Text Available The present study investigated how direction of hand movement, which is a well-described parameter in cerebral organization of motor control, is incorporated in the somatotopic representation of the manual effector system in the human primary motor cortex (M1. Using functional magnetic resonance imaging (fMRI and a manual step-tracking task we found that activation patterns related to movement in different directions were spatially disjoint within the representation area of the hand on M1. Foci of activation related to specific movement directions were segregated within the M1 hand area; activation related to direction 0° (right was located most laterally/superficially, whereas directions 180° (left and 270° (down elicited activation more medially within the hand area. Activation related to direction 90° was located between the other directions. Moreover, by investigating differences between activations related to movement along the horizontal (0°+180° and vertical (90°+270° axis, we found that activation related to the horizontal axis was located more anterolaterally/dorsally in M1 than for the vertical axis, supporting that activations related to individual movement directions are direction- and not muscle related. Our results of spatially segregated direction-related activations in M1 are in accordance with findings of recent fMRI studies on neural encoding of direction in human M1. Our results thus provide further evidence for a direct link between direction as an organizational principle in sensorimotor transformation and movement execution coded by effector representations in M1.

  17. A novel EEG-based brain mapping to determine cortical activation patterns in normal children and children with cerebral palsy during motor imagery tasks.

    Science.gov (United States)

    Shin, Yoon Kyum; Lee, Dong Ryul; Hwang, Han Jeong; You, Sung Joshua Hyun; Im, Chang Hwan

    2012-01-01

    The purpose of this study was to compare EEG topographical maps in normal children and children with cerebral palsy (CP) during motor execution and motor imagery tasks. Four normal children and four children with CP (mean age 11.6 years) were recruited from a community medical center. An EEG-based brain mapping system with 30 scalp sites (extended 10--20 system) was used to determine cortical reorganization in the regions of interest (ROIs) during four motor tasks: movement execution (ME), kinesthetic-motor imagery (KMI), observation of movement (OOM), and visual motor imagery (VMI). ROIs included the primary sensorimotor cortex (SMC), premotor cortex (PMC), and supplementary motor area (SMA). Descriptive analysis. Normal children showed increased SMC activation during the ME and KMI aswell as SMC and visual cortex (VC) activation during KMI. Children with CP showed similar activation in the SMC and other motor network areas (PMC, SMA, and VC). During the OOM and VMI tasks, the VC or occipital area were primarily activated in normal children, whereas the VC, SMC, and bilateral auditory areas were activated in children with CP. This is the first study demonstrating different neural substrates for motor imagery tasks in normal and children with CP.

  18. [Comparative experimental study of the influence of drugs that improve brain metabolism (angiogen, cytoflavin) on neuronal apoptosis and function of cerebral cortex during aging].

    Science.gov (United States)

    Bazhanova, E D; Anisimov, V N; Sukhanov, D S; Teplyĭ, D L

    2015-01-01

    The safety of cortical neurons and their functional activity is essential for organism at all stages of ontogenesis. However, aging changes leading to an increase in apoptosis level may cause considerable damage to cerebral cortex function, including sensorimotor. We have studied the role of exogenous neurometabolites (angiogen, cytoflavin) in apoptosis regulation and correction of age-related motor and behavioral disturbances. To study the regulation of neuronal morphofunctional activity, we used accelerate-senescent transgenic HER2 mice in comparison to wild type FBV mice. Functional changes in cerebral cortex were studied by the Suok test and open field test, the level of neuronal apoptosis was assessed by TUNEL method, the expression of apoptosis-modulating proteins was detected by immunohistochemistry and Western blotting. We have revealed differences in psycho-emotional and locomotor activity of these strains of mice. In addition, results of our study showed morphological differences: increase in the apoptosis level of cortical neurons in aged FBV type mice, but no changes in aged HER2 mice. The investigated drugs induce cell death of cortical neurons in transgenic mice of both ages and in young wild-type mice by p53-dependent pathway. Increased apoptosis in the cortex of old transgenic mice has important clinical implications, because reduced apoptosis during aging is one of the causes of cancer. The treatment of old wild-type animals reduces elevated neuronal apoptosis, which decreases risk of age neurodegeneration. Thus, revealed morphological changes in the cerebral cortex are the basis for involutional disabilities (including reduced locomotor activity and increased anxiety level). The use of angiogen and cytoflavin treatment improves functional activity of the cortex and protects normal structure of nervous tissue.

  19. Excitatory repetitive transcranial magnetic stimulation to left dorsal premotor cortex enhances motor consolidation of new skills

    OpenAIRE

    Boyd Lara A; Linsdell Meghan A

    2009-01-01

    Abstract Background Following practice of skilled movements, changes continue to take place in the brain that both strengthen and modify memory for motor learning. These changes represent motor memory consolidation a process whereby new memories are transformed from a fragile to a more permanent, robust and stable state. In the present study, the neural correlates of motor memory consolidation were probed using repetitive transcranial magnetic stimulation (rTMS) to the dorsal premotor cortex ...

  20. PDT-induced epigenetic changes in the mouse cerebral cortex: a protein microarray study.

    Science.gov (United States)

    Demyanenko, S V; Uzdensky, A B; Sharifulina, S A; Lapteva, T O; Polyakova, L P

    2014-01-01

    Photodynamic therapy (PDT) is used for cancer treatment including brain tumors. But the role of epigenetic processes in photodynamic injury of normal brain tissue is unknown. 5-Aminolevulinic acid (ALA), a precursor of protoporphyrin IX (PpIX), was used to photosensitize mouse cerebral cortex. PpIX accumulation in cortical tissue was measured spectrofluorometrically. Hematoxylin/eosin, gallocyanin-chromalum and immunohistochemical staining were used to study morphological changes in PDT-treated cerebral cortex. Proteomic antibody microarrays were used to evaluate expression of 112 proteins involved in epigenetic regulation. ALA administration induced 2.5-fold increase in the PpIX accumulation in the mouse brain cortex compared to untreated mice. Histological study demonstrated PDT-induced injury of some neurons and cortical vessels. ALA-PDT induced dimethylation of histone H3, upregulation of histone deacetylases HDAC-1 and HDAC-11, and DNA methylation-dependent protein Kaiso that suppressed transcriptional activity. Upregulation of HDAC-1 and H3K9me2 was confirmed immunohistochemically. Down-regulation of transcription factor FOXC2, PABP, and hBrm/hsnf2a negatively regulated transcription. Overexpression of phosphorylated histone H2AX indicated activation of DNA repair, but down-regulation of MTA1/MTA1L1 and PML - impairment of DNA repair. Overexpression of arginine methyltransferase PRMT5 correlated with up-regulation of transcription factor E2F4 and importin α5/7. ALA-PDT injures and kills some but not all neurons and caused limited microvascular alterations in the mouse cerebral cortex. It alters expression of some proteins involved in epigenetic regulation of transcription, histone modification, DNA repair, nuclear protein import, and proliferation. These data indicate epigenetic markers of photo-oxidative injury of normal brain tissue. © 2013.

  1. Specific metabolomics adaptations define a differential regional vulnerability in the adult human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Rosanna Cabré

    2016-12-01

    Full Text Available Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions—entorhinal cortex, hippocampus, and frontal cortex—using mass spectrometry-based technologies. Our results show the existence of a lessened energy demand, mitochondrial stress, and lower one-carbon metabolism (particularly restricted to the methionine cycle specifically in frontal cortex. These findings, along with the better antioxidant capacity and lower mTOR signaling also seen in frontal cortex, suggest that this brain region is especially resistant to stress compared to the entorhinal cortex and hippocampus, which are more vulnerable regions. Globally, our results show the presence of specific metabolomics adaptations in three mature, healthy human brain regions, confirming the existence of cross-regional differences in cell vulnerability in the human cerebral cortex.

  2. Human Development XI: The Structure of the Cerebral Cortex. Are There Really Modules in the Brain?

    Directory of Open Access Journals (Sweden)

    Tyge Dahl Hermansen

    2007-01-01

    Full Text Available The structure of human consciousness is thought to be closely connected to the structure of cerebral cortex. One of the most appreciated concepts in this regard is the Szanthagothei model of a modular building of neo-cortex. The modules are believed to organize brain activity pretty much like a computer. We looked at examples in the literature and argue that there is no significant evidence that supports Szanthagothei's model. We discuss the use of the limited genetic information, the corticocortical afferents termination and the columns in primary sensory cortex as arguments for the existence of the cortex-module. Further, we discuss the results of experiments with Luminization Microscopy (LM colouration of myalinized fibres, in which vertical bundles of afferent/efferent fibres that could support the cortex module are identified. We conclude that sensory maps seem not to be an expression for simple specific connectivity, but rather to be functional defined. We also conclude that evidence for the existence of the postulated module or column does not exist in the discussed material. This opens up for an important discussion of the brain as functionally directed by biological information (information-directed self-organisation, and for consciousness being closely linked to the structure of the universe at large. Consciousness is thus not a local phenomena limited to the brain, but a much more global phenomena connected to the wholeness of the world.

  3. Cerebral Cortex Hyperthyroidism of Newborn Mct8-Deficient Mice Transiently Suppressed by Lat2 Inactivation

    Science.gov (United States)

    Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M.; Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3′-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3′-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development. PMID:24819605

  4. Calabash Chalk's Geophagy Affects Gestating Rats' Behavior and the Histomorphology of the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Moses B. Ekong

    2014-01-01

    Full Text Available Introduction. Calabash chalk contains heavy metals, and this lead to this study on the effect of this chalk on the behavior and the histomorphology of the cerebral cortex of gestating rats. Material & Methods. 24 female rats were equally divided into 4 groups and were mated at preostrous with the males. The day after mating was designated as day 1 of gestation. On gestation days 7–20, groups 1, 2, 3, and 4 animals were treated with 1 mL of distilled water, and 1 mL (200 mg/kg, 2 mL (400 mg/kg, and 3 mL (600 mg/kg of calabash chalk suspension, respectively. On pregnancy day 21, behavioral tests using the open field and the light/dark mazes were carried out and the animals subsequently euthanized and their brains were routinely processed. Results. There was no difference in ambulatory activities, but group 4 animals had more (P<0.05 transition frequency and were more averse to the dark in the light and dark field, while sections of the cerebral cortex showed a higher (P<0.05 cellular population, hypertrophied pyramidal cells, and vacuolations in the treatment groups. Conclusion. Calabash chalk may have anxiolytic effect especially at high dose in the light and dark field but not in the open field and can stimulate maternal cerebral cortical cellular changes.

  5. Adenomatous polyposis coli is required for early events in the normal growth and differentiation of the developing cerebral cortex

    Directory of Open Access Journals (Sweden)

    Price David J

    2009-01-01

    Full Text Available Abstract Background Adenomatous polyposis coli (Apc is a large multifunctional protein known to be important for Wnt/β-catenin signalling, cytoskeletal dynamics, and cell polarity. In the developing cerebral cortex, Apc is expressed in proliferating cells and its expression increases as cells migrate to the cortical plate. We examined the consequences of loss of Apc function for the early development of the cerebral cortex. Results We used Emx1Cre to inactivate Apc specifically in proliferating cerebral cortical cells and their descendents starting from embryonic day 9.5. We observed reduction in the size of the mutant cerebral cortex, disruption to its organisation, and changes in the molecular identity of its cells. Loss of Apc leads to a decrease in the size of the proliferative pool, disrupted interkinetic nuclear migration, and increased apoptosis. β-Catenin, pericentrin, and N-cadherin proteins no longer adopt their normal high concentration at the apical surface of the cerebral cortical ventricular zone, indicating that cell polarity is disrupted. Consistent with enhanced Wnt/β-catenin signalling resulting from loss of Apc we found increased levels of TCF/LEF-dependent transcription and expression of endogenous Wnt/β-catenin target genes (Axin2 (conductin, Lef1, and c-myc in the mutant cerebral cortex. In the Apc mutant cerebral cortex the expression of transcription factors Foxg1, Pax6, Tbr1, and Tbr2 is drastically reduced compared to normal and many cells ectopically express Pax3, Wnt1, and Wt1 (but not Wnt2b, Wnt8b, Ptc, Gli1, Mash1, Olig2, or Islet1. This indicates that loss of Apc function causes cerebral cortical cells to lose their normal identity and redirect to fates normally found in more posterior-dorsal regions of the central nervous system. Conclusion Apc is required for multiple aspects of early cerebral cortical development, including the regulation of cell number, interkinetic nuclear migration, cell polarity, and

  6. Signs of timing in motor cortex during movement preparation and cue anticipation.

    Science.gov (United States)

    Kilavik, Bjørg Elisabeth; Confais, Joachim; Riehle, Alexa

    2014-01-01

    The capacity to accurately anticipate the timing of predictable events is essential for sensorimotor behavior. Motor cortex holds an established role in movement preparation and execution. In this chapter we review the different ways in which motor cortical activity is modulated by event timing in sensorimotor delay tasks. During movement preparation, both single neuron and population responses reflect the temporal constraints of the task. Anticipatory modulations prior to sensory cues are also observed in motor cortex when the cue timing is predictable. We propose that the motor cortical activity during cue anticipation and movement preparation is embedded in a timing network that facilitates sensorimotor processing. In this context, the pre-cue and post-cue activity may reflect a presetting mechanism, complementing processing during movement execution, while prohibiting premature responses in situations requiring delayed motor output.

  7. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study: e0151667

    National Research Council Canada - National Science Library

    William M Stern; Mahalekshmi Desikan; Damon Hoad; Fatima Jaffer; Gionata Strigaro; Josemir W Sander; John C Rothwell; Sanjay M Sisodiya

    2016-01-01

    .... Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms...

  8. The role of transcranial magnetic stimulation in evaluation of motor cortex excitability in Rett syndrome.

    Science.gov (United States)

    Krajnc, Natalija; Zidar, Janez

    2016-07-01

    Rett syndrome (RTT) is a frequent neurodevelopmental disorder confirmed by clinical criteria and supported by the methyl-CpG-binding protein 2 gene (MECP2) mutation. A short central motor conduction time (CMCT) was reported in transcranial magnetic stimulation (TMS) studies performed in RTT. This was attributed to hyperexcitability of the motor cortex and/or spinal motor neurons, but was not studied further. We performed TMS in RTT to evaluate motor cortex excitability by determining the cortical motor threshold (CMT) and motor cortex inhibition by the cortical silent period (CSP) besides measuring CMCT. Single-pulse TMS was performed in 17 Rett patients, diagnosed by clinical criteria and MECP2 mutation testing, and the same number of healthy controls. The outcome measures were compared between RTT groups with different antiepileptic drugs (AED) and those with and without the MECP2 mutation. CMCT was shorter, but we found elevated CMT and shorter CSP, which suggests decreased excitatory and inhibitory motor cortical function. The outcome was independent of AED and the presence or absence of the MECP2 mutation. Decreased excitatory and inhibitory motor cortical function could explain the short CMCT, with higher stimulus intensities needed to excite pyramidal neurons. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  9. Comparative neuroimaging in children with cerebral palsy using fMRI and a novel EEG-based brain mapping during a motor task--a preliminary investigation.

    Science.gov (United States)

    Lee, Jae Jin; Lee, Dong Ryul; Shin, Yoon Kyum; Lee, Nam Gi; Han, Bong S; You, Sung Joshua Hyun

    2013-01-01

    The purpose of this study was to compare topographical maps using a novel EEG-based brain mapping system with fMRI in normal and children with cerebral palsy (CP) during a grasping motor task. A normal child (mean ± SD = 13 ± 0 yrs) and four children with CP (mean ± SD = 10.25 ± 2.86 yrs) were recruited from a local community school and medical center. A novel EEG-based brain mapping system with 30 scalp sites (an extension of the 10-20 system) and a 3T MR scanner were used to observe cortical activation patterns during a grasping motor task. Descriptive analysis. In the EEG brain mapping data, the sensorimotor cortex (SMC) and inferior parietal cortex (IPC) were activated in all of the children. The children with CP showed additional activation areas in the premotor cortex (PMC), superior parietal cortex (SPC), and prefrontal cortex (PFC). In the fMRI brain mapping data, SMC activation was observed in all of the children, and the children with CP showed additional activation areas in the PMC and primary somatosensory cortex (PSC). The EEG-based topographical maps were equivalent to the maps obtained from fMRI during the grasping motor task. The results indicate that our novel EEG-based brain mapping system is useful for probing cortical activation patterns in normal children and children with CP.

  10. A Study on a Brain-Computer Interface for Motor Assist by Prefrontal Cortex

    Science.gov (United States)

    Misawa, Tadanobu; Takano, Shinya; Shimokawa, Tetsuya; Hirobayashi, Shigeki

    In recent times, considerable research has been conducted on the development of brain-computer interfaces (BCIs). Although there have been several reports on BCIs that assist motor functions by measurement of brain activity in the motor cortex, only a few studies have reported on BCI that assist motor functions by measurement of activity in areas other than the motor cortex. In this study, we experimentally develop a BCI that assists motor functions on the basis of brain activity in the prefrontal cortex. In this BCI system, subjects are shown the labyrinth problem. Concretely, brain activity is measured using fNIRS and the data are acquired in real time. The signal processing module implements low pass filtering of these signals. Further, the pattern classification module used in this system currently is a support vector machine. 22 subjects, both male and female, volunteered to participate in this experiment. 8 of these 22 subjects were able to solve the labyrinth problem. In this experiment, we could not obtain a high distinction. However, these results show that it is possible to develop BCI systems that assist motor functions using information from the prefrontal cortex.

  11. Functional magnetic resonance imaging of the primary motor cortex ...

    Indian Academy of Sciences (India)

    Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed ...

  12. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study.

    Science.gov (United States)

    Kim, Soyoung; Stephenson, Mary C; Morris, Peter G; Jackson, Stephen R

    2014-10-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and 'supervised' learning of internal 'forward' models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task. Copyright © 2014. Published by Elsevier Inc.

  13. A computational role for bistability and traveling waves in motor cortex

    Directory of Open Access Journals (Sweden)

    Stewart eHeitmann

    2012-09-01

    Full Text Available Adaptive changes in behavior require rapid changes in brain states yet the brain must also remain stable. We investigated two neural mechanisms for evoking rapid transitions between spatiotemporal synchronization patterns of beta oscillations (13--30Hz in motor cortex. Cortex was modeled as a sheet of neural oscillators that were spatially coupled using a center-surround connection topology. Manipulating the inhibitory surround was found to evoke reliable transitions between synchronous oscillation patterns and traveling waves. These transitions modulated the simulated local field potential in agreement with physiological observations in humans. Intermediate levels of surround inhibition were also found to produce bistable coupling topologies that supported both waves and synchrony. State-dependent perturbation between bistable states produced very rapid transitions but were less reliable. We surmise that motor cortex may thus employ state-dependent computation to achieve very rapid changes between bistable motor states when the demand for speed exceeds the demand for accuracy.

  14. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H.; Ben-Zvi, Ayal; Kaeser, Pascal S.; Xu, Xiaoyin; Costa, Luciano da F.; Gu, Chenghua

    2014-01-01

    SUMMARY Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals a novel feature of neurovascular interactions. PMID:25155955

  15. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex.

    Science.gov (United States)

    Lacoste, Baptiste; Comin, Cesar H; Ben-Zvi, Ayal; Kaeser, Pascal S; Xu, Xiaoyin; Costa, Luciano da F; Gu, Chenghua

    2014-09-03

    Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether or not neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals an important feature of neurovascular interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effect of. beta. -endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Slavnov, V.N.; Valueva, G.V.; Markov, V.V.; Luchitskii, E.V.

    1986-10-01

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus.

  17. [The expressional alterations of CSF-1R after ischemic injury of cerebral cortex].

    Science.gov (United States)

    Yu, Dong Hui; Liu, Shuang; Tian, Zeng-Min; Liu, Shu-Hong; Ge, Xue-Ming; Zhou, Chang-Man; Wang, Ya-Qi; Fan, Ming

    2008-02-01

    To observe the expressional alterations of colony stimulating factor-1 receptor (CSF-1R) after ischemic injury of cerebral cortex, and study the function of colony stimulating factor-1 (CSF-1)/CSF-1R signal during the process of ischemic injury and repair of central nervous system (CNS). We examined the distribution and expression of CSF-1R in normal brain tissues and ischemic brain tissues by immunohistology and Western blot analysis. The expression of CSF-1R in neurons could be up-regulated by ischemic injury in CNS. CSF-1/CSF-1R might take part in the process of ischemic injury and repair.

  18. Effect of camphor essential oil on rat cerebral cortex activity as manifested by fractal dimension changes

    Directory of Open Access Journals (Sweden)

    Grbić G.

    2008-01-01

    Full Text Available The aim of our study was to investigate the effect of camphor essential oil on rat cerebral cortex activity by fractal analysis. Fractal dimension (FD values of the parietal electrocortical activity were calculated before and after intra-peritoneal administration of camphor essential oil (450-675 μl/kg in anesthetized rats. Camphor oil induced seizure-like activity with single and multiple spiking of high amplitudes in the parietal electrocorticogram and occasional clonic limb convulsions. The FD values of cortical activity after camphor oil administration increased on the average. Only FD values of cortical ECoG sequences were lower than those before camphor oil administration.

  19. Effect of Skull Type on the Relative Size of Cerebral Cortex and Lateral Ventricles in Dogs

    DEFF Research Database (Denmark)

    Pilegaard, Anders M; Berendt, Mette; Holst, Pernille

    2017-01-01

    of age. We used a continuous variable, the cranial index (CrI) to indicate skull shape and compared it with MRI volume measurements derived using Cavalieri's principle. We found a negative correlation between CrI and the ratio of cortical to ventricular volume. Breeds with a high CrI (large laterolateral...... compared to rostrocaudal cranial cavity dimension) had a smaller ratio of cortical to ventricular volume (low C:V ratio) than breeds with lower CrI skull types. It is important to consider this effect of skull shape on the relative volume estimates of the cerebral cortex and ventricles when trying...

  20. Convection-enhanced delivery of AAV2 in white matter--a novel method for gene delivery to cerebral cortex.

    Science.gov (United States)

    Barua, N U; Woolley, M; Bienemann, A S; Johnson, D; Wyatt, M J; Irving, C; Lewis, O; Castrique, E; Gill, S S

    2013-10-30

    Convection-enhanced delivery (CED) is currently under investigation for delivering therapeutic agents to subcortical targets in the brain. Direct delivery of therapies to the cerebral cortex, however, remains a significant challenge. We describe a novel method of targeting adeno-associated viral vector (AAV) mediated gene therapies to specific cerebral cortical regions by performing high volume, high flow rate infusions into underlying white matter in a large animal (porcine) model. Infusion volumes of up to 700 μl at flow rates as high as 10 μl/min were successfully performed in white matter without adverse neurological sequelae. Co-infusion of AAV2/5-GFP with 0.2% Gadolinium in artificial CSF confirmed transgene expression in the deep layers of cerebral cortex overlying the infused areas of white matter. AAV-mediated gene therapies have been previously targeted to the cerebral cortex by performing intrathalamic CED and exploiting axonal transport. The novel method described in this study facilitates delivery of gene therapies to specific regions of the cerebral cortex without targeting deep brain structures. AAV-mediated gene therapies can be targeted to specific cortical regions by performing CED into underlying white matter. This technique could be applied to the treatment of neurological disorders characterised by cerebral cortical degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The effects of reflexology on constipation and motor functions in children with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Bulent Elbasan

    2018-02-01

    Conclusion: NGT improved motor performance in both groups and adding reflexology to therapy had a positive effect on constipation. We suggest applying reflexology to children with cerebral palsy who experience constipation problems.

  2. Supplementary motor complex and disturbed motor control – a retrospective clinical and lesion analysis of patients after anterior cerebral artery stroke

    Directory of Open Access Journals (Sweden)

    Florian eBrugger

    2015-10-01

    Full Text Available Background: Both the supplementary motor complex (SMC, consisting of the supplementary motor area (SMA-proper, the pre-SMA and the supplementary eye field, and the rostral cingulate cortex (ACC are supplied by the anterior cerebral artery (ACA and are involved in higher motor control. The Bereitschaftspotential (BP originates from the SMC and reflects cognitive preparation processes before volitional movements. ACA strokes may lead to impaired motor control in the absence of limb weakness and evoke an alien-hand syndrome (AHS in its extreme form.Aim: To characterize the clinical spectrum of disturbed motor control after ACA strokes including signs attributable to AHS and to identify the underlying neuroanatomical correlates.Methods: A clinical assessment focusing on signs of disturbed motor control including intermanual conflict (i.e. bilateral hand movements directed at opposite purposes, lack of self-initiated movements, exaggerated grasping, motor perseverations, mirror movements and gait apraxia was performed. Symptoms were grouped into A AHS specific and B non-AHS specific signs of upper limbs and C gait apraxia. Lesion summation mapping was applied to the patients’ MRI or CT scans to reveal associated lesion patterns. The BP was recorded in two patients.Results: Ten patients with ACA strokes (9 unilateral, 1 bilateral; mean age: 74.2 years; median NIH-SS at admission: 13.0 were included in this case series. In the acute stage, all cases had marked difficulties to perform volitional hand movements, while movements in response to external stimuli were preserved. In the chronic stage (median follow-up: 83.5 days initiation of voluntary movements improved, although all patients showed persistent signs of disturbed motor control. Impaired motor control is predominantly associated with damaged voxels within the SMC and the anterior and medial cingulate cortex, while lesions within the pre-SMA are specifically related to AHS. No BP was detected

  3. Oscillatory dynamics track motor performance improvement in human cortex.

    Directory of Open Access Journals (Sweden)

    Stefan Dürschmid

    Full Text Available Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go. Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta ([Formula: see text]; 4-8 Hz phase and high gamma (HG; 80-180 Hz amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45 were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the [Formula: see text] and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice.

  4. Oscillatory Dynamics Track Motor Performance Improvement in Human Cortex

    Science.gov (United States)

    Dürschmid, Stefan; Quandt, Fanny; Krämer, Ulrike M.; Hinrichs, Hermann; Heinze, Hans-Jochen; Schulz, Reinhard; Pannek, Heinz; Chang, Edward F.; Knight, Robert T.

    2014-01-01

    Improving performance in motor skill acquisition is proposed to be supported by tuning of neural networks. To address this issue we investigated changes of phase-amplitude cross-frequency coupling (paCFC) in neuronal networks during motor performance improvement. We recorded intracranially from subdural electrodes (electrocorticogram; ECoG) from 6 patients who learned 3 distinct motor tasks requiring coordination of finger movements with an external cue (serial response task, auditory motor coordination task, go/no-go). Performance improved in all subjects and all tasks during the first block and plateaued in subsequent blocks. Performance improvement was paralled by increasing neural changes in the trial-to-trial paCFC between theta (; 4–8 Hz) phase and high gamma (HG; 80–180 Hz) amplitude. Electrodes showing this covariation pattern (Pearson's r ranging up to .45) were located contralateral to the limb performing the task and were observed predominantly in motor brain regions. We observed stable paCFC when task performance asymptoted. Our results indicate that motor performance improvement is accompanied by adjustments in the dynamics and topology of neuronal network interactions in the and HG range. The location of the involved electrodes suggests that oscillatory dynamics in motor cortices support performance improvement with practice. PMID:24586885

  5. Motor imagery in REM sleep is increased by transcranial direct current stimulation of the left motor cortex (C3).

    Science.gov (United States)

    Speth, Jana; Speth, Clemens

    2016-06-01

    This study investigates if anodal transcranial direct current stimulation (tDCS) of areas above the motor cortex (C3) influences the quantity and quality of spontaneous motor imagery experienced in REM sleep. A randomized triple-blinded design was used, combining neurophysiological techniques with a tool of quantitative mentation report analysis developed from cognitive linguistics and generative grammar. The results indicate that more motor imagery, and more athletic motor imagery, is induced by anodal tDCS in comparison to cathodal and sham tDCS. This insight may have implications beyond basic consciousness research. Motor imagery in REM sleep has been hypothesized to serve the rehearsal of motor movements, which benefits later motor performance. Electrophysiological manipulations of motor imagery in REM sleep could in the long run be used for rehabilitative tDCS protocols benefitting temporarily immobile clinical patients, especially those who cannot perform specific motor imagery tasks - such as dementia patients, infants with developmental and motor disorders, and coma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. No modulatory effects by transcranial static magnetic field stimulation of human motor and somatosensory cortex.

    Science.gov (United States)

    Kufner, Marco; Brückner, Sabrina; Kammer, Thomas

    Recently, it was reported that the application of a static magnetic field by placing a strong permanent magnet over the scalp for 10 min led to an inhibition of motor cortex excitability for at least 6 min after removing the magnet. When placing the magnet over the somatosensory cortex, a similar inhibitory after effect could be observed as well. Our aim was to replicate the inhibitory effects of transcranial static magnetic field stimulation in the motor and somatosensory system. The modulatory effect of static magnetic field stimulation was investigated in three experiments. In two experiments motor cortex excitability was measured before and after 10 or 15 min of magnet application, respectively. The second experiment included a sham condition and was designed in a double-blinded manner. In a third experiment, paired-pulse SSEPs were measured pre and four times post positioning the magnet over the somatosensory cortex for 10 min on both hemispheres, respectively. The SSEPs of the non stimulated hemisphere served as control condition. We did not observe any systematic effect of the static magnetic field neither on motor cortex excitability nor on SSEPs. Moreover, no SSEP paired-pulse suppression was found. We provide a detailed analysis of possible confounding factors and differences to previous studies on tSMS. After all, our results could not confirm the static magnetic field effect. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Modulation of motor cortex excitability by physical similarity with an observed hand action.

    Directory of Open Access Journals (Sweden)

    Marie-Christine Désy

    Full Text Available The passive observation of hand actions is associated with increased motor cortex excitability, presumably reflecting activity within the human mirror neuron system (MNS. Recent data show that in-group ethnic membership increases motor cortex excitability during observation of culturally relevant hand gestures, suggesting that physical similarity with an observed body part may modulate MNS responses. Here, we ask whether the MNS is preferentially activated by passive observation of hand actions that are similar or dissimilar to self in terms of sex and skin color. Transcranial magnetic stimulation-induced motor evoked potentials were recorded from the first dorsal interosseus muscle while participants viewed videos depicting index finger movements made by female or male participants with black or white skin color. Forty-eight participants equally distributed in terms of sex and skin color participated in the study. Results show an interaction between self-attributes and physical attributes of the observed hand in the right motor cortex of female participants, where corticospinal excitability is increased during observation of hand actions in a different skin color than that of the observer. Our data show that specific physical properties of an observed action modulate motor cortex excitability and we hypothesize that in-group/out-group membership and self-related processes underlie these effects.

  8. Motor demand-dependent improvement in accuracy following low-frequency transcranial magnetic stimulation of left motor cortex.

    Science.gov (United States)

    Buetefisch, Cathrin M; Hines, Benjamin; Shuster, Linda; Pergami, Paola; Mathes, Adam

    2011-10-01

    The role of primary motor cortex (M1) in the control of voluntary movements is still unclear. In brain functional imaging studies of unilateral hand performance, bilateral M1 activation is inconsistently observed, and disruptions of M1 using repetitive transcranial magnetic stimulation (rTMS) lead to variable results in the hand motor performance. As the motor tasks differed qualitatively in these studies, it is conceivable that M1 contribution differs depending on the level of skillfulness. The objective of the present study was to determine whether M1 contribution to hand motor performance differed depending on the level of precision of the motor task. Here, we used low-frequency rTMS of left M1 to determine its effect on the performance of a pointing task that allows the parametric increase of the level of precision and thereby increase the level of required precision quantitatively. We found that low-frequency rTMS improved performance in both hands for the task with the highest demand on precision, whereas performance remained unchanged for the tasks with lower demands. These results suggest that the functional relevance of M1 activity for motor performance changes as a function of motor demand. The bilateral effect of rTMS to left M1 would also support the notion of M1 functions at a higher level in motor control by integrating afferent input from nonprimary motor areas.

  9. Rostral Agranular Insular Cortex Lesion with Motor Cortex Stimulation Enhances Pain Modulation Effect on Neuropathic Pain Model

    Directory of Open Access Journals (Sweden)

    Hyun Ho Jung

    2016-01-01

    Full Text Available It is well known that the insular cortex is involved in the processing of painful input. The aim of this study was to evaluate the pain modulation role of the insular cortex during motor cortex stimulation (MCS. After inducing neuropathic pain (NP rat models by the spared nerve injury method, we made a lesion on the rostral agranular insular cortex (RAIC unilaterally and compared behaviorally determined pain threshold and latency in 2 groups: Group A (NP + MCS; n=7 and Group B (NP + RAIC lesion + MCS; n=7. Also, we simultaneously recorded neuronal activity (NP; n=9 in the thalamus of the ventral posterolateral nucleus and RAIC to evaluate electrophysiological changes from MCS. The pain threshold and tolerance latency increased in Group A with “MCS on” and in Group B with or without “MCS on.” Moreover, its increase in Group B with “MCS on” was more than that of Group B without MCS or of Group A, suggesting that MCS and RAIC lesioning are involved in pain modulation. Compared with the “MCS off” condition, the “MCS on” induced significant threshold changes in an electrophysiological study. Our data suggest that the RAIC has its own pain modulation effect, which is influenced by MCS.

  10. Effect of streptozotocin-induced diabetes on motor representations in the motor cortex and corticospinal tract in rats.

    Science.gov (United States)

    Muramatsu, Ken; Ikutomo, Masako; Tamaki, Toru; Shimo, Satoshi; Niwa, Masatoshi

    2018-02-01

    Motor disorders in patients with diabetes are associated with diabetic peripheral neuropathy, which can lead to symptoms such as lower extremity weakness. However, it is unclear whether central motor system disorders can disrupt motor function in patients with diabetes. In a streptozotocin-induced rat model of type 1 diabetes, we used intracortical microstimulation to evaluate motor representations in the motor cortex, recorded antidromic motor cortex responses to spinal cord stimulation to evaluate the function of corticospinal tract (CST) axons, and used retrograde labeling to evaluate morphological alterations of CST neurons. The diabetic rats exhibited size reductions in the hindlimb area at 4 weeks and in trunk and forelimb areas after 13 weeks, with the hindlimb and trunk area reductions being the most severe. Other areas were unaffected. Additionally, we observed reduced antidromic responses in CST neurons with axons projecting to lumbar spinal segments (CST-L) but not in those with axons projecting to cervical segments (CST-C). This was consistent with the observation that retrograde-labeled CST-L neurons were decreased in number following tracer injection into the spinal cord in diabetic animals but that CST-C neurons were preserved. These results show that diabetes disrupts the CST system components controlling hindlimb and trunk movement. This disruption may contribute to lower extremity weakness in patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Assignment Confidence in Localization of the Hand Motor Cortex: Comparison of Structural Imaging With Functional MRI.

    Science.gov (United States)

    Sahin, Neslin; Mohan, Suyash; Maralani, Pejman J; Duddukuri, Srikalyan; O'Rourke, Donald M; Melhem, Elias R; Wolf, Ronald L

    2016-12-01

    The purpose of this study was to assign confidence levels to structural MRI and functional MRI (fMRI) for localization of the primary motor cortex. Ninety-one fMRI studies with at least one motor task (178 hemispheres) were identified. Three anatomic assessments were used to localize the primary motor cortex: relation between the superior frontal sulcus and precentral sulcus; cortical thickness; and configuration of the precentral knob. In 105 hemispheres, interreader agreement was assessed for two investigators with different experience levels. Confidence ratings from 0 to 5 (0, no confidence; 5, 100% confidence) were assigned for fMRI and each anatomic localization method. Cortical thickness had the highest confidence rating (mean, 4.90 ± 0.47 [SD]) with only one failure. The relation between the superior frontal sulcus and precentral sulcus had the lowest confidence rating (4.33 ± 0.91) with three failures. The greatest statistical significance was observed for the cortical thickness and superior frontal sulcus-precentral sulcus methods (post hoc Bonferroni test, p Confidence rating scores were significantly higher for the cortical thickness sign than for fMRI results (4.72 ± 0.54) for a single motor task (post hoc Bonferroni test, p = 0.006); however, the mean confidence rating for fMRI improved to 4.87 ± 0.36 when additional motor tasks were performed. Interreader differences were least for the cortical thickness sign (paired t test, t = 4.25, p confidence regarding localization of the primary motor cortex; however, localization of motor function is more specific when combined with fMRI findings. Multiple techniques can be used to increase confidence in identifying the hand motor cortex.

  12. Neural correlates of unihemispheric and bihemispheric motor cortex stimulation in healthy young adults.

    Science.gov (United States)

    Lindenberg, R; Sieg, M M; Meinzer, M; Nachtigall, L; Flöel, A

    2016-10-15

    Bihemispheric non-invasive motor cortex stimulation has shown promise for facilitating motor learning and recovery after stroke. However, previous studies yielded mixed results that can primarily be attributed to inter-individual variability in response. We therefore aimed at investigating neural correlates of bihemispheric transcranial direct current stimulation (tDCS) effects using multimodal magnetic resonance imaging (MRI). Twenty-four young healthy adults underwent diffusion tensor imaging (DTI), resting state and task-related functional MRI in a randomized sham-controlled, double-blind study using a triple cross-over design. We compared two active stimulation conditions-bihemispheric (or "dual") and unihemispheric anodal tDCS-with sham tDCS. The anode was placed over the left primary motor cortex in all conditions, and subgroups of responders were defined according to task-related activity in this area while subjects pressed a response button with their right index fingers during a choice reaction time task. Compared to sham, "dual responders" and "anodal responders" were characterized by mean beta value increases of 86±55% and 126±55%, respectively. In line with electrophysiological studies, tDCS effects on motor cortex activation appeared to be highly variable across the group. At rest, dual tDCS caused widespread bihemispheric alterations of functional connectivity, possibly mediating its most striking effect, which consisted of bilateral motor cortex disinhibition during the task-related functional MRI. In contrast, unihemispheric anodal tDCS was characterized by more local modulations of functional motor networks. As in aging and after stroke, the impact of dual tDCS on the motor system in young adults seems to depend on the microstructural status of transcallosal motor tracts as well. In sum, these results shed light on the neural correlates of dual and anodal tDCS effects in young adults and help in explaining the great inter-individual variability

  13. [Study of the facial nerve motor pathway with the transcranial cerebral magnetic stimulation technique].

    Science.gov (United States)

    Barona, R; Escudero, J; López-Trigo, J; Escudero, M; Armengot, M

    1992-01-01

    Transcranial magnetic stimulation method permits the study of the facial nerve in all its aspects (motor cortex-alpha moto-neurone-facial muscle) in an non invasive and painless way. We studied 12 patients using two levels of stimuli, the first was at an occipital level and the second at the primary motor cortex in the frontal lobe. We compared the results of this technique with those obtained by electric stimulation of the nerve.

  14. Does Cell Lineage in the Developing Cerebral Cortex Contribute to its Columnar Organization?

    Science.gov (United States)

    Costa, Marcos R.; Hedin-Pereira, Cecilia

    2010-01-01

    Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone (VZ) could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighboring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell–cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits. PMID:20676384

  15. Folding of the Cerebral Cortex Requires Cdk5 in Upper-Layer Neurons in Gyrencephalic Mammals

    Directory of Open Access Journals (Sweden)

    Yohei Shinmyo

    2017-08-01

    Full Text Available Folds in the cerebral cortex in mammals are believed to be key structures for accommodating increased cortical neurons in the cranial cavity. However, the mechanisms underlying cortical folding remain largely unknown, mainly because genetic manipulations for the gyrencephalic brain have been unavailable. By combining in utero electroporation and the CRISPR/Cas9 system, we succeeded in efficient gene knockout of Cdk5, which is mutated in some patients with classical lissencephaly, in the gyrencephalic brains of ferrets. We show that Cdk5 knockout in the ferret cerebral cortex markedly impaired cortical folding. Furthermore, the results obtained from the introduction of dominant-negative Cdk5 into specific cortical layers suggest that Cdk5 function in upper-layer neurons is more important for cortical folding than that in lower-layer neurons. Cdk5 inhibition induced severe migration defects in cortical neurons. Taken together, our findings suggest that the appropriate positioning of upper-layer neurons is critical for cortical folding.

  16. Effects of excess vitamin B6 intake on cerebral cortex neurons in rat: an ultrastructural study

    Directory of Open Access Journals (Sweden)

    Aysel Agar

    2011-08-01

    Full Text Available The aim of this study was to investigate whether excess of vitamin B6 leads to ultrastructural changes in cerebral cortex of forty-eight healthy albino rats which were included in the study. Saline solution was injected to to the control groups (CG-10, n=12 for 10 days; CG-15, n=12 for 15 days; CG-20, n=12 for 20 days. The three experimental groups (EG-10, n=12; EG-15, n=12; EG-20, n=12 were treated with 5 mg/kg vitamin B6 daily for 10 days (EG-10, 15 days (EG-15 and 20 days (EG-20. Brain tissues were prepared by glutaraldehyde-osmium tetroxide double fixation for ultrastructural analysis. No significant changes were observed in the control groups. The ultrastructural analysis revealed that the numbers of damaged mitochondria, lipofuscin granules and vacuoles were significantly higher in all the experimental groups than in the control groups (p<0.05. However, synaptic density was significantly decreased in the experimental groups as compared to the control groups (p<0.05. The results suggest that the excess of vitamin B6 intake causes damage to the cerebral cortex due to cellular intoxication and decreased synaptic density. Thus, careful attention should be paid to the time and dose of vitamin B6 recommended for patients who are supplemented with this vitamin

  17. Background norepinephrine primes astrocytic calcium responses to subsequent norepinephrine stimuli in the cerebral cortex.

    Science.gov (United States)

    Nuriya, Mutsuo; Takeuchi, Miyabi; Yasui, Masato

    2017-01-29

    Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This priming effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Causal interactions between the cerebral cortex and the autonomic nervous system.

    Science.gov (United States)

    Yu, XiaoLin; Zhang, Chong; Zhang, JianBao

    2014-05-01

    Mental states such as stress and anxiety can cause heart disease. On the other hand, meditation can improve cardiac performance. In this study, the heart rate variability, directed transfer function and corrected conditional entropy were used to investigate the effects of mental tasks on cardiac performance, and the functional coupling between the cerebral cortex and the heart. When subjects tried to decrease their heart rate by volition, the sympathetic nervous system was inhibited and the heart rate decreased. When subjects tried to increase their heart rate by volition, the parasympathetic nervous system was inhibited and the sympathetic nervous system was stimulated, and the heart rate increased. When autonomic nervous system activity was regulated by mental tasks, the information flow from the post-central areas to the pre-central areas of the cerebral cortex increased, and there was greater coupling between the brain and the heart. Use of directed transfer function and corrected conditional entropy techniques enabled analysis of electroencephalographic recordings, and of the information flow causing functional coupling between the brain and the heart.

  19. Epigallocatechin-3-gallate attenuates acrylamide-induced apoptosis and astrogliosis in rat cerebral cortex.

    Science.gov (United States)

    He, Yin; Tan, Dehong; Bai, Bing; Wu, Zhaoxia; Ji, Shujuan

    2017-05-01

    The potent neurotoxic agent acrylamide (ACR) is formed during Maillard reaction in food processing. Epigallocatechin-3-gallate (EGCG), a major bioactive component of green tea, is an antioxidant, but its effects on ACR-induced neurotoxicity are unclear. Here, we investigated the neuroprotective effects of EGCG against ACR-induced apoptosis and astrogliosis in the cerebral cortex. Rats were pretreated with EGCG for 4 d and then co-administered ACR for 14 d. Immunohistochemical analysis of glial fibrillary acidic protein and 8-hydroxy-2'-deoxyguanosine indicated that EGCG attenuated astrogliosis and DNA damage in ACR-treated rats. Analysis of DNA fragmentation and protein expression of Bax, Bcl-2, caspase 3, and cytochrome c revealed that EGCG inhibited ACR-induced apoptosis. Furthermore, EGCG inhibited oxidative stress by enhancing the activity of antioxidant enzymes and glutathione levels and reducing the formation of reactive oxygen species and lipid peroxidation. Taken together, our data demonstrate that EGCG inhibits ACR-induced apoptosis and astrogliosis in the cerebral cortex.

  20. Altered muscarinic receptor expression in the cerebral cortex of epileptic rats: Restorative role of Withania somnifera.

    Science.gov (United States)

    Anju, T R; Smijin, S; Mathew, Jobin; Paulose, C S

    2017-12-07

    Temporal Lobe Epilepsy involves a sequence of events which can lead to neurotransmitter signalling alterations. Many herbal extracts are considered as alternative therapeutic method for epilepsy management. In the present study, we investigated the effect of Withania somnifera (WS) root extract and Withanolide A (WA) in the management of Temporal Lobe Epilepsy. Confocal imaging of TOPRO-3 stained cortical sections showed severe damage in epileptic brain. We also observed a reduced antioxidant potential and increased peroxide level in epileptic group. Oxidative stress resulted in the down regulation of CREB, NF-κB and TNF-α with an up regulation of the apoptotic factors Caspase 8, 3 and bax in epileptic group. Epileptic condition also resulted in an increased muscarinic receptor binding and mRNA expression in the cerebral cortex. Withania somnifera and Withanolide A significantly reversed the altered muscarinic receptor expression and reversed the oxidative stress and resultant derailment in cell signalling. Thus our studies suggest that Withania somnifera and Withanolide A play an important role in central muscarinic receptor functional balance and activation of antioxidant system in the cerebral cortex of temporal lobe epileptic condition. These findings can be of immense therapeutic significance for epileptic management.

  1. Propofol Compared to Isoflurane Inhibits Mitochondrial Metabolism in Immature Swine Cerebral Cortex

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Atkinson, D. B.; Ledee, Dolena R.; Kayser, Ernst-Bernhard; Morgan, Phil G.; Sedensky, Margaret M.; Isern, Nancy G.; Des Rosiers, Christine; Portman, Michael A.

    2014-01-08

    Anesthetics used in infants and children are implicated in development of neurocognitive disorders. Although propofol induces neuroapoptosis in developing brain, the underlying mechanisms require elucidation and may have an energetic basis. We studied substrate utilization in an immature swine model anesthetized with either propofol or isoflurane for 4 hours. Piglets were infused with 13-Carbon labeled glucose and leucine in the common carotid artery in order to assess citric acid cycle (CAC) metabolism in the parietal cortex. The anesthetics produced similar systemic hemodynamics and cerebral oxygen saturation by near-infrared-spectroscopy. Compared to isoflurane, propofol depleted ATP and glycogen stores. Propofol also decreased pools of the CAC intermediates, citrate and α-ketoglutarate, while markedly increasing succinate along with decreasing mitochondrial complex II activity. Propofol also inhibited acetyl-CoA entry into the CAC through pyruvate dehydrogenase, while promoting glycolytic flux with marked accumulation of lactate. Although oxygen supply appeared similar between the anesthetic groups, propofol yielded a metabolic phenotype which resembled a hypoxic state. Propofol impairs substrate flux through the CAC in the immature cerebral cortex. These impairments occurred without systemic metabolic perturbations which typically accompany propofol infusion syndrome. These metabolic abnormalities may play a role in neurotoxity observed with propofol in the vulnerable immature brain.

  2. Does cell lineage in the developing cerebral cortex contribute to its columnar organization?

    Directory of Open Access Journals (Sweden)

    Marcos R Costa

    2010-06-01

    Full Text Available Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighbouring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell-cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits.

  3. Expression of sarcoglycans in the human cerebral cortex: an immunohistochemical and molecular study.

    Science.gov (United States)

    Anastasi, Giuseppe; Tomasello, Francesco; Di Mauro, Debora; Cutroneo, Giuseppina; Favaloro, Angelo; Conti, Alfredo; Ruggeri, Alessia; Rinaldi, Carmela; Trimarchi, Fabio

    2012-01-01

    The sarcoglycan (SG) complex (SGC) is a subcomplex within the dystrophin-glycoprotein complex (DGC) and is composed of several transmembrane proteins (α, β, δ, γ, ε and ζ). The DGC supplies a transmembranous connection between the subsarcolemmal cytoskeleton networks and the basal lamina in order to protect the lipid bilayer and to provide a scaffold for signaling molecules in all muscle cells. In addition to its role in muscle tissue, dystrophin and some DGC components are expressed in neurons and glia. Very little is known about the SG subunits in the central nervous system (CNS) and some data suggested the presence of ε and ζ subunits only. In fact, mutations in the ε-SG gene cause myoclonus-dystonia, indicating its importance for brain function. To determine the presence and localization of SGC in the human cerebral cortex, we performed an investigation using immunofluorescence, immunoblotting and reverse transcriptase polymerase chain reaction. The results showed that all SG subunits are expressed in the human cerebral cortex, particularly in large neurons but also in astrocytes. These data suggest that the SG subcomplex may be involved in the organization of CNS synapses. Copyright © 2012 S. Karger AG, Basel.

  4. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke; Jin, Seung-Hyun; Joutsen, Atte

    2012-01-01

    Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants...... performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC-M1...... are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC-M1 connectivity returns to baseline....

  5. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Jin, Seung-Hyun; Joutsen, Atte

    2012-01-01

    Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants...... performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC-M1...... are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC-M1 connectivity returns to baseline...

  6. Explicit and implicit motor learning in children with unilateral cerebral palsy.

    Science.gov (United States)

    van der Kamp, John; Steenbergen, Bert; Masters, Rich S W

    2017-07-30

    The current study aimed to investigate the capacity for explicit and implicit learning in children with unilateral cerebral palsy. Children with left and right unilateral cerebral palsy and typically developing children shuffled disks toward a target. A prism-adaptation design was implemented, consisting of pre-exposure, prism exposure, and post-exposure phases. Half of the participants were instructed about the function of the prism glasses, while the other half were not. For each trial, the distance between the target and the shuffled disk was determined. Explicit learning was indicated by the rate of adaptation during the prism exposure phase, whereas implicit learning was indicated by the magnitude of the negative after-effect at the start of the post-exposure phase. Results No significant effects were revealed between typically developing participants and participants with unilateral cerebral palsy. Comparison of participants with left and right unilateral cerebral palsy demonstrated that participants with right unilateral cerebral palsy had a significantly lower rate of adaptation than participants with left unilateral cerebral palsy, but only when no instructions were provided. The magnitude of the negative after-effects did not differ significantly between participants with right and left unilateral cerebral palsy. The capacity for explicit motor learning is reduced among individuals with right unilateral cerebral palsy when accumulation of declarative knowledge is unguided (i.e., discovery learning). In contrast, the capacity for implicit learning appears to remain intact among individuals with left as well as right unilateral cerebral palsy. Implications for rehabilitation Implicit motor learning interventions are recommended for individuals with cerebral palsy, particularly for individuals with right unilateral cerebral palsy Explicit motor learning interventions for individual with cerebral palsy - if used - best consist of singular verbal instruction.

  7. Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Liuba Papeo

    Full Text Available The embodied cognition hypothesis suggests that motor and premotor areas are automatically and necessarily involved in understanding action language, as word conceptual representations are embodied. This transcranial magnetic stimulation (TMS study explores the role of the left primary motor cortex in action-verb processing. TMS-induced motor-evoked potentials from right-hand muscles were recorded as a measure of M1 activity, while participants were asked either to judge explicitly whether a verb was action-related (semantic task or to decide on the number of syllables in a verb (syllabic task. TMS was applied in three different experiments at 170, 350 and 500 ms post-stimulus during both tasks to identify when the enhancement of M1 activity occurred during word processing. The delays between stimulus onset and magnetic stimulation were consistent with electrophysiological studies, suggesting that word recognition can be differentiated into early (within 200 ms and late (within 400 ms lexical-semantic stages, and post-conceptual stages. Reaction times and accuracy were recorded to measure the extent to which the participants' linguistic performance was affected by the interference of TMS with M1 activity. No enhancement of M1 activity specific for action verbs was found at 170 and 350 ms post-stimulus, when lexical-semantic processes are presumed to occur (Experiments 1-2. When TMS was applied at 500 ms post-stimulus (Experiment 3, processing action verbs, compared with non-action verbs, increased the M1-activity in the semantic task and decreased it in the syllabic task. This effect was specific for hand-action verbs and was not observed for action-verbs related to other body parts. Neither accuracy nor RTs were affected by TMS. These findings suggest that the lexical-semantic processing of action verbs does not automatically activate the M1. This area seems to be rather involved in post-conceptual processing that follows the retrieval of motor

  8. Effects of TMS on Different Stages of Motor and Non-Motor Verb Processing in the Primary Motor Cortex

    Science.gov (United States)

    Papeo, Liuba; Vallesi, Antonino; Isaja, Alessio; Rumiati, Raffaella Ida

    2009-01-01

    The embodied cognition hypothesis suggests that motor and premotor areas are automatically and necessarily involved in understanding action language, as word conceptual representations are embodied. This transcranial magnetic stimulation (TMS) study explores the role of the left primary motor cortex in action-verb processing. TMS-induced motor-evoked potentials from right-hand muscles were recorded as a measure of M1 activity, while participants were asked either to judge explicitly whether a verb was action-related (semantic task) or to decide on the number of syllables in a verb (syllabic task). TMS was applied in three different experiments at 170, 350 and 500 ms post-stimulus during both tasks to identify when the enhancement of M1 activity occurred during word processing. The delays between stimulus onset and magnetic stimulation were consistent with electrophysiological studies, suggesting that word recognition can be differentiated into early (within 200 ms) and late (within 400 ms) lexical-semantic stages, and post-conceptual stages. Reaction times and accuracy were recorded to measure the extent to which the participants' linguistic performance was affected by the interference of TMS with M1 activity. No enhancement of M1 activity specific for action verbs was found at 170 and 350 ms post-stimulus, when lexical-semantic processes are presumed to occur (Experiments 1–2). When TMS was applied at 500 ms post-stimulus (Experiment 3), processing action verbs, compared with non-action verbs, increased the M1-activity in the semantic task and decreased it in the syllabic task. This effect was specific for hand-action verbs and was not observed for action-verbs related to other body parts. Neither accuracy nor RTs were affected by TMS. These findings suggest that the lexical-semantic processing of action verbs does not automatically activate the M1. This area seems to be rather involved in post-conceptual processing that follows the retrieval of motor

  9. The lizard cerebral cortex as a model to study neuronal regeneration

    Directory of Open Access Journals (Sweden)

    CARLOS LOPEZ-GARCIA

    2002-03-01

    Full Text Available The medial cerebral cortex of lizards, an area homologous to the hippocampal fascia dentata, shows delayed postnatal neurogenesis, i.e., cells in the medial cortex ependyma proliferate and give rise to immature neurons, which migrate to the cell layer. There, recruited neurons differentiate and give rise to zinc containing axons directed to the rest of cortical areas, thus resulting in a continuous growth of the medial cortex and its zinc-enriched axonal projection. This happens along the lizard life span, even in adult lizards, thus allowing one of their most important characteristics: neuronal regeneration. Experiments in our laboratory have shown that chemical lesion of the medial cortex (affecting up to 95% of its neurons results in a cascade of events: first, massive neuronal death and axonal-dendritic retraction and, secondly, triggered ependymal-neuroblast proliferation and subsequent neo-histogenesis and regeneration of an almost new medial cortex, indistinguishable from a normal undamaged one. This is the only case to our knowledge of the regeneration of an amniote central nervous centre by new neuron production and neo-histogenesis. Thus the lizard cerebral cortex is a good model to study neuronal regeneration and the complex factors that regulate its neurogenetic, migratory and neo-synaptogenetic events.O córtex cerebral de lagartos, uma área homóloga à fascia dentata hipocampal, exibe neurogênese pós-natal prolongada, isto é, o epêndima do córtex medial prolifera e dá origem a neurônios imaturos, que migram para a camada celular. Nesta camada, neurônios recrutados se diferenciam e dão origem a axônios, ricos em zinco, que se projetam para as demais áreas corticais, do que resulta um crescimento contínuo do córtex medial e sua projeção axonal. Isto acontece por toda a vida do lagarto, mesmo em animais adultos, o que permite uma de suas características mais importantes: a regeneração neuronal. Experimentos em

  10. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    2011-03-01

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  11. Functional magnetic resonance imaging of the primary motor cortex ...

    Indian Academy of Sciences (India)

    Unknown

    brain is able to control the muscles in the body in a pre- cise and efficient way. Motor function is controlled ..... fatigue, since the volunteer expressed difficulty in tap- ping, though he continued the task till the end of ... muscle during execution of slow and fast tapping (Blinken- berg et al 1996). The area of activation within the ...

  12. Assessment of motor imagery in cerebral palsy via mental chronometry: The case of walking

    NARCIS (Netherlands)

    Spruijt, S.; Jouen, F.; Molina, M.; Kudlinski, C.; Guilbert, J.; Steenbergen, B.

    2013-01-01

    Recent studies show varying results on whether motor imagery capacity is compromised in individuals with cerebral palsy (CP). Motor imagery studies in children predominantly used the implicit hand laterality task. In this task participants judge the laterality of displayed hand stimuli. A more

  13. Assessment of motor imagery in cerebral palsy via mental chronometry: The case of walking.

    NARCIS (Netherlands)

    Spruijt, S.; Jouen, F.; Molina, M.; Kudlinski, C.; Guilbert, J.; Steenbergen, B.

    2013-01-01

    Recent studies show varying results on whether motor imagery capacity is compromised in individuals with cerebral palsy (CP). Motor imagery studies in children predominantly used the implicit hand laterality task. In this task participants judge the laterality of displayed hand stimuli. A more

  14. Severity of motor dysfunction in children with cerebral palsy seen in ...

    African Journals Online (AJOL)

    Abstract. Introduction: Children with cerebral palsy (CP) have gross motor dysfunction (GMD) of varying degrees of severity. The Gross Motor Function Classification System (GMFCS) is widely used internationally to classify children with CP into functional severity levels. There are few reports on the use of GMFCS in Nigeria ...

  15. Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery

    Directory of Open Access Journals (Sweden)

    Maria Laura eBlefari

    2015-02-01

    Full Text Available Motor imagery (MI has shown effectiveness in enhancing motor performance. This may be due to the common neural mechanisms underlying MI and motor execution (ME. The main region of the ME network, the primary motor cortex (M1, has been consistently linked to motor performance. However, the activation of M1 during motor imagery is controversial, which may account for inconsistent rehabilitation therapy outcomes using MI. Here, we examined the relationship between contralateral M1 (cM1 activation during MI and changes in sensorimotor performance. To aid cM1 activity modulation during MI, we used real-time fMRI neurofeedback-guided MI based on cM1 hand area blood oxygen level dependent (BOLD signal in healthy subjects, performing kinesthetic MI of pinching. We used multiple regression analysis to examine the correlation between cM1 BOLD signal and changes in motor performance during an isometric pinching task of those subjects who were able to activate cM1 during motor imagery. Activities in premotor and parietal regions were used as covariates. We found that cM1 activity was positively correlated to improvements in accuracy as well as overall performance improvements, whereas other regions in the sensorimotor network were not. The association between cM1 activation during MI with performance changes indicates that subjects with stronger cM1 activation during MI may benefit more from MI training, with implications towards targeted neurotherapy.

  16. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study.

    Science.gov (United States)

    Stern, William M; Desikan, Mahalekshmi; Hoad, Damon; Jaffer, Fatima; Strigaro, Gionata; Sander, Josemir W; Rothwell, John C; Sisodiya, Sanjay M

    2016-01-01

    Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity.

  17. Double representation of the wrist and elbow in human motor cortex

    NARCIS (Netherlands)

    Strother, L.; Medendorp, W.P.; Coros, A.M.; Vilis, T.

    2012-01-01

    Movements of the fingers, hand and arm involve overlapping neural representations in primary motor cortex (M1). Monkey M1 exhibits a coresurround organisation in which cortical representation of the hand and fingers is surrounded by representations of the wrist, elbow and shoulder. A potentially

  18. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study

    Science.gov (United States)

    Stern, William M.; Desikan, Mahalekshmi; Hoad, Damon; Jaffer, Fatima; Strigaro, Gionata; Sander, Josemir W.; Rothwell, John C.; Sisodiya, Sanjay M.

    2016-01-01

    Background Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. Methods We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. Results One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. Conclusions We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity. PMID:26999520

  19. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study.

    Directory of Open Access Journals (Sweden)

    William M Stern

    Full Text Available Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities.We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used.One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls.We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity.

  20. Microvasculature of the Mouse Cerebral Cortex Exhibits Increased Accumulation and Synthesis of Hyaluronan With Aging.

    Science.gov (United States)

    Reed, May J; Vernon, Robert B; Damodarasamy, Mamatha; Chan, Christina K; Wight, Thomas N; Bentov, Itay; Banks, William A

    2017-06-01

    The microvasculature of the aged brain is less dense and more vulnerable to dysfunction than that of the young brain. Brain microvasculature is supported by its surrounding extracellular matrix, which is comprised largely of hyaluronan (HA). HA is continually degraded into lower molecular weight forms that induce neuroinflammation. We examined HA associated with microvessels (MV) of the cerebral cortex of young (4 months), middle-aged (14 months), and aged (24-26 months) mice. We confirmed that the density of cortical MV decreased with age. Perivascular HA levels increased with age, but there was no age-associated change in HA molecular weight profile. MV isolated from aged cortex had more HA than MV from young cortex. Examination of mechanisms that might account for elevated HA levels with aging showed increased HA synthase 2 (HAS2) mRNA and protein in aged MV relative to young MV. In contrast, mRNAs for HA-degrading hyaluronidases or hyaladherins that mitigate HA degradation showed no changes with age. Corresponding to increased HAS2, aged MV synthesized significantly more HA (of all molecular weight classes) in vitro than young MV. We propose that increased HA synthesis and accumulation in brain MV contributes to neuroinflammation and reduced MV density and function in aging. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Spatiotemporal Organization and Cross-Frequency Coupling of Sleep Spindles in Primate Cerebral Cortex

    Science.gov (United States)

    Takeuchi, Saori; Murai, Rie; Shimazu, Hideki; Isomura, Yoshikazu; Mima, Tatsuya; Tsujimoto, Toru

    2016-01-01

    Study Objectives: The sleep spindle has been implicated in thalamic sensory gating, cortical development, and memory consolidation. These multiple functions may depend on specific spatiotemporal emergence and interactions with other spindles and other forms of brain activity. Therefore, we measured sleep spindle cortical distribution, regional heterogeneity, synchronization, and phase relationships with other electroencephalographic components in freely moving primates. Methods: Transcortical field potentials were recorded from Japanese monkeys via telemetry and were analyzed using the Hilbert-Huang transform. Results: Spindle (12–20 Hz) current sources were identified over a wide region of the frontoparietal cortex. Most spindles occurred independently in their own frequency, but some appeared concordant between cortical areas with frequency interdependence, particularly in nearby regions and bilaterally symmetrical regions. Spindles in the dorsolateral prefrontal cortex appeared around the surface-positive and depth-negative phase of transcortically recorded slow oscillations (generators, but are temporally associated to spindles in other regions and to slow and gamma oscillations by corticocortical and thalamocortical pathways. Citation: Takeuchi S, Murai R, Shimazu H, Isomura Y, Mima T, Tsujimoto T. Spatiotemporal organization and cross-frequency coupling of sleep spindles in primate cerebral cortex. SLEEP 2016;39(9):1719–1735. PMID:27397568

  2. Reproducibility of T2 * mapping in the human cerebral cortex in vivo at 7 tesla MRI.

    Science.gov (United States)

    Govindarajan, Sindhuja T; Cohen-Adad, Julien; Sormani, Maria Pia; Fan, Audrey P; Louapre, Céline; Mainero, Caterina

    2015-08-01

    To assess the test-retest reproducibility of cortical mapping of T2 * relaxation rates at 7 Tesla (T) MRI. T2 * maps have been used for studying cortical myelo-architecture patterns in vivo and for characterizing conditions associated with changes in iron and/or myelin concentration. T2 * maps were calculated from 7T multi-echo T2 *-weighted images acquired during separate scanning sessions on 8 healthy subjects. The reproducibility of surface-based cortical T2 * mapping was assessed at different depths of the cortex; from pial surface (0% depth) towards gray/white matter boundary (100% depth), across cortical regions and hemispheres, using coefficients of variation (COVs = SD/mean) between each couple (scan-rescan) of average T2 * measurements. Average cortical T2 * was significantly different among 25%, 50%, and 75% depths (analysis of variance, P < 0.001). Coefficient of variations were very low within cortical regions, and whole cortex (average COV = 0.83-1.79%), indicating a high degree of reproducibility in T2 * measures. Surface-based mapping of T2 * relaxation rates as a function of cortical depth is reproducible and could prove useful for studying the laminar architecture of the cerebral cortex in vivo, and for investigating physiological and pathological states associated with changes in iron and/or myelin concentration. © 2014 Wiley Periodicals, Inc.

  3. tDCS over the motor cortex improves lexical retrieval of action words in poststroke aphasia.

    Science.gov (United States)

    Branscheidt, Meret; Hoppe, Julia; Zwitserlood, Pienie; Liuzzi, Gianpiero

    2018-02-01

    One-third of stroke survivors worldwide suffer from aphasia. Speech and language therapy (SLT) is considered effective in treating aphasia, but because of time constraints, improvements are often limited. Noninvasive brain stimulation is a promising adjuvant strategy to facilitate SLT. However, stroke might render "classical" language regions ineffective as stimulation sites. Recent work showed the effectiveness of motor cortex stimulation together with intensive naming therapy to improve outcomes in aphasia (Meinzer et al. 2016). Although that study highlights the involvement of the motor cortex, the functional aspects by which it influences language remain unclear. In the present study, we focus on the role of motor cortex in language, investigating its functional involvement in access to specific lexico-semantic (object vs. action relatedness) information in poststroke aphasia. To this end, we tested effects of anodal transcranial direct current stimulation (tDCS) to the left motor cortex on lexical retrieval in 16 patients with poststroke aphasia in a sham-controlled, double-blind study design. Critical stimuli were action and object words, and pseudowords. Participants performed a lexical decision task, deciding whether stimuli were words or pseudowords. Anodal tDCS improved accuracy in lexical decision, especially for words with action-related content and for pseudowords with an "action-like" ending ( t 15  = 2.65, P = 0.036), but not for words with object-related content and pseudowords with "object-like" characteristics. We show as a proof-of-principle that the motor cortex may play a specific role in access to lexico-semantic content. Thus motor-cortex stimulation may strengthen content-specific word-to-semantic concept associations during language treatment in poststroke aphasia. NEW & NOTEWORTHY The role of motor cortex (MC) in language processing has been debated in both health and disease. Recent work has suggested that MC stimulation together with

  4. Low Intensity Focused tDCS Over the Motor Cortex Shows Inefficacy to Improve Motor Imagery Performance

    Directory of Open Access Journals (Sweden)

    Irma N. Angulo-Sherman

    2017-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a brain stimulation technique that can enhance motor activity by stimulating the motor path. Thus, tDCS has the potential of improving the performance of brain-computer interfaces during motor neurorehabilitation. tDCS effects depend on several aspects, including the current density, which usually varies between 0.02 and 0.08 mA/cm2, and the location of the stimulation electrodes. Hence, testing tDCS montages at several current levels would allow the selection of current parameters for improving stimulation outcomes and the comparison of montages. In a previous study, we found that cortico-cerebellar tDCS shows potential of enhancing right-hand motor imagery. In this paper, we aim to evaluate the effects of the focal stimulation of the motor cortex over motor imagery. In particular, the effect of supplying tDCS with a 4 × 1 ring montage, which consists in placing an anode on the motor cortex and four cathodes around it, over motor imagery was assessed with different current densities. Electroencephalographic (EEG classification into rest or right-hand/feet motor imagery was evaluated on five healthy subjects for two stimulation schemes: applying tDCS for 10 min on the (1 right-hand or (2 feet motor cortex before EEG recording. Accuracy differences related to the tDCS intensity, as well as μ and β band power changes, were tested for each subject and tDCS modality. In addition, a simulation of the electric field induced by the montage was used to describe its effect on the brain. Results show no improvement trends on classification for the evaluated currents, which is in accordance with the observation of variable EEG band power results despite the focused stimulation. The lack of effects is probably related to the underestimation of the current intensity required to apply a particular current density for small electrodes and the relatively short inter-electrode distance. Hence, higher current

  5. Comparison of language cortex reorganization patterns between cerebral arteriovenous malformations and gliomas: a functional MRI study.

    Science.gov (United States)

    Deng, Xiaofeng; Zhang, Yan; Xu, Long; Wang, Bo; Wang, Shuo; Wu, Jun; Zhang, Dong; Wang, Rong; Wang, Jia; Zhao, Jizong

    2015-05-01

    OBJECT Cerebral arteriovenous malformations (AVMs) are congenital malformations that may grow in the language cortex but usually do not lead to aphasia. In contrast, language dysfunction is a common presentation for patients with a glioma that involves language areas. The authors attempted to demonstrate the difference in patterns of language cortex reorganization between cerebral AVMs and gliomas by blood oxygen level-dependent (BOLD) functional MRI (fMRI) evaluation. METHODS The authors retrospectively reviewed clinical and imaging data of 63 patients with an unruptured cerebral AVM (AVM group) and 38 patients with a glioma (glioma group) who underwent fMRI. All the patients were right handed, and all their lesions were located in the left cerebral hemisphere. Patients were further categorized into 1 of the 2 following subgroups according to their lesion location: the BA subgroup (overlying or adjacent to the inferior frontal or the middle frontal gyri [the Broca area]) and the WA subgroup (overlying or adjacent to the supramarginal, angular, or superior temporal gyri [the Wernicke area]). Lateralization indices of BOLD signal activations were calculated separately for the Broca and Wernicke areas. Statistical analysis was performed to identify the difference in patterns of language cortex reorganization between the 2 groups. RESULTS In the AVM group, right-sided lateralization of BOLD signal activations was observed in 23 patients (36.5%), including 6 with right-sided lateralization in the Broca area alone, 12 in the Wernicke area alone, and 5 in both areas. More specifically, in the 34 patients in the AVM-BA subgroup, right-sided lateralization of the Broca area was detected in 9 patients (26.5%), and right-sided lateralization of the Wernicke area was detected in 4 (11.8%); in the 29 patients in the AVM-WA subgroup, 2 (6.9%) had right-sided lateralization of the Broca area, and 13 (44.8%) had right-sided lateralization of the Wernicke area. In the glioma group

  6. Motor cortex representation of the upper-limb in individuals born without a hand.

    Directory of Open Access Journals (Sweden)

    Karen T Reilly

    Full Text Available The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS applied over the primary motor cortex (M1 of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1 whether we could evoke phantom sensations, and 2 whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex.

  7. Potential mechanisms supporting the value of motor cortex stimulation to treat chronic pain syndromes

    Directory of Open Access Journals (Sweden)

    Marcos Fabio DosSantos

    2016-02-01

    Full Text Available Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS, transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary motor cortex stimulation to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1 modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g. glutamate, GABA and serotonin as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of motor cortex stimulation to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g. tDCS and TMS, which are analyzed comparatively.

  8. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain.

    Science.gov (United States)

    Karl, A; Birbaumer, N; Lutzenberger, W; Cohen, L G; Flor, H

    2001-05-15

    Phantom limb pain (PLP) in amputees is associated with reorganizational changes in the somatosensory system. To investigate the relationship between somatosensory and motor reorganization and phantom limb pain, we used focal transcranial magnetic stimulation (TMS) of the motor cortex and neuroelectric source imaging of the somatosensory cortex (SI) in patients with and without phantom limb pain. For transcranial magnetic stimulation, recordings were made bilaterally from the biceps brachii, zygomaticus, and depressor labii inferioris muscles. Neuroelectric source imaging of the EEG was obtained after somatosensory stimulation of the skin overlying face and hand. Patients with phantom limb pain had larger motor-evoked potentials from the biceps brachii, and the map of outputs was larger for muscles on the amputated side compared with the intact side. The optimal scalp positions for stimulation of the zygomaticus and depressor labii inferioris muscles were displaced significantly more medially (toward the missing hand representation) in patients with phantom limb pain only. Neuroelectric source imaging revealed a similar medial displacement of the dipole center for face stimulation in patients with phantom limb pain. There was a high correlation between the magnitude of the shift of the cortical representation of the mouth into the hand area in motor and somatosensory cortex and phantom limb pain. These results show enhanced plasticity in both the motor and somatosensory domains in amputees with phantom limb pain.

  9. No evidence of somatotopic place of articulation feature mapping in motor cortex during passive speech perception.

    Science.gov (United States)

    Arsenault, Jessica S; Buchsbaum, Bradley R

    2016-08-01

    The motor theory of speech perception has experienced a recent revival due to a number of studies implicating the motor system during speech perception. In a key study, Pulvermüller et al. (2006) showed that premotor/motor cortex differentially responds to the passive auditory perception of lip and tongue speech sounds. However, no study has yet attempted to replicate this important finding from nearly a decade ago. The objective of the current study was to replicate the principal finding of Pulvermüller et al. (2006) and generalize it to a larger set of speech tokens while applying a more powerful statistical approach using multivariate pattern analysis (MVPA). Participants performed an articulatory localizer as well as a speech perception task where they passively listened to a set of eight syllables while undergoing fMRI. Both univariate and multivariate analyses failed to find evidence for somatotopic coding in motor or premotor cortex during speech perception. Positive evidence for the null hypothesis was further confirmed by Bayesian analyses. Results consistently show that while the lip and tongue areas of the motor cortex are sensitive to movements of the articulators, they do not appear to preferentially respond to labial and alveolar speech sounds during passive speech perception.

  10. Autologous adult cortical cell transplantation enhances functional recovery following unilateral lesion of motor cortex in primates: a pilot study.

    Science.gov (United States)

    Kaeser, Mélanie; Brunet, Jean-François; Wyss, Alexander; Belhaj-Saif, Abderraouf; Liu, Yu; Hamadjida, Adjia; Rouiller, Eric M; Bloch, Jocelyne

    2011-05-01

    Although cell therapy is a promising approach after cerebral cortex lesion, few studies assess quantitatively its behavioral gain in nonhuman primates. Furthermore, implantations of fetal grafts of exogenous stem cells are limited by safety and ethical issues. To test in nonhuman primates the transplantation of autologous adult neural progenitor cortical cells with assessment of functional outcome. Seven adult macaque monkeys were trained to perform a manual dexterity task, before the hand representation in motor cortex was chemically lesioned unilaterally. Five monkeys were used as control, compared with 2 monkeys subjected to different autologous cells transplantation protocols performed at different time intervals. After lesion, there was a complete loss of manual dexterity in the contralesional hand. The 5 "control" monkeys recovered progressively and spontaneously part of their manual dexterity, reaching a unique and definitive plateau of recovery, ranging from 38% to 98% of prelesion score after 10 to 120 days. The 2 "treated" monkeys reached a first spontaneous recovery plateau at about 25 and 40 days postlesion, representing 35% and 61% of the prelesion performance, respectively. In contrast to the controls, a second recovery plateau took place 2 to 3 months after cell transplantation, corresponding to an additional enhancement of functional recovery, representing 24% and 37% improvement, respectively. These pilot data, derived from 2 monkeys treated differently, suggest that, in the present experimental conditions, autologous adult brain progenitor cell transplantation in a nonhuman primate is safe and promotes enhancement of functional recovery.

  11. Occlusion of LTP-like plasticity in human primary motor cortex by action observation.

    Directory of Open Access Journals (Sweden)

    Jean-François Lepage

    Full Text Available Passive observation of motor actions induces cortical activity in the primary motor cortex (M1 of the onlooker, which could potentially contribute to motor learning. While recent studies report modulation of motor performance following action observation, the neurophysiological mechanism supporting these behavioral changes remains to be specifically defined. Here, we assessed whether the observation of a repetitive thumb movement--similarly to active motor practice--would inhibit subsequent long-term potentiation-like (LTP plasticity induced by paired-associative stimulation (PAS. Before undergoing PAS, participants were asked to either 1 perform abductions of the right thumb as fast as possible; 2 passively observe someone else perform thumb abductions; or 3 passively observe a moving dot mimicking thumb movements. Motor evoked potentials (MEP were used to assess cortical excitability before and after motor practice (or observation and at two time points following PAS. Results show that, similarly to participants in the motor practice group, individuals observing repeated motor actions showed marked inhibition of PAS-induced LTP, while the "moving dot" group displayed the expected increase in MEP amplitude, despite differences in baseline excitability. Interestingly, LTP occlusion in the action-observation group was present even if no increase in cortical excitability or movement speed was observed following observation. These results suggest that mere observation of repeated hand actions is sufficient to induce LTP, despite the absence of motor learning.

  12. The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour

    DEFF Research Database (Denmark)

    Rowe, James B.; Stephan, Klaas E.; Friston, Karl

    2005-01-01

    The role of the prefrontal cortex remains controversial. Neuroimaging studies support modality-specific and process-specific functions related to working memory and attention. Its role may also be defined by changes in its influence over other brain regions including sensory and motor cortex. We...... used functional magnetic imaging (fMRI) to study the free selection of actions and colours. Control conditions used externally specified actions and colours. The prefrontal cortex was activated during free selection, regardless of modality, in contrast to modality-specific activations outside...... prefrontal cortex. Structural equation modelling (SEM) of fMRI data was used to test the hypothesis that although the same regions of prefrontal cortex may be active in tasks within different domains, there is task-dependent effective connectivity between prefrontal cortex and non-prefrontal cortex. The SEM...

  13. [Phantom limb pain originates from dysfunction of the primary motor cortex].

    Science.gov (United States)

    Sumitani, Masahiko; Miyauchi, Satoru; Uematsu, Hironobu; Yozu, Arito; Otake, Yuko; Yamada, Yoshitsugu

    2010-11-01

    Accumulated knowledge indicates that phantom limb pain is a phenomenon of the central nervous system that is related to plastic changes at several levels of the nervous systems. Especially, reports using patients with neuropathic pain clearly indicate the sensorimotor cortex as underlying mechanisms of phantom limb and its pain. Here, we focus the notion that limb amputation or deafferentation results in plasticity of connections between the brain and the body, and that the cortical motor representation of the missing or deafferented limb seemingly disappears. Meanwhile, the sensory representation of the limb does not disappear and thereby patients feel phantom limbs. We propose that dissociation between motor and sensory representations in the primary motor cortex induces pathologic pain and reconcile of sensorimotor integration of the limb would alleviate pain, on the basis of our neurorehabilitation approaches and artificial neuromodulation strategies.

  14. Selective Suppression of Local Circuits during Movement Preparation in the Mouse Motor Cortex

    Directory of Open Access Journals (Sweden)

    Masashi Hasegawa

    2017-03-01

    Full Text Available Prepared movements are more efficient than those that are not prepared for. Although changes in cortical activity have been observed prior to a forthcoming action, the circuits involved in motor preparation remain unclear. Here, we use in vivo two-photon calcium imaging to uncover changes in the motor cortex during variable waiting periods prior to a forepaw reaching task in mice. Consistent with previous reports, we observed a subset of neurons with increased activity during the waiting period; however, these neurons did not account for the degree of preparation as defined by reaction time (RT. Instead, the suppression of activity of distinct neurons in the same cortical area better accounts for RT. This suppression of neural activity resulted in a distinct and reproducible pattern when mice were well prepared. Thus, the selective suppression of network activity in the motor cortex may be a key feature of prepared movements.

  15. Posterior parietal cortex encodes autonomously selected motor plans.

    Science.gov (United States)

    Cui, He; Andersen, Richard A

    2007-11-08

    The posterior parietal cortex (PPC) of rhesus monkeys has been found to encode the behavioral meaning of categories of sensory stimuli. When animals are instructed with sensory cues to make either eye or hand movements to a target, PPC cells also show specificity depending on which effector (eye or hand) is instructed for the movement. To determine whether this selectivity retrospectively reflects the behavioral meaning of the cue or prospectively encodes the movement plan, we trained monkeys to autonomously choose to acquire a target in the absence of direct instructions specifying which effector to use. Activity in PPC showed strong specificity for effector choice, with cells in the lateral intraparietal area selective for saccades and cells in the parietal reach region selective for reaches. Such differential activity associated with effector choice under identical stimulus conditions provides definitive evidence that the PPC is prospectively involved in action selection and movement preparation.

  16. Possible linkage between visual and motor development in children with cerebral palsy.

    Science.gov (United States)

    Lew, Helen; Lee, Hee Song; Lee, Jae Yeun; Song, Junyoung; Min, Kyunghoon; Kim, MinYoung

    2015-03-01

    The purpose of this study was to examine ophthalmic disorders associated with neurological disorders in children with cerebral palsy. Children clinically diagnosed as cerebral palsy with supportive abnormal magnetic resonance imaging results were included in this prospective study. All participants were recommended to have comprehensive ophthalmic exams. To assess motor function, the Gross Motor Function Classification System and the Gross Motor Function Measure were used. To assess motor and cognitive function, the Bayley Scales of Infant Development-II was used. Forty-seven children completed all the evaluations and the data were analyzed. Ametropia was seen in 78.7% and strabismus was seen in 44.7% of the 47 children. When subjects were divided into severely impaired and mildly impaired groups based on Gross Motor Function Classification System level, ametropia was more prevalent in the severely impaired than the mildly impaired (95.8% versus 60.9%, P children with cerebral palsy with poor gross motor function have a high possibility of severe refractive disorder that becomes evident from 36 months after birth. These results suggest that brain injury and impaired motor development negatively affect ophthalmic development. Hence, an ophthalmic examination is recommended for young children with cerebral palsy to start early management. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction.

    Science.gov (United States)

    Li, Jiang; Meng, Xiang-Min; Li, Ru-Yi; Zhang, Ru; Zhang, Zheng; Du, Yi-Feng

    2016-10-01

    Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.

  18. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.

    Science.gov (United States)

    Zareen, N; Shinozaki, M; Ryan, D; Alexander, H; Amer, A; Truong, D Q; Khadka, N; Sarkar, A; Naeem, S; Bikson, M; Martin, J H

    2017-11-01

    Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Support vector machine and fuzzy C-mean clustering-based comparative evaluation of changes in motor cortex electroencephalogram under chronic alcoholism.

    Science.gov (United States)

    Kumar, Surendra; Ghosh, Subhojit; Tetarway, Suhash; Sinha, Rakesh Kumar

    2015-07-01

    In this study, the magnitude and spatial distribution of frequency spectrum in the resting electroencephalogram (EEG) were examined to address the problem of detecting alcoholism in the cerebral motor cortex. The EEG signals were recorded from chronic alcoholic conditions (n = 20) and the control group (n = 20). Data were taken from motor cortex region and divided into five sub-bands (delta, theta, alpha, beta-1 and beta-2). Three methodologies were adopted for feature extraction: (1) absolute power, (2) relative power and (3) peak power frequency. The dimension of the extracted features is reduced by linear discrimination analysis and classified by support vector machine (SVM) and fuzzy C-mean clustering. The maximum classification accuracy (88 %) with SVM clustering was achieved with the EEG spectral features with absolute power frequency on F4 channel. Among the bands, relatively higher classification accuracy was found over theta band and beta-2 band in most of the channels when computed with the EEG features of relative power. Electrodes wise CZ, C3 and P4 were having more alteration. Considering the good classification accuracy obtained by SVM with relative band power features in most of the EEG channels of motor cortex, it can be suggested that the noninvasive automated online diagnostic system for the chronic alcoholic condition can be developed with the help of EEG signals.

  20. Influence of Motor Cortex Stimulation During Motor Training on Neuroplasticity as a Potential Therapeutic Intervention.

    Science.gov (United States)

    Massie, Crystal L; White, Caylen; Pruit, Katie; Freel, Aubrey; Staley, Kaylin; Backes, Morgan

    2017-01-01

    Rehabilitation options to promote neuroplasticity may be enhanced when patients are engaged in motor practice during repetitive transcranial magnetic stimulation (rTMS). Twelve participants completed 3 separate sessions: motor practice, motor practice with rTMS, and rTMS only: motor practice consisted of 30 isometric contractions and subthreshold rTMS was 30, 3-s trains at 10 Hz. Assessments included the Box and Block Test (BBT), force steadiness (10% of the maximum voluntary contraction), and TMS (cortical excitability, intracortical inhibition, and intracortical facilitation). Participants significantly increased BBT scores following the combined condition. Force steadiness improved after all 3 conditions (p motor practice plus rTMS condition. All interventions influenced motor control, yet are likely modulated differently when combining motor practice plus rTMS. These results help guide the clinical utility of rTMS as an intervention to influence motor control.

  1. Structural Equation Modeling of Motor Impairment, Gross Motor Function, and the Functional Outcome in Children with Cerebral Palsy

    Science.gov (United States)

    Park, Eun-Young; Kim, Won-Ho

    2013-01-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study…

  2. THE EFFECTIVENESS OF CONDUCTIVE EDUCATION ON MOTOR SKILLS IN CHILDREN WITH CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    Negin Khoshvaght

    2017-12-01

    Full Text Available Background: Cerebral palsy is a nonprogressive neuro-developmental disorders that are caused by damage to the developing brain and affect movement and posture. Children with cerebral palsy suffer difficulty in motor function (coordination and control.The present inquiry investigated the impact of conductive education on motor skills in children having cerebral palsy. Methods: A quasi-experimental research was done using pretest-posttest and control group design. The study subjects consisted of all children with cerebral palsy in Shiraz. A sample of 30 subjects was randomly chosen to employ convenience sampling procedure and classified to two groups of treatment (15 subjects and control (15 subjects. The pretest was performed for both groups, and the experimental group received conductive education in 20 sessions. While the control subjects did not have this education, finally, the post-test was performed for both groups. The Lincoln-Oseretsky test was used to measure motor skills. The data were analyzed using ANCOVA and MANCOVA. Results: The results showed that conductive education had a significant effect on motor skills (P<0.001 and its subscales such as speed of movement (P<0.001, general static coordination (P<0.001, general dynamic coordination (P<0.001, dynamic manual coordination (P<0.001, synchronous-asymmetrical voluntary movements (P<0.001, and asynchronous-asymmetrical voluntary movements (P<0.001 in children with cerebral palsy. Conclusion: The findings indicated the effectiveness of conductive education on cerebral palsy children’s motor skills. Therefore, it is recommended to design and implement a conductive education program to improve motor skills of cerebral palsy children.

  3. [Effect of basic fibroblast growth factor on endogenous neural stem cell in rat cerebral cortex with global cerebral ischemia-reperfusion].

    Science.gov (United States)

    Ren, Mingxin; Deng, Xiaohui; Guo, Yiwei; Zheng, Fengjin; Feng, Zhibo

    2014-08-01

    The present paper is aimedto investigate the effect of basic fibroblast growth factor (bFGF) on proliferation, migration and differentiation of endogenous neural stem cell in rat cerebral cortex with global brain ischemia-reperfusion. A global brain ischemia-reperfusion model was established. Immunohistochemistry was used to observe the pathological changes and the expression of BrdU and Nestin in cerebral cortex. RT-PCR was used to measure the NSE mRNA in brain tissue. The results of measurements indicated that in sham operation group, there was no positive cell in cerebral cortex, and the content of NSE mRNA did not change. In the operation group, the expression of BrdU and Nestin increased significantly at the end of the 3rd day, and peaked on the 7th day. NSE mRNA expression did not significantly increase. In bFGF group, compared with sham operation group and model group, the number of BrdU-positive and Nestin-positive cells increased significantly at each time point (P<0. 05), and peaked at the end of the 11th day, and the content of NSE mRNA increased significantly (P<0. 05). This research demonstrated that the proliferation of endogenous neural stem cells in situ could be induced by global cerebral ischemia and reperfu- sion, and could be promoted and extended by bFGF. In additiion, bFGF might promote endogenous neural stem cells differentiated into neurons.

  4. Hindlimb spasticity after unilateral motor cortex lesion in rats is reduced by contralateral nerve root transfer.

    Science.gov (United States)

    Zong, Haiyang; Ma, Fenfen; Zhang, Laiyin; Lu, Huiping; Gong, Jingru; Cai, Min; Lin, Haodong; Zhu, Yizhun; Hou, Chunlin

    2016-12-01

    Lower extremity spasticity is a common sequela among patients with acquired brain injury. The optimum treatment remains controversial. The aim of our study was to test the feasibility and effectiveness of contralateral nerve root transfer in reducing post stroke spasticity of the affected hindlimb muscles in rats. In our study, we for the first time created a novel animal hindlimb spastic hemiplegia model in rats with photothrombotic lesion of unilateral motor cortex and we established a novel surgical procedure in reducing motor cortex lesion-induced hindlimb spastic hemiplegia in rats. Thirty six rats were randomized into three groups. In group A, rats received sham operation. In group B, rats underwent unilateral hindlimb motor cortex lesion. In group C, rats underwent unilateral hindlimb cortex lesion followed by contralateral L4 ventral root transfer to L5 ventral root of the affected side. Footprint analysis, Hoffmann reflex (H-reflex), cholera toxin subunit B (CTB) retrograde tracing of gastrocnemius muscle (GM) motoneurons and immunofluorescent staining of vesicle glutamate transporter 1 (VGLUT1) on CTB-labelled motoneurons were used to assess spasticity of the affected hindlimb. Sixteen weeks postoperatively, toe spread and stride length recovered significantly in group C compared with group B (Pcortex lesion-induced hindlimb spasticity in rats. Our data indicated that this could be an alternative treatment for unilateral lower extremity spasticity after brain injury. Therefore, contralateral neurotization may exert a potential therapeutic candidate to improve the function of lower extremity in patients with spastic hemiplegia. © 2016 The Author(s).

  5. The effect of speech distortion on the excitability of articulatory motor cortex.

    Science.gov (United States)

    Nuttall, Helen E; Kennedy-Higgins, Daniel; Hogan, John; Devlin, Joseph T; Adank, Patti

    2016-03-01

    It has become increasingly evident that human motor circuits are active during speech perception. However, the conditions under which the motor system modulates speech perception are not clear. Two prominent accounts make distinct predictions for how listening to speech engages speech motor representations. The first account suggests that the motor system is most strongly activated when observing familiar actions (Pickering and Garrod, 2013). Conversely, Wilson and Knoblich's account asserts that motor excitability is greatest when observing less familiar, ambiguous actions (Wilson and Knoblich, 2005). We investigated these predictions using transcranial magnetic stimulation (TMS). Stimulation of the lip and hand representations in the left primary motor cortex elicited motor evoked potentials (MEPs) indexing the excitability of the underlying motor representation. MEPs for lip, but not for hand, were larger during perception of distorted speech produced using a tongue depressor, relative to naturally produced speech. Additional somatotopic facilitation yielded significantly larger MEPs during perception of lip-articulated distorted speech sounds relative to distorted tongue-articulated sounds. Critically, there was a positive correlation between MEP size and the perception of distorted speech sounds. These findings were consistent with predictions made by Wilson & Knoblich (Wilson and Knoblich, 2005), and provide direct evidence of increased motor excitability when speech perception is difficult. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    Science.gov (United States)

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  7. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.

  8. Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse.

    Science.gov (United States)

    Clarke, Laura E; Young, Kaylene M; Hamilton, Nicola B; Li, Huiliang; Richardson, William D; Attwell, David

    2012-06-13

    Oligodendrocyte progenitor cells (OPCs) in the postnatal mouse corpus callosum (CC) and motor cortex (Ctx) reportedly generate only oligodendrocytes (OLs), whereas those in the piriform cortex may also generate neurons. OPCs have also been subdivided based on their expression of voltage-gated ion channels, ability to respond to neuronal activity, and proliferative state. To determine whether OPCs in the piriform cortex have inherently different physiological properties from those in the CC and Ctx, we studied acute brain slices from postnatal transgenic mice in which GFP expression identifies OL lineage cells. We whole-cell patch clamped GFP-expressing (GFP(+)) cells within the CC, Ctx, and anterior piriform cortex (aPC) and used prelabeling with 5-ethynyl-2'-deoxyuridine (EdU) to assess cell proliferation. After recording, slices were immunolabeled and OPCs were defined by strong expression of NG2. NG2(+) OPCs in the white and gray matter proliferated and coexpressed PDGFRα and voltage-gated Na(+) channels (I(Na)). Approximately 70% of OPCs were capable of generating regenerative depolarizations. In addition to OLIG2(+) NG2(+) I(Na)(+) OPCs and OLIG2(+) NG2(neg) I(Na)(neg) OLs, we identified cells with low levels of NG2 limited to the soma or the base of some processes. These cells had a significantly reduced I(Na) and a reduced ability to incorporate EdU when compared with OPCs and probably correspond to early differentiating OLs. By combining EdU labeling and lineage tracing using Pdgfrα-CreER(T2) : R26R-YFP transgenic mice, we double labeled OPCs and traced their fate in the postnatal brain. These OPCs generated OLs but did not generate neurons in the aPC or elsewhere at any time that we examined.

  9. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  10. Structural and Ultrastructural Analysis of Cerebral Cortex, Cerebellum, and Hypothalamus from Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Juan P. Hernández-Fonseca

    2009-01-01

    Full Text Available Autonomic and peripheral neuropathies are well-described complications in diabetes. Diabetes mellitus is also associated to central nervous system damage. This little-known complication is characterized by impairment of brain functions and electrophysiological changes associated with neurochemical and structural abnormalities. The purpose of this study was to investigate brain structural and ultrastructural changes in rats with streptozotocin-induced diabetes. Cerebral cortex, hypothalamus, and cerebellum were obtained from controls and 8 weeks diabetic rats. Light and electron microscope studies showed degenerative changes of neurons and glia, perivascular and mitochondrial swelling, disarrangement of myelin sheath, increased area of myelinated axons, presynaptic vesicle dispersion in swollen axonal boutoms, fragmentation of neurofilaments, and oligodendrocyte abnormalities. In addition, depressive mood was observed in diabetic animals. The brain morphological alterations observed in diabetic animals could be related to brain pathologic process leading to abnormal function, cellular death, and depressive behavioral.

  11. Role of mechanical factors in the morphology of the primate cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Claus C Hilgetag

    2006-03-01

    Full Text Available The convoluted cortex of primates is instantly recognizable in its principal morphologic features, yet puzzling in its complex finer structure. Various hypotheses have been proposed about the mechanisms of its formation. Based on the analysis of databases of quantitative architectonic and connection data for primate prefrontal cortices, we offer support for the hypothesis that tension exerted by corticocortical connections is a significant factor in shaping the cerebral cortical landscape. Moreover, forces generated by cortical folding influence laminar morphology, and appear to have a previously unsuspected impact on cellular migration during cortical development. The evidence for a significant role of mechanical factors in cortical morphology opens the possibility of constructing computational models of cortical development based on physical principles. Such models are particularly relevant for understanding the relationship of cortical morphology to the connectivity of normal brains, and structurally altered brains in diseases of developmental origin, such as schizophrenia and autism.

  12. [Changes in the cerebral cortex in closed craniocerebral trauma of gunshot origin (experimental research)].

    Science.gov (United States)

    Novozhilova, A P; Dyskin, E A; Isakov, V D; Kolkutin, V V

    1996-01-01

    Cerebral cortex was studied morphologically in rabbits with concussion of brain induced by gunshot injury. The extent of severity was modelled by the bullet rate. No significant bleeding followed the injury allowing to observe the animals during the necessary terms (7-14 d.) Morphological study included light optical and electron microscopy. In neurons, glial cells and synapses a series of essential destructive changes in shown detectable predominantly on ultrastructural level that might be the base of psychoneurological complications of a distant period. Ballistic properties of a bullet were obviously fundamental to pathogenesis of brain concussion in these experiments as kinetic energy of the bullet was only sufficient for non significant damage of the skull soft tissue. But in contrast to the dull trauma, the blow was of a high speed and despite mild clinical characteristics caused essential diffuse structural disturbances in brain tissues.

  13. Dependence of cerebral-cortex activation in women on environmental factors

    Science.gov (United States)

    Pavlov, K. I.; Mukhin, V. N.; Kamenskaya, V. G.; Klimenko, V. M.

    2016-12-01

    The investigation of female physiological reactions to different meteorological conditions and space weather is relevant, since there are little experimental findings in this field. The purpose of this work is to determine how the level of cerebral-cortex activity in women depends on the meteorological and cosmophysical parameters of weather and space processes. We studied electroencephalograms (EEGs) recorded at rest in the sitting position and with eyes closed. We performed four series of measurements of brain bioelectrical activity from February to June 2013. We found that the level of cortical activity recorded by EEG changed significantly during these 6 months. Significant differences were detected between the cortical activity and the parameters of weather and space processes; namely, an increase in the air temperature and a decrease in the wind speed and cosmic-ray energy result in a decrease in the activity rate of the right occipital lobe.

  14. Specification of excitatory neurons in the developing cerebral cortex: progenitor diversity and environmental influences.

    Science.gov (United States)

    Costa, Marcos R; Müller, Ulrich

    2014-01-01

    The mature cerebral cortex harbors a heterogeneous population of glutamatergic neurons, organized into a highly intricate histological architecture. Classically, this mixed population of neurons was thought to be generated sequentially from a seemingly homogenous group of progenitors under the influence of external cues. This view, however, has been challenged in the last decade by evidences pointing to the existence of fate-restricted neuronal progenitors in the developing neocortex. Here, we review classical studies using cell transplantation, retroviral labeling and cell culture, as well as new data from genetic fate-mapping analysis, to discuss the lineage relationships between neocortical progenitors and subclasses of excitatory neurons. We also propose a temporal model to conciliate the existence of fate-restricted progenitors alongside multipotent progenitors in the neocortex. Finally, we discuss evidences for a critical period of plasticity among post mitotic excitatory cortical neurons when environmental influences could change neuronal cell fate.

  15. Continuous theta-burst stimulation of the primary motor cortex in essential tremor.

    Science.gov (United States)

    Hellriegel, Helge; Schulz, Eva M; Siebner, Hartwig R; Deuschl, Günther; Raethjen, Jan H

    2012-05-01

    We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation. 10 Patients with ET and 10 healthy controls underwent transcranial continuous theta-burst stimulation (cTBS) of the left primary motor hand area at 80% (real cTBS) and 30% (control cTBS) of active motor threshold in two separate sessions at least one week apart. Postural tremor was rated clinically and measured accelerometrically before and after cTBS. Corticospinal excitability was assessed by recording the motor evoked potentials (MEP) from the first dorsal interosseous muscle. Real cTBS but not control cTBS reduced the tremor total power assessed with accelerometry. This beneficial effect was subclinical as there were no significant changes in clinical tremor rating after real cTBS. Relative to control cTBS, real cTBS reduced corticospinal excitability in the stimulated primary motor cortex only in healthy controls but not in ET patients. Real cTBS has a beneficial effect on ET. Since cTBS did not induce a parallel reduction in corticospinal excitability, this effect was not mediated by a suppression of the corticospinal motor output. "Inhibitory" cTBS of M1 leads to a consistent but subclinical reduction in tremor amplitude. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Werner-Petroll, Nicole; Münchau, Alexander

    2012-01-01

    The dorsal premotor cortex (PMd) plays an import role in action control, sensorimotor integration and motor recovery. Animal studies and human data have demonstrated direct connections between ipsilateral PMd and primary motor cortex hand area (M1(HAND)). In this study we adopted a multimodal...... approach combining highly focal dual-site TMS (dsTMS) and diffusion tensor imaging (DTI) to probe ipsilateral effective and structural connectivity between PMd and M1(HAND) in humans. A suprathreshold test stimulus (TS) was applied to left M1(HAND) producing a motor evoked potential (MEP) and a subsequent...

  17. Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance.

    Science.gov (United States)

    Chung, Jae W; Ofori, Edward; Misra, Gaurav; Hess, Christopher W; Vaillancourt, David E

    2017-01-01

    Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine

  18. Parvalbumin and calbindin immunoreactivity in the cerebral cortex of the hedgehog (Erinaceus europaeus).

    Science.gov (United States)

    Ferrer, I; Zujar, M J; Admella, C; Alcantara, S

    1992-01-01

    To investigate the morphology and distribution of nonpyramidal neurons in the brain of insectivores, parvalbumin and calbindin 28 kDa immunoreactivity was examined in the cerebral cortex of the hedgehog (Erinaceus europaeus). Parvalbumin-immunoreactive cells were found in all layers of the isocortex, but in contrast to other mammals, a laminar organisation or specific regional distribution was not seen. Characteristic parvalbumin-immunoreactive neurons were multipolar cells with large ascending and descending dendrites extending throughout several layers. Calbindin-immunoreactive neurons were similar to those found in other species, although appearing in smaller numbers than in the cerebral cortex of more advanced mammals. The morphology and distribution of parvalbumin- and calbindin-immunoreactive cells in the piriform and entorhinal cortices were similar in hedgehogs and rodents. Parvalbumin-immunoreactive cells in the hippocampal complex were pyramidal-like and bitufted neurons, which were mainly found in the stratum oriens and stratum pyramidale of the hippocampus, and in the stratum moleculare and hilus of the fascia dentata. Heavily stained cells were found in the deep part of the stratum granulare. Intense calbindin immunoreactivity occurred mainly in the granule cell and molecular layers of the dentate gyrus and in the mossy fibre layer. The most outstanding feature in the hippocampal complex of the hedgehog was the extension of calbindin immunoreactivity to CA1 field of the hippocampus, suggesting, in agreement with other reports, that mossy fibres can establish synaptic contacts throughout the pyramidal cell layer. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1452472

  19. Edible Camphor-induced Histopathological Changes in Hippocampus and Cerebral Cortex Following Oral Administration into Rats

    Directory of Open Access Journals (Sweden)

    Oluwatobi T Somade

    2017-03-01

    Full Text Available Introduction: Raw edible camphor (EC, and as component of herbal infusions are widely used to treat pile, back pain, erectile dysfunction, and as an aphrodisiac especially in preparation for sexual intercourse by men. It has been traced in umbilical cord, blood, fetal, adipose, and other tissues including brain, where it bioaccumulates. Methods: The study, therefore, investigated the possible histopathological changes in brain, heart, and spleen that may result following EC administration in rats. Thirty animals were used for the study and were divided into six groups of five rats each. Group I animals served as normal control, Group II animals served as vehicle control and were orally administered 6 mL/kg corn oil daily for 7 days, while Groups III-VI animals were orally administered 1, 2, 4, and 6 g/kg EC for 7 days daily. Results and Conclusions: Following the administrations of various doses of EC, the histopathological changes seen in the cerebral cortex of the brain include mild submeningeal spongiosis, mild diffuse spongiosis of the parenchyma, a very mild diffuse gliosis, and presences of gitter cells, while in hippocampus, there were mild diffuse gliosis and disruption of the progression of the hippocampal horns, as well as foci of spongiosis around the hippocampal horns, and neuronal cells have open faced nuclei. No effect was seen in heart and spleen except 4 g/kg of EC that revealed moderate diffuse congestion in spleen only. In conclusion, EC may not have any toxic effects on the cardiac and splenic cells, but had toxic effects on the brain hippocampus and cerebral cortex, and may lead to brain cell damage. [J Interdiscipl Histopathol 2017; 5(1.000: 7-11

  20. Consciousness without a cerebral cortex: a challenge for neuroscience and medicine.

    Science.gov (United States)

    Merker, Bjorn

    2007-02-01

    A broad range of evidence regarding the functional organization of the vertebrate brain - spanning from comparative neurology to experimental psychology and neurophysiology to clinical data - is reviewed for its bearing on conceptions of the neural organization of consciousness. A novel principle relating target selection, action selection, and motivation to one another, as a means to optimize integration for action in real time, is introduced. With its help, the principal macrosystems of the vertebrate brain can be seen to form a centralized functional design in which an upper brain stem system organized for conscious function performs a penultimate step in action control. This upper brain stem system retained a key role throughout the evolutionary process by which an expanding forebrain - culminating in the cerebral cortex of mammals - came to serve as a medium for the elaboration of conscious contents. This highly conserved upper brainstem system, which extends from the roof of the midbrain to the basal diencephalon, integrates the massively parallel and distributed information capacity of the cerebral hemispheres into the limited-capacity, sequential mode of operation required for coherent behavior. It maintains special connective relations with cortical territories implicated in attentional and conscious functions, but is not rendered nonfunctional in the absence of cortical input. This helps explain the purposive, goal-directed behavior exhibited by mammals after experimental decortication, as well as the evidence that children born without a cortex are conscious. Taken together these circumstances suggest that brainstem mechanisms are integral to the constitution of the conscious state, and that an adequate account of neural mechanisms of conscious function cannot be confined to the thalamocortical complex alone.

  1. Sensorimotor integration for speech motor learning involves the inferior parietal cortex

    Science.gov (United States)

    Shum, Mamie; Shiller, Douglas M.; Baum, Shari R.; Gracco, Vincent L.

    2011-01-01

    Sensorimotor integration is important for motor learning. The inferior parietal lobe (IPL), through its connections with the frontal lobe and cerebellum, has been associated with multisensory integration and sensorimotor adaptation for motor behaviours other than speech. In the present study, the contribution of the inferior parietal cortex to speech motor learning was evaluated using repetitive transcranial magnetic stimulation (rTMS) prior to a speech motor adaptation task. Subjects' auditory feedback was altered in a manner consistent with the auditory consequences of an unintended change in tongue position during speech production and adaptation performance was used to evaluate sensorimotor plasticity and short-term learning. Prior to the feedback alteration, rTMS or sham stimulation was applied over the left supramarginal gyrus (SMG). Subjects who underwent the sham stimulation exhibited a robust adaptive response to the feedback alteration whereas subjects who underwent rTMS exhibited a diminished adaptive response. The results suggest that the inferior parietal region, in and around SMG, plays a role in sensorimotor adaptation for speech. The interconnections of the inferior parietal cortex with inferior frontal cortex, cerebellum and primary sensory areas suggest that this region may be an important component in learning and adapting sensorimotor patterns for speech. PMID:22098364

  2. Sensorimotor integration for speech motor learning involves the inferior parietal cortex.

    Science.gov (United States)

    Shum, Mamie; Shiller, Douglas M; Baum, Shari R; Gracco, Vincent L

    2011-12-01

    Sensorimotor integration is important for motor learning. The inferior parietal lobe, through its connections with the frontal lobe and cerebellum, has been associated with multisensory integration and sensorimotor adaptation for motor behaviors other than speech. In the present study, the contribution of the inferior parietal cortex to speech motor learning was evaluated using repetitive transcranial magnetic stimulation (rTMS) prior to a speech motor adaptation task. Subjects' auditory feedback was altered in a manner consistent with the auditory consequences of an unintended change in tongue position during speech production, and adaptation performance was used to evaluate sensorimotor plasticity and short-term learning. Prior to the feedback alteration, rTMS or sham stimulation was applied over the left supramarginal gyrus (SMG). Subjects who underwent the sham stimulation exhibited a robust adaptive response to the feedback alteration whereas subjects who underwent rTMS exhibited a diminished adaptive response. The results suggest that the inferior parietal region, in and around SMG, plays a role in sensorimotor adaptation for speech. The interconnections of the inferior parietal cortex with inferior frontal cortex, cerebellum and primary sensory areas suggest that this region may be an important component in learning and adapting sensorimotor patterns for speech. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals.

    Science.gov (United States)

    Foerster, Águida; Dutta, Anirban; Kuo, Min-Fang; Paulus, Walter; Nitsche, Michael A

    2018-02-14

    Transcranial direct current stimulation (tDCS) is a neuromodulatory technique which alters motor functions in healthy humans and in neurological patients. Most studies so far investigated the effects of tDCS on mechanisms underlying improvements of upper limb performance. To investigate the effect of anodal tDCS over the lower limb motor cortex (M1) on lower limb motor learning in healthy volunteers, we conducted a randomized, single blind and sham-controlled study. Thirty three (25.81 ± 3.85, 14 female) volunteers were included, and received anodal or sham tDCS over the left M1 (M1-tDCS). 0.0625 mA/cm 2 anodal tDCS was applied for 15 minutes during performance of a visuo-motor task (VMT) with the right leg. Motor learning was monitored for performance speed and accuracy based on electromyographic recordings. We also investigated the influence of electrode size and baseline responsivity to transcranial magnetic stimulation (TMS) on the stimulation effects. Relative to baseline measures, only M1-tDCS applied with small electrodes and in volunteers with high baseline sensitivity to TMS significantly improved VMT performance. The computational analysis showed that the small anode was more specific to the targeted leg motor cortex volume when compared to the large anode. We conclude that anodal M1-tDCS modulates VMT performance in healthy subjects. Since these effects critically depend on sensitivity to TMS and electrode size, future studies should investigate the effects of intensified tDCS and/or model-based different electrode positions in low-sensitivity TMS individuals. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. The effect of imipramine on lipid peroxidation in the rat cerebral cortex.

    Science.gov (United States)

    Melzacka, M; Sas-Korczyńska, A; Syrek, M

    1995-01-01

    The effect of imipramine (IMI) on lipid peroxidation in the rat cerebral cortex was investigated in ex vivo and in vitro study. It was found that IMI when given to rats chronically (14 x 10 mg/kg ip) but not acutely (10 mg/kg ip), inhibited lipid peroxidation in the cortical membranes of rat brain. When added in different concentrations (0.125-10.0 nmoles/sample) to the cerebral cortical membranes of naive rats in vitro, IMI inhibited lipid peroxidation in concentration-dependent fashion. Using [3H]-IMI it was found that employed procedure for membrane preparation did not removed IMI from cortical membranes of rats treated chronically with the drug and this might explain the lack of antioxidant effect of IMI in animals treated with a single dose of IMI in ex vivo study. A comparative study of IMI and chlorpromazine (CPZ)-whose inhibitory effect on the free radicals formation has been found before-indicated the higher potency of IMI than that of CPZ as radical scavenger in ex vivo and in vitro studies. The results imply that IMI might affect the brain function also through its effect on lipid peroxidation.

  5. Numeric and symbolic knowledge representation of cerebral cortex anatomy: methods and preliminary results.

    Science.gov (United States)

    Dameron, O; Gibaud, B; Morandi, X

    2004-06-01

    The human cerebral cortex anatomy describes the brain organization at the scale of gyri and sulci. It is used as landmarks for neurosurgery as well as localization support for functional data analysis or inter-subject data comparison. Existing models of the cortex anatomy either rely on image labeling but fail to represent variability and structural properties or rely on a conceptual model but miss the inner 3D nature and relations of anatomical structures. This study was therefore conducted to propose a model of sulco-gyral anatomy for the healthy human brain. We hypothesized that both numeric knowledge (i.e., image-based) and symbolic knowledge (i.e., concept-based) have to be represented and coordinated. In addition, the representation of this knowledge should be application-independent in order to be usable in various contexts. Therefore, we devised a symbolic model describing specialization, composition and spatial organization of cortical anatomical structures. We also collected numeric knowledge such as 3D models of shape and shape variation about cortical anatomical structures. For each numeric piece of knowledge, a companion file describes the concept it refers to and the nature of the relationship. Demonstration software performs a mapping between the numeric and the symbolic aspects for browsing the knowledge base.

  6. Significance of F3/Contactin gene expression in cerebral cortex and nigrostriatal development.

    Science.gov (United States)

    Massaro, Antonio; Bizzoca, Antonella; Corsi, Patrizia; Pinto, Marco F; Carratù, Maria Rosaria; Gennarini, Gianfranco

    2012-07-01

    F3/Contactin is a neuronal surface glycoprotein, which plays a general role in neural development and, in particular, in neuronal and oligodendrocyte differentiation. In a previous study using the F3/EGFP transgenic mice, which express an EGFP reporter under control of the regulatory region from the mouse F3/Contactin gene, the activation of the F3/Contactin promoter was found to correlate with granule and Purkinje neuron differentiation in developing cerebellar cortex. Here we report that in developing cerebral cortex and basal ganglia the F3/Contactin gene is mostly activated during early commitment of neuronal precursors, thus indicating a region-specific profile of its developmental activation. We also report that, in the same structures of F3/EGFP mice, a downregulation of the endogenous F3/Contactin gene occurs, which correlates with upregulation of the dopaminergic phenotype and with locomotor pattern abnormalities. Therefore, F3/EGFP transgenic mice exhibit morphological and functional phenotypes recapitulating those arising from imbalance of the striatal dopaminergic pathway. As for the underlying mechanisms, we postulate that in F3/EGFP mice F3/Contactin downregulation results from the ability of transgene promoter sequences to interfere with the activation of the endogenous gene, thus realizing an F3/Contactin knockdown model, while dopaminergic upregulation is consistent with a general F3/Contactin inhibitory effect on the neuronal phenotype. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Promising techniques to illuminate neuromodulatory control of the cerebral cortex in sleeping and waking states.

    Science.gov (United States)

    Kanda, Takeshi; Ohyama, Kaoru; Muramoto, Hiroki; Kitajima, Nami; Sekiya, Hiroshi

    2017-05-01

    Sleep, a common event in daily life, has clear benefits for brain function, but what goes on in the brain when we sleep remains unclear. Sleep was long regarded as a silent state of the brain because the brain seemingly lacks interaction with the surroundings during sleep. Since the discovery of electrical activities in the brain at rest, electrophysiological methods have revealed novel concepts in sleep research. During sleep, the brain generates oscillatory activities that represent characteristic states of sleep. In addition to electrophysiology, opto/chemogenetics and two-photon Ca2+ imaging methods have clarified that the sleep/wake states organized by neuronal and glial ensembles in the cerebral cortex are transitioned by neuromodulators. Even with these methods, however, it is extremely difficult to elucidate how and when neuromodulators spread, accumulate, and disappear in the extracellular space of the cortex. Thus, real-time monitoring of neuromodulator dynamics at high spatiotemporal resolution is required for further understanding of sleep. Toward direct detection of neuromodulator behavior during sleep and wakefulness, in this review, we discuss developing imaging techniques based on the activation of G-protein-coupled receptors that allow for visualization of neuromodulator dynamics. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  8. Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy.

    Science.gov (United States)

    Kowalczyk, Izabela; Duggal, Neil; Bartha, Robert

    2012-02-01

    Alterations in motor function in cervical myelopathy secondary to degenerative disease may be due to local effects of spinal compression or distal effects related to cortical reorganization. This prospective study characterizes differences in metabolite levels in the motor cortex, specifically N-acetylaspartate, creatine, choline, myo-inositol and glutamate plus glutamine, due to alterations in cortical function in patients with reversible spinal cord compression compared with healthy controls. We hypothesized that N-acetylaspartate/creatine levels would be decreased in the motor cortex of patients with cervical myelopathy due to reduced neuronal integrity/function and myo-inositol/creatine levels would be increased due to reactive gliosis. Twenty-four patients with cervical myelopathy and 11 healthy controls underwent proton-magnetic resonance spectroscopy on a 3.0 Tesla Siemens Magnetom Tim Trio MRI. Areas of activation from functional magnetic resonance imaging scans of a finger-tapping paradigm were used to localize a voxel on the side of greater motor deficit in the myelopathy group (n = 10 on right side and n = 14 on left side of the brain) and on each side of the motor cortex in controls. Neurological function was measured with the Neck Disability Index, modified Japanese Orthopaedic Association and American Spinal Injury Association questionnaires. Metabolite levels were measured relative to total creatine within the voxel of interest. No metabolite differences were detected between the right side and left side of the motor cortex in controls. The myelopathy group had significantly decreased neurological function compared with the control group (Neck Disability Index: P myelopathy group (1.21 ± 0.07) compared with the right (1.37 ± 0.03; P = 0.01) and left (1.38 ± 0.03; P = 0.007) motor cortex in controls suggesting neuronal damage or dysfunction distal to the lesion in the spine. No difference was observed in levels of myo

  9. Vibrissaeless mutant rats with a modular representation of innervated sinus hair follicles in the cerebral cortex.

    Science.gov (United States)

    Kuljis, R O

    1992-01-01

    Specialized areas in the cerebral cortex are essential to mediate the various sensory modalities and are crucial to their recovery in disease. We recently observed that prenatal photoreceptor cues are not indispensable for the development of the elaborate modular organization of the primate primary visual (striate) cortex (Kuljis, R. O. and P. Rakic. 1990. Proc. Natl. Acad. Sci. USA 87: 5303-5306). By contrast, the elegant experiments of Woolsey, Van der Loos, and collaborators (Van der Loos, H., and T. A. Woolsey. 1973. Science 179: 395-398; Van der Loos, H. and J. Dörfl. 1978. Neurosci Lett. 7: 23-30; Woolsey, T. A. 1967. John Hopkins Med. J. 121: 91-112; Woolsey, T. A. and H. Van der Loos. 1970. Brain Res. 17: 205-242) indicate that postnatal vibrissal receptor input is necessary for the development of modular organization in the posteromedial barrel subfield (PMBSF) of the rodent somatosensory cortex. The present report is part of a series of studies designed to address the variables that result in seemingly different results in these two models. Here, I address the role of pre- and postnatal tactile experience in the development of the rat homologue of the mouse PMBSF using mutants that lack vibrissae. Mutants exhibit cytoarchitectonic units in layer IV similar to those in controls, as revealed by NissI stains and histochemistry for succinate dehydrogenase and cytochrome oxidase. Sections from flat mounts of the vibrissal pad reveal that all mutants contain vibrissal follicles with stumps of sinus hairs in a geometric array and number similar to that in controls, and that the follicles are innervated heavily by fascicles of fibers from the infraorbital nerve.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Spatiotemporal profiles of dental pulp nociception in rat cerebral cortex: an optical imaging study.

    Science.gov (United States)

    Nakamura, Hiroko; Kato, Risako; Shirakawa, Tetsuo; Koshikawa, Noriaki; Kobayashi, Masayuki

    2015-06-01

    Somatosensation is topographically organized in the primary (S1) and secondary somatosensory cortex (S2), which contributes to identify the region receiving sensory inputs. However, it is still unknown how somatosensory inputs from the oral region, especially nociceptive inputs from the teeth, are processed in the somatosensory cortex. We performed in vivo optical imaging and identified the precise cortical regions responding to electrical stimulation of the maxillary and mandibular dental pulp in rats. Electrical stimulation of the mandibular incisor pulp evoked neural excitation in two areas: the most rostroventral part of S1, and the ventral part of S2 caudal to the middle cerebral artery. Maxillary incisor pulp stimulation initially evoked responses only in the ventral part of S2, although later maximum responses were also observed in S1 similar to mandibular incisor stimulation responses. The maxillary and mandibular molar pulp-responding regions were located in the most ventral S2, a part of which was histologically classified as the insular oral region (IOR). In terms of the initial responses, maxillary incisor and molar stimulation induced excitation in the S2/IOR rostral to the mandibular dental pulp-responding region. Contrary to the spatially segregated initial responses, the maximum excitatory areas responding to both incisors and molars in the mandible and maxilla overlapped in S1 and the S2/IOR. Multielectrode extracellular recording supported the characteristic localization of S2/IOR neurons responding to mandibular and maxillary molar pulp stimulation. The discrete and overlapped spatial profiles of initial and maximum responses, respectively, may characterize nociceptive information processing of dental pain in the cortex. © 2015 Wiley Periodicals, Inc.

  11. Inter-individual variability in optimal current direction for transcranial magnetic stimulation of the motor cortex

    DEFF Research Database (Denmark)

    Balslev, Daniela; Braet, Wouter; McAllister, Craig

    2007-01-01

    , stimulation in the majority of participants was most effective when the first current pulse flowed towards postero-lateral in the brain. However, in four participants, the optimal coil orientation deviated from this pattern. A principal component analysis using all eight orientations suggests that in our......We evaluated inter-individual variability in optimal current direction for biphasic transcranial magnetic stimulation (TMS) of the motor cortex. Motor threshold for first dorsal interosseus was detected visually at eight coil orientations in 45 degrees increments. Each participant (n=13) completed...... two experimental sessions. One participant with low test-retest correlation (Pearson's rdetection of motor threshold was compared to EMG detection; motor thresholds were very similar and highly correlated (0.94-0.99). Similar with previous studies...

  12. Resting‐state connectivity of pre‐motor cortex reflects disability in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Siebner, Hartwig Roman; Soelberg Sørensen, P.

    2013-01-01

    Objective To characterize the relationship between motor resting-state connectivity of the dorsal pre-motor cortex (PMd) and clinical disability in patients with multiple sclerosis (MS). Materials and methods A total of 27 patients with relapsing–remitting MS (RR-MS) and 15 patients with secondary...... progressive MS (SP-MS) underwent functional resting-state magnetic resonance imaging. Clinical disability was assessed using the Expanded Disability Status Scale (EDSS). Independent component analysis was used to characterize motor resting-state connectivity. Multiple regression analysis was performed in SPM8...... of left PMd showed a positive linear relation with clinical disability in patients with MS. This effect was stronger when considering the group of patients with RR-MS alone, whereas patients with SP-MS showed no increase in coupling strength between left PMd and the motor resting-state network...

  13. Functional connectivity for somatosensory and motor cortex in spastic diplegia.

    Science.gov (United States)

    Burton, Harold; Dixit, Sachin; Litkowski, Patricia; Wingert, Jason R

    2009-12-01

    Functional connectivity (fcMRI) was analyzed in individuals with spastic diplegia and age-matched controls. Pearson correlations (r-values) were computed between resting state spontaneous activity in selected seed regions (sROI) and each voxel throughout the brain. Seed ROI were centered on foci activated by tactile stimulation of the second fingertip in somatosensory and parietal dorsal attention regions. The group with diplegia showed significantly expanded networks for the somatomotor but not dorsal attention areas. These expanded networks overran nearly all topological representations in somatosensory and motor areas despite a sROI in a fingertip focus. A possible underlying cause for altered fcMRI in the group with dipegia, and generally sensorimotor deficits in spastic diplegia, is that prenatal third trimester white-matter injury leads to localized damage to subplate neurons. We hypothesize that intracortical connections become dominant in spastic diplegia through successful competition with diminished or absent thalamocortical inputs. Similar to the effects of subplate ablations on ocular dominance columns (Kanold and Shatz, Neuron 2006;51:627-638), a spike timing-dependent plasticity model is proposed to explain a shift towards intracortical inputs.

  14. Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation.

    Science.gov (United States)

    Kumru, Hatice; Albu, Sergiu; Rothwell, John; Leon, Daniel; Flores, Cecilia; Opisso, Eloy; Tormos, Josep Maria; Valls-Sole, Josep

    2017-10-01

    Repetitive application of peripheral electrical stimuli paired with transcranial magnetic stimulation (rTMS) of M1 cortex at low frequency, known as paired associative stimulation (PAS), is an effective method to induce motor cortex plasticity in humans. Here we investigated the effects of repetitive peripheral magnetic stimulation (rPMS) combined with low frequency rTMS ('magnetic-PAS') on intracortical and corticospinal excitability and whether those changes were widespread or circumscribed to the cortical area controlling the stimulated muscle. Eleven healthy subjects underwent three 10min stimulation sessions: 10HzrPMS alone, applied in trains of 5 stimuli every 10s (60 trains) on the extensor carpi radialis (ECR) muscle; rTMS alone at an intensity 120% of ECR threshold, applied over motor cortex of ECR and at a frequency of 0.1Hz (60 stimuli) and magnetic PAS, i.e., paired rPMS and rTMS. We recorded motor evoked potentials (MEPs) from ECR and first dorsal interosseous (FDI) muscles. We measured resting motor threshold, motor evoked potentials (MEP) amplitude at 120% of RMT, short intracortical inhibition (SICI) at interstimulus interval (ISI) of 2ms and intracortical facilitation (ICF) at an ISI of 15ms before and immediately after each intervention. Magnetic-PAS, but not rTMS or rPMS applied separately, increased MEP amplitude and reduced short intracortical inhibition in ECR but not in FDI muscle. Magnetic-PAS can increase corticospinal excitability and reduce intracortical inhibition. The effects may be specific for the area of cortical representation of the stimulated muscle. Application of magnetic-PAS might be relevant for motor rehabilitation. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  15. Primary motor cortex functionally contributes to language comprehension: An online rTMS study.

    Science.gov (United States)

    Vukovic, Nikola; Feurra, Matteo; Shpektor, Anna; Myachykov, Andriy; Shtyrov, Yury

    2017-02-01

    Among various questions pertinent to grounding human cognitive functions in a neurobiological substrate, the association between language and motor brain structures is a particularly debated one in neuroscience and psychology. While many studies support a broadly distributed model of language and semantics grounded, among other things, in the general modality-specific systems, theories disagree as to whether motor and sensory cortex activity observed during language processing is functional or epiphenomenal. Here, we assessed the role of motor areas in linguistic processing by investigating the responses of 28 healthy volunteers to different word types in semantic and lexical decision tasks, following repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex. We found that early rTMS (delivered within 200ms of word onset) produces a left-lateralised and meaning-specific change in reaction speed, slowing down behavioural responses to action-related words, and facilitating abstract words - an effect present only during semantic, but not lexical, decision. We interpret these data in light of action-perception theory of language, bolstering the claim that motor cortical areas play a functional role in language comprehension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effect of Hippotherapy on Motor Proficiency and Function in Children with Cerebral Palsy Who Walk.

    Science.gov (United States)

    Champagne, Danielle; Corriveau, Hélène; Dugas, Claude

    2017-02-01

    To evaluate the effects of hippotherapy on physical capacities of children with cerebral palsy. Thirteen children (4-12 years old) with cerebral palsy classified in Gross Motor Function Classification System Level I or II were included in this prospective quasi-experimental ABA design study. Participants received 10 weeks of hippotherapy (30 min per week). Gross motor function and proficiency were measured with the Bruininks-Oseretski Motor Proficiency short form [BOT2-SF]) and the Gross Motor Function Measure-88 [GMFM-88] (Dimension D and E) twice before the program (T1 and T1'), immediately after (T2), and 10 weeks following the end of the program (T3). Mean scores for dimensions D and E of the GMFM-88 Dimension scores (p = .005) and three out of the eight items of the BOT2-SF (fine motor precision (p = .013), balance (p = .025), and strength (p = .012) improved between baseline and immediately after intervention; mean scores immediately following and 10 weeks following intervention did not differ. Hippotherapy provided by a trained therapist who applies an intense and graded session for 10 weeks can improve body functions and performance of gross motor and fine motor activities in children with cerebral palsy.

  17. Volumetric Effects of Motor Cortex Injury on Recovery of Ipsilesional Dexterous Movements

    Science.gov (United States)

    Darling, Warren G.; Pizzimenti, Marc A.; Hynes, Stephanie M.; Rotella, Diane L.; Headley, Grant; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; McNeal, David W.; Solon-Cline, Kathryn M.; Morecraft, Robert J.

    2011-01-01

    Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating larger lesions were associate with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage. PMID:21703261

  18. Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397

  19. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  20. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  1. Differential modulation of motor cortex plasticity in skill- and endurance-trained athletes

    OpenAIRE

    Kumpulainen, Susanne; Avela, Janne; Gruber, Markus; Bergmann, Julian; Voigt, Michael; Linnamo, Vesa; Mrachacz-Kersting, Natalie

    2015-01-01

    PurposeExtensive evidence exists that regular physical exercise offers neuroplastic benefits to the brain. In this study, exercise-specific effects on motor cortex plasticity were compared between 15 skilled and 15 endurance trained athletes and 8 controls.MethodsPlasticity was tested with a paired associative stimulation (PAS) protocol. PAS is a non-invasive stimulation method developed to induce bidirectional changes in the excitability of the cortical projections to the target muscles. Mot...

  2. Mapping Horizontal Spread of Activity in Monkey Motor Cortex using Single Pulse Microstimulation

    Directory of Open Access Journals (Sweden)

    Yaoyao Hao

    2016-12-01

    Full Text Available Anatomical studies have demonstrated that distant cortical points are interconnected through long range axon collaterals of pyramidal cells. However, the functional properties of these intrinsic synaptic connections, especially their relationship with the cortical representations of body movements, have not been systematically investigated. To address this issue, we used multielectrode arrays chronically implanted in the motor cortex of two rhesus monkeys to analyze the effects of single-pulse intracortical microstimulation (sICMS applied at one electrode on the neuronal activities recorded at all other electrodes. The temporal and spatial distribution of the evoked responses of single (SUA and multiunit (MUA activities was quantified to determine the properties of horizontal propagation. The typical responses were characterized by a brief excitatory peak followed by inhibition of longer duration. Significant excitatory responses to sICMS could be evoked up to 4 mm away from the stimulation site, but the strength of the response decreased exponentially and its latency increased linearly with the distance. We then quantified the direction and strength of the propagation in relation to the somatotopic organization of the motor cortex. We observed that following sICMS the propagation of neural activity is mainly directed rostro-caudally near the central sulcus but follows medio-lateral direction at the most anterior electrodes. The fact that these interactions are not entirely symmetrical may characterize a critical functional property of the motor cortex for the control of upper limb movements. Overall, these results support the assumption that the motor cortex is not functionally homogeneous but forms a complex network of interacting subregions.

  3. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study

    OpenAIRE

    Stern, William M; Mahalekshmi Desikan; Damon Hoad; Fatima Jaffer; Gionata Strigaro; Sander, Josemir W.; Rothwell, John C; Sisodiya, Sanjay M.

    2016-01-01

    BACKGROUND: Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. METHODS: We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating ...

  4. Motor cortex broadly engages excitatory and inhibitory neurons in somatosensory barrel cortex.

    Science.gov (United States)

    Kinnischtzke, Amanda K; Simons, Daniel J; Fanselow, Erika E

    2014-08-01

    Anatomical studies have shown that primary somatosensory (S1) and primary motor (M1) cortices are reciprocally connected. The M1 to S1 projection is thought to represent a modulatory signal that conveys motor-related information to S1. Here, we investigated M1 synaptic inputs to S1 by injecting an AAV virus containing channelrhodopsin-2 and a fluorescent tag into M1. Consistent with previous results, we found labeling of M1 axons within S1 that was most robust in the deep layers and in L1. Labeling was sparse in L4 and was concentrated in the interbarrel septa, largely avoiding barrel centers. In S1, we recorded in vitro from regular-spiking excitatory neurons and fast-spiking and somatostatin-expressing inhibitory interneurons. All 3 cell types had a high probability of receiving direct excitatory M1 input. Both excitatory and inhibitory cells within L4 were the least likely to receive such input from M1. Disynaptic inhibition was observed frequently, indicating that M1 recruits substantial inhibition within S1. Additionally, a subpopulation of L6 regular-spiking excitatory neurons received exceptionally strong M1 input. Overall, our results suggest that activation of M1 evokes within S1 a bombardment of excitatory and inhibitory synaptic activity that could contribute in a layer-specific manner to state-dependent changes in S1. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    Science.gov (United States)

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-01-22

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P motor performance also showed stronger oscillatory synchronization (r = -0.356; P motor command to respond to more subtle, physiological inputs from other brain areas. This novel insight indicates that impairments of the timing accuracy of synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  6. [Effect of acupuncture intervention on 14-3-3 expression in cerebral cortex of hypoxic-ischemic brain damage rats].

    Science.gov (United States)

    Li, Xing-er; Yuan, Qing; Tang, Chun-zhi; Chen, Fei; Zhao, Rong; Liu, Long-lin; Yu, Yu-tian; Cao, Yong; Wu, Jia-li; Sun, Shuo

    2014-12-01

    To observe the effect of acupuncture therapy on 14-3-3, Bcl-2 and Bax expression levels in the cerebral cortex in neonatal rats with hypoxic-ischemic brain damage(HIBD). Timed pregnant Sprague-Dawley rat dams were delivered either vaginally (normal group), or by C-section (sham-operation group) or by C-section with 5 min of global anoxia (anoxia group), with 8 rats in each group. The rat pups of the anoxia group were randomly divided into model group and acupuncture group (n =8). Acupuncture stimulation of "Naosanzhen" "Niesanzhen" and "Zhisanzhen" acupoints was given begin- ning from the 14th day after birth, once daily for 7 consecutive days. All rat pups were killed by decapitation on day 21 after birth, and then 14-3-3, Bcl-2 and Bax immunoactivity (expression) in the cerebral cortex were detected by immunohistochemistry. In comparison with the normal group, the expression level of cerebral cortical 14-3-3 was significantly decreased, and that of Bax remarkably increased in the model group (Poperation group (P0. 05). Acupuncture intervention can increase the expression of 14-3-3 and Bcl-2 in the cerebral cortex in HIBD rats.

  7. Pain Relief in CRPS-II after Spinal Cord and Motor Cortex Simultaneous Dual Stimulation.

    Science.gov (United States)

    Lopez, William Oc; Barbosa, Danilo C; Teixera, Manoel J; Paiz, Martin; Moura, Leonardo; Monaco, Bernardo A; Fonoff, Erich T

    2016-05-01

    We describe a case of a 30-year-old woman who suffered a traumatic injury of the right brachial plexus, developing severe complex regional pain syndrome type II (CRPS-II). After clinical treatment failure, spinal cord stimulation (SCS) was indicated with initial positive pain control. However, after 2 years her pain progressively returned to almost baseline intensity before SCS. Additional motor cortex electrode implant was then proposed as a rescue therapy and connected to the same pulse generator. This method allowed simultaneous stimulation of the motor cortex and SCS in cycling mode with independent stimulation parameters in each site. At 2 years follow-up, the patient reported sustained improvement in pain with dual stimulation, reduction of painful crises, and improvement in quality of life. The encouraging results in this case suggests that this can be an option as add-on therapy over SCS as a possible rescue therapy in the management of CRPS-II. However, comparative studies must be performed in order to determine the effectiveness of this therapy. Chronic neuropathic pain, Complex regional pain syndrome Type II, brachial plexus injury, motor cortex stimulation, spinal cord stimulation.

  8. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements.

    Science.gov (United States)

    Mizuguchi, N; Nakata, H; Kanosue, K

    2016-02-19

    To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Excitatory repetitive transcranial magnetic stimulation to left dorsal premotor cortex enhances motor consolidation of new skills

    Directory of Open Access Journals (Sweden)

    Boyd Lara A

    2009-07-01

    Full Text Available Abstract Background Following practice of skilled movements, changes continue to take place in the brain that both strengthen and modify memory for motor learning. These changes represent motor memory consolidation a process whereby new memories are transformed from a fragile to a more permanent, robust and stable state. In the present study, the neural correlates of motor memory consolidation were probed using repetitive transcranial magnetic stimulation (rTMS to the dorsal premotor cortex (PMd. Participants engaged in four days of continuous tracking practice that immediately followed either excitatory 5 HZ, inhibitory 1 HZ or control, sham rTMS. A delayed retention test assessed motor learning of repeated and random sequences of continuous movement; no rTMS was applied at retention. Results We discovered that 5 HZ excitatory rTMS to PMd stimulated motor memory consolidation as evidenced by off-line learning, whereas only memory stabilization was noted following 1 Hz inhibitory or sham stimulation. Conclusion Our data support the hypothesis that PMd is important for continuous motor learning, specifically via off-line consolidation of learned motor behaviors.

  10. Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy.

    Directory of Open Access Journals (Sweden)

    Vagner Wilian Batista E Sá

    Full Text Available Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS.In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1 the representations of the hand flexor digitorum superficialis (FDS, as well as of the intrinsic hand muscles abductor pollicis brevis (APB, first dorsal interosseous (FDI and abductor digiti minimi (ADM. All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05.Dynamometry performance of the patients' most affected hand (MAH, was worse than that of the less affected hand (LAH and of healthy controls participants (p = 0.031, confirming handgrip impairment. Motor threshold (MT of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy.Decreased sensory-motor function induced by

  11. Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease.

    Science.gov (United States)

    Koenig, Katherine A; Lowe, Mark J; Harrington, Deborah L; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S; Rao, Stephen M

    2014-09-01

    Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.

  12. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Directory of Open Access Journals (Sweden)

    Marcus eMeinzer

    2014-09-01

    Full Text Available Language facilitation by transcranial direct current stimulation (tDCS in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia. However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI, which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1 can enhance language functions.This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal and bihemispheric (dual tDCS in eighteen healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects.Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions.Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. fMRI revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in improved

  13. Linear summation of outputs in a balanced network modelof motor cortex

    Directory of Open Access Journals (Sweden)

    Charles eCapaday

    2015-06-01

    Full Text Available Given the nonlinearities of the the neural circuitry's elements, we would expect corticalcircuits to respond nonlinearly when activated. Surprisingly, when two points in the motorcortex are activated simultaneously, the EMG responses are the linear sum of the responsesevoked by each of the points activated separately. Additionally, the corticospinal transferfunction is close to linear, implying that the synaptic interactions in motor cortex must beeffectively linear. To account for this, here we develop a model of motor cortex composedof multiple interconnected points, each comprised of reciprocally connected excitatory andinhibitory neurons. We show how nonlinearities in neuronal transfer functions areeschewed by strong synaptic interactions within each point. Consequently, thesimultaneous activation of multiple points results in a linear summation of their respectiveoutputs. We also consider the effects of reduction of inhibition at a cortical point when oneor more surrounding points are active. The network response in this condition is linear overan approximately two to three fold decrease of inhibitory feedback strength. This resultsupports the idea that focal disinhibition allows linear coupling of motor cortical points togenerate movement related muscle activation patterns; albeit with a limitation on gaincontrol. The model also explains why neural activity does not spread as far out as the axonalconnectivity allows, whilst also explaining why distant cortical points can be, nonetheless,functionally coupled by focal disinhibition. Finally, we discuss the advantages that linearinteractions at the cortical level afford to motor command synthesis.

  14. A novel synaptic vesicle fusion path in the rat cerebral cortex: the "saddle" point hypothesis.

    Science.gov (United States)

    Zampighi, Guido A; Serrano, Raul; Vergara, Julio L

    2014-01-01

    We improved freeze-fracture electron microscopy to study synapses in the neuropil of the rat cerebral cortex at ∼2 nm resolution and in three-dimensions. In the pre-synaptic axon, we found that "rods" assembled from short filaments protruding from the vesicle and the plasma membrane connects synaptic vesicles to the membrane of the active zone. We equated these "connector rods" to protein complexes involved in "docking" and "priming" vesicles to the active zone. Depending on their orientation, the "rods" define two synaptic vesicle-fusion paths: When parallel to the plasma membrane, the vesicles hemi-fuse anywhere ("randomly") in the active zone following the conventional path anticipated by the SNARE hypothesis. When perpendicular to the plasma membrane, the vesicles hemi-fuse at the base of sharp crooks, called "indentations," that are spaced 75-85 nm center-to-center, arranged in files and contained within gutters. They result from primary and secondary membrane curvatures that intersect at stationary inflection ("saddle") points. Computer simulations indicate that this novel vesicle-fusion path evokes neurotransmitter concentration domains on the post-synaptic spine that are wider, shallower, and that reach higher average concentrations than the more conventional vesicle fusion path. In the post-synaptic spine, large (∼9× ∼15 nm) rectangular particles at densities of 72±10/ µm2 (170-240/spine) match the envelopes of the homotetrameric GluR2 AMPA-sensitive receptor. While these putative receptors join clusters, called the "post-synaptic domains," the overwhelming majority of the rectangular particles formed bands in the "non-synaptic" plasma membrane of the spine. In conclusion, in the neuropil of the rat cerebral cortex, curvatures of the plasma membrane define a novel vesicle-fusion path that preconditions specific regions of the active zone for neurotransmitter release. We hypothesize that a change in the hybridization of the R-SNARE synaptobrevin

  15. Drooling in cerebral palsy: hypersalivation or dysfunctional oral motor control?

    NARCIS (Netherlands)

    Erasmus, C.E.; Hulst, K. van; Rotteveel, L.J.C.; Jongerius, P.H.; Hoogen, F.J.A. van den; Roeleveld, N.; Rotteveel, J.J.

    2009-01-01

    AIM: To investigate whether drooling in children with cerebral palsy (CP) in general and in CP subtypes is due to hypersalivation. METHOD: Saliva was collected from 61 healthy children (30 males, mean age 9y 5mo [SD 11mo]; 31 females, mean age 9y 6mo [1y 2mo]) and 100 children with CP who drooled

  16. Anodal transcranial direct current stimulation over premotor cortex facilitates observational learning of a motor sequence.

    Science.gov (United States)

    Wade, Stephanie; Hammond, Geoff

    2015-06-01

    Motor skills, including complex movement sequences, can be acquired by observing a model without physical practice of the skill, a phenomenon known as observational learning. Observational learning of motor skills engages the same memory substrate as physical practice, and is thought to be mediated by the action observation network, a bilateral fronto-parietal circuit with mirror-like properties. We examined the effects of anodal transcranial direct current stimulation (tDCS) over premotor cortex, a key node of the action observation network, on observational learning of a serial response time task. Results showed that anodal tDCS during observation of the to-be-learned sequence facilitated reaction times in the subsequent behavioral test. The study provides evidence that increasing excitability of the action observation network during observation can facilitate later motor skill acquisition. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. On the functional organization and operational principles of the motor cortex

    DEFF Research Database (Denmark)

    Capaday, Charles; Ethier, Christian; Van Vreeswijk, Carl

    2013-01-01

    Recent studies on the functional organization and operational principles of the motor cortex (MCx), taken together, strongly support the notion that the MCx controls the muscle synergies subserving movements in an integrated manner. For example, during pointing the shoulder, elbow and wrist muscles...... representation of muscles in the MCx. A key question addressed in this article is whether the selection of movement related muscle synergies is a dynamic process involving the moment to moment functional linking of a variety of motor cortical points, or rather the selection of fixed patterns embedded in the MCx...... appear to be controlled as a coupled functional system, rather than singly and separately. The recurrent pattern of intrinsic synaptic connections between motor cortical points is likely part of the explanation for this operational principle. So too is the reduplicated, non-contiguous and intermingled...

  18. Influence of position and stimulation parameters on intracortical inhibition and facilitation in human tongue motor cortex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Nielsen, Jørgen Feldbæk

    Paired-pulse transcranial magnetic stimulation (ppTMS) can be used to assess short-interval intracortical inhibitory (SICI) and facilitatory (ICF) networks. The aim of the study was to examine the influence of body positions (recline and supine), inter-stimulus intervals (ISI) between the test...... stimulus (TS) and conditioning stimulus (CS) and intensities of the TS and CS on the degree of SICI and ICF. In study 1 and 2, fourteen and seventeen healthy volunteers participated respectively. ppTMS was applied over the “hot-spot” of the tongue motor cortex and motor evoked potentials (MEPs) were...... recorded from contralateral tongue muscles. In study 1, single pulse and three ppTMS ISIs: 2, 10, 15 ms were applied 8 times each in three blocks (TS: 120%, 140% and 160% of resting motor threshold (rMT); CS: 80% of rMT) in two different body positions (recline and supine) randomly. In study 2, single...

  19. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses.

    Science.gov (United States)

    Mishra, Asht M; Pal, Ajay; Gupta, Disha; Carmel, Jason B

    2017-11-15

    Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology

  20. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    Science.gov (United States)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  <  0.05) represented up to 76.7% of sorted multiunits across four monkeys. After normalizing by the number of channels with significant motor finger responses, the percentage of electrodes with significant tactile responses was 74.9%  ±  24.7%. No somatotopic organization of finger preference was obvious across cortex, but many units exhibited cosine-like tuning across multiple digits. Sufficient sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different

  1. Cholinergic enhancement increases regional cerebral blood flow to the posterior cingulate cortex in mild Alzheimer's disease.

    Science.gov (United States)

    Iizuka, Tomomichi; Kameyama, Masashi

    2017-06-01

    The brain region that shows reductions in regional cerebral blood flow (rCBF) earliest is the posterior cingulate cortex (PCC), which is thought to have a relationship with cognitive function. We made a hypothesis that the PCC hypoperfusion is a result of cholinergic dysfunction and can be restored by cholinergic enhancement. This present longitudinal study aimed to detect the restoration of PCC rCBF in response to donepezil, an acetylcholine esterase inhibitor. We evaluated rCBF changes in the PCC, precuneus and anterior cingulate cortex using perfusion single-photon emission computed tomography (SPECT), statistical analysis and region of interest analysis, prospectively. We allocated 36 patients with mild AD to either the responder or non-responder groups based on changes in Mini-Mental State Examination scores. The patients were followed up for 18 months. The PCC rCBF significantly increased in responders after 6 months of donepezil therapy. Statistical maps at baseline showed a typical decreased pattern of mild AD and obvious rCBF restoration in the bilateral PCC at 6 months in responders. Changes in Mini-Mental State Examination scores and the AD assessment scale cognitive scores significantly correlated with rCBF changes in the PCC of responders. Cholinergic enhancement restored PCC rCBF under the three conditions of mild AD, responders and short follow-up interval, and that increase correlated with improved cognitive function. These findings support our hypothesis that PCC rCBF reflects cholinergic function in AD patients. Geriatr Gerontol Int 2017; 17: 951-958. © 2016 The Authors. Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.

  2. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    Science.gov (United States)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  3. Arithmetic Performance of Children with Cerebral Palsy: The Influence of Cognitive and Motor Factors

    Science.gov (United States)

    van Rooijen, Maaike; Verhoeven, Ludo; Smits, Dirk-Wouter; Ketelaar, Marjolijn; Becher, Jules G.; Steenbergen, Bert

    2012-01-01

    Children diagnosed with cerebral palsy (CP) often show difficulties in arithmetic compared to their typically developing peers. The present study explores whether cognitive and motor variables are related to arithmetic performance of a large group of primary school children with CP. More specifically, the relative influence of non-verbal…

  4. The Influence of Motor Impairment on Autonomic Heart Rate Modulation among Children with Cerebral Palsy

    Science.gov (United States)

    Zamuner, Antonio Roberto; Cunha, Andrea Baraldi; da Silva, Ester; Negri, Ana Paola; Tudella, Eloisa; Moreno, Marlene Aparecida

    2011-01-01

    The study of heart rate variability is an important tool for a noninvasive evaluation of the neurocardiac integrity. The present study aims to evaluate the autonomic heart rate modulation in supine and standing positions in 12 children diagnosed with cerebral palsy and 16 children with typical motor development (control group), as well as to…

  5. Motor Learning of a Bimanual Task in Children with Unilateral Cerebral Palsy

    Science.gov (United States)

    Hung, Ya-Ching; Gordon, Andrew M.

    2013-01-01

    Children with unilateral cerebral palsy (CP) have been shown to improve their motor performance with sufficient practice. However, little is known about how they learn goal-oriented tasks. In the current study, 21 children with unilateral CP (age 4-10 years old) and 21 age-matched typically developed children (TDC) practiced a simple bimanual…

  6. Motor Control of the Lower Extremity Musculature in Children with Cerebral Palsy

    Science.gov (United States)

    Arpin, David J.; Stuberg, Wayne; Stergiou, Nicholas; Kurz, Max J.

    2013-01-01

    The aim of this investigation was to quantify the differences in torque steadiness and variability of the muscular control in children with cerebral palsy (CP) and typically developing (TD) children. Fifteen children with CP (age = 14.2 [plus or minus] 0.7 years) that had a Gross Motor Function Classification System (GMFCS) score of I-III and 15…

  7. Motor imagery for walking: A comparison between cerebral palsy adolescents with hemiplegia and diplegia

    NARCIS (Netherlands)

    Molina, M.; Kudlinski, C.; Guilbert, J.; Spruijt, S.; Steenbergen, B.; Jouen, F.

    2015-01-01

    The goal of the study was to investigate whether motor imagery (MI) could be observed in cerebral palsy (CP) participants presenting a bilateral affected body side (diplegia) as it has been previously revealed in participants presenting a unilateral body affected sided (hemiplegia). MI capacity for

  8. Motor imagery for walking: a comparison between cerebral palsy adolescents with hemiplegia and diplegia

    NARCIS (Netherlands)

    Molina, M.; Kudlinski, C.; Guilbert, J.; Spruijt, S.; Steenbergen, B.; Jouen, F.

    2015-01-01

    The goal of the study was to investigate whether motor imagery (MI) could be observed in cerebral palsy (CP) participants presenting a bilateral affected body side (diplegia) as it has been previously revealed in participants presenting a unilateral body affected sided (hemiplegia). MI capacity for

  9. Motor imagery for walking: A comparison between cerebral palsy adolescents with hemiplegia and diplegia

    NARCIS (Netherlands)

    Molina, M.; Kudlinski, C.; Guilbert, J.; Spruijt, S.; Steenbergen, B.; Jouen, F.

    2014-01-01

    The goal of the study was to investigate whether motor imagery (MI) could be observed in cerebral palsy (CP) participants presenting a bilateral affected body side (diplegia) as it has been previously revealed in participants presenting a unilateral body affected sided (hemiplegia). MI capacity for

  10. Gross motor function, functional skills and caregiver assistance in children with spastic cerebral palsy (CP) with and without cerebral visual impairment (CVI)

    NARCIS (Netherlands)

    Salavati, M.; Rameckers, E.A.A.; Steenbergen, B.; Schans, C.P. van der

    2014-01-01

    Aim: To determine whether the level of gross motor function and functional skills in children with cerebral palsy (CP) and cerebral visual impairment (CVI) as well as caregiver assistance are lower in comparison with the corresponding group of children experiencing CP without CVI. Method: Data

  11. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex

    Science.gov (United States)

    Stephan, Marianne A.; Brown, Rachel; Lega, Carlotta; Penhune, Virginia

    2016-01-01

    The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools. PMID:27242414

  12. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Marianne Anke Stephan

    2016-05-01

    Full Text Available The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group. For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group. Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools.

  13. Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia.

    Science.gov (United States)

    Subudhi, Andrew W; Miramon, Brittany R; Granger, Matthew E; Roach, Robert C

    2009-04-01

    Reductions in prefrontal oxygenation near maximal exertion may limit exercise performance by impairing executive functions that influence the decision to stop exercising; however, whether deoxygenation also occurs in motor regions that more directly affect central motor drive is unknown. Multichannel near-infrared spectroscopy was used to compare changes in prefrontal, premotor, and motor cortices during exhaustive exercise. Twenty-three subjects performed two sequential, incremental cycle tests (25 W/min ramp) during acute hypoxia [79 Torr inspired Po(2) (Pi(O(2)))] and normoxia (117 Torr Pi(O(2))) in an environmental chamber. Test order was balanced, and subjects were blinded to chamber pressure. In normoxia, bilateral prefrontal oxygenation was maintained during low- and moderate-intensity exercise but dropped 9.0 +/- 10.7% (mean +/- SD, P W). The pattern and magnitude of deoxygenation were similar in prefrontal, premotor, and motor regions (R(2) > 0.94). In hypoxia, prefrontal oxygenation was reduced 11.1 +/- 14.3% at rest (P W, P 0.61), but deoxygenation was greater in prefrontal than premotor and motor regions (P motor cortex deoxygenation during high-intensity exercise may contribute to an integrative decision to stop exercise. The accelerated rate of cortical deoxygenation in hypoxia may hasten this effect.

  14. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation.

    Directory of Open Access Journals (Sweden)

    Dhakshin S Ramanathan

    Full Text Available Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning.

  15. Influence of repetitive peripheral magnetic stimulation on neural plasticity in the motor cortex related to swallowing.

    Science.gov (United States)

    Momosaki, Ryo; Kakuda, Wataru; Yamada, Naoki; Abo, Masahiro

    2016-09-01

    The aim of this study was to evaluate the effect of repetitive peripheral magnetic stimulation at two different frequencies (20 and 30 Hz) on cortical excitability in motor areas related to swallowing in healthy individuals. The study participants were 10 healthy normal volunteers (two women and eight men, age range 25-36 years). Repetitive peripheral magnetic stimulation was applied to the submandibular muscle using a parabolic coil at the site where contraction of the suprahyoid muscles was elicited. Stimulation was continued for 10 min (total 1200 pulses) at 20 Hz on 1 day and at 30 Hz on another day, with the stimulation strength set at 90% of the intensity that elicited pain. The motor-evoked potential amplitude of suprahyoid muscles was assessed before, immediately after, and 30 min after stimulation. Stimulations at both 20 and 30 Hz significantly increased motor-evoked potential amplitude (Pstimulation. The motor-evoked potential amplitude immediately after stimulation was not significantly different between the 20 and 30 Hz frequencies. The results indicated that repetitive magnetic stimulation increased motor-evoked potential amplitude of swallowing muscles, suggesting facilitation of the motor cortex related to swallowing in healthy individuals.

  16. Abnormal motor cortex plasticity in premanifest and very early manifest Huntington's disease

    Science.gov (United States)

    Orth, M; Schippling, S; Schneider, SA; Bhatia, KP; Talelli, P; Tabrizi, SJ; Rothwell, JC

    2010-01-01

    Background Cognition is affected early in Huntington's disease, and in HD animal models there is evidence that this reflects abnormal synaptic plasticity. We investigated whether there is evidence for abnormal synaptic plasticity using the human motor cortex-rTMS model, and if so, if there is any difference between premanifest HD gene carriers and very early manifest HD patients or any relationship with ratings of the severity of motor signs. Methods Fifteen HD gene carriers (7 premanifest, 8 very early manifest) and 14 control participants were given a continuous train of 100 bursts of theta burst stimulation (cTBS: three pulses at 50 Hz and 80% AMT repeated every 200ms). The size of the motor evoked potential was measured at regular intervals until 21 minutes after cTBS. Results HD gene carriers and controls responded differently to theta burst stimulation (F4.9,131.9=1.37, p=0.048) with controls having more inhibition than HD gene carriers (F1,27=13.3, p=0.001). Across all time points mean inhibition differed between the groups (F2,26=6.32, p=0.006); controls had more inhibition than either HD gene carrier subgroup (p=0.006 for premanifest and p=0.009 for early symptomatic) whereas there was no difference between premanifest and early symptomatic HD gene carriers. The measure of cortical plasticity was not associated with any clinical ratings (UHDRS motor score, estimate of age at onset). Conclusions Motor cortex plasticity is abnormal in HD gene carriers but is not closely linked to the development of motor signs of HD. PMID:19828482

  17. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient

  18. Effects of long-term exercise and low-level inhibition of GABAergic synapses on motor control and the expression of BDNF in the motor related cortex.

    Science.gov (United States)

    Inoue, Takahiro; Ninuma, Shuta; Hayashi, Masataka; Okuda, Akane; Asaka, Tadayoshi; Maejima, Hiroshi

    2018-01-01

    Objectives Brain-derived neurotrophic factor (BDNF) plays important roles in neuroplasticity in the brain. The objective of this study was to examine the effects of long-term exercise combined with low-level inhibition of GABAergic synapses on motor control and the expression of BDNF in the motor-related cortex. Methods ICR mice were divided into four groups based on the factors exercise and GABA A receptor inhibition. We administered the GABA A receptor antagonist bicuculline intraperitoneally (0.25 mg/kg). Mice exercised on a treadmill 5 days/week for 4 weeks. Following behavioral tests, BDNF expression in the motor cortex and cerebellar cortex was assayed using RT-PCR and ELISA. Results Exercise increased BDNF protein in the motor cortex and improved motor coordination in the rotarod test either in the presence or absence of bicuculline. BDNF mRNA expression in the motor cortex and muscle coordination in the wire hang test decreased after administration of bicuculline, whereas bicuculline administration increased mRNA and protein expression of BDNF in the cerebellum. Discussion The present study revealed that long-term exercise increased BDNF expression in the motor cortex and facilitated a transfer of motor learning from aerobic exercise to postural coordination. Thus, aerobic exercise is meaningful for conditioning motor learning to rehabilitate patients with central nervous system (CNS) disorders. However, long-term inhibition of GABA A receptors decreased the expression of cortical BDNF mRNA and decreased muscle coordination, despite the increase of BDNF in the cerebellum, suggesting that we have to consider the term of the inhibition of the GABAergic receptor for future clinical application to CNS patients.

  19. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy.

    Science.gov (United States)

    Park, Myoung-Ok

    2017-02-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.

  20. Microvascular adaptation in the cerebral cortex of adult spontaneously hypertensive rats.

    Science.gov (United States)

    Harper, S L; Bohlen, H G

    1984-01-01

    The purpose of this study was to determine the microvascular characteristics that cause cerebral cortical blood flow autoregulation to shift to a higher range of arterial pressures during established hypertension in spontaneously hypertensive rats (SHR). An open-skull technique with constant suffusion of artificial cerebrospinal fluid (PO2 = 40-45 mm Hg, PCO2 = 40-45 mm Hg, pH = 7.35-7.45) was used to view the parietal cortex of 18- to 21-week-old SHR and Wistar Kyoto (WKY) normotensive control rats. The resting inner diameters of first (1A)-, second (2A)-, and fourth (4a)-order arterioles were significantly (p less than 0.05) smaller, and the wall thickness/lumen diameter ratios were significantly (p less than 0.05) larger in SHR compared to WKY. Only 1A and 4A has significantly (p less than 0.05) increased vessel wall cross-sectional area in SHR. At the resting mean arterial pressures of WKY and SHR, the passive (10(-4) M adenosine, topical) diameters of comparable types of arterioles were not significantly different (p greater than 0.05). At reduced arterial pressures, however, the arterioles in SHR had smaller maximum diameters than in WKY. Cortical blood flow in WKY and SHR was constant at arterial pressures from 70-150 mm Hg and 100-200 mm Hg, respectively. Resting arteriolar pressures in 1A, 2A, and 3A of SHR were substantially and significantly (p less than 0.05) elevated, although pressures in the smallest arterioles and venules of WKY and SHR were similar. Therefore, it is possible that cerebral capillary pressure is only slightly elevated, if at all, in SHR as a result of the vasoconstriction. The number of arterioles per unit area of brain surface at rest was equal in WKY and SHR. In addition, the number of vessels was equal in WKY and SHR during maximal dilation, and neither type of rat demonstrated an opening of previously closed vessels upon maximum dilation. Therefore, the cerebral arteriolar constriction in SHR, which was probably potentiated by

  1. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Martinez, Hector R; Gonzalez-Garza, Maria T; Moreno-Cuevas, Jorge E; Caro, Enrique; Gutierrez-Jimenez, Eugenio; Segura, Jose J

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by the selective death of motor neurons. CD133(+) stem cells are known to have the capacity to differentiate into neural lineages. Stem cells may provide an alternative treatment for ALS and other neurodegenerative diseases. Five men and five women (aged 38-62 years) with confirmed ALS were included in this study. Our institutional ethics and research committees approved the protocol. After informed consent was obtained, patients underwent Hidrogen-Magnetic Resonance Imaging (H-MRI) spectroscopy and were given scores according to an ALS functional rating scale, Medical Research Council power muscle scale and daily living activities. Bone marrow was stimulated with 300 microg filgrastim subcutaneously daily for 3 days. Peripheral blood mononuclear cells were obtained after admission by leukapheresis. The cell suspension was conjugated with anti-human CD133 superparamagnetic microbeads, and linked cells were isolated in a magnetic field. The isolated cells (2.5-7.5x10(5)) were resuspended in 300 microL of the patient's cerebrospinal fluid, and implanted in motor cortexes using a Hamilton syringe. Ten patients with confirmed ALS without transplantation were used as a control group. Patients were followed up for a period of 1 year. The autologous transplantation of CD133(+) stem cells into the frontal motor cortex is a safe and well-tolerated procedure in ALS patients. The survival of treated patients was statistically higher (P=0.01) than untreated control patients. Stem-cell transplantation in the motor cortex delays ALS progression and improves quality of life.

  2. Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex.

    Science.gov (United States)

    Perge, János A; Zhang, Shaomin; Malik, Wasim Q; Homer, Mark L; Cash, Sydney; Friehs, Gerhard; Eskandar, Emad N; Donoghue, John P; Hochberg, Leigh R

    2014-08-01

    Action potentials and local field potentials (LFPs) recorded in primary motor cortex contain information about the direction of movement. LFPs are assumed to be more robust to signal instabilities than action potentials, which makes LFPs, along with action potentials, a promising signal source for brain-computer interface applications. Still, relatively little research has directly compared the utility of LFPs to action potentials in decoding movement direction in human motor cortex. We conducted intracortical multi-electrode recordings in motor cortex of two persons (T2 and [S3]) as they performed a motor imagery task. We then compared the offline decoding performance of LFPs and spiking extracted from the same data recorded across a one-year period in each participant. We obtained offline prediction accuracy of movement direction and endpoint velocity in multiple LFP bands, with the best performance in the highest (200-400 Hz) LFP frequency band, presumably also containing low-pass filtered action potentials. Cross-frequency correlations of preferred directions and directional modulation index showed high similarity of directional information between action potential firing rates (spiking) and high frequency LFPs (70-400 Hz), and increasing disparity with lower frequency bands (0-7, 10-40 and 50-65 Hz). Spikes predicted the direction of intended movement more accurately than any individual LFP band, however combined decoding of all LFPs was statistically indistinguishable from spike-based performance. As the quality of spiking signals (i.e. signal amplitude) and the number of significantly modulated spiking units decreased, the offline decoding performance decreased 3.6[5.65]%/month (for T2 and [S3] respectively). The decrease in the number of significantly modulated LFP signals and their decoding accuracy followed a similar trend (2.4[2.85]%/month, ANCOVA, p = 0.27[0.03]). Field potentials provided comparable offline decoding performance to unsorted spikes. Thus

  3. The central role of trunk control in the gross motor function of children with cerebral palsy

    DEFF Research Database (Denmark)

    Curtis, Derek John; Butler, Penny; Saavedra, Sandy

    2015-01-01

    Aim Improvement of gross motor function and mobility are primary goals of physical therapy in children with cerebral palsy (CP). The purpose of this study was to investigate the relationship between segmental control of the trunk and the corresponding gross motor function in children with CP....... Method This retrospective cross-sectional study was based on 92 consecutive referrals of children with CP in Gross Motor Function Classification System (GMFCS) levels I to V, 39 females, 53 males (median age 4y [range 1–14y]), and 77, 12, and 3 with spastic, dyskinetic, and ataxic CP respectively...... function and mobility with significant clinical implications for the treatment of children with CP....

  4. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices

    Directory of Open Access Journals (Sweden)

    Torres I.L.S.

    2001-01-01

    Full Text Available It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  5. Recurrence network analysis of multiple local field potential bands from the orofacial portion of primary motor cortex.

    Science.gov (United States)

    Subramaniyam, Narayan Puthanmadam; Hyttinen, Jari; Hatsopoulos, Nicholas G; Ross, Callum F; Takahashi, Kazutaka

    2015-01-01

    Local field potentials (LFPs), which have been considered as aggregate signals that reflect activities of a large number of neurons in the cerebral cortex, have been observed to mediate gross functional activities of a relatively small volume of the brain tissues. Historically there have been several frequency bands observed and defined across various brain areas. However, detailed analysis, either spectral analysis or any dynamical analysis of LFPs particularly in the orofacial part of the primary motor cortex (MIo) has not been done before. Here, we recorded LFPs from MIo using an electrode array from a non-human primate during feeding behavior. Then we performed spectral analysis during the whole feeding sequences and to characterize temporal evolution of spectrum around the time of swallow cycles. The spectrogram over the β range showed dynamical change in its power around the swallow cycle onsets. We then characterized dynamical behaviors of LFPs over multiple bands, α, β, low γ, and high γ using two measures from the recurrence network (RN) method, network transitivity, T and average path length L. Temporal profile of T in α and β indicated that there was a sudden change in the dynamical properties around the swallow cycle onsets, while temporal profile of L indicated that a range of -200 to -150 ms and 200 ms to the swallow cycle onsets exhibited large changes both in α and β ranges. Therefore, to further understand the involvement of cortical oscillation to behavior, particularly swallowing, the combination of traditional spectral methods and various dynamical methods such as RN method would be essential.

  6. Probabilistic map of critical functional regions of the human cerebral cortex: Broca's area revisited.

    Science.gov (United States)

    Tate, Matthew C; Herbet, Guillaume; Moritz-Gasser, Sylvie; Tate, Joseph E; Duffau, Hugues

    2014-10-01

    The organization of basic functions of the human brain, particularly in the right hemisphere, remains poorly understood. Recent advances in functional neuroimaging have improved our understanding of cortical organization but do not allow for direct interrogation or determination of essential (versus participatory) cortical regions. Direct cortical stimulation represents a unique opportunity to provide novel insights into the functional distribution of critical epicentres. Direct cortical stimulation (bipolar, 60 Hz, 1-ms pulse) was performed in 165 consecutive patients undergoing awake mapping for resection of low-grade gliomas. Tasks included motor, sensory, counting, and picture naming. Stimulation sites eliciting positive (sensory/motor) or negative (speech arrest, dysarthria, anomia, phonological and semantic paraphasias) findings were recorded and mapped onto a standard Montreal Neurological Institute brain atlas. Montreal Neurological Institute-space functional data were subjected to cluster analysis algorithms (K-means, partition around medioids, hierarchical Ward) to elucidate crucial network epicentres. Sensorimotor function was observed in the pre/post-central gyri as expected. Articulation epicentres were also found within the pre/post-central gyri. However, speech arrest localized to ventral premotor cortex, not the classical Broca's area. Anomia/paraphasia data demonstrated foci not only within classical Wernicke's area but also within the middle and inferior frontal gyri. We report the first bilateral probabilistic map for crucial cortical epicentres of human brain functions in the right and left hemispheres, including sensory, motor, and language (speech, articulation, phonology and semantics). These data challenge classical theories of brain organization (e.g. Broca's area as speech output region) and provide a distributed framework for future studies of neural networks. © The Author (2014). Published by Oxford University Press on behalf of the

  7. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  8. Myelin damage of hippocampus and cerebral cortex in rat pentylenetetrazol model.

    Science.gov (United States)

    You, Yu; Bai, Hui; Wang, Chao; Chen, Liang-Wei; Liu, Bei; Zhang, Hua; Gao, Guo-Dong

    2011-03-24

    Epilepsy is a chronic neurological disorder characterized by spontaneous recurrent seizures, which also occur in demyelinating diseases of the central nervous system (CNS) with a higher prevalence. Meanwhile, demyelination occurrings have been occasionally observed in CNS of epilepsy patients, indicating an association between demyelination and epileptic seizures by an unknown mechanism. However, no confirmative experimental evidence has yet been given. Thus, by using a rat pentylenetetrazol model, electroencephalogram (EEG), Western blotting, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, the present study provided direct evidence that myelin sheath damage in rat hippocampus and cerebral cortex started in the early stage of epileptic seizures induction and lasted with no further increase in severity in the development of epileptic seizures. It was illustrated that myelin sheath damage was not the result of oligodendrocyte destruction, but the autoantibodies against myelin basic protein (MBP) produced in peripheral circulation accompanied by increased permeability of blood-brain barrier (BBB) formed in the development of epileptic seizures. This study firstly provided experimental evidence for myelin sheath damage in PTZ-induced rat's epileptic seizures and further demonstrated that its possible cause was autoimmunoreaction. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Modulation of GABA-stimulated chloride influx into membrane vesicles from rat cerebral cortex by triazolobenzodiazepines

    Energy Technology Data Exchange (ETDEWEB)

    Obata, T.; Yamamura, H.I.

    1988-01-01

    The effects of triazolobenzodiazepines of GABA-stimulated /sup 36/Cl/sup -/ uptake by membrane vesicles from rat cerebral cortex were examined. Triazolam and alprazolam showed a significant enhancement of GABA-stimulated /sup 36/Cl/sup -/ uptake at 0.01-10 uM. On the other hand, adinazolam showed a small enhancement at 0.1-1 uM followed by a significant inhibition of GABA-stimulated /sup 36/Cl/sup -/ uptake at 100 uM. The enhancement of GABA-stimulated /sup 36/Cl/sup -/ uptake by 1 uM alprazolam was antagonized by Ro15-1788, a benzodiazepine antagonist, but the inhibition of this response by 30 uM adinazolam was not antagonized by Ro15-1788. These results indicate that triazolobenzodiazepines enhanced GABA-stimulated /sup 36/Cl/sup -/ uptake through benzodiazepine receptors. High concentrations of adinazolam inhibit GABA-stimulated /sup 36/Cl/sup -/ uptake which may be due to the direct blockade of GABA-gated chloride channel. 23 references, 4 figures.

  10. Analysis of Gene Expression Profiles in the Human Brain Stem, Cerebellum and Cerebral Cortex.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available The human brain is one of the most mysterious tissues in the body. Our knowledge of the human brain is limited due to the complexity of its structure and the microscopic nature of connections between brain regions and other tissues in the body. In this study, we analyzed the gene expression profiles of three brain regions-the brain stem, cerebellum and cerebral cortex-to identify genes that are differentially expressed among these different brain regions in humans and to obtain a list of robust, region-specific, differentially expressed genes by comparing the expression signatures from different individuals. Feature selection methods, specifically minimum redundancy maximum relevance and incremental feature selection, were employed to analyze the gene expression profiles. Sequential minimal optimization, a machine-learning algorithm, was employed to examine the utility of selected genes. We also performed a literature search, and we discuss the experimental evidence for the important physiological functions of several highly ranked genes, including NR2E1, DAO, and LRRC7, and we give our analyses on a gene (TFAP2B that have not been investigated or experimentally validated. As a whole, the results of our study will improve our ability to predict and understand genes related to brain regionalization and function.

  11. Human Cerebral Cortex Cajal-Retzius Neuron: Development, Structure and Function. A Golgi Study

    Directory of Open Access Journals (Sweden)

    Miguel eMarín-Padilla

    2015-02-01

    Full Text Available The development, morphology and possible functional activity of the Cajal-Retzius cell of the developing human cerebral cortex have been explored herein. The C-RC, of extracortical origin, is the essential neuron of the neocortex first lamina. It receives inputs from subcortical afferent fibers that reach the first lamina early in development. Although the origin and function of these original afferent fibers remain unknown, they target the first lamina sole neuron: the C-RC. The neuron’ orchestrates the arrival, size and stratification of all pyramidal neurons (from ependymal origin of the neocortex gray matter. Its axonic terminals spread radially and horizontally throughout the entire first lamina establishing contacts with the dendritic terminals of all gray matter pyramidal cells regardless of size, location and/or eventual functional roles. While the neuron axonic terminals spread radially and horizontally throughout the first lamina, the neuron’ bodies undergoes progressive developmental dilution and locating any of them in the adult brain become quite difficult. The neuron bodies are probably retained in the older regions of the developing neocortex while their axonic collaterals will spread throughout its more recent ones that, eventually, will represent the great majority of the brain surface. This will explain their bodies progressive dilution in the developing neocortex and, later, in the adult brain. Although quite difficult to locate the body of any of them, they have been described in the adult brain.

  12. Cellular and synaptic localization of EAAT2a in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Marcello eMelone

    2011-01-01

    Full Text Available We used light and electron microscopic immunocytochemical techniques to analyze the distribution, cellular and synaptic localization of EAAT2, the main glutamate transporter, in normal human neocortex. EAAT2a immunoreactivity was in all layers and consisted of small neuropilar puncta and rare cells. In white matter EAAT2a+ cells were numerous. Electron microscopic studies showed that in gray matter ∼77% of immunoreactive elements were astrocytic processes, ∼14% axon terminals, ∼2.8% dendrites, whereas ∼5% were unidentifiable. In white matter, ∼81% were astrocytic processes, ∼17% were myelinated axons and ∼2.0% were unidentified. EAAT2a immunoreactivity was never in microglial cells and oligodendrocytes. Pre-embedding electron microscopy showed that ∼67% of EAAT2a expressed at (or in the vicinity of asymmetric synapses was in astrocytes, ∼17% in axon terminals, while ∼13% was both in astrocytes and in axons. Post-embeddeding electron microscopy studies showed that in astrocytic processes contacting asymmetric synapses and in axon terminals, gold particle density was ∼25.1 and ∼2.8 particles/µm2, respectively, and was concentrated in a membrane region extending for ∼300 nm from the active zone edge. Besides representing the first detailed description of EAAT2a in human cerebral cortex, these findings may contribute to understanding its role in the pathophysiology of neuropsychiatric diseases.

  13. Activity-Dependent Callosal Axon Projections in Neonatal Mouse Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tagawa

    2012-01-01

    Full Text Available Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-documented role of sensory-driven neuronal activity, recent studies using in utero electroporation demonstrated an essential role of spontaneous neuronal activity generated in neonatal cortical circuits. Both presynaptic and postsynaptic neuronal activities are critically involved in the axon development. Studies have begun to reveal intracellular signaling pathway which works downstream of neuronal activity. We also review several distinct patterns of neuronal activity observed in the developing cerebral cortex, which might play roles in activity-dependent circuit construction. Such neuronal activity during the neonatal period can be disrupted by genetic factors, such as mutations in ion channels. It has been speculated that abnormal activity caused by such factors may affect activity-dependent circuit construction, leading to some developmental disorders. We discuss a possibility that genetic mutation in ion channels may impair callosal axon projections through an activity-dependent mechanism.

  14. Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae).

    Science.gov (United States)

    Hof, Patrick R; Van der Gucht, Estel

    2007-01-01

    Cetaceans diverged from terrestrial mammals between 50 and 60 million years ago and acquired, during their adaptation to a fully aquatic milieu, many derived features, including echolocation (in odontocetes), remarkable auditory and communicative abilities, as well as a complex social organization. Whereas brain structure has been documented in detail in some odontocetes, few reports exist on its organization in mysticetes. We studied the cerebral cortex of the humpback whale (Megaptera novaeangliae) in comparison to another balaenopterid, the fin whale, and representative odontocetes. We observed several differences between Megaptera and odontocetes, such as a highly clustered organization of layer II over the occipital and inferotemporal neocortex, whereas such pattern is restricted to the ventral insula in odontocetes. A striking observation in Megaptera was the presence in layer V of the anterior cingulate, anterior insular, and frontopolar cortices of large spindle cells, similar in morphology and distribution to those described in hominids, suggesting a case of parallel evolution. They were also observed in the fin whale and the largest odontocetes, but not in species with smaller brains or body size. The hippocampal formation, unremarkable in odontocetes, is further diminutive in Megaptera, contrasting with terrestrial mammals. As in odontocetes, clear cytoarchitectural patterns exist in the neocortex of Megaptera, making it possible to define many cortical domains. These observations demonstrate that Megaptera differs from Odontoceti in certain aspects of cortical cytoarchitecture and may provide a neuromorphologic basis for functional and behavioral differences between the suborders as well as a reflection of their divergent evolution. c 2006 Wiley-Liss, Inc.

  15. Manatee cerebral cortex: cytoarchitecture of the frontal region in Trichechus manatus latirostris.

    Science.gov (United States)

    Reep, R L; Johnson, J I; Switzer, R C; Welker, W I

    1989-01-01

    Members of the order Sirenia are unique among mammals in being the only totally aquatic herbivores. They display correspondingly specialized physiological, behavioral and anatomical features. There have been few reports concerning sirenian neuroanatomy, and most of these have consisted of gross anatomical observations. Our interest in Sirenia stems from the desire to understand neuroanatomical specializations in the context of behavior and the effort to elucidate trends in mammalian brain evolution. The architecture of frontal regions of cerebral cortex was investigated in several brains of the Florida manatee, Trichechus manatus latirostris. Through observation of sections stained for Nissl substance or myelinated fibers, several distinct cortical areas were identified on the basis of laminar organization. These range from areas with poorly defined laminae to those having 6 well-defined layers, some of which exhibit sublayers. Two cortical areas exhibit pronounced cell clusters in layer VI, and these stain positively for acetylcholinesterase and cytochrome oxidase. We hypothesize that these clusters may be involved in perioral tactile bristle function. Certain of our findings are consistent with previous observations in the literature on the brains of dugongs. On the basis of their lamination patterns, these frontal cortical areas appear to be organized into concentric zones of allocortex, mesocortex and isocortex.

  16. The Effect of Vestibular Stimulation on Motor Functions of Children With Cerebral Palsy.

    Science.gov (United States)

    Tramontano, Marco; Medici, Alessandra; Iosa, Marco; Chiariotti, Alessia; Fusillo, Giulia; Manzari, Leonardo; Morelli, Daniela

    2017-07-01

    Cerebral palsy (CP) has been defined as a nonprogressive disease of movement and posture development. Physical therapy techniques use different forms of sensory stimulation to improve neuromotor development. The aim of this study was to assess the efficacy of a vestibular stimulation training in improving motor functions in cerebral palsy. Fourteen children with CP were randomly separated into two different groups in a cross-over trial. Over a period of 10 weeks, each group performed 10 sessions of 50 min of neurodevelopmental treatment (NDT) and 10 sessions of vestibular training (VR). Children were evaluated with the Gross Motor Function Measurement-88 scale, the Goal Attainment Scale and the root mean square of head accelerations. A significant improvement in the GAS-score (p = .003) was noted after NDT+VR. Vestibular stimulation integrated with NDT proved to be an effective complementary strategy for facilitating motor functioning.

  17. Motor cortex excitability and BDNF levels in chronic musculoskeletal pain according to structural pathology

    Directory of Open Access Journals (Sweden)

    Alícia Deitos

    2016-07-01

    Full Text Available The central sensitization syndrome (CSS encompasses disorders with overlapping symptoms in a structural pathology spectrum ranging from persistent nociception [e.g., osteoarthritis (OA] to an absence of tissue injuries such as the one presented in fibromyalgia (FM and myofascial pain syndrome (MPS. First, we hypothesized that these syndromes present differences in their cortical excitability parameters assessed by TMS, namely motor evoked potential (MEP, cortical silent period (CSP, short intracortical inhibition (SICI and short intracortical facilitation (SICF. Second, considering that the presence of tissue injury could be detected by serum neurotrophins, we hypothesized that the spectrum of structural pathology (i.e., from persistent nociception like in OA, to the absence of tissue injury like in FM and MPS, could be detected by differential efficiency of their descending pain inhibitory system, as assessed by the conditioned pain modulation (CPM paradigm. Third, we explored whether BDNF had an influence on the relationship between motor cortex excitability and structural pathology. This cross-sectional study pooled baseline data from three randomized clinical trials. We included females (n=114, aged 19 to 65 years old with disability by chronic pain syndromes: FM (n= 19, MPS (n=54, OA (n=27 and healthy subjects (n=14. We assessed the serum BDNF, the motor cortex excitability by parameters the TMS measures and the change on Numerical Pain Scale [NPS (0-10] during CPM-task. The adjusted mean (SD on the SICI observed in the absence of tissue injury was 56.36% lower than with persistent nociceptive input [0.31(0.18 vs. 0.55 (0.32], respectively. The BDNF was inversely correlated with the SICI and with the change on NPS (0-10 during CPM-task. These findings suggest greater disinhibition in the motor cortex and the descending pain inhibitory system in FM and MPS than in OA and healthy subjects. Likewise, the inter-hemispheric disinhibition as well

  18. 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke

    Directory of Open Access Journals (Sweden)

    Sonia M Brodie

    2014-03-01

    Full Text Available Sensory feedback is critical for motor learning, and thus to neurorehabilitation after stroke. Whether enhancing sensory feedback by applying excitatory repetitive transcranial magnetic stimulation (rTMS over the ipsilesional primary sensory cortex (IL-S1 might enhance motor learning in chronic stroke has yet to be investigated. The present study investigated the effects of 5 Hz rTMS over IL-S1 paired with skilled motor practice on motor learning, hemiparetic cutaneous somatosensation, and motor function. Individuals with unilateral chronic stroke were pseudo-randomly divided into either Active or Sham 5 Hz rTMS groups (n=11/group. Following stimulation, both groups practiced a Serial Tracking Task (STT with the hemiparetic arm; this was repeated for 5 days. Performance on the STT was quantified by response time, peak velocity, and cumulative distance tracked at baseline, during the 5 days of practice, and at a no-rTMS retention test. Cutaneous somatosensation was measured using two-point discrimination. Standardized sensorimotor tests were performed to assess whether the effects might generalize to impact hemiparetic arm function. The active 5Hz rTMS + training group demonstrated significantly greater improvements in STT performance [response time (F1,286.04=13.016, p< 0.0005, peak velocity (F1,285.95=4.111, p=0.044, and cumulative distance (F1,285.92=4.076, p=0.044] and cutaneous somatosensation (F1,21.15=8.793, p=0.007 across all sessions compared to the sham rTMS + training group. Measures of upper extremity motor function were not significantly different for either group. Our preliminary results suggest that, when paired with motor practice, 5Hz rTMS over IL-S1 enhances motor learning related change in individuals with chronic stroke, potentially as a consequence of improved cutaneous somatosensation, however no improvement in general upper extremity function was observed.

  19. [A case of progressive multifocal leukoencephalopathy presenting white matter MRI lesions extending over the cerebral cortex and a marked decrease in cerebral blood flow on SPECT, and associated with HTLV-I infection].

    Science.gov (United States)

    Takase, Kei-ichiro; Ohyagi, Yasumasa; Furuya, Hirokazu; Nagashima, Kazuo; Taniwaki, Takayuki; Kira, Jun-ichi

    2005-06-01

    We report a 47-year-old woman with progressive multifocal leukoencephalopathy (PML). She was a carrier of HTLV-I virus, and developed subacute right hemiparesis and marked motor aphasia. She had a malignant lymphoma in the left neck and basal cell carcinoma in the right inguinal region. Three months after the onset, she became unable to walk because of the right leg weakness or to speak because of motor aphasia. Magnetic resonance imaging (MRI) revealed multifocal T2-high lesions in the white matter of the left frontal lobe, and a brain biopsy revealed demyelinating pathology. A biopsy of the left parotid gland revealed a diffuse pleomorphic type large B cell lymphoma. Although anti-HTLV-I antibody was positive in the serum and cerebrospinal fluid (CSF), no adult T-cell leukemia (ATL) cells were found in the blood or CSF. The patient was then admitted to our hospital. Neurological examinations revealed severe motor aphasia, mild sensory aphasia/cognitive impairment, right hemiplegia, mild right hemihypesthesia, limb-kinetic apraxia in the left hand, idiomotor apraxia, agraphia, perseveration, marked spasticity and brisk tendon reflex in four extremities, and positive bilateral pathological reflexes. MRI showed multifocal T2-high lesions mainly in the cerebral white matter, predominantly in the left hemisphere, and partly in the cerebral cortex. No gadolinium enhancement was found. In addition, 99mTcECD-SPECT showed a broad decrease in cerebral blood flow (CBF) in the cortex. Anti-HTLV-I antibody was positive but anti-HIV antibody was negative in serum. ATL cells were found in 1-3% of the peripheral white blood cells after admission. CSF examination revealed that the cell count (1/microl), protein level (24 mg/dl), and IgG index (0.4) were all normal. However, the myelin basic protein level (321 pg/ml; normal HTLV-I antibody (x 8) was detected in CSF. The regulatory region of the JC virus DNA in the CSF was partly deleted; immunostaining with anti-JC virus protein

  20. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  1. Training the Motor Cortex by Observing the Actions of Others During Immobilization

    Science.gov (United States)

    Bassolino, Michela; Campanella, Martina; Bove, Marco; Pozzo, Thierry; Fadiga, Luciano

    2014-01-01

    Limb immobilization and nonuse are well-known causes of corticomotor depression. While physical training can drive the recovery from nonuse-dependent corticomotor effects, it remains unclear if it is possible to gain access to motor cortex in alternative ways, such as through motor imagery (MI) or action observation (AO). Transcranial magnetic stimulation was used to study the excitability of the hand left motor cortex in normal subjects immediately before and after 10 h of right arm immobilization. During immobilization, subjects were requested either to imagine to act with their constrained limb or to observe hand actions performed by other individuals. A third group of control subjects watched a nature documentary presented on a computer screen. Hand corticomotor maps and recruitment curves reliably showed that AO, but not MI, prevented the corticomotor depression induced by immobilization. Our results demonstrate the existence of a visuomotor mechanism in humans that links AO and execution which is able to effect cortical plasticity in a beneficial way. This facilitation was not related to the action simulation, because it was not induced by explicit MI. PMID:23897648

  2. Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats.

    Science.gov (United States)

    Khorasani, Abed; Heydari Beni, Nargess; Shalchyan, Vahid; Daliri, Mohammad Reza

    2016-10-21

    Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient of determination between decoded and actual force signals were r = 0.66 and R(2) = 0.42, respectively. We found that LFP signal on gamma frequency bands (30-120 Hz) had the most contribution in the trained decoding model. This study suggests the feasibility of using low number of LFP channels for the continuous force decoding in freely moving animals resembling BMI systems in real life applications.

  3. Similar cerebral motor plans for real and virtual actions.

    Directory of Open Access Journals (Sweden)

    Chiara Bozzacchi

    Full Text Available A simple movement, such as pressing a button, can acquire different meanings by producing different consequences, such as starting an elevator or switching a TV channel. We evaluated whether the brain activity preceding a simple action is modulated by the expected consequences of the action itself. To further this aim, the motor-related cortical potentials were compared during two key-press actions that were identical from the kinematics point of view but different in both meaning and consequences. In one case (virtual grasp, the key-press started a video clip showing a hand moving toward a cup and grasping it; in the other case, the key-press did not produce any consequence (key-press. A third condition (real grasp was also compared, in which subjects actually grasped the cup, producing the same action presented in the video clip. Data were collected from fifteen subjects. The results showed that motor preparation for virtual grasp (starting 3 s before the movement onset was different from that of the key-press and similar to the real grasp preparation-as if subjects had to grasp the cup in person. In particular, both virtual and real grasp presented a posterior parietal negativity preceding activity in motor and pre-motor areas. In summary, this finding supports the hypothesis that motor preparation is affected by the meaning of the action, even when the action is only virtual.

  4. Enhancement of Motor Recovery through Left Dorsolateral Prefrontal Cortex Stimulation after Acute Ischemic Stroke.

    Science.gov (United States)

    Oveisgharan, Shahram; Organji, Hosein; Ghorbani, Askar

    2017-09-08

    Two previous studies, which investigated transcranial direct current stimulation (tDCS) use in motor recovery after acute ischemic stroke, did not show tDCS to be effective in this regard. We speculated that additional left dorsolateral prefrontal cortex (DLPFC) stimulation may enhance poststroke motor recovery. In the present randomized clinical trial, 20 acute ischemic stroke patients were recruited. Patients received real motor cortex (M1) stimulation in both arms of the trial. The 2 arms differed in terms of real versus sham stimulation over the left DLPFC. The motor component of the Fugl-Meyer upper extremity assessment (FM) and Action Research Arm Test (ARAT) scores were used to assess primary outcomes, and nonlinear mixed effects models were used for data analyses. Primary outcome measures improved more and faster among the real stimulation group. During the first days of stimulations, the sham group's FM scores increased by 1.2 per day, while the real group's scores increased by 1.7 per day (P = .003). In the following days, FM improvement decelerated in both groups. Based on the derived models, a stroke patient with a baseline FM score of 15 improves to 32 in the sham stimulation group and to 41 in the real stimulation group within the first month after stroke. Models with ARAT scores yielded nearly similar results. No significant adverse effect was reported. The current study results showed that left DLPFC stimulation in conjunction with M1 stimulation resulted in better motor recovery than M1 stimulation alone. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  5. Motor imagery training promotes motor learning in adolescents with cerebral palsy: comparison between left and right hemiparesis.

    Science.gov (United States)

    Cabral-Sequeira, Audrey Sartori; Coelho, Daniel Boari; Teixeira, Luis Augusto

    2016-06-01

    This experiment was designed to evaluate the effects of pure motor imagery training (MIT) and its combination with physical practice on learning an aiming task with the more affected arm in adolescents suffering from cerebral palsy. Effect of MIT was evaluated as a function of side of hemiparesis. The experiment was accomplished by 11- to 16-year-old participants (M = 13.58 years), who suffered left (n = 16) or right (n = 15) mild hemiparesis. They were exposed to pure MIT (day 1) followed by physical practice (day 2) on an aiming task demanding movement accuracy and speed. Posttraining movement kinematics of the group receiving MIT were compared with movement kinematics of the control group after receiving recreational activities (day 1) and physical practice (day 2). Kinematic analysis showed that MIT led to decreased movement time and straighter hand displacements to the target. Performance achievements from MIT were increased with further physical practice, leading to enhanced effects on motor learning. Retention evaluation indicated that performance improvement from pure MIT and its combination with physical practice were stable over time. Performance achievements were equivalent between adolescents with either right or left hemiparesis, suggesting similar capacity between these groups to achieve performance improvement from pure imagery training and from its association with physical practice. Our results suggest that motor imagery training is a procedure potentially useful to increase motor learning achievements in individuals suffering from cerebral palsy.

  6. Differential activity patterns of putaminal neurons with inputs from the primary motor cortex and supplementary motor area in behaving monkeys.

    Science.gov (United States)

    Takara, Sayuki; Hatanaka, Nobuhiko; Takada, Masahiko; Nambu, Atsushi

    2011-09-01

    Activity patterns of projection neurons in the putamen were investigated in behaving monkeys. Stimulating electrodes were implanted chronically into the proximal (MI(proximal)) and distal (MI(distal)) forelimb regions of the primary motor cortex (MI) and the forelimb region of the supplementary motor area (SMA). Cortical inputs to putaminal neurons were identified by excitatory orthodromic responses to stimulation of these motor cortices. Then, neuronal activity was recorded during the performance of a goal-directed reaching task with delay. Putaminal neurons with inputs from the MI and SMA showed different activity patterns, i.e., movement- and delay-related activity, during task performance. MI-recipient neurons increased activity in response to arm-reach movements, whereas SMA-recipient neurons increased activity during delay periods, as well as during movements. The activity pattern of MI + SMA-recipient neurons was of an intermediate type between those of MI- and SMA-recipient neurons. Approximately one-half of MI(proximal)-, SMA-, and MI + SMA-recipient neurons changed activities before the onset of movements, whereas a smaller number of MI(distal)- and MI(proximal + distal)-recipient neurons did. Movement-related activity of MI-recipient neurons was modulated by target directions, whereas SMA- and MI + SMA-recipient neurons had a lower directional selectivity. MI-recipient neurons were located mainly in the ventrolateral part of the caudal aspect of the putamen, whereas SMA-recipient neurons were located in the dorsomedial part. MI + SMA-recipient neurons were found in between. The present results suggest that a subpopulation of putaminal neurons displays specific activity patterns depending on motor cortical inputs. Each subpopulation receives convergent or nonconvergent inputs from the MI and SMA, retains specific motor information, and sends it to the globus pallidus and the substantia nigra through the direct and indirect pathways of the basal ganglia.

  7. The Natural History of Gross Motor Development in Children with Cerebral Palsy Aged 1 to 15 Years

    Science.gov (United States)

    Beckung, E.; Carlsson, G.; Carlsdotter, S.; Uvebrant, P.

    2007-01-01

    The aim of this study was to explore motor development in children with cerebral palsy (CP) using developmental curves for CP, subtypes, and the five severity levels of the Gross Motor Function Classification System (GMFCS). The Gross Motor Function Measure (GMFM) and the GMFCS were applied to 317 children (145 females, 172 males) with CP, aged…

  8. The modulation of play fighting in rats: role of the motor cortex.

    Science.gov (United States)

    Kamitakahara, Holly; Monfils, Marie-H; Forgie, Margaret L; Kolb, Bryan; Pellis, Sergio M

    2007-02-01

    The cortex is not necessary for rats to engage in play fighting, but it is necessary for them to modify their pattern of play fighting in different contexts. Two experiments were conducted to determine the role of the motor cortex (MC). Rats with bilateral ablations of the MC performed on Postnatal Day 10 failed to show the normally present age-related modulation in defense but were able to modulate defense with different social partners. This latter finding was confirmed in rats given ablations as adults, in which responses to social status could be monitored before and after brain damage. It appears that different forms of cortical modulation of play fighting involve different cortical circuits. Copyright (c) 2007 APA, all rights reserved.

  9. Pictures of disgusting foods and disgusted facial expressions suppress the tongue motor cortex.

    Science.gov (United States)

    Vicario, Carmelo M; Rafal, Robert D; Borgomaneri, Sara; Paracampo, Riccardo; Kritikos, Ada; Avenanti, Alessio

    2017-02-01

    The tongue holds a unique role in gustatory disgust. However, it is unclear whether the tongue representation in the motor cortex (tM1) is affected by the sight of distaste-related stimuli. Using transcranial magnetic stimulation (TMS) in healthy humans, we recorded tongue motor-evoked potentials (MEPs) as an index of tM1 cortico-hypoglossal excitability. MEPs were recorded while participants viewed pictures associated with gustatory disgust and revulsion (i.e. rotten foods and faces expressing distaste), non-oral-related disgusting stimuli (i.e. invertebrates like worms) and control stimuli. We found that oral-related disgust pictures suppressed tM1 cortico-hypoglossal output. This tM1 suppression was predicted by interindividual differences in disgust sensitivity. No similar suppression was found for disgusting invertebrates or when MEPs were recorded from a control muscle. These findings suggest that revulsion-eliciting food pictures trigger anticipatory inhibition mechanisms, possibly preventing toxin swallowing and contamination. A similar suppression is elicited when viewing distaste expressions, suggesting vicarious motor inhibition during social perception of disgust. Our study suggests an avoidant-defensive mechanism in human cortico-hypoglossal circuits and its 'resonant' activation in the vicarious experience of others' distaste. These findings support a role for the motor system in emotion-driven motor anticipation and social cognition. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Primary Motor Cortex Excitability in Karate Athletes: A Transcranial Magnetic Stimulation Study.

    Science.gov (United States)

    Monda, Vincenzo; Valenzano, Anna; Moscatelli, Fiorenzo; Salerno, Monica; Sessa, Francesco; Triggiani, Antonio I; Viggiano, Andrea; Capranica, Laura; Marsala, Gabriella; De Luca, Vincenzo; Cipolloni, Luigi; Ruberto, Maria; Precenzano, Francesco; Carotenuto, Marco; Zammit, Christian; Gelzo, Monica; Monda, Marcellino; Cibelli, Giuseppe; Messina, Giovanni; Messina, Antonietta

    2017-01-01

    Purpose: The mechanisms involved in the coordination of muscle activity are not completely known: to investigate adaptive changes in human motor cortex Transcranial magnetic stimulation (TMS) was often used. The sport models are frequently used to study how the training may affect the corticospinal system excitability: Karate represents a valuable sport model for this kind of investigations for its high levels of coordination required to athletes. This study was aimed at examining possible changes in the resting motor threshold (rMT) and in the corticospinal response in karate athletes, and at determining whether athletes are characterized by a specific value of rMT. Methods: We recruited 25 right-handed young karate athletes and 25 matched non-athletes. TMS was applied to primary motor cortex (M1). Motor evoked potential (MEP) were recorded by two electrodes placed above the first dorsal interosseous (FDI) muscle. We considered MEP latencies and amplitudes at rMT, 110% of rMT, and 120% of rMT. Results: The two groups were similar for age (p > 0.05), height (p > 0.05) and body mass (p > 0.05). The TMS had a 70-mm figure-of-eight coil and a maximum output of 2.2 T, placed over the left motor cortex. During the stimulation, a mechanical arm kept the coil tangential to the scalp, with the handle at 45° respect to the midline. The SofTaxic navigator system (E.M.S. Italy, www.emsmedical.net) was used in order to correctly identifying and repeating the stimulation for every subject. Compared to non-athletes, athletes showed a lower resting motor threshold (p < 0.001). Furthermore, athletes had a lower MEP latency (p < 0.001) and a higher MEP amplitude (p < 0.001) compared to non-athletes. Moreover, a ROC curve for rMT was found significant (area: 0.907; sensitivity 84%, specificity 76%). Conclusions: As the main finding, the present study showed significant differences in cortical excitability between athletes and non-athletes. The training can improve cortical

  11. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route.

    NARCIS (Netherlands)

    Groppa, S.; Schlaak, B.H.; Munchau, A.; Werner-Petroll, N.; Dunnweber, J.; Baumer, T.; Nuenen, B.F.L. van; Siebner, H.R.

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and

  12. Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and Postmitotic Neurons

    DEFF Research Database (Denmark)

    Golonzhka, Olga; Nord, Alex; Tang, Paul L F

    2015-01-01

    molecular phenotypes of cortical regional and laminar organization: hypoplasia of the frontal cortex, ventral expansion of the dorsomedial cortex, and ventral expansion of Reelin expression in the cortical plate of the frontal cortex, concomitant with an inversion of cortical layering in the rostral cortex....... Molecular analyses, including PBX ChIP-seq, provide evidence that PBX promotes frontal cortex identity by repressing genes that promote dorsocaudal fate....

  13. Principal components of hand kinematics and neurophysiological signals in motor cortex during reach to grasp movements.

    Science.gov (United States)

    Mollazadeh, Mohsen; Aggarwal, Vikram; Thakor, Nitish V; Schieber, Marc H

    2014-10-15

    A few kinematic synergies identified by principal component analysis (PCA) account for most of the variance in the coordinated joint rotations of the fingers and wrist used for a wide variety of hand movements. To examine the possibility that motor cortex might control the hand through such synergies, we collected simultaneous kinematic and neurophysiological data from monkeys performing a reach-to-grasp task. We used PCA, jPCA and isomap to extract kinematic synergies from 18 joint angles in the fingers and wrist and analyzed the relationships of both single-unit and multiunit spike recordings, as well as local field potentials (LFPs), to these synergies. For most spike recordings, the maximal absolute cross-correlations of firing rates were somewhat stronger with an individual joint angle than with any principal component (PC), any jPC or any isomap dimension. In decoding analyses, where spikes and LFP power in the 100- to 170-Hz band each provided better decoding than other LFP-based signals, the first PC was decoded as well as the best decoded joint angle. But the remaining PCs and jPCs were predicted with lower accuracy than individual joint angles. Although PCs, jPCs or isomap dimensions might provide a more parsimonious description of kinematics, our findings indicate that the kinematic synergies identified with these techniques are not represented in motor cortex more strongly than the original joint angles. We suggest that the motor cortex might act to sculpt the synergies generated by subcortical centers, superimposing an ability to individuate finger movements and adapt the hand to grasp a wide variety of objects. Copyright © 2014 the American Physiological Society.

  14. Corticospinal activity evoked and modulated by non-invasive stimulation of the intact human motor cortex

    Science.gov (United States)

    Di Lazzaro, Vincenzo; Rothwell, John C

    2014-01-01

    A number of methods have been developed recently that stimulate the human brain non-invasively through the intact scalp. The most common are transcranial magnetic stimulation (TMS), transcranial electric stimulation (TES) and transcranial direct current stimulation (TDCS). They are widely used to probe function and connectivity of brain areas as well as therapeutically in a variety of conditions such as depression or stroke. They are much less focal than conventional invasive methods which use small electrodes placed on or in the brain and are often thought to activate all classes of neurones in the stimulated area. However, this is not true. A large body of evidence from experiments on the motor cortex shows that non-invasive methods of brain stimulation can be surprisingly selective and that adjusting the intensity and direction of stimulation can activate different classes of inhibitory and excitatory inputs to the corticospinal output cells. Here we review data that have elucidated the action of TMS and TES, concentrating mainly on the most direct evidence available from spinal epidural recordings of the descending corticospinal volleys. The results show that it is potentially possible to test and condition specific neural circuits in motor cortex that could be affected differentially by disease, or be used in different forms of natural behaviour. However, there is substantial interindividual variability in the specificity of these protocols. Perhaps in the future it will be possible, with the advances currently being made to model the electrical fields induced in individual brains, to develop forms of stimulation that can reliably target more specific populations of neurones, and open up the internal circuitry of the motor cortex for study in behaving humans. PMID:25172954

  15. Evolutionary appearance of von Economo's neurons in the mammalian cerebral cortex.

    Science.gov (United States)

    Cauda, Franco; Geminiani, Giuliano Carlo; Vercelli, Alessandro

    2014-01-01

    von Economo's neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the "social brain." VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain. However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the "global Workspace" architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication) between salience-related insular and cingulate and other widely separated brain areas. Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the functional magnetic resonance imaging data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental

  16. Evolutionary appearance of von Economo’s neurons in the mammalian cerebral cortex

    Science.gov (United States)

    Cauda, Franco; Geminiani, Giuliano Carlo; Vercelli, Alessandro

    2014-01-01

    von Economo’s neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the “social brain.” VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain. However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the “global Workspace” architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication) between salience-related insular and cingulate and other widely separated brain areas. Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the functional magnetic resonance imaging data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and

  17. Evolutionary appearance of Von Economo’s Neurons in the mammalian cerebral cortex

    Directory of Open Access Journals (Sweden)

    Franco eCauda

    2014-03-01

    Full Text Available Von Economo’s neurons (VENs are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months.VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the social brain. VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain.However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the global Workspace architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication between salience-related insular and cingulate and other widely separated brain areas.Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the fMRI data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental investigatio

  18. Language perception activates the hand motor cortex: implications for motor theories of speech perception.

    Science.gov (United States)

    Flöel, Agnes; Ellger, Tanja; Breitenstein, Caterina; Knecht, Stefan

    2003-08-01

    The precise mechanisms of how speech may have developed are still unknown to a large extent. Gestures have proven a powerful concept for explaining how planning and analysing of motor acts could have evolved into verbal communication. According to this concept, development of an action-perception network allowed for coding and decoding of communicative gestures. These were manual or manual/articulatory in the beginning and then became increasingly elaborate in the articulatory mode. The theory predicts that listening to the 'gestures' that compose spoken language should activate an extended articulatory and manual action-perception network. To examine this hypothesis, we assessed the effects of language on cortical excitability of the hand muscle representation by transcranial magnetic stimulation. We found the hand motor system to be activated by linguistic tasks, most notably pure linguistic perception, but not by auditory or visuospatial processing. The amount of motor system activation was comparable in both hemispheres. Our data support the theory that language may have evolved within a general and bilateral action-perception network.

  19. Different modulation of short‐ and long‐latency interhemispheric inhibition from active to resting primary motor cortex during a fine‐motor manipulation task

    Science.gov (United States)

    Morishita, Takuya; Kubota, Shinji; Hirano, Masato; Funase, Kozo

    2014-01-01

    Abstract Performing a complex unimanual motor task markedly increases activation not only in the hemisphere contralateral to the task‐performing hand but also in the ipsilateral hemisphere. Transcranial magnetic stimulation studies showed increased motor evoked potential amplitude recorded in resting hand muscles contralateral to the task‐performing hand during a unimanual motor task, and transcallosal inputs from the active hemisphere have been suggested to have responsibilities for this phenomenon. In the present study, we used a well‐established double‐pulse transcranial magnetic stimulation paradigm to measure two phases of interhemispheric inhibition from the active to the resting primary motor cortex during the performance of a complex unimanual motor task. Two different unimanual motor tasks were carried out: a fine‐motor manipulation task (using chopsticks to pick up, transport, and release glass balls) as a complex task and a pseudo fine‐motor manipulation task as a control task (mimicking the fine‐motor manipulation task without using chopsticks and picking glass balls). We found increased short‐latency interhemispheric inhibition and decreased long‐latency interhemispheric inhibition from the active to the resting primary motor cortex during the fine‐motor manipulation task. To the best of our knowledge, the present study is the first to demonstrate different modulation of two phases of interhemispheric inhibition from the active to the resting primary motor cortex during the performance of a complex unimanual motor task. The different modulation of short‐ and long‐latency interhemispheric inhibition may suggest that two phases of interhemispheric inhibition are implemented in distinct circuits with different functional meaning. PMID:25293600

  20. Different modulation of short- and long-latency interhemispheric inhibition from active to resting primary motor cortex during a fine-motor manipulation task.

    Science.gov (United States)

    Morishita, Takuya; Kubota, Shinji; Hirano, Masato; Funase, Kozo

    2014-10-01

    Performing a complex unimanual motor task markedly increases activation not only in the hemisphere contralateral to the task-performing hand but also in the ipsilateral hemisphere. Transcranial magnetic stimulation studies showed increased motor evoked potential amplitude recorded in resting hand muscles contralateral to the task-performing hand during a unimanual motor task, and transcallosal inputs from the active hemisphere have been suggested to have responsibilities for this phenomenon. In the present study, we used a well-established double-pulse transcranial magnetic stimulation paradigm to measure two phases of interhemispheric inhibition from the active to the resting primary motor cortex during the performance of a complex unimanual motor task. Two different unimanual motor tasks were carried out: a fine-motor manipulation task (using chopsticks to pick up, transport, and release glass balls) as a complex task and a pseudo fine-motor manipulation task as a control task (mimicking the fine-motor manipulation task without using chopsticks and picking glass balls). We found increased short-latency interhemispheric inhibition and decreased long-latency interhemispheric inhibition from the active to the resting primary motor cortex during the fine-motor manipulation task. To the best of our knowledge, the present study is the first to demonstrate different modulation of two phases of interhemispheric inhibition from the active to the resting primary motor cortex during the performance of a complex unimanual motor task. The different modulation of short- and long-latency interhemispheric inhibition may suggest that two phases of interhemispheric inhibition are implemented in distinct circuits with different functional meaning. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  1. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  2. Impaired motor imagery in right hemiparetic cerebral palsy

    NARCIS (Netherlands)

    Mutsaarts, M.J.H.; Steenbergen, B.; Bekkering, H.

    2007-01-01

    It is generally assumed that movements of a part of the body (e.g., hands) are simulated in motor imagery (MI) tasks. This is evidenced by a linear increase in reaction time as a function of the angular rotation of the stimulus. Under the assumption that MI plays a critical role for anticipatory

  3. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language.

    Science.gov (United States)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2015-09-01

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of motor cortex engagement during emotion perception. Participants observed pictures of body expressions and categorized them as happy, fearful or neutral while receiving TMS over the left or right motor cortex at 150 and 300 ms after picture onset. In the early phase (150 ms), we observed a reduction of excitability for happy and fearful emotional bodies that was specific to the right hemisphere and correlated with participants' disposition to feel personal distress. This 'orienting' inhibitory response to emotional bodies was also paralleled by a general drop in categorization accuracy when stimulating the right but not the left motor cortex. Conversely, at 300 ms, greater excitability for negative, positive and neutral movements was found in both hemispheres. This later motor facilitation marginally correlated with participants' tendency to assume the psychological perspectives of others and reflected simulation of the movement implied in the neutral and emotional body expressions. These findings highlight the motor system's involvement during perception of emotional bodies. They suggest that fast orienting reactions to emotional cues--reflecting neural processing necessary for visual perception--occur before motor features of the observed emotional expression are simulated in the motor system and that distinct empathic dispositions influence these two neural motor phenomena. Implications for theories of embodied simulation are discussed.

  4. A DESCRIPTIVE STUDY ON THE ASSESSMENT OF FUNCTIONAL MOTOR DISABILITY IN CHILDREN WITH CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    Wadugodapitiya .S .I

    2015-08-01

    Full Text Available Background: Cerebral palsy (CP is one of the most common conditions in childhood causing severe physical disability. Spastic paresis is the most common form of CP. According to the topographic classification, CP is divided into spastic hemiplegia, diplegia and quadriplegia. Distribution of functional motor disability is varied in each type of CP. Aims: To describe functional motor disability in children with cerebral palsy using standard scales. Method: This cross-sectional descriptive study included 93 children with cerebral palsy (CP. Functional motor disability of each type of spastic CP was assessed using standard scales. Results: The dominant sub-type of cerebral palsy in the present study was spastic diplegia. Most affected muscle with spasticity was gastrocnemius-soleus group of muscles. Active range of motion of foot eversion and dorsiflexion were the most affected movements in all the types of CP. In the overall sample, only 35% were able to walk independently. Majority of subjects with quadriplegia were in levels III and IV of Gross Motor Functional Classification Scale representing severe disability. There was a significant relationship observed between the muscle tone and range of motion of their corresponding joints as well as between the muscle tone of gastrocnemius-soleus group of muscles and the ankle components of Observational Gait Analysis. Conclusions: Results of the present study confirms the clinical impression of disability levels in each type of CP and showed that the assessment of functional motor disability in children with different types of spastic CP is useful in planning and evaluation of treatment options.

  5. Motor preparatory activity in posterior parietal cortex is modulated by subjective absolute value.

    Science.gov (United States)

    Iyer, Asha; Lindner, Axel; Kagan, Igor; Andersen, Richard A

    2010-08-03

    For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To determine how monetary consequences influence the neural representations of motor preparation, human brain activity was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in posterior parietal and premotor cortex peaked in high "absolute value" (high gain or loss) conditions: being highest for large gains in subjects who believed they performed well while being highest for large losses in those who believed they performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute value of that action, predicated upon subjective, rather than objective, estimates of one's performance.

  6. Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation.

    Science.gov (United States)

    Shutoh, F; Ohki, M; Kitazawa, H; Itohara, S; Nagao, S

    2006-05-12

    Adaptation of ocular reflexes is a prototype of motor learning. While the cerebellum is acknowledged as the critical site for motor learning, the functional differences between the cerebellar cortex and nuclei in motor memory formation are not precisely known. Two different views are proposed: one that the memory is formed within the cerebellar flocculus, and the other that the memory is formed within vestibular nuclei. Here we developed a new paradigm of long-term adaptation of mouse horizontal optokinetic response eye movements and examined the location of its memory trace. We also tested the role of flocculus and inferior olive in long-term adaptation by chronic lesion experiments. Reversible bilateral flocculus shutdown with local application of 0.5 microl-5% lidocaine extinguished the memory trace of day-long adaptation, while it very little affected the memory trace of week-long adaptation. The responsiveness of vestibular nuclei after week-long adaptation was examined by measuring the extracellular field responses to the electrical stimulation of vestibular nerve under trichloroacetaldehyde anesthesia. The amplitudes and slopes of evoked monosynaptic field response (N1) of week-long adapted mice were enhanced around the medial vestibular nucleus compared with those of control mice. Chronic flocculus or inferior olive lesions abolished both day and week-long adaptations. These results suggest that the functional memory trace of short-term adaptation is formed initially within the cerebellar cortex, and later transferred to vestibular nuclei to be consolidated to a long-term memory. Both day and week-long adaptations were markedly depressed when neural nitric oxide was pharmacologically blocked locally and when neuronal nitric oxide synthase was ablated by gene knockout, suggesting that cerebellar long-term depression underlies both acquisition and consolidation of motor memory.

  7. Changes in interhemispheric inhibition from active to resting primary motor cortex during a fine-motor manipulation task.

    Science.gov (United States)

    Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2012-06-01

    The effect of performance of a sensorimotor task on the interhemispheric inhibition (IHI) induced from the active primary motor cortex (M1) to the resting M1 was examined in 10 right-handed subjects. Transcranial magnetic stimulation (TMS) was performed to produce motor evoked potentials (MEP) in the resting right (Rt)-first dorsal interosseous (FDI). For the paired-TMS paradigm, a conditioning stimulus (CS) was delivered to the Rt-M1, and its intensity was adjusted from 0.6 to 1.4 times the resting motor threshold of the MEP in the left (Lt)-FDI in 0.2 steps. The test stimulus was delivered to the Lt-M1, and its intensity was adjusted to evoke similar MEP amplitudes in the Rt-FDI among the task conditions. The interstimulus interval was fixed at 10 ms. As a sensorimotor task, a fine-motor manipulation (FM) task (using chopsticks to pick up, transport, and release glass balls) was adopted. In addition, an isometric abduction (IA) task was also performed as a control task. These tasks were carried out with the left hand. The IHI from the active to the resting M1 observed during the FM task was markedly increased compared with that induced during the IA task, and this effect was not dependent on the MEP amplitude evoked in the active Lt-FDI by the CS. The present findings suggest that the increased IHI from the active to the resting M1 observed during the FM task was linked to reductions in the activity of the ipsilateral intracortical inhibitory circuit, as we reported previously.

  8. Increased excitability and reduced intracortical inhibition in the ipsilateral primary motor cortex during a fine-motor manipulation task.

    Science.gov (United States)

    Morishita, Takuya; Ninomiya, Masato; Uehara, Kazumasa; Funase, Kozo

    2011-01-31

    The effects of a sensorimotor task on ipsilateral primary motor cortex (ipsi-M1) excitability mediated via the transcallosal pathway, including the changes in short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), were examined in ten right-handed subjects. Transcranial magnetic stimulation (TMS) was delivered to evoke a motor evoked potential (MEP) from the first dorsal interosseous (FDI). The test-TMS intensity was adjusted to around 120% of the resting motor threshold (rMT). For the paired-pulse TMS paradigm, the conditioning-TMS intensity was set to 80% of the rMT, and the interstimulus interval was fixed at 3 ms for SICI and 12 ms for ICF. As a sensorimotor task, a fine-motor manipulation (FM) task (using chopsticks to pick up, transport, and release glass balls) was adopted. In addition, a pseudo-FM (pFM) task was also performed as a control task. These tasks were carried out using each hand separately. The MEPs evoked during the FM task were markedly increased compared with those evoked during the pFM task, and these effects were not dependent on the electromyographic activity of the FDI performing these tasks. SICI was significantly decreased during the FM task, indicating disinhibition of the ipsi-M1, and these effects were also noted when the subjects used their non-dominant hand. The present findings suggest that the differences between the effects of the FM and pFM tasks on ipsi-M1 excitability were caused by their property. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Probing the corticospinal link between the motor cortex and motoneurones: some neglected aspects of human motor cortical function

    DEFF Research Database (Denmark)

    Petersen, Nicolas Caesar; Butler, Jane E.; Taylor, Janet L.

    2010-01-01

    ABSTRACT This review considers the operation of the corticospinal system in primates. There is a relatively widespread cortical area containing corticospinal outputs to a single muscle and thus a motoneurone pool receives corticospinal input from a wide region of cortex. In addition, corticospinal...... cells themselves have divergent intraspinal branches which innervate more than one motoneuronal pool but the synergistic couplings involving the many hand muscles are likely to be more diverse than can be accommodated simply by fixed patterns of corticospinal divergence. Many studies using transcranial...... of the discharge of motor units have revealed that the rapidly conducting corticospinal axons (stimulated at higher intensities) contribute to drive motoneurones in normal voluntary contractions. There are also major non-linearities generated at a spinal level in the relation between corticospinal output...

  10. Motor cortex stimulation(MCS) for intractable complex regional pain syndrome (CRPS) type II: PSM analysis of Tc-99m ECD brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. A.; Son, B. C.; Yoo, I. R.; Kim, S. H.; Kim, E. N.; Park, Y. H.; Lee, S. Y.; Sohn, H. S.; Chung, S. K. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    We had experienced a patient with intractable CRPS in whom statistical parametric mapping (SPM) analysis of cerebral perfusion explained the mechanism of pain control by MCS. A 43-year-old man presented spontaneous severe burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. After the electrodes for neuromodulation therapy were inserted in the central sulcus, the baseline and stimulation brain perfusion SPECT using Tc-99m ECD were obtained within two days. The differences between the baseline and stimulation SPECT images, estimated at every voxel using t-statistics using SPM-99 software, were considered significant at a threshold of uncorrected P values less than 0.01. Among several areas significantly activated following pain relief with MCS, ipsilateral pyramidal tract in the cerebral peduncle might be related to the mechanism of pain control with MCS through efferent motor pathway. The result suggested that corticospinal neurons themselves or motor cortex efferent pathway maintained by the presence of intact corticospinal neurons could play an important role in producing pain control after MCS. This study would helpful in understanding of neurophysiology.

  11. Coativação, espasticidade, desempenho motor e funcional na paralisia cerebral Coactivation, spasticity, motor and functional performance in cerebral palsy

    Directory of Open Access Journals (Sweden)

    Maíra Seabra de Assumpção

    2011-12-01

    Full Text Available O objetivo deste estudo foi verificar a associação entre a coativação muscular durante a marcha, a espasticidade, as habilidades funcionais e a função motora ampla em crianças com paralisia cerebral (PC e comparar estes parâmetros com os de crianças com desenvolvimento típico (DT. Participaram do estudo 16 crianças com DT e 23 com PC. Os instrumentos clínicos utilizados foram: a Escala Modificada de Ashworth para espasticidade, o Pediatric Evaluation of Disability Inventory para habilidades funcionais, o Gross Motor Function Measure para função motora ampla. A ativação dos músculos reto femoral e semitendíneo foi analisada durante o ciclo de marcha por meio do cálculo do Índice de Coativação (IC. As medidas de habilidades funcionais e motricidade ampla apresentaram associação entre si, sendo bons indicadores de alterações motoras. O IC não parece ser um bom parâmetro para indicar ções na função motora em crianças com PC de severidade mínima.The purpose of this study was to identify whether or not there is an association between muscle coactivation during gait, spasticity, functional abilities and gross motor behavior in children with cerebral palsy (CP and to compare these parameters to those of children with typical development (TD. Sixteen children with TD and 23 children with CP participated of this study. The clinical instruments included: the Modified Ashworth Scale for spasticity, the Pediatric Evaluation of Disability Inventory for functional abilities and the Gross Motor Function Measure for gross motor behaviors. Using coactivation index (CI, activation of the rectus femoris and semitendinosus muscles was analyzed during the participants’gait cycles. Measures of functional abilities were related to parameters of gross motor behaviors and, therefore, providing appropriate indicators of motor changes. Contrary, the CI does not seem to be an appropriate parameter for identifying changes in gross motor

  12. Reorganization of the somatosensory cortex in hemiplegic cerebral palsy associated with impaired sensory tracts.

    Science.gov (United States)

    Papadelis, Christos; Butler, Erin E; Rubenstein, Madelyn; Sun, Limin; Zollei, Lilla; Nimec, Donna; Snyder, Brian; Grant, Patricia Ellen

    2018-01-01

    Functional neuroimaging studies argue that sensory deficits in hemiplegic cerebral palsy (HCP) are related to deviant somatosensory processing in the ipsilesional primary somatosensory cortex (S1). A separate body of structural neuroimaging literature argues that these deficits are due to structural damage of the ascending sensory tracts (AST). The relationship between the functional and structural integrity of the somatosensory system and the sensory performance is largely unknown in HCP. To address this relationship, we combined findings from magnetoencephalography (MEG) and probabilistic diffusion tractography (PDT) in 10 children with HCP and 13 typically developing (TD) children. With MEG, we mapped the functionally active regions in the contralateral S1 during tactile stimulation of the thumb, middle, and little fingers of both hands. Using these MEG-defined functional active regions as regions of interest for PDT, we estimated the diffusion parameters of the AST. Somatosensory function was assessed via two-point discrimination tests. Our MEG data showed: (i) an abnormal somatotopic organization in all children with HCP in either one or both of their hemispheres; (ii) longer Euclidean distances between the digit maps in the S1 of children with HCP compared to TD children; (iii) suppressed gamma responses at early latencies for both hemispheres of children with HCP; and (iv) a positive correlation between the Euclidean distances and the sensory tests for the more affected hemisphere of children with HCP. Our MEG-guided PDT data showed: (i) higher mean and radian diffusivity of the AST in children with HCP; (ii) a positive correlation between the axial diffusivity of the AST with the sensory tests for the more affected hemisphere; and (iii) a negative correlation between the gamma power change and the AD of the AST for the MA hemisphere. Our findings associate for the first time bilateral cortical functional reorganization in the S1 of HCP children with

  13. Thermogenesis elicited by skin cooling in anaesthetized rats: lack of contribution of the cerebral cortex

    Science.gov (United States)

    Osaka, Toshimasa

    2004-01-01

    Non-noxious cooling stimuli were delivered to the shaved back of urethane-chloralose-anaesthetized, artificially ventilated rats using a plastic bag containing water at 24–40°C. Cooling of the skin by 2–6°C increased the rate of whole body oxygen consumption (V̇O2) and triggered electromyographic (EMG) activity recorded from the neck or femoral muscles. The cooling-induced V̇O2 responses did not depend on core (colonic) temperature and followed skin temperature in a graded manner. Pretreatment with the β-blocker propranolol (10 mg kg−1, i.v.) greatly attenuated the V̇O2 response but did not affect the EMG response. On the other hand, pretreatment with the muscle relaxant pancuronium bromide (2 mg kg−1, i.v.) affected the V̇O2 response very slightly but completely abolished the EMG activity. Accordingly, the cooling stimulus activated mainly non-shivering thermogenesis. Next, the contribution of the cerebral cortex to the cooling-induced thermogenesis was examined. Power spectral analysis of the electroencephalogram (EEG) showed that the cooling stimulus largely inhibited delta (0.5–3 Hz) waves, enhanced theta (3–8 Hz) waves, and slightly increased frequencies higher than 8 Hz. Pinching the hindpaw elicited changes in EEG similar to those elicited by skin cooling but did not increase the V̇O2. Therefore, there was no relationship between changes in the EEG and the magnitude of thermogenesis. Finally, skin cooling increased the V̇O2 of decorticated rats but did not increase that of decerebrated rats. The results suggest that the subcortical forebrain structure, but not cortical activation, is indispensable for non-shivering thermogenesis elicited by cooling stimulation of the skin. PMID:14578483

  14. Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy.

    Science.gov (United States)

    Leke, Renata; Escobar, Thayssa D C; Rao, Kakulavarapu V Rama; Silveira, Themis Reverbel; Norenberg, Michael D; Schousboe, Arne

    2015-09-01

    Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glutamine synthesis, i.e. conditions associated with the pathophysiology of HE. Under physiological conditions, glutamine is fundamental for replenishment of the neurotransmitter pools of glutamate and GABA. The different isoforms of glutamine transporters play an important role in the transfer of this amino acid between astrocytes and neurons. A disturbance in the GABA biosynthetic pathways has been described in bile duct ligated (BDL) rats, a well characterized model of chronic HE. Considering that glutamine is important for GABA biosynthesis, altered glutamine transport and the subsequent glutamate/GABA-glutamine cycle efficacy might influence these pathways. Given this potential outcome, the aim of the present study was to investigate whether the expression of the glutamine transporters SAT1, SAT2, SN1 and SN2 would be affected in chronic HE. We verified that mRNA expression of the neuronal glutamine transporters SAT1 and SAT2 was found unaltered in the cerebral cortex of BDL rats. Similarly, no changes were found in the mRNA level for the astrocytic transporter SN1, whereas the gene expression of SN2 was increased by two-fold in animals with chronic HE. However, SN2 protein immuno-reactivity did not correspond with the increase in gene transcription since it remained unaltered. These data indicate that the expression of the glutamine transporter isoforms is unchanged during chronic HE, and thus likely not to participate in the pathological mechanisms related to the imbalance in the GABAergic neurotransmitter system observed in this neurologic condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Brainstem stimulation augments information integration in the cerebral cortex of desflurane-anesthetized rats

    Directory of Open Access Journals (Sweden)

    Siveshigan ePillay

    2014-02-01

    Full Text Available States of consciousness have been associated with information integration in the brain as modulated by anesthesia and the ascending arousal system. The present study was designed to test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO can augment information integration in the cerebral cortex of anesthetized rats. Extracellular unit activity and local field potentials were recorded in freely moving animals from parietal association (PtA and secondary visual (V2 cortices via chronically implanted microwire arrays at three levels of anesthesia produced by desflurane: 3.5%, 4.5%, and 6.0% (where 4.5% corresponds to that critical for the loss of consciousness. Information integration was characterized by integration (multiinformation and interaction entropy, estimated from the statistical distribution of coincident spike patterns. PnO stimulation elicited electrocortical activation as indicated by the reductions in δ- and θ-band powers at the intermediate level of anesthesia. PnO stimulation augmented integration from 1.13 ± 0.03 to 6.12 ± 1.98 x103 bits and interaction entropy from 0.44 ± 0.11 to 2.18 ± 0.72 x103 bits; these changes were most consistent in the PtA at all desflurane concentrations. Stimulation of the retina with discrete light flashes after PnO stimulation elicited an additional 166 ± 25 and 92 ± 12% increase in interaction entropy in V2 during light and intermediate levels. The results suggest that the PnO may modulate spontaneous ongoing and sensory stimulus-related cortical information integration under anesthesia.

  16. Glucocorticoid receptor expression in the cortex of the neonatal rat brain with and without focal cerebral ischemia.

    Science.gov (United States)

    Lee, Ben H; Wen, Tong-Chun; Rogido, Marta; Sola, Augusto

    2007-01-01

    Glucocorticoid receptors (GR) mediate cellular processes which may be neuroprotective and/or neurotoxic to the neonatal rat brain. Our aim was to describe GR ontogeny in the developing rat brain cortex and changes in GR expression after permanent neonatal focal cerebral ischemia (FCI). GR Western blots and immunohistochemical stains were performed on neonatal rat cortices on P1, P3, P7, P10, P15, and P30 and on P7 at 1 h, 3 h, 6 h, 12 h, 24 h, and 72 h after FCI or sham-operation (S-O), 8 per group. Nissl staining was performed on FCI or S-O P7 cortical samples. Cortical GR expression was increased by 65.2% at P7, 110.1% at P15, and 87.0% at P30, compared to P1. On P7, GR expression decreased in the ischemic cortex after 6 h and in the non-ischemic cortex after 24 h of FCI (p cortex after 6 h and in the non-ischemic cortex after 24 h of FCI. Thus, cortical GR may play important roles in normal brain development and neonatal brain injury responses.

  17. Bilateral sequential motor cortex stimulation and skilled task performance with non-dominant hand.

    Science.gov (United States)

    Jelić, Milan B; Filipović, Saša R; Milanović, Sladjan D; Stevanović, Vuk B; Konstantinović, Ljubica

    2017-05-01

    To check whether bilateral sequential stimulation (BSS) of M1 with theta burst stimulation (TBS), using facilitatory protocol over non-dominant M1 followed by inhibitory one over dominant M1, can improve skilled task performance with non-dominant hand more than either of the unilateral stimulations do. Both, direct motor cortex (M1) facilitatory non-invasive brain stimulation (NIBS) and contralateral M1 inhibitory NIBS were shown to improve motor learning. Forty right-handed healthy subjects were divided into 4 matched groups which received either ipsilateral facilitatory (intermittent TBS [iTBS] over non-dominant M1), contralateral inhibitory (continuous TBS [cTBS] over dominant M1), bilateral sequential (contralateral cTBS followed by ipsilateral iTBS), or placebo stimulation. Performance was evaluated by Purdue peg-board test (PPT), before (T0), immediately after (T1), and 30min after (T2) an intervention. In all groups and for both hands, the PPT scores increased at T1 and T2 in comparison to T0, showing clear learning effect. However, for the target non-dominant hand only, immediately after BSS (at T1) the PPT scores improved significantly more than after either of unilateral interventions or placebo. M1 BSS TBS is an effective intervention for improving motor performance. M1 BSS TBS seems as a promising tool for motor learning improvement with potential uses in neurorehabilitation. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Role of the dorsolateral prefrontal cortex in context-dependent motor performance.

    Science.gov (United States)

    Lee, Y-Y; Winstein, C J; Fisher, B E

    2016-04-01

    Context-dependent motor performance is a phenomenon in which people perform better in the environmental context where they originally practised a task. Some animal and computer simulation studies have suggested that context-dependent performance may be associated with neural activation of the dorsolateral prefrontal cortex (DLPFC). This study aimed to determine the role of the DLPFC in context-dependent motor performance by perturbing the neural processing of the DLPFC with repetitive transcranial magnetic stimulation (rTMS) in healthy adults. Thirty healthy adults were recruited into the Control, rTMS DLPFC and rTMS Vertex groups. The participants practised three finger sequences associated with a specific incidental context (a coloured circle and a location on the computer screen). One day following practice, the rTMS groups received 1 Hz rTMS prior to the testing conditions in which the sequence-context associations remained the same as practice (SAME) or changed (SWITCH). All three groups improved significantly over practice on day 1. The second day testing results showed that the DLPFC group had a significantly lower decrease in motor performance under the SWITCH condition than the Control and Vertex groups. This finding suggests a specific role of the DLPFC in context-dependent motor performance. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys

    Directory of Open Access Journals (Sweden)

    Florence eHoogewoud

    2013-07-01

    Full Text Available In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots, in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n=6 or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n=6. In addition, in each subgroup, one half of monkeys (n=3 were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n=3 represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed.For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion, post-lesion restoration of the original movement patterns (true recovery led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  20. Comparison of Functional Recovery of Manual Dexterity after Unilateral Spinal Cord Lesion or Motor Cortex Lesion in Adult Macaque Monkeys

    Science.gov (United States)

    Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F.; Mir, Anis; Schwab, Martin E.; Belhaj-Saif, Abderraouf; Rouiller, Eric M.

    2013-01-01

    In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns (“true” recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex. PMID:23885254

  1. The Importance of Lateral Connections in the Parietal Cortex for Generating Motor Plans.

    Directory of Open Access Journals (Sweden)

    Derrik E Asher

    Full Text Available Substantial evidence has highlighted the significant role of associative brain areas, such as the posterior parietal cortex (PPC in transforming multimodal sensory information into motor plans. However, little is known about how different sensory information, which can have different delays or be absent, combines to produce a motor plan, such as executing a reaching movement. To address these issues, we constructed four biologically plausible network architectures to simulate PPC: 1 feedforward from sensory input to the PPC to a motor output area, 2 feedforward with the addition of an efference copy from the motor area, 3 feedforward with the addition of lateral or recurrent connectivity across PPC neurons, and 4 feedforward plus efference copy, and lateral connections. Using an evolutionary strategy, the connectivity of these network architectures was evolved to execute visually guided movements, where the target stimulus provided visual input for the entirety of each trial. The models were then tested on a memory guided motor task, where the visual target disappeared after a short duration. Sensory input to the neural networks had sensory delays consistent with results from monkey studies. We found that lateral connections within the PPC resulted in smoother movements and were necessary for accurate movements in the absence of visual input. The addition of lateral connections resulted in velocity profiles consistent with those observed in human and non-human primate visually guided studies of reaching, and allowed for smooth, rapid, and accurate movements under all conditions. In contrast, Feedforward or Feedback architectures were insufficient to overcome these challenges. Our results suggest that intrinsic lateral connections are critical for executing accurate, smooth motor plans.

  2. Mechanisms within the Parietal Cortex Correlate with the Benefits of Random Practice in Motor Adaptation

    Directory of Open Access Journals (Sweden)

    Benjamin Thürer

    2017-08-01

    Full Text Available The motor learning literature shows an increased retest or transfer performance after practicing under unstable (random conditions. This random practice effect (also known as contextual interference effect is frequently investigated on the behavioral level and discussed in the context of mechanisms of the dorsolateral prefrontal cortex and increased cognitive efforts during movement planning. However, there is a lack of studies examining the random practice effect in motor adaptation tasks and, in general, the underlying neural processes of the random practice effect are not fully understood. We tested 24 right-handed human subjects performing a reaching task using a robotic manipulandum. Subjects learned to adapt either to a blocked or a random schedule of different force field perturbations while subjects’ electroencephalography (EEG was recorded. The behavioral results showed a distinct random practice effect in terms of a more stabilized retest performance of the random compared to the blocked practicing group. Further analyses showed that this effect correlates with changes in the alpha band power in electrodes over parietal areas. We conclude that the random practice effect in this study is facilitated by mechanisms within the parietal cortex during movement execution which might reflect online feedback mechanisms.

  3. Development and maturation of embryonic cortical neurons grafted into the damaged adult motor cortex

    Directory of Open Access Journals (Sweden)

    Nissrine Ballout

    2016-08-01

    Full Text Available Injury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as two weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2 and Tbr1 were generated after grafting as evidenced with BrdU co-labeling.The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons.

  4. Early hypersynchrony in juvenile PINK1-/- motor cortex is rescued by antidromic stimulation

    Directory of Open Access Journals (Sweden)

    Romain eCARRON

    2014-05-01

    Full Text Available In Parkinson’s disease, cortical networks show enhanced synchronized activity but whether this precedes motor signs is unknown. We investigated this question in PINK1-/- mice, a genetic rodent model of the PARK6 variant of familial Parkinson’s disease which shows impaired spontaneous locomotion at 16 months. We used two-photon calcium imaging and whole-cell patch clamp in slices from juvenile (P14-P21 wild-type or PINK1-/- mice. We designed a horizontal tilted cortico-subthalamic slice where the only connection between cortex and subthalamic nucleus (STN is the hyperdirect cortico-subthalamic pathway. We report excessive correlation and synchronization in PINK1-/- M1 cortical networks 15 months before motor impairment. The percentage of correlated pairs of neurons and their strength of correlation were higher in the PINK1-/- M1 than in the wild type network and the synchronized network events involved a higher percentage of neurons. Both features were independent of thalamo-cortical pathways, insensitive to chronic levodopa treatment of pups, but totally reversed by antidromic invasion of M1 pyramidal neurons by axonal spikes evoked by high frequency stimulation (HFS of the STN. Our study describes an early excess of synchronization in the PINK1-/- cortex and suggests a potential role of antidromic activation of cortical interneurons in network desynchronization. Such backward effect on interneurons activity may be of importance for HFS-induced network desynchronization.

  5. Microstructural organization of corpus callosum projections to prefrontal cortex predicts bimanual motor learning.

    Science.gov (United States)

    Sisti, Helene M; Geurts, Monique; Gooijers, Jolien; Heitger, Marcus H; Caeyenberghs, Karen; Beets, Iseult A M; Serbruyns, Leen; Leemans, Alexander; Swinnen, Stephan P

    2012-07-26

    The corpus callosum (CC) is the largest white matter tract in the brain. It enables interhemispheric communication, particularly with respect to bimanual coordination. Here, we use diffusion tensor imaging (DTI) in healthy humans to determine the extent to which structural organization of subregions within the CC would predict how well subjects learn a novel bimanual task. A single DTI scan was taken prior to training. Participants then practiced a bimanual visuomotor task over the course of 2 wk, consisting of multiple coordination patterns. Findings revealed that the predictive power of fractional anisotropy (FA) was a function of CC subregion and practice. That is, FA of the anterior CC, which projects to the prefrontal cortex, predicted bimanual learning rather than the middle CC regions, which connect primary motor cortex. This correlation was specific in that FA correlated significantly with performance of the most difficult frequency ratios tested and not the innately preferred, isochronous frequency ratio. Moreover, the effect was only evident after training and not at initiation of practice. This is the first DTI study in healthy adults which demonstrates that white matter organization of the interhemispheric connections between the prefrontal structures is strongly correlated with motor learning capability.

  6. Motor cortex stimulation for amyotrophic lateral sclerosis. Time for a therapeutic trial?

    Science.gov (United States)

    Di Lazzaro, Vincenzo; Oliviero, Antonio; Saturno, Eleonora; Pilato, Fabio; Dileone, Michele; Sabatelli, Mario; Tonali, Pietro A

    2004-06-01

    Repetitive transcranial magnetic stimulation (rTMS) of the brain can modulate neurotransmission. The aim of this preliminary study was to investigate whether rTMS of the motor cortex at low (1 Hz) or high (20 Hz) frequencies can have any beneficial effect in a transgenic rat model of amyotrophic lateral sclerosis (ALS) and in a few patients with ALS. The effects of chronic rTMS were evaluated in 20 transgenic rats overexpressing the human G93A mutant superoxide dismutase 1 gene. Several cycles of rTMS were also performed in 4 ALS patients and the rate of progression of the disease before and during rTMS treatment was compared. No effects of rTMS was observed in transgenic rats. The rTMS treatment was well tolerated by the patients. All ALS patients continued to deteriorate. However, in the patients exposed to low-frequency rTMS the rate of progression during treatment was slightly slower than that evaluated before treatment; an opposite tendency was observed in patients exposed to high frequencies. Though we cannot be sure whether the effects observed in the patients can be attributed to rTMS, further investigation using low-frequency motor cortex stimulation on a larger group of ALS patients is warranted. The results of the pilot study in humans might open up a new therapeutic perspective in ALS based on neuromodulation.

  7. Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons.

    Science.gov (United States)

    Prsa, Mario; Galiñanes, Gregorio L; Huber, Daniel

    2017-02-22

    Neuronal motor commands, whether generating real or neuroprosthetic movements, are shaped by ongoing sensory feedback from the displacement being produced. Here we asked if cortical stimulation could provide artificial feedback during operant conditioning of cortical neurons. Simultaneous two-photon imaging and real-time optogenetic stimulation were used to train mice to activate a single neuron in motor cortex (M1), while continuous feedback of its activity level was provided by proportionally stimulating somatosensory cortex. This artificial signal was necessary to rapidly learn to increase the conditioned activity, detect correct performance, and maintain the learned behavior. Population imaging in M1 revealed that learning-related activity changes are observed in the conditioned cell only, which highlights the functional potential of individual neurons in the neocortex. Our findings demonstrate the capacity of animals to use an artificially induced cortical channel in a behaviorally relevant way and reveal the remarkable speed and specificity at which this can occur. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. [Effect of Reading a Book on a Tablet Computer on Cerebral Blood Flow in the Prefrontal Cortex].

    Science.gov (United States)

    Sugiura, Akihiro; Eto, Takuya; Kinoshita, Fumiya; Takada, Hiroki

    2018-01-01

    By measuring cerebral blood flow in the prefrontal cortex, we aimed to determine how reading a book on a tablet computer affects sleep. Seven students (7 men age range, 21-32 years) participated in this study. In a controlled illuminance environment, the subjects read a novel in printed form or on a tablet computer from any distance. As the subjects were reading, the cerebral blood flow in their prefrontal cortex was measured by near-infrared spectroscopy. The study protocol was as follows. 1) Subjects mentally counted a sequence of numbers for 30 s as a pretest to standardized thinking and then 2) read the novel for 10 min, using the printed book or tablet computer. In step 2), the use of the book or tablet computer was in a random sequence. Subjects rested between the two tasks. Significantly increased brain activity (increase in regional cerebral blood flow) was observed following reading a novel on a tablet computer compared with that after reading a printed book. Furthermore, the region around Broca's area was more active when reading on a tablet computer than when reading a printed book. Considering the results of this study and previous studies on physiological characteristics during nonrapid eye movement sleep, we concluded that reading a book on a tablet computer before the onset of sleep leads to the potential inhibition of sound sleep through mechanisms other than the suppression of melatonin secretion.

  9. Sox2-Mediated Conversion of NG2 Glia into Induced Neurons in the Injured Adult Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Christophe Heinrich

    2014-12-01

    Full Text Available The adult cerebral cortex lacks the capacity to replace degenerated neurons following traumatic injury. Conversion of nonneuronal cells into induced neurons has been proposed as an innovative strategy toward brain repair. Here, we show that retrovirus-mediated expression of the transcription factors Sox2 and Ascl1, but strikingly also Sox2 alone, can induce the conversion of genetically fate-mapped NG2 glia into induced doublecortin (DCX+ neurons in the adult mouse cerebral cortex following stab wound injury in vivo. In contrast, lentiviral expression of Sox2 in the unlesioned cortex failed to convert oligodendroglial and astroglial cells into DCX+ cells. Neurons induced following injury mature morphologically and some acquire NeuN while losing DCX. Patch-clamp recording of slices containing Sox2- and/or Ascl1-transduced cells revealed that a substantial fraction of these cells receive synaptic inputs from neurons neighboring the injury site. Thus, NG2 glia represent a potential target for reprogramming strategies toward cortical repair.

  10. [Changes of endoplasmic reticulum stress- and apoptosis-related factors in rat cerebral cortex following controlled hypotension].

    Science.gov (United States)

    Zhang, Jianxing; Li, Hongying; Zhou, Guobin; Wang, Yan

    2014-12-01

    To investigate the changes of endoplasmic reticulum stress (ERS)- and apoptosis-related factors in rat cerebral cortex following controlled hypotension. Twenty-four healthy male SD rats were randomly divided into 4 equal groups, including a sham hypotension group (group A) and 3 hypotension groups with the mean arterial pressure maintained for 60 min at 70 mmHg (group B), 50 mmHg (group) and 30 mmHg (group D) with sodium nitroprusside and esmolol. All the rats received an equal volume of fluid infusion. Twelve hours after controlled hypotension, the rats were sacrificed to examine the protein expressions of Bax, Bcl-2, glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and caspase-12 in the cortex with Western blotting. GRP78 mRNA expression was measured by RT-PCR, and the cell apoptosis was evaluated by TUNEL staining. Compared with those in group A, GRP78 mRNA and protein expressions of GRP78, CHOP, caspase-12 related with ERS increased significantly in groups C and D (P0.05). Apoptotic cells and Bax expression increased and Bcl-2 expression decreased significantly in groups C and D (P0.05); such changes were more prominent in group D than in group C (Pcontrolled hypotension (70 mmHg) does not induce neuronal injury in rat cerebral cortex, but severe hypertension (lower than 50 mmHg) can cause neuronal ERS and apoptosis.

  11. Activation of autophagy at cerebral cortex and apoptosis at brainstem are differential responses to 835 MHz RF-EMF exposure.

    Science.gov (United States)

    Kim, Ju Hwan; Yu, Da-Hyeon; Kim, Hak Rim

    2017-03-01

    With the explosive increase in exposure to radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones, public concerns have grown over the last few decades with regard to the potential effects of EMF exposure on the nervous system in the brain. Many researchers have suggested that RF-EMFs can effect diverse neuronal alterations in the brain, thereby affecting neuronal functions as well as behavior. Previously, we showed that long-term exposure to 835 MHz RF-EMF induces autophagy in the mice brain. In this study, we explore whether short-term exposure to RF-EMF leads to the autophagy pathway in the cerebral cortex and brainstem at 835 MHz with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Increased levels of autophagy genes and proteins such as LC3B-II and Beclin1 were demonstrated and the accumulation of autophagosomes and autolysosomes was observed in cortical neurons whereas apoptosis pathways were up-regulated in the brainstem but not in the cortex following 4 weeks of RF exposure. Taken together, the present study indicates that monthly exposure to RF-EMF induces autophagy in the cerebral cortex and suggests that autophagic degradation in cortical neurons against a stress of 835 MHz RF during 4 weeks could correspond to adaptation to the RF stress environment. However, activation of apoptosis rather than autophagy in the brainstem is suggesting the differential responses to the RF-EMF stresses in the brain system.

  12. Neurofisiologia e plasticidade no córtex cerebral pela estimulação magnética transcraniana repetitiva Plasticity of the human cerebral cortex as revealed by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Joaquim Brasil Neto

    2004-01-01

    Full Text Available Um velho dogma da biologia afirma que só existiria capacidade de reorganização cortical (neuroplasticidade em animais muito jovens; no adulto, tal capacidade seria pequena ou mesmo inexistente. Aqui, revisamos estudos realizados em animais e em humanos que demonstram uma capacidade de reorganização cortical nos sistemas sensoriais e motores em indivíduos adultos. Destacamos os estudos realizados com a técnica de estimulação magnética transcraniana. O córtex cerebral asulto é capaz de reorganização após lesões do sistema nervoso periférico ou central ou no contexto do aprendizado.An old biological dogma states that a potencial for cortical reorganization (neuroplasticity exists nly in young animals, being lost in adlt life. Here we review studies carried out both in animals and humans, whixh demonstrate cortical reorganization in sensory and motor systems in adult subjects. We particulary emphasiza human studies carried out with the aid of transcranial magnetic stimulation. The adult cortex is capable of reorganization after peripheral or central nervous system lesions and as a result of learning.

  13. Enhanced motor function and its neurophysiological correlates after navigated low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in stroke.

    Science.gov (United States)

    Bashir, Shahid; Vernet, Marine; Najib, Umer; Perez, Jennifer; Alonso-Alonso, Miguel; Knobel, Mark; Yoo, Woo-Kyoung; Edwards, Dylan; Pascual-Leone, Alvaro

    2016-08-11

    The net effect of altered interhemispheric interactions between homologous motor cortical areas after unilateral stroke has been previously reported to contribute to residual hemiparesis. Using this framework, we hypothesized that navigated 1 Hz repetitive transcranial magnetic stimulation (rTMS) over the contralesional hemisphere would induce a stronger physiological and behavioural response in patients with residual motor deficit than in healthy subjects, because an imbalance in interhemispheric excitability may underlie motor dysfunction. Navigated rTMS was conducted in 8 chronic stroke patients (67.50±13.77 years) and in 8 comparable normal subjects (57.38±9.61 years). We evaluated motor function (Finger tapping, Nine Hole Peg test, Strength Index and Reaction Time) as well as the excitatory and inhibitory function (resting motor threshold, motor evoked potential amplitude, intra-cortical inhibition and facilitation, and silent period) of the stimulated and non-stimulated motor cortex before and after navigated rTMS. rTMS induced an increase in excitability in the ipsilesional (non-stimulated) motor cortex and led to improved performance in the finger tapping task and pinch force task. These physiological and behavioral effects were more prominent (or robust) in the group of stroke patients than in the control group. Navigated low-frequency rTMS involving precise and consistent targeting of the contralesional hemisphere in stroke patients enhanced the cortical excitability of the ipsilesional hemisphere and the motor response of the hemiparetic hand.

  14. Comparison of Two Exercise Methods on Motor Performance and Balance in Children with Spastic Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Ahmad Ebrahimi-A'tri

    2012-04-01

    Full Text Available Objective: The purpose of this study was to assess the effects of two exercise methods on improving balance and motor performance in children with spastic diplegia cerebral palsy. Design: Randomized clinical trial. Materials & Methods: In this semi-experimental study 21 children aged 7–12 years, with spastic diplegia cerebral palsy, who were independent ambulators, were recruited. Children were randomly assigned into a control group (n=7, home exercise group (n=7 and clinic exercise group (n=7. The control group received regular daily activities, the home exercise group performed regular daily activities plus a sit-to-stand and step-up exercise programmes for six weeks at home and the clinic exercise group was given the same exercise programmes in clinic. Gross motor ability was tested by gross motor function measure (GMFM test. Timed Up and Go Test and Functional Reach Test were used to measure functional balance. Walking performance was assessed using the 10-m walking test. Results: At the end of the intervention period, a statistically significant increase in the mean Functional Reach Test in two exercise groups and a reduction in the mean of Timed Up and Go Test were noted (P<0.05. No statistically significant changes were recorded in the control group. In all other assessed no outcomes significant differences were noted between the groups. Conclusion: A sit-to-stand and step-up exercise programmes can improve balance performance in children with spastic diplegia cerebral palsy in clinic and home.

  15. Motor cortex excitability is not differentially modulated following skill and strength training.

    Science.gov (United States)

    Leung, M; Rantalainen, T; Teo, W-P; Kidgell, D

    2015-10-01

    A single session of skill or strength training can modulate the primary motor cortex (M1), which manifests as increased corticospinal excitability (CSE) and decreased short-latency intra-cortical inhibition (SICI). We tested the hypothesis that both skill and strength training can propagate the neural mechanisms mediating cross-transfer and modulate the ipsilateral M1 (iM1). Transcranial magnetic stimulation (TMS) measured baseline CSE and SICI in the contralateral motor cortex (cM1) and iM1. Participants completed 4 sets of unilateral training with their dominant arm, either visuomotor tracking, metronome-paced strength training (MPST), self-paced strength training (SPST) or control. Immediately post training, TMS was repeated in both M1s. Motor-evoked potentials (MEPs) increased and inhibition was reduced for skill and MPST training from baseline in both M1s. Self-paced strength training and control did not produce changes in CSE and SICI when compared to baseline in both M1s. After training, skill and MPST increased CSE and decreased SICI in cM1 compared to SPST and control. Skill and MPST training decreased SICI in iM1 compared to SPST and control post intervention; however, CSE in iM1 was not different across groups post training. Both skill training and MPST facilitated an increase in CSE and released SICI in iM1 and cM1 compared to baseline. Our results suggest that synchronizing to an auditory or a visual cue promotes neural adaptations within the iM1, which is thought to mediate cross transfer. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Detecting neuronal dysfunction of hand motor cortex in ALS: A MRSI study.

    Science.gov (United States)

    Wang, Yuzhou; Li, Xiaodi; Chen, Wenming; Wang, Zhanhang; Xu, Yan; Luo, Jingpan; Lin, Hanbo; Sun, Guijun

    2017-03-01

    Although hand motor cortex (HMC) has been constantly used for identification of primary motor cortex in magnetic resonance spectroscopy (MRS) studies of amyotrophic lateral sclerosis (ALS), neurochemical profiles of HMC have never been assessed independently. As HMC has a constant location and the clinic-anatomic correlation between hand motor function and HMC has been established, we hypothesize that HMC may serve as a promising region of interest in diagnosing ALS. Fourteen ALS patients and 14 age- and gender-matched healthy controls (HC) were recruited in this study. An optimized magnetic resonance spectroscopic imaging (MRSI) method was developed and for each subject bilateral HMC areas were scanned separately (two-dimensional multi-voxel MRSI, voxel size 0.56 cm(3)). N-acetyl aspartate (NAA)-creatine (Cr) ratio was measured from HMC and the adjacent postcentral gyrus. Compared with HC, NAA/Cr ratios from HMC and the postcentral gyrus were significantly reduced in ALS. However, in each group the difference of NAA/Cr ratios between HMC and the postcentral gyrus was not significant. Limb predominance of HMC was not found in either ALS or HC. In ALS, there was a significant difference in NAA/Cr ratio between the most affected HMC and the less affected HMC. A positive relationship between NAA/Cr ratio of HMC and the severity of hand strength (assessed by finger tapping speed) was demonstrated. Neuronal dysfunction of HMC can differentiate ALS patients from HC when represented as reduced NAA/Cr ratio. Postcentral gyrus could not serve as normal internal reference tissue in diagnosing ALS. Asymmetrical NAA/Cr ratios from bilateral HMC may serve as a promising diagnostic biomarker of ALS at the individual level.

  17. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.

    Science.gov (United States)

    Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H

    2016-03-01

    An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor

  18. Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power.

    Science.gov (United States)

    Angulo-Sherman, Irma N; Rodríguez-Ugarte, Marisol; Sciacca, Nadia; Iáñez, Eduardo; Azorín, José M

    2017-04-19

    Transcranial direct current stimulation (tDCS) is a technique for brain modulation that has potential to be used in motor neurorehabilitation. Considering that the cerebellum and motor cortex exert influence on the motor network, their stimulation could enhance motor functions, such as motor imagery, and be utilized for brain-computer interfaces (BCIs) during motor neurorehabilitation. A new tDCS montage that influences cerebellum and either right-hand or feet motor area is proposed and validated with a simulation of electric field. The effect of current density (0, 0.02, 0.04 or 0.06 mA/cm2) on electroencephalographic (EEG) classification into rest or right-hand/feet motor imagery was evaluated on 5 healthy volunteers for different stimulation modalities: 1) 10-minutes anodal tDCS before EEG acquisition over right-hand or 2) feet motor cortical area, and 3) 4-seconds anodal tDCS during EEG acquisition either on right-hand or feet cortical areas before each time right-hand or feet motor imagery is performed. For each subject and tDCS modality, analysis of variance and Tukey-Kramer multiple comparisons tests (p stimulation. The proposed montage improved the classification of right-hand motor imagery for 4 out of 5 subjects when the highest current was applied for 10 minutes over the right-hand motor area. Although EEG band power changes could not be related directly to classification improvement, tDCS appears to affect variably different motor areas on μ and/or β band. The proposed montage seems capable of enhancing right-hand motor imagery detection when the right-hand motor area is stimulated. Future research should be focused on applying higher currents over the feet motor cortex, which is deeper in the brain compared to the hand motor cortex, since it may allow observation of effects due to tDCS. Also, strategies for improving analysis of EEG respect to accuracy changes should be implemented.

  19. Motor learning and modulation of prefrontal cortex: an fNIRS assessment

    Science.gov (United States)

    Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy

    2015-12-01

    Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.

  20. Memory accumulation mechanisms in human cortex are independent of motor intentions.

    Science.gov (United States)

    Sestieri, Carlo; Tosoni, Annalisa; Mignogna, Valeria; McAvoy, Mark P; Shulman, Gordon L; Corbetta, Maurizio; Romani, Gian Luca

    2014-05-14

    Previous studies on perceptual decision-making have often emphasized a tight link between decisions and motor intentions. Human decisions, however, also depend on memories or experiences that are not closely tied to specific motor responses. Recent neuroimaging findings have suggested that, during episodic retrieval, parietal activity reflects the accumulation of evidence for memory decisions. It is currently unknown, however, whether these evidence accumulation signals are functionally linked to signals for motor intentions coded in frontoparietal regions and whether activity in the putative memory accumulator tracks the amount of evidence for only previous experience, as reflected in "old" reports, or for both old and new decisions, as reflected in the accuracy of memory judgments. Here, human participants used saccadic-eye and hand-pointing movements to report recognition judgments on pictures defined by different degrees of evidence for old or new decisions. A set of cortical regions, including the middle intraparietal sulcus, showed a monotonic variation of the fMRI BOLD signal that scaled with perceived memory strength (older > newer), compatible with an asymmetrical memory accumulator. Another set, including the hippocampus and the angular gyrus, showed a nonmonotonic response profile tracking memory accuracy (higher > lower evidence), compatible with a symmetrical accumulator. In contrast, eye and hand effector-specific regions in frontoparietal cortex tracked motor intentions but were not modulated by the amount of evidence for the effector outcome. We conclude that item recognition decisions are supported by a combination of symmetrical and asymmetrical accumulation signals largely segregated from motor intentions. Copyright © 2014 the authors 0270-6474/14/346993-14$15.00/0.

  1. Stimulation over primary motor cortex during action observation impairs effector recognition.

    Science.gov (United States)

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  2. Digital Posturography Games Correlate with Gross Motor Function in Children with Cerebral Palsy.

    Science.gov (United States)

    Bingham, Peter M; Calhoun, Barbara

    2015-04-01

    This pilot study aimed to assess whether performance on posturography games correlates with the Gross Motor Function Measure (GMFM) in children with cerebral palsy. Simple games using static posturography technology allowed subjects to control screen events via postural sway. Game performance was compared with GMFMs using correlation analysis in a convenience sample of nine girls and six boys with cerebral palsy. Likert scales were used to obtain subjective responses to the balance games. GMFM scores correlated with game performance, especially measures emphasizing rhythmic sway. Twelve of the 15 subjects enjoyed the game and asserted an interest in playing again. Digital posturography games engage children with cerebral palsy in balance tasks, provide visual feedback in a balance control task, and have the potential to increase autonomy in balance control training among pediatric patients with cerebral palsy. This approach can support the relationship between child and therapist. The potential for interactive posturography to complement the assessment and treatment of balance in cerebral palsy bears continuing study.

  3. Disrupted Saccade Control in Chronic Cerebral Injury: Upper Motor Neuron-Like Disinhibition in the Ocular Motor System.

    Science.gov (United States)

    Rizzo, John-Ross; Hudson, Todd E; Abdou, Andrew; Lui, Yvonne W; Rucker, Janet C; Raghavan, Preeti; Landy, Michael S

    2017-01-01

    Saccades rapidly direct the line of sight to targets of interest to make use of the high acuity foveal region of the retina. These fast eye movements are instrumental for scanning visual scenes, foveating targets, and, ultimately, serve to guide manual motor control, including eye-hand coordination. Cerebral injury has long been known to impair ocular motor control. Recently, it has been suggested that alterations in control may be useful as a marker for recovery. We measured eye movement control in a saccade task in subjects with chronic middle cerebral artery stroke with both cortical and substantial basal ganglia involvement and in healthy controls. Saccade latency distributions were bimodal, with an early peak at 60 ms (anticipatory saccades) and a later peak at 250 ms (regular saccades). Although the latencies corresponding to these peaks were the same in the two groups, there were clear differences in the size of the peaks. Classifying saccade latencies relative to the saccade "go signal" into anticipatory (latencies up to 80 ms), "early" (latencies between 80 and 160 ms), and "regular" types (latencies longer than 160 ms), stroke subjects displayed a disproportionate number of anticipatory saccades, whereas control subjects produced the majority of their saccades in the regular range. We suggest that this increase in the number of anticipatory saccade events may result from a disinhibition phenomenon that manifests as an impairment in the endogenous control of ocular motor events (saccades) and interleaved fixations. These preliminary findings may help shed light on the ocular motor deficits of neurodegenerative conditions, results that may be subclinical to an examiner, but clinically significant secondary to their functional implications.

  4. Standing activity intervention and motor function in a young child with cerebral palsy: A case report.

    Science.gov (United States)

    Audu, Olukemi; Daly, Carol

    2017-02-01

    There is limited evidence to fully justify the use of standing interventions for children with cerebral palsy (CP). This case report describes the impact of an 8-week standing program on motor function in a child with severe CP living in western Africa. The subject was diagnosed with ischemic - hypoxic encephalopathy shortly after birth and with CP at 12 months of age. Gross Motor Function Classification of CP was level IV. Early attempts at physical therapy were interrupted by limited access to medical services. At 18 months, a standing program using a locally constructed standing frame was initiated. The standing intervention was completed at home 5 times a week for 8 weeks. Motor skills were assessed at baseline and post-intervention using the Gross Motor Function Measure (GMFM-66). Scores on the GMFM-66 increased from 28 at baseline to 37.4 in 8 weeks. Improvements in motor function included improved head control, improved upper extremity function, and increased sitting ability. Implementation of a home-based standing program may have contributed to improved motor skills for this child. Further research is needed to determine the effect of standing interventions on functional motor development for children with severe CP.

  5. Gross Motor Function Measure Evolution Ratio: Use as a Control for Natural Progression in Cerebral Palsy.

    Science.gov (United States)

    Marois, Pierre; Marois, Mikael; Pouliot-Laforte, Annie; Vanasse, Michel; Lambert, Jean; Ballaz, Laurent

    2016-05-01

    To develop a new way to interpret Gross Motor Function Measure (GMFM-66) score improvement in studies conducted without control groups in children with cerebral palsy (CP). The curves, which describe the pattern of motor development according to the children's Gross Motor Function Classification System level, were used as historical control to define the GMFM-66 expected natural evolution in children with CP. These curves have been modeled and generalized to fit the curve to particular children characteristics. Research center. Not applicable. Not applicable. Not applicable. Assuming that the GMFM-66 score evolution followed the shape of the Rosenbaum curves, by taking into account the age and GMFM-66 score of children, the expected natural evolution of the GMFM-66 score was predicted for any group of children with CP who were Motor Function Measure Evolution Ratio, was defined as follows: Gross Motor Function Measure Evolution Ratio=measured GMFM-66 score change/expected natural evolution. For practical or ethical reasons, it is almost impossible to use control groups in studies evaluating effectiveness of many therapeutic modalities. The Gross Motor Function Measure Evolution Ratio gives the opportunity to take into account the expected natural evolution of the gross motor function of children with CP, which is essential to accurately interpret the therapy effect on the GMFM-66. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Maternal Exposure to PM2.5 during Pregnancy Induces Impaired Development of Cerebral Cortex in Mice Offspring

    Directory of Open Access Journals (Sweden)

    Tianliang Zhang

    2018-01-01

    Full Text Available Air pollution is a serious environmental health problem closely related to the occurrence of central nervous system diseases. Exposure to particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5 during pregnancy may affect the growth and development of infants. The present study was to investigate the effects of maternal exposure to PM2.5 during pregnancy on brain development in mice offspring. Pregnant mice were randomly divided into experimental groups of low-, medium-, or high-dosages of PM2.5, a mock-treated group which was treated with the same amount of phosphate buffer solution (PBS, and acontrol group which was untreated. The ethology of offspring mice on postnatal days 1, 7, 14, 21, and 30, along with neuronal development and apoptosis in the cerebral cortex were investigated. Compared with the control, neuronal mitochondrial cristae fracture, changed autophagy characteristics, significantly increased terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL positive cell rate, and mRNA levels of apoptosis-related caspase-8 and caspase-9 were found in cerebral cortex of mice offspring from the treatment groups, with mRNA levels of Bcl-2 and ratio of Bcl-2 to Bax decreased. Treatment groups also demonstrated enhanced protein expressions of apoptosis-related cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9, along with declined proliferating cell nuclear antigen (PCNA, Bcl-2, and ratio of Bcl-2 to Bax. Open field experiments and tail suspension experiments showed that exposure to high dosage of PM2.5 resulted in decreased spontaneous activities but increased static accumulation time in mice offspring, indicating anxiety, depression, and social behavioral changes. Our results suggested that maternal exposure to PM2.5 during pregnancy might interfere with cerebral cortex development in mice offspring by affecting cell apoptosis.

  7. Distinction of neurons, glia and endothelial cells in the cerebral cortex: an algorithm based on cytological features

    Directory of Open Access Journals (Sweden)

    Miguel Ángel García-Cabezas

    2016-11-01

    Full Text Available The estimation of the number or density of neurons and types of glial cells and their relative proportions in different brain areas are at the core of rigorous quantitative neuroanatomical studies. Unfortunately, the lack of detailed, updated, systematic, and well-illustrated descriptions of the cytology of neurons and glial cell types, especially in the primate brain, makes such studies especially demanding, often limiting their scope and broad use. Here, following extensive analysis of histological materials and the review of current and classical literature, we compile a list of precise morphological criteria that can facilitate and standardize identification of cells in stained sections examined under the microscope. We describe systematically and in detail the cytological features of neurons and glial cell types in the cerebral cortex of the macaque monkey and the human using semithin and thick sections stained for Nissl. We used this classical staining technique because it labels all cells in the brain in distinct ways. In addition, we corroborate key distinguishing characteristics of different cell types in sections immunolabeled for specific markers counterstained for Nissl and in ultrathin sections processed for electron microscopy. Finally, we summarize the core features that distinguish each cell type in easy-to-use tables and sketches, and structure these key features in an algorithm that can be used to systematically distinguish cellular types in the cerebral cortex. Moreover, we report high inter-observer algorithm reliability, which is a crucial test for obtaining consistent and reproducible cell counts in unbiased stereological studies. This protocol establishes a consistent framework that can be used to reliably identify and quantify cells in the cerebral cortex of primates as well as other mammalian species in health and disease.

  8. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    two different sets of interneurons. Our data imply that for a given cortical area the amplitude of vascular signals will depend critically on the type of input and hence on the type of neurons activated. In the second study I investigated the effect of cortical spreading depression (CSD) on the evoked...... Laser-Doppler Flowmetry for measurements of cerebral blood flow, glass microelectrodes for recording of synaptic activity – local field potentials – and ongoing cortical electrical activity and a Clark type electrode for measurements of tissue partial pressure of oxygen (tpO2). Offline calculations......As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...

  9. Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter.

    Science.gov (United States)

    Neef, Nicole E; Hoang, T N Linh; Neef, Andreas; Paulus, Walter; Sommer, Martin

    2015-03-01

    The precise excitability regulation of neuronal circuits in the primary motor cortex is central to the successful and fluent production of speech. Our question was whether the involuntary execution of undesirable movements, e.g. stuttering, is linked to an insufficient excitability tuning of neural populations in the orofacial region of the primary motor cortex. We determined the speech-related time course of excitability modulation in the left and right primary motor tongue representation. Thirteen fluent speakers (four females, nine males; aged 23-44) and 13 adults who stutter (four females, nine males, aged 21-55) were asked to build verbs with the verbal prefix 'auf'. Single-pulse transcranial magnetic stimulation was applied over the primary motor cortex during the transition phase between a fixed labiodental articulatory configuration and immediately following articulatory configurations, at different latencies after transition onset. Bilateral electromyography was recorded from self-adhesive electrodes placed on the surface of the tongue. Off-line, we extracted the motor evoked potential amplitudes and normalized these amplitudes to the individual baseline excitability during the fixed configuration. Fluent speakers demonstrated a prominent left hemisphere increase of motor cortex excitability in the transition phase (P = 0.009). In contrast, the excitability of the right primary motor tongue representation was unchanged. Interestingly, adults afflicted with stuttering revealed a lack of left-hemisphere facilitation. Moreover, the magnitude of facilitation was negatively correlated with stuttering frequency. Although orofacial midline muscles are bilaterally innervated from corticobulbar projections of both hemispheres, our results indicate that speech motor plans are controlled primarily in the left primary speech motor cortex. This speech motor planning-related asymmetry towards the left orofacial motor cortex is missing in stuttering. Moreover, a negative

  10. Hypoperfusion of the Cerebellum and Aging Effects on Cerebral Cortex Blood Flow in Abstinent Alcoholics: A SPECT Study

    Science.gov (United States)

    Harris, Gordon J.; Oscar-Berman, Marlene; Gansler, A.; Streeter, Chris; Lewis, Robert F.; Ahmed, Iqbal; Achong, Dwight

    2014-01-01

    Background This study evaluated hypotheses concerning alcoholism, aging, and the relationship between cerebral hypoperfusion and residual deficits in the functioning of cerebellar and neocortical brain systems. Methods The participants were 10 healthy abstinent alcoholics (9 men, 1 woman) and 12 nonalcoholic controls (10 men, 2 women) ranging in age from 35 to 67 years. Cerebral blood flow was observed through the use of regionally specific computer-derived quantitative analysis of single photon emission computed tomography (SPECT) perfusion images. Cerebellar perfusion was measured and compared with cerebral cortex perfusion in age-equivalent subgroups of alcoholics and controls (under 55 years; 55 years and over). Results In abstinent alcoholics under age 55, cerebellar perfusion ratios were significantly reduced compared with the controls. In alcoholics and nonalcoholic controls 55 years old and older, this relationship was reversed, probably as a result of diminished cortical perfusion with aging in the alcoholics and of cerebellar decline in the controls. Conclusions The findings support hypotheses that the residual effects of alcoholism include cerebellar brain abnormalities and that aging combined with long-term alcoholism leads to cerebral cortical decline. PMID:10443989

  11. Limited Contribution of Primary Motor Cortex in Eye-Hand Coordination: A TMS Study.

    Science.gov (United States)

    Mathew, James; Eusebio, Alexandre; Danion, Frederic

    2017-10-04

    The ability to track a moving target with the eye is substantially improved when the target is self-moved compared with when it is moved by an external agent. To account for this observation, it has been postulated that the oculomotor system has access to hand efference copy, thereby allowing to predict the motion of the visual target. Along this scheme, we tested the effect of transcranial magnetic stimulation (TMS) over the hand area of the primary motor cortex (M1) when human participants (50% females) are asked to track with their eyes a visual target whose horizontal motion is driven by their grip force. We reasoned that, if the output of M1 is used by the oculomotor system to keep track of the target, on top of inducing short latency disturbance of grip force, single-pulse TMS should also quickly disrupt ongoing eye motion. For comparison purposes, the effect of TMS over M1 was monitored when subjects tracked an externally moved target (while keeping their hand at rest or not). In both cases, results showed no alterations in smooth pursuit, meaning that its velocity was unaffected within the 25-125 ms epoch that followed TMS. Overall, our results imply that the output of M1 has limited contribution in driving the eye motion during our eye-hand coordination task. This study suggests that, if hand motor signals are accessed by the oculomotor system, this is upstream of M1.SIGNIFICANCE STATEMENT The ability to coordinate eye and hand actions is central in everyday activity. However, the neural mechanisms underlying this coordination remain to be clarified. A leading hypothesis is that the oculomotor system has access to hand motor signals. Here we explored this possibility by means of transcranial magnetic stimulation (TMS) over the hand area of the primary motor cortex (M1) when humans tracked with the eyes a visual target that was moved by the hand. As expected, ongoing hand action was perturbed 25-30 ms after TMS, but our results fail to show any disruption

  12. Comparison of Effects of Transcranial Magnetic Stimulation on Primary Motor Cortex and Supplementary Motor Area in Motor Skill Learning (Randomized, Cross over Study

    Directory of Open Access Journals (Sweden)

    YONG KYUN eKIM

    2014-11-01

    Full Text Available Motor skills require quick visuomotor reaction time, fast movement time, and accurate performance. Primary motor cortex (M1 and supplementary motor area (SMA are closely related in learning motor skills. Also, it is well known that high frequency repeated transcranial magnetic stimulation (rTMS on these sites has a facilitating effect. The aim of this study was to compare the effects of high frequency rTMS activation of these two brain sites on learning of motor skills. Twenty three normal volunteers participated. Subjects were randomly stimulated on either brain area, SMA or M1. The motor task required the learning of sequential finger movements, explicitly or implicitly. It consisted of pressing the keyboard sequentially with their right hand on seeing 7 digits on the monitor explicitly, and then tapping the 7 digits by memorization, implicitly. Subjects were instructed to hit the keyboard as fast and accurately as possible. Using MIDI (Musical Instrument Digital Interface, the keyboard pressing task was measured before and after high frequency rTMS for motor performance, which was measured by response time, movement time, and accuracy., A week later, the same task was repeated by cross-over study design. At this time, rTMS was applied on the other brain area. Two-way ANOVA was used to assess the carry over time effect and stimulation sites (M1 and SMA, as factors. Results indicated that no carry-over effect was observed. The AC and RT were not different between the two stimulating sites (M1 and SMA. But movement time was significantly decreased after rTMS on both SMA and M1. The amount of shortened movement time after rTMS on SMA was significantly increased as compared to the movement time after rTMS on M1 (p < 0.05, especially for implicit learning of motor tasks. The coefficient of variation was lower in implicit trial than in explicit trial. In conclusion, this finding indicated an important role of SMA compared to M1, in implicit motor

  13. A facilitating role for the primary motor cortex in action sentence processing.

    Science.gov (United States)

    Courson, Melody; Macoir, Joël; Tremblay, Pascale

    2018-01-15

    The involvement of the motor system in action language comprehension is a hotly debated topic in cognitive neuroscience and psychology. Recent studies suggest that primary motor cortex (M1) response to action language is context-sensitive rather than automatic and necessary. Specifically, semantic polarity (i.e. affirmative/negative valence) appears to modulate the intensity of this response, which is stronger for affirmative action sentences. The aim of our study was to examine further the context sensitivity of M1 response. More specifically, we aimed to determine whether M1 response follows semantic polarity or the core meaning of the sentence using two-part action sentences containing interacting polarities. Modulations of M1 activity were recorded using surface electromyography of the first dorsal interosseous muscle of the right hand in 22 healthy participants. Our results show an increase in M1 activity during the first part of the sentence, regardless of semantic polarity. This response was then modulated by the polarity of the second part of the sentence, which carried crucial information regarding the action. These observations suggest that M1 differentially responds to different aspects of action sentences, one response being automatic and the other following the core meaning of the sentence. Our results thus contribute to clarifying the nature of the motor response to action language, which is key to develop more comprehensive and plausible neurobiological models of language processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Truth-Telling Motor Cortex: Response Competition in M1 Discloses Deceptive Behaviour

    Directory of Open Access Journals (Sweden)

    Aviad A. Hadar

    2011-05-01

    Full Text Available Recent studies have suggested that circuits associated with response conflict and response inhibition are strongly implicated in deception. Using single-pulse transcranial magnetic stimulation (TMS, we examined whether conflict between competing responses in primary motor cortex (M1 can be used for discriminating between intentionally false and true facial recognition. Participants used little finger and thumb key-presses to lie or tell the truth regarding their familiarity with a series of famous and nonfamous faces. Single-pulse TMS was administered to M1 at three intervals prior to response execution in order to evoke motor evoked potentials (MEPs in both Abductor Digiti Minimi (ADM and first dorsal interosseous (FDI of the right hand. As predicted, we found that the MEP of the nonresponding digit was greater than the MEP of the responding digit when participants prepared to engage in deception, while a mirror-reversed pattern was observed for truth telling. This effect did not interact with the stimulation interval suggesting consistent activation of the motor plan representing the truth throughout the response preparation process. We discuss these results with reference to models of response selection and procedures for the detection of deception.

  15. Diversity of layer 5 projection neurons in the mouse motor cortex.

    Science.gov (United States)

    Oswald, Manfred J; Tantirigama, Malinda L S; Sonntag, Ivo; Hughes, Stephanie M; Empson, Ruth M

    2013-01-01

    In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labeled M1 corticospinal (CSp), corticothalamic (CTh), and commissural projecting corticostriatal (CStr) and corticocortical (CC) neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP) waveform, firing behavior, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behavior in corticofugal neurons. At 26°C CTh neurons fired bursts of APs more often than CSp neurons, but at 36°C both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function.

  16. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... parameters of the whisker/infraorbital nerve etwork (IO) targeting the same cortical area. We tested the hypothesis that the relation between increases in CBF and CMRO2 evoked by stimulation and synaptic activity differed for the two activated networks and that activation of two distinct networks activate...

  17. [Structural and functional reorganization of the interneuronal contacts of the cerebral cortex after a single convulsive paroxysm].

    Science.gov (United States)

    Savchenko, Iu N; Ereniev, S I; Semchenko, V V; Stepanov, S S

    1987-01-01

    Using the technique of contrasting the cerebral tissue with phosphotungstic acid, the authors studied the structural and functional status of interneuronal contacts of the molecular layer of the sensomotor cortex in the brain of Krushinsky-Molodkina rats following convulsive sound stimulation and the subsequent audiogenic convulsive paroxysm. Marked reduction in the general number of synapses 4 h after the attack was attended by transformation of some flat functionally mature contacts into concave ones, which reflects the activation of the synaptic pool. The relative levels of concave and flat mature contacts returned to the initial level 8 to 24 h later.

  18. Protective effect and its mechanism of curcumin on ischemia-reperfusion injury of cerebral cortex in rats

    Directory of Open Access Journals (Sweden)

    Li LIU

    2013-03-01

    Full Text Available Objective  To investigate the effect of curcumin pretreatment on the expression of uncoupling protein 2 (UCP2 and mitochondrial transcription factor A (MTFA in rats' cerebral cortex against focal ischemia reperfusion injury. Methods  Eighty male SD rats weighed 220g–300g were randomly divided into 4 groups: sham-operated group, ischemia/reperfusion (I/R group, curcumine 50mg/kg+I/R (low dose group, and curcumine 100mg/kg+I/R (high dose group. The common carotid artery, external carotid artery and internal carotid artery on the right side were exposed in the sham-operated group. Animals of the other groups were subjected to a 2-hour period of right middle cerebral artery occlusion, followed by 24 hours of reperfusion, and then they were sacrificed. Curcumin was administered (ip in a dose of 50mg/kg (low dose group or 100mg/kg (high dose group for 5 days, respectively, prior to arterial occlusion. The pathological changes in neurons and their mitochondria in the cerebral cortex supplied by middle cerebral artery were observed with Nissl staining and electron microscope, respectively. The expressions of UCP2 and MTFA in corresponding cotex were assessed by immunohistochemistry and RT-PCR. Results  Compared with sham-operated group, animals in I/R group presented edema of neurons in the corresponding cortex, reduction in the number of Nissl bodies, and swelling of mitochondria with broken, even lysis of cristae. Low dose and high dose of curcumin pretreatment before brain ischemia significantly alleviated the loss of neurons and the damage of mitochondria, accompanied with an increase in the expression of UCP2 and TFAM (P<0.05, and the changes appeared a dose-dependent manner (P<0.05. Conclusions  Curcumin may prevent neurons from focal cerebral ischemia reperfusion injury by up-regulating UCP2 and MTFA. Regulation of mitochondrial biogenesis may probably be a potential target of curcumin as a neuroprotective drug.

  19. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Schlaak, Boris H; Münchau, Alexander

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1(H...... corticospinal volleys. This paradigm opens up new possibilities to study context-dependent intrahemispheric PMd-to-M1(HAND) interactions in the intact human brain....

  20. Early motor repertoire is related to level of self-mobility in children with cerebral palsy at school age

    NARCIS (Netherlands)

    Bruggink, Janneke L. M.; Cioni, Giovanni; Einspieler, Christa; Maathuis, Carel G. B.; Pascale, Rosa; Bos, Arend F.

    2009-01-01

    Aim To determine the predictive value of the early motor repertoire for the level of self-mobility in children with cerebral palsy (CP) at school age. Method Video recordings were made at 11 to 17 weeks post-term of 37 preterm infants (20 males, 17 females) who later developed CP. The early motor

  1. Oscillatory Beta Activity Mediates Neuroplastic Effects of Motor Cortex Stimulation in Humans

    Science.gov (United States)

    McAllister, Craig J.; Rönnqvist, Kim C.; Stanford, Ian M.; Woodhall, Gavin L.; Furlong, Paul L.; Hall, Stephen D.

    2013-01-01

    Continuous theta burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation protocol that can inhibit human motor cortex (M1) excitability and impair movement for ≤1 h. While offering valuable insights into brain function and potential therapeutic benefits, these neuroplastic effects are highly variable between individuals. The source of this variability, and the electrophysiological mechanisms underlying the inhibitory after-effects, are largely unknown. In this regard, oscillatory activity at beta frequency (15–35 Hz) is of particular interest as it is elevated in motor disorders such as Parkinson’s disease and modulated during the generation of movements. Here, we used a source-level magnetoencephalography approach to investigate the hypothesis that the presence of neuroplastic effects following cTBS is associated with concurrent changes in oscillatory M1 beta activity. M1 cortices were localized with a synthetic aperture magnetometry beamforming analysis of visually cued index finger movements. Virtual electrode analysis was used to reconstruct the spontaneous and movement-related oscillatory activity in bilateral M1 cortices, before and from 10 to 45 min after cTBS. We demonstrate that 40 s of cTBS applied over left M1 reduced corticospinal excitability in the right index finger of 8/16 participants. In these responder participants only, cTBS increased the power of the spontaneous beta oscillations in stimulated M1 and delayed reaction times in the contralateral index finger. No further changes were observed in the latency or power of movement-related beta oscillations. These data provide insights into the electrophysiological mechanisms underlying cTBS-mediated impairment of motor function and demonstrate the association between spontaneous oscillatory beta activity in M1 and the inhibition of motor function. PMID:23637183

  2. Non-stationary Discharge Patterns in Motor Cortex under Subthalamic Nucleus Deep Brain Stimulation: A Review.

    Directory of Open Access Journals (Sweden)

    Sabato eSantaniello

    2012-06-01

    Full Text Available Deep Brain Stimulation (DBS of the subthalamic nucleus (STN directly modulates the basal ganglia, but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine-lesioned rats and facilitation of motor evoked potentials in Parkinson’s disease (PD patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated.In recent studies, we used point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of awake non-human primates during STN DBS. We reported that these features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, which causes a consistent PD-like motor impairment, and that high-frequency DBS (i.e., >100 pulses-per-second [pps] strongly reduces the short-term patterns (3-7ms period both before and after MPTP treatment, while it elicits a consistent short-latency post-stimulus activation. Low-frequency DBS (≤50pps, instead, had negligible effects on the non-stationary features while decreased the burstiness of the spike trains.We evaluate here the impact of the DBS settings on the cortical discharge patterns by using tools from the information theory (receiver operating characteristic curve, information rate, etc. and report that the probability of spiking of the cortical neurons is significantly conditioned on the DBS settings, with such dependency being significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that high-frequency STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the basal ganglia

  3. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    Science.gov (United States)

    Chadderdon, George L; Neymotin, Samuel A; Kerr, Cliff C; Lytton, William W

    2012-01-01

    Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1), no learning (0), or punishment (-1), corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  4. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    Directory of Open Access Journals (Sweden)

    George L Chadderdon

    Full Text Available Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1, no learning (0, or punishment (-1, corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  5. Non-invasive brain stimulation of motor cortex induces embodiment when integrated with virtual reality feedback.

    Science.gov (United States)

    Bassolino, M; Franza, M; Bello Ruiz, J; Pinardi, M; Schmidlin, T;