WorldWideScience

Sample records for cerebral microvascular endothelial

  1. (−-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Jieliang

    2012-07-01

    Full Text Available Abstract Background (−-Epigallocatechin gallate (EGCG is a major polyphenol component of green tea that has antioxidant activities. Lipopolysaccharide (LPS induces inflammatory cytokine production and impairs blood–brain barrier (BBB integrity. We examined the effect of EGCG on LPS-induced expression of the inflammatory cytokines in human cerebral microvascular endothelial cells (hCMECs and BBB permeability. Methods The expression of TNF-α, IL-1β and monocyte chemotactic protein-1 (MCP-1/CCL2 was determined by quantitative real time PCR (qRT-PCR and ELISA. Intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule (VCAM in hCMECs were examined by qRT-PCR and Western blotting. Monocytes that adhered to LPS-stimulated endothelial cells were measured by monocyte adhesion assay. Tight junctional factors were detected by qRT-PCR (Claudin 5 and Occludin and immunofluorescence staining (Claudin 5 and ZO-1. The permeability of the hCMEC monolayer was determined by fluorescence spectrophotometry of transmembrane fluorescin and transendothelial electrical resistance (TEER. NF-kB activation was measured by luciferase assay. Results EGCG significantly suppressed the LPS-induced expression of IL-1β and TNF-α in hCMECs. EGCG also inhibited the expression of MCP-1/CCL2, VCAM-1 and ICAM-1. Functional analysis showed that EGCG induced the expression of tight junction proteins (Occludin and Claudin-5 in hCMECs. Investigation of the mechanism showed that EGCG had the ability to inhibit LPS-mediated NF-κB activation. In addition, 67-kD laminin receptor was involved in the anti-inflammatory effect of EGCG. Conclusions Our results demonstrated that LPS induced inflammatory cytokine production in hCMECs, which could be attenuated by EGCG. These data indicate that EGCG has a therapeutic potential for endotoxin-mediated endothelial inflammation.

  2. LPS Induces Occludin Dysregulation in Cerebral Microvascular Endothelial Cells via MAPK Signaling and Augmenting MMP-2 Levels

    Directory of Open Access Journals (Sweden)

    Lan-hui Qin

    2015-01-01

    Full Text Available Disrupted blood-brain barrier (BBB integrity contributes to cerebral edema during central nervous system infection. The current study explored the mechanism of lipopolysaccharide- (LPS- induced dysregulation of tight junction (TJ proteins. Human cerebral microvascular endothelial cells (hCMEC/D3 were exposed to LPS, SB203580 (p38MAPK inhibitor, or SP600125 (JNK inhibitor, and cell vitality was determined by MTT assay. The proteins expressions of p38MAPK, JNK, and TJs (occludin and zonula occludens- (ZO- 1 were determined by western blot. The mRNA levels of TJ components and MMP-2 were measured with quantitative real-time polymerase chain reaction (qRT-PCR, and MMP-2 protein levels were determined by enzyme-linked immunosorbent assay (ELISA. LPS, SB203580, and SP600125 under respective concentrations of 10, 7.69, or 0.22 µg/mL had no effects on cell vitality. Treatment with LPS decreased mRNA and protein levels of occludin and ZO-1 and enhanced p38MAPK and JNK phosphorylation and MMP-2 expression. These effects were attenuated by pretreatment with SB203580 or SP600125, but not in ZO-1 expression. Both doxycycline hyclate (a total MMP inhibitor and SB-3CT (a specific MMP-2 inhibitor partially attenuated the LPS-induced downregulation of occludin. These data suggest that MMP-2 overexpression and p38MAPK/JNK pathways are involved in the LPS-mediated alterations of occludin in hCMEC/D3; however, ZO-1 levels are not influenced by p38MAPK/JNK.

  3. Apigenin Isolated from the Medicinal Plant Elsholtzia rugulosa Prevents β-Amyloid 25–35-Induces Toxicity in Rat Cerebral Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Qingshan Liu

    2011-05-01

    Full Text Available Endothelial cells of cerebral capillaries forming the blood-brain barrier play an important role in the pathogenesis and therapy of Alzheimer’s disease. Amyloid-β peptides are key pathological elements in the development of this disease. Apigenin (4’,5,7-tetrahydroxyflavone is a plant flavonoid and pharmacologically active agent that can be isolated from several plant species. In the present study, effects of apigenin obtained from the medicinal plant Elsholtzia rugulosa (Labiatae on primary cultured rat cerebral microvascular endothelial cells (CMECs mediated by amyloid-β peptide 25–35 (Aβ25–35 were examined. Aβ25–35 showed toxic effects on CMECs, involving reduction of cell viability, release of lactate dehydrogenase (LDH, increase of nuclear condensation, over-production of intracellular reactive oxygen species (ROS, decrease of superoxide dismutase (SOD activity, and breakage of the barrier integrity and function. Based on this model, we demonstrated that apigenin from the medicinal plant Elsholtzia rugulosa protected cultured rat CMECs by increasing cell viability, reducing LDH release, relieving nuclear condensation, alleviating intracellular ROS generation, increasing SOD activity, and strengthening the barrier integrity through the preservation of transendothelial electrical resistance, permeability property and characteristic enzymatic activity after being exposed to Aβ25–35. In conclusion, apigenin isolated from Elsholtzia rugulosa has the ability to protect rat CMECs against Aβ25–35-induced toxicity.

  4. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+influx through cyclic nucleotide-gated channels.

    Science.gov (United States)

    Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Hell, Stefan W; Ngezahayo, Anaclet

    2017-04-15

    Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A 2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca 2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A 2A and A 2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca 2+ with BAPTA, or the absence of external Ca 2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of

  5. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    Science.gov (United States)

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  7. Shear Stress Inhibits Apoptosis of Ischemic Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xiafeng Shen

    2013-01-01

    Full Text Available As a therapeutic strategy for ischemic stroke, to restore or increase cerebral blood flow (CBF is the most fundamental option. Laminar shear stress (LS, as an important force generated by CBF, mainly acts on brain microvascular endothelial cells (BMECs. In order to study whether LS was a protective factor in stroke, we investigated LS-intervented ischemic apoptosis of rat BMECs (rBMECs through PE Annexin V/7-AAD, JC-1 and Hoechst 33258 staining to observe the membranous, mitochondrial and nuclear dysfunction. Real-time PCR and western blot were also used to test the gene and protein expressions of Tie-2, Bcl-2 and Akt, which were respectively related to maintain membranous, mitochondrial and nuclear norm. The results showed that LS could be a helpful stimulus for ischemic rBMECs survival. Simultaneously, membranous, mitochondrial and nuclear regulation played an important role in this process.

  8. Towards clinical application of microvascular endothelial cell seeding

    NARCIS (Netherlands)

    Arts, C.H.P. (Catharina Henrica Paulina)

    2002-01-01

    The central question in this thesis is whether microvascular endothelial cells (MVEC) from subcutaneous fat tissue are suitable for the seeding of prosthetic vascular grafts and deendothelialized surfaces. The aim of the application of endothelial cells (EC) is the inhibition of thrombogenicity and

  9. Human severe sepsis cytokine mixture increases β2-integrin-dependent polymorphonuclear leukocyte adhesion to cerebral microvascular endothelial cells in vitro.

    Science.gov (United States)

    Blom, Chris; Deller, Brittany L; Fraser, Douglas D; Patterson, Eric K; Martin, Claudio M; Young, Bryan; Liaw, Patricia C; Yazdan-Ashoori, Payam; Ortiz, Angelica; Webb, Brian; Kilmer, Greg; Carter, David E; Cepinskas, Gediminas

    2015-04-07

    Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro. The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)). Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either β2 (CD18), αL/β2 (CD11α/CD18; LFA-1) or αM/β2 (CD11β/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion. Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a β2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE.

  10. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Cai-Guo Yu

    2016-01-01

    Full Text Available Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on “VEGF uncoupling with nitric oxide” and “competitive angiopoietin 1/angiopoietin 2” mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics.

  11. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    Science.gov (United States)

    Yu, Cai-Guo; Zhang, Ning; Yuan, Sha-Sha; Ma, Yan; Yang, Long-Yan; Feng, Ying-Mei; Zhao, Dong

    2016-01-01

    Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on "VEGF uncoupling with nitric oxide" and "competitive angiopoietin 1/angiopoietin 2" mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics.

  12. NAP reduces murine microvascular endothelial cells proliferation induced by hyperglycemia.

    Science.gov (United States)

    D'Amico, Agata Grazia; Scuderi, Soraya; Maugeri, Grazia; Cavallaro, Sebastiano; Drago, Filippo; D'Agata, Velia

    2014-11-01

    Hyperglycemia has been identified as a risk factor responsible for micro- and macrovascular complications in diabetes. NAP (Davunetide) is a peptide whose neuroprotective actions are widely demonstrated, although its biological role on endothelial dysfunctions induced by hyperglycemia remains uninvestigated. In the present study we hypothesized that NAP could play a protective role on hyperglycemia-induced endothelial cell proliferation. To this end we investigated the effects of NAP on an in vitro model of murine microvascular endothelial cells grown in high glucose for 7 days. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and cyclin D1 protein expression analysis revealed that NAP treatment significantly reduces viability and proliferation of the cells. Hyperglycemia induced the activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase and/or phosphatidylinositol-3 kinase/Akt pathways in a time-dependent manner. NAP treatment reduced the phosphorylation levels of ERK and AKT in cells grown in high glucose. These evidences suggest that NAP might be effective in the regulation of endothelial dysfunction induced by hyperglycemia.

  13. In vitro analysis of human periodontal microvascular endothelial cells.

    Science.gov (United States)

    Tsubokawa, Mizuki; Sato, Soh

    2014-08-01

    Endothelial cells (ECs) participate in key aspects of vascular biology, such as maintenance of capillary permeability, initiation of coagulation, and regulation of inflammation. According to previous reports, ECs have revealed highly specific characteristics depending on the organs and tissues. However, some reports have described the characteristics of the capillaries formed by human periodontal ECs. Therefore, the aim of the present study is to examine the functional characteristics of the periodontal microvascular ECs in vitro. Human periodontal ligament-endothelial cells (HPDL-ECs) and human gingiva-endothelial cells (HG-ECs) were isolated by immunoprecipitation with magnetic beads conjugated to a monoclonal anti-CD31 antibody. The isolated HPDL-ECs and HG-ECs were characterized to definitively demonstrate that these cell cultures represented pure ECs. Human umbilical-vein ECs and human dermal microvascular ECs were used for comparison. These cells were compared according to the proliferation potential, the formation of capillary-like tubes, the transendothelial electric resistance (TEER), and the expression of tight junction proteins. HPDL-ECs and HG-ECs with characteristic cobblestone monolayer morphology were obtained, as determined by light microscopy at confluence. Furthermore, the HPDL-ECs and HG-ECs expressed the EC markers platelet endothelial cell adhesion molecule-1 (also known as CD31), von Willebrand factor, and Ulex europaeus agglutinin 1, and the cells stained strongly positive for CD31 and CD309. In addition, the HPDL-ECs and HG-ECs were observed to form capillary-like tubes, and they demonstrated uptake of acetylated low-density lipoprotein. Functional analyses of the HPDL-ECs and HG-ECs showed that, compared to the control cells, tube formation persisted for only a brief period of time, and TEER was substantially reduced at confluence. Furthermore, the cells exhibited delocalization of zonula occludens-1 and occludin at cell-cell contact sites

  14. Rescue of Brain Function Using Tunneling Nanotubes Between Neural Stem Cells and Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Wang, Xiaoqing; Yu, Xiaowen; Xie, Chong; Tan, Zijian; Tian, Qi; Zhu, Desheng; Liu, Mingyuan; Guan, Yangtai

    2016-05-01

    Evidence indicates that neural stem cells (NSCs) can ameliorate cerebral ischemia in animal models. In this study, we investigated the mechanism underlying one of the neuroprotective effects of NSCs: tunneling nanotube (TNT) formation. We addressed whether the control of cell-to-cell communication processes between NSCs and brain microvascular endothelial cells (BMECs) and, particularly, the control of TNT formation could influence the rescue function of stem cells. In an attempt to mimic the cellular microenvironment in vitro, a co-culture system consisting of terminally differentiated BMECs from mice in a distressed state and NSCs was constructed. Additionally, engraftment experiments with infarcted mouse brains revealed that control of TNT formation influenced the effects of stem cell transplantation in vivo. In conclusion, our findings provide the first evidence that TNTs exist between NSCs and BMECs and that regulation of TNT formation alters cell function.

  15. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria.

    Directory of Open Access Journals (Sweden)

    Brandi D Freeman

    2016-03-01

    Full Text Available Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria.

  16. In vivo transluminal microvascular endothelial cell seeding on balloon injured rabbit arteries.

    NARCIS (Netherlands)

    Arts, C.H.; Groot, P.G. de; Attevelt, N.; Heijnen-Snyder, G.J.; Verhagen, H.J.; Eikelboom, B.C.; Blankensteijn, J.D.

    2004-01-01

    AIM: Seeding venous endothelial cells (EC) onto damaged vascular surfaces attenuates the development of intimal hyperplasia. Unlike venous EC, fat derived microvascular endothelial cells (MVEC) do not require a culture step to increase the yield. The authors investigated whether fat derived MVEC are

  17. The effects of anti-obesity intervention with orlistat and sibutramine on microvascular endothelial function.

    Science.gov (United States)

    Al-Tahami, Belqes Abdullah Mohammad; Ismail, Ab Aziz Al-Safi; Bee, Yvonne Tee Get; Awang, Siti Azima; Salha Wan Abdul Rani, Wan Rimei; Sanip, Zulkefli; Rasool, Aida Hanum Ghulam

    2015-01-01

    Obesity is associated with impaired microvascular endothelial function. We aimed to determine the effects of orlistat and sibutramine treatment on microvascular endothelial function, anthropometric and lipid profile, blood pressure (BP), and heart rate (HR). 76 subjects were recruited and randomized to receive orlistat 120 mg three times daily or sibutramine 10 mg daily for 9 months. Baseline weight, BMI, BP, HR and lipid profile were taken. Microvascular endothelial function was assessed using laser Doppler fluximetry and iontophoresis process. Maximum change (max), percent change (% change) and peak flux (peak) in perfusion to acetylcholine (ACh) and sodium nitroprusside (SNP) iontophoresis were used to quantify endothelium dependent and independent vasodilatations. 24 subjects in both groups completed the trial. After treatment, weight and BMI were decreased for both groups. AChmax, ACh % change and ACh peak were increased in orlistat-treated group but no difference was observed for sibutramine-treated group. BP and total cholesterol (TC) were reduced for orlistat-treated group. HR was reduced for orlistat-treated group but was increased in sibutramine-treated group. 9 months treatment with orlistat significantly improved microvascular endothelial function. This was associated with reductions in weight, BMI, BP, HR, TC and low density lipoprotein cholesterol. No effect was seen in microvascular endothelial function with sibutramine.

  18. The effects of Secondhand Smoke (SHS) exposure on microvascular endothelial function among healthy women.

    Science.gov (United States)

    Sanip, Zulkefli; Hanaffi, Siti Hajar Mohd; Ahmad, Imran; Yusoff, Siti Suhaila Mohd; Rasool, Aida Hanum Ghulam; Yusoff, Harmy Mohamed

    2015-01-01

    Studies have demonstrated that secondhand smoke (SHS) exposure could impair endothelial function. However, the effect of SHS exposure specifically on microvascular endothelial function is not well understood. This study aimed to determine the effects of SHS exposure on microvascular endothelial function among non-smoking, generally healthy women. We studied 127 women; and based on their hair nicotine levels measured using gas chromatography-mass spectrometry, 25 of them were categorized as having higher hair nicotine levels, 25 were grouped as having lower hair nicotine and 77 women were grouped into the non-detected group. The non-detected group did not have detectable levels of hair nicotine. Anthropometry, blood pressure (BP), lipid profile and high-sensitivity C-reactive protein (hsCRP) were measured accordingly. Microvascular endothelial function was assessed non-invasively using laser Doppler fluximetry and the process of iontophoresis involving acetylcholine and sodium nitroprusside as endothelium-dependent and endothelium-independent vasodilators respectively. The mean hair nicotine levels for higher and lower hair nicotine groups were 0.74 (1.04) and 0.05 (0.01) ng/mg respectively. There were no significant differences in anthropometry, BP, lipid profile and hsCRP between these groups. There were also no significant differences in the microvascular perfusion and endothelial function between these groups. In this study, generally healthy non-smoking women who have higher, lower and non-detected hair nicotine levels did not show significant differences in their microvascular endothelial function. Low levels of SHS exposure among generally healthy non-smoking women may not significantly impair their microvascular endothelial function.

  19. Microvascular endothelial function and cognitive performance: The ELSA-Brasil cohort study.

    Science.gov (United States)

    Brant, Luisa; Bos, Daniel; Araujo, Larissa Fortunato; Ikram, M Arfan; Ribeiro, Antonio Lp; Barreto, Sandhi M

    2018-02-01

    Impaired microvascular endothelial function may be implicated in the etiology of cognitive decline. Yet, current data on this association are inconsistent. Our objective is to investigate the relation of microvascular endothelial function to cognitive performance in the ELSA-Brasil cohort study. A total of 1521 participants from ELSA-Brasil free of dementia underwent peripheral arterial tonometry (PAT) to quantify microvascular endothelial function (PAT-ratio and mean baseline pulse amplitude (BPA)) and cognitive tests that covered the domains of memory, verbal fluency, and executive function at baseline. Cognitive tests in participants aged 55 years old and above were repeated during the second examination (mean follow-up: 3.5 (0.3) years). Linear regression and generalized linear models were used to evaluate the association between endothelial function, global cognitive performance, and performance on specific cognitive domains. In unadjusted cross-sectional analyses, we found that BPA and PAT-ratio were associated with worse global cognitive performance (mean difference for BPA: -0.07, 95% CI: -0.11; -0.03, p<0.01; mean difference for PAT-ratio: 0.11, 95% CI: 0.01; 0.20, p=0.02), worse performance on learning, recall, and word recognition tests (BPA: -0.87, 95% CI: -1.21; -0.52, p<0.01; PAT-ratio: 1.58, 95% CI: 0.80; 2.36, p<0.01), and only BPA was associated with worse performance in verbal fluency tests (-0.70, 95% CI: -1.19; -0.21, p<0.01). Adjustments for age, sex, and level of education rendered the associations statistically non-significant. Longitudinally, there was no association between microvascular endothelial and cognitive functions. The associations between microvascular endothelial function and cognition are explained by age, sex, and educational level. Measures of microvascular endothelial function may be of limited value with regard to preclinical cognitive deficits.

  20. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1–40-induced toxicity

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2015-01-01

    Full Text Available Amyloid beta-peptides (Aβ are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40 were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.

  1. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion.

    Directory of Open Access Journals (Sweden)

    Dae Hyun Lee

    Full Text Available Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals. Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion and perfused boundary region (PBR, a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43-2.86 µm, was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: -0.034; 95% confidence interval: -0.037 to -0.031. We conclude that microvascular beds with a thick ("healthy" glycocalyx (low PBR, reflects efficient perfusion of the microvascular bed. In contrast, a thin ("risk" glycocalyx (high PBR is associated with a less efficient and defective microvascular perfusion.

  2. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  3. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Science.gov (United States)

    Scioli, Maria Giovanna; Lo Giudice, Pietro; Bielli, Alessandra; Tarallo, Valeria; De Rosa, Alfonso; De Falco, Sandro; Orlandi, Augusto

    2015-01-01

    Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and pharmacological

  4. Nitrobenzylthioinosine (NBT), a nucleoside transport inhibitor, protects against Shiga toxin cytotoxicity in human microvascular endothelial cells.

    Science.gov (United States)

    Ohmi, K; Kiyokawa, N; Sekino, T; Suzuki, T; Mimori, K; Taguchi, T; Nakajima, H; Katagiri, Y U; Fujimoto, J; Nakao, H; Takeda, T

    2001-01-01

    Infections with Shiga toxin (Stx)-producing Escherichia coli (STEC) cause microvascular endothelial cell damage, resulting in hemorrhagic colitis and hemolytic uremic syndrome. The prevention of endothelial cell damage is therefore a crucial step in overcoming this disorder. Here, we report that nitrobenzylthioinosine (NBT), a nucleoside transport inhibitor, has a protective effect against the cytotoxicity of Stxs in human microvascular endothelial cells (HMVECs). The relative viability of cells treated with 1.5-15 pM of Stx1 was reduced to 10-20% of that without Stx1. However, the viability of cells treated with NBT (10-100 microM) remained higher than 80%, even in the presence of Stx1. NBT also protected against Stx1 cytotoxicity in sodium butyrate-treated hypersensitive HMVECs. The protective effect of NBT against Stx cytotoxicity may be due to the depletion of ATP in the cells, thereby inhibiting the entry of Stx1.

  5. Evaluating the involvement of cerebral microvascular endothelial Na+/K+-ATPase and Na+-K+-2Cl- co-transporter in electrolyte fluxes in an in vitro blood-brain barrier model of dehydration

    DEFF Research Database (Denmark)

    Lykke, Kasper; Assentoft, Mette; Hørlyck, Sofie

    2018-01-01

    The blood-brain barrier (BBB) is involved in brain water and salt homeostasis. Blood osmolarity increases during dehydration and water is osmotically extracted from the brain. The loss of water is less than expected from pure osmotic forces, due to brain electrolyte accumulation. Although...... dehydration, we employed a tight in vitro co-culture BBB model with primary cultures of brain endothelial cells and astrocytes. The Na+/K+-ATPase and the NKCC1 were both functionally dominant in the abluminal membrane. Exposure of the in vitro BBB model to conditions mimicking systemic dehydration, i...... isozymes. Abluminally expressed endothelial Na+/K+-ATPase, and not NKCC1, may therefore counteract osmotic brain water loss during systemic dehydration by promoting brain Na+ accumulation....

  6. Pathways for insulin access to the brain: the role of the microvascular endothelial cell.

    Science.gov (United States)

    Meijer, Rick I; Gray, Sarah M; Aylor, Kevin W; Barrett, Eugene J

    2016-11-01

    Insulin affects multiple important central nervous system (CNS) functions including memory and appetite, yet the pathway(s) by which insulin reaches brain interstitial fluid (bISF) has not been clarified. Recent studies demonstrate that to reach bISF, subarachnoid cerebrospinal fluid (CSF) courses through the Virchow-Robin space (VRS) which sheaths penetrating pial vessels down to the capillary level. Whether insulin predominantly enters the VRS and bISF by local transport through the blood-brain barrier, or by being secreted into the CSF by the choroid plexus, is unknown. We injected 125 I-TyrA14-insulin or regular insulin intravenously and compared the rates of insulin reaching subarachnoid CSF with its plasma clearance by brain tissue samples (an index of microvascular endothelial cell binding/uptake/transport). The latter process was more than 40-fold more rapid. We then showed that selective insulin receptor blockade or 4 wk of high-fat feeding each inhibited microvascular brain 125 I-TyrA14-insulin clearance. We further confirmed that 125 I-TyrA14-insulin was internalized by brain microvascular endothelial cells, indicating that the in vivo tissue association reflected cellular transport, not simply microvascular tracer binding. Copyright © 2016 the American Physiological Society.

  7. Microvascular endothelial dysfunction is associated with albuminuria and CKD in older adults.

    Science.gov (United States)

    Seliger, Stephen L; Salimi, Shabnam; Pierre, Valerie; Giffuni, Jamie; Katzel, Leslie; Parsa, Afshin

    2016-07-13

    Impairment in glomerular endothelial function likely plays a major role in the development of albuminuria and CKD progression. Glomerular endothelial dysfunction may reflect systemic microvascular dysfunction, accounting in part for the greater cardiovascular risk in patients with albuminuria. Prior studies of vascular function in CKD have focused on conduit artery function or those with ESRD, and have not examined microvascular endothelial function with albuminuria. We conducted a cross-sectional study among older hypertensive male veterans with stage 1-4 CKD, and hypertensive controls without CKD. Microvascular function was quantified by two distinct Laser-Doppler flowmetry (LDF) measures: peak responses to 1) post-occlusive reactive hyperemia (PORH) and 2) thermal hyperemia (TH), measured on forearm skin. Associations of each LDF measure with albuminuria, eGFR, and CKD status were estimated using correlation coefficients and multiple linear regression, accounting for potential confounders. Among 66 participants (mean age 69.2 years), 36 had CKD (mean eGFR 46.1 cc/min/1.73 m(2); 30.6 % with overt albuminuria). LDF responses to PORH and TH were 43 and 39 % significantly lower in multivariate analyses among those with macroalbuminuria compared to normoalbuminuria, (β= - 0.42, p = 0.009 and β= -0.37, p = 0.01, respectively). Those with CKD had a 23.9 % lower response to PORH compared to controls (p = 0.02 after adjustment). In contrast, TH responses did not differ between those with and without CKD. Microvascular endothelial function was strongly associated with greater albuminuria and CKD, independent of diabetes and blood pressure. These findings may explain in part the excess systemic cardiovascular risk associated with albuminuria and CKD.

  8. Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo.

    Science.gov (United States)

    Gill, Sean E; Rohan, Marta; Mehta, Sanjay

    2015-09-16

    Sepsis remains a common and serious condition with significant morbidity and mortality due to multiple organ dysfunction, especially acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Sepsis-induced ALI is characterized by injury and dysfunction of the pulmonary microvasculature and pulmonary microvascular endothelial cells (PMVEC), resulting in enhanced pulmonary microvascular sequestration and pulmonary infiltration of polymorphonuclear leukocytes (PMN) as well as disruption of the normal alveolo-capillary permeability barrier with leak of albumin-rich edema fluid into pulmonary interstitium and alveoli. The role of PMVEC death and specifically apoptosis in septic pulmonary microvascular dysfunction in vivo has not been established. In a murine cecal ligation/perforation (CLP) model of sepsis, we quantified and correlated time-dependent changes in pulmonary microvascular Evans blue (EB)-labeled albumin permeability with (1) PMVEC death (propidium iodide [PI]-staining) by both fluorescent intravital videomicroscopy (IVVM) and histology, and (2) PMVEC apoptosis using histologic fluorescent microscopic assessment of a panel of 3 markers: cell surface phosphatidylserine (detected by Annexin V binding), caspase activation (detected by FLIVO labeling), and DNA fragmentation (TUNEL labeling). Compared to sham mice, CLP-sepsis resulted in pulmonary microvascular barrier dysfunction, quantified by increased EB-albumin leak, and PMVEC death (PI+ staining) as early as 2 h and more marked by 4 h after CLP. Septic PMVEC also exhibited increased presence of all 3 markers of apoptosis (Annexin V+, FLIVO+, TUNEL+) as early as 30 mins--1 h after CLP-sepsis, which all similarly increased markedly until 4 h. The time-dependent changes in septic pulmonary microvascular albumin-permeability barrier dysfunction were highly correlated with PMVEC death (PI+; r = 0.976, p pulmonary microvascular dysfunction, including both albumin-permeability barrier dysfunction and

  9. Biomarkers of microvascular endothelial dysfunction predict incident dementia: a population-based prospective study.

    Science.gov (United States)

    Holm, H; Nägga, K; Nilsson, E D; Ricci, F; Melander, O; Hansson, O; Bachus, E; Magnusson, M; Fedorowski, A

    2017-07-01

    Cerebral endothelial dysfunction occurs in a spectrum of neurodegenerative diseases. Whether biomarkers of microvascular endothelial dysfunction can predict dementia is largely unknown. We explored the longitudinal association of midregional pro-atrial natriuretic peptide (MR-proANP), C-terminal endothelin-1 (CT-proET-1) and midregional proadrenomedullin (MR-proADM) with dementia and subtypes amongst community-dwelling older adults. A population-based cohort of 5347 individuals (men, 70%; age, 69 ± 6 years) without prevalent dementia provided plasma for determination of MR-proANP, CT-proET-1 and MR-proADM. Three-hundred-and-seventy-three patients (7%) were diagnosed with dementia (120 Alzheimer's disease, 83 vascular, 102 mixed, and 68 other aetiology) over a period of 4.6 ± 1.3 years. Relations between baseline biomarker plasma concentrations and incident dementia were assessed using multivariable Cox regression analysis. Higher levels of MR-proANP were significantly associated with increased risk of all-cause and vascular dementia (hazard ratio [HR] per 1 SD: 1.20, 95% confidence interval [CI], 1.07-1.36; P = 0.002, and 1.52; 1.21-1.89; P dementia increased across the quartiles of MR-proANP (p for linear trend = 0.004; Q4, 145-1681 pmol L -1 vs. Q1, 22-77 pmol L -1 : HR: 1.83; 95%CI: 1.23-2.71) and was most pronounced for vascular type (p for linear trend = 0.005: HR: 2.71; 95%CI: 1.14-6.46). Moreover, the two highest quartiles of CT-proET-1 predicted vascular dementia with a cut-off value at 68 pmol L -1 (Q3-Q4, 68-432 pmol L -1 vs. Q1-Q2,4-68 pmol L -1 ; HR: 1.94; 95%CI: 1.12-3.36). Elevated levels of MR-proADM indicated no increased risk of developing dementia after adjustment for traditional risk factors. Elevated plasma concentration of MR-proANP is an independent predictor of all-cause and vascular dementia. Pronounced increase in CT-proET-1 indicates higher risk of vascular dementia. © 2017 The Association for the Publication of the

  10. Human growth hormone stimulates proliferation of human retinal microvascular endothelial cells in vitro

    International Nuclear Information System (INIS)

    Rymaszewski, Z.; Cohen, R.M.; Chomczynski, P.

    1991-01-01

    Growth hormone (GH) has been implicated in the pathogenesis of proliferative diabetic retinopathy. The authors sought to determine whether this could be mediated by an effect of GH on proliferation of endothelial cells, and, for this purpose, established long-term cultures of human retinal microvascular endothelial cells (hREC) from normal postmortem human eyes. High-purity hREC preparations were selected for experiments, based on immunogluorescence with acetylated low density lipoprotein (LDL) and anti-factor VIII-related antigen. Growth requirements for these cells were complex, including serum for maintenance at slow growth rates and additional mitogens for more rapid proliferation. Exposure of hREC to physiologic doses of human GH (hGH) resulted in 100% greater cell number vs. control but could be elicited only in the presence of serum. When differing serum conditions were compared, hGH stimulated [ 3 H]thymidine incorporation up to 1.6- to 2.2-fold under each condition and increased DNA content significantly in the presence of human, horse, and fetal calf serum. In summary, hREC respond to physiologic concentrations of hGH in vitro with enhanced proliferation. This specific effect of GH on retinal microvascular endothelial cells supports the hypothesis of role for GH in endothelial cell biology

  11. Interleukin 6-Mediated Endothelial Barrier Disturbances Can Be Attenuated by Blockade of the IL6 Receptor Expressed in Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Blecharz-Lang, Kinga G; Wagner, Josephin; Fries, Alexa; Nieminen-Kelhä, Melina; Rösner, Jörg; Schneider, Ulf C; Vajkoczy, Peter

    2018-02-10

    Compromised blood-brain barrier (BBB) by dysregulation of cellular junctions is a hallmark of many cerebrovascular disorders due to the pro-inflammatory cytokines action. Interleukin 6 (IL6) is implicated in inflammatory processes and in secondary brain injury after subarachnoid hemorrhage (SAH) but its role in the maintenance of cerebral endothelium still requires a precise elucidation. Although IL6 has been shown to exert pro-inflammatory action on brain microvascular endothelial cells (ECs), the expression of one of the IL6 receptors, the IL6R is controversially discussed. In attempt to reach more clarity in this issue, we present here an evident baseline expression of the IL6R in BBB endothelium in vivo and in an in vitro model of the BBB, the cEND cell line. A significantly increased expression of IL6R and its ligand was observed in BBB capillaries 2 days after experimental SAH in mice. In vitro, we saw IL6 administration resulting in an intracellular and extracellular elevation of IL6 protein, which was accompanied by a reduced expression of tight and adherens junctions, claudin-5, occludin, and vascular-endothelial (VE-) cadherin. By functional assays, we could demonstrate IL6-incubated brain ECs to lose their endothelial integrity that can be attenuated by inhibiting the IL6R. Blockade of the IL6R by a neutralizing antibody has reconstituted the intercellular junction expression to the control level and caused a restoration of the transendothelial electrical resistance of the cEND cell monolayer. Our findings add depth to the current understanding of the involvement of the endothelial IL6R in the loss of EC integrity implicating potential therapy options.

  12. Uptake of Single-Walled Carbon Nanotubes Conjugated with DNA by Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Harvey

    2012-01-01

    Full Text Available Single-walled carbon nanotubes (SWCNTs have been proposed to have great therapeutic potential. SWCNTs conjugated with drugs or genes travel in the systemic circulation to reach target cells or tissues following extravasation from microvessels although the interaction between SWCNT conjugates and the microvascular endothelial cells (ECs remains unknown. We hypothesized that SWCNT-DNA conjugates would be taken up by microvascular ECs and that this process would be facilitated by SWCNTs compared to facilitation by DNA alone. ECs were treated with various concentrations of SWCNT-DNA-FITC conjugates, and the uptake and intracellular distribution of these conjugates were determined by a confocal microscope imaging system followed by quantitative analysis of fluorescence intensity. The uptake of SWCNT-DNA-FITC conjugates (2 μg/mL by microvascular ECs was significantly greater than that of DNA-FITC (2 μg/mL, observed at 6 hrs after treatment. For the intracellular distribution, SWCNT-DNA-FITC conjugates were detected in the nucleus of ECs, while DNA-FITC was restricted to the cytoplasm. The fluorescence intensity and distribution of SWCNTs were concentration and time independent. The findings demonstrate that SWCNTs facilitate DNA delivery into microvascular ECs, thus suggesting that SWCNTs serving as drug and gene vehicles have therapeutic potential.

  13. Dynamic cerebral autoregulatory capacity is affected early in Type 2 diabetes

    DEFF Research Database (Denmark)

    Kim, Y.S.; Immink, R.V.; Stok, W.J.

    2008-01-01

    Type 2 diabetes is associated with an increased risk of endothelial dysfunction and microvascular complications with impaired autoregulation of tissue perfusion. Both microvascular disease and cardiovascular autonomic neuropathy may affect cerebral autoregulation. In the present study, we tested ...

  14. Ultrastructural and Temporal Changes of the Microvascular Basement Membrane and Astrocyte Interface Following Focal Cerebral Ischemia

    Science.gov (United States)

    Kwon, Il; Kim, Eun Hee; del Zoppo, Gregory J.; Heo, Ji Hoe

    2009-01-01

    Microvascular integrity is lost during cerebral ischemia. Detachment of the microvascular basement membrane (BM) from the astrocyte, as well as degradation of the BM, is responsible for the loss of microvascular integrity. However, their ultrastructural and temporal changes during cerebral ischemia are not well known. Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO) for 1, 4, 8, 12, 16, 20, and 48 hr. By using transmission electron microscopy, the proportion of intact BM–astrocyte contacts and electron densities of the BM were measured from five randomly selected microvessels in the ischemic basal ganglia. Their temporal changes and associations with activities of the matrix metalloproteinases (MMPs) were investigated. The intact portion of the BM–astrocyte contacts was decreased significantly within 4 hr and was rarely observed at 48 hr after MCAO. Decreases in the electron density and degradation of the BM were significant 12 hr after MCAO. The intact BM–astrocyte contacts and the mean BM density showed a significant positive correlation (r = 0.784, P < 0.001). MMP-9 activity was correlated negatively with the intact BM–astrocyte contacts (r = −0.711, P < 0.001) and with the BM density (r = −0.538, P 5 0.0016). The increase in MMP-9 coincided temporally with the loss of the BM–astrocyte contacts and a decrease in the BM density. Ultrastructural alterations occurring in the microvascular BM and its contacts with astrocyte endfeet were temporally associated in cerebral ischemia. Time courses of their alterations should be considered in the treatment targeted to the microvascular BM and its contact with astrocytes. PMID:18831008

  15. Interendothelial claudin-5 expression depends on cerebral endothelial cell–matrix adhesion by β1-integrins

    Science.gov (United States)

    Osada, Takashi; Gu, Yu-Huan; Kanazawa, Masato; Tsubota, Yoshiaki; Hawkins, Brian T; Spatz, Maria; Milner, Richard; del Zoppo, Gregory J

    2011-01-01

    The hypothesis tested by these studies states that in addition to interendothelial cell tight junction proteins, matrix adhesion by β1-integrin receptors expressed by endothelial cells have an important role in maintaining the cerebral microvessel permeability barrier. Primary brain endothelial cells from C57 BL/6 mice were incubated with β1-integrin function-blocking antibody (Ha2/5) or isotype control and the impacts on claudin-5 expression and microvessel permeability were quantified. Both flow cytometry and immunofluorescence studies demonstrated that the interendothelial claudin-5 expression by confluent endothelial cells was significantly decreased in a time-dependent manner by Ha2/5 exposure relative to isotype. Furthermore, to assess the barrier properties, transendothelial electrical resistance and permeability measurements of the monolayer, and stereotaxic injection into the striatum of mice were performed. Ha2/5 incubation reduced the resistance of endothelial cell monolayers significantly, and significantly increased permeability to 40 and 150 kDa dextrans. Ha2/5 injection into mouse striatum produced significantly greater IgG extravasation than the isotype or the control injections. This study demonstrates that blockade of β1-integrin function changes interendothelial claudin-5 expression and increases microvessel permeability. Hence, endothelial cell–matrix interactions via β1-integrin directly affect interendothelial cell tight junction claudin-5 expression and brain microvascular permeability. PMID:21772312

  16. Human microvascular endothelial cell seeding on Cr-DLC thin films for heart valve applications

    Science.gov (United States)

    Ali, N.; Kousar, Y.; Gracio, J.; Titus, E.; Okpalugo, T. I.; Singh, V.; Pease, M.; Ogwu, A. A.; Meletis, E. I.; Ahmed, W.; Jackson, M. J.

    2006-04-01

    In this investigation, Cr-modified diamond-like carbon (Cr-DLC) films were studied for potential applications in mechanical heart valves. Three Cr-DLC samples were prepared using a magnetron sputtering technique employing an intensified plasma-assisted processing (IPAP) system. The three samples consisted of the following Cr contents: 1, 5, and 10 at.%. The biological response of human microvascular endothelial cells (HMV-EC), seeded on Cr-DLC films, was evaluated in terms of initial cell attachment and growth. The Cr-DLC films were characterized using Raman spectroscopy, x-ray diffraction, scanning electron microscopy, secondary ion mass spectroscopy, and by the contact angle technique. Endothelial cell adhesion and growth were found to be affected by changing the Cr content of Cr-DLC films.

  17. Characterization of immortalized human dermal microvascular endothelial cells (HMEC-1) for the study of HDL functionality.

    Science.gov (United States)

    Muñoz-Vega, Mónica; Massó, Felipe; Páez, Araceli; Carreón-Torres, Elizabeth; Cabrera-Fuentes, Hector A; Fragoso, José Manuel; Pérez-Hernández, Nonanzit; Martinez, Laurent O; Najib, Souad; Vargas-Alarcón, Gilberto; Pérez-Méndez, Óscar

    2018-03-09

    Primary cultures endothelial cells have been used as models of endothelial related diseases such atherosclerosis. Biological behavior of primary cultures is donor-dependent and data could not be easily reproducible; endothelial cell lines are emerging options, particularly, human dermal microvascular endothelial cells (HMEC-1), that should be validated to substitute primary cultures for the study of HDL functions. Morphology, size and granularity of cells were assessed by phase contrast microscopy and flow cytometry of HMEC-1. The adhesion molecules, ICAM-1and VCAM-1 after TNF-α stimulation, and endothelial markers CD105 endoglin, as well as HDL receptor SR-BI were determined by flow cytometry. Internalization of HDL protein was demonstrated by confocal microscopy using HDL labeled with Alexa Fluor 488. HUVECs were used as reference to compared the characteristics with HMEC-1. HMEC-1 and HUVEC had similar morphologies, size and granularity. HMEC-1 expressed endothelial markers as HUVECs, as well as functional SR-B1 receptor since the cell line was able to internalize HDL particles. HMEC-1 effectively increased ICAM-1 and VCAM-1 expression after TNF-α stimulation. HUVECs showed more sensibility to TNF-α stimulus but the range of ICAM-1 and VCAM-1 expression was less homogeneous than in HMEC-1, probably due to biological variation of the former. Finally, the expression of adhesion molecules in HMEC-1 was attenuated by co-incubation with HDL. HMEC-1 possess characteristics of endothelial cells, similar to HUVECs, being a cell line suitable to evaluate the functionality of HDL vis-à-vis the endothelium.

  18. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    Directory of Open Access Journals (Sweden)

    DeFilippis Kelly

    2007-09-01

    Full Text Available Abstract The deposition of amyloid β-protein (Aβ in cerebral vasculature, known as cerebral amyloid angiopathy (CAA, is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β precursor protein transgenic mice harboring two CAA Aβ mutations (Dutch E693Q and Iowa D694N that mimic the prevalent cerebral microvascular Aβ deposition observed in those patients, and the Swedish mutations (K670N/M671L to increase Aβ production. In these Tg-SwDI mice, we have reported predominant fibrillar Aβ along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular Aβ in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular Aβ. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus, C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular Aβ deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular Aβ deposition that is

  19. Clinical reference value of retinal microvascular changes in patients with cerebral microbleeds

    Directory of Open Access Journals (Sweden)

    Ji-Yuan Guo

    2014-12-01

    Full Text Available AIM: To study clinical reference value of retinal microvascular changes in patients with cerebral microbleeds(CMBsand discuss its clinical significance. METHODS:From January 2012 to December 2013, 125 hospitalized patients were collected, including 81 cases were male, 44 cases were female, mean age 76.3±11.2 years old. For all patients, functions of liver and kidney, blood-lipoids, blood sugar and blood biochemical examination were tested, and fundus photography and cerebral MR was done. According to the fundus camera eyes, retinal arteriolar equivalent(RAE, retinal venular equivalent(RVE, retinal vein diameter ratio(AVRand arteriovenous crossing sign(AVNwere identified, CMBs were classified with cerebral MRI. All the data were processed by SPSS statistical software. RESULTS: The central retinal arteriolar equivalent(CRAE, central retinal venular equivalent(CRVEand AVR values in the eyes were found no statistical difference(PPCOCLUSION: The results show that retinal microvascular changes, especially small retinal vein arteriovenous cross width, and arteriovenous crossing phenomenon, in which CMBs will happen more likely. After sex, age, hypertension and hyperglycemia in patients with traditional cardiovascular risk factors being ruled out, the retinal microvascular changes are still relatively factors of CMB's occurrence.

  20. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Directory of Open Access Journals (Sweden)

    Michelle P. Papa

    2017-12-01

    Full Text Available Zika virus (ZIKV has been associated to central nervous system (CNS harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs, as an in vitro model of blood brain barrier (BBB, and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243, which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways.

  1. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    International Nuclear Information System (INIS)

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo; Endo, Yuko; Dang, Nam H.; Morimoto, Chikao

    2010-01-01

    Research highlights: → TNF-α or IL-1β induces EC proliferation with reduction of CD26 expression. → CD26 siRNA or DPP-4 inhibition enhances TNF-α or IL-1β-induced EC proliferation. → Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-α or IL-1β. → Capillary formation induced by TNF-α or IL-1β is enahced in the CD26 -/- mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  2. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Takasawa, Wataru [Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Ohnuma, Kei [Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Hatano, Ryo; Endo, Yuko [Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road, Box 100278, Room MSB M410A, Gainesville, FL 32610 (United States); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Department of Rheumatology and Allergy, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  3. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Science.gov (United States)

    Papa, Michelle P.; Meuren, Lana M.; Coelho, Sharton V. A.; Lucas, Carolina G. de Oliveira; Mustafá, Yasmin M.; Lemos Matassoli, Flavio; Silveira, Paola P.; Frost, Paula S.; Pezzuto, Paula; Ribeiro, Milene R.; Tanuri, Amilcar; Nogueira, Mauricio L.; Campanati, Loraine; Bozza, Marcelo T.; Paula Neto, Heitor A.; Pimentel-Coelho, Pedro M.; Figueiredo, Claudia P.; de Aguiar, Renato S.; de Arruda, Luciana B.

    2017-01-01

    Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways. PMID:29312238

  4. Focal Cerebral Ischemia Induces Active Proteases That Degrade Microvascular Matrix

    Science.gov (United States)

    Fukuda, Shunichi; Fini, Catherine A.; Mabuchi, Takuma; Koziol, James A.; Eggleston, Leonard L.; del Zoppo, Gregory J.

    2010-01-01

    Background and Purpose Focal cerebral ischemia causes microvessel matrix degradation and generates proteases known to degrade this matrix. However, proof that the proteases generated do indeed degrade vascular matrix is lacking. Here we demonstrate that active proteases derived from ischemic tissue after middle cerebral artery occlusion (MCAO) and transferred to normal tissue can degrade vascular matrix. Methods In an ex vivo bioassay, the effects of supernatants from ischemic and normal basal ganglia of nonhuman primates, proteases, and control buffer on the immunoreactivity of vascular matrix constituents in normal brain tissue sections were quantified. Protease families were identified with specific inhibitors. Results Plasmin, active matrix metalloproteinase (MMP)-2, and active MMP-9 significantly reduced microvessel-associated collagen, laminin, and heparan sulfate proteoglycans (HSPG). The vascular HSPG perlecan was more sensitive than collagen or laminin in the bioassay and in the ischemic core 2 hours after MCAO. Two-hour and 7-day ischemic tissue samples significantly degraded matrix perlecan and collagen. Inhibitor studies confirmed that while active MMPs were generated, active cysteine proteases significantly degraded microvessel perlecan. The cysteine proteases cathepsins B and L were generated in the microvasculature and adjacent neurons or glial cells 2 hours after MCAO and decreased perlecan in the bioassay. Conclusions This is the first direct evidence that active proteases are generated in ischemic cerebral tissues that are acutely responsible for vascular matrix degradation. Degradation of vascular perlecan, the most sensitive matrix component thus far identified, may be due to cathepsins B and L, generated very rapidly after MCAO. PMID:15001799

  5. Human liver endothelial cells, but not macrovascular or microvascular endothelial cells, engraft in the mouse liver

    NARCIS (Netherlands)

    Filali, Ebtisam El; Hiralall, Johan K.; van Veen, Henk A.; Stolz, Donna B.; Seppen, Jurgen

    2013-01-01

    Liver cell transplantation has had limited clinical success so far, partly due to poor engraftment of hepatocytes. Instead of hepatocytes. other cell types, such as endothelial cells, could be used in ex vivo liver gene therapy. The goal of the present study was to compare the grafting and

  6. Application of a clinical grade CD34-mediated method for the enrichment of microvascular endothelial cells from fat tissue.

    NARCIS (Netherlands)

    Arts, C.H.; Groot, Patricia de; Heijnen-Snyder, GJ; Blankensteijn, J.D.; Eikelboom, B.C.; Slaper-Cortenbach, I.C.M.

    2004-01-01

    BACKGROUND: Microvascular endothelial cells (MVEC) derived from s.c. fat are seeded on vascular grafts to prevent early occlusion. We have demonstrated the presence of contaminating cells contributing to MVEC seeding-related intimal hyperplasia in MVEC isolates from fat tissue. We found that cell

  7. Action of shiga toxin type-2 and subtilase cytotoxin on human microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    María M Amaral

    Full Text Available The hemolytic uremic syndrome (HUS associated with diarrhea is a complication of Shiga toxin (Stx-producing Escherichia coli (STEC infection. In Argentina, HUS is endemic and responsible for acute and chronic renal failure in children younger than 5 years old. The human kidney is the most affected organ due to the presence of very Stx-sensitive cells, such as microvascular endothelial cells. Recently, Subtilase cytotoxin (SubAB was proposed as a new toxin that may contribute to HUS pathogenesis, although its action on human glomerular endothelial cells (HGEC has not been described yet. In this study, we compared the effects of SubAB with those caused by Stx2 on primary cultures of HGEC isolated from fragments of human pediatric renal cortex. HGEC were characterized as endothelial since they expressed von Willebrand factor (VWF and platelet/endothelial cell adhesion molecule 1 (PECAM-1. HGEC also expressed the globotriaosylceramide (Gb3 receptor for Stx2. Both, Stx2 and SubAB induced swelling and detachment of HGEC and the consequent decrease in cell viability in a time-dependent manner. Preincubation of HGEC with C-9 -a competitive inhibitor of Gb3 synthesis-protected HGEC from Stx2 but not from SubAB cytotoxic effects. Stx2 increased apoptosis in a time-dependent manner while SubAB increased apoptosis at 4 and 6 h but decreased at 24 h. The apoptosis induced by SubAB relative to Stx2 was higher at 4 and 6 h, but lower at 24 h. Furthermore, necrosis caused by Stx2 was significantly higher than that induced by SubAB at all the time points evaluated. Our data provide evidence for the first time how SubAB could cooperate with the development of endothelial damage characteristic of HUS pathogenesis.

  8. Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells

    International Nuclear Information System (INIS)

    Ray, Ratna B.; Basu, Arnab; Steele, Robert; Beyene, Aster; McHowat, Jane; Meyer, Keith; Ghosh, Asish K.; Ray, Ranjit

    2004-01-01

    Ebola virus glycoprotein (EGP) has been implicated for the induction of cytotoxicity and injury in vascular cells. On the other hand, EGP has also been suggested to induce massive cell rounding and detachment from the plastic surface by downregulating cell adhesion molecules without causing cytotoxicity. In this study, we have examined the cytotoxic role of EGP in primary endothelial cells by transduction with a replication-deficient recombinant adenovirus expressing EGP (Ad-EGP). Primary human cardiac microvascular endothelial cells (HCMECs) transduced with Ad-EGP displayed loss of cell adhesion from the plastic surface followed by cell death. Transfer of conditioned medium from EGP-transduced HCMEC into naive cells did not induce loss of adhesion or cell death, suggesting that EGP needs to be expressed intracellularly to exert its cytotoxic effect. Subsequent studies suggested that HCMEC death occurred through apoptosis. Results from this study shed light on the EGP-induced anoikis in primary human cardiac endothelial cells, which may have significant pathological consequences

  9. Endothelial glycocalyx on brain endothelial cells is lost in experimental cerebral malaria

    DEFF Research Database (Denmark)

    Hempel, Casper; Hyttel, Poul; Kurtzhals, Jørgen Al

    2014-01-01

    We hypothesized that the glycocalyx, which is important for endothelial integrity, is lost in severe malaria. C57BL/6 mice were infected with Plasmodium berghei ANKA, resulting in cerebral malaria, or P. chabaudi AS, resulting in uncomplicated malaria. We visualized the glycocalyx with transmission...... electron microscopy and measured circulating glycosaminoglycans by dot blot and ELISA. The glycocalyx was degraded in brain vasculature in cerebral and to a lesser degree uncomplicated malaria. It was affected on both intact and apoptotic endothelial cells. Circulating glycosaminoglycan levels suggested...

  10. Chronic cerebral hypoperfusion independently exacerbates cognitive impairment within the pathopoiesis of Parkinson's disease via microvascular pathologys.

    Science.gov (United States)

    Tang, Hongmei; Gao, Yuyuan; Zhang, Qingxi; Nie, Kun; Zhu, Ruiming; Gao, Liang; Feng, Shujun; Wang, Limin; Zhao, Jiehao; Huang, Zhiheng; Zhang, Yuhu; Wang, Lijuan

    2017-08-30

    To date, the role of microvascular pathology and chronic cerebral hypoperfusion (CHH) in the development of mild cognitive impairment in Parkinson's disease (PD-MCI) is unclear. Here, we investigated how the combined injury through interaction of CHH and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity act as an exacerbating element to damagae cognitive fuction in a mouse model. In the present study, C57BL/6 mice underwent MPTP injection. Subjects were classified into a PD with normal cognitive performance (PDCN) group or a PD-MCI group using the Morris Water Maze test. Further, CHH was induced by stenosis of the bilateral common carotid arteries (BCCAs). Consequently, the animals were divided into 7 groups: they are control, sham, BCCAs, PDCN, PD-MCI, PDCN+BCCAs and PD-MCI+BCCAs. The Morris Water Maze test, open field test, histological investigation and western blotting were performed to analyze cerebral microvascular impairment in each group. The results showed that CHH and MPTP injection caused spatial memory and behavioral impairment, accompanied by microvascular impairment and down-regulation of ZO-1 and Occludin at the protein level compared to the control group. The above injuries were synergistically exacerbated in the PDCN+BCCAs group and the PD-MCI+BCCAs group, which paralleled the elevated expression of p-MAPK and p-Akt. In short, our data demonstrate that CHH and MPTP caused cognitive and microvascular impairment separately. Moreover, CHH may exacerbate cognitive impairment in a mouse model of PD. The study provides a new opportunity for understanding the pathogenesis of PD-MCI. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. MRI of cerebral micro-vascular flow patterns: A multi-direction diffusion-weighted ASL approach.

    Science.gov (United States)

    Wells, J A; Thomas, D L; Saga, T; Kershaw, J; Aoki, I

    2017-06-01

    The study and clinical assessment of brain disease is currently hindered by a lack of non-invasive methods for the detailed and accurate evaluation of cerebral vascular pathology. Angiography can detect aberrant flow in larger feeding arteries/arterioles but cannot resolve the micro-vascular network. Small vessels are a key site of vascular pathology that can lead to haemorrhage and infarction, which may in turn trigger or exacerbate neurodegenerative processes. In this study, we describe a method to investigate microvascular flow anisotropy using a hybrid arterial spin labelling and multi-direction diffusion-weighted MRI sequence. We present evidence that the technique is sensitive to the mean/predominant direction of microvascular flow in localised regions of the rat cortex. The data provide proof of principle for a novel and non-invasive imaging tool to investigate cerebral micro-vascular flow patterns in healthy and disease states.

  12. Vascular Endothelial Growth Factor Receptor 1 Contributes to Escherichia coli K1 Invasion of Human Brain Microvascular Endothelial Cells through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway▿ †

    OpenAIRE

    Zhao, Wei-Dong; Liu, Wei; Fang, Wen-Gang; Kim, Kwang Sik; Chen, Yu-Hua

    2010-01-01

    Escherichia coli is the most common Gram-negative organism causing neonatal meningitis. Previous studies demonstrated that E. coli K1 invasion of brain microvascular endothelial cells (BMEC) is required for penetration into the central nervous system, but the microbe-host interactions that are involved in this process remain incompletely understood. Here we report the involvement of vascular endothelial growth factor receptor 1 (VEGFR1) expressed on human brain microvascular endothelial cells...

  13. Cultivation of Human Microvascular Endothelial Cells on Topographical Substrates to Mimic the Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jie Shi Chua

    2013-03-01

    Full Text Available Human corneal endothelial cells have a limited ability to replicate in vivo and in vitro. Allograft transplantation becomes necessary when an accident or trauma results in excessive cell loss. The reconstruction of the cornea endothelium using autologous cell sources is a promising alternative option for therapeutic or in vitro drug testing applications. The native corneal endothelium rests on the Descemet’s membrane, which has nanotopographies of fibers and pores. The use of synthetic topographies mimics the native environment, and it is hypothesized that this can direct the behavior and growth of human microvascular endothelial cells (HMVECs to resemble the corneal endothelium. In this study, HMVECs are cultivated on substrates with micron and nano-scaled pillar and well topographies. Closely packed HMVEC monolayers with polygonal cells and well-developed tight junctions were formed on the topographical substrates. Sodium/potassium (Na+/K+ adenine triphosphatase (ATPase expression was enhanced on the microwells substrate, which also promotes microvilli formation, while more hexagonal-like cells are found on the micropillars samples. The data obtained suggests that the use of optimized surface patterning, in particular, the microtopographies, can induce HMVECs to adopt a more corneal endothelium-like morphology with similar barrier and pump functions. The mechanism involved in cell contact guidance by the specific topographical features will be of interest for future studies.

  14. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.

    Science.gov (United States)

    McCarthy, Ryan C; Kosman, Daniel J

    2014-01-01

    We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.

  15. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Pospischil Andreas

    2006-06-01

    Full Text Available Abstract Background Enterobacter sakazakii is an opportunistic pathogen that has been associated with sporadic cases and outbreaks causing meningitis, necrotizing enterocolitis and sepsis especially in neonates. However, up to now little is known about the mechanisms of pathogenicity in E. sakazakii. A necessary state in the successful colonization, establishment and ultimately production of disease by microbial pathogens is the ability to adhere to host surfaces such as mucous membranes, gastric and intestinal epithelial or endothelial tissue. This study examined for the first time the adherence ability of 50 E. sakazakii strains to the two epithelial cell lines HEp-2 and Caco-2, as well as the brain microvascular endothelial cell line HBMEC. Furthermore, the effects of bacterial culture conditions on the adherence behaviour were investigated. An attempt was made to characterize the factors involved in adherence. Results Two distinctive adherence patterns, a diffuse adhesion and the formation of localized clusters of bacteria on the cell surface could be distinguished on all three cell lines. In some strains, a mixture of both patterns was observed. Adherence was maximal during late exponential phase, and increased with higher MOI. The adhesion capacity of E. sakazakii to HBMEC cells was affected by the addition of blood to the bacteria growth medium. Mannose, hemagglutination, trypsin digestion experiments and transmission electron microscopy suggested that the adhesion of E. sakazakii to the epithelial and endothelial cells is mainly non-fimbrial based. Conclusion Adherence experiments show heterogeneity within different E. sakazakii strains. In agreement with studies on E. cloacae, we found no relationship between the adhesive capacities in E. sakazakii and the eventual production of specific fimbriae. Further studies will have to be carried out in order to determine the adhesin(s involved in the interaction of E. sakazakii with cells and to

  16. Endothelial Progenitor Cell Secretome and Oligovascular Repair in a Mouse Model of Prolonged Cerebral Hypoperfusion.

    Science.gov (United States)

    Maki, Takakuni; Morancho, Anna; Martinez-San Segundo, Pablo; Hayakawa, Kazuhide; Takase, Hajime; Liang, Anna C; Gabriel-Salazar, Marina; Medina-Gutiérrez, Esperanza; Washida, Kazuo; Montaner, Joan; Lok, Josephine; Lo, Eng H; Arai, Ken; Rosell, Anna

    2018-04-01

    Endothelial progenitor cells (EPCs) have been extensively investigated as a therapeutic approach for repairing the vascular system in cerebrovascular diseases. Beyond vascular regeneration per se, EPCs may also release factors that affect the entire neurovascular unit. Here, we aim to study the effects of the EPC secretome on oligovascular remodeling in a mouse model of white matter injury after prolonged cerebral hypoperfusion. The secretome of mouse EPCs was analyzed with a proteome array. In vitro, the effects of the EPC secretome and its factor angiogenin were assessed on primary oligodendrocyte precursor cells and mature human cerebral microvascular endothelial cells (hCMED/D3). In vivo, mice were subjected to permanent bilateral common carotid artery stenosis, then treated with EPC secretome at 24 hours and at 1 week, and cognitive outcome was evaluated with the Y maze test together with oligodendrocyte precursor cell proliferation/differentiation and vascular density in white matter at 4 weeks. Multiple growth factors, cytokines, and proteases were identified in the EPC secretome, including angiogenin. In vitro, the EPC secretome significantly enhanced endothelial and oligodendrocyte precursor cell proliferation and potentiated oligodendrocyte precursor cell maturation. Angiogenin was proved to be a key factor since pharmacological blockade of angiogenin signaling negated the positive effects of the EPC secretome. In vivo, treatment with the EPC secretome increased vascular density, myelin, and mature oligodendrocytes in white matter and rescued cognitive function in the mouse hypoperfusion model. Factors secreted by EPCs may ameliorate white matter damage in the brain by boosting oligovascular remodeling. © 2018 American Heart Association, Inc.

  17. M3 receptor is involved in the effect of penehyclidine hydrochloride reduced endothelial injury in LPS-stimulated human pulmonary microvascular endothelial cell.

    Science.gov (United States)

    Yuan, Qinghong; Xiao, Fei; Liu, Qiangsheng; Zheng, Fei; Shen, Shiwen; He, Qianwen; Chen, Kai; Wang, Yanlin; Zhang, Zongze; Zhan, Jia

    2018-02-01

    LPS has been recently shown to induce muscarinic acetylcholine 3 receptor (M 3 receptor) expression and penehyclidine hydrochloride (PHC) is an anticholinergic drug which could block the expression of M 3 receptor. PHC has been demonstrated to perform protective effect on cell injury. This study is to investigate whether the effect of PHC on microvascular endothelial injury is related to its inhibition of M 3 receptor or not. HPMVECs were treated with specific M 3 receptor shRNA or PBS, and randomly divided into LPS group (A group), LPS+PHC group (B group), LPS + M 3 shRNA group (C group) and LPS + PHC + M 3 shRNA group (D group). Cells were collected at 60 min after LPS treatment to measure levels of LDH, endothelial permeability, TNF-α and IL-6 levels, NF-κB p65 activation, I-κB protein expression, p38MAPK, and ERK1/2 activations as well as M 3 mRNA expression. PHC could decrease LDH levels, cell permeability, TNF-α and IL-6 levels, p38 MAPK, ERK1/2, NF-κB p65 activations and M 3 mRNA expressions compared with LPS group. When M 3 receptor was silence, the changes of these indices were much more obvious. These findings suggest that M 3 receptor plays an important role in LPS-induced pulmonary microvascular endothelial injury, which is regulated through NF-κB p65 and MAPK activation. And knockout of M 3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. Regulative effects of PHC on pulmonary microvascular permeability and NF-κB p65 as well as MAPK activations are including but not limited to inhibition of M 3 receptor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The anti-apoptotic effect of fluid mechanics preconditioning by cells membrane and mitochondria in rats brain microvascular endothelial cells.

    Science.gov (United States)

    Tian, Shan; Zhu, Fengping; Hu, Ruiping; Tian, Song; Chen, Xingxing; Lou, Dan; Cao, Bing; Chen, Qiulei; Li, Bai; Li, Fang; Bai, Yulong; Wu, Yi; Zhu, Yulian

    2018-01-01

    Exercise preconditioning is a simple and effective way to prevent ischemia. This paper further provided the mechanism in hemodynamic aspects at the cellular level. To study the anti-apoptotic effects of fluid mechanics preconditioning, Cultured rats brain microvascular endothelial cells were given fluid intervention in a parallel plate flow chamber before oxygen glucose deprivation. It showed that fluid mechanics preconditioning could inhibit the apoptosis of endothelial cells, and this process might be mediated by the shear stress activation of Tie-2 on cells membrane surface and Bcl-2 on the mitochondria surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  20. Modeling of cerebral oxygen transport based on in vivo microscopic imaging of microvascular network structure, blood flow and oxygenation

    Directory of Open Access Journals (Sweden)

    Louis Gagnon

    2016-08-01

    Full Text Available Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1 interpretation of functional Magnetic Resonance Imaging (fMRI signals, and (2 investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These bottom-up models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  1. Impact of matrine on inflammation related factors in rat intestinal microvascular endothelial cells.

    Science.gov (United States)

    Suo, Zhanwei; Liu, Ye; Ferreri, Miro; Zhang, Tao; Liu, Zhongjie; Mu, Xiang; Han, Bo

    2009-09-25

    Matrine (MT) is a main active ingredient of Sophora flavescens roots, which is used in Traditional Chinese Medicine (TCM) for the treatment of inflammations like enteritis, hepatitis and atopic dermatitis. Aim of the study is to gain insight into the effects of MT on nitric oxide (NO) release, intracellular NO production, and endothelial nitric oxide synthase (eNOS) level in second generation rat intestinal microvascular endothelial cells (RIMECs). Moreover, the effects of MT on soluble intercellular adhesion molecule-1 (sICAM-1), interleukin-6 (IL-6) and interleukin-8 (IL-8) production induced by lipopolysaccharide (LPS) in these cells were evaluated. Isolated and identified RIMECs cultures were exposed to different concentrations of matrine, and changes in extra- and intracellular NO concentrations were measured in dependance of time by Griess reaction or DAF-FM diacetate. Obtained cell cultures were solitude treated with lypopolysaccharide (LPS) or combined with MT to observe impacts on sICAM-1, IL-6 and IL-8 concentration in culture supernatants by ELISA. Matrine dose-dependently increased the concentration of NO in culture supernatant of RIMECs. Exposure of MT resulted in a steady intracellular NO increase pattern under different concentrations with different values and has an increasing effect on eNOS concentration at a long time exposure. Additionally, matrine reduced the increasing effect of LPS on the production of IL-6, IL-8, and sICAM-1 in RIMECs. These results show that matrine may serve as a protective agent against tissue damage in inflammation by improving NO-dependent vasomotion and inhibiting inflammatory cytokines induced by LPS.

  2. Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells.

    Science.gov (United States)

    Cao, Yongmei; Jiang, Zhen; Zeng, Zhen; Liu, Yujing; Gu, Yuchun; Ji, Yingying; Zhao, Yupeng; Li, Yingchuan

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.

  3. Alterations in the Cerebral Microvascular Proteome Expression Profile After Transient Global Cerebral Ischemia in Rat

    DEFF Research Database (Denmark)

    Spray, Stine; Johansson, Sara E; Edwards, Alistair V G

    2017-01-01

    This study aimed at obtaining an in-depth mapping of expressional changes of the cerebral microvasculature after transient global cerebral ischemia (GCI) and the impact on these GCI-induced expressional changes of post-GCI treatment with a mitogen-activated protein kinase kinase (MEK1/2) inhibitor....... The proteomic profile of the isolated cerebral microvasculature 72 h after GCI (compared to sham) indicated that the main expressional changes could be divided into nine categories: (1) cellular respiration, (2) remodelling of the extracellular matrix, (3) decreased contractile phenotype, (4) clathrin...... categories. Flow cytometry confirmed key findings from the proteome such as upregulation of the extracellular proteins lamininβ2 and nidogen2 (p expressional changes in the cerebral microvasculature after GCI...

  4. Plasmalemmal V-H+-ATPases regulate intracellular pH in human lung microvascular endothelial cells

    International Nuclear Information System (INIS)

    Rojas, Jose D.; Sennoune, Souad R.; Maiti, Debasish; Martinez, Gloria M.; Bakunts, Karina; Wesson, Donald E.; Martinez-Zaguilan, Raul

    2004-01-01

    The lung endothelium layer is exposed to continuous CO 2 transit which exposes the endothelium to a substantial acid load that could be detrimental to cell function. The Na + /H + exchanger and HCO 3 - -dependent H + -transporting mechanisms regulate intracellular pH (pH cyt ) in most cells. Cells that cope with high acid loads might require additional primary energy-dependent mechanisms. V-H + -ATPases localized at the plasma membranes (pmV-ATPases) have emerged as a novel pH regulatory system. We hypothesized that human lung microvascular endothelial (HLMVE) cells use pmV-ATPases, in addition to Na + /H + exchanger and HCO 3 - -based H + -transporting mechanisms, to maintain pH cyt homeostasis. Immunocytochemical studies revealed V-H + -ATPase at the plasma membrane, in addition to the predicted distribution in vacuolar compartments. Acid-loaded HLMVE cells exhibited proton fluxes in the absence of Na + and HCO 3 - that were similar to those observed in the presence of either Na + , or Na + and HCO 3 - . The Na + - and HCO 3 - -independent pH cyt recovery was inhibited by bafilomycin A 1 , a V-H + -ATPase inhibitor. These studies show a Na + - and HCO 3 - -independent pH cyt regulatory mechanism in HLMVE cells that is mediated by pmV-ATPases

  5. Organic anion transporting polypeptide 2 transports valproic acid in rat brain microvascular endothelial cells.

    Science.gov (United States)

    Guo, Yi; Jiang, Li

    2016-07-01

    Abnormal drug transporter expression or function in the brain may lead to decreased concentrations of antiepileptic drugs (AEDs) in the central nervous system in patients with drug-resistant epilepsy. We previously showed the influx transporter organic anion transport polypeptide 2 (Oatp2) was expressed in rat brain microvascular endothelial cells (BMECs). Seizures decrease expression of Oatp2, but it remains unclear whether Oatp2 transports AEDs. In this study, we utilized rat BMECs as an in vitro model of the blood-brain barrier (BBB) to study Oatp2-mediated transport of valproic acid (VPA), the most common clinically used AEDs. In vivo injection of pregnenolone-16-carbonitrile was used to induce high expression of Oatp2 in isolated BMECs. Small interfering RNA treatment was used to silence Oatp2, and uptake of VPA was assessed. Increased expression of Oatp2 in BMECs increased the uptake of VPA, while inhibition of Oatp2 reduced VPA uptake. This study indicates Oatp2 transports VPA across the BBB, and suggests altered Oatp2 expression may contribute to resistance to VPA in patients with drug-resistant epilepsy.

  6. Fermented Chinese Formula Shuan-Tong-Ling Protects Brain Microvascular Endothelial Cells against Oxidative Stress Injury

    Directory of Open Access Journals (Sweden)

    Lingjing Tan

    2016-01-01

    Full Text Available Fermented Chinese formula Shuan-Tong-Ling (STL, composed of fourteen medicinal herbs, was an experiential formula by Dr. Zhigang Mei for treating vascular encephalopathy, but the underlying mechanisms remained unknown. In this study, we aimed to investigate the protective effects of fermented STL on hydrogen peroxide- (H2O2- induced injury in rat brain microvascular endothelial cells (BMECs and the possible mechanisms. Cultured BMECs were treated with H2O2, STL, or nicotinamide (NAM, a SIRT1 inhibitor. Then, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-2H-tetrazolium bromide (MTT assay was employed to detect cell proliferation and senescence-associated beta-galactosidase (SA-β-gal was used to examine cell senescence. Cell nuclei were observed by 4′,6-diamidino-2-phenylindole. Additionally, changes in reactive oxygen species (ROS, superoxide dismutase (SOD, and glutathione (GSH levels were measured. Expression of SIRT1, p21, and PGC-1α was determined by western blot. Cell proliferation significantly increased with STL treatment in a dose-dependent manner. H2O2 treatment could intensify cell senescence and nuclei splitting or pyknosis. With STL treatment, the reduced ROS level was accompanied by increased SOD and GSH activity. Further assays showed upregulation of SIRT1 and PGC-1α and downregulation of p21 after STL treatment. The results revealed that STL could protect BMECs against oxidative stress injury at least partially through the SIRT1 pathway.

  7. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability

    Directory of Open Access Journals (Sweden)

    Emma L. Wilkinson

    2016-10-01

    Full Text Available Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1 levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes.

  8. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Directory of Open Access Journals (Sweden)

    Shumei Man

    2008-01-01

    Full Text Available Endothelial cells that functionally express blood brain barrier (BBB properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs and human umbilical vein endothelial cells (HUVECs. With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.

  9. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Dennis J Grab

    2009-07-01

    Full Text Available Using human brain microvascular endothelial cells (HBMECs as an in vitro model for how African trypanosomes cross the human blood-brain barrier (BBB we recently reported that the parasites cross the BBB by generating calcium activation signals in HBMECs through the activity of parasite cysteine proteases, particularly cathepsin L (brucipain. In the current study, we examined the possible role of a class of protease stimulated HBMEC G protein coupled receptors (GPCRs known as protease activated receptors (PARs that might be implicated in calcium signaling by African trypanosomes.Using RNA interference (RNAi we found that in vitro PAR-2 gene (F2RL1 expression in HBMEC monolayers could be reduced by over 95%. We also found that the ability of Trypanosoma brucei rhodesiense to cross F2RL1-silenced HBMEC monolayers was reduced (39%-49% and that HBMECs silenced for F2RL1 maintained control levels of barrier function in the presence of the parasite. Consistent with the role of PAR-2, we found that HBMEC barrier function was also maintained after blockade of Galpha(q with Pasteurella multocida toxin (PMT. PAR-2 signaling has been shown in other systems to have neuroinflammatory and neuroprotective roles and our data implicate a role for proteases (i.e. brucipain and PAR-2 in African trypanosome/HBMEC interactions. Using gene-profiling methods to interrogate candidate HBMEC pathways specifically triggered by brucipain, several pathways that potentially link some pathophysiologic processes associated with CNS HAT were identified.Together, the data support a role, in part, for GPCRs as molecular targets for parasite proteases that lead to the activation of Galpha(q-mediated calcium signaling. The consequence of these events is predicted to be increased permeability of the BBB to parasite transmigration and the initiation of neuroinflammation, events precursory to CNS disease.

  10. Zika Virus Persistently Infects and Is Basolaterally Released from Primary Human Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Megan C. Mladinich

    2017-07-01

    Full Text Available Zika virus (ZIKV is a mosquito-borne Flavivirus that has emerged as the cause of encephalitis and fetal microencephaly in the Americas. ZIKV uniquely persists in human bodily fluids for up to 6 months, is sexually transmitted, and traverses the placenta and the blood-brain barrier (BBB to damage neurons. Cells that support persistent ZIKV replication and mechanisms by which ZIKV establishes persistence remain enigmatic but central to ZIKV entry into protected neuronal compartments. The endothelial cell (EC lining of capillaries normally constrains transplacental transmission and forms the BBB, which selectively restricts access of blood constituents to neurons. We found that ZIKV (strain PRVABC59 persistently infects and continuously replicates in primary human brain microvascular ECs (hBMECs, without cytopathology, for >9 days and following hBMEC passage. ZIKV did not permeabilize hBMECs but was released basolaterally from polarized hBMECs, suggesting a direct mechanism for ZIKV to cross the BBB. ZIKV-infected hBMECs were rapidly resistant to alpha interferon (IFN-α and transiently induced, but failed to secrete, IFN-β and IFN-λ. Global transcriptome analysis determined that ZIKV constitutively induced IFN regulatory factor 7 (IRF7, IRF9, and IFN-stimulated genes (ISGs 1 to 9 days postinfection, despite persistently replicating in hBMECs. ZIKV constitutively induced ISG15, HERC5, and USP18, which are linked to hepatitis C virus (HCV persistence and IFN regulation, chemokine CCL5, which is associated with immunopathogenesis, as well as cell survival factors. Our results reveal that hBMECs act as a reservoir of persistent ZIKV replication, suggest routes for ZIKV to cross hBMECs into neuronal compartments, and define novel mechanisms of ZIKV persistence that can be targeted to restrict ZIKV spread.

  11. BMPRII influences the response of pulmonary microvascular endothelial cells to inflammatory mediators.

    Science.gov (United States)

    Vengethasamy, Leanda; Hautefort, Aurélie; Tielemans, Birger; Belge, Catharina; Perros, Frédéric; Verleden, Stijn; Fadel, Elie; Van Raemdonck, Dirk; Delcroix, Marion; Quarck, Rozenn

    2016-11-01

    Mutations in the bone morphogenetic protein receptor (BMPR2) gene have been observed in 70 % of patients with heritable pulmonary arterial hypertension (HPAH) and in 11-40 % with idiopathic PAH (IPAH). However, carriers of a BMPR2 mutation have only 20 % risk of developing PAH. Since inflammatory mediators are increased and predict survival in PAH, they could act as a second hit inducing the development of pulmonary hypertension in BMPR2 mutation carriers. Our specific aim was to determine whether inflammatory mediators could contribute to pulmonary vascular cell dysfunction in PAH patients with and without a BMPR2 mutation. Pulmonary microvascular endothelial cells (PMEC) and arterial smooth muscle cells (PASMC) were isolated from lung parenchyma of transplanted PAH patients, carriers of a BMPR2 mutation or not, and from lobectomy patients or lung donors. The effects of CRP and TNFα on mitogenic activity, adhesiveness capacity, and expression of adhesion molecules were investigated in PMECs and PASMCs. PMECs from BMPR2 mutation carriers induced an increase in PASMC mitogenic activity; moreover, endothelin-1 secretion by PMECs from carriers was higher than by PMECs from non-carriers. Recruitment of monocytes by PMECs isolated from carriers was higher compared to PMECs from non-carriers and from controls, with an elevated ICAM-1 expression. CRP increased adhesion of monocytes to PMECs in carriers and non-carriers, and TNFα only in carriers. PMEC from BMPR2 mutation carriers have enhanced adhesiveness for monocytes in response to inflammatory mediators, suggesting that BMPR2 mutation could generate susceptibility to an inflammatory insult in PAH.

  12. Autophagy activation and the mechanism of retinal microvascular endothelial cells in hypoxia.

    Science.gov (United States)

    Li, Rong; Wang, Li-Zhao; Du, Jun-Hui; Zhao, Lei; Yao, Yang

    2018-01-01

    To explore the state of autophagy and related mechanisms in the murine retinal microvascular endothelial cells (RMECs) under hypoxia stimulation. The murine RMECs were primarily cultured and randomly divided into three groups: hypoxia group (cultured in 1% O 2 environment), hypoxia+autophagy inhibition group [pretreated with 5 mmol/L 3-methyladenine (3-MA) for 4h followed by incubation in 1% O 2 ] and control group (cultured under normoxic condition). The state of autophagy in RMECs was examined by assaying the turnover of light chain 3B (LC3BB) and expression of Beclin-1, Atg3 and Atg5 proteins with Western blotting, by detecting formation of autophagosomes with transmission electron microscopy (TEM) and by counting the number of GFP+ puncta in RMECs. The protein levels of AMPK, P-AMPK, Akt, P-Akt, m-TOR and P-mTOR were also assayed by Western blotting. Primary murine RMECs were successfully cultured. Under hypoxic conditions, the ratio of LC3BB-II/I and the expression of Beclin-1, Atg3 and Atg5 proteins were increased when compared with the control group. In addition, the numbers of autophagosome and the GFP+ puncta were also increased under hypoxia. However, pre-treatment with 3-MA obviously attenuated these changes in autophagy in RMECs under hypoxia. Protein expression of P-Akt and P-AMPK was increased but P-mTOR level was decreased in cells exposed to hypoxia. In murine RMECs autophagy is activated under hypoxia possibly through activation of the AMPK/mTOR signaling pathway.

  13. Streptococcal-vimentin cross-reactive antibodies induce microvascular cardiac endothelial proinflammatory phenotype in rheumatic heart disease

    Science.gov (United States)

    Delunardo, F; Scalzi, V; Capozzi, A; Camerini, S; Misasi, R; Pierdominici, M; Pendolino, M; Crescenzi, M; Sorice, M; Valesini, G; Ortona, E; Alessandri, C

    2013-01-01

    Summary Rheumatic heart disease (RHD) is characterized by the presence of anti-streptococcal group A antibodies and anti-endothelial cell antibodies (AECA). Molecular mimicry between streptococcal antigens and self proteins is a hallmark of the pathogenesis of rheumatic fever. We aimed to identify, in RHD patients, autoantibodies specific to endothelial autoantigens cross-reactive with streptococcal proteins and to evaluate their role in inducing endothelial damage. We used an immunoproteomic approach with endothelial cell-surface membrane proteins in order to identify autoantigens recognized by AECA of 140 RHD patients. Cross-reactivity of purified antibodies with streptococcal proteins was analysed. Homologous peptides recognized by serum cross-reactive antibodies were found through comparing the amino acid sequence of streptococcal antigens with human antigens. To investigate interleukin (IL)-1R-associated kinase (IRAK1) and nuclear factor-κB (NF-κB) activation, we performed a Western blot analysis of whole extracts proteins from unstimulated or stimulated human microvascular cardiac endothelial cells (HMVEC-C). Adhesion molecule expression and release of proinflammatory cytokines and growth factors were studied by multiplex bead based immunoassay kits. We observed anti-vimentin antibodies in sera from 49% RHD AECA-positive patients. Cross-reactivity of purified anti-vimentin antibodies with heat shock protein (HSP)70 and streptopain streptococcal proteins was shown. Comparing the amino acid sequence of streptococcal HSP70 and streptopain with human vimentin, we found two homologous peptides recognized by serum cross-reactive antibodies. These antibodies were able to stimulate HMVEC-C inducing IRAK and NF-κB activation, adhesion molecule expression and release of proinflammatory cytokines and growth factors. In conclusion, streptococcal–vimentin cross-reactive antibodies were able to activate microvascular cardiac endothelium by amplifying the inflammatory

  14. Effects of Neospora caninum infection on brain microvascular endothelial cells bioenergetics

    Directory of Open Access Journals (Sweden)

    Elsheikha Hany M

    2013-01-01

    Full Text Available Abstract Background The brain is the most commonly affected organ during Neospora caninum infection but the mechanisms utilized by this protozoan parasite for traversal of the blood–brain barrier (BBB are not yet understood. Herein, we investigate the cellular pathogenicity of N. caninum infection on bioenergetics of human brain microvascular endothelial cells (HBMECs, a fundamental component of the BBB. Methods We tracked the growth kinetics of N. caninum in HBMECs. Focusing on cell bioenergetics, oxygen consumption rate (OCR was determined using Clark electrode system and mitochondrial membrane potential (ΔΨm was evaluated using DePsipher staining by fluorescence microscopy in the presence and absence of infection. Results HBMECs provided a receptive environment for parasite proliferation. N. caninum tachyzoites were able to invade and replicate within HBMECs without significantly altering cell proliferation rate, as measured with the MTT assay, up to 24 hr post infection (pi. The oxygen consumption rate (OCR was significantly inhibited (p 6 cell min-1 and from −0.29±0.09 to −0.16±0.1 nmol 106 cell min-1 for uninfected HBMECs and free N. Caninum tachyzoites, respectively]. After normalization for DNA content the basal OCR did not differ between two host cell types: HBMECs and K562. The OCR of HBMECs was significantly elevated 24 hr pi in the absence of substrate, in 10 mM glucose and in the presence of a tetramethyl-p-phenylenediamine (TMPD/ascorbate redox shuttle. Although quantitatively similar results were observed for uninfected K562 cells, there was no effect on their OCR 24 hr pi with N. caninum under any of the above substrate conditions. 6mM azide abolished OCR in all situations. Mitochondrial staining with DePsipher indicated no change in their membrane potential (Δψm up to 24 hr pi. Conclusions N. caninum is able to grow in HBMECs without markedly disrupting their normal proliferation or mitochondrial integrity. However

  15. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis.

    Directory of Open Access Journals (Sweden)

    Carlos Salomon

    Full Text Available Vasculogenesis and angiogenesis are critical processes in fetal circulation and placental vasculature development. Placental mesenchymal stem cells (pMSC are known to release paracrine factors (some of which are contained within exosomes that promote angiogenesis and cell migration. The aims of this study were: to determine the effects of oxygen tension on the release of exosomes from pMSC; and to establish the effects of pMSC-derived exosomes on the migration and angiogenic tube formation of placental microvascular endothelial cells (hPMEC. pMSC were isolated from placental villi (8-12 weeks of gestation, n = 6 and cultured under an atmosphere of 1%, 3% or 8% O2. Cell-conditioned media were collected and exosomes (exo-pMSC isolated by differential and buoyant density centrifugation. The dose effect (5-20 µg exosomal protein/ml of pMSC-derived exosomes on hPMEC migration and tube formation were established using a real-time, live-cell imaging system (Incucyte™. The exosome pellet was resuspended in PBS and protein content was established by mass spectrometry (MS. Protein function and canonical pathways were identified using the PANTHER program and Ingenuity Pathway Analysis, respectively. Exo-pMSC were identified, by electron microscopy, as spherical vesicles, with a typical cup-shape and diameters around of 100 nm and positive for exosome markers: CD63, CD9 and CD81. Under hypoxic conditions (1% and 3% O2 exo-pMSC released increased by 3.3 and 6.7 folds, respectively, when compared to the controls (8% O2; p<0.01. Exo-pMSC increased hPMEC migration by 1.6 fold compared to the control (p<0.05 and increased hPMEC tube formation by 7.2 fold (p<0.05. MS analysis identified 390 different proteins involved in cytoskeleton organization, development, immunomodulatory, and cell-to-cell communication. The data obtained support the hypothesis that pMSC-derived exosomes may contribute to placental vascular adaptation to low oxygen tension under both

  16. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  17. The Level of Circulating Endothelial Progenitor Cell Is Associated with Cerebral Vasoreactivity: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chung

    2015-01-01

    Full Text Available Endothelial progenitor cell is known to be able to repair injured vessels. We assessed the hypothesis that endothelial progenitor cell also modulates cerebral endothelial function in healthy status. We used transcranial color-coded sonography to measure middle cerebral arterial vasoreactivity to CO2 (breath-holding index in healthy subjects and observed its relationship with the number of circulating CD34CD133+ cells. To detect significant correlations between each characteristic and breath-holding index of middle cerebral artery, we used univariate and multivariate regression analyses. 22 young healthy subjects were included in the present study (6 men, 16 women; mean age: 28.45 ± 3.98 years, range: 22–34 years. The mean breath-holding index and CD45lowCD34+CD133+ cells number were 0.95 ± 0.48% and 0.52 ± 0.26, respectively. The level of CD34CD133+ cells was independently associated with middle cerebral artery’s vasoreactivity (r=0.439,P=0.04. Our results suggest that endothelial progenitor cell also modulates healthy cerebral vessels’ endothelial function. This ability of endothelial progenitor cell could be potentially applied therapeutically and for prevention in conditions with cerebral endothelial dysfunction and cerebral ischemia.

  18. Decreased expression of serum and microvascular vascular endothelial growth factor receptor-2 in meningococcal sepsis*.

    NARCIS (Netherlands)

    Flier, M. van der; Baerveldt, E.M.; Miedema, A.; Hartwig, N.G.; Hazelzet, J.A.; Emonts, M.; Groot, R. de; Prens, E.P.; Vught, A.J. van; Jansen, N.J.

    2013-01-01

    OBJECTIVES: To determine the skin microvessel expression of vascular endothelial growth factor receptor 2 and serum-soluble vascular endothelial growth factor receptor 2 levels in children with meningococcal sepsis. DESIGN: Observational study. SETTING: Two tertiary academic children hospital PICUs.

  19. Comparison of skin microvascular reactivity with hemostatic markers of endothelial dysfunction and damage in type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Sandra Beer

    2008-12-01

    Full Text Available Sandra Beer1,2, François Feihl1, Juan Ruiz2, Irène Juhan-Vague3, Marie-Françoise Aillaud3, Sandrine Golay Wetzel1, Lucas Liaudet4, Rolf C Gaillard2, Bernard Waeber1Centre Hospitalier Universitaire Vaudois, Division de Physiopathologie Clinique, Lausanne, Suisse1Division de Physiopathologie Clinique, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Suisse; 2Service d’Endocrinologie, de Diabétologie et de Métabolisme, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, Suisse; 3Laboratoire d’hématologie, Centre Hospitalier Universitaire de Marseille; Inserm UMR 626, Marseille, France; 4Service de Médecine Intensive de l’Adulte, Centre Hospitalier Universitaire Vaudois et Université de Lausanne, Lausanne, SuisseAim: Patients with non-insulin-dependent diabetes mellitus (NIDDM are at increased cardiovascular risk due to an accelerated atherosclerotic process. The present study aimed to compare skin microvascular function, pulse wave velocity (PWV, and a variety of hemostatic markers of endothelium injury [von Willebrand factor (vWF, plasminogen activator inhibitor-1 (PAI-1, tissue plasminogen activator (t-PA, tissue factor pathway inhibitor (TFPI, and the soluble form of thrombomodulin (s-TM] patients with NIDDM.Methods: 54 patients with NIDDM and 38 sex- and age-matched controls were studied. 27 diabetics had no overt micro- and/or macrovascular complications, while the remainder had either or both. The forearm skin blood flow was assessed by laser-Doppler imaging, which allowed the measurement of the response to iontophoretically applied acetylcholine (endotheliumdependent vasodilation and sodium nitroprusside (endothelium-independent vasodilation, as well as the reactive hyperemia triggered by the transient occlusion of the circulation.Results: Both endothelial and non-endothelial reactivity were significantly blunted in diabetics, regardless of the presence or the absence of

  20. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    Science.gov (United States)

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  1. Vitamin E isoforms differentially regulate intercellular adhesion molecule-1 activation of PKCα in human microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiam Abdala-Valencia

    Full Text Available ICAM-1-dependent leukocyte recruitment in vivo is inhibited by the vitamin E isoform d-α-tocopherol and elevated by d-γ-tocopherol. ICAM-1 is reported to activate endothelial cell signals including protein kinase C (PKC, but the PKC isoform and the mechanism for ICAM-1 activation of PKC are not known. It is also not known whether ICAM-1 signaling in endothelial cells is regulated by tocopherol isoforms. We hypothesized that d-α-tocopherol and d-γ-tocopherol differentially regulate ICAM-1 activation of endothelial cell PKC.ICAM-1 crosslinking activated the PKC isoform PKCα but not PKCβ in TNFα-pretreated human microvascular endothelial cells. ICAM-1 activation of PKCα was blocked by the PLC inhibitor U73122, ERK1/2 inhibitor PD98059, and xanthine oxidase inhibitor allopurinol. ERK1/2 activation was blocked by inhibition of XO and PLC but not by inhibition of PKCα, indicating that ERK1/2 is downstream of XO and upstream of PKCα during ICAM-1 signaling. During ICAM-1 activation of PKCα, the XO-generated ROS did not oxidize PKCα. Interestingly, d-α-tocopherol inhibited ICAM-1 activation of PKCα but not the upstream signal ERK1/2. The d-α-tocopherol inhibition of PKCα was ablated by the addition of d-γ-tocopherol.Crosslinking ICAM-1 stimulated XO/ROS which activated ERK1/2 that then activated PKCα. ICAM-1 activation of PKCα was inhibited by d-α-tocopherol and this inhibition was ablated by the addition of d-γ-tocopherol. These tocopherols regulated ICAM-1 activation of PKCα without altering the upstream signal ERK1/2. Thus, we identified a mechanism for ICAM-1 activation of PKC and determined that d-α-tocopherol and d-γ-tocopherol have opposing regulatory functions for ICAM-1-activated PKCα in endothelial cells.

  2. [MIP-1α promotes the migration ability of Jurkat cell through human brain microvascular endothelial cell monolayer].

    Science.gov (United States)

    Ma, Yi-Ran; Zhang, Shuang; Sun, Ying; Liu, Yi-Yang; Song, Qian; Hao, Yi-Wen

    2014-02-01

    This study was purposed to explore the mechanism of central nervous system (CNS) leukemia resulting from brain metastasis of human acute T-cell leukemia (T-ALL) cells and the role of MIP-1α in migration of Jurkat cells through human brain microvascular endothelial cells (HBMEC). The real-time PCR, siRNA test, transendothelial migration test, endothelial permeability assay and cell adhesion assay were used to detect MIP-1α expression, penetration and migration ability as well as adhesion capability respectively. The results showed that the MIP-1α expression in Jurkat cells was higher than that in normal T cells and CCRF-HSB2, CCRF-CEM , SUP-T1 cells. The MIP-1α secreted from Jurkat cells enhanced the ability of Jurkat cells to penetrate through HBMEC, the ability of Jurkat cells treated by MIP-1α siRNA to adhere to HBMEC and to migrate trans endothelial cells decreased. It is concluded that the MIP-1α secreted from Jurkat cells participates in process of penetrating the Jurkat cells through HBMEC monolayer.

  3. Morphine induces expression of platelet-derived growth factor in human brain microvascular endothelial cells: implication for vascular permeability.

    Directory of Open Access Journals (Sweden)

    Hongxiu Wen

    Full Text Available Despite the advent of antiretroviral therapy, complications of HIV-1 infection with concurrent drug abuse are an emerging problem. Morphine, often abused by HIV-infected patients, is known to accelerate neuroinflammation associated with HIV-1 infection. Detailed molecular mechanisms of morphine action however, remain poorly understood. Platelet-derived growth factor (PDGF has been implicated in a number of pathological conditions, primarily due to its potent mitogenic and permeability effects. Whether morphine exposure results in enhanced vascular permeability in brain endothelial cells, likely via induction of PDGF, remains to be established. In the present study, we demonstrated morphine-mediated induction of PDGF-BB in human brain microvascular endothelial cells, an effect that was abrogated by the opioid receptor antagonist-naltrexone. Pharmacological blockade (cell signaling and loss-of-function (Egr-1 approaches demonstrated the role of mitogen-activated protein kinases (MAPKs, PI3K/Akt and the downstream transcription factor Egr-1 respectively, in morphine-mediated induction of PDGF-BB. Functional significance of increased PDGF-BB manifested as increased breach of the endothelial barrier as evidenced by decreased expression of the tight junction protein ZO-1 in an in vitro model system. Understanding the regulation of PDGF expression may provide insights into the development of potential therapeutic targets for intervention of morphine-mediated neuroinflammation.

  4. Cerebral Endothelial Function Determined by Cerebrovascular Reactivity to L-Arginine

    Science.gov (United States)

    Pretnar-Oblak, Janja

    2014-01-01

    Endothelium forms the inner cellular lining of blood vessels and plays an important role in many physiological functions including the control of vasomotor tone. Cerebral endothelium is probably one of the most specific types but until recently it was impossible to determine its function. In this review, the role of cerebrovascular reactivity to L-arginine (CVR-L-Arg) for assessment of cerebral endothelial function is discussed. L-Arginine induces vasodilatation through enhanced production of nitric oxide (NO) in the cerebral endothelium. Transcranial Doppler sonography is used for evaluation of cerebral blood flow changes. The method is noninvasive, inexpensive, and enables reproducible measurements. CVR-L-Arg has been compared to flow-mediated dilatation as a gold standard for systemic endothelial function and intima-media thickness as a marker for morphological changes. However, it seems to show specific cerebral endothelial function. So far CVR-L-Arg has been used to study cerebral endothelial function in many pathological conditions such as stroke, migraine, etc. In addition CVR-L-Arg has also proven its usefulness in order to show potential improvement after pharmacological interventions. In conclusion CVR-L-Arg is a promising noninvasive research method that could provide means for evaluation of cerebral endothelial function in physiological and pathological conditions. PMID:24860826

  5. Effect of penehyclidine hydrochloride on β-arrestin-1 expression in lipopolysaccharide-induced human pulmonary microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, J. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China); Xiao, F. [Department of Osteology, Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Z.Z.; Wang, Y.P.; Chen, K.; Wang, Y.L. [Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei (China)

    2013-12-02

    β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M{sub 3} receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.

  6. Human breast microvascular endothelial cells retain phenotypic traits in long-term finite life span culture

    DEFF Research Database (Denmark)

    Sigurdsson, Valgardur; Fridriksdottir, Agla J R; Kjartansson, Jens

    2007-01-01

    Attempts to study endothelial-epithelial interactions in the human breast have been hampered by lack of protocols for long-term cultivation of breast endothelial cells (BRENCs). The aim of this study was to establish long-term cultures of BRENCs and to compare their phenotypic traits with the tis......Attempts to study endothelial-epithelial interactions in the human breast have been hampered by lack of protocols for long-term cultivation of breast endothelial cells (BRENCs). The aim of this study was to establish long-term cultures of BRENCs and to compare their phenotypic traits...... with the tissue of origin. Microvasculature was localized in situ by immunohistochemistry in breast samples. From this tissue, collagen-rich stroma and adipose tissue were dissected mechanically and further disaggregated to release microvessel organoids. BRENCs were cultured from these organoids in endothelial...

  7. Propofol inhibits burn injury-induced hyperpermeability through an apoptotic signal pathway in microvascular endothelial cells

    OpenAIRE

    K.Y. Tian; X.J. Liu; J.D. Xu; L.J. Deng; G. Wang

    2015-01-01

    Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate burn serum-induced endothelial hyperpermeability through the inhibition of the intrinsic apoptotic sign...

  8. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  9. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

    Directory of Open Access Journals (Sweden)

    Shi Xianglin

    2009-01-01

    Full Text Available Abstract Background Engineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human. Results The confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery. Conclusion Our results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.

  10. Molecular and Cellular Characterization of Space Flight Effects on Microvascular Endothelial Cell Function - PreparatoryWork for the SFEF Project

    Science.gov (United States)

    Balsamo, Michele; Barravecchia, Ivana; Mariotti, Sara; Merenda, Alessandra; De Cesari, Chiara; Vukich, Marco; Angeloni, Debora

    2014-12-01

    Exposure to microgravity during space flight (SF) of variable length induces suffering of the endothelium (the cells lining all blood vessels), mostly responsible for health problems found in astronauts and animals returning from space. Of interest to pre-nosological medicine, the effects of microgravity on astronauts are strikingly similar to the consequences of sedentary life, senescence and degenerative diseases on Earth, although SF effects are accelerated and reversible. Thus, microgravity is a significant novel model for better understanding of common pathologies. A comprehensive cell and molecular biology study is needed in order to explain pathophysiological findings after SFs. This project will study the effects of microgravity and cosmic radiation on endothelial cells (ECs) cultured on the International Space Station through analysis of 1) cell transcriptome, 2) DNA methylome, 3) DNA damage and cell senescence, 4) variations in cell cycle and cell morphology. This project has been selected by the European Space Agency and the Italian Space Agency and is presently in preparation. The ground study presented here was performed to determine the biological and engineering requirements that will allow us to retrieve suitable samples after culturing, fixing and storing ECs in space. We expect to identify molecular pathways activated by space microgravity in microvascular ECs, which may shed light on pathogenic molecular mechanisms responsible for endothelial suffering shared by astronauts and individuals affected with aging, degenerative and sedentary life-associated pathologies on Earth.

  11. The Multifaceted Responses of Primary Human Astrocytes and Brain Microvascular Endothelial Cells to the Lyme Disease Spirochete, Borrelia Burgdorferi

    Directory of Open Access Journals (Sweden)

    Catherine A. Brissette

    2013-07-01

    Full Text Available The vector-borne pathogen, Borrelia burgdorferi, causes a multi-system disorder including neurological complications. These neurological disorders, collectively termed neuroborreliosis, can occur in up to 15% of untreated patients. The neurological symptoms are probably a result of a glial-driven, host inflammatory response to the bacterium. However, the specific contributions of individual glial and other support cell types to the pathogenesis of neuroborreliosis are relatively unexplored. The goal of this project was to characterize specific astrocyte and endothelial cell responses to B. burgdorferi. Primary human astrocytes and primary HBMEC (human brain microvascular endothelial cells were incubated with B. burgdorferi over a 72-h period and the transcriptional responses to the bacterium were analyzed by real-time PCR arrays. There was a robust increase in several surveyed chemokine and related genes, including IL (interleukin-8, for both primary astrocytes and HBMEC. Array results were confirmed with individual sets of PCR primers. The production of specific chemokines by both astrocytes and HBMEC in response to B. burgdorferi, including IL-8, CXCL-1, and CXCL-10, were confirmed by ELISA. These results demonstrate that primary astrocytes and HBMEC respond to virulent B. burgdorferi by producing a number of chemokines. These data suggest that infiltrating phagocytic cells, particularly neutrophils, attracted by chemokines expressed at the BBB (blood–brain barrier may be important contributors to the early inflammatory events associated with neuroborreliosis.

  12. Inhibition of c-Src protects paraquat induced microvascular endothelial injury by modulating caveolin-1 phosphorylation and caveolae mediated transcellular permeability.

    Science.gov (United States)

    Huang, Yu; He, Qing

    2017-06-01

    The mechanisms underlying paraquat induced acute lung injury (ALI) is still not clear. C-Src plays an important role in the regulation of microvascular endothelial barrier function and the pathogenesis of ALI. In the present study, we found that paraquat induced cell toxicity and an increase of reactive oxygen species (ROS) in endothelium. Paraquat exposure also induced significant increase of caveolin-1 phosphorylation, caveolae trafficking and albumin permeability in endothelial monolayers. C-Src depletion by siRNA significantly attenuate paraquat induced cell toxicity, caveolin-1 phosphorylation, caveolae formation and endothelial hyperpermeability. N-acetylcysteine (NAC) failed to protect endothelial monolayers against paraquat induced toxicity. Thus, our findings suggest that paraquat exposure increases paracellular endothelial permeability by increasing caveolin-1 phosphorylation in a c-Src dependant manner. The depletion of c-Src might protect microvascular endothelial function by regulating caveolin-1 phosphorylation and caveolae trafficking during paraquat exposure, and might have potential therapeutic effects on paraquat induced ALI. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Filipa L Cardoso

    Full Text Available BACKGROUND: Sepsis and jaundice are common conditions in newborns that can lead to brain damage. Though lipopolysaccharide (LPS is known to alter the integrity of the blood-brain barrier (BBB, little is known on the effects of unconjugated bilirubin (UCB and even less on the joint effects of UCB and LPS on brain microvascular endothelial cells (BMEC. METHODOLOGY/PRINCIPAL FINDINGS: Monolayers of primary rat BMEC were treated with 1 µg/ml LPS and/or 50 µM UCB, in the presence of 100 µM human serum albumin, for 4 or 24 h. Co-cultures of BMEC with astroglial cells, a more complex BBB model, were used in selected experiments. LPS led to apoptosis and UCB induced both apoptotic and necrotic-like cell death. LPS and UCB led to inhibition of P-glycoprotein and activation of matrix metalloproteinases-2 and -9 in mono-cultures. Transmission electron microscopy evidenced apoptotic bodies, as well as damaged mitochondria and rough endoplasmic reticulum in BMEC by either insult. Shorter cell contacts and increased caveolae-like invaginations were noticeable in LPS-treated cells and loss of intercellular junctions was observed upon treatment with UCB. Both compounds triggered impairment of endothelial permeability and transendothelial electrical resistance both in mono- and co-cultures. The functional changes were confirmed by alterations in immunostaining for junctional proteins β-catenin, ZO-1 and claudin-5. Enlargement of intercellular spaces, and redistribution of junctional proteins were found in BMEC after exposure to LPS and UCB. CONCLUSIONS: LPS and/or UCB exert direct toxic effects on BMEC, with distinct temporal profiles and mechanisms of action. Therefore, the impairment of brain endothelial integrity upon exposure to these neurotoxins may favor their access to the brain, thus increasing the risk of injury and requiring adequate clinical management of sepsis and jaundice in the neonatal period.

  14. Sympathetically-induced changes in microvascular cerebral blood flow and in the morphology of its low-frequency waves.

    Science.gov (United States)

    Deriu, F; Roatta, S; Grassi, C; Urciuoli, R; Micieli, G; Passatore, M

    1996-06-10

    The effect of bilateral cervical sympathetic nerve stimulation on microvascular cerebral blood flow, recorded at various depths in the parietal lobe and in ponto-mesencephalic areas, was investigated by laser-Doppler flowmetry in normotensive rabbits. These areas were chosen as representative of the vascular beds supplied by the carotid and vertebro-basilar systems, which exhibit different degrees of sympathetic innervation, the former being richer than the latter. Sympathetic stimulation at 30 imp/s affects cerebral blood flow in 77% of the parietal lobe and in 43% of the ponto-mesencephalic tested areas. In both cases the predominant effect was a reduction in blood flow (14.7 +/- 5.1% and 4.1 +/- 2.4%, respectively). The extent of the reduction in both areas was less if the stimulation frequency was decreased. Sometimes mean cerebral blood flow showed a small and transient increase, mainly in response to low-frequency stimulation. The morphology was analysed of low-frequency spontaneous oscillations in cerebral blood flow, attributed to vasomotion. Present in 41% of the tested areas (frequency 4-12 cycles/min, peak-to-peak amplitude 10-40% of mean value), these waves decreased in amplitude and increased in frequency during sympathetic stimulation, irrespective of changes in mean flow. The possibility has been proposed that the sympathetic action on low-frequency spontaneous oscillations may contribute to the protective influence that this system is known to exert on the blood-brain barrier in hypertension.

  15. Carnosine protects brain microvascular endothelial cells against rotenone-induced oxidative stress injury through histamine H₁ and H₂ receptors in vitro.

    Science.gov (United States)

    Zhang, Luyi; Yao, Ke; Fan, Yanying; He, Ping; Wang, Xiaofen; Hu, Weiwei; Chen, Zhong

    2012-12-01

    Although it is believed that carnosine has protective effects on various cell types, its effect on microvascular endothelial cells has not been well defined. In the present study, we investigated the protective effects of carnosine in microvascular endothelial cells using an in vitro rotenone-induced oxidative stress model. Mouse brain microvascular endothelial cells were exposed to 1 μmol/L rotenone for 18 h. In some experiments, carnosine (100 nmol/L-1 mmol/L) was added 30 min prior to rotenone exposure. When used, histamine receptor antagonists (100 nmol/L-10 μmol/L) were added 15 min before carnosine treatment. After rotenone exposure, apoptosis of microvascular cells was analysed by Hoechst 33342 staining, whereas mitochondrial membrane potential was assessed by JC-1 staining. Intracellular carnosine and histamine levels were determined using HPLC or ultra-HPLC. Over the range 1 μmol/L-1 mmol/L, carnosine concentration-dependently decreased the number of apoptotic cells after 18 h exposure to rotenone. This effect was reversed by the histamine H1 receptor antagonists pyrilamine and diphenhydramine (1 and 10 μmol/L) and the H2 receptor antagonists cimetidine (100 nmol/L-10 μmol/L) and zolatidine (10 μmol/L). α-Fluoromethylhistidine (100 μmol/L), a selective and irreversible inhibitor of histidine decarboxylase, also significantly inhibited the protective effects of carnosine. At 0.1 mmol/L, carnosine restored the decrease in mitochondrial membrane potential after 6 h exposure to 1 μmol/L rotenone and this effect was also reversed by the H1 and H2 receptor antagonists. Moreover, intracellular carnosine levels increased as early as 1 h after carnosine treatment, whereas intracellular histamine levels increased 18 h after carnosine treatment. The results of the present study indicate that carnosine protects brain microvascular endothelial cells against rotenone-induced oxidative stress injury via histamine H1 and H2 receptors. The

  16. Impaired microvascular reactivity and endothelial function in patients with Cushing's syndrome: Influence of arterial hypertension

    Czech Academy of Sciences Publication Activity Database

    Prázný, M.; Ježková, J.; Horová, E.; Lazárová, V.; Hána, V.; Kvasnička, J.; Pecen, Ladislav; Marek, J.; Škrha, J.; Kršek, M.

    2008-01-01

    Roč. 57, č. 1 (2008), s. 13-22 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z10300504 Keywords : Cushing’s syndrome * vascular reactivity * endothelial function * oxidative stress * laser Doppler flowmetry Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.653, year: 2008

  17. 2,3,7,8-TCDD exposure, endothelial dysfunction and impaired microvascular reactivity

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Prázdný, M.; Škrha, J.; Fenclová, Z.; Kalousová, M.; Urban, P.; Navrátil, Tomáš; Šenholdová, Z.; Šmerhovský, Z.

    2007-01-01

    Roč. 26, - (2007), s. 705-713 ISSN 0960-3271 Institutional research plan: CEZ:AV0Z40400503 Keywords : 2,3,7,8-TCDD * endothelial dysfunction * oxidative stress * superoxide dismutase Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.335, year: 2007

  18. ESCRT-0 Component Hrs Promotes Macropinocytosis of Kaposi's Sarcoma-Associated Herpesvirus in Human Dermal Microvascular Endothelial Cells.

    Science.gov (United States)

    Veettil, Mohanan Valiya; Kumar, Binod; Ansari, Mairaj Ahmed; Dutta, Dipanjan; Iqbal, Jawed; Gjyshi, Olsi; Bottero, Virginie; Chandran, Bala

    2016-04-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) enters human dermal microvascular endothelial cells (HMVEC-d), its naturalin vivotarget cells, by lipid raft-dependent macropinocytosis. The internalized viral envelope fuses with the macropinocytic membrane, and released capsid is transported to the nuclear vicinity, resulting in the nuclear entry of viral DNA. The endosomal sorting complexes required for transport (ESCRT) proteins, which include ESCRT-0, -I, -II, and -III, play a central role in endosomal trafficking and sorting of internalized and ubiquitinated receptors. Here, we examined the role of ESCRT-0 component Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) in KSHV entry into HMVEC-d by macropinocytosis. Knockdown of Hrs by short hairpin RNA (shRNA) transduction resulted in significant decreases in KSHV entry and viral gene expression. Immunofluorescence analysis (IFA) and plasma membrane isolation and proximity ligation assay (PLA) demonstrated the translocation of Hrs from the cytosol to the plasma membrane of infected cells and association with α-actinin-4. In addition, infection induced the plasma membrane translocation and activation of the serine/threonine kinase ROCK1, a downstream target of the RhoA GTPase. Hrs knockdown reduced these associations, suggesting that the recruitment of ROCK1 is an Hrs-mediated event. Interaction between Hrs and ROCK1 is essential for the ROCK1-induced phosphorylation of NHE1 (Na(+)/H(+)exchanger 1), which is involved in the regulation of intracellular pH. Thus, our studies demonstrate the plasma membrane association of ESCRT protein Hrs during macropinocytosis and suggest that KSHV entry requires both Hrs- and ROCK1-dependent mechanisms and that ROCK1-mediated phosphorylation of NHE1 and pH change is an essential event required for the macropinocytosis of KSHV. Macropinocytosis is the major entry pathway of KSHV in human dermal microvascular endothelial cells, the natural target cells of KSHV

  19. Heat stress prevents lipopolysaccharide-induced apoptosis in pulmonary microvascular endothelial cells by blocking calpain/p38 MAPK signalling.

    Science.gov (United States)

    Liu, Zhi-Feng; Zheng, Dong; Fan, Guo-Chang; Peng, Tianqing; Su, Lei

    2016-08-01

    Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.

  20. Expression of endothelial nitric oxide synthase in acute radiation-induced cerebral edema

    International Nuclear Information System (INIS)

    Liu Baoguo; Zhang Baomin; Chen Xiaohua; Gao Yabing; Wang Dewen

    2000-01-01

    Objective: To study the relation between changes in expression of endothelial nitric oxide synthase (eNOS) in brain vascular endothelial cells and acute radiation-induced cerebral edema after 60 Co gamma knife irradiation with a high dose. Methods: The right caudate nucleus of rats were irradiated with 200 Gy 60 Co gamma knife. the rats were sacrificed within 14 days after irradiation. By a light microscopy, electron microscopy, immunohistochemistry and in situ hybridization, the authors studied the formation and development of acute radiation-induced cerebral edema as well as the expression of eNOS in brain vascular endothelial cells. Results: Acute radiation-induced cerebral edema was observed morphologically 2 hours after irradiation and peaked on day 3 after irradiation. The expression of eNOS in brain vascular endothelial cells markedly increased 2 hours after irradiation, which could be consistently visualized during the acute developmental phase of radiation-induced cerebral edema. Conclusion: The increased expression of eNOS may be related to the formation and development of acute radiation-induced cerebral edema after 60 Co gamma knife irradiation with a high dose

  1. The relationship between microvascular endothelial function and carotid-radial pulse wave velocity in patients with mild hypertension.

    Science.gov (United States)

    McCall, Damian O; McGartland, Claire P; Woodside, Jayne V; Sharpe, Peter; McCance, David R; Young, Ian S

    2010-01-01

    Carotid-radial pulse wave velocity (CRPWV) can be measured rapidly using applanation tonometry and significantly higher values have been reported among patients with risk factors for vascular disease. Forearm blood flow responses to intrabrachial infusion of acetylcholine independently predict cardiovascular morbidity among hypertensive patients. We aimed to examine the relationship between CRPWV, a potentially informative, noninvasive measure and this more established parameter of arterial health. One hundred and fifteen mildly hypertensive individuals (67% men, mean (± SD) age 54 ± 8 years, mean (± SD) blood pressure (BP) 143 ± 16/83 ± 12 mmHg) were recruited from a weekly medical outpatient clinic. Each volunteer had CRPWV measured using sequential tonometry before forearm blood flow responses to intra-arterial, endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) vasodilators were assessed. There was a significant negative correlation between CRPWV and maximum forearm blood flow response to acetylcholine (r = -0.225, p = 0.016). This association remained significant in a multiple regression analysis (β = -0.213, p = 0.034). Mean arterial pressure and weight were additional independent predictors of CRPWV in this model. There was no such relationship between CRPWV and response to sodium nitroprusside (r = 0.088, p = 0.349). In patients with mild hypertension, a poor forearm blood flow response to acetylcholine independently predicted faster CRPWV, thus linking an established measure of microvascular endothelial function with a noninvasive index of conduit vessel stiffness.

  2. Stimulated mast cells promote maturation of myocardial microvascular endothelial cell neovessels by modulating the angiopoietin-Tie-2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Yancheng People' s First Hospital, Division of Cardiology, Yancheng, Jiangsu, China, Division of Cardiology, Yancheng People’s First Hospital, Yancheng, Jiangsu (China); Zhu, W.; Tao, J.P.; Zhang, Q.Y.; Wei, M. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China)

    2013-10-22

    Angiopoietin (Ang)-1 and Ang-2 interact in angiogenesis to activate the Tie-2 receptor, which may be involved in new vessel maturation and regression. Mast cells (MCs) are also involved in formation of new blood vessels and angiogenesis. The present study was designed to test whether MCs can mediate angiogenesis in myocardial microvascular endothelial cells (MMVECs). Using a rat MMVEC and MC co-culture system, we observed that Ang-1 protein levels were very low even though its mRNA levels were increased by MCs. Interestingly, MCs were able to enhance migration, proliferation, and capillary-like tube formation, which were associated with suppressed Ang-2 protein expression, but not Tie-2 expression levels. These MCs induced effects that could be reversed by either tryptase inhibitor [N-tosyl-L-lysine chloromethyl ketone (TLCK)] or chymase inhibitor (N-tosyl-L-phenylalanyl chloromethyl ketone), with TLCK showing greater effects. In conclusion, our data indicated that MCs can interrupt neovessel maturation via suppression of the Ang-2/Tie-2 signaling pathway.

  3. Pulmonary microvascular hyperpermeability and expression of vascular endothelial growth factor in smoke inhalation- and pneumonia-induced acute lung injury.

    Science.gov (United States)

    Lange, Matthias; Hamahata, Atsumori; Traber, Daniel L; Connelly, Rhykka; Nakano, Yoshimitsu; Traber, Lillian D; Schmalstieg, Frank C; Herndon, David N; Enkhbaatar, Perenlei

    2012-11-01

    Acute lung injury (ALI) and sepsis are major contributors to the morbidity and mortality of critically ill patients. The current study was designed further evaluate the mechanism of pulmonary vascular hyperpermeability in sheep with these injuries. Sheep were randomized to a sham-injured control group (n=6) or ALI/sepsis group (n=7). The sheep in the ALI/sepsis group received inhalation injury followed by instillation of Pseudomonas aeruginosa into the lungs. These groups were monitored for 24 h. Additional sheep (n=16) received the injury and lung tissue was harvested at different time points to measure lung wet/dry weight ratio, vascular endothelial growth factor (VEGF) mRNA and protein expression as well as 3-nitrotyrosine protein expression in lung homogenates. The injury induced severe deterioration in pulmonary gas exchange, increases in lung lymph flow and protein content, and lung water content (P<0.01 each). These alterations were associated with elevated lung and plasma nitrite/nitrate concentrations, increased tracheal blood flow, and enhanced VEGF mRNA and protein expression in lung tissue as well as enhanced 3-nitrotyrosine protein expression (P<0.05 each). This study describes the time course of pulmonary microvascular hyperpermeability in a clinical relevant large animal model and may improve the experimental design of future studies. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  4. The MTT assays of bovine retinal pericytes and human microvascular endothelial cells on DLC and Si-DLC-coated TCPS.

    Science.gov (United States)

    Okpalugo, T I T; McKenna, E; Magee, A C; McLaughlin, J; Brown, N M D

    2004-11-01

    MTT (Tetrazolium)-assay suggests that diamond-like carbon (DLC) and silicon-doped DLC (Si-DLC) films obtained under appropriate deposition parameters are not toxic to bovine retinal pericytes, and human microvascular endothelial cells (HMEC). The observed frequency distributions of the optical density (OD) values indicative of cell viability are near Gaussian-normal distribution. One-way ANOVA indicates that at 0.05 levels the population means are not significantly different for the coated and control samples. The observed OD values depend on the cell line (cell growth/metabolic rate), possibly cell cycle stage, the deposition parameters-bias voltage, ion energy, pressure, argon precleaning, and the dopant. For colored thin films like DLC with room temperature photoconductivity and photoelectric effects, it is important to account for the OD contribution from the coating itself. MTT assay, not surprisingly, seems not to be highly sensitive to interfacial cellular interaction resulting from the change in the film's nanostructure, because the tetrazolium metabolism is mainly intracellular and not interfacial. The thin films were synthesized by 13.56 MHz RF-PECVD using argon and acetylene as source gases, with tetramethylsilane (TMS) vapor introduced for silicon doping. This study could be relevant to biomedical application of the films in the eye, peri-vascular, vascular compartments, and for cell-tissue engineering. (c) 2004 Wiley Periodicals, Inc.

  5. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs.

    Science.gov (United States)

    Lombardo, Laura; Pellitteri, Rosalia; Balazy, Michael; Cardile, Venera

    2008-05-01

    Our work contributes to the understanding of the mechanisms of drug resistance in epilepsis. This study aimed to investigate i) the levels of expression of P-glycoprotein (P-gp), and multidrug resistance-associated proteins (MRP)1 and 2, ii) the activation of the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), and iii) the relationship between increased P-gp and MRPs expression and PXR and CAR activation, in immortalized rat brain microvascular endothelial cell lines, GPNT and RBE4, following treatment with the antiepileptic drugs (AEDs), topiramate, phenobarbital, carbamazepine, tiagabine, levetiracetam, and phenytoin, using Western blotting and immunocytochemistry methods. Carbamazepine, phenobarbital and phenytoin induced the highest levels of P-gp and MPRs expression that was associated with increased activation of PXR and CAR receptors as compared to levetiracetam, tiagabine and topiramate. We conclude that P-gp and MRPs are differently overexpressed in GPNT and RBE4 by various AEDs and both PXR and CAR are involved in the drug-resistant epilepsy induced by carbamazepine, phenobarbital and phenytoin.

  6. Sarcoptes scabiei (Acari: Sarcoptidae) mite extract modulates expression of cytokines and adhesion molecules by human dermal microvascular endothelial cells.

    Science.gov (United States)

    Elder, B Laurel; Arlian, Larry G; Morgan, Marjorie S

    2006-09-01

    The inflammatory and immune responses seen with the worldwide disease scabies, caused by the mite Sarcoptes scabiei (De Geer) (Acari: Sarcoptidae), are complex. Clinical symptoms are delayed for weeks in patients when they are infested with scabies for the first time. This study was undertaken to elucidate the role of the human dermal microvascular endothelial cell (HMVEC-D) in modulating the inflammatory and immune responses in the skin to S. scabiei. Extracts of S. scabiei were incubated with HMVEC-D and the expression of adhesion molecules and chemokine receptors on the cells and the secretion of selected cytokines were determined by enzyme-linked immunosorbent assay. S. scabiei extract was found to inhibit HMVEC-D expression of E-selectin and vascular cell adhesion molecule-1, although not intercellular adhesion molecule-1. The secretion of interleukin-8 also was inhibited by S. scabiei extract. S. scabiei extract increased expression of the chemokine receptor CXCR-1 and both down-regulated and up-regulated expression of CXCR-2, depending on the concentration tested. These findings help explain the delayed inflammatory reaction to infestation with S. scabiei.

  7. Transcriptome of E. coli K1 bound to human brain microvascular endothelial cells

    OpenAIRE

    Xie, Yi; Parthasarathy, Geetha; Di Cello, Francescopaolo; Teng, Ching-Hao; Paul-Satyaseela, Maneesh; Kim, Kwang Sik

    2007-01-01

    Escherichia coli K1 is the most common Gram-negative organism causing neonatal meningitis. Binding to human brain microvascdular endothelial cells (HBMEC) is an essential step for E. coli K1 traversal of the blood-brain barrier. In this study, we examined expression profiles of E. coli K1 strain RS218 during its binding to HBMEC. Comparison of HBMEC-bound E. coli K1 with collagen-bound E. coli revealed more than one hundred genes whose expression patterns were significantly changed in HBMEC-b...

  8. High t-PA release by neonate brain microvascular endothelial cells under glutamate exposure affects neuronal fate.

    Science.gov (United States)

    Henry, Vincent Jean; Lecointre, Maryline; Laudenbach, Vincent; Ali, Carine; Macrez, Richard; Jullienne, Amandine; Berezowski, Vincent; Carmeliet, Peter; Vivien, Denis; Marret, Stéphane; Gonzalez, Bruno José; Leroux, Philippe

    2013-02-01

    Glutamate excitotoxicity is a consolidated hypothesis in neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor mediated effects. In brain microvascular endothelial cell (nBMEC) cultures from neonates, t-PA content and release upon glutamate are higher than in adult (aBMECs) cultures. Owing to the variety of t-PA substrates and receptor targets, the study was aimed at determining the putative roles of endothelial t-PA in the neonatal brain parenchyma under glutamate challenge. Basal t-PA release was 4.4 fold higher in nBMECs vs aBMECs and glutamate was 20 fold more potent to allow Evans blue vascular permeability in neonate microvessels indicating that, under noxious glutamate (50 μM) exposure, high amounts of endothelial t-PA stores may be mobilized and may access the nervous parenchyma. Culture media from nBMECS or aBMECs challenged by excitotoxic glutamate were applied to neuron cultures at DIV 11. While media from adult cells did not evoke more LDH release in neuronal cultures that under glutamate alone, media from nBMECs enhanced 2.2 fold LDH release. This effect was not observed with media from t-PA(-/-) nBMECs and was inhibited by hr-PAI-1. In Cortical slices from 10 day-old mice, hrt-PA associated with glutamate evoked neuronal necrosis in deeper (more mature) layers, an effect reversed by NMDA receptor GluN1 amino-terminal domain antibody capable of inhibiting t-PA potentiation of the receptor. In superficial layers (less mature), hrt-PA alone inhibited apoptosis, an effect reversed by the EGF receptor antagonist AG1478. Applied to immature neurons in culture (DIV5), media from nBMEC rescued 85.1% of neurons from cell death induced by serum deprivation. In cortical slices, the anti-apoptotic effect of t-PA fitted with age dependent localization of less mature neurons. These data suggest that in the immature brain, propensity of vessels to release high amounts of t-PA may not only

  9. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    International Nuclear Information System (INIS)

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-01-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  10. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-κB pathway in mouse brain microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Lin Chih-Chung

    2013-01-01

    Full Text Available Abstract Background Endothelin-1 (ET-1 is a proinflammatory mediator and elevated in the regions of several brain injury and inflammatory diseases. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the regulation of cyclooxygenase-2 (COX-2/prostaglandin E2 (PGE2 system in various cell types. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Herein we investigated the effects of ET-1 in COX-2 regulation in mouse brain microvascular endothelial (bEnd.3 cells. Results The data obtained with Western blotting, RT-PCR, and immunofluorescent staining analyses showed that ET-1-induced COX-2 expression was mediated through an ETB-dependent transcriptional activation. Engagement of Gi- and Gq-protein-coupled ETB receptors by ET-1 led to phosphorylation of ERK1/2, p38 MAPK, and JNK1/2 and then activated transcription factor NF-κB. Moreover, the data of chromatin immunoprecipitation (ChIP and promoter reporter assay demonstrated that the activated NF-κB was translocated into nucleus and bound to its corresponding binding sites in COX-2 promoter, thereby turning on COX-2 gene transcription. Finally, up-regulation of COX-2 by ET-1 promoted PGE2 release in these cells. Conclusions These results suggested that in mouse bEnd.3 cells, activation of NF-κB by ETB-dependent MAPK cascades is essential for ET-1-induced up-regulation of COX-2/PGE2 system. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rationally therapeutic interventions for brain injury or inflammatory diseases.

  11. Effects of Dietary Supplementation with Brazil Nuts on Microvascular Endothelial Function in Hypertensive and Dyslipidemic Patients: A Randomized Crossover Placebo-Controlled Trial.

    Science.gov (United States)

    Huguenin, Grazielle V B; Moreira, Annie S B; Siant'Pierre, Tatiana D; Gonçalves, Rodrigo A; Rosa, Glorimar; Oliveira, Glaucia M M; Luiz, Ronir R; Tibirica, Eduardo

    2015-11-01

    To investigate the effects of dietary supplementation with GBNs on microvascular endothelial function in hypertensive and dyslipidemic patients. Ninety-one patients of both sexes aged 62.1 ± 9.3 years received 13 g/day of GBNs or a placebo for three months with a washout period of one month between treatments. Microvascular endothelial function was assessed using LSCI coupled with iontophoresis of ACh and PORH. We also used skin video capillaroscopy to measure capillary density and recruitment at rest and during PORH. Plasma concentrations of NOx were also measured as a marker of nitric oxide bioavailability. Supplementation with GBNs significantly increased the plasma levels of Se (p 0.05), and GBNs did not improve capillary density at baseline or recruitment during PORH (p > 0.05). Supplementation with GBNs induced significant increases in the plasma Se concentration and systemic bioavailability of nitric oxide. Nevertheless, GBN supplementation did not lead to any improvement in systemic microvascular reactivity or density in patients with arterial hypertension and dyslipidemia who were undergoing multiple drug therapies. © 2015 John Wiley & Sons Ltd.

  12. Perfusion MRI derived indices of microvascular shunting and flow control correlate with tumor grade and outcome in patients with cerebral glioma

    DEFF Research Database (Denmark)

    Tietze, Anna; Mouridsen, Kim; Lassen-Ramshad, Yasmin

    2015-01-01

    Objectives: Deficient microvascular blood flow control is thought to cause tumor hypoxia and increase resistance to therapy. In glioma patients, we tested whether perfusion-weighted MRI (PWI) based indices of microvascular flow control provide more information on tumor grade and patient outcome...... than does the established PWI angiogenesis marker, cerebral blood volume (CBV). Material and Methods: Seventy-two glioma patients (sixty high-grade, twelve low-grade gliomas) were included. Capillary transit time heterogeneity (CTH) and COV, its ratio to blood mean transit time, provide indices...... of microvascular flow control and the extent to which oxygen can be extracted by tumor tissue. The ability of these parameters and CBV to differentiate tumor grade were assessed by receiver operating characteristic curves and logistic regression. Their ability to predict time to progression and overall survival...

  13. Correlation of microvascular abnormalities and endothelial dysfunction in Type-1 Diabetes Mellitus (T1DM): a real-time intravital microscopy study.

    Science.gov (United States)

    Cheung, Anthony T W; Tomic, M Meighan Smith; Chen, Peter C Y; Miguelino, Eric; Li, Chin-Shang; Devaraj, Sridevi

    2009-01-01

    We hypothesize that real-time in vivo microvascular abnormalities should correlate with biochemical markers of inflammation/endothelial dysfunction in T1DM. Real-time quantification of T1DM and healthy non-diabetic control microcirculation was conducted utilizing computer-assisted intravital microscopy. Selected biochemical markers (high sensitivity C-reactive protein (hsCRP), soluble vascular cell adhesion molecules (sVCAM), soluble intercellular adhesion molecules (sICAM), soluble E-selectin (sE-selectin), nitrotyrosine, superoxide anion (O2-), interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha)) were used for correlation. The severity of microvascular abnormalities, as reflected by the arithmetic severity index (SI), was significantly increased in T1DM vs. controls (5.89 +/- 1.47 vs. 2.34 +/- 1.48; Pprogression and therapeutic efficacy studies.

  14. Interactions of Pseudomonas aeruginosa and Corynebacterium spp. with non-phagocytic brain microvascular endothelial cells and phagocytic Acanthamoeba castellanii.

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Lakhundi, Sahreena; Khan, Naveed Ahmed

    2015-06-01

    Several lines of evidence suggest that Acanthamoeba interact with bacteria, which may aid in pathogenic bacterial transmission to susceptible hosts, and these interactions may have influenced evolution of bacterial pathogenicity. In this study, we tested if Gram-negative Pseudomonas aeruginosa and Gram-positive Corynebacterium spp. can associate/invade and survive inside Acanthamoeba castellanii trophozoites and cysts, as well as non-phagocytic human brain microvascular endothelial cells. The results revealed that both Corynebacterium spp. and P. aeruginosa were able to associate as well as invade and/or taken up by the phagocytic A. castellanii trophozoite. In contrast, P. aeruginosa exhibited higher association as well as invasion of non-phagocytic HBMEC compared with Corynebacterium spp. Notably, P. aeruginosa remained viable during the encystment process and exhibited higher levels of recovery from mature cysts (74.54 bacteria per amoebae) compared with Corynebacterium spp. (2.69 bacteria per amoeba) (P Acanthamoeba cysts can be airborne, these findings suggest that Acanthamoeba is a potential vector in the transmission of P. aeruginosa to susceptible hosts. When bacterial-ridden amoebae were exposed to favourable (nutrient-rich) conditions, A. castellanii emerged as vegetative trophozoites and remained viable, and likewise viable P. aeruginosa were also observed but rarely any Corynebacterium spp. were observed. Correspondingly, P. aeruginosa but not Corynebacterium spp. exhibited higher cytotoxicity to non-phagocytic HBMEC, producing more than 75% cell death in 24 h, compared to 20% cell death observed with Corynebacterium spp. Additionally, it was observed that the bacterial conditioned medium had no negative effect on A. castellanii growth. Further characterization of amoebal and bacterial interactions will assist in identifying the role of Acanthamoeba in the transmission and evolution of pathogenic bacteria.

  15. High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a.

    Directory of Open Access Journals (Sweden)

    Chaoming Peng

    Full Text Available Cardiac microvascular endothelial cells (CMECs dysfunction contributes to cardiovascular complications in diabetes, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors are involved in apoptosis and reactive oxygen species (ROS production. Therefore, the present study was designed to elucidate the potential role of FoxO3a on the CMECs injury induced by high glucose.CMECs were isolated from hearts of adult rats and cultured in normal or high glucose medium for 6 h, 12 h and 24 h respectively. To down-regulate FoxO3a expression, CMECs were transfected with FoxO3a siRNA. ROS accumulation and apoptosis in CMECs were assessed by dihydroethidine (DHE staining and TUNEL assay respectively. Moreover, the expressions of Akt, FoxO3a, Bim and BclxL in CMECs were assessed by Western blotting assay.ROS accumulation in CMECs was significantly increased after high glucose incubation for 6 to 24 h. Meanwhile, high glucose also increased apoptosis in CMECs, correlated with decreased the phosphorylation expressions of Akt and FoxO3a. Moreover, high glucose incubation increased the expression of Bim, whereas increased anti-apoptotic protein BclxL. Furthermore, siRNA target FoxO3a silencing enhanced the ROS accumulation, whereas suppressed apoptosis in CMECs. FoxO3a silencing also abolished the disturbance of Bcl-2 proteins induced by high glucose in CMECs.Our data provide evidence that high glucose induced FoxO3a activation which suppressed ROS accumulation, and in parallel, resulted in apoptosis of CMECs.

  16. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schonlein Purpura.

    Directory of Open Access Journals (Sweden)

    Yao-Hsu Yang

    Full Text Available In addition to IgA, the deposition of complement (C3 in dermal vessels is commonly found in Henoch-Schönlein purpura (HSP. The aim of this study is to elucidate the role of circulating complement proteins in the pathogenesis of childhood HSP.Plasma levels of C3a, C4a, C5a, and Bb in 30 HSP patients and 30 healthy controls were detected by enzyme-linked immunosorbent assay (ELISA. The expression of C3a receptor (C3aR, C5a receptor (CD88, E-selectin, intercellular adhesion molecule 1 (ICAM-1, C3, C5, interleukin (IL-8, monocyte chemotactic protein (MCP-1, and RANTES by human dermal microvascular endothelial cells (HMVEC-d was evaluated either by flow cytometry or by ELISA.At the acute stage, HSP patients had higher plasma levels of C3a (359.5 ± 115.3 vs. 183.3 ± 94.1 ng/ml, p < 0.0001, C5a (181.4 ± 86.1 vs. 33.7 ± 26.3 ng/ml, p < 0.0001, and Bb (3.7 ± 2.6 vs. 1.0 ± 0.6 μg/ml, p < 0.0001, but not C4a than healthy controls. Although HSP patient-derived acute phase plasma did not alter the presentation of C3aR and CD88 on HMVEC-d, it enhanced the production of endothelial C3 and C5. Moreover, C5a was shown in vitro to up-regulate the expression of IL-8, MCP-1, E-selectin, and ICAM-1 by HMVEC-d with a dose-dependent manner.In HSP, the activation of the complement system in part through the alternative pathway may have resulted in increased plasma levels of C3a and C5a, which, especially C5a, may play a role in the disease pathogenesis by activating endothelium of cutaneous small vessels.

  17. Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II-Induced Hypertension.

    Science.gov (United States)

    Diaz-Otero, Janice M; Fisher, Courtney; Downs, Kelsey; Moss, M Elizabeth; Jaffe, Iris Z; Jackson, William F; Dorrance, Anne M

    2017-12-01

    The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia. © 2017 American Heart Association, Inc.

  18. Blocking of α1β1 and α2β1 adhesion molecules inhibits eosinophil migration through human lung microvascular endothelial cell monolayer

    Directory of Open Access Journals (Sweden)

    Stanisława Bazan-Socha

    2014-12-01

    Full Text Available In cell trafficking to the airways in asthma, among integrins the most important are those containing α4 and β2 subunits. We have previously shown that also blocking of collagen receptors, α1β1 and α2β1 integrins, inhibits transmigration of eosinophils of asthmatic subjects through a monolayer of skin microvascular endothelial cells seeded on collagen IV coated inserts. However, it was not clear whether this observation was limited to asthma or depended on the type of microvascular cell and collagen IV used as a base. In the current study we performed a transmigration assay using human lung microvascular endothelial cells seeded directly on a plastic surface as a base and blood cells isolated from 12 representatives of each of two groups, asthmatics and healthy donors, by gradient centrifugation, followed by immunomagnetic negative separation of eosinophils. Isolated eosinophils and peripheral blood mononuclear cells (PBMC were inhibited by snake venom-derived integrin antagonists including viperistatin and VP12, as inhibitors of α1β1 and α2β1 integrin, respectively, and VLO5 and VLO4, as inhibitors of α4β1 and α5β1 integrin, respectively. All snake venom-derived anti-adhesive proteins were effective in inhibiting eosinophil transmigration, whilst only VLO5 and VLO4 reduced PBMC mobility in this assay. This observation was similar in both groups of subjects studied. α1β1 and α2β1 integrins could be involved in transmigration of eosinophil to the inflammatory site. Migratory inhibition was observed in asthma subjects as well as in healthy donors, and did not depend on origin of endothelial cells or the extracellular matrix component used as a base.

  19. Role of ROS in Aβ42 Mediated Activation of Cerebral Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Andrey Tsoy

    2014-12-01

    Full Text Available Introduction. There is substantial evidence that the deposition of aggregated amyloid-beta peptide (Aβ in brain parenchyma and brain vessels is the main cause of neuronal dysfunction and death in Alzheimer’s disease (AD. Aβ exhibits multiple cytotoxic effects on neurons and glial cells and causes dysfunction of the blood brain barrier (BBB. In AD brains, an increased deposition of Aβ in the cerebral vasculature has been found to be correlated with increased transmigration of blood-borne inflammatory cells and neurovascular inflammation. However, regulatory mediators of these processes remain to be elucidated. In this study, we examined the role of ROS in actin polymerization and expression of adhesion molecules (P-selectin on the surface of the cerebral endothelial cells (CECs that are activated by Aβ42.Materials and methods. Mouse BEnd3 line (ATCC was used in this research. BEnd3 cells respond to Aβ treatment similarly to human primary CECs and are a common model to investigate CECs’ function. We used immortalized bEnd3 cells as the following: controls; cells incubated with Aβ42 for 10, 30, and 60 minutes; cells incubated with 30 mM of antioxidant N-acetylcysteine (NAC for 1 hr; and, cells pre-treated with NAC followed by Aβ42 exposure. We measured DHE fluorescence to investigate intracellular ROS production. Immunofluorescent microscopy of anti-P-selectin and oregon green phalloidin was used to quantify the surface P-selectin expression and actin polymerization, and Western blot analysis was used to analyze total P-selectin expression.Results. The results of this study have demonstrated a significant time-dependent ROS accumulation after 10 minutes, 30 minutes, and 60 minutes of Aβ42 treatment, while Aβ42 stimulated ROS production in CECs was attenuated by pre-treatment with the NAC antioxidant. We also found that Aβ42 increased P-selectin fluorescence at the surface of bEnd3 cells in a time dependent manner in parallel to ROS

  20. l-arginine and l-NMMA for assessing cerebral endothelial dysfunction in ischaemic cerebrovascular disease

    DEFF Research Database (Denmark)

    Karlsson, William K; Sørensen, Caspar G; Kruuse, Christina

    2017-01-01

    Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and NG -monomethyl-l-arginine (l......-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible...... according to inclusion and exclusion criteria. Studies investigated the effect of age (n=2), type 2 diabetes mellitus (DM) (n=1), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) (n=1), leukoaraiosis (n=1), and prior ischaemic stroke or transient ischaemic...

  1. MicroRNA-199a-5p Regulates the Proliferation of Pulmonary Microvascular Endothelial Cells in Hepatopulmonary Syndrome

    Directory of Open Access Journals (Sweden)

    Jing Zeng

    2015-10-01

    Full Text Available Background/Aims: Pulmonary microvascular endothelial cell (PMVEC proliferation and angiogenesis contribute to the development of hepatopulmonary syndrome (HPS. MicroRNA-199a-5p (miR-199a-5p has emerged as a potent regulator of angiogenesis, and its expression levels significantly decrease in the serum of patients with hepatopathy. However, it has not been reported about whether miR-199a-5p might control PMVEC proliferation. Here, we described the miR-199a-5p governing PMVEC proliferation in HPS. Methods: PMVECs were treated with rat serum from common bile duct ligation (CBDL or sham. MiR-199a-5p mimic or inhibitor was used to change the miR-199a-5p expression. Knockdown of caveolin-1 (Cav-1 was performed using siRNA. NSC-23766 was used to inhibit Rac1 activity. Gene and protein expressions were quantified by qRT-PCR and western blot. Cell proliferation was analyzed by 3H-TdR incorporation and CCK-8 assays. Stress fibers were detected by immunofluorescence. Results: CBDL rat serum induced the down-regulation of miR-199a-5p. Delivery of miR-199a-5p suppressed the CBDL rat serum-induced PMVEC proliferation whereas knockdown of miR-199a-5p promoted PMVEC proliferation. This was accompanied by a decrease and an increase in Cav-1 expression, respectively. Cav-1 siRNA abolished the enhancement of PMVEC proliferation induced by the miR-199a-5p inhibition. Although stress fibers were disrupted in Cav-1 deficient cells, NSC-23766 increased stress fibers and contributed to cell proliferation. Conclusions: CBDL rat serum induced down-regulation of miR-199a-5p in PMVECs, which led to an increase of Cav-1 gene expression. Increased Cav-1 expression, by inhibiting Rac1 activity, led to the formation of stress fibers, which contribute to PMVEC proliferation and thus the pathogenesis of HPS.

  2. Lipopolysaccharide (LPS)-mediated Angiopoietin-2-dependent Autocrine Angiogenesis Is Regulated by NADPH Oxidase 2 (Nox2) in Human Pulmonary Microvascular Endothelial Cells*

    Science.gov (United States)

    Menden, Heather; Welak, Scott; Cossette, Stephanie; Ramchandran, Ramani; Sampath, Venkatesh

    2015-01-01

    Sepsis-mediated endothelial Angiopoeitin-2 (Ang2) signaling may contribute to microvascular remodeling in the developing lung. The mechanisms by which bacterial cell wall components such as LPS mediate Ang2 signaling in human pulmonary microvascular endothelial cells (HPMECs) remain understudied. In HPMEC, LPS-induced Ang2, Tie2, and VEGF-A protein expression was preceded by increased superoxide formation. NADPH oxidase 2 (Nox2) inhibition, but not Nox4 or Nox1 inhibition, attenuated LPS-induced superoxide formation and Ang2, Tie2, and VEGF-A expression. Nox2 silencing, but not Nox4 or Nox1 silencing, inhibited LPS-mediated inhibitor of κ-B kinase β (IKKβ) and p38 phosphorylation and nuclear translocation of NF-κB and AP-1. In HPMECs, LPS increased the number of angiogenic tube and network formations in Matrigel by >3-fold. Conditioned media from LPS-treated cells also induced angiogenic tube and network formation in the presence of Toll-like receptor 4 blockade but not in the presence of Ang2 and VEGF blockade. Nox2 inhibition or conditioned media from Nox2-silenced cells attenuated LPS-induced tube and network formation. Ang2 and VEGF-A treatment rescued angiogenesis in Nox2-silenced cells. We propose that Nox2 regulates LPS-mediated Ang2-dependent autocrine angiogenesis in HPMECs through the IKKβ/NF-κB and MAPK/AP-1 pathways. PMID:25568324

  3. GPR40/FFA1 and Neutral Sphingomyelinase Are Involved in Palmitate-Boosted Inflammatory Response of Microvascular Endothelial Cells to LPS

    Science.gov (United States)

    Lu, Zhongyang; Li, Yanchun; Jin, Junfei; Zhang, Xiaoming; Hannun, Yusuf A.; Huang, Yan

    2015-01-01

    Objectives Increased levels of both saturated fatty acids (SFAs) and lipopolysaccharide (LPS) are associated with type 2 diabetes. However, it remains largely unknown how SFAs interact with LPS to regulate inflammatory responses in microvascular endothelial cells (MIC ECs) that are critically involved in atherosclerosis as a diabetic complication. In this study, we compared the effects of LPS, palmitic acid (PA), the most abundant saturated fatty acid, or the combination of LPS and PA on interleukin (IL)-6 expression by MIC ECs and explored the underlying mechanisms. Methods Human cardiac MIC ECs were treated with LPS, PA and LPS plus PA and the regulatory pathways including receptors, signal transduction, transcription and post-transcription, and sphingolipid metabolism for IL-6 expression were investigated. Results G protein-coupled receptor (GPR)40 or free fatty acid receptor 1 (FFA1), but not toll-like receptor 4, was involved in PA-stimulated IL-6 expression. PA not only stimulated IL-6 expression by itself, but also remarkably enhanced LPS-stimulated IL-6 expression via a cooperative stimulation on mitogen-activated protein kinase and nuclear factor kappa B signaling pathways, and both transcriptional and post-transcriptional activation. Furthermore, PA induced a robust neutral sphingomyelinase (nSMase)-mediated sphingomyelin hydrolysis that was involved in PA-augmented IL-6 upregulation. Conclusion PA boosted inflammatory response of microvascular endothelial cells to LPS via GPR40 and nSMase. PMID:25795558

  4. Simvastatin attenuates the cerebral vascular endothelial inflammatory response in a rat traumatic brain injury.

    Science.gov (United States)

    Wang, Kuo-Wei; Chen, Han-Jung; Lu, Kang; Liliang, Po-Chou; Liang, Cheng-Loong; Tsai, Yu-Duan; Cho, Chung-Lung

    2014-01-01

    Traumatic brain injury (TBI) leads to important and deleterious inflammation, as evidenced by edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, the activation of cerebral vascular endothelial cells plays a crucial role in the pathogenesis of inflammation. In this study, we hypothesized that the activation of cerebral vascular endothelial cells plays a crucial role in the pathogenesis of inflammation and outcome after TBI. It may represent a key cellular target for statin therapy. In our study, cortical contusions were induced, and the effect of continuous treatment of simvastatin on behavior and inflammation in adult rats following experimental TBI was evaluated. The treatment group received 15 mg/kg of simvastatin daily for 3 days. Neurological function was assessed with the grip test. The results showed that the non-treatment control group had a significantly greater increase in ICAM-1 expression from pre-injury to the post-injury 72 h time point as compared to the expression in treatment group. The treatment group had better neurological function as evidenced in a grip test performed from baseline to 72 h. The analysis of a western blot test and pathology also demonstrated reduced ICAM-1 expression and a smaller area of damage and tissue loss. Our findings suggest that simvastatin could attenuate the activation of cerebral vascular endothelial inflammatory response and decrease the loss of neurological function and brain tissue.

  5. Uncaria tomentosa alkaloidal fraction reduces paracellular permeability, IL-8 and NS1 production on human microvascular endothelial cells infected with dengue virus.

    Science.gov (United States)

    Lima-Junior, Raimundo Sousa; Mello, Cintia da Silva; Siani, Antonio Carlos; Valente, Ligia M Marino; Kubelka, Claire Fernandes

    2013-11-01

    Dengue is the major Arbovirus in the world, annually causing morbidity and death. Severe dengue is associated with changes in the endothelial barrier function due to the production of inflammatory mediators by immune cells and by the endothelium. Dengue virus (DENV) replicates efficiently in human endothelial cells in vitro and elicits immune responses resulting in endothelial permeability. Uncaria tomentosa (Willd.) DC.(Rubiaceae), known as cat's claw, has been used in folk medicine for the treatment of a wide-array of symptoms, and several scientific studies reported its antiviral, immunomodulatory, anti-inflammatory and antioxidant properties. Here we infected a human lineage of dermal microvascular endothelial cells (HMEC-1) with DENV-2 and treated it with an alkaloidal fraction from U. tomentosa bark (AFUT). We showed antiviral and immunomodulatory activities of U. tomentosa by determining the NS1 antigen and IL-8 in supernatant of DENV-2 infected HMEC-1. Furthermore, by measurement of transendothelial electrical resistance (TEER) we demonstrated, for the first time, that a plant derivative contributed to the reduction of paracellular permeability in DENV-2 infected HMEC-1. We also showed that IL-8 contributed significantly to the induction of permeability. Although further investigations should be conducted before a new drug can be suggested, our in vitro data support evidence that AFUT could be potentially useful in developing a treatment for severe dengue.

  6. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Decreased microvascular cerebral blood flow assessed by diffuse correlation spectroscopy after repetitive concussions in mice.

    Science.gov (United States)

    Buckley, Erin M; Miller, Benjamin F; Golinski, Julianne M; Sadeghian, Homa; McAllister, Lauren M; Vangel, Mark; Ayata, Cenk; Meehan, William P; Franceschini, Maria Angela; Whalen, Michael J

    2015-12-01

    Repetitive concussions are associated with long-term cognitive dysfunction that can be attenuated by increasing the time intervals between concussions; however, biomarkers of the safest rest interval between injuries remain undefined. We hypothesize that deranged cerebral blood flow (CBF) is a candidate biomarker for vulnerability to repetitive concussions. Using a mouse model of human concussion, we examined the effect of single and repetitive concussions on cognition and on an index of CBF (CBFi) measured with diffuse correlation spectroscopy. After a single mild concussion, CBFi was reduced by 35±4% at 4 hours (Pconcussions spaced 1 day apart, CBFi was also reduced from preinjury levels 4 hours after each concussion but had returned to preinjury levels by 72 hours after the final concussion. Interestingly, in this repetitive concussion model, lower CBFi values measured both preinjury and 4 hours after the third concussion were associated with worse performance on the Morris water maze assessed 72 hours after the final concussion. We conclude that low CBFi measured either before or early on in the evolution of injury caused by repetitive concussions could be a useful predictor of cognitive outcome.

  8. Effects of non-supervised low intensity aerobic excise training on the microvascular endothelial function of patients with type 1 diabetes: a non-pharmacological interventional study.

    Science.gov (United States)

    de Moraes, Roger; Van Bavel, Diogo; Gomes, Marília de Brito; Tibiriçá, Eduardo

    2016-01-27

    The aim of the present study was to evaluate changes in microvascular density and reactivity in patients with type 1 diabetes (T1D) resulting from low intensity chronic exercise training. This study included 22 (34 ± 7 ears) consecutive outpatients with T1D and disease duration > 6 years. We used intravital video-microscopy to measure basal skin capillary density and capillary recruitment using post-occlusive reactive hyperemia (PORH) in the dorsum of the fingers. Endothelium-dependent and -independent vasodilation of the skin microcirculation was evaluated in the forearm with a laser Doppler flow monitoring (LDF) system in combination with acetylcholine and sodium nitroprusside iontophoresis, PORH and local thermal hyperemia. The basal mean capillary density (MCD) after exercise training was significantly higher than before exercise (134 ± 25 vs. 119 ± 19 capillaries/mm(2), respectively; P = 0.0013). MCD during PORH was also higher after exercise (140 ± 26 vs. 121 ± 24 capillaries/mm(2), respectively; P < 0.0001). Endothelium-dependent capillary recruitment during PORH was also significantly higher after exercise (140 ± 26 vs. 134 ± 25 capillaries/mm(2), respectively; P < 0.0012). There were no significant changes in skin microvascular reactivity after exercise as investigated using LDF. Our results showed that low intensity aerobic exercise, performed four times per week for 12 weeks by patients with T1D, induces significant increases in microvascular density and endothelial-dependent capillary reactivity. ClinicalTrials.gov NCT02441504. Registered 7 May 2015.

  9. Huntington’s Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits

    Directory of Open Access Journals (Sweden)

    Ryan G. Lim

    2017-05-01

    Full Text Available Brain microvascular endothelial cells (BMECs are an essential component of the blood-brain barrier (BBB that shields the brain against toxins and immune cells. While BBB dysfunction exists in neurological disorders, including Huntington’s disease (HD, it is not known if BMECs themselves are functionally compromised to promote BBB dysfunction. Further, the underlying mechanisms of BBB dysfunction remain elusive given limitations with mouse models and post-mortem tissue to identify primary deficits. We undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC-derived BMECs (iBMEC from HD patients or unaffected controls. We demonstrate that HD iBMECs have intrinsic abnormalities in angiogenesis and barrier properties, as well as in signaling pathways governing these processes. Thus, our findings provide an iPSC-derived BBB model for a neurodegenerative disease and demonstrate autonomous neurovascular deficits that may underlie HD pathology with implications for therapeutics and drug delivery.

  10. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier.

    Science.gov (United States)

    Verma, Saguna; Lo, Yeung; Chapagain, Moti; Lum, Stephanie; Kumar, Mukesh; Gurjav, Ulziijargal; Luo, Haiyan; Nakatsuka, Austin; Nerurkar, Vivek R

    2009-03-15

    Neurological complications such as inflammation, failure of the blood-brain barrier (BBB), and neuronal death contribute to the mortality and morbidity associated with WNV-induced meningitis. Compromised BBB indicates the ability of the virus to gain entry into the CNS via the BBB, however, the underlying mechanisms, and the specific cell types associated with WNV-CNS trafficking are not well understood. Brain microvascular endothelial cells, the main component of the BBB, represent a barrier to virus dissemination into the CNS and could play key role in WNV spread via hematogenous route. To investigate WNV entry into the CNS, we infected primary human brain microvascular endothelial (HBMVE) cells with the neurovirulent strain of WNV (NY99) and examined WNV replication kinetics together with the changes in the expressions of key tight junction proteins (TJP) and cell adhesion molecules (CAM). WNV infection of HBMVE cells was productive as analyzed by plaque assay and qRT-PCR, and did not induce cytopathic effect. Increased mRNA and protein expressions of TJP (claudin-1) and CAM (vascular cell adhesion molecule and E-selectin) were observed at days 2 and 3 after infection, respectively, which coincided with the peak in WNV replication. Further, using an in vitro BBB model comprised of HBMVE cells, we demonstrate that cell-free WNV can cross the BBB, without compromising the BBB integrity. These data suggest that infection of HBMVE cells can facilitate entry of cell-free virus into the CNS without disturbing the BBB, and increased CAM may assist in the trafficking of WNV-infected immune cells into the CNS, via 'Trojan horse' mechanism, thereby contributing to WNV dissemination in the CNS and associated pathology.

  11. Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle

    Directory of Open Access Journals (Sweden)

    Ozlem Yalcin

    2018-03-01

    Full Text Available The endothelial glycocalyx is a complex network of glycoproteins, proteoglycans, and glycosaminoglycans; it lines the vascular endothelial cells facing the lumen of blood vessels forming the endothelial glycocalyx layer (EGL. This study aims to investigate the microvascular hemodynamics implications of the EGL by quantifying changes in blood flow hydrodynamics post-enzymatic degradation of the glycocalyx layer. High-speed intravital microscopy videos of small arteries (around 35 μm of the rat cremaster muscle were recorded at various time points after enzymatic degradation of the EGL. The thickness of the cell free layer (CFL, blood flow velocity profiles, and volumetric flow rates were quantified. Hydrodynamic effects of the presence of the EGL were observed in the differences between the thickness of CFL in microvessels with an intact EGL and glass tubes of similar diameters. Maximal changes in the thickness of CFL were observed 40 min post-enzymatic degradation of the EGL. Analysis of the frequency distribution of the thickness of CFL allows for estimation of the thickness of the endothelial surface layer (ESL, the plasma layer, and the glycocalyx. Peak flow, maximum velocity, and mean velocity were found to statistically increase by 24, 27, and 25%, respectively, after enzymatic degradation of the glycocalyx. The change in peak-to-peak maximum velocity and mean velocity were found to statistically increase by 39 and 32%, respectively, after 40 min post-enzymatic degradation of the EGL. The bluntness of blood flow velocity profiles was found to be reduced post-degradation of the EGL, as the exclusion volume occupied by the EGL increased the effective volume impermeable to RBCs in microvessels. This study presents the effects of the EGL on microvascular hemodynamics. Enzymatic degradation of the EGL resulted in a decrease in the thickness of CFL, an increase in blood velocity, blood flow, and decrease of the bluntness of the blood flow

  12. RCAN1.4 regulates VEGFR-2 internalisation, cell polarity and migration in human microvascular endothelial cells.

    Science.gov (United States)

    Alghanem, Ahmad F; Wilkinson, Emma L; Emmett, Maxine S; Aljasir, Mohammad A; Holmes, Katherine; Rothermel, Beverley A; Simms, Victoria A; Heath, Victoria L; Cross, Michael J

    2017-08-01

    Regulator of calcineurin 1 (RCAN1) is an endogenous inhibitor of the calcineurin pathway in cells. It is expressed as two isoforms in vertebrates: RCAN1.1 is constitutively expressed in most tissues, whereas transcription of RCAN1.4 is induced by several stimuli that activate the calcineurin-NFAT pathway. RCAN1.4 is highly upregulated in response to VEGF in human endothelial cells in contrast to RCAN1.1 and is essential for efficient endothelial cell migration and tubular morphogenesis. Here, we show that RCAN1.4 has a role in the regulation of agonist-stimulated VEGFR-2 internalisation and establishment of endothelial cell polarity. siRNA-mediated gene silencing revealed that RCAN1 plays a vital role in regulating VEGF-mediated cytoskeletal reorganisation and directed cell migration and sprouting angiogenesis. Adenoviral-mediated overexpression of RCAN1.4 resulted in increased endothelial cell migration. Antisense-mediated morpholino silencing of the zebrafish RCAN1.4 orthologue revealed a disrupted vascular development further confirming a role for the RCAN1.4 isoform in regulating vascular endothelial cell physiology. Our data suggest that RCAN1.4 plays a novel role in regulating endothelial cell migration by establishing endothelial cell polarity in response to VEGF.

  13. ABCD1 dysfunction alters white matter microvascular perfusion.

    Science.gov (United States)

    Lauer, Arne; Da, Xiao; Hansen, Mikkel Bo; Boulouis, Gregoire; Ou, Yangming; Cai, Xuezhu; Liberato Celso Pedrotti, Afonso; Kalpathy-Cramer, Jayashree; Caruso, Paul; Hayden, Douglas L; Rost, Natalia; Mouridsen, Kim; Eichler, Florian S; Rosen, Bruce; Musolino, Patricia L

    2017-12-01

    Cerebral X-linked adrenoleukodystrophy is a devastating neurodegenerative disorder caused by mutations in the ABCD1 gene, which lead to a rapidly progressive cerebral inflammatory demyelination in up to 60% of affected males. Selective brain endothelial dysfunction and increased permeability of the blood-brain barrier suggest that white matter microvascular dysfunction contributes to the conversion to cerebral disease. Applying a vascular model to conventional dynamic susceptibility contrast magnetic resonance perfusion imaging, we demonstrate that lack of ABCD1 function causes increased capillary flow heterogeneity in asymptomatic hemizygotes predominantly in the white matter regions and developmental stages with the highest probability for conversion to cerebral disease. In subjects with ongoing inflammatory demyelination we observed a sequence of increased capillary flow heterogeneity followed by blood-brain barrier permeability changes in the perilesional white matter, which predicts lesion progression. These white matter microvascular alterations normalize within 1 year after treatment with haematopoietic stem cell transplantation. For the first time in vivo, our studies unveil a model to assess how ABCD1 alters white matter microvascular function and explores its potential as an earlier biomarker for monitoring disease progression and response to treatment. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  14. ABCD1 dysfunction alters white matter microvascular perfusion

    DEFF Research Database (Denmark)

    Lauer, Arne; Da, Xiao; Hansen, Mikkel Bo

    2017-01-01

    Cerebral X-linked adrenoleukodystrophy is a devastating neurodegenerative disorder caused by mutations in the ABCD1 gene, which lead to a rapidly progressive cerebral inflammatory demyelination in up to 60% of affected males. Selective brain endothelial dysfunction and increased permeability...... of the blood–brain barrier suggest that white matter microvascular dysfunction contributes to the conversion to cerebral disease. Applying a vascular model to conventional dynamic susceptibility contrast magnetic reson- ance perfusion imaging, we demonstrate that lack of ABCD1 function causes increased...... capillary flow heterogeneity in asymptom- atic hemizygotes predominantly in the white matter regions and developmental stages with the highest probability for conversion to cerebral disease. In subjects with ongoing inflammatory demyelination we observed a sequence of increased capillary flow hetero...

  15. Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model.

    Science.gov (United States)

    Sisler, Jennifer D; Pirela, Sandra V; Friend, Sherri; Farcas, Mariana; Schwegler-Berry, Diane; Shvedova, Anna; Castranova, Vincent; Demokritou, Philip; Qian, Yong

    2015-01-01

    The printer is one of the most common office equipment. Recently, it was reported that toner formulations for printing equipment constitute nano-enabled products (NEPs) and contain engineered nanomaterials (ENMs) that become airborne during printing. To date, insufficient research has been performed to understand the potential toxicological properties of printer-emitted particles (PEPs) with several studies using bulk toner particles as test particles. These studies demonstrated the ability of toner particles to cause chronic inflammation and fibrosis in animal models. However, the toxicological implications of inhalation exposures to ENMs emitted from laser printing equipment remain largely unknown. The present study investigates the toxicological effects of PEPs using an in vitro alveolar-capillary co-culture model with Human Small Airway Epithelial Cells (SAEC) and Human Microvascular Endothelial Cells (HMVEC). Our data demonstrate that direct exposure of SAEC to low concentrations of PEPs (0.5 and 1.0 µg/mL) caused morphological changes of actin remodeling and gap formations within the endothelial monolayer. Furthermore, increased production of reactive oxygen species (ROS) and angiogenesis were observed in the HMVEC. Analysis of cytokine and chemokine levels demonstrates that interleukin (IL)-6 and MCP-1 may play a major role in the cellular communication observed between SAEC and HMVEC and the resultant responses in HMVEC. These data indicate that PEPs at low, non-cytotoxic exposure levels are bioactive and affect cellular responses in an alveolar-capillary co-culture model, which raises concerns for potential adverse health effects.

  16. Circulating brain microvascular endothelial cells (cBMECs as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors.

    Directory of Open Access Journals (Sweden)

    Sheng-He Huang

    Full Text Available Despite aggressive research, central nervous system (CNS disorders, including blood-brain barrier (BBB injury caused by microbial infection, stroke, abused drugs [e.g., methamphetamine (METH and nicotine], and other pathogenic insults, remain the world's leading cause of disabilities. In our previous work, we found that dysfunction of brain microvascular endothelial cells (BMECs, which are a major component of the BBB, could be caused by nicotine, meningitic pathogens and microbial factors, including HIV-1 virulence factors gp41 and gp120. One of the most challenging issues in this area is that there are no available cell-based biomarkers in peripheral blood for BBB disorders caused by microbial and non-microbial insults. To identify such cellular biomarkers for BBB injuries, our studies have shown that mice treated with nicotine, METH and gp120 resulted in increased blood levels of CD146+(endothelial marker/S100B+ (brain marker circulating BMECs (cBMECs and CD133+[progenitor cell (PC marker]/CD146+ endothelial PCs (EPCs, along with enhanced Evans blue and albumin extravasation into the brain. Nicotine and gp120 were able to significantly increase the serum levels of ubiquitin C-terminal hydrolase 1 (UCHL1 (a new BBB marker as well as S100B in mice, which are correlated with the changes in cBMECs and EPCs. Nicotine- and meningitic E. coli K1-induced enhancement of cBMEC levels, leukocyte migration across the BBB and albumin extravasation into the brain were significantly reduced in alpha7 nAChR knockout mice, suggesting that this inflammatory regulator plays an important role in CNS inflammation and BBB disorders caused by microbial and non-microbial factors. These results demonstrated that cBMECs as well as EPCs may be used as potential cell-based biomarkers for indexing of BBB injury.

  17. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    International Nuclear Information System (INIS)

    Samaras, Susan E.; Chen, Billy; Koch, Stephen R.; Sawyer, Douglas B.; Lim, Chee Chew; Davidson, Jeffrey M.

    2012-01-01

    Highlights: ► The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. ► Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. ► Differential degradation appears related to nuclear vs. sarcolemmal localization. ► Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  18. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells

    International Nuclear Information System (INIS)

    Schock, Sarah C.; Edrissi, Hamidreza; Burger, Dylan; Cadonic, Robert; Hakim, Antoine; Thompson, Charlie

    2014-01-01

    Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPs were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells

  19. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Sarah C. [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Edrissi, Hamidreza [University of Ottawa, Neuroscience Graduate Program, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Burger, Dylan [Ottawa Hospital Research Institute, Kidney Centre, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Cadonic, Robert; Hakim, Antoine [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada); Thompson, Charlie, E-mail: charliet@uottawa.ca [Ottawa Hospital Research Institute, Neuroscience, 451 Smyth Road, Ottawa, ON K1H 8M5 (Canada)

    2014-07-18

    Highlights: • Microparticles are elevated in the plasma in a rodent model of chronic cerebral ischemia. • These microparticles initiate apoptosis in cultured cells. • Microparticles contain caspase 3 and they activate receptors for TNF-α and TRAIL. - Abstract: Circulating microparticles (MPs) are involved in many physiological processes and numbers are increased in a variety of cardiovascular disorders. The present aims were to characterize levels of MPs in a rodent model of chronic cerebral hypoperfusion (CCH) and to determine their signaling properties. MPs were isolated from the plasma of rats exposed to CCH and quantified by flow cytometry. When MPs were added to cultured endothelial cells or normal rat kidney cells they induced cell death in a time and dose dependent manner. Analysis of pellets by electron microscopy indicates that cell death signals are carried by particles in the range of 400 nm in diameter or less. Cell death involved the activation of caspase 3 and was not a consequence of oxidative stress. Inhibition of the Fas/FasL signaling pathway also did not improve cell survival. MPs were found to contain caspase 3 and treating the MPs with a caspase 3 inhibitor significantly reduced cell death. A TNF-α receptor blocker and a TRAIL neutralizing antibody also significantly reduced cell death. Levels of circulating MPs are elevated in a rodent model of chronic cerebral ischemia. MPs with a diameter of 400 nm or less activate the TNF-α and TRAIL signaling pathways and may deliver caspase 3 to cultured cells.

  20. Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells

    NARCIS (Netherlands)

    Bauwens, Andreas; Bielaszewska, Martina; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert; Reichelt, Rudolf; Mulac, Dennis; Humpf, Hans-Ulrich; Friedrich, Alexander W; Kim, Kwang S; Karch, Helge; Müthing, Johannes

    Shiga toxin (Stx)-mediated injury to vascular endothelial cells in the kidneys, brain and other organs underlies the pathogenesis of haemolytic uraemic syndrome (HUS) caused by enterohaemorrhagic Escherichia coli (EHEC). We present a direct and comprehensive comparison of cellular injury induced by

  1. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Samaras, Susan E. [Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN (United States); Chen, Billy [Molecular Medicine Program, Department of Medicine, Boston University School of Medicine, Boston, MA (United States); Koch, Stephen R. [Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN (United States); Sawyer, Douglas B.; Lim, Chee Chew [Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (United States); Davidson, Jeffrey M., E-mail: jeff.davidson@vanderbilt.edu [Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN (United States); Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. Black-Right-Pointing-Pointer Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. Black-Right-Pointing-Pointer Differential degradation appears related to nuclear vs. sarcolemmal localization. Black-Right-Pointing-Pointer Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  2. Prevention of Escherichia coli K1 Penetration of the Blood-Brain Barrier by Counteracting the Host Cell Receptor and Signaling Molecule Involved in E. coli Invasion of Human Brain Microvascular Endothelial Cells▿

    OpenAIRE

    Zhu, Longkun; Pearce, Donna; Kim, Kwang Sik

    2010-01-01

    Escherichia coli meningitis is an important cause of mortality and morbidity, and a key contributing factor is our incomplete understanding of the pathogenesis of E. coli meningitis. We have shown that E. coli penetration into the brain requires E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. E. coli invasion of HBMEC involves its interaction with HBMEC receptors, such as E. coli cytotoxic necrotizing factor 1 (CNF1) interacti...

  3. Cytotoxicity and Proliferation Studies with Arsenic in Established Human Cell Lines: Keratinocytes, Melanocytes, Dendritic Cells, Dermal Fibroblasts, Microvascular Endothelial Cells, Monocytes and T-Cells

    Directory of Open Access Journals (Sweden)

    Hari H. P. Cohly

    2003-01-01

    Full Text Available Abstract: Based on the hypothesis that arsenic exposure results in toxicity and mitogenecity, this study examined the dose-response of arsenic in established human cell lines of keratinocytes (HaCaT, melanocytes (1675, dendritic cells (THP-1/A23187, dermal fibroblasts (CRL1904, microvascular endothelial cells (HMEC, monocytes (THP-1, and T cells (Jurkat. Cytotoxicity was determined by incubating THP-1, THP-1+ A23187 and JKT cells in RPMI 1640, 1675 in Vitacell, HMEC in EBM, and dermal fibroblasts and HaCaT in DMEM with 10% fetal bovine serum, 1% streptomycin and penicillin for 72 hrs in 96-well microtiter plates, at 37oC in a 5% CO2 incubator with different concentrations of arsenic using fluorescein diacetate (FDA. Cell proliferation in 96-well plates was determined in cultured cells starved by prior incubation for 24 hrs in 1% FBS and exposed for 72 hours, using the 96 cell titer proliferation solution (Promega assay. Cytotoxicity assays yielded LD50s of 9 μg/mL for HaCaT, 1.5 μg/mL for CRL 1675, 1.5 μg/mL for dendritic cells, 37 μg/mL for dermal fibroblasts, 0.48 μg/mL for HMEC, 50 μg/mL for THP-1 cells and 50 μg/mL for JKT-T cells. The peak proliferation was observed at 6 μg/mL for HaCaT and THP-1 cells, 0.19 μg/mL for CRL 1675, dendritic cells, and HMEC, and 1.5 μg/mL for dermal fibroblasts and Jurkat T cells. These results show that arsenic is toxic at high doses to keratinocytes, fibroblasts, monocytes and T cells, and toxic at lower doses to melanocytes, microvascular endothelial cells and dendritic cells. Proliferation studies showed sub-lethal doses of arsenic to be mitogenic.

  4. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.

    Science.gov (United States)

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2017-04-01

    The pro-inflammatory activation of pulmonary microvascular endothelial cells resulting in continuous expression of cellular adhesion molecules, and subsequently recruiting primed neutrophils to form a firm neutrophils-endothelium (PMN-EC) adhesion, has been examined and found to play a vital role in acute lung injury (ALI). RNA interference (RNAi) is a cellular process through harnessing a natural pathway silencing target gene based on recognition and subsequent degradation of specific mRNA sequences. It opens a promising approach for precision medicine. However, this application was hampered by many obstacles, such as immunogenicity, instability, toxicity problems, and difficulty in across the biological membrane. In this study, we reprogrammed urine exfoliated renal epithelial cells into human induced pluripotent stem cells (huiPSCs) and purified the exosomes (Exo) from huiPSCs as RNAi delivery system. Through choosing the episomal system to deliver transcription factors, we obtained a non-integrating huiPSCs. Experiments in both vitro and vivo demonstrated that these huiPSCs possess the pluripotent properties. The exosomes of huiPSCs isolated by differential centrifugation were visualized by transmission electron microscopy (TEM) showing a typical exosomal appearance with an average diameter of 122 nm. Immunoblotting confirmed the presence of the typical exosomal markers, including CD63, TSG 101, and Alix. Co-cultured PKH26-labeled exosomes with human primary pulmonary microvascular endothelial cells (HMVECs) confirmed that they could be internalized by recipient cells at a time-dependent manner. Then, electroporation was used to introduce siRNA against intercellular adhesion molecule-1 (ICAM-1) into exosomes to form an Exo/siRNA compound. The Exo/siRNA compound efficiently delivered the target siRNA into HMVECs causing selective gene silencing, inhibiting the ICAM-1 protein expression, and PMN-EC adhesion induced by lipopolysaccharide (LPS). These data suggest

  5. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging.

    Science.gov (United States)

    Toth, Peter; Tarantini, Stefano; Csiszar, Anna; Ungvari, Zoltan

    2017-01-01

    Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined. Copyright © 2017 the American Physiological Society.

  6. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging

    Science.gov (United States)

    Toth, Peter; Tarantini, Stefano; Csiszar, Anna

    2017-01-01

    Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer’s disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined. PMID:27793855

  7. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells.

    Science.gov (United States)

    Jumnongprakhon, Pichaya; Sivasinprasasn, Sivanan; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2017-06-01

    Melatonin has been known as a neuroprotective agent for the central nervous system (CNS) and the blood-brain barrier (BBB), which is the primary structure that comes into contact with several neurotoxins including methamphetamine (METH). Previous studies have reported that the activation of melatonin receptors (MT1/2) by melatonin could protect against METH-induced toxicity in brain endothelial cells via several mechanisms. However, its effects on the P-glycoprotein (P-gp) transporter, the active efflux pump involved in cell homeostasis, are still unclear. Thus, this study investigated the role of melatonin and its receptors on the METH-impaired P-gp transporter in primary rat brain microvascular endothelial cells (BMVECs). The results showed that METH impaired the function of the P-gp transporter, significantly decreasing the efflux of Rho123 and P-gp expression, which caused a significant increase in the intracellular accumulation of Rho123, and these responses were reversed by the interaction of melatonin with its receptors. Blockade of the P-gp transporter by verapamil caused oxidative stress, apoptosis, and cell integrity impairment after METH treatment, and these effects could be reversed by melatonin. Our results, together with previous findings, suggest that the interaction of melatonin with its receptors protects against the effects of the METH-impaired P-gp transporter and that the protective role in METH-induced toxicity was at least partially mediated by the regulation of the P-gp transporter. Thus, melatonin and its receptors (MT1/2) are essential for protecting against BBB impairment caused by METH. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Inhibition of endothelial activation: a new way to treat cerebral malaria?

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available BACKGROUND: Malaria is still a major public health problem, partly because the pathogenesis of its major complication, cerebral malaria (CM, remains incompletely understood. However tumor necrosis factor (TNF is thought to play a key role in the development of this neurological syndrome, as well as lymphotoxin alpha (LT. METHODS AND FINDINGS: Using an in vitro model of CM based on human brain-derived endothelial cells (HBEC-5i, we demonstrate the anti-inflammatory effect of LMP-420, a 2-NH2-6-Cl-9-[(5-dihydroxyboryl-pentyl] purine that is a transcriptional inhibitor of TNF. When added before or concomitantly to TNF, LMP-420 inhibits endothelial cell (EC activation, i.e., the up-regulation of both ICAM-1 and VCAM-1 on HBEC-5i surfaces. Subsequently, LMP-420 abolishes the cytoadherence of ICAM-1-specific Plasmodium falciparum-parasitized red blood cells on these EC. Identical but weaker effects are observed when LMP-420 is added with LT. LMP-420 also causes a dramatic reduction of HBEC-5i vesiculation induced by TNF or LT stimulation, as assessed by microparticle release. CONCLUSION: These data provide evidence for a strong in vitro anti-inflammatory effect of LMP-420 and suggest that targeting host cell pathogenic mechanisms might provide a new therapeutic approach to improving the outcome of CM patients.

  9. Circulating Endothelial Markers in Retinal Vasculopathy With Cerebral Leukoencephalopathy and Systemic Manifestations.

    Science.gov (United States)

    Pelzer, Nadine; Bijkerk, Roel; Reinders, Marlies E J; van Zonneveld, Anton Jan; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Eikenboom, Jeroen; Terwindt, Gisela M

    2017-12-01

    Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is a monogenic small vessel disease, caused by C-terminal truncating TREX1 mutations, that can be considered a model for stroke and vascular dementia. The pathophysiology of RVCL-S is largely unknown, but systemic endothelial involvement has been suggested, leading to pathology in the brain and other highly vascularized organs. Here, we investigated circulating endothelial markers to confirm endothelial involvement and identify biomarkers for disease activity. We measured circulating levels of von Willebrand factor (VWF) antigen, VWF propeptide, and angiopoietin-2 in members of 3 Dutch RVCL-S families and matched unrelated healthy controls. Stratified analyses based on symptomatology and age were performed. We found elevated levels of VWF antigen, VWF propeptide, and angiopoietin-2 in TREX1 mutation carriers (n=31) compared with family members without a TREX1 mutation (n=33) and unrelated healthy controls (n=31; Kruskal-Wallis test P <0.001 for all comparisons). Effects were most pronounced in mutation carriers with clinical manifestations aged ≥40 years (Mann-Whitney U test P <0.001 for all comparisons). Compared with healthy controls, levels of VWF antigen ( P =0.02) and angiopoietin-2 ( P =0.04) were also elevated in mutation carriers aged <40 years. All 3 markers showed moderate correlations with markers of kidney and liver disease and inflammation (ie, systemic symptoms of RVCL-S). Our results confirm an important role of the endothelium in RVCL-S pathophysiology. VWF antigen, VWF propeptide, and angiopoietin-2 might serve as early biomarkers of disease activity. Our findings might also help to understand the pathophysiology of common neurovascular disorders, such as stroke. © 2017 American Heart Association, Inc.

  10. Interference with TRALI-causing anti-HLA DR alloantibody induction of human pulmonary microvascular endothelial cell injury by purified soluble HLA DR.

    Science.gov (United States)

    Nishimura, M; Hashimoto, S; Satake, M; Okazaki, H; Tadokoro, K

    2007-07-01

    Antibodies to human leucocyte antigens (HLA) and human polymorphonuclear neutrophil (PMN) antigens are considered etiologic agents of transfusion-related acute lung injury (TRALI). The aim of this study was to clarify the role of anti-HLA DR antibodies in the pathophysiology of TRALI and the ability of purified soluble HLA DR (psHLA DR) to inhibit the release of cytokines in an in vitro model. A coculture of human pulmonary microvascular endothelial cells (HMVEC) and monocytes in the presence of serum containing anti-HLA DR alloantibodies previously associated with cases of TRALI was used as an in vitro TRALI model. The release of leukotriene B(4) (LTB(4)) and tumour necrosis factor-alpha (TNF-alpha), the apoptosis of HMVECs were measured. The release of LTB(4) and TNF-alpha and apoptosis of HMVECs were observed in the model. The addition of psHLA DR markedly reduced the release of LTB(4) and TNF-alpha and inhibited apoptosis of HMVECs. These results support the critical role of anti-HLA DR alloantibodies in the pathogenesis of TRALI and suggest that the soluble HLA DR could inhibit TRALI development caused by anti-HLA DR alloantibodies.

  11. Upregulation of oxidative stress markers in human microvascular endothelial cells by complexes of serum albumin and digestion products of glycated casein.

    Science.gov (United States)

    Deo, Permal; Glenn, Josephine V; Powell, Lesley A; Stitt, Alan W; Ames, Jennifer M

    2009-01-01

    The extent of absorption of dietary advanced glycation end products (AGEs) is not fully known. The possible physiological impact of these absorbed components on inflammatory processes has been studied little and was the aim of this investigation. Aqueous solutions of bovine casein and glucose were heated at 95 degrees C for 5 h to give AGE-casein (AGE-Cas). Simulated stomach and small intestine digestion of AGE-Cas and dialysis (molecular mass cutoff of membrane = 1 kDa) resulted in a low molecular mass (LMM) fraction of digestion products, which was used to prepare bovine serum albumin (BSA)-LMM-AGE-Cas complexes. Stimulation of human microvascular endothelial cells with BSA-LMM-AGE-Cas complexes significantly increased mRNA expression of the receptor of AGE (RAGE), galectin-3 (AGE-R3), tumor necrosis factor alpha, and a marker of the mitogen-activated protein kinase pathway (MAPK-1), as well as p65NF-kappaB activation. Cells treated with LMM digestion products of AGE-Cas significantly increased AGE-R3 mRNA expression. Intracellular reactive oxygen species production increased significantly in cells challenged with BSA-LMM-AGE-Cas and LMM-AGE-Cas. In conclusion, in an in vitro cell system, digested dietary AGEs complexed with serum albumin play a role in the regulation of RAGE and downstream inflammatory pathways. AGE-R3 may protect against these effects.

  12. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    International Nuclear Information System (INIS)

    Laranjeira, Marta S; Carvalho, Ângela; Ferraz, Maria Pia; Monteiro, Fernando Jorge; Pelaez-Vargas, Alejandro; Hansford, Derek; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena

    2014-01-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. (paper)

  13. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Science.gov (United States)

    Laranjeira, Marta S.; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  14. Evaluation of surface charge density and surface potential by electrophoretic mobility for solid lipid nanoparticles and human brain-microvascular endothelial cells.

    Science.gov (United States)

    Kuo, Yung-Chih; Chen, I-Chun

    2007-09-27

    Electrophoretic mobility, zeta potential, surface charge density, and surface potential of cacao butter-based solid lipid nanoparticles (SLN) and human brain-microvascular endothelial cells (HBMEC) were analyzed in this study. Electrophoretic mobility and zeta potential were determined experimentally. Surface charge density and surface potential were evaluated theoretically via incorporation of ion condensation theory with the relationship between surface charge density and surface potential. The results revealed that the lower the pH value, the weaker the electrostatic properties of the negatively charged SLN and HBMEC. A higher content of cacao butter or a slower stirring rate yielded a larger SLN and stronger surface electricity. On the contrary, storage led to instability of SLN suspension and weaker electrical behavior because of hydrolysis of ionogenic groups on the particle surfaces. Also, high H+ concentration resulted in excess adsorption of H+ onto HBMEC, rendering charge reversal and cell death. The largest normalized discrepancy between surface potential and zeta potential occurred at pH = 7. For a fixed biocolloidal species, the discrepancy was nearly invariant at high pH value. However, the discrepancy followed the order of electrical intensity for HBMEC system at low pH value because mammalian cells were sensitive to H+. The present study provided a practical method to obtain surface charge properties by capillary electrophoresis.

  15. SILAC and LC-MS/MS identification of Streptococcus equi ssp. zooepidemicus proteins that contribute to mouse brain microvascular endothelial cell infection.

    Science.gov (United States)

    Zhe, Ma; Jie, Peng; Hui, Zhang; Bin, Xu; Xiaomeng, Pei; Huixing, Lin; Chengping, Lu; Hongjie, Fan

    2016-08-01

    Streptococcus equi ssp. zooepidemicus (SEZ) causes meningitis in both humans and animals. Some dissociative proteins of SEZ are cytotoxic to mouse brain microvascular endothelial cells (mBMECs) and may contribute to the penetration of SEZ across the blood-brain barrier (BBB). In this study, the ability of SEZ to penetrate across an in vitro BBB model was confirmed. We used stable isotope labeling with amino acids in cell culture (SILAC) to label SEZ proteins with heavy or light isotope-tagged amino acids, along with LC-MS/MS to determine which SEZ proteins were involved in interactions with mBMECs. The efficiency of SEZ protein isotope labeling was 94.7 %, which was sufficient for further analysis. Forty-nine labeled peptides were identified as binding to mBMECs, which matched to 25 SEZ proteins. Bioinformatic analysis indicated that most of these proteins were cytoplasmic. These proteins may have functions in breaching the host BBB, and some of them are known virulence factors in other bacteria. Indirect immunofluorescence results indicated that SEZ enolase had binding activity toward mBMECs. Protective test results showed that enolase was a protective antigen against SEZ infection. This research is the first application of SILAC combined with LC-MS/MS to identify SEZ proteins that may contribute to the infection of mBMECs and potentially show functions related to breaching the BBB. The outcomes provide many future avenues for research into the mechanism of SEZ-induced meningitis.

  16. Protective Effects of Scutellarin on Human Cardiac Microvascular Endothelial Cells against Hypoxia-Reoxygenation Injury and Its Possible Target-Related Proteins

    Directory of Open Access Journals (Sweden)

    Meina Shi

    2015-01-01

    Full Text Available Scutellarin (SCU is one of the main components of traditional Chinese medicine plant Erigeron breviscapus (Vant. Hand.-Mazz. In this paper, we studied the protective effects of SCU on human cardiac microvascular endothelial cells (HCMECs against hypoxia-reoxygenation (HR injury and its possible target-related proteins. Results of MTT assay showed that pretreatment of SCU at doses of 1, 5, and 10 μM for 2 h could significantly inhibit the decrease in cell viability of HCMECs induced by HR injury. Subcellular fractions of cells treated with vehicle control, 1 μM SCU, HR injury, or 1 μM SCU + HR injury were separated by ultracentrifugation. The protein expression profiles of cytoplasm and membrane/nuclei fractions were checked using protein two-dimensional electrophoresis (2-DE. Proteins differentially expressed between control and SCU-treated group, control and HR group, or HR and SCU + HR group were identified using mass spectrometry (MS/MS. Possible interaction network of these target-related proteins was predicted using bioinformatic analysis. The influence of SCU on the expression levels of these proteins was confirmed using Western blotting assay. The results indicated that proteins such as p27BBP protein (EIF6, heat shock 60 kDa protein 1 (HSPD1, and chaperonin containing TCP1 subunit 6A isoform (CCT6A might play important roles in the effects of SCU.

  17. Protective Effects of Scutellarin on Human Cardiac Microvascular Endothelial Cells against Hypoxia-Reoxygenation Injury and Its Possible Target-Related Proteins.

    Science.gov (United States)

    Shi, Meina; Liu, Yingting; Feng, Lixing; Cui, Yingbo; Chen, Yajuan; Wang, Peng; Wu, Wenjuan; Chen, Chen; Liu, Xuan; Yang, Weimin

    2015-01-01

    Scutellarin (SCU) is one of the main components of traditional Chinese medicine plant Erigeron breviscapus (Vant.) Hand.-Mazz. In this paper, we studied the protective effects of SCU on human cardiac microvascular endothelial cells (HCMECs) against hypoxia-reoxygenation (HR) injury and its possible target-related proteins. Results of MTT assay showed that pretreatment of SCU at doses of 1, 5, and 10 μM for 2 h could significantly inhibit the decrease in cell viability of HCMECs induced by HR injury. Subcellular fractions of cells treated with vehicle control, 1 μM SCU, HR injury, or 1 μM SCU + HR injury were separated by ultracentrifugation. The protein expression profiles of cytoplasm and membrane/nuclei fractions were checked using protein two-dimensional electrophoresis (2-DE). Proteins differentially expressed between control and SCU-treated group, control and HR group, or HR and SCU + HR group were identified using mass spectrometry (MS/MS). Possible interaction network of these target-related proteins was predicted using bioinformatic analysis. The influence of SCU on the expression levels of these proteins was confirmed using Western blotting assay. The results indicated that proteins such as p27BBP protein (EIF6), heat shock 60 kDa protein 1 (HSPD1), and chaperonin containing TCP1 subunit 6A isoform (CCT6A) might play important roles in the effects of SCU.

  18. Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells.

    Science.gov (United States)

    Al-Ahmad, Abraham J

    2017-10-01

    Glucose constitutes a major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 are associated with the GLUT1 deficiency syndrome, yet none of the current in vitro models of the human BBB maybe suited for modeling such a disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMEC monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3, and GLUT4. Diffusion of glucose across the monolayers was mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrates the feasibility of modeling glucose across the BBB using patient-derived stem cells. Copyright © 2017 the American Physiological Society.

  19. L-arginine and L-NMMA for Assessing Cerebral Endothelial Dysfunction in Ischemic Cerebrovascular Disease: A Systematic Review

    DEFF Research Database (Denmark)

    Karlsson, William Kristian; Sørensen, Caspar Godthaab; Kruuse, Christina

    2017-01-01

    Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and NG -monomethyl-l-arginine (l......-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible...... cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease....

  20. Inflammation stimulates thrombopoietin (Tpo) expression in rat brain-derived microvascular endothelial cells, but suppresses Tpo in astrocytes and microglia.

    Science.gov (United States)

    Zhang, Juan; Freyer, Dorette; Rung, Olga; Im, Ae-Rie; Hoffmann, Olaf; Dame, Christof

    2010-07-01

    Thrombopoietin (Tpo) and its receptor (c-Mpl; TpoR), which primary regulate megakaryopoiesis and platelet production, are also expressed in the central nervous system (CNS). Increased Tpo concentrations are present in the cerebrospinal fluid (CSF) of some patients with bacterial or viral meningitis. Since previous data implicated a proapoptotic role of Tpo on newly generated neuronal cells, we herein elucidated the regulation of Tpo in primary rat neurons (e17), astrocytes, and microglia (p0-p3), as well as in brain-derived vascular endothelial cells of 3-week-old rats after exposure to bacterial lipopolysaccharide (LPS). LPS inhibited Tpo gene expression in astrocytes and microglia, but not in neurons, most likely due to absence of Toll-like receptor 4 in neurons. While Tpo mRNA expression recovered in astrocytes after 24 h, it remained suppressed in microglia. Furthermore, we detected Tpo mRNA expression in primary brain-derived vascular endothelial cells, which also express the TpoR. In these cells, LPS significantly up-regulated Tpo mRNA expression. TpoR mRNA and protein expression remained constitutive in all cell types. Thus, our data provide evidence for a cell-type-specific modulation of Tpo mRNA expression by inflammation in brain-derived cells. Transient down-regulation of Tpo expression in astrocytes and microglia may limit Tpo-induced neuronal cell death in inflammatory brain disorders.

  1. p130Cas scaffolds the signalosome to direct adaptor-effector cross talk during Kaposi's sarcoma-associated herpesvirus trafficking in human microvascular dermal endothelial cells.

    Science.gov (United States)

    Bandyopadhyay, Chirosree; Veettil, Mohanan Valiya; Dutta, Sujoy; Chandran, Bala

    2014-12-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. Eukaryotic cell adaptor molecules, without any intrinsic

  2. l-arginine and l-NMMA for assessing cerebral endothelial dysfunction in ischaemic cerebrovascular disease: A systematic review.

    Science.gov (United States)

    Karlsson, William K; Sørensen, Caspar G; Kruuse, Christina

    2017-01-01

    Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and N G -monomethyl-l-arginine (l-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible according to inclusion and exclusion criteria. Studies investigated the effect of age (n=2), type 2 diabetes mellitus (DM) (n=1), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) (n=1), leukoaraiosis (n=1), and prior ischaemic stroke or transient ischaemic attack (TIA) (n=2) on cerebral ED. Most studies applied transcranial Doppler to quantify cerebral ED. Endothelium-dependent vasodilatation (EDV) induced by l-arginine was impaired in elderly and subjects with leukoaraiosis, but enhanced in CADASIL patients. Studies including subjects with prior ischaemic stroke or TIA reported both enhanced and impaired EDV to l-arginine. Responses to l-NMMA deviated between subjects with type 2 DM and the elderly. We found only few studies investigating cerebral endothelial responses to l-arginine and l-NMMA in subjects with vascular risk factors or ischaemic cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease. © 2016 John Wiley & Sons Australia, Ltd.

  3. Stimulation of phospholipase C in cultured microvascular endothelial cells from human frontal lobe by histamine, endothelin and purinoceptor agonists.

    Science.gov (United States)

    Purkiss, J. R.; West, D.; Wilkes, L. C.; Scott, C.; Yarrow, P.; Wilkinson, G. F.; Boarder, M. R.

    1994-01-01

    1. Cultures of endothelial cells derived from the microvasculature of human frontal lobe have been investigated for phospholipase C (PLC) responses to histamine, endothelins and purinoceptor agonists. 2. Using cells prelabelled with [3H]-inositol and measuring total [3H]-inositol (poly)phosphates, histamine acting at H1 receptors stimulated a substantial response with an EC50 of about 10 microM. 3. Endothelin-1 also gave a clear stimulation of phosphoinositide-specific phospholipase C. Both concentration-response curves and binding curves showed effective responses and binding in the rank order of endothelin-1 > sarafotoxin S6b > endothelin-3, suggesting an ETA receptor. 4. Assay of total [3H]-inositol (poly)phosphates showed no response to the purinoceptor agonists, 2-methylthioadenosine 5'-trisphosphate (2MeSATP), adenosine 5'-O-(3-thiotrisphosphate) (ATP gamma S) or beta,gamma-methylene ATP. Both ATP and UTP gave a small PLC response. 5. Similarly, when formation of [32P]-phosphatidic acid from cells prelabelled with 32Pi was used as an index of both PLC and phospholipase D, a small response to ATP and UTP was seen but there was no response to the other purinoceptor agonists tested. 6. Study by mass assay of stimulation by ATP of inositol (1,4,5) trisphosphate accumulation revealed a transient response in the first few seconds, a decline to basal, followed by a small sustained response. 7. These results show that human brain endothelial cells in culture are responsive to histamine and endothelins in a manner which may regulate brain capillary permeability. Purines exert a lesser influence. PMID:8032588

  4. Oligomeric Amyloid-β Peptide on Sialylic Lewisx–Selectin Bonding at Cerebral Endothelial Surface

    Directory of Open Access Journals (Sweden)

    Sholpan Askarova

    2014-12-01

    Full Text Available Introduction: Alzheimer’s disease (AD is a chronic neurodegenerative disorder, which affects approximately 10% of the population aged 65 and 40% of people over the age 80. Currently, AD is on the list of diseases with no effective treatment. Thus, the study of molecular and cellular mechanisms of AD progression is of high scientific and practical importance. In fact, dysfunction of the blood-brain barrier (BBB plays an important role in the onset and progression of the disease. Increased deposition of amyloid b peptide (Aβ in cerebral vasculature and enhanced transmigration of monocytes across the BBB are frequently observed in AD brains and are some of the pathological hallmarks of the diseases. Since the transmigration of monocytes across the BBB is both a mechanical and a biochemical process, the expression of adhesion molecules and mechanical properties of endothelial cells are the critical factors that require investigation.Methods: Because of recent advances in the biological applications of atomic force microscopy (AFM, we applied AFM with cantilever tips bio-functionalized by sLex in combination with the advanced immunofluorescent microscopy (QIM to study the direct effects of Aβ42 oligomers on the selectins expression, actin polymerization, and cellular mechanical and adhesion properties in cerebral endothelial cells (mouse bEnd3 line and primary human CECs and find a possible way to attenuate these effects. Results: QIM results showed that Aβ42 increased the expressions of P-selectin on the cell surface and enhanced actin polymerization. Consistent with our QIM results, AFM data showed that Aβ42 increased the probability of cell adhesion with sLex-coated cantilever and cell stiffness. These effects were counteracted by lovstatin, a cholesterol-lowering drug.  Surprisingly, the apparent rupture force of sLex-selectin bonding was significantly lower after treatment with Aβ42, as compared with the control (i.e. no treatment

  5. A comparison of cell survival and heat shock protein expression after radiation in normal dermal fibroblasts, microvascular endothelial cells, and different head and neck squamous carcinoma cell lines.

    Science.gov (United States)

    Muschter, Dominique; Geyer, Fabian; Bauer, Richard; Ettl, Tobias; Schreml, Stephan; Haubner, Frank

    2018-01-06

    Head and neck squamous cell carcinoma (HNSCC) shows increased radioresistance due to the manipulation of homeostatic mechanisms like the heat shock response. This study intended to comparatively analyze effects of ionizing radiation on different HNSCC cell lines (PCI) and normal human dermal fibroblasts (NHFs) and human dermal microvascular endothelial cells (HDMECs) to uncover differences in radiation coping strategies. Proliferation (BrdU assay), apoptosis (caspase 3/7) and intracellular protein expression of heat shock protein (HSP)-70, and phosphorylated and total HSP27, determined by enzyme-linked immunosorbent assay (ELISA), were analyzed after exposure to increasing doses of ionizing radiation (2, 6, and 12 Gray, Gy). Cell count decreased dose-dependently, but PCI cell lines consistently showed higher numbers compared to NHF and HDMEC. Likewise, high doses reduced cell proliferation, but low-dose radiation (2 Gy) instead increased proliferation in PCI 9 and 52. Apoptosis was not detectable in PCI cell lines. Basic HSP70 expression was high in PCI cells with little additional increase by irradiation. PCI cells yielded high basic total HSP27 concentrations but irradiation dose-dependently increased HSP27 in HDMEC, NHF, and PCI cells. Phosphorylated HSP27 concentrations were highest in NHF. PCI cell lines showed higher resistance to dose-dependent reduction in cell number, proliferation, and protection from apoptosis compared to NHF and HDMEC. In parallel, we observed a high basic and radiation-induced expression of intracellular HSP70 leading to the assumption that the radioresistance of PCI cells is conferred by HSP70. HNSCC use HSP to escape radiation-induced apoptosis and certain subtypes might increase proliferation after low-dose irradiation.

  6. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway.

    Science.gov (United States)

    Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit Kumar; Maturu, Paramahamsa; Moorthy, Bhagavatula; Shivanna, Binoy

    2016-11-15

    Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner. siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H 2 O 2 ) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H 2 O 2 levels. Furthermore, H 2 O 2 independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H 2 O 2 levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H 2 O 2 -independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H 2 O 2 - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Microvascular Gap Junction Channel: A Route to Deliver MicroRNAs for Neurological Disease Treatment

    Directory of Open Access Journals (Sweden)

    Dominique Thuringer

    2017-08-01

    Full Text Available Brain microvascular endothelial cells (BMECs separate the peripheral blood from the brain. These cells, which are surrounded by basal lamina, pericytes and glial cells, are highly interconnected through tight and gap junctions. Their permeability properties restrict the transfer of potentially useful therapeutic agents. In such a hermetic system, the gap junctional exchange of small molecules between cerebral endothelial and non-endothelial cells is crucial for maintaining tissue homeostasis. MicroRNA were shown to cross gap junction channels, thereby modulating gene expression and function of the recipient cell. It was also shown that, when altered, BMEC could be regenerated by endothelial cells derived from pluripotent stem cells. Here, we discuss the transfer of microRNA through gap junctions between BMEC, the regeneration of BMEC from induced pluripotent stem cells that could be engineered to express specific microRNA, and how such an innovative approach could benefit to the treatment of glioblastoma and other neurological diseases.

  8. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors.

    Science.gov (United States)

    Wiltshire, Rachael; Nelson, Vicky; Kho, Dan Ting; Angel, Catherine E; O'Carroll, Simon J; Graham, E Scott

    2016-01-27

    Herein we show that S1P rapidly and acutely reduces the focal adhesion strength and barrier tightness of brain endothelial cells. xCELLigence biosensor technology was used to measure focal adhesion, which was reduced by S1P acutely and this response was mediated through both S1P1 and S1P2 receptors. S1P increased secretion of several pro-inflammatory mediators from brain endothelial cells. However, the magnitude of this response was small in comparison to that mediated by TNFα or IL-1β. Furthermore, S1P did not significantly increase cell-surface expression of any key cell adhesion molecules involved in leukocyte recruitment, included ICAM-1 and VCAM-1. Finally, we reveal that S1P acutely and dynamically regulates microvascular endothelial barrier tightness in a manner consistent with regulated rapid opening followed by closing and strengthening of the barrier. We hypothesise that the role of the S1P receptors in this process is not to cause barrier dysfunction, but is related to controlled opening of the endothelial junctions. This was revealed using real-time measurement of barrier integrity using ECIS ZΘ TEER technology and endothelial viability using xCELLigence technology. Finally, we show that these responses do not occur simply though the pharmacology of a single S1P receptor but involves coordinated action of S1P1 and S1P2 receptors.

  9. Functional cross-talk between endothelial muscarinic and α2-adrenergic receptors in rabbit cerebral arteries

    Science.gov (United States)

    Thorin, Eric

    1998-01-01

    Interactions between two classes of receptors have been observed in several cell lines and preparations. The aim of this work was to assess the impact of simultaneous stimulation of endothelial muscarinic and α2-adrenergic receptors (α2-AR) on vascular reactivity.Rabbit middle cerebral arteries were isolated and changes in isometric tension were recorded in the presence of indomethacin.Inhibition of nitric oxide (NO) synthase with Nω-nitro-L-arginine (L-NOARG, 100 μmol l−1) revealed α-AR-dependent contractions. Pre-addition of acetylcholine (ACH, 1 μmol l−1) augmented oxymetazoline (OXY, 10 μmol l−1, α2-AR agonist)-, but decreased phenylephrine (PE, 10 μmol l−1, α1-AR agonist)-induced contraction (P<0.05). The effects of ACH were endothelium-dependent.Vessels were precontracted with 40 mmol l−1 KCl-physiological salt solution (PSS) in the absence of L-NOARG, or PE or OXY in the presence of L-NOARG. In the presence of high external K+ or PE, ACH induced a potent relaxation (P<0.05). In the presence of OXY, however, ACH mediated contraction (P<0.05).After pertussis toxin (PTX, inactivator of Gαi/o proteins) pre-treatment, α2-AR-dependent contractions were abolished. Forty mmol l−1 KCl-PSS induced contraction was not altered by PTX whereas ACH-induced relaxation was augmented (P<0.05).To investigate if endothelin-1 (ET-1) intervened in the endothelium-dependent contractile response to ACH in the presence of OXY-dependent tone, vessels were incubated in the presence of BQ123 (1 μmol l−1), an ETA receptor antagonist. OXY-mediated tone was not affected by BQ123; however, ACH-induced contraction was reversed to a relaxation (P<0.05).These data indicate that activation of endothelial α2-AR triggers an endothelium-dependent, ET-1 mediated, contraction to ACH. This suggests that activation of α2-AR affects muscarinic receptor/G protein coupling leading to an opposite biological effect. PMID:9863646

  10. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    DEFF Research Database (Denmark)

    Maddahi, A.; Edvinsson, L.

    2008-01-01

    BACKGROUND: MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2). Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA) leading to the ischemic region. Here we explored...... by quantitative Western blot. We demonstrate that there is an increase in the number of contractile smooth muscle receptors in the MCA and in micro- vessels within the ischemic region. The enhanced expression occurs in the smooth muscle cells as verified by co-localization studies. This receptor upregulation...... is furthermore associated with enhanced expression of pERK1/2 and of transcription factor pElk-1 in the vascular smooth muscle cells. Blockade of transcription with the MEK1 inhibitor U0126, given at the onset of reperfusion or as late as 6 hours after the insult, reduced transcription (pERK1/2 and pElk-1...

  11. Placental growth factor enhances angiogenesis in human intestinal microvascular endothelial cells via PI3K/Akt pathway: Potential implications of inflammation bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yi, E-mail: mondayzy@126.com; Tu, Chuantao, E-mail: tu.chuantao@zs-hospital.sh.cn; Zhao, Yuan, E-mail: zhao.yuan@zs-hospital.sh.cn; Liu, Hongchun, E-mail: liuhch@aliyun.com; Zhang, Shuncai, E-mail: zhang.shuncai@zs-hospital.sh.cn

    2016-02-19

    Background: Angiogenesis plays a major role in the pathogenesis of inflammatory bowel disease (IBD). Placental growth factor (PlGF) is a specific regulator of pathological angiogenesis and is upregulated in the sera of IBD patients. Therefore, the role of PlGF in IBD angiogenesis was investigated here using HIMECs. Methods: The expression of PlGF and its receptors in human intestinal microvascular endothelial cells (HIMECs) and inflamed mucosa of IBD patients were examined using quantitative PCR and western blot analysis and the role of PlGF in IBD HIMECs was further explored using small interfering RNA (siRNA). The induction of pro-inflammatory cytokine by PlGF in HIMECs was confirmed by ELISA. The capacity of PlGF to induce angiogenesis in HIMECs was tested through proliferation, cell-migration, matrigel tubule-formation assays and its underlying signaling pathway were explored by western blot analysis of ERK1/2 and PI3K/Akt phosphorylation. Results: mRNA and protein expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. Inflamed mucosa of IBD patients also displayed higher expression of PIGF. The production of IL-6 and TNF-α in culture supernatant of HIMECs treated with exogenous recombinant human PlGF-1 (rhPlGF-1) were increased. Furthermore, rhPlGF-1 significantly induced HIMECs migration and tube formation in a dose-dependent manner and knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced these angiogenesis activities. PlGF induced PI3K/Akt phosphorylation in HIMECs and pretreatment of PlGF-stimulated HIMECs with PI3K inhibitor (LY294002) significantly inhibited the PlGF-induced cell migration and tube formation. Conclusion: Our results demonstrated the pro-inflammatory and angiogenic effects of PlGF on HIMECs in IBD through activation of PI3K/Akt signaling pathway. PlGF/PI3K/Akt signaling may serve as a potential therapeutic target for IBD. - Highlights: • Expression of PlGF and its receptor NRP-1

  12. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  13. Effect of Diazoxide Preconditioning on Cultured Rat Myocardium Microvascular Endothelial Cells against Apoptosis and Relation of PI3K/Akt Pathway

    Directory of Open Access Journals (Sweden)

    Cao Su

    2014-03-01

    Full Text Available Background: Anti-apoptotic mechanism for cell protection on reperfusion may provide a new method to reduce reperfusion injury. Aims: The aim of the present study is to explore the effect of mitochondrial ATP sensitive potassium channel (Mito-KATP opener diazoxide (DZ preconditioning on hypoxia/ reoxygen (H/R injury of rat myocardium microvascular endothelial cells (MMECs against apoptosis and relation of PI3K/Akt pathway. Study Design: Animal experimentation. Methods: The rat MMECs were cultivated, and H/R model was made to imitate ischemia-reperfusion injury. The cells were seeds in 96-wellplates (100μL/hole or in 6cm diameter dishes (2 mL/dish with the density of 1×106/mL and randomly divided into 4 groups (n=6 each: control group (Group N, hypoxia-regoxygen group (Group H/R, Diazoxide preconditioning+H/R group (Group DZ and Diazoxide preconditioning +mitochondrial KATP blocker 5-hydroxydecanoate (5-HD + H/R group (Group DZ+5-HD. The cells were exposed to 2h hypoxia followed by 2h reoxygenation. Diazoxide 100μmol/L and diazoxide 100μmol/L+ 5-HD100μmol/L were added to the culture medium 2h before hypoxia in DZ and DZ+5-HD groups respectively. Each group was observed the proliferation in MTT, apoptotic rate in Annexin V-FITC/PI double standard, cell structure of Hoechst staining, and the levels of PI3K, Akt and p53 mRNA by RT-qPCR. Results: Compared with Group N, apoptotic rate of Group H/R increased (p<0.01 and the vitality decreased significantly (p<0.05, and the expression of PI3K, Akt and p53 mRNA elevated in Group H/R (p<0.05. Compared with Group H/R, apoptotic rate and p53 mRNA level of Group DZ depressed significantly (p<0.01, p<0.05, while the vitality, PI3K and Akt mRNA levels increased (p<0.05. Compared with Group DZ, apoptotic rate and p53 mRNA level of Group DZ+5-HD increased significantly (p<0.01, p<0.05, but the vitality, PI3K and Akt mRNA levels decreased (p<0.05. Conclusion: Under the condition of H/R, mito-KATP opened by DZ

  14. CIB1 synergizes with EphrinA2 to regulate Kaposi's sarcoma-associated herpesvirus macropinocytic entry in human microvascular dermal endothelial cells.

    Directory of Open Access Journals (Sweden)

    Chirosree Bandyopadhyay

    2014-02-01

    Full Text Available KSHV envelope glycoproteins interact with cell surface heparan sulfate and integrins, and activate FAK, Src, PI3-K, c-Cbl, and Rho-GTPase signal molecules in human microvascular dermal endothelial (HMVEC-d cells. c-Cbl mediates the translocation of virus bound α3β1 and αVβ3 integrins into lipid rafts (LRs, where KSHV interacts and activates EphrinA2 (EphA2. EphA2 associates with c-Cbl-myosin IIA and augmented KSHV-induced Src and PI3-K signals in LRs, leading to bleb formation and macropinocytosis of KSHV. To identify the factor(s coordinating the EphA2-signal complex, the role of CIB1 (calcium and integrin binding protein-1 associated with integrin signaling was analyzed. CIB1 knockdown did not affect KSHV binding to HMVEC-d cells but significantly reduced its entry and gene expression. In contrast, CIB1 overexpression increased KSHV entry in 293 cells. Single virus particle infection and trafficking during HMVEC-d cell entry was examined by utilizing DiI (envelope and BrdU (viral DNA labeled virus. CIB1 was associated with KSHV in membrane blebs and in Rab5 positive macropinocytic vesicles. CIB1 knockdown abrogated virus induced blebs, macropinocytosis and virus association with the Rab5 macropinosome. Infection increased the association of CIB1 with LRs, and CIB1 was associated with EphA2 and KSHV entry associated signal molecules such as Src, PI3-K, and c-Cbl. CIB1 knockdown significantly reduced the infection induced EphA2, Src and Erk1/2 activation. Mass spectrometry revealed the simultaneous association of CIB1 and EphA2 with the actin cytoskeleton modulating myosin IIA and alpha-actinin 4 molecules, and CIB1 knockdown reduced EphA2's association with myosin IIA and alpha-actinin 4. Collectively, these studies revealed for the first time that CIB1 plays a role in virus entry and macropinocytosis, and suggested that KSHV utilizes CIB1 as one of the key molecule(s to coordinate and sustain the EphA2 mediated signaling involved in its

  15. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation.

    Science.gov (United States)

    Katt, Moriah E; Linville, Raleigh M; Mayo, Lakyn N; Xu, Zinnia S; Searson, Peter C

    2018-02-20

    Transwell-based models of the blood-brain barrier (BBB) incorporating monolayers of human brain microvascular endothelial cells (dhBMECs) derived from induced pluripotent stem cells show many of the key features of the BBB, including expression of transporters and efflux pumps, expression of tight junction proteins, and physiological values of transendothelial electrical resistance. The fabrication of 3D BBB models using dhBMECs has so far been unsuccessful due to the poor adhesion and survival of these cells on matrix materials commonly used in tissue engineering. To address this issue, we systematically screened a wide range of matrix materials (collagen I, hyaluronic acid, and fibrin), compositions (laminin/entactin), protein coatings (fibronectin, laminin, collagen IV, perlecan, and agrin), and soluble factors (ROCK inhibitor and cyclic adenosine monophosphate) in 2D culture to assess cell adhesion, spreading, and barrier function. Cell coverage increased with stiffness of collagen I gels coated with collagen IV and fibronectin. On 7 mg mL -1 collagen I gels coated with basement membrane proteins (fibronectin, collagen IV, and laminin), cell coverage was high but did not reliably reach confluence. The transendothelial electrical resistance (TEER) on collagen I gels coated with basement membrane proteins was lower than on coated transwell membranes. Agrin, a heparin sulfate proteoglycan found in basement membranes of the brain, promoted monolayer formation but resulted in a significant decrease in transendothelial electrical resistance (TEER). However, the addition of ROCK inhibitor, cAMP, or cross-linking the gels to increase stiffness, resulted in a significant improvement of TEER values and enabled the formation of confluent monolayers. Having identified matrix compositions that promote monolayer formation and barrier function, we successfully fabricated dhBMEC microvessels in cross-linked collagen I gels coated with fibronectin and collagen IV, and

  16. Listeriolysin O mediates cytotoxicity against human brain microvascular

    Science.gov (United States)

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  17. Cystatin C, a potential marker for cerebral microvascular compliance, is associated with white-matter hyperintensities progression.

    Directory of Open Access Journals (Sweden)

    Woo-Jin Lee

    Full Text Available Cerebral white matter hyperintensities (WMHs are central MRI markers of the brain aging process, but the mechanisms for its progression remain unclear. In this study, we aimed to determine whether the baseline serum cystatin C level represented one mechanism underlying WMH progression, and whether it was associated with the long-term progression of cerebral WMH volume in MRI. 166 consecutive individuals who were ≥50 years of age and who underwent initial/follow-up MRI evaluations within an interval of 34-45 months were included. Serum cystatin C level, glomerular-filtration rate (GFR, and other laboratory parameters were measured at their initial evaluation and at the end of follow-up. Cerebrovascular risk factors, medications, and blood-pressure parameters were also reviewed. WMH progression rate was measured by subtracting WMH volume at baseline from that at the follow-up using volumetric analysis, divided by the MRI intervals. At baseline, WMH volume was 9.61±13.17 mL, mean GFR was 77.3±22.8 mL/min, and mean cystatin C level was 0.92±0.52 mg/L. After 37.9±3.4 months, the change in WMH volume was 3.64±6.85 mL, the progression rate of WMH volume was 1.18±2.28 mL/year, the mean ΔGFR was 2.4±7.9 mL/min, and the mean Δcystatin C was 0.03±0.34 mg/L. The progression rate of WMH volume was linearly associated with cystatin C level (B coefficient = 0.856; 95% confidence interval [CI] 0.174-1.538; P = 0.014, along with the baseline WMH volume (B = 0.039; 95% CI 0.019-0.059; P<0.001, after adjusting for the conventional vascular risk factors, laboratory parameters, medication profiles, and GFR. Especially, patients with a baseline level of cystatin C ≥1.00 mg/L exhibited a much higher progression rate of WMH as compared with those with a baseline level of cystatin C <1.00 mg/L (1.60±1.91 mL/year vs. 0.82±1.63 mL/year, P = 0.010. We concluded that serum cystatin C level is independently associated with the long-term progression rate of

  18. Comparison of immortalized bEnd5 and primary mouse brain microvascular endothelial cells as in vitro blood–brain barrier models for the study of T cell extravasation

    Science.gov (United States)

    Steiner, Oliver; Coisne, Caroline; Engelhardt, Britta; Lyck, Ruth

    2011-01-01

    Important insights into the molecular mechanism of T cell extravasation across the blood–brain barrier (BBB) have already been obtained using immortalized mouse brain endothelioma cell lines (bEnd). However, compared with bEnd, primary brain endothelial cells have been shown to establish better barrier characteristics, including complex tight junctions and low permeability. In this study, we asked whether bEnd5 and primary mouse brain microvascular endothelial cells (pMBMECs) were equally suited as in vitro models with which to study the cellular and molecular mechanisms of T cell extravasation across the BBB. We found that both in vitro BBB models equally supported both T cell adhesion under static and physiologic flow conditions, and T cell crawling on the endothelial surface against the direction of flow. In contrast, distances of T cell crawling on pMBMECs were strikingly longer than on bEnd5, whereas diapedesis of T cells across pMBMECs was dramatically reduced compared with bEnd5. Thus, both in vitro BBB models are suited to study T cell adhesion. However, because pMBMECs better reflect endothelial BBB specialization in vivo, we propose that more reliable information about the cellular and molecular mechanisms of T cell diapedesis across the BBB can be attained using pMBMECs. PMID:20606687

  19. Plasmodium falciparum histidine-rich protein II causes vascular leakage and exacerbates experimental cerebral malaria in mice.

    Science.gov (United States)

    Pal, Priya; Balaban, Amanda E; Diamond, Michael S; Sinnis, Photini; Klein, Robyn S; Goldberg, Daniel E

    2017-01-01

    A devastating complication of Plasmodium falciparum infection is cerebral malaria, in which vascular leakage and cerebral swelling lead to coma and often death. P. falciparum produces a protein called histidine-rich protein II (HRPII) that accumulates to high levels in the bloodstream of patients and serves as a diagnostic and prognostic marker for falciparum malaria. Using a human cerebral microvascular endothelial barrier model, we previously found that HRPII activates the endothelial cell inflammasome, resulting in decreased integrity of tight junctions and increased endothelial barrier permeability. Here, we report that intravenous administration of HRPII induced blood-brain barrier leakage in uninfected mice. Furthermore, HRPII infusion in P. berghei-infected mice increased early mortality from experimental cerebral malaria. These data support the hypothesis that HRPII is a virulence factor that contributes to cerebral malaria by compromising the integrity of the blood-brain barrier.

  20. [Effect of skull acupuncture and scalp acupuncture on serum vascular endothelial growth factor in the patient of acute cerebral infarction].

    Science.gov (United States)

    Yu, Chang-de; Wu, Bing-huang; Zhang, Jing; Song, Hong-mei; Wang, Guo-shu; Yu, Zhou

    2006-07-01

    To investigate effect of skull suture acupuncture (skull acupuncture) and scalp acupuncture on serum vascular endothelial growth factor (VEGF) in the patient of acute cerebral infarction (CI). Twenty cases of CI were treated with skull suture acupuncture at coronal suture, sagittal suture, lambdoid suture, etc. combined with medication (group B), group C (n=20) with scalp acupuncture at contralateral Dingnie Qian-xiexian (MS 6) and Dingnie Houxiexian (MS 7) plus medication, and group A (n=20) with medication. Changes of serum VEGF contents were investigated in the three groups. After treatment, the serum VEGF content did not significantly change in group A (P > 0.05), and significantly increased in group B and group C (P 0.05). Skull suture acupuncture combined with medication and scalp acupuncture plus medication have a similar effect on serum VEGF in the patient of acute cerebral infarction.

  1. Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration

    DEFF Research Database (Denmark)

    Yannariello-Brown, J; Wewer, U; Liotta, L

    1988-01-01

    Affinity chromatography and immunolocalization techniques were used to investigate the mechanism(s) by which endothelial cells interact with the basement membrane component laminin. Bovine aortic endothelial cells (BAEC) membranes were solubilized and incubated with a laminin-Sepharose affinity...

  2. Electroacupuncture acutely improves cerebral blood flow and attenuates moderate ischemic injury via an endothelial mechanism in mice.

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    Full Text Available Electroacupuncture (EA is a novel therapy based on traditional acupuncture combined with modern eletrotherapy that is currently being investigated as a treatment for acute ischemic stroke. Here, we studied whether acute EA stimulation improves tissue and functional outcome following experimentally induced cerebral ischemia in mice. We hypothesized that endothelial nitric oxide synthase (eNOS-mediated perfusion augmentation was related to the beneficial effects of EA by interventions in acute ischemic injury. EA stimulation at Baihui (GV20 and Dazhui (GV14 increased cerebral perfusion in the cerebral cortex, which was suppressed in eNOS KO, but there was no mean arterial blood pressure (MABP response. The increased perfusion elicited by EA were completely abolished by a muscarinic acetylcholine receptor (mAChR blocker (atropine, but not a β-adrenergic receptor blocker (propranolol, an α-adrenergic receptor blocker (phentolamine, or a nicotinic acetylcholine receptor (nAChR blocker (mecamylamine. In addition, EA increased acetylcholine (ACh release and mAChR M3 expression in the cerebral cortex. Acute EA stimulation after occlusion significantly reduced infarct volume by 34.5% when compared to a control group of mice at 24 h after 60 min-middle cerebral artery occlusion (MCAO (moderate ischemic injury, but not 90-min MCAO (severe ischemic injury. Furthermore, the impact of EA on moderate ischemic injury was totally abolished in eNOS KO. Consistent with a smaller infarct size, acute EA stimulation led to prominent improvement of neurological function and vestibule-motor function. Our results suggest that acute EA stimulation after moderate focal cerebral ischemia, but not severe ischemia improves tissue and functional recovery and ACh/eNOS-mediated perfusion augmentation might be related to these beneficial effects of EA by interventions in acute ischemic injury.

  3. Novel Mechanism of Attenuation of LPS-Induced NF-κB Activation by the Heat Shock Protein 90 Inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, in Human Lung Microvascular Endothelial Cells

    Science.gov (United States)

    Thangjam, Gagan S.; Dimitropoulou, Chistiana; Joshi, Atul D.; Barabutis, Nektarios; Shaw, Mary C.; Kovalenkov, Yevgeniy; Wallace, Chistopher M.; Fulton, David J.; Patel, Vijay

    2014-01-01

    Heat shock protein (hsp) 90 inhibition attenuates NF-κB activation and blocks inflammation. However, the precise mechanism of NF-κB regulation by hsp90 in the endothelium is not clear. We investigated the mechanisms of hsp90 inhibition by 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) on NF-κB activation by LPS in primary human lung microvascular endothelial cells. Transcriptional activation of NF-κB was measured by luciferase reporter assay, gene expression by real-time RT-PCR, DNA binding of transcription factors by chromatin immunoprecipitation assay, protein–protein interaction by coimmunoprecipitation/immunoblotting, histone deacetylase (HDAC)/histone acetyltransferase enzyme activity by fluorometry, and nucleosome eviction by partial microccocal DNase digestion. In human lung microvascular endothelial cells, 17-AAG–induced degradation of IKBα was accomplished regardless of the phosphorylation/ubiquitination state of the protein. Hence, 17-AAG did not block LPS-induced NF-κB nuclear translocation and DNA binding activity. Instead, 17-AAG blocked the recruitment of the coactivator, cAMP response element binding protein binding protein, and prevented the assembly of a transcriptionally competent RNA polymerase II complex at the κB elements of the IKBα (an NF-κB–responsive gene) promoter. The effect of LPS on IKBα mRNA expression was associated with rapid deacetylation of histone-H3(Lys9) and a dramatic down-regulation of core histone H3 binding. Even though treatment with an HDAC inhibitor produced the same effect as hsp90 inhibition, the effect of 17-AAG was independent of HDAC. We conclude that hsp90 inhibition attenuates NF-κB transcriptional activation by preventing coactivator recruitment and nucleosome eviction from the target promoter in human lung endothelial cells. PMID:24303801

  4. A novel bioactivity of andrographolide from Andrographis paniculata on cerebral ischemia/reperfusion-induced brain injury through induction of cerebral endothelial cell apoptosis.

    Science.gov (United States)

    Yen, Ting-Lin; Hsu, Wen-Hsien; Huang, Steven Kuan-Hua; Lu, Wan-Jung; Chang, Chao-Chien; Lien, Li-Ming; Hsiao, George; Sheu, Joen-Rong; Lin, Kuan-Hung

    2013-09-01

    Andrographolide, extracted from the leaves of Andrographis paniculata (Burm. f.) Nees (Acanthaceae), is a labdane diterpene lactone. It is widely reported to possess anti-inflammatory and antitumorigenic activities. Cerebral endothelial cells (CECs) play a crucial role in supporting the integrity and the function of the blood-brain barrier (BBB). However, no data are available concerning the effects of andrographolide in CECs. The aim of this study was to examine the detailed mechanisms of andrographolide on CECs. This study investigated a novel bioactivity of andrographolide on cerebral ischemia/reperfusion-induced brain injury. CECs were treated with andrographolide (20-100 µΜ) for the indicated times (0-24 h). After the reactions, cell survival rate and cytotoxicity were tested by the MTT assay and the lactate dehydrogenase (LDH) test, respectively. Western blotting was used to detect caspase-3 expression. In addition, analysis of cell cycle and apoptosis using PI staining and annexin V-FITC/PI labeling, respectively, was performed by flow cytometry. We also investigated the effect of andrographolide on middle cerebral artery occlusion (MCAO)/reperfusion-induced brain injury in a rat model. In the present study, we found that andrographolide (50-100 µΜ) markedly inhibited CEC growth according to an MTT assay and caused CEC damage according to a LDH test. Our data also revealed that andrographolide (50 µM) induced CEC apoptosis and caspase-3 activation as respectively detected by PI/annexin-V double staining and western blotting. Moreover, andrographolide arrested the CEC cell cycle at the G0/G1 phase by PI staining. In addition, andrographolide (5 mg/kg) caused deterioration of MCAO/reperfusion-induced brain injury in a rat model. These data suggest that andrographolide may disrupt BBB integrity, thereby deteriorating MCAO/reperfusion-induced brain injury, which are, in part, associated with its capacity to arrest cell-cycle and induce CEC

  5. Correlation of Homocysteine with Cerebral Hemodynamic Abnormality, Endothelial Dysfunction Markers, and Cognition Impairment in Patients with Traumatic Brain Injury.

    Science.gov (United States)

    Hatefi, Masoud; Behzadi, Someyeh; Dastjerdi, Masoud Moghadas; Ghahnavieh, Alireza Abootalebi; Rahmani, Asghar; Mahdizadeh, Fatemeh; Hafezi Ahmadi, Mohammad Reza; Asadollahi, Khairollah

    2017-01-01

    This study aimed to assess any correlation between serum levels of homocysteine (Hcy) and markers of cerebral hemodynamics, endothelial dysfunction, and cognition impairment in patients with traumatic brain injury (TBI). By a cross-sectional study, all clinical data and serum levels of homocysteine of 85 TBI patients were collected. The pulsatility indices (PIs) of the middle cerebral artery were recorded by transcranial color-coded Doppler ultrasonography and cerebrovascular reactivity was measured by the increase in middle cerebral artery flow velocity in response to 5% inhaled CO 2 . Serum levels of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1), cognition status by Montreal Cognitive Assessment, and Mini-Mental State Examination were measured in all participants. Totally, 85 patients including 51.76% male and the mean age of 54.48 years were studied. The level of Hcy in patients who died in the hospital or during 6 months after TBI was significantly higher than in survivors (P = 0.045, P = 0.020, respectively). Also, the levels of ICAM-1, VCAM-1, and PI in deceased patients were higher than their figures in survivors in both hospital and 6-month follow-ups (P = 0.450, P = 0.000; P = 0.072, P = 0.000, P = 0.090, and P = 0.000, respectively). Cerebrovascular reactivity in deceased patients was significantly lower than that in alive individuals (P = 0.008 and P = 0.000, respectively). A significant correlation was found between Hcy with cognition impairment according to Montreal Cognitive Assessment, Mini-Mental State Examination, and cerebral hemodynamic status according to PI (P = 0.000 for all). Also, this correlation was shown between Hcy with ICAM-1 and VCAM-1 in hospital and 6-month follow-ups (P = 0.000 for both). Hcy has a significant correlation with markers of cerebrovascular, endothelial, and cognition abnormality in TBI patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of non-supervised low intensity aerobic excise training on the microvascular endothelial function of patients with type 1 diabetes: a non-pharmacological interventional study

    OpenAIRE

    de Moraes, Roger; Van Bavel, Diogo; Gomes, Mar?lia de Brito; Tibiri??, Eduardo

    2016-01-01

    Background The aim of the present study was to evaluate changes in microvascular density and reactivity in patients with type 1 diabetes (T1D) resulting from low intensity chronic exercise training. Methods This study included 22 (34???7?years) consecutive outpatients with T1D and disease duration?>?6?years. We used intravital video-microscopy to measure basal skin capillary density and capillary recruitment using post-occlusive reactive hyperemia (PORH) in the dorsum of the fingers. Endothel...

  7. Impaired vascular remodeling after endothelial progenitor cell transplantation in MMP9-deficient mice suffering cortical cerebral ischemia

    Science.gov (United States)

    Morancho, Anna; Ma, Feifei; Barceló, Verónica; Giralt, Dolors; Montaner, Joan; Rosell, Anna

    2015-01-01

    Endothelial progenitor cells (EPCs) are being investigated for advanced therapies, and matrix metalloproteinase 9 (MMP9) has an important role in stroke recovery. Our aim was to determine whether tissue MMP9 influences the EPC-induced angiogenesis after ischemia. Wild-type (WT) and MMP9-deficient mice (MMP9/KO) were subjected to cerebral ischemia and treated with vehicle or outgrowth EPCs. After 3 weeks, we observed an increase in the peri-infarct vessel density in WT animals but not in MMP9/KO mice; no differences were found in the vehicle-treated groups. Our data suggest that tissue MMP9 has a crucial role in EPC-induced vascular remodeling after stroke. PMID:26219597

  8. Endothelial TRPV4 channels mediate dilation of cerebral arteries: impairment and recovery in cerebrovascular pathologies related to Alzheimer's disease

    Science.gov (United States)

    Zhang, Luqing; Papadopoulos, Panayiota; Hamel, Edith

    2013-01-01

    BACKGROUND AND PURPOSE Transient receptor potential vanilloid type 4 (TRPV4) channels are expressed in brain endothelial cells, but their role in regulating cerebrovascular tone under physiological and pathological conditions is still largely unknown. EXPERIMENTAL APPROACH Wild-type (WT) mice and mice that overexpress a mutated form of the human amyloid precursor protein (APP mice, model of increased amyloid β), a constitutively active form of TGF-β1 (TGF mice, model of cerebrovascular fibrosis) or both (APP/TGF mice) were used. Dilations to the selective TRPV4 channel opener GSK1016790A (GSK) or to ACh were measured in posterior cerebral artery segments. KEY RESULTS Both GSK- and ACh-induced dilations virtually disappeared following endothelium denudation in WT mice. These responses were impaired in vessels from APP, TGF and APP/TGF mice compared with WT. Pre-incubation of WT vessels with the selective TRPV4 channel blocker HC-067047, or with small-conductance (SK channel, apamin) and/or intermediate-conductance (IK channel, charybdotoxin, ChTx) Ca2+-sensitive K+ channel blocker abolished GSK-induced dilations and massively decreased those induced by ACh. These treatments had no or limited effects on ACh-induced dilation in vessels from APP, TGF or APP/TGF mice, and IK and SK channel function was preserved in transgenic mice. Antioxidant superoxide dismutase or catalase normalized GSK- and ACh-mediated dilations only in APP brain arteries. Conclusion and Implications We conclude that endothelial TRPV4 channels mediate ACh-induced dilation in cerebral arteries, that they are impaired in models of cerebrovascular pathology and that they are sensitive, albeit in the reversible manner, to amyloid β-induced oxidative stress. PMID:23889563

  9. Differential Effects of Indoxyl Sulfate and Inorganic Phosphate in a Murine Cerebral Endothelial Cell Line (bEnd.3

    Directory of Open Access Journals (Sweden)

    Andréa E. M. Stinghen

    2014-06-01

    Full Text Available Endothelial dysfunction plays a key role in stroke in chronic kidney disease patients. To explore the underlying mechanisms, we evaluated the effects of two uremic toxins on cerebral endothelium function. bEnd.3 cells were exposed to indoxyl sulfate (IS and inorganic phosphate (Pi. Nitric oxide (NO, reactive oxygen species (ROS and O2•– were measured using specific fluorophores. Peroxynitrite and eNOS uncoupling were evaluated using ebselen, a peroxide scavenger, and tetrahydrobiopterin (BH4, respectively. Cell viability decreased after IS or Pi treatment (p < 0.01. Both toxins reduced NO production (IS, p < 0.05; Pi, p < 0.001 and induced ROS production (p < 0.001. IS and 2 mM Pi reduced O2•– production (p < 0.001. Antioxidant pretreatment reduced ROS levels in both IS- and Pi-treated cells, but a more marked reduction of O2•– production was observed in Pi-treated cells (p < 0.001. Ebselen reduced the ROS production induced by the two toxins (p < 0.001; suggesting a role of peroxynitrite in this process. BH4 addition significantly reduced O2•– and increased NO production in Pi-treated cells (p < 0.001, suggesting eNOS uncoupling, but had no effect in IS-treated cells. This study shows, for the first time, that IS and Pi induce cerebral endothelial dysfunction by decreasing NO levels due to enhanced oxidative stress. However, Pi appears to be more deleterious, as it also induces eNOS uncoupling.

  10. Amyloid-β peptide on sialyl-Lewis(X-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface.

    Directory of Open Access Journals (Sweden)

    Sholpan Askarova

    Full Text Available Increased deposition of amyloid-β peptide (Aβ at the cerebral endothelial cell (CEC surface has been implicated in enhancement of transmigration of monocytes across the brain blood barrier (BBB in Alzheimer's disease (AD. In this study, quantitative immunofluorescence microscopy (QIM and atomic force microscopy (AFM with cantilevers biofunctionalized by sialyl-Lewis(x (sLe(x were employed to investigate Aβ-altered mechanics of membrane tethers formed by bonding between sLe(x and p-selectin at the CEC surface, the initial mechanical step governing the transmigration of monocytes. QIM results indicated the ability for Aβ to increase p-selectin expression at the cell surface and promote actin polymerization in both bEND3 cells (immortalized mouse CECs and human primary CECs. AFM data also showed the ability for Aβ to increase cell stiffness and adhesion probability in bEND3 cells. On the contrary, Aβ lowered the overall force of membrane tether formation (Fmtf , and produced a bimodal population of Fmtf , suggesting subcellular mechanical alterations in membrane tethering. The lower Fmtf population was similar to the results obtained from cells treated with an F-actin-disrupting drug, latrunculin A. Indeed, AFM results also showed that both Aβ and latrunculin A decreased membrane stiffness, suggesting a lower membrane-cytoskeleton adhesion, a factor resulting in lower Fmtf . In addition, these cerebral endothelial alterations induced by Aβ were abrogated by lovastatin, consistent with its anti-inflammatory effects. In sum, these results demonstrated the ability for Aβ to enhance p-selectin expression at the CEC surface and induce cytoskeleton reorganization, which in turn, resulted in changes in membrane-cytoskeleton adhesion and membrane tethering, mechanical factors important in transmigration of monocytes through the BBB.

  11. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Axel Haarmann

    2015-08-01

    Full Text Available Dimethyl fumarate (DMF is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.

  12. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Kelsey Roe

    Full Text Available Characterizing the mechanisms by which West Nile virus (WNV causes blood-brain barrier (BBB disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE. Infection with WNV (NY99 strain significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1 did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101 strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  13. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Science.gov (United States)

    Roe, Kelsey; Orillo, Beverly; Verma, Saguna

    2014-01-01

    Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  14. Body mass index is associated with microvascular endothelial dysfunction in patients with treated metabolic risk factors and suspected coronary artery disease

    NARCIS (Netherlands)

    D.J. Van Der Heijden (Dirk J.); M.A.H. van Leeuwen (Maarten); G.N. Janssens (Gladys N.); M.J. Lenzen (Mattie); P.M. van de Ven (Peter); E.C. Eringa (Etto ); N. van Royen (Niels)

    2017-01-01

    textabstractBackground--Obesity is key feature of the metabolic syndrome and is associated with high cardiovascular morbidity and mortality. Obesity is associated with macrovascular endothelial dysfunction, a determinant of outcome in patients with coronary artery disease. Here, we compared the

  15. Effect of rosuvastatin on fasting and postprandial endothelial biomarker levels and microvascular reactivity in patients with type 2 diabetes and dyslipidemia: a preliminary report.

    Science.gov (United States)

    Kim, Kyoung Min; Jung, Kyong Yeun; Yun, Han Mi; Lee, Seo Young; Oh, Tae Jung; Jang, Hak Chul; Lim, Soo

    2017-11-09

    The cardiovascular benefits of statins have been proven, but their effect on circulation in small vessels has not been examined fully. We investigated the effect of 20 mg rosuvastatin on biomarkers, including paraoxonase-1 (PON-1) and asymmetric dimethylarginine (ADMA), and on microvascular reactivity. We enrolled 20 dyslipidemic patients with type 2 diabetes and 20 age- and body mass index (BMI)-matched healthy controls. Rosuvastatin (20 mg/day) was given to the patient group for 12 weeks. Biochemical parameters, including PON-1 and ADMA, were compared between the patient and control groups, and before and after rosuvastatin treatment in the patient group. Fasting and 2 h postprandial levels of PON-1 and ADMA after mixed-meal challenge were also compared. Microvascular reactivity in a peripheral artery was examined using laser Doppler flowmetry. The respective mean ± standard deviation of age and BMI were 50.1 ± 3.8 year and 25.8 ± 3.7 kg/m 2 in the patients and 50.2 ± 3.2 year and 25.4 ± 3.4 kg/m 2 in the controls. The patient group had worse profiles of cardiometabolic biomarkers, including PON-1 and ADMA, than the controls. In the patients treated with 20 mg rosuvastatin, low-density lipoprotein (LDL)-cholesterol decreased from 147.2 ± 26.5 to 68.3 ± 24.5 mg/dL and high-density lipoprotein (HDL)-cholesterol increased from 42.4 ± 5.2 to 44.7 ± 6.2 mg/dL (both P fasting and 2 h postprandial levels of PON-1 increased and those of ADMA decreased after treatment with rosuvastatin for 12 weeks. The changes in postprandial levels of both biomarkers were greater than those after fasting. Microcirculation assessed as reactive hyperemia in the patients after an ischemic challenge increased significantly from 335.3 ± 123.4 to 402.7 ± 133.4% after rosuvastatin treatment. The postprandial changes in the biomarkers were significantly associated with improvement of microvascular reactivity. Rosuvastatin treatment for 12

  16. Sickle erythrocytes inhibit human endothelial cell DNA synthesis

    International Nuclear Information System (INIS)

    Weinstein, R.; Zhou, M.A.; Bartlett-Pandite, A.; Wenc, K.

    1990-01-01

    Patients with sickle cell anemia experience severe vascular occlusive phenomena including acute pain crisis and cerebral infarction. Obstruction occurs at both the microvascular and the arterial level, and the clinical presentation of vascular events is heterogeneous, suggesting a complex etiology. Interaction between sickle erythrocytes and the endothelium may contribute to vascular occlusion due to alteration of endothelial function. To investigate this hypothesis, human vascular endothelial cells were overlaid with sickle or normal erythrocytes and stimulated to synthesize DNA. The erythrocytes were sedimented onto replicate monolayers by centrifugation for 10 minutes at 17 g to insure contact with the endothelial cells. Incorporation of 3H-thymidine into endothelial cell DNA was markedly inhibited during contact with sickle erythrocytes. This inhibitory effect was enhanced more than twofold when autologous sickle plasma was present during endothelial cell labeling. Normal erythrocytes, with or without autologous plasma, had a modest effect on endothelial cell DNA synthesis. When sickle erythrocytes in autologous sickle plasma were applied to endothelial monolayers for 1 minute, 10 minutes, or 1 hour and then removed, subsequent DNA synthesis by the endothelial cells was inhibited by 30% to 40%. Although adherence of sickle erythrocytes to the endothelial monolayers was observed under these experimental conditions, the effect of sickle erythrocytes on endothelial DNA synthesis occurred in the absence of significant adherence. Hence, human endothelial cell DNA synthesis is partially inhibited by contact with sickle erythrocytes. The inhibitory effect of sickle erythrocytes occurs during a brief (1 minute) contact with the endothelial monolayers, and persists for at least 6 hours of 3H-thymidine labeling

  17. Retinal microvascular abnormalities and stroke: a systematic review

    NARCIS (Netherlands)

    Doubal, F.N.; Hokke, P.E.; Wardlaw, J.M.

    2009-01-01

    Background: Lacunar strokes account for 25% of ischaemic strokes, but their precise aetiology is unknown. Similarities between the retinal and cerebral small vessels mean that clarification of the exact relationship between retinal microvascular abnormalities and stroke, and particularly with stroke

  18. Interleukin-6 triggers human cerebral endothelial cells proliferation and migration: The role for KDR and MMP-9

    International Nuclear Information System (INIS)

    Yao, Jianhua S.; Zhai Wenwu; Young, William L.; Yang Guoyuan

    2006-01-01

    Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for First time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGF stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p < 0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression

  19. Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration

    DEFF Research Database (Denmark)

    Yannariello-Brown, J; Wewer, U; Liotta, L

    1988-01-01

    , with a granular perinuclear distribution and in linear arrays throughout the cell. During migration a redistribution from diffuse to predominanately linear arrays that co-distributed with actin microfilaments was noted in double-label experiments. The 69-kD laminin-binding protein colocalized with actin filaments...... actively synthesizing matrix. Endothelial cells express a 69-kD laminin-binding protein that is membrane associated and appears to colocalize with actin microfilaments. The topological distribution of 69 kD and its cytoskeletal associations can be modulated by the cell during cell migration and growth...

  20. Renal microvascular disease in an aging population: a reversible process?

    Science.gov (United States)

    Futrakul, Narisa; Futrakul, Prasit

    2008-01-01

    Renal microvascular disease and tubulointerstitial fibrosis are usually demonstrated in aging in humans and animals. It has recently been proposed that renal microvascular disease is the crucial determinant of tubulointerstitial disease or fibrosis. Enhanced circulating endothelial cell loss is a biomarker that reflects glomerular endothelial injury or renal microvascular disease, and fractional excretion of magnesium (FE Mg) is a sensitive biomarker that reflects an early stage of tubulointerstitial fibrosis. In aging in humans, both of these biomarkers are abnormally elevated. In addition, a glomerular endothelial dysfunction determined by altered hemodynamics associated with peritubular capillary flow reduction is substantiated. A correction of such hemodynamic alteration with vasodilators can effectively improve renal perfusion and restore renal function. Thus, anti-aging therapy can reverse the renal microvascular disease and dysfunction associated with the aging process.

  1. Protein kinase C-α signals P115RhoGEF phosphorylation and RhoA activation in TNF-α-induced mouse brain microvascular endothelial cell barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Deng Xiaolu

    2011-04-01

    Full Text Available Abstract Background Tumor necrosis factor-α (TNF-α, a proinflammatory cytokine, is capable of activating the small GTPase RhoA, which in turn contributes to endothelial barrier dysfunction. However, the underlying signaling mechanisms remained undefined. Therefore, we aimed to determine the role of protein kinase C (PKC isozymes in the mechanism of RhoA activation and in signaling TNF-α-induced mouse brain microvascular endothelial cell (BMEC barrier dysfunction. Methods Bend.3 cells, an immortalized mouse brain endothelial cell line, were exposed to TNF-α (10 ng/mL. RhoA activity was assessed by pull down assay. PKC-α activity was measured using enzyme assasy. BMEC barrier function was measured by transendothelial electrical resistance (TER. p115RhoGEF phosphorylation was detected by autoradiography followed by western blotting. F-actin organization was observed by rhodamine-phalloidin staining. Both pharmacological inhibitors and knockdown approaches were employed to investigate the role of PKC and p115RhoGEF in TNF-α-induced RhoA activation and BMEC permeability. Results We observed that TNF-α induces a rapid phosphorylation of p115RhoGEF, activation of PKC and RhoA in BMECs. Inhibition of conventional PKC by Gö6976 mitigated the TNF-α-induced p115RhoGEF phosphorylation and RhoA activation. Subsequently, we found that these events are regulated by PKC-α rather than PKC-β by using shRNA. In addition, P115-shRNA and n19RhoA (dominant negative mutant of RhoA transfections had no effect on mediating TNF-α-induced PKC-α activation. These data suggest that PKC-α but not PKC-β acts as an upstream regulator of p115RhoGEF phosphorylation and RhoA activation in response to TNF-α. Moreover, depletion of PKC-α, of p115RhoGEF, and inhibition of RhoA activation also prevented TNF-α-induced stress fiber formation and a decrease in TER. Conclusions Taken together, our results show that PKC-α phosphorylation of p115RhoGEF mediates TNF

  2. Hypertension management and microvascular insulin resistance in diabetes.

    Science.gov (United States)

    Ko, Seung-Hyun; Cao, Wenhong; Liu, Zhenqi

    2010-08-01

    Type 2 diabetes is in essence a vascular disease and is frequently associated with hypertension, macrovascular events, and microvascular complications. Microvascular dysfunction, including impaired recruitment and capillary rarefaction, has been implicated in the pathogenesis of diabetic complications. Microvascular insulin resistance and renin-angiotensin system upregulation are present in diabetes, and each contributes to the development of hypertension and microvascular dysfunction. In the insulin-sensitive state, insulin increases microvascular perfusion by increasing endothelial nitric oxide production, but this effect is abolished by insulin resistance. Angiotensin II, acting via the type 1 receptors, induces inflammation and oxidative stress, leading to impaired insulin signaling, reduced nitric oxide availability, and vasoconstriction. Conversely, it acts on the type 2 receptors to cause vasodilatation. Because substrate and hormonal exchanges occur in the microvasculature, antihypertensive agents targeted to improve microvascular insulin sensitivity and function may have beneficial effects beyond their capacity to lower blood pressure in patients with diabetes.

  3. The Human Brain Intracerebral Microvascular System: Development, Structure and Function

    Directory of Open Access Journals (Sweden)

    Miguel eMarín-Padilla

    2012-09-01

    Full Text Available The capillary from the meningeal inner pial lamella play a crucial role in the development and structural organization of the cerebral cortex extrinsic and intrinsic microvascular compartments. Only pial capillaries are capable of perforating through the cortex external glial limiting membrane (EGLM to enter into the nervous tissue, although incapable of perforating the membrane to exit the brain. Circulatory dynamics and functional demands determine which capillaries become arterial and which capillaries become venous. The perforation of the cortex EGLM by pial capillaries is a complex process characterized by three fundamental stages: a pial capillary contact with the EGLM with fusion of vascular and glial basal laminae at the contact site, b endothelial cell filopodium penetration through the fussed laminae with the formation of a funnel between them that accompanies it into the nervous tissue while remaining open to the meningeal interstitium and, c penetration of the whole capillary carrying the open funnel with it and establishing an extravascular Virchow-Robin Compartment (V-RC that maintains the perforating vessel extrinsic (outside the nervous tissue through its entire length. The V-RC is walled internally by the vascular basal lamina and externally by the basal lamina of joined glial cells endfeet. The VRC outer glial wall appear as an extension of the cortex superficial EGLM. All the perforating vessels within the V-RCs constitute the cerebral cortex extrinsic microvascular compartment. These perforating vessels are the only one capable of responding to inflammatory insults. The V-RC remains open (for life to the meningeal interstitium permitting the exchanges of fluid and of cells between brain and meninges. The V-RC function as the brain sole drainage (prelymphatic system in both physiological as well as pathological situations.

  4. Modulation of human dermal microvascular endothelial cells by Sarcoptes scabiei in combination with proinflammatory cytokines, histamine, and lipid-derived biologic mediators

    Science.gov (United States)

    Elder, B. Laurel; Arlian, Larry G.; Morgan, Marjorie S.

    2009-01-01

    The ectoparasitic mite, Sarcoptes scabiei, produces molecules that depress initiation of host inflammatory and immune responses. Some of these down-regulate expression of adhesion molecules or secretion of chemokines or cytokines on and by cultured dermal endothelial cells (HMVEC-D). This study was undertaken to determine if the response of HMVEC-D to scabies is altered in the presence of various proinflammatory cytokines (tumor necrosis factor α and interleukins 1α, 1β and 6), histamine, and lipid-derived mediators (prostaglandins D2 and E2, leukotriene B4, platelet activation factor) that likely occur in scabietic lesions in vivo. Scabies extract down-regulated the TNFα-induced expression of VCAM-1 by HMVEC-D and this down-regulation still occurred in the presence of the other proinflammatory cytokines, histamine or the lipid-derived mediators. Scabies inhibited the IL-1α and IL-1β-induced secretion of IL-6, while a combination of scabies and histamine or LTB4 reduced the TNFα-induced secretion of IL-6. Scabies extract inhibited secretion of IL-8. Histamine, PGD2, PGE2, LTB4, PAF, and IL-6 alone had no effect on this inhibition, but the scabies-induced inhibition of IL-8 secretion was reduced in a dose-dependent fashion in the presence of IL-1α and IL-1β. PMID:19523846

  5. Association of Aortic Compliance and Brachial Endothelial Function with Cerebral Small Vessel Disease in Type 2 Diabetes Mellitus Patients: Assessment with High-Resolution MRI

    Directory of Open Access Journals (Sweden)

    Yan Shan

    2016-01-01

    Full Text Available Objective. To assess the possible association of aortic compliance and brachial endothelial function with cerebral small vessel disease in type 2 diabetes mellitus (DM2 patients by using 3.0 T high-resolution magnetic resonance imaging. Methods. Sixty-two clinically confirmed DM2 patients (25 women and 37 men; mean age: 56.8±7.5 years were prospectively enrolled for noninvasive MR examinations of the aorta, brachial artery, and brain. Aortic arch pulse wave velocity (PWV, flow-mediated dilation (FMD of brachial artery, lacunar brain infarcts, and periventricular and deep white matter hyperintensities (WMHs were assessed. Pearson and Spearman correlation analysis were performed to analyze the association between PWV and FMD with clinical data and biochemical test results. Univariable logistic regression analyses were used to analyze the association between PWV and FMD with cerebral small vessel disease. Multiple logistic regression analyses were used to find out the independent predictive factors of cerebral small vessel disease. Results. Mean PWV was 6.73±2.00 m/s and FMD was 16.67±9.11%. After adjustment for compounding factors, PWV was found significantly associated with lacunar brain infarcts (OR = 2.00; 95% CI: 1.14–3.2; P<0.05 and FMD was significantly associated with periventricular WMHs (OR = 0.82; 95% CI: 0.71–0.95; P<0.05. Conclusions. Quantitative evaluation of aortic compliance and endothelial function by using high-resolution MRI may be potentially useful to stratify DM2 patients with risk of cerebral small vessel disease.

  6. Enoxaparin ameliorates post-traumatic brain injury edema and neurologic recovery, reducing cerebral leukocyte endothelial interactions and vessel permeability in vivo.

    Science.gov (United States)

    Li, Shengjie; Marks, Joshua A; Eisenstadt, Rachel; Kumasaka, Kenichiro; Samadi, Davoud; Johnson, Victoria E; Holena, Daniel N; Allen, Steven R; Browne, Kevin D; Smith, Douglas H; Pascual, Jose L

    2015-07-01

    Traumatic brain injury (TBI) confers a high risk of venous thrombosis, but early prevention with heparinoids is often withheld, fearing cerebral hematoma expansion. Yet, studies have shown heparinoids not only to be safe but also to limit brain edema and contusion size after TBI. Human TBI data also suggest faster radiologic and clinical neurologic recovery with earlier heparinoid administration. We hypothesized that enoxaparin (ENX) after TBI blunts in vivo leukocyte (LEU) mobilization to injured brain and cerebral edema, while improving neurologic recovery without increasing the size of the cerebral hemorrhagic contusion. CD1 male mice underwent either TBI by controlled cortical impact (CCI, 1-mm depth, 6 m/s) or sham craniotomy. ENX (1 mg/kg) or vehicle (VEH, 0.9% saline, 1 mL/kg) was administered at 2, 8, 14, 23, and 32 hours after TBI. At 48 hours, intravital microscopy was used to visualize live LEUs interacting with endothelium and microvascular leakage of fluorescein isothiocyanate-albumin. Neurologic function (Neurological Severity Score, NSS), activated clotting time, hemorrhagic contusion size, as well as brain and lung wet-to-dry ratios were evaluated post mortem. Analysis of variance with Bonferroni correction was used for statistical comparisons between groups. Compared with VEH, ENX significantly reduced in vivo LEU rolling on endothelium (72.7 ± 28.3 LEU/100 μm/min vs. 30.6 ± 18.3 LEU/100 μm/min, p = 0.02) and cerebrovascular albumin leakage (34.5% ± 8.1% vs. 23.8% ± 5.5%, p = 0.047). CCI significantly increased ipsilateral cerebral hemisphere edema, but ENX treatment reduced post-CCI edema to near control levels (81.5% ± 1.5% vs. 77.6% ± 0.6%, p edema. ENX may also accelerate neurologic recovery without increasing cerebral contusion size. Further study in humans is necessary to determine safety, appropriate dosage, and timing of ENX administration early after TBI.

  7. Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia.

    Science.gov (United States)

    Song, Seung; Park, Jong-Tae; Na, Joo Young; Park, Man-Seok; Lee, Jeong-Kil; Lee, Min-Cheol; Kim, Hyung-Seok

    2014-05-01

    Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chronological changes of neural stem cells by 5-bromo-2'-deoxyuridine (BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1α immunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-infarct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3-7 days. Nestin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neurons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and vascular

  8. The brain microvascular endothelium supports T cell proliferation and has potential for alloantigen presentation.

    Directory of Open Access Journals (Sweden)

    Julie Wheway

    Full Text Available Endothelial cells (EC form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues. Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which are seen in diseases like multiple sclerosis, cerebral malaria (CM and viral neuropathologies. Here, we investigated how human brain microvascular EC (HBEC interact with and support the proliferation of T cells. We found HBEC to express MHC II, CD40 and ICOSL, key molecules for antigen presentation and co-stimulation and to take up fluorescently labeled antigens via macropinocytosis. In co-cultures, we showed that HBEC support and promote the proliferation of CD4(+ and CD8(+ T cells, which both are key in CM pathogenesis, particularly following T cell receptor activation and co-stimulation. Our findings provide novel evidence that HBEC can trigger T cell activation, thereby providing a novel mechanism for neuroimmunological complications of infectious diseases.

  9. Protective Effects of MicroRNA-126 on Human Cardiac Microvascular Endothelial Cells Against Hypoxia/Reoxygenation-Induced Injury and Inflammatory Response by Activating PI3K/Akt/eNOS Signaling Pathway.

    Science.gov (United States)

    Yang, Hong-Hui; Chen, Yan; Gao, Chuan-Yu; Cui, Zhen-Tian; Yao, Jian-Min

    2017-01-01

    This study explored the protective effects of the microRNA-126 (miR-126)-mediated PI3K/Akt/eNOS signaling pathway on human cardiac microvascular endothelial cells (HCMECs) against hypoxia/reoxygenation (H/R)-induced injury and the inflammatory response. Untreated HCMECs were selected for the control group. After H/R treatment and cell transfection, the HCMECs were assigned to the H/R, miR-126 mimic, mimic-negative control (NC), miR-126 inhibitor, inhibitor-NC, wortmannin (an inhibitor of PI3K) and miR-126 mimic + wortmannin groups. Super oxide dismutase (SOD), nitric oxide (NO), vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) were measured utilizing commercial kits. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to detect miR-126 expression and the mRNA and protein expression of inflammatory factors. Western blotting was used to determine the expression of key members in the PI3K/Akt/eNOS signaling pathway. ACCK-8 assay and flow cytometry were employed to examine cell proliferation and apoptosis, respectively. The angiogenic ability in each group was detected by the lumen formation test. Compared to the control group, p/t-PI3K, p/t-Akt and p/t-eNOS expression, NO, VEGF and SOD levels, cell proliferation and in vitro lumen formation ability were decreased, while the ROS content, interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF)-α expression and cell apoptosis were significantly increased in the H/R, mimic-NC, miR-126 inhibitor, inhibitor-NC, wortmannin and miR-126 mimic + wortmannin groups. Additionally, in comparison with the H/R group, the miR-126 mimic group had elevated p/t-PI3K, p/t-Akt and p/t-eNOS expression, increased NO, VEGF and SOD contents, and strengthened cell proliferation and lumen formation abilities but also exhibited decreased ROS content, reduced IL-6, IL-10 and TNF-α expressions, and weakened cell apoptosis, while the miR-126 inhibitor

  10. Protective Effects of MicroRNA-126 on Human Cardiac Microvascular Endothelial Cells Against Hypoxia/Reoxygenation-Induced Injury and Inflammatory Response by Activating PI3K/Akt/eNOS Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hong-Hui Yang

    2017-06-01

    Full Text Available Objective: This study explored the protective effects of the microRNA-126 (miR-126-mediated PI3K/Akt/eNOS signaling pathway on human cardiac microvascular endothelial cells (HCMECs against hypoxia/reoxygenation (H/R-induced injury and the inflammatory response. Methods: Untreated HCMECs were selected for the control group. After H/R treatment and cell transfection, the HCMECs were assigned to the H/R, miR-126 mimic, mimic-negative control (NC, miR-126 inhibitor, inhibitor-NC, wortmannin (an inhibitor of PI3K and miR-126 mimic + wortmannin groups. Super oxide dismutase (SOD, nitric oxide (NO, vascular endothelial growth factor (VEGF and reactive oxygen species (ROS were measured utilizing commercial kits. Quantitative real-time polymerase chain reaction (qRT-PCR and enzyme-linked immunosorbent assay (ELISA were performed to detect miR-126 expression and the mRNA and protein expression of inflammatory factors. Western blotting was used to determine the expression of key members in the PI3K/Akt/eNOS signaling pathway. ACCK-8 assay and flow cytometry were employed to examine cell proliferation and apoptosis, respectively. The angiogenic ability in each group was detected by the lumen formation test. Results: Compared to the control group, p/t-PI3K, p/t-Akt and p/t-eNOS expression, NO, VEGF and SOD levels, cell proliferation and in vitro lumen formation ability were decreased, while the ROS content, interleukin (IL-6, IL-10 and tumor necrosis factor (TNF-α expression and cell apoptosis were significantly increased in the H/R, mimic-NC, miR-126 inhibitor, inhibitor-NC, wortmannin and miR-126 mimic + wortmannin groups. Additionally, in comparison with the H/R group, the miR-126 mimic group had elevated p/t-PI3K, p/t-Akt and p/t-eNOS expression, increased NO, VEGF and SOD contents, and strengthened cell proliferation and lumen formation abilities but also exhibited decreased ROS content, reduced IL-6, IL-10 and TNF-α expressions, and weakened cell

  11. GLP-1 inhibits VEGFA-mediated signaling in isolated human endothelial cells and VEGFA-induced dilation of rat mesenteric arteries

    DEFF Research Database (Denmark)

    Rotbøl, Cecilie Egholm; Khammy, Makhala Michell; Dalsgaard, Thomas

    2016-01-01

    to PLCγ activation, Src, and endothelial NOS (eNOS) signaling, thereby controlling endothelial vessel tone. By using RT-PCR analysis, we found mRNA for the GLP-1 receptor (GLP-1R) in human dermal microvascular endothelial cells (HDMEC), human retinal microvascular endothelial cells, and rat arteries...

  12. Targeting the dominant mechanism of coronary microvascular dysfunction with intracoronary physiology tests

    NARCIS (Netherlands)

    Mejia-Renteria, H.; Hoeven, N. van der; Hoef, T.P. van de; Heemelaar, J.; Ryan, N.; Lerman, A.; Royen, N. van; Escaned, J.

    2017-01-01

    The coronary microcirculation plays a key role in modulating blood supply to the myocardium. Several factors like myocardial oxygen demands, endothelial and neurogenic conditions determine its function. Although there is available evidence supporting microvascular dysfunction as an important cause

  13. Early impairment of coronary microvascular perfusion capacity in rats on a high fat diet

    NARCIS (Netherlands)

    van Haare, Judith; Kooi, M. Eline; Vink, Hans; Post, Mark J.; van Teeffelen, Jurgen W. G. E.; Slenter, Jos; Munts, Chantal; Cobelens, Hanneke; Strijkers, Gustav J.; Koehn, Dennis; van Bilsen, Marc

    2015-01-01

    It remains to be established if, and to what extent, the coronary microcirculation becomes compromised during the development of obesity and insulin resistance. Recent studies suggest that changes in endothelial glycocalyx properties contribute to microvascular dysfunction under (pre-)diabetic

  14. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    International Nuclear Information System (INIS)

    Server, Andres; Nakstad, Per H.; Orheim, Tone E.D.; Graff, Bjoern A.; Josefsen, Roger; Kumar, Theresa

    2011-01-01

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  15. Microvascular Anastomosis Training in Neurosurgery: A Review

    Directory of Open Access Journals (Sweden)

    Vadim A. Byvaltsev

    2018-01-01

    Full Text Available Cerebrovascular diseases are among the most widespread diseases in the world, which largely determine the structure of morbidity and mortality rates. Microvascular anastomosis techniques are important for revascularization surgeries on brachiocephalic and carotid arteries and complex cerebral aneurysms and even during resection of brain tumors that obstruct major cerebral arteries. Training in microvascular surgery became even more difficult with less case exposure and growth of the use of endovascular techniques. In this text we will briefly discuss the history of microvascular surgery, review current literature on simulation models with the emphasis on their merits and shortcomings, and describe the views and opinions on the future of the microvascular training in neurosurgery. In “dry” microsurgical training, various models created from artificial materials that simulate biological tissues are used. The next stage in training more experienced surgeons is to work with nonliving tissue models. Microvascular training using live models is considered to be the most relevant due to presence of the blood flow. Training on laboratory animals has high indicators of face and constructive validity. One of the future directions in the development of microsurgical techniques is the use of robotic systems. Robotic systems may play a role in teaching future generations of microsurgeons. Modern technologies allow access to highly accurate learning environments that are extremely similar to real environment. Additionally, assessment of microsurgical skills should become a fundamental part of the current evaluation of competence within a microneurosurgical training program. Such an assessment tool could be utilized to ensure a constant level of surgical competence within the recertification process. It is important that this evaluation be based on validated models.

  16. Different segments of the cerebral vasculature reveal specific endothelial specifications, while tight junction proteins appear equally distributed.

    Science.gov (United States)

    Hanske, Sophie; Dyrna, Felix; Bechmann, Ingo; Krueger, Martin

    2017-04-01

    The identification of the "paucity of transportation vesicles" and "belt-like" tight junctions (TJs) of endothelial cells as the "morphological correlate of a blood-brain barrier" (BBB) by Reese and Karnovsky (J Cell Biol 34:207-217, 1967) has become textbook knowledge, and countless studies have helped to further define the elements, functions, and dynamics of the BBB. Most work, however, has focused on parenchymal capillaries or less clearly defined "microvessels", while a systematic study on similarities and differences between BBB architecture along the vascular tree within the brain and the meninges has been lacking. Since astrocytes induce endothelial cells to display BBB-typical characteristics by sonic hedgehog and Wnt/β-catenin signaling, we hypothesized that BBB-typical features should be most pronounced in parenchymal capillaries, where endothelium and astrocytes are separated by a basement membrane only. In contrast, this intimate contact is absent in leptomeningeal vessels, thereby potentially affecting BBB architecture. However, here, we show that claudin-3, claudin-5, zonula occludens-1, and occludin as typical constitutes of BBB TJs are comparably distributed in all segments of the parenchymal and the meningeal vascular tree of C57Bl6 mice. While electron microscopy revealed equally occluded interendothelial clefts, arterial vessels of the brain parenchyma but not within the meninges exhibited significantly longer TJ overlaps compared to capillaries. The highest density of endothelial vesicles was found in arterial vessels. Thus, endothelial expression of BBB-typical TJ proteins is not reflected by the distance to surrounding astrocytes, but electron microscopy reveals significant differences of endothelial specification along different segments of the CNS vasculature.

  17. Effect of Erythropoietin on Microvascular Anastomosis in Rat ...

    African Journals Online (AJOL)

    Purpose: To investigate the re-endothelialization potential of erythropoietin (EPO) following microvascular anastomosis in rat femoral artery. Methods: Ninety-six male Sprague-Dawley rats weighing between 300 g and 320 g were allocated randomly into two groups (control and EPO, n = 48). Left femoral artery ...

  18. Renal and cardiac microvascular endothelium: injury and repair

    NARCIS (Netherlands)

    Oosterhuis, NR

    2016-01-01

    Injury to the capillary endothelium can be devastating for renal and cardiac function. To halt the progression of chronic kidney disease (CKD) and heart failure (HF) preservation of the microvascular endothelial cell (EC) function and structure is of great importance.1 Increasing knowledge about

  19. Effect of Erythropoietin on Microvascular Anastomosis in Rat

    African Journals Online (AJOL)

    Purpose: To investigate the re-endothelialization potential of erythropoietin (EPO) following microvascular anastomosis in rat femoral artery. Methods: Ninety-six male Sprague-Dawley rats weighing between 300 g and 320 g were allocated randomly into two groups (control and EPO, n = 48). Left femoral artery ...

  20. Microvascular resuscitation as a therapeutic goal in severe sepsis.

    Science.gov (United States)

    Bateman, Ryon M; Walley, Keith R

    2005-01-01

    Sepsis causes microvascular dysfunction. Increased heterogeneity of capillary blood flow results in local tissue hypoxia, which can cause local tissue inflammation, impaired oxygen extraction, and, ultimately, organ dysfunction. Microvascular dysfunction is clinically relevant because it is a marker for mortality: it improves rapidly in survivors of sepsis but fails to improve in nonsurvivors. This, along with the fact that resuscitation of mean arterial pressure and cardiac output alone fails to improve microvascular function, means that microvascular resuscitation is therefore a therapeutic goal. In animal studies of sepsis, volume resuscitation improves microvascular permeability and tissue oxygenation, and leads to improved organ function, including a reduction in myocardial dysfunction. Microvascular resuscitation strategies include hemodynamic resuscitation using the linked combination of volume resuscitation, judicious vasopressor use, and inotropes and vasodilators. Alternative vasoactive agents, such as vasopressin, may improve microcirculatory function to a greater degree than conventional vasopressors. Successful modulation of inflammation has a positive impact on endothelial function. Finally, targeted treatment of the endothelium, using activated protein C, also improves microvascular function and ultimately increases survival. Thus, attention must be paid to the microcirculation in patients with sepsis, and therapeutic strategies should be employed to resuscitate the microcirculation in order to avoid organ dysfunction and to reduce mortality.

  1. Parasites causing cerebral falciparum malaria bind multiple endothelial receptors and express EPCR and ICAM-1-binding PfEMP1

    DEFF Research Database (Denmark)

    Tuikue Ndam, Nicaise; Moussiliou, Azizath; Lavstsen, Thomas

    2017-01-01

    Background: Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates the binding and accumulation of infected erythrocytes (IE) to blood vessels and tissues. Specific interactions have been described between PfEMP1 and human endothelial proteins CD36, intercellular adhesion molecule-1...... was higher in patients with severe disease (P parasites, which only bound CD36. Conclusions: These results underpin the significance of EPCR...

  2. Association of Microvascular Dysfunction With Late-Life Depression

    DEFF Research Database (Denmark)

    van Agtmaal, Marnix J M; Houben, Alfons J H M; Pouwer, Frans

    2017-01-01

    Importance: The etiologic factors of late-life depression are still poorly understood. Recent evidence suggests that microvascular dysfunction is associated with depression, which may have implications for prevention and treatment. However, this association has not been systematically reviewed....... Objective: To examine the associations of peripheral and cerebral microvascular dysfunction with late-life depression. Data Sources: A systematic literature search was conducted in MEDLINE and EMBASE for and longitudinal studies published since inception to October 16, 2016, that assessed the associations...... between microvascular dysfunction and depression. Study Selection: Three independent researchers performed the study selection based on consensus. Inclusion criteria were a study population 40 years of age or older, a validated method of detecting depression, and validated measures of microvascular...

  3. Engineering Blood and Lymphatic Microvascular Networks in Fibrin Matrices.

    Science.gov (United States)

    Knezevic, Lea; Schaupper, Mira; Mühleder, Severin; Schimek, Katharina; Hasenberg, Tobias; Marx, Uwe; Priglinger, Eleni; Redl, Heinz; Holnthoner, Wolfgang

    2017-01-01

    Vascular network engineering is essential for nutrient delivery to tissue-engineered constructs and, consequently, their survival. In addition, the functionality of tissues also depends on tissue drainage and immune cell accessibility, which are the main functions of the lymphatic system. Engineering both the blood and lymphatic microvasculature would advance the survival and functionality of tissue-engineered constructs. The aim of this study was to isolate pure populations of lymphatic endothelial cells (LEC) and blood vascular endothelial cells (BEC) from human dermal microvascular endothelial cells and to study their network formation in our previously described coculture model with adipose-derived stromal cells (ASC) in fibrin scaffolds. We could follow the network development over a period of 4 weeks by fluorescently labeling the cells. We show that LEC and BEC form separate networks, which are morphologically distinguishable and sustainable over several weeks. In addition, lymphatic network development was dependent on vascular endothelial growth factor (VEGF)-C, resulting in denser networks with increasing VEGF-C concentration. Finally, we confirm the necessity of cell-cell contact between endothelial cells and ASC for the formation of both blood and lymphatic microvascular networks. This model represents a valuable platform for in vitro drug testing and for the future in vivo studies on lymphatic and blood microvascularization.

  4. Integrin alphavbeta3 is expressed in selected microvessels after focal cerebral ischemia.

    Science.gov (United States)

    Okada, Y.; Copeland, B. R.; Hamann, G. F.; Koziol, J. A.; Cheresh, D. A.; del Zoppo, G. J.

    1996-01-01

    The endothelial and smooth muscle integrin alphaVbeta3, a receptor for vitronectin and fibrinogen, participates in angiogenesis associated with wound healing and tumorigenicity. The microvascular expression of alphavbeta3 and fibrin during experimental middle cerebral artery occlusion and reperfusion in a nonhuman primate model was examined by computer-assisted video imaging microscopy. No microvascular expression of alphavbeta3 was seen in the control subjects (n = 3) or the non-ischemic basal ganglia of subjects undergoing 2-hour MCA:O (middle cerebral artery occlusion) or 3-hour occlusion with 1-hour (n = 3), 4-hour (n = 3), and 24-hour (n = 3) reperfusion. In the ischemic territory, alphavbeta3 appeared initially at 2 hours of middle cerebral artery occlusion. Up-regulation of alphavbeta3 was confined to the media of 30.0- to 50.0-micron-diameter arterioles in the ischemic core and correlated significantly with fibrin deposition in those vessels (P < 0.0005). Integrin alphavbeta3 and its ligand fibrinogen appear in a subpopulation of microvessels after focal cerebral ischemia. Images Figure 3 PMID:8686760

  5. Distinction of neurons, glia and endothelial cells in the cerebral cortex: an algorithm based on cytological features

    Directory of Open Access Journals (Sweden)

    Miguel Ángel García-Cabezas

    2016-11-01

    Full Text Available The estimation of the number or density of neurons and types of glial cells and their relative proportions in different brain areas are at the core of rigorous quantitative neuroanatomical studies. Unfortunately, the lack of detailed, updated, systematic, and well-illustrated descriptions of the cytology of neurons and glial cell types, especially in the primate brain, makes such studies especially demanding, often limiting their scope and broad use. Here, following extensive analysis of histological materials and the review of current and classical literature, we compile a list of precise morphological criteria that can facilitate and standardize identification of cells in stained sections examined under the microscope. We describe systematically and in detail the cytological features of neurons and glial cell types in the cerebral cortex of the macaque monkey and the human using semithin and thick sections stained for Nissl. We used this classical staining technique because it labels all cells in the brain in distinct ways. In addition, we corroborate key distinguishing characteristics of different cell types in sections immunolabeled for specific markers counterstained for Nissl and in ultrathin sections processed for electron microscopy. Finally, we summarize the core features that distinguish each cell type in easy-to-use tables and sketches, and structure these key features in an algorithm that can be used to systematically distinguish cellular types in the cerebral cortex. Moreover, we report high inter-observer algorithm reliability, which is a crucial test for obtaining consistent and reproducible cell counts in unbiased stereological studies. This protocol establishes a consistent framework that can be used to reliably identify and quantify cells in the cerebral cortex of primates as well as other mammalian species in health and disease.

  6. Effects of amelogenins on angiogenesis-associated processes of endothelial cells

    DEFF Research Database (Denmark)

    Almqvist, S; Kleinman, H K; Werthén, M

    2011-01-01

    To study the effects of an amelogenin mixture on integrin-dependent adhesion, DNA synthesis and apoptosis of cultured human dermal microvascular endothelial cells and angiogenesis in an organotypic assay.......To study the effects of an amelogenin mixture on integrin-dependent adhesion, DNA synthesis and apoptosis of cultured human dermal microvascular endothelial cells and angiogenesis in an organotypic assay....

  7. Cardiovascular risk factors as determinants of retinal and skin microvascular function: The Maastricht Study

    Science.gov (United States)

    Houben, Alfons J. H. M.; Berendschot, Tos T. J. M.; Schouten, Jan S. A. G.; Kroon, Abraham A.; van der Kallen, Carla J. H.; Henry, Ronald M. A.; Koster, Annemarie; Dagnelie, Pieter C.; Schaper, Nicolaas C.; Schram, Miranda T.; Stehouwer, Coen D. A.

    2017-01-01

    Objective Microvascular dysfunction is an important underlying mechanism of microvascular diseases. Determinants (age, sex, hypertension, dyslipidemia, hyperglycemia, obesity, and smoking) of macrovascular diseases affect large-artery endothelial function. These risk factors also associate with microvascular diseases. We hypothesized that they are also determinants of microvascular (endothelial) function. Methods In The Maastricht Study, a type 2 diabetes-enriched population-based cohort study (n = 1991, 51% men, aged 59.7±8.2 years), we determined microvascular function as flicker light-induced retinal arteriolar %-dilation and heat-induced skin %-hyperemia. Multiple linear regression analyses were used to assess the associations of cardiovascular risk factors (age, sex, waist circumference, total-to-high-density lipoprotein (HDL) cholesterol ratio, fasting plasma glucose (FPG), 24-h systolic blood pressure, and cigarette smoking) with retinal and skin microvascular function. Results In multivariate analyses, age and FPG were inversely associated with retinal and skin microvascular function (regression coefficients per standard deviation (SD) were -0.11SD (95%CI: -0.15;-0.06) and -0.12SD (-0.17;-0.07) for retinal arteriolar %-dilation and -0.10SD (-0.16;-0.05) and -0.11SD (-0.17;-0.06) for skin %-hyperemia, respectively. Men and current smokers had -0.43SD (-0.58;-0.27) and -0.32SD (-0.49;-0.15) lower skin %-hyperemia, respectively. 24-h systolic blood pressure, waist circumference, and total-to-HDL cholesterol ratio were not statistically significantly associated with these microvascular functions. Conclusions Associations between cardiovascular risk factors and retinal and skin microvascular function show a pattern that is partly similar to the associations between cardiovascular risk factors and macrovascular function. Impairment of microvascular function may constitute a pathway through which an adverse cardiovascular risk factor pattern may increase risk of

  8. Treatment of Angina and Microvascular Coronary Dysfunction

    Science.gov (United States)

    Samim, Arang; Nugent, Lynn; Mehta, Puja K.; Shufelt, Chrisandra; Merz, C. Noel Bairey

    2014-01-01

    Opinion statement Microvascular coronary dysfunction (MCD) is an increasingly recognized cause of cardiac ischemia and angina, more commonly diagnosed in women. Patients with MCD present with the triad of persistent chest pain, ischemic changes on stress testing, and no obstructive coronary artery disease (CAD) on cardiac catheterization. Data from National Heart, Lung and Blood Institute (NHLBI)-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study has shown that the diagnosis of MCD is not benign, with a 2.5% annual risk of adverse cardiac events including myocardial infarction, stroke, congestive heart failure, or death. The gold standard diagnostic test for MCD is an invasive coronary reactivity test (CRT), which uses acetylcholine, adenosine, and nitroglycerin to test the endothelial dependent and independent, microvascular and macrovascular coronary function. The CRT allows for diagnostic and treatment options as well as further risk stratifying patients for future cardiovascular events. Treatment of angina and MCD should be aimed at ischemia disease management to reduce risk of adverse cardiac events, ameliorating symptoms to improve quality of life, and to decrease the morbidity from unnecessary and repeated cardiac catheterization in patients with open coronary arteries. A comprehensive treatment approach aimed at risk factor managment, including lifestyle counseling regarding smoking cessation, nutrition and physical activity should be initiated. Current pharmacotherapy for MCD can include the treatment of microvascular endothelial dysfunction (statins, angiotensin-converting enzyme inhibitor, low dose aspirin), as well as treatment for angina and myocardial ischemia (beta blockers, calcium channel blockers, nitrates, ranolazine). Additional symptom management techniques can include tri-cyclic medication, enhanced external counterpulsation, autogenic training, and spinal cord stimulation. While our current therapies are effective in the treatment

  9. Bevacizumab-Related Microvascular Angina and Its Management with Nicorandil.

    Science.gov (United States)

    Katoh, Manami; Takeda, Norihiko; Arimoto, Takahide; Abe, Hajime; Oda, Katsutoshi; Osuga, Yutaka; Fujii, Tomoyuki; Komuro, Issei

    2017-10-21

    Bevacizumab, an inhibitor of vascular endothelial growth factor (VEGF)-A, is currently used to treat patients with ovarian or colon cancer. While several cardiovascular toxicities related to bevacizumab-containing regimens have been reported, the effect of bevacizumab on the coronary microcirculation has not been fully elucidated. Here we report a case of 54-year-old female patient who developed microvascular angina after a series of bevacizumab-containing chemotherapeutic regimen. The discontinuation of bevacizumab and nicorandil administration was effective in alleviating her chest discomfort and the ischemic changes on her ECG. This highlights the possibility that coronary microvascular angina can be induced in patients treated with bevacizumab-containing chemotherapy. It should also be noted that nicorandil can be effective in managing microvascular angina.

  10. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Ken Kono

    Full Text Available Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.

  11. Both functional LTbeta receptor and TNF receptor 2 are required for the development of experimental cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Dieudonnée Togbe

    Full Text Available BACKGROUND: TNF-related lymphotoxin alpha (LTalpha is essential for the development of Plasmodium berghei ANKA (PbA-induced experimental cerebral malaria (ECM. The pathway involved has been attributed to TNFR2. Here we show a second arm of LTalpha-signaling essential for ECM development through LTbeta-R, receptor of LTalpha1beta2 heterotrimer. METHODOLOGY/PRINCIPAL FINDINGS: LTbetaR deficient mice did not develop the neurological signs seen in PbA induced ECM but died at three weeks with high parasitaemia and severe anemia like LTalphabeta deficient mice. Resistance of LTalphabeta or LTbetaR deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and angiography, associated with lack of microvascular obstruction, while wild-type mice developed distinct microvascular pathology. Recruitment and activation of perforin(+ CD8(+ T cells, and their ICAM-1 expression were clearly attenuated in the brain of resistant mice. An essential contribution of LIGHT, another LTbetaR ligand, could be excluded, as LIGHT deficient mice rapidly succumbed to ECM. CONCLUSIONS/SIGNIFICANCE: LTbetaR expressed on radioresistant resident stromal, probably endothelial cells, rather than hematopoietic cells, are essential for the development of ECM, as assessed by hematopoietic reconstitution experiment. Therefore, the data suggest that both functional LTbetaR and TNFR2 signaling are required and non-redundant for the development of microvascular pathology resulting in fatal ECM.

  12. Intensive Blood Pressure Control Affects Cerebral Blood Flow in Type 2 Diabetes Mellitus Patients

    NARCIS (Netherlands)

    Kim, Yu-Sok; Davis, Shyrin C. A. T.; Truijen, Jasper; Stok, Wim J.; Secher, Niels H.; van Lieshout, Johannes J.

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic

  13. Microvascular coronary dysfunction and ischemic heart disease: where are we in 2014?

    Science.gov (United States)

    Petersen, John W; Pepine, Carl J

    2015-02-01

    Many patients with angina and signs of myocardial ischemia on stress testing have no significant obstructive epicardial coronary disease. There are many potential coronary and non-coronary mechanisms for ischemia without obstructive epicardial coronary disease, and prominent among these is coronary microvascular and/or endothelial dysfunction. Patients with coronary microvascular and/or endothelial dysfunction are often at increased risk of adverse cardiovascular events, including ischemic events and heart failure despite preserved ventricular systolic function. In this article, we will review the diagnosis and treatment of coronary microvascular and endothelial dysfunction, discuss their potential contribution to heart failure with preserved ejection fraction, and highlight recent advances in the evaluation of atherosclerotic morphology in these patients, many of whom have non-obstructive epicardial disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [Recent advances on pericytes in microvascular dysfunction and traditional Chinese medicine prevention].

    Science.gov (United States)

    Liu, Lei; Liu, Jian-Xun; Guo, Hao; Ren, Jian-Xun

    2017-08-01

    Pericytesis a kind of widespread vascular mural cells embedded within the vascular basement membrane of blood microvessels, constituting the barrier of capillaries and tissue spaces together with endothelial cells. Pericytes communicate with microvascular endothelial cells through cell connections or paracrine signals, playing an important role in important physiological processes such as blood flow, vascular permeability and vascular formation. Pericytes dysfunction may participate in some microvascular dysfunction, and also mediate pathological repair process, therefore pericytes attracted more and more attention. Traditional Chinese medicine suggests that microvascular dysfunction belongs to the collaterals disease; Qi stagnation and blood stasis in collaterals result in function imbalance of internal organs. Traditional Chinese medicine (TCM) has shown effects on pericytes in microvascular dysfunction, for example qi reinforcing blood-circulation activating medicines can reduce the damage of retinal pericytes in diabetic retinopathy. However, there are some limitations of research fields, inaccuracy of research techniques and methods, and lack of mechanism elaboration depth in the study of microvascular lesion pericytes. This paper reviewed the biological characteristics of pericytes and pericytes in microvascular dysfunction, as well as the intervention study of TCM on pericytes. The article aims to provide reference for the research of pericytes in microvascular dysfunction and the TCM study on pericytes. Copyright© by the Chinese Pharmaceutical Association.

  15. Pharmacokinetic-Pharmacodynamic Model for the Effect of l-Arginine on Endothelial Function in Patients with Moderately Severe Falciparum Malaria.

    NARCIS (Netherlands)

    Brussee, J.M.; Yeo, T.W.; Lampah, D.A.; Anstey, N.M.; Duffull, S.B.

    2016-01-01

    Impaired organ perfusion in severe falciparum malaria arises from microvascular sequestration of parasitized cells and endothelial dysfunction. Endothelial dysfunction in malaria is secondary to impaired nitric oxide (NO) bioavailability, in part due to decreased plasma concentrations of l-arginine,

  16. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Gui-Zhen [Department of Health, Linyi People' s Hospital, Shandong University, Shandong (China); Tian, Wei [Department of Nursing, Linyi Oncosurgical Hospital, Shandong (China); Fu, Hai-Tao [Department of Ophthalmology, Linyi People' s Hospital, Shandong University, Shandong (China); Li, Chao-Peng, E-mail: lcpcn@163.com [Eye Institute of Xuzhou, Jiangsu (China); Liu, Ban, E-mail: liuban@126.com [Department of Cardiology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai (China)

    2016-02-26

    Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainly mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.

  17. Microvascular alterations in transplantation

    NARCIS (Netherlands)

    Khairoun, Meriem

    2015-01-01

    Endothelial injury and repair are most important concepts for our understanding of renal disease and allograft injury. The concept that injury to the endothelium may precede renal fibrosis strongly suggests that interventions to maintain vascular integrity are of major importance for renal function.

  18. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  19. Microvascular Remodeling and Wound Healing: A Role for Pericytes

    Science.gov (United States)

    Dulmovits, Brian M.; Herman, Ira M.

    2012-01-01

    Physiologic wound healing is highly dependent on the coordinated functions of vascular and non-vascular cells. Resolution of tissue injury involves coagulation, inflammation, formation of granulation tissue, remodeling and scarring. Angiogenesis, the growth of microvessels the size of capillaries, is crucial for these processes, delivering blood-borne cells, nutrients and oxygen to actively remodeling areas. Central to angiogenic induction and regulation is microvascular remodeling, which is dependent upon capillary endothelial cell and pericyte interactions. Despite our growing knowledge of pericyte-endothelial cell crosstalk, it is unclear how the interplay among pericytes, inflammatory cells, glia and connective tissue elements shape microvascular injury response. Here, we consider the relationships that pericytes form with the cellular effectors of healing in normal and diabetic environments, including repair following injury and vascular complications of diabetes, such as diabetic macular edema and proliferative diabetic retinopathy. In addition, pericytes and stem cells possessing “pericyte-like” characteristics are gaining considerable attention in experimental and clinical efforts aimed at promoting healing or eradicating ocular vascular proliferative disorders. As the origin, identification and characterization of microvascular pericyte progenitor populations remains somewhat ambiguous, the molecular markers, structural and functional characteristics of pericytes will be briefly reviewed. PMID:22750474

  20. Novel brain model for training of deep microvascular anastomosis.

    Science.gov (United States)

    Ishikawa, Tatsuya; Yasui, Nobuyuki; Ono, Hidenori

    2010-01-01

    Models of the brain and skull were developed using a selective laser sintering method for training in the procedures of deep microvascular anastomosis. Model A has an artificial skull with two craniotomies, providing fronto-temporal-subtemporal and suboccipital windows. The brain in Model A is soft and elastic, and consists of the brainstem and a hemispheric part with a detailed surface. Rehearsals or training for anastomosis to the insular part of the middle cerebral artery, superior cerebellar artery, posterior cerebral artery, and posterior inferior cerebellar artery can be performed through the craniotomies. Model B has an artificial skull with a bifrontal craniotomy and an artificial brain consisting of the bilateral frontal lobes with an interhemispheric fissure and corpus callosum. Rehearsals or training for anastomosis of the callosal segment of the anterior cerebral artery can be practiced through this craniotomy. These realistic models will help to develop skills for deep vascular anastomosis, which remains a challenging neurosurgical procedure, even for experienced neurosurgeons.

  1. In vitro inhibition of protease-activated receptors 1, 2 and 4 demonstrates that these receptors are not involved in an Acanthamoeba castellanii keratitis isolate-mediated disruption of the human brain microvascular endothelial cells.

    Science.gov (United States)

    Iqbal, Junaid; Naeem, Komal; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-11-01

    Granulomatous amoebic encephalitis is a rare but serious human disease leading almost always to death. The pathophysiology of amoebic encephalitis is better understood, while events leading to the constitution of brain infection are largely unknown. Traversal of the blood-brain barrier is a key step in amoebae invasion of the central nervous system and facilitated by amoebic extracellular proteases. By using specific inhibitors of protease-activated receptors 1, 2 and 4, here we studied the role of these host receptors in Acanthamoeba castellanii-mediated damage to human brain microvasculature endothelial cells (HBMEC), which constitute the blood-brain barrier. The primary HBMEC were incubated with A. castellanii-conditioned medium in the presence or absence of FR-171113 (selective inhibitor of protease-activated receptor 1), FSLLRY-NH2 (inhibitor of protease-activated receptor 2), and tcY-NH2 (inhibitor of protease-activated receptor 4). The HBMEC monolayer disruptions were assessed by microscopy using Eosin staining, while host cell cytotoxicity was determined by measuring the release of cytoplasmic lactate dehydrogenase. Zymographic assays were performed to determine the effects of inhibitors of protease-activated receptors on the extracellular proteolytic activities of A. castellanii. A. castellanii-conditioned medium produced severe HBMEC monolayer disruptions within 60 min. The selective inhibitors of protease-activated receptors tested did not affect HBMEC monolayer disruptions. On the contrary, pre-treatment of A. castellanii-conditioned medium with phenylmethylsulfonyl fluoride, a serine protease inhibitor, or heating for 10 min at 95°C abolished HBMEC monolayer disruptions. Additionally, inhibitors of protease-activated receptors tested, failed to block A. castellanii-mediated HBMEC cytotoxicity and did not affect extracellular proteolytic activities of A. castellanii. Protease-activated receptors 1, 2 and 4 do not appear to play a role in A. castellanii

  2. Phosphodiesterase-III inhibitor prevents hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA.

    Directory of Open Access Journals (Sweden)

    Mitsunori Ishiguro

    Full Text Available The purpose of the present study was to investigate whether cilostazol, a phosphodiesterase-III inhibitor and antiplatelet drug, would prevent tPA-associated hemorrhagic transformation. Mice subjected to 6-h middle cerebral artery occlusion were treated with delayed tPA alone at 6 h, with combined tPA plus cilostazol at 6 h, or with vehicle at 6 h. We used multiple imaging (electron microscopy, spectroscopy, histological and neurobehavioral measures to assess the effects of the treatment at 18 h and 7 days after the reperfusion. To further investigate the mechanism of cilostazol to beneficial effect, we also performed an in vitro study with tPA and a phosphodiesterase-III inhibitor in human brain microvascular endothelial cells, pericytes, and astrocytes. Combination therapy with tPA plus cilostazol prevented development of hemorrhagic transformation, reduced brain edema, prevented endothelial injury via reduction MMP-9 activity, and prevented the blood-brain barrier opening by inhibiting decreased claudin-5 expression. These changes significantly reduced the morbidity and mortality at 18 h and 7 days after the reperfusion. Also, the administration of both drugs prevented injury to brain human endothelial cells and human brain pericytes. The present study indicates that a phosphodiesterase-III inhibitor prevents the hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA.

  3. Pertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells.

    Science.gov (United States)

    Starost, Laura Julia; Karassek, Sascha; Sano, Yasuteru; Kanda, Takashi; Kim, Kwang Sik; Dobrindt, Ulrich; Rüter, Christian; Schmidt, Marcus Alexander

    2016-10-13

    Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis , permeabilizes the blood-brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhibitor SB203590 blocked PTx-enhanced activity, whereas E. coli K1-RS218's effects were inhibited by the NF-κB inhibitor Bay 11-7082. Further, we found that PTx enhances the adherence of human monocytic THP-1 cells to human cerebral endothelial TY10 cells, thereby contributing to enhanced translocation. These modulations of host cell signaling pathways by PTx and meningitis-causing E. coli support their contributions to pathogen and monocytic THP-1 cells translocation across the BBB.

  4. Blood-based biomarkers of microvascular pathology in Alzheimer's disease.

    LENUS (Irish Health Repository)

    Ewers, Michael

    2012-02-01

    Sporadic Alzheimer\\'s disease (AD) is a genetically complex and chronically progressive neurodegenerative disorder with molecular mechanisms and neuropathologies centering around the amyloidogenic pathway, hyperphosphorylation and aggregation of tau protein, and neurofibrillary degeneration. While cerebrovascular changes have not been traditionally considered to be a central part of AD pathology, a growing body of evidence demonstrates that they may, in fact, be a characteristic feature of the AD brain as well. In particular, microvascular abnormalities within the brain have been associated with pathological AD hallmarks and may precede neurodegeneration. In vivo assessment of microvascular pathology provides a promising approach to develop useful biological markers for early detection and pathological characterization of AD. This review focuses on established blood-based biological marker candidates of microvascular pathology in AD. These candidates include plasma concentration of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) that are increased in AD. Measures of endothelial vasodilatory function including endothelin (ET-1), adrenomedullin (ADM), and atrial natriuretic peptide (ANP), as well as sphingolipids are significantly altered in mild AD or during the predementia stage of mild cognitive impairment (MCI), suggesting sensitivity of these biomarkers for early detection and diagnosis. In conclusion, the emerging clinical diagnostic evidence for the value of blood-based microvascular biomarkers in AD is promising, however, still requires validation in phase II and III diagnostic trials. Moreover, it is still unclear whether the described protein dysbalances are early or downstream pathological events and how the detected systemic microvascular alterations relate to cerebrovascular and neuronal pathologies in the AD brain.

  5. Effect of combined VEGF165/ SDF-1 gene therapy on vascular remodeling and blood perfusion in cerebral ischemia.

    Science.gov (United States)

    Hu, Guo-Jie; Feng, Yu-Gong; Lu, Wen-Peng; Li, Huan-Ting; Xie, Hong-Wei; Li, Shi-Fang

    2017-09-01

    OBJECTIVE Therapeutic neovascularization is a promising strategy for treating patients after an ischemic stroke; however, single-factor therapy has limitations. Stromal cell-derived factor 1 (SDF-1) and vascular endothelial growth factor (VEGF) proteins synergistically promote angiogenesis. In this study, the authors assessed the effect of combined gene therapy with VEGF 165 and SDF-1 in a rat model of cerebral infarction. METHODS An adenoviral vector expressing VEGF 165 and SDF-1 connected via an internal ribosome entry site was constructed (Ad- VEGF 165 -SDF-1). A rat model of middle cerebral artery occlusion (MCAO) was established; either Ad- VEGF 165 -SDF-1 or control adenovirus Ad- LacZ was stereotactically microinjected into the lateral ventricle of 80 rats 24 hours after MCAO. Coexpression and distribution of VEGF 165 and SDF-1 were examined by reverse-transcription polymerase chain reaction, Western blotting, and immunofluorescence. The neurological severity score of each rat was measured on Days 3, 7, 14, 21, and 28 after MCAO. Angiogenesis and vascular remodeling were evaluated via bromodeoxyuridine and CD34 immunofluorescence labeling. Relative cerebral infarction volumes were determined by T2-weighted MRI and triphenyltetrazolium chloride staining. Cerebral blood flow, relative cerebral blood volume, and relative mean transmit time were assessed using perfusion-weighted MRI. RESULTS The Ad- VEGF 165 -SDF-1 vector mediated coexpression of VEGF 165 and SDF-1 in multiple sites around the ischemic core, including the cortex, corpus striatum, and hippocampal granular layer. Coexpression of VEGF 165 and SDF-1 improved neural function, reduced cerebral infarction volume, increased microvascular density and promoted angiogenesis in the ischemic penumbra, and improved cerebral blood flow and perfusion. CONCLUSIONS Combined VEGF 165 and SDF-1 gene therapy represents a potential strategy for improving vascular remodeling and recovery of neural function after

  6. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    Science.gov (United States)

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  7. An ex vivo model for anti-angiogenic drug testing on intact microvascular networks.

    Directory of Open Access Journals (Sweden)

    Mohammad S Azimi

    Full Text Available New models of angiogenesis that mimic the complexity of real microvascular networks are needed. Recently, our laboratory demonstrated that cultured rat mesentery tissues contain viable microvascular networks and could be used to probe pericyte-endothelial cell interactions. The objective of this study was to demonstrate the efficacy of the rat mesentery culture model for anti-angiogenic drug testing by time-lapse quantification of network growth. Mesenteric windows were harvested from adult rats, secured in place with an insert, and cultured for 3 days according to 3 experimental groups: 1 10% serum (angiogenesis control, 2 10% serum + sunitinib (SU11248, and 3 10% serum + bevacizumab. Labeling with FITC conjugated BSI-lectin on Day 0 and 3 identified endothelial cells along blood and lymphatic microvascular networks. Comparison between day 0 (before and 3 (after in networks stimulated by 10% serum demonstrated a dramatic increase in vascular density and capillary sprouting. Growing networks contained proliferating endothelial cells and NG2+ vascular pericytes. Media supplementation with sunitinib (SU11248 or bevacizumab both inhibited the network angiogenic responses. The comparison of the same networks before and after treatment enabled the identification of tissue specific responses. Our results establish, for the first time, the ability to evaluate an anti-angiogenic drug based on time-lapse imaging on an intact microvascular network in an ex vivo scenario.

  8. Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide.

    Science.gov (United States)

    Bateman, Ryon M; Sharpe, Michael D; Ellis, Christopher G

    2003-10-01

    The microcirculation is a complex and integrated system that supplies and distributes oxygen throughout the tissues. The red blood cell (RBC) facilitates convective oxygen transport via co-operative binding with hemoglobin. In the microcirculation oxygen diffuses from the RBC into neighboring tissues, where it is consumed by mitochondria. Evidence suggests that the RBC acts as deliverer of oxygen and 'sensor' of local oxygen gradients. Within vascular beds RBCs are distributed actively by arteriolar tone and passively by rheologic factors, including vessel geometry and RBC deformability. Microvascular oxygen transport is determined by microvascular geometry, hemodynamics, and RBC hemoglobin oxygen saturation. Sepsis causes abnormal microvascular oxygen transport as significant numbers of capillaries stop flowing and the microcirculation fails to compensate for decreased functional capillary density. The resulting maldistribution of RBC flow results in a mismatch of oxygen delivery with oxygen demand that affects both critical oxygen delivery and oxygen extraction ratio. Nitric oxide (NO) maintains microvascular homeostasis by regulating arteriolar tone, RBC deformability, leukocyte and platelet adhesion to endothelial cells, and blood volume. NO also regulates mitochondrial respiration. During sepsis, NO over-production mediates systemic hypotension and microvascular reactivity, and is seemingly protective of microvascular blood flow.

  9. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  10. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...... the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...

  11. Microvascular Injury in Ketamine-Induced Bladder Dysfunction.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Lin

    Full Text Available The pathogenesis of ketamine-induced cystitis (KC remains unclear. In this study, bladder microvascular injury was investigated as a possible contributing mechanism. A total of 36 KC patients with exposure to ketamine for more than 6 months, and 9 control subjects, were prospectively recruited. All participants completed questionnaires, including the O'Leary-Sant interstitial cystitis symptom index (ICSI and the interstitial cystitis problem index (ICPI. All KC patients received a urodynamic study and radiological exams. Bladder tissues were obtained from cystoscopic biopsies in the control group and after hydrodistention in the KC group. Double-immunofluorescence staining of N-methyl-d-aspartate receptor subunit 1 (NMDAR1 and the endothelial marker, cluster of differentiation 31 (CD31, was performed to reveal the existence of NMDAR1 on the endothelium. Electron microscopy (EM was applied to assess the microvascular change in the urinary bladder and to measure the thickening of the basement membrane (BM. A proximity ligation assay (PLA was used to quantify the co-localization of the endothelial CD31 receptor and the mesenchymal marker [fibroblast-specific protein 1 (FSP-1]. The Mann-Whitney U test and Spearman's correlation coefficient were used for statistical analysis. The mean ICSI [14.38 (± 4.16] and ICPI [12.67 (± 3.54] scores of the KC group were significantly higher than those (0 and 0, respectively of the control group (both p < 0.001. The KC patients had decreasing cystometric bladder capacity (CBC with a mean volume of 65.38 (± 48.67 mL. NMDAR1 was expressed on endothelial cells in both groups under immunofluorescence staining. Moreover, KC patients had significant BM duplication of microvessels in the mucosa of the urinary bladder under EM. The co-expression of the endothelial marker CD31 and mesenchymal marker FSP1 was significantly stained and calculated under PLA. In conclusion, microvascular injury and mesenchymal phenotypic

  12. Clinical value of detection on ser um monocyte chemotactant protein-1 and vascular endothelial cadher in levels in patients with acute cerebral infarction

    Directory of Open Access Journals (Sweden)

    Xia Zhou

    2016-11-01

    Full Text Available Objective: To study the correlation of serum monocyte chemotactant protein-1 (MCP-1 and vascular endothelia cadherin (VE-cadherin levels in patients with acute cerebral infarction, and nerve injury molecules, interleukins and matrix metalloproteinases. Methods: A total of 86 patients with acute cerebral infarction treated in our hospital from April 2012 to October 2015 were selected as the observation group and 50 healthy subjects in the same period treated in our hospital were selected as the control group. The serums were collected and the contents of MCP-1, VE-cadherin, heart-type fatty acid binding protein (H-FABP, S100 calcium binding protein B (S100B, neuron-specific enolase (NSE, interleukin-lb (IL-1b, IL-6, IL-17, IL-18, matrix metalloproteinase-2 (MMP2, MMP3 and MMP9 were measured. Results: The serum contents of MCP-1, VE-cadherin, H-FABP, S100B, NSE, IL-1b, IL- 6, IL-17, IL-18, MMP2, MMP3 and MMP9 in observation group were significantly higher than those of control group. Carotid artery plaque formation and unstable plaque properties will increase the serum contents of MCP-1, VE-cadherin, H-FABP, S100B, NSE, IL-1b, IL-6, IL-17, IL-18, MMP2, MMP3 and MMP9 in patients with cerebral infarction. The serum levels of MCP-1, VE-cadherin and the contents of H-FABP, S100B, NSE, IL-1b, IL-6, IL-17, IL-18, MMP2, MMP3 and MMP9 were positively correlated. Conclusions: The serum levels of VE-cadherin and MCP-1 were significantly increased in patients with acute cerebral infarction. MCP-1 and VE-cadherin can increase the secretion of interleukins and matrix metalloproteinases, which can result in the carotid artery plaque formation, unstable plaque properties and the injury of nerve function.

  13. The Traditional Herbal Medicine, Dangkwisoo-San, Prevents Cerebral Ischemic Injury through Nitric Oxide-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2011-01-01

    Full Text Available Dangkwisoo-San (DS is an herbal extract that is widely used in traditional Korean medicine to treat traumatic ecchymosis and pain by promoting blood circulation and relieving blood stasis. However, the effect of DS in cerebrovascular disease has not been examined experimentally. The protective effects of DS on focal ischemic brain were investigated in a mouse model. DS stimulated nitric oxide (NO production in human brain microvascular endothelial cells (HBMECs. DS (10–300 μg/mL produced a concentration-dependent relaxation in mouse aorta, which was significantly attenuated by the nitric oxide synthase (NOS inhibitor L-NAME, suggesting that DS causes vasodilation via a NO-dependent mechanism. DS increased resting cerebral blood flow (CBF, although it caused mild hypotension. To investigate the effect of DS on the acute cerebral injury, C57/BL6J mice received 90 min of middle cerebral artery occlusion followed by 22.5 h of reperfusion. DS administered 3 days before arterial occlusion significantly reduced cerebral infarct size by 53.7% compared with vehicle treatment. However, DS did not reduce brain infarction in mice treated with the relatively specific endothelial NOS (eNOS inhibitor, N5-(1-iminoethyl-L-ornithine, suggesting that the neuroprotective effect of DS is primarily endothelium-dependent. This correlated with increased phosphorylation of eNOS in the brains of DS-treated mice. DS acutely improves CBF in eNOS-dependent vasodilation and reduces infarct size in focal cerebral ischemia. These data provide causal evidence that DS is cerebroprotective via the eNOS-dependent production of NO, which ameliorates blood circulation.

  14. Small Interfering RNA Efficiently Suppresses Adhesion Molecule Expression on Pulmonary Microvascular Endothelium

    Directory of Open Access Journals (Sweden)

    Tobias Walker

    2011-01-01

    Full Text Available Background. Adhesion molecules are known to influence postoperative organ function, they are hardly involved in the inflammatory response following the ischemia-reperfusion injury. We sought to investigate the potency of small interfering RNAs to suppress adhesion molecule expression in human pulmonary microvascular endothelial cells. Methods. Human lung microvascular endothelial cells were transfected with specific siRNA followed by a stimulation of the cells with an inflammatory cytokine. Adhesion molecule expression was determined by FACS-analysis, and reduction of intracellular mRNA was determined by qRT-PCR. Furthermore, the attachment of isolated neutrophils on the endothelial layer was determined after siRNA transfection. Results. In summary, siRNA transfection significantly decreased the percentage positive cells in a single cocktail transfection of each adhesion molecule investigated. Adhering neutrophils were diminished as well. Conclusion. siRNA might be a promising tool for the effective suppression of adhesion molecule expression on pulmonary microvascular cells, potentially minimizing leukocyte-endothelial depending interactions of a pulmonary allograft.

  15. Intravascular Stenting in Microvascular Anastomoses

    DEFF Research Database (Denmark)

    Assersen, Kristine; Sørensen, Jens

    2015-01-01

    Background The effect of intravascular stenting (IVaS) on microvascular anastomoses has given adverse results. For experienced microsurgeons the benefit of IVaS is doubtful. We have investigated the potential benefit of the IVaS technique for two groups of inexperienced microsurgeons with differe...

  16. 4D microvascular imaging based on ultrafast Doppler tomography.

    Science.gov (United States)

    Demené, Charlie; Tiran, Elodie; Sieu, Lim-Anna; Bergel, Antoine; Gennisson, Jean Luc; Pernot, Mathieu; Deffieux, Thomas; Cohen, Ivan; Tanter, Mickael

    2016-02-15

    4D ultrasound microvascular imaging was demonstrated by applying ultrafast Doppler tomography (UFD-T) to the imaging of brain hemodynamics in rodents. In vivo real-time imaging of the rat brain was performed using ultrasonic plane wave transmissions at very high frame rates (18,000 frames per second). Such ultrafast frame rates allow for highly sensitive and wide-field-of-view 2D Doppler imaging of blood vessels far beyond conventional ultrasonography. Voxel anisotropy (100 μm × 100 μm × 500 μm) was corrected for by using a tomographic approach, which consisted of ultrafast acquisitions repeated for different imaging plane orientations over multiple cardiac cycles. UFT-D allows for 4D dynamic microvascular imaging of deep-seated vasculature (up to 20 mm) with a very high 4D resolution (respectively 100 μm × 100 μm × 100 μm and 10 ms) and high sensitivity to flow in small vessels (>1 mm/s) for a whole-brain imaging technique without requiring any contrast agent. 4D ultrasound microvascular imaging in vivo could become a valuable tool for the study of brain hemodynamics, such as cerebral flow autoregulation or vascular remodeling after ischemic stroke recovery, and, more generally, tumor vasculature response to therapeutic treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. What is the contribution of two genetic variants regulating VEGF levels to type 2 diabetes risk and to microvascular complications?

    DEFF Research Database (Denmark)

    Bonnefond, Amélie; Saulnier, Pierre-Jean; Stathopoulou, Maria G

    2013-01-01

    Vascular endothelial growth factor (VEGF) is a key chemokine involved in tissue growth and organ repair processes, particularly angiogenesis. Elevated circulating VEGF levels are believed to play a role in type 2 diabetes (T2D) microvascular complications, especially diabetic retinopathy. Recently...

  18. Molecular pathophysiology of cerebral edema.

    Science.gov (United States)

    Stokum, Jesse A; Gerzanich, Volodymyr; Simard, J Marc

    2016-03-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. © The Author(s) 2015.

  19. Exercise Training Could Improve Age-Related Changes in Cerebral Blood Flow and Capillary Vascularity through the Upregulation of VEGF and eNOS

    Directory of Open Access Journals (Sweden)

    Sheepsumon Viboolvorakul

    2014-01-01

    Full Text Available This study aimed to investigate the effect of exercise training on age-induced microvascular alterations in the brain. Additionally, the association with the protein levels of vascular endothelial growth factor (VEGF and endothelial nitric oxide synthase (eNOS was also assessed. Male Wistar rats were divided into four groups: sedentary-young (SE-Young, n=5, sedentary aged (SE-Aged, n=8, immersed-aged (IM-Aged, n=5, and exercise trained-aged (ET-Aged, 60 minutes/day and 5 days/week for 8 weeks, n=8 rats. The MAPs of all aged groups, SE-Aged, IM-Aged, and ET-Aged, were significantly higher than that of the SE-Young group. The regional cerebral blood flow (rCBF in the SE-Aged and IM-Aged was significantly decreased as compared to SE-Young groups. However, rCBF of ET-Aged group was significantly higher than that in the IM-Aged group (P<0.05. Moreover, the percentage of capillary vascularity (%CV and the levels of VEGF and eNOS in the ET-Aged group were significantly increased compared to the IM-Aged group (P<0.05. These results imply that exercise training could improve age-induced microvascular changes and hypoperfusion closely associated with the upregulation of VEGF and eNOS.

  20. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation.

    Science.gov (United States)

    Regazzetti, Claire; De Donatis, Gian Marco; Ghorbel, Houda Hammami; Cardot-Leccia, Nathalie; Ambrosetti, Damien; Bahadoran, Philippe; Chignon-Sicard, Bérengère; Lacour, Jean-Philippe; Ballotti, Robert; Mahns, Andre; Passeron, Thierry

    2015-12-01

    Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling, characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin. Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying microvascularization in skin pigmentation, a finding that could open new fields of research for regulating physiological pigmentation and for treating pigmentation disorders such as melasma.

  1. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  2. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.

  3. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission.

    Science.gov (United States)

    Zhou, Hao; Wang, Shuyi; Zhu, Pingjun; Hu, Shunying; Chen, Yundai; Ren, Jun

    2018-05-01

    Impaired cardiac microvascular function contributes to diabetic cardiovascular complications although effective therapy remains elusive. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor recently approved for treatment of type 2 diabetes, promotes glycosuria excretion and offers cardioprotective actions beyond its glucose-lowering effects. This study was designed to evaluate the effect of empagliflozin on cardiac microvascular injury in diabetes and the underlying mechanism involved with a focus on mitochondria. Our data revealed that empagliflozin improved diabetic myocardial structure and function, preserved cardiac microvascular barrier function and integrity, sustained eNOS phosphorylation and endothelium-dependent relaxation, as well as improved microvessel density and perfusion. Further study suggested that empagliflozin exerted its effects through inhibition of mitochondrial fission in an adenosine monophosphate (AMP)-activated protein kinase (AMPK)-dependent manner. Empagliflozin restored AMP-to-ATP ratio to trigger AMPK activation, suppressed Drp1 S616 phosphorylation, and increased Drp1 S637 phosphorylation, ultimately leading to inhibition of mitochondrial fission. The empagliflozin-induced inhibition of mitochondrial fission preserved cardiac microvascular endothelial cell (CMEC) barrier function through suppressed mitochondrial reactive oxygen species (mtROS) production and subsequently oxidative stress to impede CMEC senescence. Empagliflozin-induced fission loss also favored angiogenesis by promoting CMEC migration through amelioration of F-actin depolymerization. Taken together, these results indicated the therapeutic promises of empagliflozin in the treatment of pathological microvascular changes in diabetes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission

    Directory of Open Access Journals (Sweden)

    Hao Zhou

    2018-05-01

    Full Text Available Impaired cardiac microvascular function contributes to diabetic cardiovascular complications although effective therapy remains elusive. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2 inhibitor recently approved for treatment of type 2 diabetes, promotes glycosuria excretion and offers cardioprotective actions beyond its glucose-lowering effects. This study was designed to evaluate the effect of empagliflozin on cardiac microvascular injury in diabetes and the underlying mechanism involved with a focus on mitochondria. Our data revealed that empagliflozin improved diabetic myocardial structure and function, preserved cardiac microvascular barrier function and integrity, sustained eNOS phosphorylation and endothelium-dependent relaxation, as well as improved microvessel density and perfusion. Further study suggested that empagliflozin exerted its effects through inhibition of mitochondrial fission in an adenosine monophosphate (AMP-activated protein kinase (AMPK-dependent manner. Empagliflozin restored AMP-to-ATP ratio to trigger AMPK activation, suppressed Drp1S616 phosphorylation, and increased Drp1S637 phosphorylation, ultimately leading to inhibition of mitochondrial fission. The empagliflozin-induced inhibition of mitochondrial fission preserved cardiac microvascular endothelial cell (CMEC barrier function through suppressed mitochondrial reactive oxygen species (mtROS production and subsequently oxidative stress to impede CMEC senescence. Empagliflozin-induced fission loss also favored angiogenesis by promoting CMEC migration through amelioration of F-actin depolymerization. Taken together, these results indicated the therapeutic promises of empagliflozin in the treatment of pathological microvascular changes in diabetes.

  5. Reduced Microvascular Density in Omental Biopsies of Children with Chronic Kidney Disease.

    Science.gov (United States)

    Burkhardt, Dorothea; Bartosova, Maria; Schaefer, Betti; Grabe, Niels; Lahrmann, Bernd; Nasser, Hamoud; Freise, Christian; Schneider, Axel; Lingnau, Anja; Degenhardt, Petra; Ranchin, Bruno; Sallay, Peter; Cerkauskiene, Rimante; Malina, Michal; Ariceta, Gema; Schmitt, Claus Peter; Querfeld, Uwe

    2016-01-01

    Endothelial dysfunction is an early manifestation of cardiovascular disease (CVD) and consistently observed in patients with chronic kidney disease (CKD). We hypothesized that CKD is associated with systemic damage to the microcirculation, preceding macrovascular pathology. To assess the degree of "uremic microangiopathy", we have measured microvascular density in biopsies of the omentum of children with CKD. Omental tissue was collected from 32 healthy children (0-18 years) undergoing elective abdominal surgery and from 23 age-matched cases with stage 5 CKD at the time of catheter insertion for initiation of peritoneal dialysis. Biopsies were analyzed by independent observers using either a manual or an automated imaging system for the assessment of microvascular density. Quantitative immunohistochemistry was performed for markers of autophagy and apoptosis, and for the abundance of the angiogenesis-regulating proteins VEGF-A, VEGF-R2, Angpt1 and Angpt2. Microvascular density was significantly reduced in uremic children compared to healthy controls, both by manual imaging with a digital microscope (median surface area 0.61% vs. 0.95%, pchildren (p = 0.01). Microvascular density is profoundly reduced in omental biopsies of children with stage 5 CKD and associated with diminished Angpt2 signaling. Microvascular rarefaction could be an early systemic manifestation of CKD-induced cardiovascular disease.

  6. The role of endothelial microparticles in autoimmune disease patients with Raynaud's phenomenon

    OpenAIRE

    Yeong-Jian Jan Wu; Chung-Ching Hua; Ji-Yih Chen; Yao-Wen Chang; Jo-Chi Tseng

    2017-01-01

    Background and aim: Raynaud's phenomenon (RP) is a microvascular disorder characterized by episodic peripheral vasospasm and ischemia and is commonly found in patients with autoimmune diseases (AID). The vasomotor homoeostasis and endothelial cells damage are involved in RP. Endothelial microparticles (EMPs) may act as a biomarker for endothelial damage. The aim of this study is to investigate the correlation between the levels of microparticles (MPs) and microvasculopathy in AID with RP. Met...

  7. Virchow’s Triad: The Vascular Basis of Cerebral Injury

    OpenAIRE

    del Zoppo, Gregory J.

    2008-01-01

    Both the large arteries and microvascular beds of the central nervous system respond to injury by initiating processes compatible with Virchow’s triad: alterations in the microvascular permeability barrier, reduction in flow with the target bed, and/or thrombosis of brain-supplying arteries and of the microvasculature. This is particularly true during focal cerebral ischemia. The temporal and topographical coincidence of neuron injury and microvessel response during focal ischemia has suggest...

  8. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Borges, J.P.; Lopes, G.O.; Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A.; Tibirica, E.

    2016-01-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men

  9. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J.P. [Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Lopes, G.O. [Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A. [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Tibirica, E. [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Laboratório de Investigação Cardiovascular, Departamento Osório de Almeida, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ (Brazil)

    2016-09-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men.

  10. Sonothrombolysis with BR38 Microbubbles Improves Microvascular Patency in a Rat Model of Stroke.

    Directory of Open Access Journals (Sweden)

    Nadine Schleicher

    Full Text Available Early recanalization of large cerebral vessels in ischemic stroke is associated with improved clinical outcome, however persisting hypoperfusion leads to poor clinical recovery despite large vessel recanalization. Limited experimental sonothrombolysis studies have shown that addition of microbubbles during treatment can improve microvascular patency. We aimed to determine the effect of two different microbubble formulations on microvascular patency in a rat stroke model.We tested BR38 and SonoVue® microbubble-enhanced sonothrombolysis in Wistar rats submitted to 90-minute filament occlusion of the middle cerebral artery. Rats were randomized to treatment (n = 6/group: control, rt-PA, or rt-PA+3-MHz ultrasound insonation with BR38 or SonoVue® at full or 1/3 dose. Treatment duration was 60 minutes, beginning after withdrawal of the filament, and sacrifice was immediately after treatment. Vascular volumes were evaluated with microcomputed tomography.Total vascular volume of the ipsilateral hemisphere was reduced in control and rt-PA groups (p0.1.Microbubble-enhanced sonothrombolysis improves microvascular patency. This effect is not dose- or microbubble formulation-dependent suggesting a class effect of microbubbles promoting microvascular reopening. This study demonstrates that microbubble-enhanced sonothrombolysis may be a therapeutic strategy for patients with persistent hypoperfusion of the ischemic territory.

  11. Endothelial dysfunction

    OpenAIRE

    Yaylalı, Yalın Tolga; Küçükaslan, Mete

    2011-01-01

    Endothelium is a multi-functional cluster of cells within the vascular system consisting of a single layer ofsquamous epithelium. Physiologically, endothelium performs various arrangement and protection functions.However, when these functions are disturbed toward derangement, endothelium also mediates pathologicalfunctions with negative effects on the body. Endothelial dysfunction is mediated by several mediators (nitricoxide, endothelins, prostaglandins, angiotensin 2, etc). Endothelial dysf...

  12. A study on the pathogenesis of human cerebral malaria and cerebral babesiosis

    Directory of Open Access Journals (Sweden)

    Masamichi Aikawa

    1992-01-01

    Full Text Available Cerebral complications are important, but poorly understood pathological features of infections caused by some species of Plasmodium and Babesia. Patients dying from P. falciparum were classified as cerebral or non-cerebral cases according to the cerebral malaria coma scale. Light microscopy revealed that cerebral microvessels of cerebral malaria patients were field with a mixture of parazited and unparazited erythrocytes, with 94% of the vessels showing parasitized red blood cell (PRBC sequestration. Some degree of PRBC sequestration was also found in non-cerebral malaria patients, but the percentage of microvessls with sequestered PRBC was only 13% Electron microscopy demonstrated knobs on the membrane of PRBC that formed focal junctions with the capillary endothelium. A number of host cell molecules such as CD36, thrombospondim (TSP and intracellular adhesion molecule I (ICAM-1 may function as endothelial cell surfacereports for P. falciparum-infected erythrocytes. Affinity labeling of CD36 and TSP to the PRBC surface showed these molecules specifically bind to the knobs. Babesia bovis infected erythrocytes procedure projections of the erythrocyte membrane that are similar to knobs. When brain tissue from B. bovis-infected cattle was examined, cerebral capillaries were packed with PRBC. Infected erythrocytes formed focal attachments with cerebral endothelial cells at the site of these knob-like projections. These findings indicate that cerebral pathology caused by B. bovis is similar to human cerebral malaria. A search for cytoadherence proteins in the endothelial cells may lead to a better understanding of the pathogenisis of cerebral babesiosis.

  13. Folic acid deficiency increases delayed neuronal death, DNA damage, platelet endothelial cell adhesion molecule-1 immunoreactivity, and gliosis in the hippocampus after transient cerebral ischemia.

    Science.gov (United States)

    Hwang, In Koo; Yoo, Ki-Yeon; Suh, Hong-Won; Kim, Young Sup; Kwon, Dae Young; Kwon, Young-Guen; Yoo, Jun-Hyun; Won, Moo-Ho

    2008-07-01

    Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia. 2008 Wiley-Liss, Inc.

  14. Sirtuin 2 Regulates Microvascular Inflammation during Sepsis

    Directory of Open Access Journals (Sweden)

    Nancy Buechler

    2017-01-01

    Full Text Available Objective. Sepsis and septic shock, the leading causes of death in noncoronary intensive care units, kill more than 200,000/year in the US alone. Circulating cell-endothelial cell interactions are the rate determining factor in sepsis inflammation. Sirtuin, a seven-member family of proteins (SIRT1–7, epigenetically controls inflammation. We have studied the roles of SIRTs 1, 3, and 6 in sepsis previously. In this project, we studied the role of SIRT2 on sepsis-related inflammation. Methods. Sepsis was induced in C57Bl/6 (WT, SIRT2 knockout (SIRT2KO, and SIRT2 overexpressing (SIRT2KI mice by cecal ligation and puncture (CLP. We studied leukocyte/platelet adhesion using intravital microscopy and E-selectin/ICAM-1 adhesion molecule expression in the small intestine with immunohistochemistry (IHC six hours post-CLP/sham surgery. We also studied 7-day survival rates in WT, SIRT2KO, and SIRT2KI sepsis mice. Results. Compared to WT mice, SIRT2KO mice show exaggeration while SIRT2KI mice show attenuation of cellular adhesion with sepsis in the small intestine. We also show that the small intestinal E-selectin and ICAM-1 expressions increased in SIRT2KO and decreased in SIRT2KI mice versus those in WT sepsis mice. We show that the 7-day survival rate is decreased in SIRT2KO and increased in SIRT2KI sepsis mice. Conclusion. SIRT2 modulates microvascular inflammation in sepsis and affects survival.

  15. Association of Retinopathy and Retinal Microvascular Abnormalities With Stroke and Cerebrovascular Disease.

    Science.gov (United States)

    Hughes, Alun D; Falaschetti, Emanuela; Witt, Nicholas; Wijetunge, Sumangali; Thom, Simon A McG; Tillin, Therese; Aldington, Steve J; Chaturvedi, Nish

    2016-11-01

    Abnormalities of the retinal circulation may be associated with cerebrovascular disease. We investigated associations between retinal microvascular abnormalities and (1) strokes and subclinical cerebral infarcts and (2) cerebral white matter lesions in a UK-based triethnic population-based cohort. A total of 1185 participants (age, 68.8±6.1 years; 77% men) underwent retinal imaging and cerebral magnetic resonance imaging. Cerebral infarcts and white matter hyperintensities were identified on magnetic resonance imaging, retinopathy was graded, and retinal vessels were measured. Higher retinopathy grade (odds ratio [OR], 1.40 [95% confidence interval (95% CI), 1.16-1.70]), narrower arteriolar diameter (OR, 0.98 [95% CI, 0.97-0.99]), fewer symmetrical arteriolar bifurcations (OR, 0.84 [95% CI, 0.75-0.95]), higher arteriolar optimality deviation (OR, 1.16 [95% CI, 1.00-1.34]), and more tortuous venules (OR, 1.20 [95% CI, 1.09-1.32]) were associated with strokes/infarcts and white matter hyperintensities. Associations with quantitative retinal microvascular measures were independent of retinopathy. Abnormalities of the retinal microvasculature are independently associated with stroke, cerebral infarcts, and white matter lesions. © 2016 American Heart Association, Inc.

  16. Bench-to-bedside review: Microvascular dysfunction in sepsis –hemodynamics, oxygen transport, and nitric oxide

    Science.gov (United States)

    Bateman, Ryon M; Sharpe, Michael D; Ellis, Christopher G

    2003-01-01

    The microcirculation is a complex and integrated system that supplies and distributes oxygen throughout the tissues. The red blood cell (RBC) facilitates convective oxygen transport via co-operative binding with hemoglobin. In the microcirculation oxygen diffuses from the RBC into neighboring tissues, where it is consumed by mitochondria. Evidence suggests that the RBC acts as deliverer of oxygen and 'sensor' of local oxygen gradients. Within vascular beds RBCs are distributed actively by arteriolar tone and passively by rheologic factors, including vessel geometry and RBC deformability. Microvascular oxygen transport is determined by microvascular geometry, hemodynamics, and RBC hemoglobin oxygen saturation. Sepsis causes abnormal microvascular oxygen transport as significant numbers of capillaries stop flowing and the microcirculation fails to compensate for decreased functional capillary density. The resulting maldistribution of RBC flow results in a mismatch of oxygen delivery with oxygen demand that affects both critical oxygen delivery and oxygen extraction ratio. Nitric oxide (NO) maintains microvascular homeostasis by regulating arteriolar tone, RBC deformability, leukocyte and platelet adhesion to endothelial cells, and blood volume. NO also regulates mitochondrial respiration. During sepsis, NO over-production mediates systemic hypotension and microvascular reactivity, and is seemingly protective of microvascular blood flow. PMID:12974969

  17. Dysregulation of coronary microvascular reactivity in asymptomatic patients with type 2 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuru; Neverve, Jodi; Nekolla, Stephan G.; Schwaiger, Markus; Bengel, Frank M. [Nuklearmedizinische Klinik und Poliklinik der Technischen Universitaet Muenchen, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675 Munich (Germany); Abletshauser, Claudia [Department of Medicine, Novartis Pharma GmbH, Nuernberg (Germany); Schnell, Oliver; Standl, Eberhard [Institut fuer Diabetesforschung, Munich (Germany)

    2002-12-01

    In diabetic patients, a number of studies have suggested an impairment of vascular reactivity in response to vasodilatory stimuli. The pattern of dysregulation at the coronary microcirculatory level, however, has not been clearly defined. Thus, it was the aim of this study to characterise coronary microvascular function non-invasively in a homogeneous group of asymptomatic type 2 diabetic patients. In 46 patients with type 2 diabetes, myocardial blood flow (MBF) was quantified at baseline, in response to cold pressor test (CPT) and during adenosine-mediated vasodilation using positron emission tomography and nitrogen-13 ammonia. None of the patients had been treated with insulin, and none had symptoms of cardiac disease. Decreased MBF during CPT, indicating microvascular dysregulation, was observed in 16 patients (CPT-), while 30 patients demonstrated increased MBF during CPT (CPT+). Response to CPT was mildly, but significantly correlated with response to adenosine (r=0.44, P=0.0035). There was no difference in HbA1c, serum lipid levels or serum endothelial markers between the groups. Microvascular dysregulation in the CPT- group was associated with elevated baseline MBF (P<0.0001), reduced baseline vascular resistance (P=0.0026) and an abnormal increase in resistance during CPT (P=0.0002). In conclusion, coronary microvascular dysregulation is present in approximately one-third of asymptomatic, non-insulin-treated type 2 diabetic patients. Elevated baseline blood flow and reduced microvascular resistance at rest are characteristics of this dysregulation. These data suggest a state of activation of endothelial-dependent vasodilation at baseline which appears to limit the flow response to stress conditions. (orig.)

  18. Microvascularization on collared peccary placenta

    DEFF Research Database (Denmark)

    Santos, Tatiana Carlesso; Oliveira, Moacir Franco; Dantzer, Vibeke

    2012-01-01

    into a microvascular network wall in a basket-like fashion. At the base of these baskets venules were formed. On the fetal side, arterioles branched centrally in the fetal rugae into a capillary network in a bulbous form, complementary to the opposite maternal depressions forming the baskets. At the base...... of the bulbous protrusions, the fetal venules arise. The blood vessel orientation in the materno-fetal interface of the placentae of collared peccaries suggests a blood flow pattern of the type countercurrent to cross current. The same pattern has been reported in domestic swine demonstrating that, even after 38...

  19. Interesterified fat or palm oil as substitutes for partially hydrogenated fat during the perinatal period produces changes in the brain fatty acids profile and increases leukocyte-endothelial interactions in the cerebral microcirculation from the male offspring in adult life.

    Science.gov (United States)

    Misan, Vanessa; Estato, Vanessa; de Velasco, Patricia Coelho; Spreafico, Flavia Brasil; Magri, Tatiana; Dos Santos, Raísa Magno de Araújo Ramos; Fragoso, Thaiza; Souza, Amanda S; Boldarine, Valter Tadeu; Bonomo, Isabela T; Sardinha, Fátima L C; Oyama, Lila M; Tibiriçá, Eduardo; Tavares do Carmo, Maria das Graças

    2015-08-07

    We investigated whether maternal intake of normolipidic diets with distinct fatty acid (FA) compositions alters the lipidic profile and influences the inflammatory status of the adult offsprings׳ brains. C57BL/6 female mice during pregnancy and lactation received diets containing either soybean oil (CG), partially hydrogenated vegetable fat rich in trans-fatty acids (TG), palm oil (PG), or interesterified fat (IG). After weaning, male offspring from all groups received control diet. The FA profile was measured in the offspring׳s brains at post-natal days 21 and 90. Brain functional capillary density as well as leukocyte-endothelial interactions in the cerebral post-capillary venules was assessed by intravital fluorescence microscopy at post-natal day 90. Inflammation signaling was evaluated through toll-like receptor 4 (TLR4) content in brain of the adult offspring. In the 21-day old offspring, the brains of the TG showed higher levels of trans FA and reduced levels of linoleic acid (LA) and total n-6 polyunsaturated fatty acids (PUFA). At post-natal day 90, TG and IG groups showed reduced levels of eicosapentaenoic acid (EPA) and total n-3 PUFA tended to be lower compared to CG. The offspring׳s brains exhibited an altered microcirculation with increased leukocyte rolling in groups TG, PG and IG and in TG group increased leukocyte adhesion. The TLR4 content of TG, IG and PG groups only tended to increase (23%; 20% and 35%, respectively). Maternal consumption of trans FA, palm oil or interesterified fat during pregnancy and lactation can trigger the initial steps of inflammatory pathways in the brain of offspring in adulthood. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Proliferative Retinopathy in Type 1 Diabetes Is Associated With Cerebral Microbleeds, Which Is Part of Generalized Microangiopathy

    NARCIS (Netherlands)

    Woerdeman, J.P.; van Duinkerken, E.; Wattjes, M.P.; Barkhof, F.; Snoek, F.J.; Moll, A.C.; Klein, M.; de Boer, M.P.; IJzerman, R.G.; Serne, E.H.; Diamant, M.

    2014-01-01

    OBJECTIVE: We investigated whether proliferative diabetic retinopathy in type 1 diabetic patients can be generalized to cerebral small vessel disease and whether it is associated with impaired peripheral microvascular function. RESEARCH DESIGN AND METHODS: Thirty-three patients with proliferative

  1. C-terminal truncations in human 3 '-5 ' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy

    NARCIS (Netherlands)

    Richards, Anna; van den Maagdenberg, Arn M. J. M.; Jen, Joanna C.; Kavanagh, David; Bertram, Paula; Spitzer, Dirk; Liszewski, M. Kathryn; Barilla-LaBarca, Maria-Louise; Terwindt, Gisela M.; Kasai, Yumi; McLellan, Mike; Grand, Mark Gilbert; Vanmolkot, Kaate R. J.; de Vries, Boukje; Wan, Jijun; Kane, Michael J.; Mamsa, Hafsa; Schaefer, Ruth; Stam, Anine H.; Haan, Joost; Paulus, T. V. M. de Jong; Storimans, Caroline W.; van Schooneveld, Mary J.; Oosterhuis, Jendo A.; Gschwendter, Andreas; Dichgans, Martin; Kotschet, Katya E.; Hodgkinson, Suzanne; Hardy, Todd A.; Delatycki, Martin B.; Hajj-Ali, Rula A.; Kothari, Parul H.; Nelson, Stanley F.; Frants, Rune R.; Baloh, Robert W.; Ferrari, Michel D.; Atkinson, John P.

    Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle- age onset. In nine families, we identified heterozygous C- terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease

  2. Effects of hyperoxia on microvascular cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    D' Amore, P.A.; Sweet, E.

    1987-02-01

    Microvascular cells are most vulnerable to direct oxygen damage. Using an in vitro model system we have investigated the effect of elevated oxygen on the proliferation, morphology, and integrity of microvascular endothelial cells (EC) and pericytes. Cultivation of these cells at oxygen concentrations of 40% for 1 wk resulted in the inhibition of EC proliferation but had no effect on the growth of the pericytes. Similarly, hyperoxia induced a dramatic change in the shape of the EC, increasing their spread area by close to six-fold. Under the same conditions, the spread area of the pericytes was unaffected. To understand the effect of the hyperoxic treatment on the cells, the integrity of various membrane systems was assessed. /sup 51/Cr release was used to monitor plasma membrane integrity. There was no difference in chromium release by EC and pericytes over the 7 d of growth under normoxic and hyperoxic conditions. Mitochondrial integrity was examined by staining the cells with Rhodamine 123, which is selectively accumulated by the mitochondria. The staining pattern of the mitochondria of both EC and pericytes was altered by growth in the elevated oxygen. Finally, the lysosomes were visualized using acridine orange. The acridine orange staining pattern revealed enlarged and perinuclear lysosomes in the EC but no change in the pericyte lysosomal staining pattern. Thus, the cells of the microvasculature seem to be differentially affected by hyperoxia, a fact that may be significant in the etiology of reperfusion injury, ischemic disease, and pathologies associated with prematurity.

  3. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    Directory of Open Access Journals (Sweden)

    Scott D. Packard

    2003-07-01

    Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.

  4. Effects of Riot Control Training on Systemic Microvascular Reactivity and Capillary Density.

    Science.gov (United States)

    Pereira, Flavio; de Moraes, Roger; Van Bavel, Diogo; De Lorenzo, Andrea; Tibirica, Eduardo

    2018-03-14

    The main aim of the present study is to evaluate the effects of strenuous exercise, related to special military training for riot control, on systemic microvascular endothelial function and skin capillary density. Endothelium-dependent microvascular reactivity was evaluated in the forearm skin of healthy military trainees (age 23.4 ± 2.3 yr; n = 15) using laser speckle contrast imaging coupled with cutaneous acetylcholine (ACh) iontophoresis and post-occlusive reactive hyperemia (PORH). Functional capillary density was assessed using high-resolution, intra-vital color microscopy in the dorsum of the middle phalanx. Capillary recruitment (capillary reserve) was evaluated using PORH. Microcirculatory tests were performed before and after a 5-wk special military training for riot control. Microvascular endothelium-dependent vasodilatory responses were markedly and significantly reduced after training, compared with values obtained before training. The peak values of microvascular conductance obtained during iontophoresis of ACh or PORH before training (0.84 ± 0.22 and 0.94 ± 0.72 APU/mmHg, respectively) were markedly reduced after training (0.47 ± 0.11 and 0.71 ± 0.14 APU/mmHg; p < 0.0001 and p = 0.0037, respectively). Endothelium-dependent capillary recruitment was significantly reduced after training (before 101 ± 9 and after 95 ± 8 capillaries/mm2; p = 0.0007). The present study showed that a 5-wk strenuous military training, performed in unfavorable climatic conditions, induces marked systemic microvascular dysfunction, mainly characterized by reduced endothelium-dependent microvascular vasodilation and blunted capillary recruitment.

  5. The association of systemic microvascular changes with lung function and lung density: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Bianca Harris

    Full Text Available Smoking causes endothelial dysfunction and systemic microvascular disease with resultant end-organ damage in the kidneys, eyes and heart. Little is known about microvascular changes in smoking-related lung disease. We tested if microvascular changes in the retina, kidneys and heart were associated with obstructive spirometry and low lung density on computed tomography. The Multi-Ethnic Study of Atherosclerosis recruited participants age 45-84 years without clinical cardiovascular disease. Measures of microvascular function included retinal arteriolar and venular caliber, urine albumin-to-creatinine ratio and, in a subset, myocardial blood flow on magnetic resonance imaging. Spirometry was measured following ATS/ERS guidelines. Low attenuation areas (LAA were measured on lung fields of cardiac computed tomograms. Regression models adjusted for pulmonary and cardiac risk factors, medications and body size. Among 3,397 participants, retinal venular caliber was inversely associated with forced expiratory volume in one second (FEV(1 (P<0.001 and FEV(1/forced vital capacity (FVC ratio (P = 0.04. Albumin-to-creatinine ratio was inversely associated with FEV(1 (P = 0.002 but not FEV(1/FVC. Myocardial blood flow (n = 126 was associated with lower FEV(1 (P = 0.02, lower FEV(1/FVC (P = 0.001 and greater percentage LAA (P = 0.04. Associations were of greater magnitude among smokers. Low lung function was associated with microvascular changes in the retina, kidneys and heart, and low lung density was associated with impaired myocardial microvascular perfusion. These cross-sectional results suggest that microvascular damage with end-organ dysfunction in all circulations may pertain to the lung, that lung dysfunction may contribute to systemic microvascular disease, or that there may be a shared predisposition.

  6. Microvascular function in pre-eclampsia is influenced by insulin resistance and an imbalance of angiogenic mediators.

    Science.gov (United States)

    Ghosh, Anshuman; Freestone, Nicholas S; Anim-Nyame, Nicholas; Arrigoni, Francesca I F

    2017-04-01

    In preeclampsia, maternal microvascular function is disrupted and angiogenesis is dysfunctional. Insulin resistance that occurs in some pregnancies also pathologically affects microvascular function. We wished to examine the relationship of angiogenic mediators and insulin resistance on microvascular health in pregnancy. We performed a nested, case-control study of 16 women who developed preeclampsia with 17 normal pregnant controls. We hypothesized that the impaired microvascular blood flow in preeclamptic women associated with an increased ratio of the antiangiogenic factors; (s-endoglin [sEng] and soluble fms-like tyrosine kinase-1 [sFlt-1]) and proangiogenic molecule (placental growth factor [PlGF]) could be influenced by insulin resistance. Serum samples taken after 28 weeks of gestation were measured for the angiogenic factors, insulin, and glucose alongside the inflammatory marker; tumor necrosis factor-α and endothelial activation, namely; soluble vascular cell adhesion molecule 1, intercellular adhesion molecule-1, and e-selectin. Maternal microvascular blood flow, measured by strain gauge plethysmography, correlated with ratios of pro- and antiangiogenic mediators independently of preeclampsia. Decreased microvascular function measured in preeclampsia strongly correlated with both the antiangiogenic factor (sFlt-1 + sEng): PlGF ratio and high levels of insulin resistance, and combining insulin resistance with antiangiogenic factor ratios further strengthened this relationship. In pregnancy, microvascular blood flow is strongly associated with perturbations in pro- and antiangiogenic mediators. In preeclampsia, the relationship of maternal microvascular dysfunction with antiangiogenic mediators is strengthened when combined with insulin resistance. © 2017 Kingston University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. Microvascular alterations and the role of complement in dermatomyositis.

    Science.gov (United States)

    Lahoria, Rajat; Selcen, Duygu; Engel, Andrew G

    2016-07-01

    complement pathway. We conclude that: perifascicular atrophy in dermatomyositis is consistently associated with focal microvascular depletion, and that microvascular membrane attack complex deposits in dermatomyositis result from activation of the classical complement pathway triggered by direct binding of C1q to injured endothelial cells. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Cognitive functioning and microvascular disease

    NARCIS (Netherlands)

    Heringa, S.M.|info:eu-repo/dai/nl/345480457

    2014-01-01

    Cognitive impairment and dementia form a major health issue, affecting a considerable proportion of the aging population. Cerebral vascular damage is increasingly recognized as one of the main causes of cognitive decline in aging and dementia. Another main cause of cognitive deterioration in older

  9. A potential role for plasma uric acid in the endothelial pathology of Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Neida K Mita-Mendoza

    Full Text Available BACKGROUND: Inflammatory cytokinemia and systemic activation of the microvascular endothelium are central to the pathogenesis of Plasmodium falciparum malaria. Recently, 'parasite-derived' uric acid (UA was shown to activate human immune cells in vitro, and plasma UA levels were associated with inflammatory cytokine levels and disease severity in Malian children with malaria. Since UA is associated with endothelial inflammation in non-malaria diseases, we hypothesized that elevated UA levels contribute to the endothelial pathology of P. falciparum malaria. METHODOLOGY/PRINCIPAL FINDINGS: We measured levels of UA and soluble forms of intercellular adhesion molecule-1 (sICAM-1, vascular cell adhesion molecule-1 (sVCAM-1, E-selectin (sE-Selectin, thrombomodulin (sTM, tissue factor (sTF and vascular endothelial growth factor (VEGF in the plasma of Malian children aged 0.5-17 years with uncomplicated malaria (UM, n = 487 and non-cerebral severe malaria (NCSM, n = 68. In 69 of these children, we measured these same factors once when they experienced a malaria episode and twice when they were healthy (i.e., before and after the malaria transmission season. We found that levels of UA, sICAM-1, sVCAM-1, sE-Selectin and sTM increase during a malaria episode and return to basal levels at the end of the transmission season (p<0.0001. Plasma levels of UA and these four endothelial biomarkers correlate with parasite density and disease severity. In children with UM, UA levels correlate with parasite density (r = 0.092, p = 0.043, sICAM-1 (r = 0.255, p<0.0001 and sTM (r = 0.175, p = 0.0001 levels. After adjusting for parasite density, UA levels predict sTM levels. CONCLUSIONS/SIGNIFICANCE: Elevated UA levels may contribute to malaria pathogenesis by damaging endothelium and promoting a procoagulant state. The correlation between UA levels and parasite densities suggests that parasitized erythrocytes are one possible source of excess UA. UA-induced shedding of

  10. DNA damage response and senescence in endothelial cells of human cerebral cortex and relation to Alzheimer's neuropathology progression: a population-based study in the Medical Research Council Cognitive Function and Ageing Study (MRC-CFAS) cohort.

    Science.gov (United States)

    Garwood, Claire J; Simpson, Julie E; Al Mashhadi, Sufana; Axe, Claire; Wilson, Suzanna; Heath, Pamela R; Shaw, Pamela J; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2014-12-01

    Abnormalities of the brain microvasculature in Alzheimer's disease have led to the vascular hypothesis of the disease, which predicts that vascular changes precede neuronal dysfunction and degeneration. To determine the spectrum of endothelial injury in the elderly and its relation to Alzheimer-type neuropathology we investigated DNA damage in a population-based sample derived from the Medical Research Council Cognitive Function and Ageing Study. We examined endothelial damage in frontal and temporal cortex (n = 97) using immunohistochemistry for γH2AX and DNA-protein kinase (DNA-PKcs). To determine the effects of endothelial DNA damage at the earliest stages of Alzheimer's pathology we further focused our analysis on cases classified as Braak 0-II and examined endothelial senescence using histochemistry for β-galactosidase and the expression of genes related to DNA damage and senescence using quantitative polymerase chain reaction (qPCR). We demonstrated large variation in endothelial DNA damage which was not associated with Alzheimer's neuropathology. Endothelial DNA-PKcs correlated with neuronal and glial DNA-PKcs counts. Focusing our further analysis on Braak 0-II cases, qPCR analysis demonstrated a trend to increased TP53 (P = 0.064) in cases with high compared with low endothelial DNA damage which was supported by immunohistochemical analysis of p53. Endothelial β-galactosidase expression was associated with increased neuronal (P = 0.033) and glial (P = 0.038), but not endothelial DNA-PKcs expression. Damage to brain endothelial cells occurs early in relation to, or independently of, Alzheimer pathology, and parallels that in neurones and glia. Endothelial DNA damage and senescence are a brain ageing process that may contribute to dysfunction of the neurovascular unit in some elderly individuals. © 2014 British Neuropathological Society.

  11. Hexane extracts of Polygonum multiflorum improve tissue and functional outcome following focal cerebral ischemia in mice.

    Science.gov (United States)

    Lee, Soo Vin; Choi, Kyung Ha; Choi, Young Whan; Hong, Jin Woo; Baek, Jin Ung; Choi, Byung Tae; Shin, Hwa Kyoung

    2014-04-01

    Polygonum multiflorum is a traditional Korean medicine that has been utilized widely in East Asian countries as a longevity agent. Clinical studies have demonstrated that Polygonum multiflorum improves hypercholesterolemia, coronary heart disease, neurosis and other diseases commonly associated with aging. However, scientific evidence defining the protective effects and mechanisms of Polygonum multiflorum against ischemic stroke is incomplete. In the present study, we investigated the cerebrovascular protective effects of Polygonum multiflorum against ischemic brain injury using an in vivo photothrombotic mouse model. To examine the underlying mechanism of action, we utilized an in vitro human brain microvascular endothelial cell (HBMEC) culture system. Hexane extracts (HEPM), ethyl acetate extracts (EAEPM) and methanol extracts (MEPM) of Polygonum multiflorum (100 mg/kg) were administered intraperitoneally 30 min prior to ischemic insult. Focal cerebral ischemia was induced in C57BL/6J mice and endothelial nitric oxide synthase knockout (eNOS KO) mice by photothrombotic cortical occlusion. We evaluated the infarct volume, as well as neurological and motor function, 24 h after ischemic brain injury. Following ischemic insult, HEPM induced a significant reduction in infarct volume and subsequent neurological deficits, compared with EAEPM and MEPM. HEPM significantly decreased infarct size and improved neurological and motor function, which was not observed in eNOS KO mice, suggesting that this cerebroprotective effect is primarily an eNOS-dependent mechanism. In vitro, HEPM effectively promoted NO production, however these effects were inhibited by the NOS inhibitor, L-NAME and the PI3K/Akt inhibitor, LY-294002. Furthermore, HEPM treatment resulted in increased phosphorylation-dependent activation of Akt and eNOS in HBMEC, suggesting that HEPM increased NO production via phosphorylation-dependent activation of Akt and eNOS. In conclusion, HEPM prevents cerebral

  12. Endothelial dysfunction in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Hadi AR Hadi

    2008-01-01

    Full Text Available Hadi AR Hadi, Jassim Al SuwaidiDepartment of Cardiology and Cardiovascular Surgery, Hamad General Hospital – Hamad Medical Corporation, Doha, State of Qatar; Department of Cardioscience, Sheikh Khalifa Medical City, Abu Dhabi, UAEAbstract: Diabetes mellitus is associated with an increased risk of cardiovascular disease, even in the presence of intensive glycemic control. Substantial clinical and experimental evidence suggest that both diabetes and insulin resistance cause a combination of endothelial dysfunctions, which may diminish the anti-atherogenic role of the vascular endothelium. Both insulin resistance and endothelial dysfunction appear to precede the development of overt hyperglycemia in patients with type 2 diabetes. Therefore, in patients with diabetes or insulin resistance, endothelial dysfunction may be a critical early target for preventing atherosclerosis and cardiovascular disease. Microalbuminuria is now considered to be an atherosclerotic risk factor and predicts future cardiovascular disease risk in diabetic patients, in elderly patients, as well as in the general population. It has been implicated as an independent risk factor for cardiovascular disease and premature cardiovascular mortality for patients with type 1 and type 2 diabetes mellitus, as well as for patients with essential hypertension. A complete biochemical understanding of the mechanisms by which hyperglycemia causes vascular functional and structural changes associated with the diabetic milieu still eludes us. In recent years, the numerous biochemical and metabolic pathways postulated to have a causal role in the pathogenesis of diabetic vascular disease have been distilled into several unifying hypotheses. The role of chronic hyperglycemia in the development of diabetic microvascular complications and in neuropathy has been clearly established. However, the biochemical or cellular links between elevated blood glucose levels, and the vascular lesions remain

  13. Endothelial Glycocalyx and Cardiopulmonary Bypass.

    Science.gov (United States)

    Myers, Gerard J; Wegner, Julie

    2017-09-01

    On the outer surface of a human cell there is a dense layer of complex carbohydrates called glycocalyx, also referred to as glycans or the sugar coating on the cell surface, which is composed of a complex array of oligosaccharide and polysaccharide glucose chains that are covalently bonded to proteoglycans and lipids bound to the cell membrane surface. Studies of an intact endothelial glycocalyx layer (EGL) have revealed a number of critical functions that relate the importance of this protective layer to vascular integrity and permeability. These functions include the following: stabilization and maintenance of the vascular endothelium, an active reservoir of essential plasma proteins (i.e., albumin, antithrombin, heparan sulfate, and antioxidants), a buffer zone between the blood (formed elements) and the surface of the endothelium, and a mechanotransducer to detect changes in shear stress that facilitate vascular tone. There have been numerous review articles about the structure and function of endothelial glycocalyx over the past two decades, yet there still remains a significant knowledge gap in the perfusion literature around the importance of EGL. Perioperative fluid management and gaseous microemboli can both contribute to the damage/degradation of endothelial glycocalyx. A damaged EGL can result in systemic and myocardial edema, platelet and leukocyte adhesion, fluid extravasation, and contributes to microvascular perfusion heterogeneity. Knowledge of the importance of endothelial glycocalyx will enable clinicians to have a better understanding of the impact of gaseous microbubbles, hyperoxia, and ischemic reperfusion injury during cardiac surgery. The purpose of this article is to provide an in depth review of the EGL and how this protective barrier impacts the microcirculation, fluid homeostasis, inflammation, and edema during cardiac surgery.

  14. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability

    International Nuclear Information System (INIS)

    Gabrys, Dorota; Greco, Olga; Patel, Gaurang; Prise, Kevin M.; Tozer, Gillian M.; Kanthou, Chryso

    2007-01-01

    Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain

  15. Elevated Leukocyte Azurophilic Enzymes in Human Diabetic Ketoacidosis Plasma Degrade Cerebrovascular Endothelial Junctional Proteins.

    Science.gov (United States)

    Woo, Martin M H; Patterson, Eric K; Clarson, Cheril; Cepinskas, Gediminas; Bani-Yaghoub, Mahmud; Stanimirovic, Danica B; Fraser, Douglas D

    2016-09-01

    Diabetic ketoacidosis in children is associated with vasogenic cerebral edema, possibly due to the release of destructive polymorphonuclear neutrophil azurophilic enzymes. Our objectives were to measure plasma azurophilic enzyme levels in children with diabetic ketoacidosis, to correlate plasma azurophilic enzyme levels with diabetic ketoacidosis severity, and to determine whether azurophilic enzymes disrupt the blood-brain barrier in vitro. Prospective clinical and laboratory study. The Children's Hospital, London Health Sciences Centre. Pediatric type 1 diabetes patients; acute diabetic ketoacidosis or age-/sex-matched insulin-controlled. Acute diabetic ketoacidosis in children was associated with elevated polymorphonuclear neutrophils. Plasma azurophilic enzymes were elevated in diabetic ketoacidosis patients, including human leukocyte elastase (p diabetic ketoacidosis was confirmed with buffy coat quantitative real-time polymerase chain reaction (p diabetic ketoacidosis severity (p = 0.002). Recombinant proteinase-3 applied to human brain microvascular endothelial cells degraded both the tight junction protein occludin (p diabetic ketoacidosis is associated with systemic polymorphonuclear neutrophil activation and degranulation. Of all the polymorphonuclear neutrophil azurophilic enzymes examined, only proteinase-3 correlated with diabetic ketoacidosis severity and potently degraded the blood-brain barrier in vitro. Proteinase-3 might mediate vasogenic edema during diabetic ketoacidosis, and selective proteinase-3 antagonists may offer future vascular- and neuroprotection.

  16. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  17. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses.

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-09-01

    Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle microvascular recruitment. We demonstrated that a high-fat diet induces vascular adiponectin and insulin resistance but globular adiponectin administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism. This suggests that globular adiponectin might have a therapeutic potential for improving insulin resistance and preventing cardiovascular complications in patients with diabetes via modulation of microvascular insulin responses. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague-Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by

  18. Endothelial progenitor cells in diabetes complications

    Directory of Open Access Journals (Sweden)

    Marina Sergeevna Michurova

    2014-12-01

    Full Text Available Patients with diabetes mellitus (DM have a 2- to 4-times higher risk of developing cardiovascular complications compared with non-diabetic controls. Hyperglycemia activates pathophysiological mechanisms that damage the endothelium. According to the current views, circulating progenitor cells derived from bone marrow repair the damage. These cells, known as endothelial progenitor cells (EPCs, maintain endothelial homeostasis and contribute to the formation of new vessels. Many clinical studies have reported that EPC population is dysfunctional and declines in numbers in patients with type 1 and type 2 DM. In addition, bone marrow doesn’t respond adequately to mobilizing stimuli in DM. Therefore, EPC alterations might have a pathogenic role in the complications of DM. In this review, EPC alterations will be examined in the context of macrovascular and microvascular complications of DM, highlighting their roles and functions in the progression of the disease.

  19. 6-Hydroxydopamine induces brain vascular endothelial inflammation.

    Science.gov (United States)

    Fu, Qizhi; Song, Runluo; Yang, Zhongxi; Shan, Qi; Chen, Wenna

    2017-11-01

    Disruption of the blood-brain barrier associated with endothelial dysfunction is an important hallmark of Parkinson's disease (PD). 6-Hydroxydopamine (6-OHDA) is a synthetic dopamine derivate often used to model PD as it results in retrograde degeneration of striatal dopaminergic (DA) terminals. Presently, the effects of 6-OHDA on endothelial dysfunction remain unknown. Using a 6-OHDA rodent model of PD, we found that administration of 6-OHDA could increase the expression of endothelial adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin. An in vitro study displayed that treatment with 6-OHDA increased the release of these molecules in human brain microvascular endothelial cells in a dose-dependent manner. Correspondingly, 6-OHDA significantly increased attachment of THP-1 monocytes to brain endothelial cells. In addition, real-time polymerase chain reaction and enzyme-linked immunosorbent assay results indicated that 6-OHDA elevated the production of proinflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α. Furthermore, 6-OHDA treatment increased the expression of cyclooxygenase-2 and inducible nitric oxide synthase, as well as the production of prostaglandin E2 and nitric oxide. Importantly, 6-OHDA elevated the transcriptional activity of NF-кB by increasing the phosphorylation, degradation, and subsequent nuclear translocation of p65. Mechanistically, the angiotensin II type 1 receptor was found to mediate 6-OHDA-induced endothelial dysfunction. Our findings suggest that 6-OHDA-induced endothelial inflammation may play an important role in the pathogenesis of PD. © 2017 IUBMB Life, 69(11):887-895, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  20. Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain.

    Science.gov (United States)

    Bragin, Denis E; Statom, Gloria L; Hagberg, Sean; Nemoto, Edwin M

    2015-05-01

    High-frequency pulsed electromagnetic field stimulation is an emerging noninvasive therapy being used clinically to facilitate bone and cutaneous wound healing. Although the mechanisms of action of pulsed electromagnetic fields (PEMF) are unknown, some studies suggest that its effects are mediated by increased nitric oxide (NO), a well-known vasodilator. The authors hypothesized that in the brain, PEMF increase NO, which induces vasodilation, enhances microvascular perfusion and tissue oxygenation, and may be a useful adjunct therapy in stroke and traumatic brain injury. To test this hypothesis, they studied the effect of PEMF on a healthy rat brain with and without NO synthase (NOS) inhibition. In vivo two-photon laser scanning microscopy (2PLSM) was used on the parietal cortex of rat brains to measure microvascular tone and red blood cell (RBC) flow velocity in microvessels with diameters ranging from 3 to 50 μm, which includes capillaries, arterioles, and venules. Tissue oxygenation (reduced nicotinamide adenine dinucleotide [NADH] fluorescence) was also measured before and for 3 hours after PEMF treatment using the FDA-cleared SofPulse device (Ivivi Health Sciences, LLC). To test NO involvement, the NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME) was intravenously injected (10 mg/kg). In a time control group, PEMF were not used. Doppler flux (0.8-mm probe diameter), brain and rectal temperatures, arterial blood pressure, blood gases, hematocrit, and electrolytes were monitored. Pulsed electromagnetic field stimulation significantly dilated cerebral arterioles from a baseline average diameter of 26.4 ± 0.84 μm to 29.1 ± 0.91 μm (11 rats, p PEMF-induced changes in arteriolar diameter, microvascular perfusion, and tissue oxygenation (7 rats). No changes in measured parameters were observed throughout the study in the untreated time controls (5 rats). This is the first demonstration of the acute effects of PEMF on cerebral cortical microvascular

  1. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase...

  2. Cerebral Palsy

    Science.gov (United States)

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  3. Role of Nox4 and Nox2 in Hyperoxia-Induced Reactive Oxygen Species Generation and Migration of Human Lung Endothelial Cells

    OpenAIRE

    Pendyala, Srikanth; Gorshkova, Irina A; Usatyuk, Peter V.; He, Donghong; Pennathur, Arjun; Lambeth, J. David; Thannickal, Victor J.; Natarajan, Viswanathan

    2009-01-01

    In vascular endothelium, the major research focus has been on reactive oxygen species (ROS) derived from Nox2. The role of Nox4 in endothelial signal transduction, ROS production, and cytoskeletal reorganization is not well defined. In this study, we show that human pulmonary artery endothelial cells (HPAECs) and human lung microvascular endothelial cells (HLMVECs) express higher levels of Nox4 and p22phox compared to Nox1, Nox2, Nox3, or Nox5. Immunofluorescence microscopy and Western blot a...

  4. Microvascular decompression for trigeminal neuralgia

    International Nuclear Information System (INIS)

    Khan, S.A.; Khan, B.; Khan, A.A.; Afridi, E.A.A.; Mehmood, S.; Muhammad, G.; Hussain, I.; Zadran, K.K.; Bhatti, S.N.

    2015-01-01

    Background: Trigeminal Neuralgia (TGN) is the most frequently diagnosed type of facial pain. In idiopathic type of TGN it is caused by the neuro-vascular conflict involving trigeminal nerve. Microvascular decompression (MVD) aims at addressing this basic pathology in the idiopathic type of TGN. This study was conducted to determine the outcome and complications of patients with idiopathic TGN undergoing MVD. Method: In a descriptive case series patients with idiopathic TGN undergoing MVD were included in consecutive manner. Patients were diagnosed on the basis of detailed history and clinical examination. Retromastoid approach with craniectomy was used to access cerebellopontine angle (CP-angle) and microsurgical decompression was done. Patients were followed up for 6 months. Results: A total of 53 patients underwent MVD with mean age of 51.6±4.2 years and male predominance. In majority of cases (58.4 percentage) both Maxillary and Mandibular divisions were involved. Per-operatively superior cerebellar artery (SCA) was causing the neuro-vascular conflict in 33 (62.2 percentage) of the cases, anterior inferior cerebellar artery (AICA) in 6 (11.3 percentage) cases, both CSA and AICA in 3 (5.6 percentage) cases, venous compressions in only 1 (1.8percentage) patient and thick arachnoid adhesions were seen in 10 (18.9 percentage) patients. Postoperatively, 33 (68 percentage) patients were pain free, in 14 (26.45 percentage) patients pain was significantly improved whereas in 3 (5.6 percentage) patients there was mild improvement in symptoms. Three (5.6 percentage) patients did not improve after the primary surgery. Cerebrospinal fluid (CSF) leak was encountered in 7 (13.2 percentage) patients post-operatively, 4 (7.5 percentage) patients developed wound infection and 1 (1.8 percentage) patient developed aseptic meningitis. Three (5.6 percentage) patients had transient VII nerve palsy while one patient developed permanent VII nerve palsy. Conclusion: MVD is a safe and

  5. Modeling of pulsatile flow-dependent nitric oxide regulation in a realistic microvascular network.

    Science.gov (United States)

    Wang, Ruofan; Pan, Qing; Kuebler, Wolfgang M; Li, John K-J; Pries, Axel R; Ning, Gangmin

    2017-09-01

    Hemodynamic pulsatility has been reported to regulate microcirculatory function. To quantitatively assess the impact of flow pulsatility on the microvasculature, a mathematical model was first developed to simulate the regulation of NO production by pulsatile flow in the microcirculation. Shear stress and pressure pulsatility were selected as regulators of endothelial NO production and NO-dependent vessel dilation as feedback to control microvascular hemodynamics. The model was then applied to a real microvascular network of the rat mesentery consisting of 546 microvessels. As compared to steady flow conditions, pulsatile flow increased the average NO concentration in arterioles from 256.8±93.1nM to 274.8±101.1nM (Pflow as compared to steady flow conditions. Network perfusion and flow heterogeneity were improved under pulsatile flow conditions, and vasodilation within the network was more sensitive to heart rate changes than pulse pressure amplitude. The proposed model simulates the role of flow pulsatility in the regulation of a complex microvascular network in terms of NO concentration and hemodynamics under varied physiological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Role of NADPH oxidase in retinal microvascular permeability increase by RAGE activation.

    Science.gov (United States)

    Warboys, Christina M; Toh, Hong-Boon; Fraser, Paul A

    2009-03-01

    The accumulation of advanced glycation end products (AGEs) within the retina in diabetes is associated with a chronic increase in retinal microvascular permeability. Isolated perfused retinas were used to examine the acute effects of AGEs on retinal microvascular permeability. Retinas were dissected from eyes obtained from male Wistar rats, pinned out flat, and perfused with the low-molecular-weight fluorescent dye sulforhodamine B. Microvascular permeability was determined from the rate of decrease in fluorescence gradient across a vessel under conditions of zero flow. The production of reactive oxygen species (ROS) in JG2.1 retinal endothelial cells was also assessed with a fluorescent probe working solution. A 30-second application of AGE-modified bovine serum albumin (AGE-BSA) to the abluminal surface of the retinal vasculature produced a rapid dose-dependent increase in retinal capillary permeability that was inhibited by pretreatment with anti-RAGE IgG. The permeability response also required ROS generated by NADPH oxidase because pretreatment with apocynin and the free radical scavengers superoxide dismutase and catalase significantly reduced the response. Pretreatment with calphostin C, SKF-96365, and U-73122 also significantly reduced the permeability response. In addition, the permeability response to bradykinin increased permeability through ROS and was potentiated after pretreatment with AGE-BSA. This potentiation was blocked by apocynin. Acute activation of NADPH oxidase by phospholipase C-mediated activation of Ca(2+)-dependent PKC occurs downstream of RAGE activation to acutely increase retinal capillary permeability in the isolated perfused rat retina.

  7. Endothelial dysfunction, ambulatory pulse pressure and albuminuria are associated in Type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Knudsen, Søren Tang; Jeppesen, Peter; Frederiksen, Christian Alcaraz

    2007-01-01

    examined. We examined the relation between PP, markers of endothelial activation and albuminuria in Type 2 diabetic patients. METHODS: In 46 Type 2 diabetic patients and 19 non-diabetic subjects, we performed 24-h ambulatory blood pressure (AMBP) monitoring. Urinary albumin excretion rate was measured......: Increased PP is associated with endothelial activation and albuminuria in Type 2 diabetic patients. Thus, endothelial dysfunction may represent a pathophysiological link between an elevated PP and microvascular complications in these subjects. Prospective studies are needed to further elucidate...

  8. Microvascular and immunological studies in Raynaud's phenomenon.

    NARCIS (Netherlands)

    Houtman, Pieternella Maria

    1985-01-01

    The purpose of this thesis was to investigate the diagnostic significance of microvascular abnormalities - as observed in the nailfold - in patients with RP with respect to the presence or development of a connective tissue disease. In addition, we investigated whether the observed abnormalities

  9. Uric acid is associated with inflammation, coronary microvascular dysfunction, and adverse outcomes in postmenopausal women

    Science.gov (United States)

    Prasad, Megha; Matteson, Eric L.; Herrmann, Joerg; Gulati, Rajiv; Rihal, Charanjit S.; Lerman, Lilach O.; Lerman, Amir

    2016-01-01

    Uric acid is a risk factor for coronary artery disease (CAD) in postmenopausal women but the association with inflammation and coronary microvascular endothelial dysfunction (CED) is not well-defined. The aim of this study was to determine the relationship of serum uric acid (SUA), inflammatory markers and CED. In this prospective cohort study, serum uric acid, hsCRP levels, and neutrophil count were measured in 229 postmenopausal women who underwent diagnostic catheterization, were found to have no obstructive CAD and underwent coronary microvascular function testing, to measure coronary blood flow (CBF) response to intracoronary acetylcholine. The average age was 58 years (IQR 52, 66) years. Hypertension was present in 48%, type 2 diabetes mellitus in 5.6%, and hyperlipidemia in 61.8%. CED was diagnosed in 59% of postmenopausal women. Mean uric acid level was 4.7 ± 1.3 mg/dL. Postmenopausal women with CED had significantly higher SUA compared to patients without CED (4.9 ± 1.3 vs. 4.4 ± 1.3 mg/dL; p=0.02). There was a significant correlation between SUA and % change in CBF to acetylcholine (p=0.009), and this correlation persisted in multivariable analysis. SUA levels were significantly associated with increased neutrophil count (p=0.02) and hsCRP levels (p=0.006) among patients with CED, but not those without CED. Serum uric acid is associated with coronary microvascular endothelial dysfunction in postmenopausal women and may be related to inflammation. These findings link serum uric acid levels to early coronary atherosclerosis in postmenopausal women. PMID:27993955

  10. Transit time homogenization in ischemic stroke - A novel biomarker of penumbral microvascular failure?

    DEFF Research Database (Denmark)

    Engedal, Thorbjørn S; Hjort, Niels; Hougaard, Kristina D

    2017-01-01

    Cerebral ischemia causes widespread capillary no-flow in animal studies. The extent of microvascular impairment in human stroke, however, is unclear. We examined how acute intra-voxel transit time characteristics and subsequent recanalization affect tissue outcome on follow-up MRI in a historic...... cohort of 126 acute ischemic stroke patients. Based on perfusion-weighted MRI data, we characterized voxel-wise transit times in terms of their mean transit time (MTT), standard deviation (capillary transit time heterogeneity - CTH), and the CTH:MTT ratio (relative transit time heterogeneity), which...... tissue, prolonged mean transit time (>5 seconds) and very low cerebral blood flow (≤6 mL/100 mL/min) was associated with high risk of infarction, largely independent of recanalization status. In the remaining mismatch region, low relative transit time heterogeneity predicted subsequent infarction...

  11. Globotriaosylsphingosine accumulation and not alpha-galactosidase-A deficiency causes endothelial dysfunction in Fabry disease.

    Directory of Open Access Journals (Sweden)

    Mehdi Namdar

    Full Text Available BACKGROUND: Fabry disease (FD is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA resulting in the accumulation of globotriaosylsphingosine (Gb3 in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known. METHODS AND RESULTS: In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs. CONCLUSIONS: Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients.

  12. Impaired endothelial function after aneurysmal subarachnoid haemorrhage correlates with arginine:asymmetric dimethylarginine ratio

    DEFF Research Database (Denmark)

    Bergström, A; Staalsø, J M; Romner, B

    2014-01-01

    BACKGROUND: Endothelial dysfunction might be involved in the development of cerebral vasospasm after aneurysmal subarachnoid haemorrhage (SAH). METHODS: This prospective observational study of 48 SAH subjects and 23 control subjects examined associations between reactive hyperaemia index (RHI...

  13. Propranolol treatment of infantile hemangioma endothelial cells: A molecular analysis

    Science.gov (United States)

    STILES, JESSICA; AMAYA, CLARISSA; PHAM, ROBERT; ROWNTREE, REBECCA K.; LACAZE, MARY; MULNE, ARLYNN; BISCHOFF, JOYCE; KOKTA, VICTOR; BOUCHERON, LAURA E.; MITCHELL, DIANNE C.; BRYAN, BRAD A.

    2012-01-01

    Infantile hemangiomas (IHs) are non-malignant, largely cutaneous vascular tumors affecting approximately 5–10% of children to varying degrees. During the first year of life, these tumors are strongly proliferative, reaching an average size ranging from 2 to 20 cm. These lesions subsequently stabilize, undergo a spontaneous slow involution and are fully regressed by 5 to 10 years of age. Systemic treatment of infants with the non-selective β-adrenergic receptor blocker, propranolol, has demonstrated remarkable efficacy in reducing the size and appearance of IHs. However, the mechanism by which this occurs is largely unknown. In this study, we sought to understand the molecular mechanisms underlying the effectiveness of β blocker treatment in IHs. Our data reveal that propranolol treatment of IH endothelial cells, as well as a panel of normal primary endothelial cells, blocks endothelial cell proliferation, migration, and formation of the actin cytoskeleton coincident with alterations in vascular endothelial growth factor receptor-2 (VEGFR-2), p38 and cofilin signaling. Moreover, propranolol induces major alterations in the protein levels of key cyclins and cyclin-dependent kinase inhibitors, and modulates global gene expression patterns with a particular affect on genes involved in lipid/sterol metabolism, cell cycle regulation, angiogenesis and ubiquitination. Interestingly, the effects of propranolol were endothelial cell-type independent, affecting the properties of IH endothelial cells at similar levels to that observed in neonatal dermal microvascular and coronary artery endothelial cells. This data suggests that while propranolol markedly inhibits hemangioma and normal endothelial cell function, its lack of endothelial cell specificity hints that the efficacy of this drug in the treatment of IHs may be more complex than simply blockage of endothelial function as previously believed. PMID:23170111

  14. Oxidative and pro-inflammatory impact of regular and denicotinized cigarettes on blood brain barrier endothelial cells: is smoking reduced or nicotine-free products really safe?

    Science.gov (United States)

    Naik, Pooja; Fofaria, Neel; Prasad, Shikha; Sajja, Ravi K; Weksler, Babette; Couraud, Pierre-Olivier; Romero, Ignacio A; Cucullo, Luca

    2014-04-23

    Both active and passive tobacco smoke (TS) potentially impair the vascular endothelial function in a causative and dose-dependent manner, largely related to the content of reactive oxygen species (ROS), nicotine, and pro-inflammatory activity. Together these factors can compromise the restrictive properties of the blood-brain barrier (BBB) and trigger the pathogenesis/progression of several neurological disorders including silent cerebral infarction, stroke, multiple sclerosis and Alzheimer's disease. Based on these premises, we analyzed and assessed the toxic impact of smoke extract from a range of tobacco products (with varying levels of nicotine) on brain microvascular endothelial cell line (hCMEC/D3), a well characterized human BBB model. Initial profiling of TS showed a significant release of reactive oxygen (ROS) and reactive nitrogen species (RNS) in full flavor, nicotine-free (NF, "reduced-exposure" brand) and ultralow nicotine products. This release correlated with increased oxidative cell damage. In parallel, membrane expression of endothelial tight junction proteins ZO-1 and occludin were significantly down-regulated suggesting the impairment of barrier function. Expression of VE-cadherin and claudin-5 were also increased by the ultralow or nicotine free tobacco smoke extract. TS extract from these cigarettes also induced an inflammatory response in BBB ECs as demonstrated by increased IL-6 and MMP-2 levels and up-regulation of vascular adhesion molecules, such as VCAM-1 and PECAM-1. In summary, our results indicate that NF and ultralow nicotine cigarettes are potentially more harmful to the BBB endothelium than regular tobacco products. In addition, this study demonstrates that the TS-induced toxicity at BBB ECs is strongly correlated to the TAR and NO levels in the cigarettes rather than the nicotine content.

  15. Vascular permeability in cerebral cavernous malformations

    DEFF Research Database (Denmark)

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao

    2015-01-01

    Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case-controlled observ...

  16. Retinal and cerebral microembolization during coronary artery bypass surgery: a randomized, controlled trial.

    Science.gov (United States)

    Ascione, Raimondo; Ghosh, Arup; Reeves, Barnaby C; Arnold, John; Potts, Mike; Shah, Atul; Angelini, Gianni D

    2005-12-20

    We sought to compare the effects on ophthalmic function of coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB) and off-pump (OPCAB) grafting and to investigate whether retinal microvascular damage is associated with markers of cerebral injury. Retinal microvascular damage was assessed by fluorescein angiography and color fundus photography. Ophthalmic function was tested by the logarithm of the minimum angle of resolution visual acuity (VA), and cerebral injury, by transcranial Doppler ultrasound-detected emboli and S100 protein values. Twenty patients were randomized. Fluorescein angiography and postoperative VA could not be obtained for 1 CABG-CPB patient. Retinal microvascular damage was detected in 5 of 9 CABG-CPB but in none of 10 OPCAB patients (risk difference, 55%; 95% confidence interval [CI], 23% to 88%; P=0.01). Color fundus photography detected microvascular damage in 1 CABG-CPB patient but in no OPCAB patients; this lesion was associated with a field defect, which remained after 3 months of follow-up. There was no difference in postoperative VA. Doppler high-intensity transient signals (HITS) were 20.3 times more frequent in the CABG-CPB than in the OPCAB group (95% CI, 9.1 to 45; P<0.0001). Protein S100 levels were higher in the CABG-CPB than in the OPCAB group 1 hour after surgery (P<0.001). HITS were 14.7 times more frequent (95% CI, 3.5 to 62; P=0.001) and S100 level 2.1 times higher (95% CI, 1.3 to 3.5; P=0.005) when retinal microvascular damage was present. The relative frequency of retinal microvascular damage between groups shows the extent to which the risk of cerebral injury is reduced with OPCAB. Imaging of part of the cerebral circulation provides evidence to validate markers of cerebral injury.

  17. Depth-dependent flow and pressure characteristics in cortical microvascular networks.

    Directory of Open Access Journals (Sweden)

    Franca Schmid

    2017-02-01

    Full Text Available A better knowledge of the flow and pressure distribution in realistic microvascular networks is needed for improving our understanding of neurovascular coupling mechanisms and the related measurement techniques. Here, numerical simulations with discrete tracking of red blood cells (RBCs are performed in three realistic microvascular networks from the mouse cerebral cortex. Our analysis is based on trajectories of individual RBCs and focuses on layer-specific flow phenomena until a cortical depth of 1 mm. The individual RBC trajectories reveal that in the capillary bed RBCs preferentially move in plane. Hence, the capillary flow field shows laminar patterns and a layer-specific analysis is valid. We demonstrate that for RBCs entering the capillary bed close to the cortical surface (< 400 μm the largest pressure drop takes place in the capillaries (37%, while for deeper regions arterioles are responsible for 61% of the total pressure drop. Further flow characteristics, such as capillary transit time or RBC velocity, also vary significantly over cortical depth. Comparison of purely topological characteristics with flow-based ones shows that a combined interpretation of topology and flow is indispensable. Our results provide evidence that it is crucial to consider layer-specific differences for all investigations related to the flow and pressure distribution in the cortical vasculature. These findings support the hypothesis that for an efficient oxygen up-regulation at least two regulation mechanisms must be playing hand in hand, namely cerebral blood flow increase and microvascular flow homogenization. However, the contribution of both regulation mechanisms to oxygen up-regulation likely varies over depth.

  18. Vascular endothelial growth factor is upregulated by l-dopa in the parkinsonian brain: implications for the development of dyskinesia

    Science.gov (United States)

    Francardo, Veronica; Lindgren, Hanna S.; Sillivan, Stephanie E.; O’Sullivan, Sean S.; Luksik, Andrew S.; Vassoler, Fair M.; Lees, Andrew J.; Konradi, Christine

    2011-01-01

    Angiogenesis and increased permeability of the blood–brain barrier have been reported to occur in animal models of Parkinson’s disease and l-dopa-induced dyskinesia, but the significance of these phenomena has remained unclear. Using a validated rat model of l-dopa-induced dyskinesia, this study demonstrates that chronic treatment with l-dopa dose dependently induces the expression of vascular endothelial growth factor in the basal ganglia nuclei. Vascular endothelial growth factor was abundantly expressed in astrocytes and astrocytic processes in the proximity of blood vessels. When co-administered with l-dopa, a small molecule inhibitor of vascular endothelial growth factor signalling significantly attenuated the development of dyskinesia and completely blocked the angiogenic response and associated increase in blood–brain barrier permeability induced by the treatment. The occurrence of angiogenesis and vascular endothelial growth factor upregulation was verified in post-mortem basal ganglia tissue from patients with Parkinson’s disease with a history of dyskinesia, who exhibited increased microvascular density, microvascular nestin expression and an upregulation of vascular endothelial growth factor messenger ribonucleic acid. These congruent findings in the rat model and human patients indicate that vascular endothelial growth factor is implicated in the pathophysiology of l-dopa-induced dyskinesia and emphasize an involvement of the microvascular compartment in the adverse effects of l-dopa pharmacotherapy in Parkinson’s disease. PMID:21771855

  19. Longitudinal assessment of endothelial function in the microvasculature of mice in-vivo.

    Science.gov (United States)

    Belch, Jill J F; Akbar, Naveed; Alapati, Venkateswara; Petrie, John; Arthur, Simon; Khan, Faisel

    2013-01-01

    Endothelial dysfunction is associated with early development of cardiovascular disease, making longitudinal measurements desirable. We devised a protocol using laser Doppler imaging (LDI) and iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) to assess the skin microcirculation longitudinally in mice every 4 weeks for 24 weeks in two groups of C57BL/6 mice, chow versus high-cholesterol diet(known to induce endothelial dysfunction). LDI measurements were compared with vascular function (isometric tension) measured using wire myography in the tail artery in response to ACh and SNP. Microvascular responses to ACh were significantly reduced in cholesterol-fed versus chow-fed mice from week 4 onwards (Phydrochloride (L-NAME) showed a significant reduction in ACh response compared with vehicle-treated animals (P<0.05) at baseline and at 12 weeks. In cholesterol-fed mice, ACh responses were 226 ± 21 and 180 ± 21 AU (P=0.03) before and after L-NAME, respectively. A reduction in ex-vivo ACh response was detected in the tail artery in cholesterol-fed mice, and a significant correlation found between peak microvascular ACh response and maximum ACh response in the tail artery (r=0.699, P=0.017). No changes were found in SNP responses in the microvasculature or tail artery. Using this protocol, we have shown longitudinal decreases in microvascular endothelial function to cholesterol feeding. L-NAME studies confirm that the reduced vasodilatation to ACh in cholesterol-fed mice was mediated partly through reduced NO bioavailability. Wire myography of tail arteries confirmed that in-vivo measurements of microvascular function reflect ex-vivo vascular function in other beds. Longitudinal assessments of skin microvascular function in mice could provide a useful translatable model for assessing early endothelial dysfunction. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Cerebral vasculitis

    International Nuclear Information System (INIS)

    Greenan, T.J.; Grossman, R.I.

    1990-01-01

    This paper reviews retrospectively MR, CT, and angiographic findings in patients with cerebral vasculitis in order to understand the strengths and weaknesses of the various imaging modalities, as well as the spectrum of imaging abnormalities in this disease entity. Studies were retrospectively reviewed in 12 patients with cerebral vasculitis proved by means of angiography and/or brain biopsy

  1. SAINT-liposome-polycation particles, a new carrier for improved delivery of siRNAs to inflamed endothelial cells

    NARCIS (Netherlands)

    Kowalski, Piotr S.; Kuninty, Praneeth R.; Bijlsma, Klaas T.; Stuart, Marc C. A.; Leus, Niek G. J.; Ruiters, Marcel H. J.; Molema, Grietje; Kamps, Jan A. A. M.

    Interference with acute and chronic inflammatory processes by means of delivery of siRNAs into microvascular endothelial cells at a site of inflammation demands specific, non-toxic and effective siRNA delivery system. In the current work we describe the design and characterization of siRNA carriers

  2. Invasive assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy: the index of microvascular resistance

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Barrios, Alejandro, E-mail: aleklos@hotmail.com [Cardiology Department, Jerez Hospital, Jerez (Spain); Camacho-Jurado, Francisco [Cardiology Department, Punta Europa Hospital, Algeciras (Spain); Díaz-Retamino, Enrique; Gamaza-Chulián, Sergio; Agarrado-Luna, Antonio; Oneto-Otero, Jesús; Del Rio-Lechuga, Ana; Benezet-Mazuecos, Javier [Cardiology Department, Jerez Hospital, Jerez (Spain)

    2015-10-15

    Summary: We present a review of microvascular dysfunction in hypertrophic cardiomyopathy (HCM) and an interesting case of a symptomatic familial HCM patient with inducible ischemia by single photon emission computed tomography. Coronary angiography revealed normal epicardial arteries. Pressure wire measurements of fractional flow reserve (FFR), coronary flow reserve (CFR) and index of microvascular resistance (IMR) demonstrated a significant microcirculatory dysfunction. This is the first such case that documents this abnormality invasively using the IMR. The measurement of IMR, a novel marker of microcirculatory dysfunction, provides novel insights into the pathophysiology of this condition. - Highlights: • Microvascular dysfunction is a common feature in hypertrophic cardiomyopathy (HCM) and represents a strong predictor of unfavorable outcome and cardiovascular mortality. • The index of microvascular resistance (IMR) is a new method for invasively assessing the state of the coronary microcirculation using a single pressure-temperature sensor-tipped coronary wire. • However assessment of IMR in HCM has not been previously reported. We report a case in which microvascular dysfunction is assessed by IMR. This index may be useful in future researches of HCM.

  3. Comparative Aspects of the Regulation of Cutaneous and Cerebral Microcirculation During Acute Blood Loss

    Directory of Open Access Journals (Sweden)

    I. A. Ryzhkov

    2017-01-01

    Full Text Available Objective. Using laser Doppler flowmetry (LDF and wavelet-analysis of microvascular blood flow oscillations to determine the features of regulation of cutaneous and cerebral microhemocirculation at early stages of acute fixed volume blood loss.Materials and methods.Experiments were carried out on 31 male outbred rats weighing 300 g to 400 g. The animals were anesthetized by intraperitoneal injection of pentobarbital (45 mg/kg. The tail artery was catheterized for invasive measurement of mean blood pressure (BP and blood withdrawal. The LDF method (ЛАКК-02 device, LAZMA, Russia was used to record microvascular blood flow simultaneously in the right ear and the pial vessels of the left parietal region. An acute fixed-volume hemorrhage model was used. The target blood loss volume was 30% of the total blood volume (TBV. Within 10 minutes after the end of hemorrhage (posthemorrhagic period, the blood pressure and the LDF-gram were recorded. The following LDF-gram parameters were analyzed: the mean value of IP; the maximum amplitude of blood flow oscillations (Amax and the corresponding frequency (Fmax in the frequency band 0.01—0.4 Hz. Statistical processing of the data was performed using Statistica 7.0.Results. At baseline, the values of IP, Аmax and Fmax in the brain were higher than in the skin. At posthemorrhagic period, BP decreased, on average, from 105 to 41 mm Hg. Against this background, IP in the skin decreased by 65%, while in the brain it reduced only by 17%, as compared with the baseline values (P0,0001. In the same time these organs were characterized by a unidirectional dynamics of patterns of fluxmotion. In both investigated organs, Amax increased sharply, and Fmax decreased. In posthemorrhagic period, fluxmotion not only «slowed down», but was also synchronized in a relatively narrow frequency band: for the skin Fmax was about 0.04 Hz (at the border of the endothelial and neurogenic band, for the brain about 0.09 Hz

  4. Obligatory role of hyperaemia and shear stress in microvascular adaptation to repeated heating in humans.

    Science.gov (United States)

    Green, Daniel J; Carter, Howard H; Fitzsimons, Matthew G; Cable, N Timothy; Thijssen, Dick H J; Naylor, Louise H

    2010-05-01

    The endothelium, a single layer of cells lining the entire circulatory system, plays a key role in maintaining vascular health. Endothelial dysfunction independently predicts cardiovascular events and improvement in endothelial function is associated with decreased vascular risk. Previous studies have suggested that exercise training improves endothelial function in macrovessels, a benefit mediated via repeated episodic increases in shear stress. However, less is known of the effects of shear stress modulation in microvessels. In the present study we examined the hypothesis that repeated skin heating improves cutaneous microvascular vasodilator function via a shear stress-dependent mechanism. We recruited 10 recreationally active males who underwent bilateral forearm immersion in warm water (42 degrees C), 3 times per week for 30 min. During these immersion sessions, shear stress was manipulated in one arm by inflating a pneumatic cuff to 100 mmHg, whilst the other arm remained uncuffed. Vasodilatation to local heating, a NO-dependent response assessed using laser Doppler, improved across the 8 week intervention period in the uncuffed arm (cutaneous vascular conductance week 0 vs. week 4 at 41 degrees C: 1.37 +/- 0.45 vs. 2.0 +/- 0.91 units, P = 0.04; 42 degrees C: 2.06 +/- 0.45 vs. 2.68 +/- 0.83 units; P = 0.04), whereas no significant changes were evident in the cuffed arm. We conclude that increased blood flow, and the likely attendant increase in shear stress, is a key physiological stimulus for enhancing microvascular vasodilator function in humans.

  5. Intensive blood pressure control affects cerebral blood flow in type 2 diabetes mellitus patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Davis, Shyrin C A T; Truijen, Jasper

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic...... · s-1). Cognitive function did not change during the 6 months. Static cerebrovascular autoregulation appears to be impaired in type 2 diabetes mellitus, with a transient reduction in CBFV in uncomplicated diabetic patients on tight BP control, but with a progressive reduction in CBFV in diabetic...... variables and transcranial Doppler-determined cerebral blood flow velocity (CBFV), cerebral CO2 responsiveness, and cognitive function were determined after 3 and 6 months of intensive BP control in 17 type 2 diabetic patients with microvascular complications (T2DM+), in 18 diabetic patients without (T2DM...

  6. Radionuclide assessment of pulmonary microvascular permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, A.B.J. [Medical Intensive Care Unit, Department of Internal Medicine, Free University Hospital, De Boelelaan 1117, 1081 HV Amsterdam (Netherlands)

    1997-04-01

    The literature has been reviewed to evaluate the technique and clinical value of radionuclide measurements of microvascular permeability and oedema formation in the lungs. Methodology, modelling and interpretation vary widely among studies. Nevertheless, most studies agree on the fact that the measurement of permeability via pulmonary radioactivity measurements of intravenously injected radiolabelled proteins versus that in the blood pool, the so-called pulmonary protein transport rate (PTR), can assist the clinician in discriminating between permeability oedema of the lungs associated with the adult respiratory distress syndrome (ARDS) and oedema caused by an increased filtration pressure, for instance in the course of cardiac disease, i.e. pressure-induced pulmonary oedema. Some of the techniques used to measure PTR are also able to detect subclinical forms of lung microvascular injury not yet complicated by permeability oedema. This may occur after cardiopulmonary bypass and major vascular surgery, for instance. By paralleling the clinical severity and course of the ARDS, the PTR method may also serve as a tool to evaluate new therapies for the syndrome. Taken together, the currently available radionuclide methods, which are applicable at the bedside in the intensive care unit, may provide a gold standard for detecting minor and major forms of acute microvascular lung injury, and for evaluating the severity, course and response to treatment. (orig.). With 2 tabs.

  7. Non-invasive detection and quantification of brain microvascular deficits by near-infrared spectroscopy in a rat model of Vascular Cognitive Impairment

    Science.gov (United States)

    Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio

    2011-02-01

    Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.

  8. TNF-α stimulates endothelial palmitic acid transcytosis and promotes insulin resistance

    Science.gov (United States)

    Li, Wenjing; Yang, Xiaoyan; Zheng, Tao; Xing, Shasha; Wu, Yaogong; Bian, Fang; Wu, Guangjie; Li, Ye; Li, Juyi; Bai, Xiangli; Wu, Dan; Jia, Xiong; Wang, Ling; Zhu, Lin; Jin, Si

    2017-01-01

    Persistent elevation of plasma TNF-α is a marker of low grade systemic inflammation. Palmitic acid (PA) is the most abundant type of saturated fatty acid in human body. PA is bound with albumin in plasma and could not pass through endothelial barrier freely. Albumin-bound PA has to be transported across monolayer endothelial cells through intracellular transcytosis, but not intercellular diffusion. In the present study, we discovered that TNF-α might stimulate PA transcytosis across cardiac microvascular endothelial cells, which further impaired the insulin-stimulated glucose uptake by cardiomyocytes and promoted insulin resistance. In this process, TNF-α-stimulated endothelial autophagy and NF-κB signaling crosstalk with each other and orchestrate the whole event, ultimately result in increased expression of fatty acid transporter protein 4 (FATP4) in endothelial cells and mediate the increased PA transcytosis across microvascular endothelial cells. Hopefully the present study discovered a novel missing link between low grade systemic inflammation and insulin resistance. PMID:28304381

  9. Cardiorenal disease connection during post-menopause: The protective role of estrogen in uremic toxins induced microvascular dysfunction.

    Science.gov (United States)

    Pei, Jiayi; Harakalova, Magdalena; den Ruijter, Hester; Pasterkamp, Gerard; Duncker, Dirk J; Verhaar, Marianne C; Asselbergs, Folkert W; Cheng, Caroline

    2017-07-01

    Female gender, post-menopause, chronic kidney disease (CKD) and (CKD linked) microvascular disease are important risk factors for developing heart failure with preserved ejection fraction (HFpEF). Enhancing our understanding of the interrelation between these risk factors could greatly benefit the identification of new drug targets for future therapy. This review discusses the evidence for the protective role of estradiol (E 2 ) in CKD-associated microvascular disease and related HFpEF. Elevated circulating levels of uremic toxins (UTs) during CKD may act in synergy with hormonal changes during post-menopause and could lead to coronary microvascular endothelial dysfunction in HFpEF. To elucidate the molecular mechanism involved, published transcriptome datasets of indoxyl sulfate (IS), high inorganic phosphate (HP) or E 2 treated human derived endothelial cells from the NCBI Gene Expression Omnibus database were analyzed. In total, 36 genes overlapped in both IS- and HP-activated gene sets, 188 genes were increased by UTs (HP and/or IS) and decreased by E 2 , and 572 genes were decreased by UTs and increased by E 2 . Based on a comprehensive in silico analysis and literature studies of collected gene sets, we conclude that CKD-accumulated UTs could negatively impact renal and cardiac endothelial homeostasis by triggering extensive inflammatory responses and initiating dysregulation of angiogenesis. E 2 may protect (myo)endothelium by inhibiting UTs-induced inflammation and ameliorating UTs-related uremic bleeding and thrombotic diathesis via restored coagulation capacity and hemostasis in injured vessels. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Cerebral Paragonimiasis.

    Science.gov (United States)

    Miyazaki, I

    1975-01-01

    The first case of cerebral paragonimiasis was reported by Otani in Japan in 1887. This was nine years after Kerbert's discovery of the fluke in the lungs of Bengal tigers and seven years after a human pulmonary infection by the fluke was demonstrated by Baelz and Manson. The first case was a 26-year-old man who had been suffering from cough and hemosputum for one year. The patient developed convulsive seizures with subsequent coma and died. The postmortem examination showed cystic lesions in the right frontal and occipital lobes. An adult fluke was found in the occipital lesion and another was seen in a gross specimen of normal brain tissue around the affected occipital lobe. Two years after Otani's discovery, at autopsy a 29-year-old man with a history of Jacksonian seizure was reported as having cerebral paragonimiasis. Some time later, however, it was confirmed that the case was actually cerebral schistosomiasis japonica. Subsequently, cases of cerebral paragonimiasis were reported. However, the majority of these cases were not confirmed histologically. It was pointed out that some of these early cases were probably not Paragonimus infection. After World War II, reviews as well as case reports were published. Recently, investigations have been reported from Korea, with a clinicla study on 62 cases of cerebral paragonimiasis seen at the Neurology Department of the National Medical Center, Seoul, between 1958 and 1964. In 1971 Higashi described a statistical study on 105 cases of cerebral paragonimiasis that had been treated surgically in Japan.

  11. VEGF masks BNIP3-mediated apoptosis of hypoxic endothelial cells.

    Science.gov (United States)

    Jurasz, Paul; Yurkova, Natasha; Kirshenbaum, Lorrie; Stewart, Duncan J

    2011-05-01

    Hypoxia results in the apoptotic death of myocytes, neurons, and epithelial cells, through the actions of Bcl-2 and Nineteen kilodalton Interacting Protein-3 (BNIP3). On the contrary, endothelial cells are especially adept at surviving conditions of oxygen deprivation via up-regulation of vascular endothelial growth factor (VEGF) the most potent endothelial survival factor. Both VEGF and BNIP3 expression are transcriptionally regulated by hypoxia inducible factor and may antagonize each other's affects in endothelial cells (ECs). Since factors that promote and inhibit apoptosis may be expressed at the same time in endothelial cells under hypoxic conditions, we decided to investigate whether VEGF and BNIP3 have opposing actions in endothelial cells. Human microvascular endothelial cells were exposed to hypoxic conditions in a Billups-Rothenburg chamber. Under hypoxic conditions BNIP3 expression by endothelial cells increased as measured by real-time PCR and immunoblot. After 48 h of hypoxia, EC apoptosis was assessed by flow cytometry and was lower than in corresponding normoxia serum starved controls. The increase in EC survival under hypoxic conditions corresponded with an increase in the expression of VEGF. Under normoxic conditions adenoviral BNIP3 over-expression promoted apoptosis of ECs; however, recombinant VEGF (100 pg/ml) antagonized the BNIP3 apoptosis promoting affects. SiRNA knockdown of VEGF expression by hypoxic ECs resulted in increased apoptosis with a concomitant increase in BNIP3 expression. SiRNA knockdown of BNIP3 expression by hypoxic ECs reduced the increase in EC apoptosis as a result of VEGF knockdown. We conclude that under hypoxic conditions VEGF counteracts and masks the apoptosis promoting affects of BNIP3.

  12. Optimal hematocrit in an artificial microvascular network.

    Science.gov (United States)

    Piety, Nathaniel Z; Reinhart, Walter H; Stutz, Julianne; Shevkoplyas, Sergey S

    2017-09-01

    Higher hematocrit increases the oxygen-carrying capacity of blood but also increases blood viscosity, thus decreasing blood flow through the microvasculature and reducing the oxygen delivery to tissues. Therefore, an optimal value of hematocrit that maximizes tissue oxygenation must exist. We used viscometry and an artificial microvascular network device to determine the optimal hematocrit in vitro. Suspensions of fresh red blood cells (RBCs) in plasma, normal saline, or a protein-containing buffer and suspensions of stored red blood cells (at Week 6 of standard hypothermic storage) in plasma with hematocrits ranging from 10 to 80% were evaluated. For viscometry, optimal hematocrits were 10, 25.2, 31.9, 37.1, and 37.5% for fresh RBCs in plasma at shear rates of 3.2 or less, 11.0, 27.7, 69.5, and 128.5 inverse seconds. For the artificial microvascular network, optimal hematocrits were 51.1, 55.6, 59.2, 60.9, 62.3, and 64.6% for fresh RBCs in plasma and 46.4, 48.1, 54.8, 61.4, 65.7, and 66.5% for stored RBCs in plasma at pressures of 2.5, 5, 10, 20, 40, and 60 cm H 2 O. Although exact optimal hematocrit values may depend on specific microvascular architecture, our results suggest that the optimal hematocrit for oxygen delivery in the microvasculature depends on perfusion pressure. Therefore, anemia in chronic disorders may represent a beneficial physiological response to reduced perfusion pressure resulting from decreased heart function and/or vascular stenosis. Our results may help explain why a therapeutically increasing hematocrit in such conditions with RBC transfusion frequently leads to worse clinical outcomes. © 2017 AABB.

  13. Peroxynitrite formed during a transient episode of brain ischaemia increases endothelium-derived hyperpolarization-type dilations in thromboxane/prostaglandin receptor-stimulated rat cerebral arteries.

    Science.gov (United States)

    Onetti, Y; Dantas, A P; Pérez, B; McNeish, A J; Vila, E; Jiménez-Altayó, F

    2017-05-01

    Increased thromboxane A 2 and peroxynitrite are hallmarks of cerebral ischaemia/reperfusion (I/R). Stimulation of thromboxane/prostaglandin receptors (TP) attenuates endothelium-derived hyperpolarization (EDH). We investigated whether EDH-type middle cerebral artery (MCA) relaxations following TP stimulation are altered after I/R and the influence of peroxynitrite. Vascular function was determined by wire myography after TP stimulation with the thromboxane A 2 mimetic 9,11-dideoxy-9α, 11α -methano-epoxy prostaglandin F2α (U46619) in MCA of Sprague Dawley rats subjected to MCA occlusion (90 min)/reperfusion (24 h) or sham operation, and in non-operated (control) rats. Some rats were treated with saline or the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron (III) (20 mg kg -1 ). Protein expression was evaluated in MCA and in human microvascular endothelial cells submitted to hypoxia (overnight)/reoxygenation (24 h) (H/R) using immunofluorescence and immunoblotting. In U46619-pre-constricted MCA, EDH-type relaxation by the proteinase-activated receptor 2 agonist serine-leucine-isoleucine-glycine-arginine-leucine-NH 2 (SLIGRL) was greater in I/R than sham rats due to an increased contribution of small-conductance calcium-activated potassium channels (SK C a ), which was confirmed by the enlarged relaxation to the SK C a activator N-cyclohexyl-N-2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine. I/R and H/R induced endothelial protein tyrosine nitration and filamentous-actin disruption. In control MCA, either cytochalasin D or peroxynitrite disrupted endothelial filamentous-actin and augmented EDH-type relaxation. Furthermore, peroxynitrite decomposition during I/R prevented the increase in EDH-type responses. Following TP stimulation in MCA, EDH-type relaxation to SLIGRL is greater after I/R due to endothelial filamentous-actin disruption by peroxynitrite, which prevents TP-induced block of SK C a input to EDH

  14. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    Science.gov (United States)

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  15. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting.

    Science.gov (United States)

    Cade, W Todd

    2008-11-01

    Physical therapists commonly treat people with diabetes for a wide variety of diabetes-associated impairments, including those from diabetes-related vascular disease. Diabetes is associated with both microvascular and macrovascular diseases affecting several organs, including muscle, skin, heart, brain, and kidneys. A common etiology links the different types of diabetes-associated vascular disease. Common risk factors for vascular disease in people with diabetes, specifically type 2 diabetes, include hyperglycemia, insulin resistance, dyslipidemia, hypertension, tobacco use, and obesity. Mechanisms for vascular disease in diabetes include the pathologic effects of advanced glycation end product accumulation, impaired vasodilatory response attributable to nitric oxide inhibition, smooth muscle cell dysfunction, overproduction of endothelial growth factors, chronic inflammation, hemodynamic dysregulation, impaired fibrinolytic ability, and enhanced platelet aggregation. It is becoming increasingly important for physical therapists to be aware of diabetes-related vascular complications as more patients present with insulin resistance and diabetes. The opportunities for effective physical therapy interventions (such as exercise) are significant.

  16. Endothelial nitric oxide synthase gene polymorphisms (G894T) in diabetes mellitus in Egypt

    OpenAIRE

    El-baz1 ; Farouk2; Tag Eldin2; Ezat2

    2010-01-01

    Objective: Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes. Genetic predisposition has been implicated in DN. The eNOS protein synthesizes nitric oxide constitutively via a reaction including the conversion of L-arginine to L-citrulline, which involves the transfer of five electrons provided by nicotinamide adenine dinucleotide phosphate The aim of this study is to evaluate the association of G894T polymorphisms of endothelial nitric oxide synthase(eNOS) ...

  17. Impaired coronary microvascular function in diabetics

    International Nuclear Information System (INIS)

    Tsujimoto, Go

    2000-01-01

    Global and regional myocardial uptake was determined with technetium-99m tetrofosmin and a 4 hour exercise (370 MBq iv) and rest (740 MBq iv) protocol, in 24 patients with non-insulin dependent diabetes mellitus and in 22 control subjects. The purpose of this study was to evaluate impaired coronary microvascular function in diabetics by measurement of % uptake increase in myocardial counts. The parameter of % uptake increase (ΔMTU) was calculated as the ratio of exercise counts to rest myocardial counts with correction of myocardial uptake for dose administered and physical decay between the exercise study and the rest study. Global ΔMTU was significantly lower in the diabetics than in control subjects (14.4±5.4% vs. 21.7±8.5%, p<0.01). Regional ΔMTU in each of 4 left ventricular regions (anterior, septal, inferior, posterolateral) was significantly lower in the diabetic group than in the control group (p<0.01) respectively, but there were no significant differences between ΔMTU in the 4 left ventricular regions in the same group. ΔMTU was useful as a non-invasive means of evaluating impaired coronary microvascular function in diabetics. (author)

  18. Pathophysiological roles of microvascular alterations in pulmonary inflammatory diseases: possible implications of tumor necrosis factor-alpha and CXC chemokines

    Directory of Open Access Journals (Sweden)

    Kanami Orihara

    2008-10-01

    Full Text Available Kanami Orihara, Akio MatsudaDepartment of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, JapanAbstract: Chronic obstructive pulmonary disease (COPD and bronchial asthma are common respiratory diseases that are caused by chronic infl ammation of the airways. Although these diseases are mediated by substantially distinct immunological reactions, especially in mild cases, they both show increased numbers of neutrophils, increased production of tumor necrosis factor-alpha (TNF-α and poor responses to corticosteroids, particularly in patients with severe diseases. These immunological alterations may contribute strongly to airway structural changes, commonly referred to as airway remodeling. Microvascular alterations, a component of airway remodeling and caused by chronic inflammation, are observed and appear to be clinically involved in both diseases. It has been well established that vascular endothelial growth factor (VEGF plays important roles in the airway microvascular alterations in mild and moderate cases of both diseases, but any role that VEGF might play in severe cases of these diseases remains unclear. Here, we review recent research findings, including our own data, and discuss the possibility that TNF-α and its associated CXC chemokines play roles in microvascular alterations that are even more crucial than those of VEGF in patients with severe COPD or asthma.Keywords: TNF-α, CXC chemokines, corticosteroid, pulmonary microvessels, COPD, asthma

  19. Vascular endothelial growth factor expression and angiogenesis in various grades and subtypes of meningioma

    Directory of Open Access Journals (Sweden)

    Priya Dharmalingam

    2013-01-01

    Full Text Available Background: Vascular endothelial growth factor (VEGF expression has been extensively studied in astrocytoma, whereas relatively less literature exists on VEGF expression in meningioma. Materials and Methods: Patients operated for meningioma from 2006 to 2011 (n = 46 were included. Tumor was subtyped and graded as per WHO grading. Immunohistochemistry was performed for MIB labeling index, VEGF, and CD 34 staining. The patterns of VEGF expression in various histological subtypes and grades and its correlation with microvascular density were analyzed. Results: This series consisted of 40 Grade I meningioma, 4 Grade II tumors, and 2 Grade III tumors. While 14 (30.4% tumors showed no staining with VEGF antibody, 32 (69.6% were positive for VEGF. Sixty five percent of Grade I tumors showed VEGF positivity, while 100% of Grade II and Grade III tumors were VEGF positive (P = 0.157. The mean microvascular density in VEGF-negative tumors was 9.00, while that of VEGF-positive tumors was 17.81(P = 0.013. There was a gradual increase in microvascular density from tumors which are negative for VEGF to tumors which expressed moderate to strong VEGF, the difference being statistically significant (P = 0.009. Conclusions: VEGF expression correlated with the microvascular density in meningioma irrespective of tumor grade, with a gradual increase in microvascular density in relation to the VEGF score.

  20. Altered retinal flicker response indicates microvascular dysfunction in women with preeclampsia.

    Science.gov (United States)

    Brückmann, Andreas; Seeliger, Christin; Lehmann, Thomas; Schleußner, Ekkehard; Schlembach, Dietmar

    2015-10-01

    Flicker-induced dilatation is reduced in patients with cardiovascular risk, and the following arteriolar constriction is reduced with aging, leading to a reduced arteriolar amplitude and, thereby, indicating microvascular endothelial dysfunction. As endothelial dysfunction is associated with preeclampsia, we assessed retinal flicker response during pregnancy and postpartum. Between 2006 and 2013, women were recruited from University Hospital Jena and Prenatal Diagnostic Center Erfurt, Germany, of which 34 women with preeclampsia, 45 women with normal pregnancy, and 22 nonpregnant controls were included in the study. Women with normal pregnancy were matched for age, nulliparity, smoking, previous gestational hypertensive disorders, and family history of cardiovascular disease. Nonpregnant women were age-matched, nulliparous, nonsmoking, without family history of cardiovascular disease. Retinal vessel measurement using Dynamic Vessel Analyzer consisted of 50-seconds baseline acquisition, followed by three 20-second flicker and 80-second relaxation periods. Arteriolar constriction and arteriolar amplitude were reduced during pregnancy (P=0.001 and P=0.008) and postpartum (P=0.018 and P=0.034) in women with preeclampsia, adjusted for age, body mass index, mean arterial pressure, baseline diameter, and family history of cardiovascular disease. Flicker-induced dilatation was unchanged within the groups and throughout the study period. The unchanged flicker-induced dilatation may support a preserved autoregulatory competence of the microvasculature, and the diminished arteriolar amplitude, mainly because of the absence of the arteriolar constriction, indicates a commenced retinal microvascular dysfunction in women with preeclampsia during pregnancy and postpartum. Mechanisms responsible for altered retinal flicker response in preeclampsia need to be clarified in further studies. © 2015 American Heart Association, Inc.

  1. Pulsed Electromagnetic Field (PEMF) Mitigates High Intracranial Pressure (ICP) Induced Microvascular Shunting (MVS) in Rats.

    Science.gov (United States)

    Bragin, Denis E; Bragina, Olga A; Hagberg, Sean; Nemoto, Edwin M

    2018-01-01

    High-frequency pulsed electromagnetic field (PEMF) stimulation is an emerging noninvasive therapy that we have shown increases cerebral blood flow (CBF) and tissue oxygenation in the healthy rat brain. In this work, we tested the effect of PEMF on the brain at high intracranial pressure (ICP). We previously showed that high ICP in rats caused a transition from capillary (CAP) to non-nutritive microvascular shunt (MVS) flow, tissue hypoxia and increased blood brain barrier (BBB) permeability. Using in vivo two-photon laser scanning microscopy (2PLSM) over the rat parietal cortex, and studied the effects of PEMF on microvascular blood flow velocity, tissue oxygenation (NADH autofluorescence), BBB permeability and neuronal necrosis during 4 h of elevated ICP to 30 mmHg. PEMF significantly dilated arterioles, increased capillary blood flow velocity and reduced MVS/capillary ratio compared to sham-treated animals. These effects led to a significant decrease in tissue hypoxia, BBB degradation and neuronal necrosis. PEMF attenuates high ICP-induced pathological microcirculatory changes, tissue hypoxia, BBB degradation and neuronal necrosis.

  2. Retinal microvascular network alterations: potential biomarkers of cerebrovascular and neural diseases.

    Science.gov (United States)

    Cabrera DeBuc, Delia; Somfai, Gabor Mark; Koller, Akos

    2017-02-01

    Increasing evidence suggests that the conditions of retinal microvessels are indicators to a variety of cerebrovascular, neurodegenerative, psychiatric, and developmental diseases. Thus noninvasive visualization of the human retinal microcirculation offers an exceptional opportunity for the investigation of not only the retinal but also cerebral microvasculature. In this review, we show how the conditions of the retinal microvessels could be used to assess the conditions of brain microvessels because the microvascular network of the retina and brain share, in many aspects, standard features in development, morphology, function, and pathophysiology. Recent techniques and imaging modalities, such as optical coherence tomography (OCT), allow more precise visualization of various layers of the retina and its microcirculation, providing a "microscope" to brain microvessels. We also review the potential role of retinal microvessels in the risk identification of cerebrovascular and neurodegenerative diseases. The association between vision problems and cerebrovascular and neurodegenerative diseases, as well as the possible role of retinal microvascular imaging biomarkers in cerebrovascular and neurodegenerative screening, their potentials, and limitations, are also discussed. Copyright © 2017 the American Physiological Society.

  3. The role of cyclo-oxygenase-1 in high-salt diet-induced microvascular dysfunction in humans.

    Science.gov (United States)

    Cavka, Ana; Cosic, Anita; Jukic, Ivana; Jelakovic, Bojan; Lombard, Julian H; Phillips, Shane A; Seric, Vatroslav; Mihaljevic, Ivan; Drenjancevic, Ines

    2015-12-15

    Recent studies have shown that some of the deleterious effects of a high-salt (HS) diet are independent of elevated blood pressure and are associated with impaired endothelial function. Increased generation of cyclo-oxygenase (COX-1 and COX-2)-derived vasoconstrictor factors and endothelial activation may contribute to impaired vascular relaxation during HS loading. The present study aimed to assess the regulation of microvascular reactivity and to clarify the role of COX-1 and COX-2 in normotensive subjects on a short-term HS diet. The present study demonstrates the important role of COX-1 derived vasoconstrictor metabolites in regulation of microvascular blood flow during a HS diet. These results help to explain how even short-term HS diets may impact upon microvascular reactivity without changes in blood pressure and suggest that a vasoconstrictor metabolite of COX-1 could play a role in this impaired tissue blood flow. The present study aimed to assess the effect of a 1-week high-salt (HS) diet on the role of cyclo-oxygenases (COX-1 and COX-2) and the vasoconstrictor prostaglandins, thromboxane A2 (TXA2 ) and prostaglandin F2α (PGF2α ), on skin microcirculatory blood flow, as well as to detect its effect on markers of endothelial activation such as soluble cell adhesion molecules. Young women (n = 54) were assigned to either the HS diet group (N = 30) (∼14 g day(-1) NaCl ) or low-salt (LS) diet group (N = 24) (diet protocols. One HS diet group subset received 100 mg of indomethacin (non-selective COX-1 and COX-2 inhibitor), and another HS group subset received 200 mg of celecoxib (selective COX-2 inhibitor) before repeating laser Doppler flowmetry measurements. Blood pressure was unchanged after the HS diet, although it significantly reduced after the LS diet. Twenty-four hour urinary sodium was increased, and plasma renin activity and plasma aldosterone levels were decreased after the HS diet. The HS diet significantly impaired PORH and

  4. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    International Nuclear Information System (INIS)

    Rousseau, Matthieu; Gaugler, Marie-Hélène; Rodallec, Audrey; Bonnaud, Stéphanie; Paris, François; Corre, Isabelle

    2011-01-01

    Highlights: ► We explore the role of RhoA in endothelial cell response to ionizing radiation. ► RhoA is rapidly activated by single high-dose of radiation. ► Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. ► Radiation-induced apoptosis does not require the RhoA/ROCK pathway. ► Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.

  5. Bicarbonate disruption of the pulmonary endothelial barrier via activation of endogenous soluble adenylyl cyclase, isoform 10.

    Science.gov (United States)

    Obiako, Boniface; Calchary, Wendy; Xu, Ningyong; Kunstadt, Ryan; Richardson, Bianca; Nix, Jessica; Sayner, Sarah L

    2013-07-15

    It is becoming increasingly apparent that cAMP signals within the pulmonary endothelium are highly compartmentalized, and this compartmentalization is critical to maintaining endothelial barrier integrity. Studies demonstrate that the exogenous soluble bacterial toxin, ExoY, and heterologous expression of the forskolin-stimulated soluble mammalian adenylyl cyclase (AC) chimera, sACI/II, elevate cytosolic cAMP and disrupt the pulmonary microvascular endothelial barrier. The barrier-disruptive effects of cytosolic cAMP generated by exogenous soluble ACs are in contrast to the barrier-protective effects of subplasma membrane cAMP generated by transmembrane AC, which strengthens endothelial barrier integrity. Endogenous soluble AC isoform 10 (AC10 or commonly known as sAC) lacks transmembrane domains and localizes within the cytosolic compartment. AC10 is uniquely activated by bicarbonate to generate cytosolic cAMP, yet its role in regulation of endothelial barrier integrity has not been addressed. Here we demonstrate that, within the pulmonary circulation, AC10 is expressed in pulmonary microvascular endothelial cells (PMVECs) and pulmonary artery endothelial cells (PAECs), yet expression in PAECs is lower. Furthermore, pulmonary endothelial cells selectively express bicarbonate cotransporters. While extracellular bicarbonate generates a phosphodiesterase 4-sensitive cAMP pool in PMVECs, no such cAMP response is detected in PAECs. Finally, addition of extracellular bicarbonate decreases resistance across the PMVEC monolayer and increases the filtration coefficient in the isolated perfused lung above osmolality controls. Collectively, these findings suggest that PMVECs have a bicarbonate-sensitive cytosolic cAMP pool that disrupts endothelial barrier integrity. These studies could provide an alternative mechanism for the controversial effects of bicarbonate correction of acidosis of acute respiratory distress syndrome patients.

  6. Disruption of microvascular flow-patterns in Alzheimer's disease correlates with neurodegeneration and cognitive decline

    DEFF Research Database (Denmark)

    Nielsen, Rune Bæksager; Egefjord, Lærke; Eskildsen, Simon Fristed

    BACKGROUND: The capillary dysfunction hypothesis of Alzheimer’s disease (AD) proposes that changes in capillary morphology and function disrupts microvascular flow-patterns, consequently, limiting oxygen delivery, causing tissue-hypoxia and neurodegeneration. Capillary dysfunction is characterized...... and neurodegeneration in AD. METHOD: 24 patients diagnosed with AD were assessed at inclusion and after six months. Using perfusion magnetic resonance imaging (MRI), we estimated CTH, flow-normalized CTH termed relative transit time heterogeneity (RTH), OEFmax and relative cerebral blood flow (rCBF). Neurodegeneration...... by elevated capillary transit time heterogeneity (CTH) and accompanying raised maximum oxygen extraction fraction (OEFmax), which theoretically reflects weakened tissue oxygen-tension. AIM: We tested whether the severity of CTH and the level of OEFmax correlated with the severity of cognitive symptoms...

  7. Histamine Induces Vascular Hyperpermeability by Increasing Blood Flow and Endothelial Barrier Disruption In Vivo

    Science.gov (United States)

    Ashina, Kohei; Tsubosaka, Yoshiki; Nakamura, Tatsuro; Omori, Keisuke; Kobayashi, Koji; Hori, Masatoshi; Ozaki, Hiroshi; Murata, Takahisa

    2015-01-01

    Histamine is a mediator of allergic inflammation released mainly from mast cells. Although histamine strongly increases vascular permeability, its precise mechanism under in vivo situation remains unknown. We here attempted to reveal how histamine induces vascular hyperpermeability focusing on the key regulators of vascular permeability, blood flow and endothelial barrier. Degranulation of mast cells by antigen-stimulation or histamine treatment induced vascular hyperpermeability and tissue swelling in mouse ears. These were abolished by histamine H1 receptor antagonism. Intravital imaging showed that histamine dilated vasculature, increased blood flow, while it induced hyperpermeability in venula. Whole-mount staining showed that histamine disrupted endothelial barrier formation of venula indicated by changes in vascular endothelial cadherin (VE-cadherin) localization at endothelial cell junction. Inhibition of nitric oxide synthesis (NOS) by L-NAME or vasoconstriction by phenylephrine strongly inhibited the histamine-induced blood flow increase and hyperpermeability without changing the VE-cadherin localization. In vitro, measurements of trans-endothelial electrical resistance of human dermal microvascular endothelial cells (HDMECs) showed that histamine disrupted endothelial barrier. Inhibition of protein kinase C (PKC) or Rho-associated protein kinase (ROCK), NOS attenuated the histamine-induced barrier disruption. These observations suggested that histamine increases vascular permeability mainly by nitric oxide (NO)-dependent vascular dilation and subsequent blood flow increase and maybe partially by PKC/ROCK/NO-dependent endothelial barrier disruption. PMID:26158531

  8. IL-17A potentiates TNFα-induced secretion from human endothelial cells and alters barrier functions controlling neutrophils rights of passage

    DEFF Research Database (Denmark)

    Bosteen, Markus H; Tritsaris, Katerina; Hansen, Anker J

    2014-01-01

    Interleukin-17A (IL-17A) is an important pro-inflammatory cytokine that regulates leukocyte mobilization and recruitment. To better understand how IL-17A controls leukocyte trafficking across capillaries in the peripheral blood circulation, we used primary human dermal microvascular endothelial...

  9. Striated muscle microvascular response to silver implants: A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Hansis, M; Arens, S; Menger, M D; Vollmar, B

    2000-02-01

    Local microvascular perfusion is the primary line of defense of tissue against microorganisms and plays a considerable role in reparative processes. The impairment of the microcirculation by a biomaterial may therefore have profound consequences. Silver is known to have excellent antimicrobial activity and, although regional and systemic toxic effects have been described, silver is regularly discussed as an implant material in bone surgery. Because little is known about the influence of silver implants on the adjacent host tissue microvasculature, we studied in vivo nutritive perfusion and leukocytic response, and compared these results with those of the conventionally used materials titanium and stainless steel. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, the implantation of a commercially pure silver sample led to a distinct and persistent activation of leukocytes combined with a marked disruption of the microvascular endothelial integrity, massive leukocyte extravasation, and considerable venular dilation. Whereas animals with stainless-steel implants showed a moderate increase in these parameters with a tendency to recuperate, titanium implants caused only a transient increase of leukocyte-endothelial cell interaction within the first 120 min and no significant change in macromolecular leakage, leukocyte extravasation and venular diameter. After 3 days, five of six preparations with silver samples showed severe inflammation and massive edema. Thus, the use of silver as an implant material should be critically judged despite its bactericidal properties. The implant material titanium seems to be well tolerated by the local vascular system and currently represents the golden standard. Copyright 2000 John Wiley & Sons, Inc.

  10. Hemorrhagic transformation and cerebral edema in acute ischemic stroke: Link to cerebral autoregulation.

    Science.gov (United States)

    Castro, Pedro; Azevedo, Elsa; Serrador, Jorge; Rocha, Isabel; Sorond, Farzaneh

    2017-01-15

    Hemorrhagic transformation and cerebral edema are feared complications of acute ischemic stroke but mechanisms are poorly understood and reliable early markers are lacking. Early assessment of cerebrovascular hemodynamics may advance our knowledge in both areas. We examined the relationship between dynamic cerebral autoregulation (CA) in the early hours post ischemia, and the risk of developing hemorrhagic transformation and cerebral edema at 24h post stroke METHODS: We prospectively enrolled 46 patients from our center with acute ischemic stroke in the middle cerebral artery territory. Cerebrovascular resistance index was calculated. Dynamic CA was assessed by transfer function analysis (coherence, phase and gain) of the spontaneous blood flow velocity and blood pressure oscillations. Infarct volume, hemorrhagic transformation, cerebral edema, and white matter changes were collected from computed tomography performed at presentation and 24h. At admission, phase was lower (worse CA) in patients with hemorrhagic transformation [6.6±30 versus 45±38°; adjusted odds ratio 0.95 (95% confidence internal 0.94-0.98), p=0.023] and with cerebral edema [6.6±30 versus 45±38°, adjusted odds ratio 0.96 (0.92-0.999), p=0.044]. Progression to edema was associated with lower cerebrovascular resistance (1.4±0.2 versus 2.3±1.5mmHg/cm/s, p=0.033) and increased cerebral blood flow velocity (51±25 versus 42±17cm/s, p=0.033) at presentation. All hemodynamic differences resolved at 3months CONCLUSIONS: Less effective CA in the early hour post ischemic stroke is associated with increased risk of hemorrhagic transformation and cerebral edema, possibly reflecting breakthrough hyperperfusion and microvascular injury. Early assessment of dynamic CA could be useful in identifying individuals at risk for these complications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice.

    Science.gov (United States)

    Steven, Sebastian; Jurk, Kerstin; Kopp, Maximilian; Kröller-Schön, Swenja; Mikhed, Yuliya; Schwierczek, Kathrin; Roohani, Siyer; Kashani, Fatemeh; Oelze, Matthias; Klein, Thomas; Tokalov, Sergey; Danckwardt, Sven; Strand, Susanne; Wenzel, Philip; Münzel, Thomas; Daiber, Andreas

    2017-06-01

    Excessive inflammation in sepsis causes microvascular thrombosis and thrombocytopenia associated with organ dysfunction and high mortality. The present studies aimed to investigate whether inhibition of dipeptidyl peptidase-4 (DPP-4) and supplementation with glucagon-like peptide-1 (GLP-1) receptor agonists improved endotoxaemia-associated microvascular thrombosis via immunomodulatory effects. Endotoxaemia was induced in C57BL/6J mice by a single injection of LPS (17.5 mg kg -1 for survival and 10 mg kg -1 for all other studies). For survival studies, treatment was started 6 h after LPS injection. For all other studies, drugs were injected 48 h before LPS treatment. Mice treated with LPS alone showed severe thrombocytopenia, microvascular thrombosis in the pulmonary circulation (fluorescence imaging), increased LDH activity, endothelial dysfunction and increased markers of inflammation in aorta and whole blood (leukocyte-dependent oxidative burst, nitrosyl-iron haemoglobin, a marker of nitrosative stress, and expression of inducible NOS). Treatment with the DPP-4 inhibitor linagliptin or the GLP-1 receptor agonist liraglutide, as well as genetic deletion of DPP-4 (DPP4 -/- mice) improved all these parameters. In GLP-1 receptor-deficient mice, both linagliptin and liraglutide lost their beneficial effects and improvement of prognosis. Incubation of platelets and cultured monocytes (containing GLP-1 receptor protein) with GLP-1 receptor agonists inhibited the monocytic oxidative burst and platelet activation, with a GLP-1 receptor-dependent elevation of cAMP levels and PKA activation. GLP-1 receptor activation in platelets by linagliptin and liraglutide strongly attenuated endotoxaemia-induced microvascular thrombosis and mortality by a cAMP/PKA-dependent mechanism, preventing systemic inflammation, vascular dysfunction and end organ damage. This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other

  12. Cerebral Hypoxia

    Science.gov (United States)

    ... off. When hypoxia lasts for longer periods of time, it can cause coma, seizures, and even brain death. In brain death, there is no measurable activity in the brain, although cardiovascular function is preserved. Life support is required for respiration. × Definition Cerebral hypoxia ...

  13. MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt.

    Science.gov (United States)

    Xi, Tianyang; Jin, Feng; Zhu, Ying; Wang, Jialu; Tang, Ling; Wang, Yanzhe; Liebeskind, David S; He, Zhiyi

    2017-12-09

    MiR-126, a microRNA implicated in blood vessel integrity, angiogenesis and vascular inflammation, is markedly decreased in the sera of patients with intracerebral hemorrhage (ICH). The current study aims to evaluate the potential therapeutic effect of miR-126-3p on brain injuries in a rat model of collagenase-induced ICH. Intracerebroventricular administration of a miR-126-3p mimic significantly alleviated behavioral defects 24 h after ICH, as examined by paw placement and corner tests. ICH led to increased blood-brain barrier (BBB) permeability and cerebral edema, both of which were attenuated by miR-126-3p mimic. Treatment with miR-126-3p mimic reduced the numbers of myeloperoxidase (MPO)-positive, OX42-positive, Fluoro Jade B (FJB)-positive and NEUN/TUNEL double-positive cells around the hematoma, implying that miR-126-3p inhibited neutrophil infiltration, microglial activation and neuronal apoptosis following hemorrhage. In addition, miR-126-3p mimic suppressed the upregulation of phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) in the perihematomal area and maintained the activation of Akt. Furthermore, in vitro assays confirmed upregulation of PIK3R2 upon knockdown of miR-126-3p in rat brain microvascular endothelial cells (BMECs), and silencing of miR-126-3p resulted in impaired BMEC barrier permeability and reversed vascular endothelial growth factor (VEGF)- and angiopoietin-1 (Ang-1)-induced activation of Akt and inhibition of BMEC apoptosis. In summary, our results suggest that exogenous miR-126-3p may alleviate BBB disruption, cerebral edema and neuronal injury following ICH by targeting PIK3R2 and the Akt signaling pathway in brain vascular endothelium. Copyright © 2017. Published by Elsevier Inc.

  14. Treatment strategies in coronary microvascular dysfunction

    DEFF Research Database (Denmark)

    Suhrs, Hannah E; Michelsen, Marie M; Prescott, Eva

    2017-01-01

    . No restrictions were made regarding the study design (randomized, placebo-controlled/ randomized with active comparators/ non-randomized with or without a control group), the cardiac condition studied or the coronary microvascular function at baseline. An electronic database search yielded 4,485 records of which...... 80 studies met our inclusion criteria. Included studies were sorted according to intervention and study design. Studies were small and heterogeneous in methodology and only few were placebo controlled. Although some treatments looked promising, we found that no specific treatment was sufficiently...... well-documented to be recommended in any patient groups. There is a need for larger well-designed clinical trials and we suggest that future studies stratify study populations according to pathogenic mechanisms, thereby investigating whether an individualized treatment approach would be more successful...

  15. Mandibular reconstruction with composite microvascular tissue transfer

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.J. III; Wooden, W.A. (Emory Univ. School of Medicine, Atlanta, GA (USA))

    1990-10-01

    Microvascular free tissue transfer has provided a variety of methods of restoring vascularized bone and soft tissue to difficult defects created by tumor resection and trauma. Over 7 years, 26 patients have undergone 28 free flaps for mandibular reconstruction, 15 for primary squamous cell carcinoma of the floor of the mouth or tongue, 7 for recurrent tumor, and 6 for other reasons (lymphangioma (1), infection (1), gunshot wound (1), and osteoradionecrosis (3)). Primary reconstruction was performed in 19 cases and secondary in 9. All repairs were composite flaps including 12 scapula, 5 radial forearm, 3 fibula, 2 serratus, and 6 deep circumflex iliac artery. Mandibular defects included the symphysis alone (7), symphysis and body (5), symphysis-body-ramus condyle (2), body or ramus (13), and bilateral body (1). Fourteen patients had received prior radiotherapy to adjuvant or curative doses. Eight received postoperative radiotherapy. All patients had initially successful vascularized reconstruction by clinical examination (28) and positive radionuclide scan (22 of 22). Bony stability was achieved in 25 of 26 patients and oral continence in 24 of 26. One complete flap loss occurred at 14 days. Complications of some degree developed in 22 patients including partial skin necrosis (3), orocutaneous fistula (3), plate exposure (1), donor site infection (3), fracture of reconstruction (1), and fracture of the radius (1). Microvascular transfer of bone and soft tissue allows a reliable reconstruction--despite previous radiotherapy, infection, foreign body, or surgery--in almost every situation in which mandible and soft tissue are absent. Bony union, a healed wound, and reasonable function and appearance are likely despite early fistula, skin loss, or metal plate or bone exposure.

  16. Cerebral and extracerebral vasoreactivity in symptomatic lacunar stroke patients: a case-control study.

    Science.gov (United States)

    Deplanque, Dominique; Lavallee, Philippa C; Labreuche, Julien; Gongora-Rivera, Fernando; Jaramillo, Arturo; Brenner, David; Abboud, Halim; Klein, Isabelle F; Touboul, Pierre-Jean; Vicaut, Eric; Amarenco, Pierre

    2013-08-01

    Whether cerebral artery endothelial dysfunction is a key factor of symptomatic lacunar stroke and cerebral small vessel disease remains unclear. Cerebral and extracerebral vasoreactivity were measured in 81 patients with recent symptomatic lacunar stroke and in 81 control subjects matched for main vascular risk factors. Cerebral vasoreactivity and carotid endothelial-dependent vasodilation were measured after five-minutes of carbon dioxide-induced hypercapnia. Brachial endothelial-dependent vasodilation was assessed after hyperemia induced by deflating a cuff around the forearm previously inflated to 200 mmHg for four-minutes. Carotid and brachial endothelial-independent vasodilation were measured five-minutes after administration of sublingual nitroglycerin 300 μg. Brain magnetic resonance imaging were analyzed in lacunar stroke patients. One-month after stroke onset, patients had more severely impaired cerebral vasoreactivitys than matched controls (mean ± standard deviation, 14·4 ± 12·1% vs. 19·4 ± 17·4%; P = 0·049). Severe alterations of both carotid and brachial endothelial-dependent and at a lesser degree of carotid and brachial endothelial-independent vasodilation were observed in both groups. After adjustment for confounders, subjects with a cerebral vasoreactivity value in the two lower tertiles (≤19·6%) were more likely to have had a symptomatic lacunar stroke (adjusted odds ratio, 3·78; 95% confidence interval, 1·42 to 10·08; P = 0·008). Only alteration of brachial endothelial-independent vasodilation correlated with parenchymal abnormalities, namely microbleeds and leukoaraiosis. While abnormalities in extracerebral vasoreactivity seem related to vascular risk factors, the severity of endothelial dysfunction in cerebral arteries may be determinant in the occurrence of symptomatic lacunar stroke in patients with small vessel disease. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke

  17. Cerebral effects of commonly used vasopressor-inotropes: a study in newborn piglets.

    Directory of Open Access Journals (Sweden)

    Gitte H Hahn

    Full Text Available Despite widespread use in sick infants, it is still debated whether vasopressor-inotropes have direct cerebral effects that might affect neurological outcome. We aimed to test direct cerebrovascular effects of three commonly used vasopressor-inotropes (adrenaline, dopamine and noradrenaline by comparing the responses to those of nonpharmacologically induced increases in blood pressure. We also searched for reasons for a mismatch between the response in perfusion and oxygenation.Twenty-four piglets had long and short infusions of the three vasopressor-inotropes titrated to raise mean arterial blood pressure (MAP 10 mmHg in random order. Nonpharmacological increases in MAP were induced by inflation of a balloon in the descending aorta. We measured cerebral oxygenation (near-infrared spectroscopy, perfusion (laser-Doppler, oxygen consumption (co-oximetry of arterial and superior sagittal sinus blood, and microvascular heterogeneity (side stream dark field video microscopy.Vasopressor-inotropes increased cerebral oxygenation significantly less (p≤0.01 compared to non-pharmacological MAP increases, whereas perfusion was similar. Furthermore, cerebral total hemoglobin concentration increased significantly less during vasopressor-inotrope infusions (p = 0.001. These physiologic responses were identical between the three vasopressor-inotropes (p>0.05. Furthermore, they induced a mild, although insignificant increase in cerebral metabolism and microvascular heterogeneity (p>0.05. Removal of the scalp tissue did not influence the mismatch (p>0.05.We demonstrated a moderate vasopressor-inotrope induced mismatch between cerebral perfusion and oxygenation. Scalp removal did not affect this mismatch, why vasopressor-inotropes appear to have direct cerebral actions. The statistically nonsignificant increases in cerebral metabolism and/or microvascular heterogeneity may explain the mismatch. Alternatively, it may simply reflect a vasopressor

  18. Microvascular brain pathology on high resolution MRI

    NARCIS (Netherlands)

    Veluw, S.J. van

    2015-01-01

    Cerebral small vessel disease (SVD) is a common finding in the aging human brain and is associated with stroke, cognitive decline, and dementia. On autopsy, SVD encompasses pathological processes affecting small arteries and arterioles. Magnetic resonance imaging (MRI) detects the consequences of

  19. Pulmonary endothelial cell activation during experimental acute kidney injury.

    Science.gov (United States)

    Feltes, Carolyn M; Hassoun, Heitham T; Lie, Mihaela L; Cheadle, Chris; Rabb, Hamid

    2011-08-01

    Acute kidney injury (AKI) leads to increased lung microvascular permeability, leukocyte infiltration, and upregulation of soluble inflammatory proteins in rodents. Most work investigating connections between AKI and pulmonary dysfunction, however, has focused on characterizing whole lung tissue changes associated with AKI. Studies at the cellular level are essential to understanding the molecular basis of lung changes during AKI. Given that the pulmonary microvascular barrier is functionally abnormal during AKI, we hypothesized that AKI induces a specific proinflammatory and proapoptotic lung endothelial cell (EC) response. Four and 24 h after kidney ischemia/reperfusion injury or bilateral nephrectomy, murine pulmonary ECs were isolated via tissue digestion followed by magnetic bead sorting. Purified lung ECs were analyzed for changes in mRNA expression using real-time SuperArray polymerase chain reaction analysis of genes related to EC function. In parallel experiments, confluent rat pulmonary microvascular ECs were treated with AKI or control serum to evaluate functional cellular alterations. Immunocytochemistry and FACS analysis of Annexin V/propidium iodide staining were used to evaluate cytoskeletal changes and promotion of apoptosis. Isolated murine pulmonary ECs exhibited significant changes in the expression of gene products related to inflammation, vascular reactivity, and programmed cell death. Further experiments using an in vitro rat pulmonary microvascular EC system revealed that AKI serum induced functional cellular changes related to apoptosis, including structural actin alterations and phosphatidylserine translocation. Analysis and segregation of both upregulated and downregulated genes into functional roles suggest that these transcriptional events likely participate in the transition to an activated proinflammatory and proapoptotic EC phenotype during AKI. Further mechanistic analysis of EC-specific events in the lung during AKI might reveal

  20. Targeting Pulmonary Endothelial Hemoglobin α Improves Nitric Oxide Signaling and Reverses Pulmonary Artery Endothelial Dysfunction.

    Science.gov (United States)

    Alvarez, Roger A; Miller, Megan P; Hahn, Scott A; Galley, Joseph C; Bauer, Eileen; Bachman, Timothy; Hu, Jian; Sembrat, John; Goncharov, Dmitry; Mora, Ana L; Rojas, Mauricio; Goncharova, Elena; Straub, Adam C

    2017-12-01

    Pulmonary hypertension is characterized by pulmonary endothelial dysfunction. Previous work showed that systemic artery endothelial cells (ECs) express hemoglobin (Hb) α to control nitric oxide (NO) diffusion, but the role of this system in pulmonary circulation has not been evaluated. We hypothesized that up-regulation of Hb α in pulmonary ECs contributes to NO depletion and pulmonary vascular dysfunction in pulmonary hypertension. Primary distal pulmonary arterial vascular smooth muscle cells, lung tissue sections from unused donor (control) and idiopathic pulmonary artery (PA) hypertension lungs, and rat and mouse models of SU5416/hypoxia-induced pulmonary hypertension (PH) were used. Immunohistochemical, immunocytochemical, and immunoblot analyses and transfection, infection, DNA synthesis, apoptosis, migration, cell count, and protein activity assays were performed in this study. Cocultures of human pulmonary microvascular ECs and distal pulmonary arterial vascular smooth muscle cells, lung tissue from control and pulmonary hypertensive lungs, and a mouse model of chronic hypoxia-induced PH were used. Immunohistochemical, immunoblot analyses, spectrophotometry, and blood vessel myography experiments were performed in this study. We find increased expression of Hb α in pulmonary endothelium from humans and mice with PH compared with controls. In addition, we show up-regulation of Hb α in human pulmonary ECs cocultured with PA smooth muscle cells in hypoxia. We treated pulmonary ECs with a Hb α mimetic peptide that disrupts the association of Hb α with endothelial NO synthase, and found that cells treated with the peptide exhibited increased NO signaling compared with a scrambled peptide. Myography experiments using pulmonary arteries from hypoxic mice show that the Hb α mimetic peptide enhanced vasodilation in response to acetylcholine. Our findings reveal that endothelial Hb α functions as an endogenous scavenger of NO in the pulmonary endothelium

  1. Fingolimod (FTY720) Reduces Cortical Infarction and Neurological Deficits During Ischemic Stroke Through Potential Maintenance of Microvascular Patency.

    Science.gov (United States)

    Schuhmann, Michael K; Krstic, Milos; Kleinschnitz, Christoph; Fluri, Felix

    2016-01-01

    Fingolimod (FTY720) reduces infarct volume and improves neurological deficits in different rodent stroke models by modulating inflammatory and immune processes. However, studies on FTY720 regarding its non-immunological efficacy on ischemic cerebral tissue are sparse. Here we investigated whether FTY720 has cytoprotective and restorative properties following ischemic stroke in mice. Male mice received FTY720 (1mg/kg) or a vehicle solution intraperitoneally immediately prior to transient middle cerebral artery occlusion (tMCAO; 30 min.) and 48 hours thereafter. Infarct volume was determined on T2-weighted magnetic resonance images on day 1 and 7 after tMCAO. Motor function was assessed by the ladder rung walking test using a foot fault score. Specific immunostainings were performed to quantify neuronal density, astrocytic reactivity, microvascular density and expression of synaptophysin in the cortical perilesional area on consecutive brain slices. The amount of brain-derived neurotrophic factor (BDNF) was examined using ELISA analyses. FTY720 treatment significantly reduced infarct volumes and motor deficits compared to controls. Neuronal survival, astrogliosis as well as synaptogenesis and BDNF expression in the penumbra of the infarcted cortex did not significantly differ between the treatment groups. Taken together, our data support the hypothesis that the key mode of FTY720 action in stroke is the reduction of microvascular thrombosis and not a direct effect at the neurovascular unit (NVU).

  2. Critical cerebral perfusion pressure at high intracranial pressure measured by induced cerebrovascular and intracranial pressure reactivity.

    Science.gov (United States)

    Bragin, Denis E; Statom, Gloria L; Yonas, Howard; Dai, Xingping; Nemoto, Edwin M

    2014-12-01

    The lower limit of cerebral blood flow autoregulation is the critical cerebral perfusion pressure at which cerebral blood flow begins to fall. It is important that cerebral perfusion pressure be maintained above this level to ensure adequate cerebral blood flow, especially in patients with high intracranial pressure. However, the critical cerebral perfusion pressure of 50 mm Hg, obtained by decreasing mean arterial pressure, differs from the value of 30 mm Hg, obtained by increasing intracranial pressure, which we previously showed was due to microvascular shunt flow maintenance of a falsely high cerebral blood flow. The present study shows that the critical cerebral perfusion pressure, measured by increasing intracranial pressure to decrease cerebral perfusion pressure, is inaccurate but accurately determined by dopamine-induced dynamic intracranial pressure reactivity and cerebrovascular reactivity. Cerebral perfusion pressure was decreased either by increasing intracranial pressure or decreasing mean arterial pressure and the critical cerebral perfusion pressure by both methods compared. Cortical Doppler flux, intracranial pressure, and mean arterial pressure were monitored throughout the study. At each cerebral perfusion pressure, we measured microvascular RBC flow velocity, blood-brain barrier integrity (transcapillary dye extravasation), and tissue oxygenation (reduced nicotinamide adenine dinucleotide) in the cerebral cortex of rats using in vivo two-photon laser scanning microscopy. University laboratory. Male Sprague-Dawley rats. At each cerebral perfusion pressure, dopamine-induced arterial pressure transients (~10 mm Hg, ~45 s duration) were used to measure induced intracranial pressure reactivity (Δ intracranial pressure/Δ mean arterial pressure) and induced cerebrovascular reactivity (Δ cerebral blood flow/Δ mean arterial pressure). At a normal cerebral perfusion pressure of 70 mm Hg, 10 mm Hg mean arterial pressure pulses had no effect on

  3. Diet and Endothelial Function

    Directory of Open Access Journals (Sweden)

    ADA M CUEVAS

    2004-01-01

    Full Text Available Endothelial dysfunction is one of the earliest events in atherogenesis. A consequence of endothelial damage is a lower availability of nitric oxide (NO, the most potent endogenous vasodilator. NO inhibits platelet aggregation, smooth muscle cell proliferation and adhesion of monocytes to endothelial cells. Endothelial dysfunction is present in patients with cardiovascular disease and/or coronary risk factors, such as hypertension, dyslipidemia, diabetes, smoking or hyperhomocysteinemia. At present, soluble markers and high resolution ultrasound of the brachial artery, have provided simple tools for the study of endothelial function and the effects of several interventions. It has been demonstrated that dietary factors may induce significant changes on vascular reactivity. Nutrients, such as fish oil, antioxidants, L-arginine, folic acid and soy protein have shown an improvement in endothelial function that can mediate, at least partially, the cardioprotective effects of these substances. Attention has been focused on dietary patterns in populations with lower prevalence of cardiovascular disease. There is some evidence suggesting that Mediterranean diet characterized by high consumption of vegetables, fish, olive oil and moderate wine consumption may have a positive effect on endothelial function. These results give us evidence on the significant role of diet on endothelial function and its impact on the pathogenesis of atherosclerosis

  4. Effect of brief secondhand smoke exposure on endothelial function and circulating markers of inflammation.

    Science.gov (United States)

    Bonetti, Piero O; Lardi, Elena; Geissmann, Christa; Kuhn, Max U; Brüesch, Hermann; Reinhart, Walter H

    2011-03-01

    In contrast to the well defined detrimental consequences of long-term secondhand smoke (SHS) exposure, little is known about the acute effects of passive smoking on endothelial function and inflammation. The aim of the present study was to assess the acute effects of short-term SHS exposure on endothelial function and circulating markers of inflammation. Peripheral microvascular endothelial function assessed by reactive hyperemia peripheral arterial tonometry (RH-PAT) index, circulating markers of endothelial function (von Willebrand factor antigen, Thrombomodulin, E-selectin) and circulating inflammatory markers (high sensitivity C-reactive protein (hsCRP), Interleukin-6 (IL-6)) were measured in eighteen male, non-smoking volunteers before and 12h after a 1-h SHS exposure. Twelve hours after passive smoking, average RH-PAT index was significantly lower than before SHS exposure (1.54±0.49 vs 2.01±0.55 (mean±SD), p=0.01) indicating deterioration of peripheral microvascular endothelial function. von Willebrand factor antigen as a marker of endothelial activation was significantly increased after SHS exposure (93.0±25.5% vs 78.4±17.9%, p=0.03). Levels of Thrombomodulin, E-selectin, hsCRP, and IL-6 were unaffected by SHS exposure. Short-term SHS exposure leads to a measurable disturbance of endothelial function. However, 1h of passive smoking appears to be too short to elicit a significant inflammatory response. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer's disease and vascular dementia.

    Science.gov (United States)

    Thomas, Taya; Miners, Scott; Love, Seth

    2015-04-01

    Perfusion is reduced in the cerebral neocortex in Alzheimer's disease. We have explored some of the mechanisms, by measurement of perfusion-sensitive and disease-related proteins in post-mortem tissue from Alzheimer's disease, vascular dementia and age-matched control brains. To distinguish physiological from pathological reduction in perfusion (i.e. reduction exceeding the decline in metabolic demand), we measured the concentration of vascular endothelial growth factor (VEGF), a protein induced under conditions of tissue hypoxia through the actions of hypoxia-inducible factors, and the myelin associated glycoprotein to proteolipid protein 1 (MAG:PLP1) ratio, which declines in chronically hypoperfused brain tissue. To evaluate possible mechanisms of hypoperfusion, we also measured the levels of amyloid-β40, amyloid-β42, von Willebrand factor (VWF; a measure of microvascular density) and the potent vasoconstrictor endothelin 1 (EDN1); we assayed the activity of angiotensin I converting enzyme (ACE), which catalyses the production of another potent vasoconstrictor, angiotensin II; and we scored the severity of arteriolosclerotic small vessel disease and cerebral amyloid angiopathy, and determined the Braak tangle stage. VEGF was markedly increased in frontal and parahippocampal cortex in Alzheimer's disease but only slightly and not significantly in vascular dementia. In frontal cortex the MAG:PLP1 ratio was significantly reduced in Alzheimer's disease and even more so in vascular dementia. VEGF but not MAG:PLP1 increased with Alzheimer's disease severity, as measured by Braak tangle stage, and correlated with amyloid-β42 and amyloid-β42: amyloid-β40 but not amyloid-β40. Although MAG:PLP1 tended to be lowest in cortex from patients with severe small vessel disease or cerebral amyloid angiopathy, neither VEGF nor MAG:PLP1 correlated significantly with the severity of structural vascular pathology (small vessel disease, cerebral amyloid angiopathy or VWF

  6. Endothelial Semaphorin 7A Promotes Inflammation in Seawater Aspiration-Induced Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Minlong Zhang

    2014-10-01

    Full Text Available Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI. Although several studies have shown that Semaphorin 7A (SEMA7A promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague–Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  7. Endothelial Semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury.

    Science.gov (United States)

    Zhang, Minlong; Wang, Li; Dong, Mingqing; Li, Zhichao; Jin, Faguang

    2014-10-28

    Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have shown that Semaphorin 7A (SEMA7A) promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague-Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs) were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF)-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  8. UVB therapy decreases the adhesive interaction between peripheral blood mononuclear cells and dermal microvascular endothelium, and regulates the differential expression of CD54, VCAM-1, and E-selectin in psoriatic plaques

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.-P.; Harris, K.; Chin, Y.H. [Miami Univ., FL (United States). School of Medicine; Falanga, V.; Taylor, J.R. [Miami Univ., FL (United States). School of Medicine]|[Miami Veteran Affairs Medical Center, Miami, FL (United States)

    1996-01-01

    A dermal lymphocytic infiltrate is a characteristic feature of psoriasis, and may be involved in the pathogenesis of the disease. We have previously shown that specialized dermal microvascular endothelial cells (DMEC) in psoriatic lesions promote the selective adherence of the CD4 CD45Ro helper T-cell subset. In this study, we examined the adhesive interaction between peripheral blood mononuclear cells and psoriatic DMEC in patients treated with ultraviolet B light (UVB), and correlated the results with the expression and function of endothelial adhesion molecules on DMEC. (author).

  9. UVB therapy decreases the adhesive interaction between peripheral blood mononuclear cells and dermal microvascular endothelium, and regulates the differential expression of CD54, VCAM-1, and E-selectin in psoriatic plaques

    International Nuclear Information System (INIS)

    Cai, J.-P.; Harris, K.; Chin, Y.H.

    1996-01-01

    A dermal lymphocytic infiltrate is a characteristic feature of psoriasis, and may be involved in the pathogenesis of the disease. We have previously shown that specialized dermal microvascular endothelial cells (DMEC) in psoriatic lesions promote the selective adherence of the CD4 CD45Ro helper T-cell subset. In this study, we examined the adhesive interaction between peripheral blood mononuclear cells and psoriatic DMEC in patients treated with ultraviolet B light (UVB), and correlated the results with the expression and function of endothelial adhesion molecules on DMEC. (author)

  10. United Cerebral Palsy

    Science.gov (United States)

    ... your local affiliate Find your local affiliate United Cerebral Palsy United Cerebral Palsy (UCP) is a trusted resource for individuals with Cerebral Palsy and other disabilities and their networks. Individuals with ...

  11. LPS-mediated endothelial activation in pulmonary endothelial cells: role of Nox2-dependent IKK-β phosphorylation

    Science.gov (United States)

    Menden, Heather; Tate, Everett; Hogg, Neil

    2013-01-01

    Lipopolysaccharide (LPS)-mediated endothelial activation contributes to lung inflammation and alveolar remodeling seen in premature infants with bronchopulmonary dysplasia (BPD). The mechanisms underlying LPS-mediated oxidative stress and proinflammatory signaling in human pulmonary microvascular endothelial cells (HPMEC) remain unclear. We hypothesized that NADPH oxidase (Nox) mediates LPS-induced endothelial activation in HPMEC by regulating phosphorylation of Toll-like receptor (TLR) pathway proteins. LPS-induced expression of intercellular adhesion molecule 1 (ICAM-1) was associated with increased 2-OH-E+ (marker for superoxide formation) levels and was attenuated by apocynin and the Nox inhibitor, VAS2870. LPS triggered membrane translocation of p67phox, suggesting activation of Nox2. Silencing Nox2, but not Nox4, suppressed LPS-induced ICAM-1 expression in HPMEC. Immunoprecipitation studies showed that inhibitor of κ-B kinase-β (IKK-β) serine phosphorylation induced by LPS was inhibited by Nox2 silencing. We examined whether Nox2-dependent, LPS-mediated IKK-β phosphorylation was regulated by protein phosphatase 2A (PP2A) or TGF-β associated kinase-1 (TAK1) in HPMEC. LPS increased PP2A activity in HPMEC, and inhibition of PP2A did not alter LPS-mediated ICAM-1 expression but attenuated IKK-β phosphorylation. TAK1 inhibition decreased LPS-induced ICAM-1 expression in HPMEC, and Nox2 silencing attenuated LPS-mediated TAK1 phosphorylation (Thr184/187). We demonstrate that Nox2 regulates LPS-mediated endothelial activation in pulmonary endothelial cells by modulating phosphorylation of key kinases in the TLR signaling cascade. Our data support a novel mechanism by which Nox-dependent signaling regulates proinflammatory signaling in pulmonary endothelial cells. Inhibition of vascular Nox may potentially limit lung injury and alveolar remodeling caused by infections in BPD. PMID:23333803

  12. Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction

    Science.gov (United States)

    DelloStritto, Daniel J.; Connell, Patrick J.; Dick, Gregory M.; Fancher, Ibra S.; Klarich, Brittany; Fahmy, Joseph N.; Kang, Patrick T.; Chen, Yeong-Renn; Damron, Derek S.; Thodeti, Charles K.

    2016-01-01

    We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes. PMID:26907473

  13. Intravenous Injection of Clinical Grade Human MSCs After Experimental Stroke: Functional Benefit and Microvascular Effect.

    Science.gov (United States)

    Moisan, Anack; Favre, Isabelle; Rome, Claire; De Fraipont, Florence; Grillon, Emmanuelle; Coquery, Nicolas; Mathieu, Herv; Mayan, Virginie; Naegele, Bernadette; Hommel, Marc; Richard, Marie-Jeanne; Barbier, Emmanuel Luc; Remy, Chantal; Detante, Olivier

    2016-12-13

    Stroke is the leading cause of disability in adults. Many current clinical trials use intravenous (IV) administration of human bone marrow-derived mesenchymal stem cells (BM-MSCs). This autologous graft requires a delay for ex vivo expansion of cells. We followed microvascular effects and mechanisms of action involved after an IV injection of human BM-MSCs (hBM-MSCs) at a subacute phase of stroke. Rats underwent a transient middle cerebral artery occlusion (MCAo) or a surgery without occlusion (sham) at day 0 (D0). At D8, rats received an IV injection of 3 million hBM-MSCs or PBS-glutamine. In a longitudinal behavioral follow-up, we showed delayed somatosensory and cognitive benefits 4 to 7 weeks after hBM-MSC injection. In a separate longitudinal in vivo magnetic resonance imaging (MRI) study, we observed an enhanced vascular density in the ischemic area 2 and 3 weeks after hBM-MSC injection. Histology and quantitative polymerase chain reaction (qPCR) revealed an overexpression of angiogenic factors such as Ang1 and transforming growth factor-1 (TGF-1) at D16 in hBM-MSC-treated MCAo rats compared to PBS-treated MCAo rats. Altogether, delayed IV injection of hBM-MSCs provides functional benefits and increases cerebral angiogenesis in the stroke lesion via a release of endogenous angiogenic factors enhancing the stabilization of newborn vessels. Enhanced angiogenesis could therefore be a means of improving functional recovery after stroke.

  14. Hypothyroidism Is Associated With Coronary Endothelial Dysfunction in Women

    Science.gov (United States)

    Sara, Jaskanwal D; Zhang, Ming; Gharib, Hossein; Lerman, Lilach O; Lerman, Amir

    2015-01-01

    Background Hypothyroidism is associated with an increased risk of coronary artery disease, beyond that which can be explained by its association with conventional cardiovascular risk factors. Coronary endothelial dysfunction precedes atherosclerosis, has been linked to adverse cardiovascular events, and may account for some of the increased risk in patients with hypothyroidism. The aim of this study was to determine whether there is an association between epicardial and microvascular coronary endothelial dysfunction and hypothyroidism. Methods and Results In 1388 patients (mean age 50.5 [12.3] years, 34% male) presenting with stable chest pain to Mayo Clinic, Rochester, MN for diagnostic coronary angiography, and who were found to have nonobstructive coronary artery disease (hypothyroidism, defined as a documented history of hypothyroidism or a thyroid-stimulating hormone (TSH) >10.0 mU/mL, n=188, and euthyroidism, defined as an absence of a history of hypothyroidism in the clinical record and/or 0.3hypothyroidism had a significantly lower % Δ CBF Ach (48.26 [80.66] versus 64.58 [128.30]) compared to patients with euthyroidism, while the % Δ CAD Ach did not vary significantly between groups. After adjusting for covariates, females with hypothyroidism still had a significantly lower % Δ CBF Ach (estimated difference in % Δ CBF Ach [SE]: −16.79 [8.18]). Conclusions Hypothyroidism in women is associated with microvascular endothelial dysfunction, even after adjusting for confounders, and may explain some of the increased risk of cardiovascular disease in these patients. PMID:26224049

  15. Differential effects of hypoxic stress in alveolar epithelial cells and microvascular endothelial cells

    NARCIS (Netherlands)

    Signorelli, Sara; Jennings, Paul; Leonard, Martin O; Pfaller, Walter

    2010-01-01

    Under hypoxic conditions eukaryotic cells and tissues undergo adaptive responses involving glycolysis, angiogenesis, vasoconstriction and inflammation. The underlying molecular mechanisms are not yet fully elucidated and are most likely cell and tissue specific. In the lung, alveolar epithelial

  16. Pathways for insulin access to the brain: the role of the microvascular endothelial cell

    OpenAIRE

    Meijer, Rick I.; Gray, Sarah M.; Aylor, Kevin W.; Barrett, Eugene J.

    2016-01-01

    New understanding of the directional flow of subarachnoid cerebrospinal fluid (CSF) through the Virchow-Robin space (VRS) to brain parenchyma, coupled with the demonstration here of rapid, insulin receptor-dependent trapping of plasma insulin by the brain microvasculature, underscores the direct role of insulin's blood-brain barrier transit to insulin delivery to the brain.

  17. Gene expression profiles of glucose toxicity-exposed islet microvascular endothelial cells.

    Science.gov (United States)

    Liu, Mingming; Lu, Wenbao; Hou, Qunxing; Wang, Bing; Sheng, Youming; Wu, Qingbin; Li, Bingwei; Liu, Xueting; Zhang, Xiaoyan; Li, Ailing; Zhang, Honggang; Xiu, Ruijuan

    2018-03-25

    Islet microcirculation is mainly composed by IMECs. The aim of the study was to investigate the differences in gene expression profiles of IMECs upon glucose toxicity exposure and insulin treatment. IMECs were treated with 5.6 mmol L -1 glucose, 35 mmol L -1 glucose, and 35 mmol L -1 glucose plus 10 -8  mol L -1 insulin, respectively. Gene expression profiles were determined by microarray and verified by qPCR. GO terms and KEGG analysis were performed to assess the potential roles of differentially expressed genes. The interaction and expression tendency of differentially expressed genes were analyzed by Path-Net algorithm. Compared with glucose toxicity-exposed IMECs, 1574 mRNAs in control group and 2870 mRNAs in insulin-treated IMECs were identified with differential expression, respectively. GO and KEGG pathway analysis revealed that these genes conferred roles in regulation of apoptosis, proliferation, migration, adhesion, and metabolic process etc. Additionally, MAPK signaling pathway and apoptosis were the dominant nodes in Path-Net. IMECs survival and function pathways were significantly changed, and the expression tendency of genes from euglycemia and glucose toxicity exposure to insulin treatment was revealed and enriched in 7 patterns. Our study provides a microcirculatory framework for gene expression profiles of glucose toxicity-exposed IMECs. © 2018 John Wiley & Sons Ltd.

  18. Impaired microvascular reactivity and endothelial function in patients with Cushing's syndrome

    Czech Academy of Sciences Publication Activity Database

    Durovcová, V.; Prázný, M.; Ježková, J.; Horová, E.; Hána, V.; Kvasnička, J.; Pecen, Ladislav; Marek, J.; Škrha, J.; Kršek, M.

    2008-01-01

    Roč. 16, - (2008), P400 ISSN 1479-6848. [European Congress of Endocrinology. 03.05.2008-07.05.2008, Berlin] Institutional research plan: CEZ:AV0Z10300504 Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  19. Endothelial nitric oxide synthase: a potential therapeutic target for cerebrovascular diseases.

    Science.gov (United States)

    Zhu, Jinqiang; Song, Wanshan; Li, Lin; Fan, Xiang

    2016-03-22

    Endothelial nitric oxide (NO) is a significant signaling molecule that regulates cerebral blood flow (CBF), playing a pivotal role in the prevention and treatment of cerebrovascular diseases. However, achieving the expected therapeutic efficacy is difficult using direct administration of NO donors. Therefore, endothelial nitric oxide synthase (eNOS) becomes a potential therapeutic target for cerebrovascular diseases. This review summarizes the current evidence supporting the importance of CBF to cerebrovascular function, and the roles of NO and eNOS in CBF regulation.

  20. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia

    Science.gov (United States)

    Possomato-Vieira, José S.; Khalil, Raouf A.

    2016-01-01

    Preeclampsia is a pregnancy-related disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia. PMID:27451103

  1. Enterohemorrhagic Escherichia coli Hemolysin Employs Outer Membrane Vesicles to Target Mitochondria and Cause Endothelial and Epithelial Apoptosis

    Science.gov (United States)

    Kunsmann, Lisa; Greune, Lilo; Bauwens, Andreas; Zhang, Wenlan; Kuczius, Thorsten; Kim, Kwang Sik; Mellmann, Alexander; Schmidt, M. Alexander; Karch, Helge

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains cause diarrhea and hemolytic uremic syndrome resulting from toxin-mediated microvascular endothelial injury. EHEC hemolysin (EHEC-Hly), a member of the RTX (repeats-in-toxin) family, is an EHEC virulence factor of increasingly recognized importance. The toxin exists as free EHEC-Hly and as EHEC-Hly associated with outer membrane vesicles (OMVs) released by EHEC during growth. Whereas the free toxin is lytic towards human endothelium, the biological effects of the OMV-associated EHEC-Hly on microvascular endothelial and intestinal epithelial cells, which are the major targets during EHEC infection, are unknown. Using microscopic, biochemical, flow cytometry and functional analyses of human brain microvascular endothelial cells (HBMEC) and Caco-2 cells we demonstrate that OMV-associated EHEC-Hly does not lyse the target cells but triggers their apoptosis. The OMV-associated toxin is internalized by HBMEC and Caco-2 cells via dynamin-dependent endocytosis of OMVs and trafficked with OMVs into endo-lysosomal compartments. Upon endosome acidification and subsequent pH drop, EHEC-Hly is separated from OMVs, escapes from the lysosomes, most probably via its pore-forming activity, and targets mitochondria. This results in decrease of the mitochondrial transmembrane potential and translocation of cytochrome c to the cytosol, indicating EHEC-Hly-mediated permeabilization of the mitochondrial membranes. Subsequent activation of caspase-9 and caspase-3 leads to apoptotic cell death as evidenced by DNA fragmentation and chromatin condensation in the intoxicated cells. The ability of OMV-associated EHEC-Hly to trigger the mitochondrial apoptotic pathway in human microvascular endothelial and intestinal epithelial cells indicates a novel mechanism of EHEC-Hly involvement in the pathogenesis of EHEC diseases. The OMV-mediated intracellular delivery represents a newly recognized mechanism for a bacterial toxin to enter host cells in

  2. GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis.

    Science.gov (United States)

    Géraud, Cyrill; Koch, Philipp-Sebastian; Zierow, Johanna; Klapproth, Kay; Busch, Katrin; Olsavszky, Victor; Leibing, Thomas; Demory, Alexandra; Ulbrich, Friederike; Diett, Miriam; Singh, Sandhya; Sticht, Carsten; Breitkopf-Heinlein, Katja; Richter, Karsten; Karppinen, Sanna-Maria; Pihlajaniemi, Taina; Arnold, Bernd; Rodewald, Hans-Reimer; Augustin, Hellmut G; Schledzewski, Kai; Goerdt, Sergij

    2017-03-01

    Microvascular endothelial cells (ECs) are increasingly recognized as organ-specific gatekeepers of their microenvironment. Microvascular ECs instruct neighboring cells in their organ-specific vascular niches through angiocrine factors, which include secreted growth factors (angiokines), extracellular matrix molecules, and transmembrane proteins. However, the molecular regulators that drive organ-specific microvascular transcriptional programs and thereby regulate angiodiversity are largely elusive. In contrast to other ECs, which form a continuous cell layer, liver sinusoidal ECs (LSECs) constitute discontinuous, permeable microvessels. Here, we have shown that the transcription factor GATA4 controls murine LSEC specification and function. LSEC-restricted deletion of Gata4 caused transformation of discontinuous liver sinusoids into continuous capillaries. Capillarization was characterized by ectopic basement membrane deposition, formation of a continuous EC layer, and increased expression of VE-cadherin. Correspondingly, ectopic expression of GATA4 in cultured continuous ECs mediated the downregulation of continuous EC-associated transcripts and upregulation of LSEC-associated genes. The switch from discontinuous LSECs to continuous ECs during embryogenesis caused liver hypoplasia, fibrosis, and impaired colonization by hematopoietic progenitor cells, resulting in anemia and embryonic lethality. Thus, GATA4 acts as master regulator of hepatic microvascular specification and acquisition of organ-specific vascular competence, which are indispensable for liver development. The data also establish an essential role of the hepatic microvasculature in embryonic hematopoiesis.

  3. Aging alters reactivity of microvascular resistance networks in mouse gluteus maximus muscle.

    Science.gov (United States)

    Sinkler, Shenghua Y; Segal, Steven S

    2014-09-15

    Aging occurs with enhanced sympathetic nerve activity and endothelial dysfunction; however, little is known of how successive branches of microvascular resistance networks are affected in vivo. We questioned whether vascular reactivity is altered differentially along resistance networks with advanced age. The left gluteus maximus muscle of anesthetized 4-mo-old and 24-mo-old male C57BL/6 mice (Young and Old, respectively) was exposed for intravital microscopy and superfused with physiological salt solution (3 ml/min; pH 7.4, 34°C). Spontaneous vasomotor tone increased progressively from proximal feed arteries (FA) and first-order (1A) arterioles through distal second-order (2A) and third-order (3A) arterioles and was ~15% greater in 2A and 3A of Old versus Young. Vasoconstriction during elevated superfusion Po2 increased with branch order and to a greater extent in Young. Peak constrictions to phenylephrine [α1 adrenoreceptor (α1AR) agonist] were similar for FA and 1A of both ages and ~20% greater for 2A and 3A of Young. Across arterioles (but not FA), constrictions to UK 14304 (α2AR agonist) were depressed ~30% in Old versus Young. Thus advanced age attenuated vasoconstriction to O2 throughout networks while blunting vasoconstriction to α1AR and α2AR activation in arterioles. With ACh, endothelium-dependent dilation (EDD) was ~20% greater in FA of Young yet was approximately twofold greater for 2A and 3A of Old. Sodium nitroprusside evoked maximal dilations similar to ACh. Thus, with advanced age, EDD was attenuated in FA while robust in distal arterioles having enhanced vasomotor tone. We conclude that advanced age differentially alters reactivity among branches of microvascular resistance networks. Copyright © 2014 the American Physiological Society.

  4. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  5. Microvascular response of striated muscle to metal debris. A comparative in vivo study with titanium and stainless steel.

    Science.gov (United States)

    Kraft, C N; Diedrich, O; Burian, B; Schmitt, O; Wimmer, M A

    2003-01-01

    Wear products of metal implants are known to induce biological events which may have profound consequences for the microcirculation of skeletal muscle. Using the skinfold chamber model and intravital microscopy we assessed microcirculatory parameters in skeletal muscle after confrontation with titanium and stainless-steel wear debris, comparing the results with those of bulk materials. Implantation of stainless-steel bulk and debris led to a distinct activation of leukocytes combined with a disruption of the microvascular endothelial integrity and massive leukocyte extravasation. While animals with bulk stainless steel showed a tendency to recuperation, stainless-steel wear debris induced such severe inflammation and massive oedema that the microcirculation broke down within 24 hours after implantation. Titanium bulk caused only a transient increase in leukocyte-endothelial cell interaction within the first 120 minutes and no significant change in macromolecular leakage, leukocyte extravasation or venular diameter. Titanium wear debris produced a markedly lower inflammatory reaction than stainless-steel bulk, indicating that a general benefit of bulk versus debris could not be claimed. Depending on its constituents, wear debris is capable of eliciting acute inflammation which may result in endothelial damage and subsequent failure of microperfusion. Our results indicate that not only the bulk properties of orthopaedic implants but also the microcirculatory implications of inevitable wear debris play a pivotal role in determining the biocompatibility of an implant.

  6. Value of microvascular surgery in academic oral and maxillofacial surgery.

    Science.gov (United States)

    Fattahi, Tirbod; Fernandes, Rui

    2013-01-01

    The specialty of oral and maxillofacial surgery has witnessed a large trend of inclusion of maxillofacial oncology and microvascular reconstructive surgery within its scope of practice in recent years. The purpose of this report is to describe the authors' experience with a very active oncologic and microvascular reconstructive surgical service within an academic oral and maxillofacial surgical program at a large university teaching hospital. The operative log from July 1, 2010, to June 30, 2011, of 325 operations devoted to head and neck oncology and reconstruction was examined. Thirty-nine patients (group A) received a pedicled flap for head and neck reconstruction. Sixty-three patients (group B) received a microvascular free tissue transfer for head and neck reconstruction. Financial records of 20 consecutive patients who underwent simultaneous ablative and reconstructive procedures in each group were then reviewed for total hospital charges, including direct (surgical fees) and indirect (hospital stay, operating room expenses, and ancillary services) charges, and length of stay. Total hospital charges and direct surgical fees, were higher for the microvascular reconstruction group (group B). Length of hospital stay was not statistically different between the two groups. Microvascular reconstructive surgery performed within an academic oral and maxillofacial surgical program has many financial and intangible benefits within a medical center. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Pilot study on microvascular anastomosis: performance and future educational prospects.

    Science.gov (United States)

    Berretti, G; Colletti, G; Parrinello, G; Iavarone, A; Vannucchi, P; Deganello, A

    2017-11-30

    The introduction of microvascular free flaps has revolutionised modern reconstructive surgery. Unfortunately, access to training opportunities at standardised training courses is limited and expensive. We designed a pilot study on microvascular anastomoses with the aim of verifying if a short course, easily reproducible, could transmit microvascular skills to participants; if the chosen pre-test was predictive of final performance; and if age could influence the outcome. A total of 30 participants (10 students, 10 residents and 10 surgeons) without any previous microvascular experience were instructed and tested during a single 3 to 5 hour course. The two microanastomoses evaluated were the first ever performed by each participant. More than the half of the cohort was able to produce both patent microanastomoses in less than 2 hours; two-thirds of the attempted microanastomoses were patent. The pretest predicted decent scores from poor performances with a sensitivity of 61.5%, specificity of 100%, positive predictive value of 100% and negative predictive value of 40%. Students and residents obtained significantly higher scores than surgeons. Since our course model is short, cost-effective and highly reproducible, it could be introduced and implemented anywhere as an educational prospect for preselecting young residents showing talent and natural predisposition and having ambitions towards microvascular reconstructive surgery. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale.

  8. Buyanghuanwu decoction promotes angiogenesis after cerebral ischemia/reperfusion injury: mechanisms of brain tissue repair

    Directory of Open Access Journals (Sweden)

    Zhen-qiang Zhang

    2016-01-01

    Full Text Available Buyanghuanwu decoction has been shown to protect against cerebral ischemia/reperfusion injury, but the underlying mechanisms remain unclear. In this study, rats were intragastrically given Buyanghuanwu decoction, 15 mL/kg, for 3 days. A rat model of cerebral ischemia/reperfusion injury was established by middle cerebral artery occlusion. In rats administered Buyanghuanwu decoction, infarct volume was reduced, serum vascular endothelial growth factor and integrin αvβ3 levels were increased, and brain tissue vascular endothelial growth factor and CD34 expression levels were increased compared with untreated animals. These effects of Buyanghuanwu decoction were partially suppressed by an angiogenesis inhibitor (administered through the lateral ventricle for 7 consecutive days. These data suggest that Buyanghuanwu decoction promotes angiogenesis, improves cerebral circulation, and enhances brain tissue repair after cerebral ischemia/reperfusion injury.

  9. Endothelial dysfunction and reduced heart rate variability in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elena Nikolaevna Smirnova

    2018-03-01

    Full Text Available According to experts of the World Health Organization (WHO, metabolic syndrome (MS can be considered as pandemy of the XXI century, because its prevalence among the population of developed countries is about 25-35%. In this study with the purpose of complex investigation of the autonomic nervous system and endothelial function we included 66 patients with MS between the ages of 25 and 61 (46.9±9.9 years. A comparison group of apparently healthy individuals (16 individuals, average age of 45.3±2.3 years; P>0.05 was studied. To evaluate the response of microvascular tone, we used the method of wavelet analysis of skin temperature oscillations during cooling of the limb. All patients underwent the study of heart rate variability. The levels of insulin, endothelin-1, and vascular endothelial growth factor were determined using enzyme immunoassay. Patients with MS had significant differences in all metabolic parameters. Our study showed that in the group of MS there is a decrease of the variability of heart rhythm compared with the healthy group. Conducting cold test revealed signs of endothelial dysfunction in the MS group, which was manifested by the decrease of the index of vasodilation in the endothelial and neurogenic frequency range. In the study group we determined the increase in biochemical markers of endothelial dysfunction, which correlated with parameters of vasodilation. Also, the presence of endothelial dysfunction significantly correlated with signs of reduction of the variability of the heart rhythm.

  10. Endothelial Alterations in Systemic Lupus Erythematosus and Rheumatoid Arthritis: Potential Effect of Monocyte Interaction

    Directory of Open Access Journals (Sweden)

    Laura Atehortúa

    2017-01-01

    Full Text Available Patients with systemic autoimmune diseases such as rheumatoid arthritis (RA and systemic lupus erythematosus (SLE are prone to develop atherosclerosis and cardiovascular diseases five times more often than the general population; this increase in frequency could be partially explained by an increase in the macrovasculature endothelial damage. In these autoimmune diseases, a microvascular endothelial injury has also been reported in different organs and tissues, especially in sites where ultrafiltration processes occur. Different components that are characteristic to the immunopathology of RA and SLE could be involved in the endothelial cell activation, permeability increase, functional alteration, and vascular injury. Circulating immune complexes (IC detected in SLE and RA have been proposed to participate in the endothelial injury. In the vascular environment, IC can generate different responses that could be mediated by monocytes, because these cells have patrolling and monitoring functions on the endothelium. However, with certain stimuli such as TLR ligands, the monocytes are retained in the lumen, releasing proinflammatory mediators that participate in the endothelial damage. This paper aims to review some aspects about the endothelial activation and dysfunction in the context of SLE and RA, as well as the potential role that monocytes apparently play in this process.

  11. Free and microvascular bone grafting in the irradiated dog mandible

    International Nuclear Information System (INIS)

    Altobelli, D.E.; Lorente, C.A.; Handren, J.H. Jr.; Young, J.; Donoff, R.B.; May, J.W. Jr.

    1987-01-01

    Microvascular and free rib grafts were placed in 4.5 cm defects in an edentate mandibular body defect 18 to 28 days after completion of 50 Gy of irradiation from a 60 Co source. The animals were sacrificed from two to forty weeks postoperatively and evaluated clinically, radiographically, and histologically. There was a marked difference in the alveolar mucosal viability with the two grafts. Mucosal dehiscence was not observed over any of the microvascular grafts, but was present in seven-eighths of the free grafts. Union of the microvascular bone graft to the host bone occurred within six weeks. In contrast, after six weeks the free graft was sequestered in all the animals. An unexpected finding with both types of graft was the marked subperiosteal bone formation. This bone appeared to be derived from the host bed, stabilizing and bridging the defects bilaterally. The results suggest that radiated periosteum may play an important role in osteogenesis

  12. Active cooling of microvascular composites for battery packaging

    Science.gov (United States)

    Pety, Stephen J.; Chia, Patrick X. L.; Carrington, Stephen M.; White, Scott R.

    2017-10-01

    Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m-2 heat flux below 40 °C.

  13. Attenuated cutaneous microvascular function in healthy young African Americans: Role of intradermal l-arginine supplementation.

    Science.gov (United States)

    Kim, Kiyoung; Hurr, Chansol; Patik, Jordan C; Matthew Brothers, R

    2018-02-03

    It has been established that endothelial function in conduit vessels is reduced in young African Americans (AA) relative to Caucasian Americans (CA). However, less is known regarding endothelial function in microvasculature of young AA. We hypothesized that microvascular function in response to local heating of skin is attenuated in young AA relative to age-matched CA due largely to the lack of NO bioavailability, which is in turn improved by intradermal l-arginine supplementation and/or inhibition of arginase. Nine AA and nine CA adults participated in this study. Participants were instrumented with four microdialysis membranes in the cutaneous vasculature of one forearm and were randomly assigned to receive 1) lactated Ringer's solution as a control site; 2) 20 mM NG-nitro-l-arginine (l-NAME) to inhibit NO synthase activity; 3) 10 mM l-arginine to local supplement l-arginine; or 4) a combination of 5.0 mM (S)-(2‑boronoethyl)-l-cysteine-HCL (BEC) and 5.0 mM Nω-hydroxy-nor-l-arginine (nor-NOHA) at a rate of 2.0 μl/min to locally inhibit arginase activity. Cutaneous vascular conductance (CVC) was calculated as red blood cell flux divided by mean arterial pressure. All CVC data were presented as a percentage of maximal CVC (%CVCmax) that was determined by maximal cutaneous vasodilation induced by 44 °C heating plus sodium nitroprusside administration. The response during the 42 °C local heating plateau was blunted in the AA at the control site (CA: 84 ± 12 vs. AA: 62 ± 6 vs. %CVCmax; P l-arginine site (Control: 62 ± 6 vs. l-arginine: 70 ± 18%CVCmax; P l-arginine, but not arginase inhibition, improves cutaneous microvascular responses to local heating in young AA relative to CA. Copyright © 2018. Published by Elsevier Inc.

  14. Protective effects of quercetin on rat pial microvascular changes during transient bilateral common carotid artery occlusion and reperfusion.

    Directory of Open Access Journals (Sweden)

    Dominga eLapi

    2012-03-01

    Full Text Available The aim of this study was to assess the in vivo effects of quercetin on pial microvascular responses during transient bilateral common carotid artery occlusion (BCCAO and reperfusion. Rat pial microcirculation was visualized by fluorescence microscopy through a closed cranial window. Pial arterioles were classified in five orders of branchings. Capillaries were assigned order 0, the smallest arterioles order 1 and the largest ones order 5. In ischemic rats, 30 min BCCAO and 60 min reperfusion caused arteriolar diameter decrease (by 14.5 ± 3.3% of baseline in order 2, microvascular leakage (0.47 ± 0.04 NGL: Normalized Grey Levels, leukocyte adhesion in venules (9 ± 2/100 µm venular length, v.l./30s and reduction of capillary perfusion (by 40 ± 7% of baseline. Moreover, at the end of BCCAO and reperfusion there was a significant increase in reactive oxygen species formation (ROS when compared with baseline. Quercetin highest dose determined dilation in all arteriolar orders (by 40 ± 4 % of baseline in order 2 and prevented microvascular permeability (0.15 ± 0.02 NGL, leukocyte adhesion (3 ± 1/100 µm v.l./30s as well as ROS formation, while capillary perfusion was protected. Inhibition of endothelial Nitric Oxide Synthase (NOS prior to quercetin reduced arteriolar dilation (order 2 diameter increase by 10.3 ± 2.5% of baseline and caused permeability increase (0.29 ± 0.03 NGL; inhibition of neuronal NOS or inducible NOS did not affect quercetin-induced effects. Inhibition of guanylyl cyclase prior to quercetin reversed the quercetin’s effects on pial arteriolar diameter and leakage. In conclusion, quercetin was able to protect pial microcirculation from ischemia-reperfusion damage inducing arteriolar dilation likely by nitric oxide release. Moreover, quercetin scavenger activity blunted reactive oxygen species formation preserving the blood-brain barrier integrity.

  15. Reduced microvascular density in non-ischemic myocardium of patients with recent non-ST-segment-elevation myocardial infarction.

    Science.gov (United States)

    Campbell, Duncan J; Somaratne, Jithendra B; Jenkins, Alicia J; Prior, David L; Yii, Michael; Kenny, James F; Newcomb, Andrew E; Kelly, Darren J; Black, Mary Jane

    2013-08-10

    Myocardial microvascular dysfunction has been implicated in the pathogenesis of myocardial infarction (MI). We tested the hypothesis that patients with MI have lower microvasculature density in myocardium remote from the site of infarction than patients with similar extent of coronary artery disease (CAD) without MI and examined the relationship between myocardial capillary length density and plasma levels of angiogenesis-related biomarkers. We analyzed biopsies from non-ischemic left ventricular (LV) myocardium and measured plasma levels of angiogenesis-related biomarkers in patients undergoing coronary artery bypass graft surgery, 57 without previous MI (no-MI) and 27 with recent non-ST-segment-elevation MI (NSTEMI). Comparison was made with biopsies from 31 aortic stenosis (AS) patients and 6 patients with "normal" LV without CAD. Myocardial microvascular density of NSTEMI patients was approximately half the density of no-MI patients, and similar to AS patients. Whereas the reduced microvascular density of AS patients was accounted for by their cardiomyocyte hypertrophy, this was not the case for NSTEMI patients, who had higher diffusion radius/cardiomyocyte width ratio than no-MI, "normal" LV, and AS patients. NSTEMI patients had lower plasma levels of carboxymethyl lysine and low molecular weight fluorophores, higher vascular endothelial growth factor (VEGF) receptor-1/VEGF-A ratio, and higher endostatin and hepatocyte growth factor levels than no-MI patients. Recent MI was associated with reduced microvasculature density in myocardium remote from the site of infarction and alteration in plasma levels of angiogenesis-related biomarkers. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Local heart irradiation of ApoE−/− mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis

    International Nuclear Information System (INIS)

    Gabriels, Karen; Hoving, Saske; Seemann, Ingar; Visser, Nils L.; Gijbels, Marion J.; Pol, Jeffrey F.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2012-01-01

    Background and purpose: Radiotherapy of thoracic and chest-wall tumors increases the long-term risk of radiation-induced heart disease, like a myocardial infarct. Cancer patients commonly have additional risk factors for cardiovascular disease, such as hypercholesterolemia. The goal of this study is to define the interaction of irradiation with such cardiovascular risk factors in radiation-induced damage to the heart and coronary arteries. Material and methods: Hypercholesterolemic and atherosclerosis-prone ApoE −/− mice received local heart irradiation with a single dose of 0, 2, 8 or 16 Gy. Histopathological changes, microvascular damage and functional alterations were assessed after 20 and 40 weeks. Results: Inflammatory cells were significantly increased in the left ventricular myocardium at 20 and 40 weeks after 8 and 16 Gy. Microvascular density decreased at both follow-up time-points after 8 and 16 Gy. Remaining vessels had decreased alkaline phosphatase activity (2–16 Gy) and increased von Willebrand Factor expression (16 Gy), indicative of endothelial cell damage. The endocardium was extensively damaged after 16 Gy, with foam cell accumulations at 20 weeks, and fibrosis and protein leakage at 40 weeks. Despite an accelerated coronary atherosclerotic lesion development at 20 weeks after 16 Gy, gated SPECT and ultrasound measurements showed only minor changes in functional cardiac parameters at 20 weeks. Conclusions: The combination of hypercholesterolemia and local cardiac irradiation induced an inflammatory response, microvascular and endocardial damage, and accelerated the development of coronary atherosclerosis. Despite these pronounced effects, cardiac function of ApoE −/− mice was maintained.

  17. Inflammation and the Neurovascular Unit in the Setting of Focal Cerebral Ischemia

    OpenAIRE

    del Zoppo, Gregory J.

    2008-01-01

    Responses to focal cerebral ischemia by neurons and adjacent microvessels are rapid, simultaneous, and topographically related. Recent observations indicate the simultaneous appearance of proteases by components of nearby microvessels that are also expressed by neurons in the ischemic territory, implying that the events could be coordinated. The structural relationship of neurons to their microvascular supply, the direct functional participation of glial cells, and the observation of a highly...

  18. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  19. C-terminal truncations in human 3'-5' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy

    NARCIS (Netherlands)

    Richards, Anna; van den Maagdenberg, Arn M. J. M.; Jen, Joanna C.; Kavanagh, David; Bertram, Paula; Spitzer, Dirk; Liszewski, M. Kathryn; Barilla-LaBarca, Maria-Louise; Terwindt, Gisela M.; Kasai, Yumi; McLellan, Mike; Grand, Mark Gilbert; Vanmolkot, Kaate R. J.; de Vries, Boukje; Wan, Jijun; Kane, Michael J.; Mamsa, Hafsa; Schäfer, Ruth; Stam, Anine H.; Haan, Joost; de Jong, Paulus T. V. M.; Storimans, Caroline W.; van Schooneveld, Mary J.; Oosterhuis, Jendo A.; Gschwendter, Andreas; Dichgans, Martin; Kotschet, Katya E.; Hodgkinson, Suzanne; Hardy, Todd A.; Delatycki, Martin B.; Hajj-Ali, Rula A.; Kothari, Parul H.; Nelson, Stanley F.; Frants, Rune R.; Baloh, Robert W.; Ferrari, Michel D.; Atkinson, John P.

    2007-01-01

    Autosomal dominant retinal vasculopathy with cerebral leukodystrophy is a microvascular endotheliopathy with middle-age onset. In nine families, we identified heterozygous C-terminal frameshift mutations in TREX1, which encodes a 3'-5' exonuclease. These truncated proteins retain exonuclease

  20. The Role of Endothelial Ca2+ Signaling in Neurovascular Coupling: A View from the Lumen

    Directory of Open Access Journals (Sweden)

    Germano Guerra

    2018-03-01

    Full Text Available Background: Neurovascular coupling (NVC is the mechanism whereby an increase in neuronal activity (NA leads to local elevation in cerebral blood flow (CBF to match the metabolic requirements of firing neurons. Following synaptic activity, an increase in neuronal and/or astrocyte Ca2+ concentration leads to the synthesis of multiple vasoactive messengers. Curiously, the role of endothelial Ca2+ signaling in NVC has been rather neglected, although endothelial cells are known to control the vascular tone in a Ca2+-dependent manner throughout peripheral vasculature. Methods: We analyzed the literature in search of the most recent updates on the potential role of endothelial Ca2+ signaling in NVC. Results: We found that several neurotransmitters (i.e., glutamate and acetylcholine and neuromodulators (e.g., ATP can induce dilation of cerebral vessels by inducing an increase in endothelial Ca2+ concentration. This, in turn, results in nitric oxide or prostaglandin E2 release or activate intermediate and small-conductance Ca2+-activated K+ channels, which are responsible for endothelial-dependent hyperpolarization (EDH. In addition, brain endothelial cells express multiple transient receptor potential (TRP channels (i.e., TRPC3, TRPV3, TRPV4, TRPA1, which induce vasodilation by activating EDH. Conclusions: It is possible to conclude that endothelial Ca2+ signaling is an emerging pathway in the control of NVC.

  1. The Role of Endothelial Ca2+ Signaling in Neurovascular Coupling: A View from the Lumen.

    Science.gov (United States)

    Guerra, Germano; Lucariello, Angela; Perna, Angelica; Botta, Laura; De Luca, Antonio; Moccia, Francesco

    2018-03-21

    Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity (NA) leads to local elevation in cerebral blood flow (CBF) to match the metabolic requirements of firing neurons. Following synaptic activity, an increase in neuronal and/or astrocyte Ca 2+ concentration leads to the synthesis of multiple vasoactive messengers. Curiously, the role of endothelial Ca 2+ signaling in NVC has been rather neglected, although endothelial cells are known to control the vascular tone in a Ca 2+ -dependent manner throughout peripheral vasculature. We analyzed the literature in search of the most recent updates on the potential role of endothelial Ca 2+ signaling in NVC. We found that several neurotransmitters (i.e., glutamate and acetylcholine) and neuromodulators (e.g., ATP) can induce dilation of cerebral vessels by inducing an increase in endothelial Ca 2+ concentration. This, in turn, results in nitric oxide or prostaglandin E2 release or activate intermediate and small-conductance Ca 2+ -activated K⁺ channels, which are responsible for endothelial-dependent hyperpolarization (EDH). In addition, brain endothelial cells express multiple transient receptor potential (TRP) channels (i.e., TRPC3, TRPV3, TRPV4, TRPA1), which induce vasodilation by activating EDH. It is possible to conclude that endothelial Ca 2+ signaling is an emerging pathway in the control of NVC.

  2. Impaired cerebral blood flow and oxygenation during exercise in type 2 diabetic patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Seifert, Thomas; Brassard, Patrice

    2015-01-01

    Endothelial vascular function and capacity to increase cardiac output during exercise are impaired in patients with type 2 diabetes (T2DM). We tested the hypothesis that the increase in cerebral blood flow (CBF) during exercise is also blunted and, therefore, that cerebral oxygenation becomes...... cerebral artery blood flow velocity. Cerebral oxygenation and metabolism were evaluated from the arterial-to-venous differences for oxygen, glucose, and lactate. Blood pressure was comparable during exercise between the two groups. However, the partial pressure of arterial carbon dioxide was lower...

  3. Evolution of endothelial keratoplasty.

    Science.gov (United States)

    Price, Francis W; Price, Marianne O

    2013-11-01

    Endothelial keratoplasty has evolved into a popular alternative to penetrating keratoplasty (PK) for the treatment of endothelial dysfunction. Although the earliest iterations were challenging and were not widely adopted, the iteration known as Descemet stripping endothelial keratoplasty (DSEK) has gained widespread acceptance. DSEK combines a simplified technique for stripping dysfunctional endothelium from the host cornea and microkeratome dissection of the donor tissue, a step now commonly completed in advance by eye bank technicians. Studies show that a newer endothelial keratoplasty iteration, known as Descemet membrane endothelial keratoplasty (DMEK), provides an even faster and better visual recovery than DSEK does. In addition, DMEK significantly reduces the risk of immunologic graft rejection episodes compared with that in DSEK or in PK. Although the DMEK donor tissue, consisting of the bare endothelium and Descemet membrane without any stroma, is more challenging to prepare and position in the recipient eye, recent improvements in instrumentation and surgical techniques are increasing the ease and the reliability of the procedure. DSEK successfully mitigates 2 of the main liabilities of PK: ocular surface complications and structural problems (including induced astigmatism and perpetually weak wounds), whereas DMEK further mitigates the 2 principal remaining liabilities of PK: immunologic graft reactions and secondary glaucoma from prolonged topical corticosteroid use.

  4. Wide-area mapping of resting state hemodynamic correlations at microvascular resolution with multi-contrast optical imaging (Conference Presentation)

    Science.gov (United States)

    Senarathna, Janaka; Hadjiabadi, Darian; Gil, Stacy; Thakor, Nitish V.; Pathak, Arvind P.

    2017-02-01

    Different brain regions exhibit complex information processing even at rest. Therefore, assessing temporal correlations between regions permits task-free visualization of their `resting state connectivity'. Although functional MRI (fMRI) is widely used for mapping resting state connectivity in the human brain, it is not well suited for `microvascular scale' imaging in rodents because of its limited spatial resolution. Moreover, co-registered cerebral blood flow (CBF) and total hemoglobin (HbT) data are often unavailable in conventional fMRI experiments. Therefore, we built a customized system that combines laser speckle contrast imaging (LSCI), intrinsic optical signal (IOS) imaging and fluorescence imaging (FI) to generate multi-contrast functional connectivity maps at a spatial resolution of 10 μm. This system comprised of three illumination sources: a 632 nm HeNe laser (for LSCI), a 570 nm ± 5 nm filtered white light source (for IOS), and a 473 nm blue laser (for FI), as well as a sensitive CCD camera operating at 10 frames per second for image acquisition. The acquired data enabled visualization of changes in resting state neurophysiology at microvascular spatial scales. Moreover, concurrent mapping of CBF and HbT-based temporal correlations enabled in vivo mapping of how resting brain regions were linked in terms of their hemodynamics. Additionally, we complemented this approach by exploiting the transit times of a fluorescent tracer (Dextran-FITC) to distinguish arterial from venous perfusion. Overall, we demonstrated the feasibility of wide area mapping of resting state connectivity at microvascular resolution and created a new toolbox for interrogating neurovascular function.

  5. Sirt1 Protects Endothelial Cells against LPS-Induced Barrier Dysfunction

    Science.gov (United States)

    Guo, Xiaohua; Liu, Yanan; He, Jing; Wang, Ruiting

    2017-01-01

    Sepsis is a threatening health problem and characterized by microvascular dysfunction. In this study, we verified that LPS caused the downregulation of Sirt1 and the hyperpermeability of endothelial cells. Inhibition of Sirt1 with ex527 or Sirt1 siRNA displayed a higher permeability, while activation of Sirt1 with SRT1720 reversed the LPS-induced hyperpermeability, formation of fiber stress, and disruption of VE-cadherin distribution. In pulmonary microvascular vein endothelial cells isolated from wild-type mice, Sirt1 was attenuated upon LPS, while Sirt1 was preserved in a receptor of advanced glycation end product-knockout mice. The RAGE antibody could also diminish the downregulation and ubiquitination of Sirt1 in LPS-exposed human umbilical vein endothelial cells. An LPS-induced decrease in Sirt1 activity was attenuated by the RAGE antibody and TLR4 inhibitor. In vivo study also demonstrated the attenuating role of Sirt1 and RAGE knockout in LPS-induced increases in dextran leakage of mesenteric venules. Furthermore, activation of Sirt1 prevented LPS-induced decreases in the activity and expression of superoxide dismutase 2, as well as the increases in NADPH oxidase 4 and reactive oxygen species, while inhibition of Sirt1 aggravated the SOD2 decline. It also demonstrated that Sirt1-deacetylated p53 is required for p53 inactivation, which reversed the downregulation of β-catenin caused by LPS. PMID:29209448

  6. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Lucas Felipe de Oliveira

    2015-01-01

    Full Text Available Systemic arterial hypertension (SAH, a clinical syndrome characterized by persistent elevation of arterial pressure, is often associated with abnormalities such as microvascular rarefaction, defective angiogenesis, and endothelial dysfunction. Mesenchymal stem cells (MSCs, which normally induce angiogenesis and improve endothelial function, are defective in SAH. The central aim of this study was to evaluate whether priming of MSCs with endothelial growth medium (EGM-2 increases their therapeutic effects in spontaneously hypertensive rats (SHRs. Adult female SHRs were administered an intraperitoneal injection of vehicle solution n=10, MSCs cultured in conventional medium (DMEM plus 10% FBS, n=11, or MSCs cultured in conventional medium followed by 72 hours in EGM-2 (pMSC, n=10. Priming of the MSCs reduced the basal cell death rate in vitro. The administration of pMSCs significantly induced a prolonged reduction (10 days in arterial pressure, a decrease in cardiac hypertrophy, an improvement in endothelium-dependent vasodilation response to acetylcholine, and an increase in skeletal muscle microvascular density compared to the vehicle and MSC groups. The transplanted cells were rarely found in the hearts and kidneys. Taken together, our findings indicate that priming of MSCs boosts stem cell therapy for the treatment of SAH.

  7. Effect of phosphorylated hsp27 on proliferation of human endothelial and smooth muscle cells.

    Science.gov (United States)

    Trott, Deborah; McManus, Ciara A; Martin, Jody L; Brennan, Bryony; Dunn, Michael J; Rose, Marlene L

    2009-06-01

    Recent studies have suggested a protective role of hsp27 against atherosclerosis and transplant graft vasculopathy. Here we have investigated the effects of over-expression of wild-type hsp27 and its phosphorylation mimics on proliferation of human endothelial cells (ECs) and smooth muscle cells (SMCs). ECs and SMCs cultured from human blood vessels or cells lines (human microvascular endothelial cell line and human telomerase reverse transcriptase subunit SMC) were infected with adenovirus containing DNA from wild-type hsp27, hyper-phosphorylated hsp27 mimic (3D hsp27), hypo-phosphorylated hsp27 mimic (3A hsp27) or anti-sense hsp27, and proliferation measured over the next 5 days. Protein extracts from infected cells were subjected to proteomic analysis using 2-D DIGE. Over-expression of 3D hsp27 and anti-sense hsp27 but not 3A hsp27 mimic caused significant inhibition of proliferation of ECs and SMCs. Proteomic analysis focussed on proteins that were significantly down-regulated by the 3D hsp27 mutant. The cell cycling proteins stathmin, cofilin and ubiquitination enzymes fullfilled these criteria. 1-D Western blots of infected human microvascular endothelial cell line and human telomerase reverse transcriptase subunit SMC confirmed down-regulation of stathmin, cofilin and ubiquitination enzymes by 3D hsp27. The phosphorylation status of hsp27 is an important regulator of proliferation of human vascular ECs and SMCs; possibly contributing to cardiovascular protection.

  8. Cerebral Vasculitis

    Directory of Open Access Journals (Sweden)

    Fariborz Khorvash

    2017-02-01

    Full Text Available Introduction: Vasculitis is an inflammation systems may be involved of blood vessels due to various origins. Vessels of the peripheral and/or central nervous. Vasculitis of the CNS is rare and occurs in the context of systemic diseases or as primary angiitis of the CNS. Epidemiology: The overall incidence of primary vasculitis is about 40/1,000,000 persons [excluding giant cell (temporal arteritis, GCA]. Its incidence increases with age. The incidence of GCA is much higher (around 200/1,000,000 persons in the age group[50 years. Clinical Presentation: Clinical and pathological presentation in CNS vasculitis represents a wide spectrum. Among others, headache, cranial nerve affections, encephalopathy, seizures, psychosis, myelitis, stroke, intracranial haemorrhage and aseptic meningoencephalitis are described. Primary and secondary vasculitides leading more frequently to CNS manifestations are discussed. Primary and secondary Vasculitides: Including Giant Cell (Temporal Arteritis , Takayasu arteritis, Polyarteritis nodosa, Primary angiitis of the CNS, Wegener’s granulomatosis, and Connective tissue diseases, such as systemic lupus erythematosus (SLE, scleroderma, rheumatoid arthritis, mixed connective disease and Sjögren syndrome, are systemic immune-mediated diseases that lead to multiple organ affections. Cerebral Vasculitis: Imaging and Differential Diagnosis: Vasculitides represent a heterogeneous group of inflammatory diseases that affect blood vessel walls of varying calibers (inflammatory vasculopathy. Since the devastating symptoms of CNS vasculitis are at least partially reversible, early diagnosis and appropriate treatment are important. In order to establish a differential diagnosis clinical features, disease progression, age of onset, blood results, as well as CSF examinations have to be taken into consideration. Neuroimaging techniques, such as MRI and DSA, play a central role in the diagnosis and disease monitoring .The diagnostic

  9. Cerebral palsy.

    Science.gov (United States)

    Kent, Ruth M

    2013-01-01

    Cerebral palsy affects movement and posture causing activity limitation; it is a lifelong condition, with foreseeable complications. There are evidence-based interventions that will prevent participation restriction. Childhood interventions are generally delivered within multidisciplinary rehabilitation programs. Sadly young adults are often not transferred to an appropriate multidisciplinary adult neurodisability service. An unexplained neurological deterioration should warrant further investigation. Pain is an important underreported symptom and musculoskeletal complaints are prevalent. Disabled adults have less participation socially, in employment, marriage, and independent living related to health problems, discrimination, or lack of access to information, support, and equipment. Evidence-based interventions include a variety of modalities at all International Classification of Functioning, Disability, and Health levels to include support and adaptations. Rehabilitation interventions that have been shown to be effective include surgery in childhood, ankle-foot orthoses, strength training, and electrical stimulation. Management of spasticity is beneficial and has an evidence base. Orthotics and casting are also used. Systematic reviews of upper limb therapies also show the benefit of physical therapy exercise, strengthening, fitness training, and constraint therapy. Occupational therapy has a weaker evidence base than in other disabling conditions but many modalities are transferable. Speech therapy is effective although no specific intervention is better. Psychological wellbeing interventions, including improving self-efficacy, health knowledge, and coping skills, are beneficial. Management of continence, nutrition, and fatigue promote wellbeing. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Cerebral vasculopathy in children with sickle cell anemia.

    Science.gov (United States)

    Fasano, Ross M; Meier, Emily R; Hulbert, Monica L

    2015-01-01

    Sickle cell anemia (SCA)-associated cerebral vasculopathy and moyamoya is a unique entity reflecting the abnormal interactions between sickled red blood cells (RBCs) and the cerebral arterial endothelium. Endothelial injury, coagulation activation, and the inflammatory response generated by sickled RBCs are implicated in the development of cerebral vasculopathy, but the pathophysiology remains incompletely understood. SCA-specific screening and treatment guidelines have successfully reduced the incidence of overt strokes in this high-risk population. However, despite aggressive hematological management, many children with cerebral vasculopathy due to SCA have progressive vasculopathy and recurrent strokes; therefore, more effective therapies, such as revascularization surgery and curative hematopoietic stem cell transplant, are urgently needed. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effect of delayed onset prostacyclin on markers of endothelial function and damage after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Gybel-Brask, Mikkel; Rasmussen, Rune; Stensballe, Jakob

    2017-01-01

    Background: Subarachnoid hemorrhage (SAH) is a neurological emergency. Delayed ischemic neurological deficit is one of the main causes of poor outcome after SAH and is probably caused, at least in part, by cerebral vasospasm. The pathophysiology of this is multifaceted, but endothelial damage...

  12. Vascular endothelial growth factor and blood-brain barrier disruption in tuberculous meningitis

    NARCIS (Netherlands)

    van der Flier, Michiel; Hoppenreijs, Sharon; van Rensburg, Anita Janse; Ruyken, Maartje; Kolk, Arend H. J.; Springer, Priscilla; Hoepelman, Andy I. M.; Geelen, Sibyl P. M.; Kimpen, Jan L. L.; Schoeman, Johan F.

    2004-01-01

    Tuberculous meningitis (TBM) is characterized by disruption of the blood-brain barrier (BBB), cerebral edema and increased intracranial pressure (ICP). Vascular endothelial growth factor (VEGF) is a potent vascular permeability factor and a mediator of brain edema. To investigate whether in children

  13. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes.

    Science.gov (United States)

    Gilchrist, Mark; Winyard, Paul G; Aizawa, Kunihiko; Anning, Christine; Shore, Angela; Benjamin, Nigel

    2013-07-01

    Diets rich in green, leafy vegetables have been shown to lower blood pressure (BP) and reduce the risk of cardiovascular disease. Green, leafy vegetables and beetroot are particularly rich in inorganic nitrate. Dietary nitrate supplementation, via sequential reduction to nitrite and NO, has previously been shown to lower BP and improve endothelial function in healthy humans. We sought to determine if supplementing dietary nitrate with beetroot juice, a rich source of nitrate, will lower BP and improve endothelial function and insulin sensitivity in individuals with type 2 diabetes (T2DM). Twenty-seven patients, age 67.2±4.9 years (18 male), were recruited for a double-blind, randomized, placebo-controlled crossover trial. Participants were randomized to begin, in either order, a 2-week period of supplementation with 250ml beetroot juice daily (active) or 250ml nitrate-depleted beetroot juice (placebo). At the conclusion of each intervention period 24-h ambulatory blood pressure monitoring, tests of macro- and microvascular endothelial function, and a hyperinsulinemic isoglycemic clamp were performed. After 2 weeks administration of beetroot juice mean ambulatory systolic BP was unchanged: 134.6±8.4mmHg versus 135.1±7.8mmHg (mean±SD), placebo vs active-mean difference of -0.5mmHg (placebo-active), p=0.737 (95% CI -3.9 to 2.8). There were no changes in macrovascular or microvascular endothelial function or insulin sensitivity. Supplementation of the diet with 7.5mmol of nitrate per day for 2 weeks caused an increase in plasma nitrite and nitrate concentration, but did not lower BP, improve endothelial function, or improve insulin sensitivity in individuals with T2DM. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Novel Genetic Loci Associated with Retinal Microvascular Diameter

    NARCIS (Netherlands)

    R.A. Jensen (Richard); X. Sim (Xueling); G.D. Smith; X. Li (Xiaohui); M. Jakobsdottir (Margret); C-Y. Cheng (Ching-Yu); J. Brody (Jennifer); M.F. Cotch (Mary Frances); B. McKnight (Barbara); R. Klein (Ronald); J.J. Wang (Jie Jin); A. Kifley (Annette); T.B. Harris (Tamara); L.J. Launer (Lenore); K.D. Taylor (Kent D.); B.E.K. Klein (Barbara); L.J. Raffel (Leslie); X. Li (Xiang); M.A. Ikram (Arfan); C.C.W. Klaver (Caroline); S.J. van der Lee (Sven); U. Mutlu (Unal); A. Hofman (Albert); A.G. Uitterlinden (André); C. Liu (Chunyu); A. Kraja (Aldi); P. Mitchell (Paul); V. Gudnason (Vilmundur); J.I. Rotter (Jerome I.); E.A. Boerwinkle (Eric); C.M. van Duijn (Cornelia); B.M. Psaty (Bruce); T.Y. Wong (Tien Yin)

    2016-01-01

    textabstractBackground-There is increasing evidence that retinal microvascular diameters are associated with cardiovascular and cerebrovascular conditions. The shared genetic effects of these associations are currently unknown. The aim of this study was to increase our understanding of the genetic

  15. Risk factor profile and the occurrence of microvascular ...

    African Journals Online (AJOL)

    Background: Type 2 diabetes has a long pre-clinical period before diagnosis, during which there may be development of complications, both of microvascular and macrovascular types. Objective: To determine the risk factor profile of hyperglycaemia, hypertension and dyslipidaemia in patients with short-term (=/< 2 years) ...

  16. Correlates of time to microvascular complications among diabetes ...

    African Journals Online (AJOL)

    Correlates of time to microvascular complications among diabetes mellitus patients using parametric and non-parametric approaches: a case study of Ayder referral hospital, Ethiopia. ... A retrospective follow up study was conducted on diabetic patients during this treatment period of 3 years. Using simple random sampling ...

  17. Infections and endothelial cells

    NARCIS (Netherlands)

    Keller, Tymen T.; Mairuhu, Albert T. A.; de Kruif, Martijn D.; Klein, Saskia K.; Gerdes, Victor E. A.; ten Cate, Hugo; Brandjes, Dees P. M.; Levi, Marcel; van Gorp, Eric C. M.

    2003-01-01

    Systemic infection by various pathogens interacts with the endothelium and may result in altered coagulation, vasculitis and atherosclerosis. Endothelium plays a role in the initiation and regulation of both coagulation and fibrinolysis. Exposure of endothelial cells may lead to rapid activation of

  18. The beneficial effects of breastfeeding on microvascular function in 11- to 14-year-old children.

    Science.gov (United States)

    Khan, Faisel; Green, Fiona C; Forsyth, J Stewart; Greene, Stephen A; Newton, David J; Belch, Jill J F

    2009-05-01

    Infant feeding practices have an impact on health in later life, although the evidence for its effects on cardiovascular health is not so clear. The aim of this study was to investigate the relationship between breastfeeding in infancy and vascular function in later childhood. Infant feeding data, together with demographic and clinical information, were obtained prospectively from a cohort of children from birth until 2 years of age. Vascular function was assessed in 159 children, now aged 11-14 years, by measuring their skin microvascular responses to iontophoretic administration of the endothelium-dependent vasodilator acetylcholine. Endothelial function was significantly better in children who had been breastfed than in those who had received infant milk formula (p = 0.001), after adjustment for potential confounding factors. Linear regression showed that acetylcholine responses were significantly related to the duration of breastfeeding (r = 0.30, p = 0.006). The risk of later cardiovascular disease may be reduced by exclusively breastfeeding during infancy. These findings have potential public health implications, and support policies aimed at promoting breastfeeding.

  19. Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides.

    Science.gov (United States)

    Schweitzer, Kelly S; Hatoum, Hadi; Brown, Mary Beth; Gupta, Mehak; Justice, Matthew J; Beteck, Besem; Van Demark, Mary; Gu, Yuan; Presson, Robert G; Hubbard, Walter C; Petrache, Irina

    2011-12-01

    The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithelial barrier function has been documented. We sought to investigate the occurrence and mechanisms by which soluble components of mainstream CS disrupt the lung endothelial cell barrier function. Using cultured primary rat microvascular cell monolayers, we report that CS induces endothelial cell barrier disruption in a dose- and time-dependent manner of similar magnitude to that of the epithelial cell barrier. CS exposure triggered a mechanism of neutral sphingomyelinase-mediated ceramide upregulation and p38 MAPK and JNK activation that were oxidative stress dependent and that, along with Rho kinase activation, mediated the endothelial barrier dysfunction. The morphological changes in endothelial cell monolayers induced by CS included actin cytoskeletal rearrangement, junctional protein zonula occludens-1 loss, and intercellular gap formation, which were abolished by the glutathione modulator N-acetylcysteine and ameliorated by neutral sphingomyelinase inhibition. The direct application of ceramide recapitulated the effects of CS, by disrupting both endothelial and epithelial cells barrier, by a mechanism that was redox and apoptosis independent and required Rho kinase activation. Furthermore, ceramide induced dose-dependent alterations of alveolar microcirculatory barrier in vivo, measured by two-photon excitation microscopy in the intact rat. In conclusion, soluble components of CS have direct endothelial barrier-disruptive effects that could be ameliorated by glutathione

  20. Endothelial heterogeneity in the umbilico-placental unit: DNA methylation as an innuendo of epigenetic diversity

    Science.gov (United States)

    Casanello, Paola; Schneider, Daniela; Herrera, Emilio A.; Uauy, Ricardo; Krause, Bernardo J.

    2014-01-01

    The endothelium is a multifunctional heterogeneous tissue playing a key role in the physiology of every organ. To accomplish this role the endothelium presents a phenotypic diversity that is early prompted during vascular development, allowing it to cope with specific requirements in a time- and site-specific manner. During the last decade several reports show that endothelial diversity is also present in the umbilico-placental vasculature, with differences between macro- and microvascular vessels as well as arterial and venous endothelium. This diversity is evidenced in vitro as a higher angiogenic capacity in the microcirculation; or disparity in the levels of several molecules that control endothelial function (i.e., receptor for growth factors, vasoactive mediators, and adhesion molecules) which frequently are differentially expressed between arterial and venous endothelium. Emerging evidence suggests that endothelial diversity would be prominently driven by epigenetic mechanisms which also control the basal expression of endothelial-specific genes. This review outlines evidence for endothelial diversity since early stages of vascular development and how this heterogeneity is expressed in the umbilico-placental vasculature. Furthermore a brief picture of epigenetic mechanisms and their role on endothelial physiology emphasizing new data on umbilical and placental endothelial cells is presented. Unraveling the role of epigenetic mechanisms on long term endothelial physiology and its functional diversity would contribute to develop more accurate therapeutic interventions. Altogether these data show that micro- versus macro-vascular, or artery versus vein comparisons are an oversimplification of the complexity occurring in the endothelium at different levels, and the necessity for the future research to establish the precise source of cells which are under study. PMID:24723887

  1. Endothelial heterogeneity in the umbilico-placental unit: DNA methylation as an innuendo of epigenetic diversity

    Directory of Open Access Journals (Sweden)

    Paola eCasanello

    2014-03-01

    Full Text Available The endothelium is a multifunctional heterogeneous tissue playing a key role in the physiology of every organ. To accomplish this role the endothelium presents a phenotypic diversity that is early prompted during vascular development, allowing it to cope with specific requirements in a time- and site-specific manner. During the last decade several reports show that endothelial diversity is also present in the umbilico-placental vasculature, with differences between macro- and microvascular vessels as well as arterial and venous endothelium. This diversity is evidenced in vitro as a higher angiogenic capacity in the microcirculation; or disparity in the levels of several molecules that control endothelial function (i.e. receptor for growth factors, vasoactive mediators and adhesion molecules which frequently are differentially expressed between arterial and venous endothelium. Emerging evidence suggests that endothelial diversity would be prominently driven by epigenetic mechanisms which also control the basal expression of endothelial-specific genes. This review outlines evidence for endothelial diversity since early stages of vascular development and how this heterogeneity is expressed in the umbilico-placental vasculature. Furthermore a brief picture of epigenetic mechanisms and their role on endothelial physiology emphasising new data on umbilical and placental endothelial cells is presented. Unravelling the role of epigenetic mechanisms on long-term endothelial physiology and its functional diversity would contribute to develop more accurate therapeutic interventions. Altogether these data show that micro- versus macro-vascular, or artery versus vein comparisons are an oversimplification of the complexity occurring in the endothelium at different levels, and the necessity for the future research to establish the precise source of cells which are under study.

  2. Nitric oxide modulates the expression of endothelial cell adhesion molecules involved in angiogenesis and leukocyte recruitment.

    Science.gov (United States)

    Carreau, Aude; Kieda, Claudine; Grillon, Catherine

    2011-01-01

    Tumor angiogenesis and immune response have in common to be cell recognition mechanisms, which are based on specific adhesion molecules and dependent on nitric oxide (NO(•)). The aim of the present study is to deepen the mechanisms of angiogenesis and inflammation regulation by NO(•) to find out the molecular regulation processes that govern endothelial cell permeability and leukocyte transmigration. Effects of NO(•), either exogenous or produced in hypoxic conditions, were studied on microvascular endothelial cells from skin and lymph node because of their strong involvement in melanoma progression. We found that NO(•) down-regulation of pseudo-vessel formation was linked to a decrease in endothelial cell ability to adhere to each other which can be explain, in part, by the inhibition of PECAM-1/CD31 expression. On the other hand, NO(•) was shown to be able to decrease leukocyte adhesion on an endothelial monolayer, performed either in static or in rolling conditions, and to modulate differentially CD34, ICAM-1/CD54, ICAM-2/CD102 and VCAM-1/CD106 expression. In conclusion, during angiogenesis and leukocyte recruitment, NO(•) regulates cell interactions by controlling adhesion molecule expression and subsequently cell adhesion. Moreover, each endothelial cell type presents its own organospecific response to NO(•), reflecting the functions of the tissue they originate from. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Thrombospondin-1 modulates vascular endothelial growth factor activity at the receptor level.

    Science.gov (United States)

    Zhang, Xuefeng; Kazerounian, Shideh; Duquette, Mark; Perruzzi, Carole; Nagy, Janice A; Dvorak, Harold F; Parangi, Sareh; Lawler, Jack

    2009-10-01

    Vascular endothelial growth factor (VEGF) is a well-established stimulator of vascular permeability and angiogenesis, whereas thrombospondin-1 (TSP-1) is a potent angiogenic inhibitor. In this study, we have found that the TSP-1 receptors CD36 and beta1 integrin associate with the VEGF receptor 2 (VEGFR2). The coclustering of receptors that regulate angiogenesis may provide the endothelial cell with a platform for integration of positive and negative signals in the plane of the membrane. Thus, this complex may represent a molecular switch that regulates angiogenesis and determines endothelial cell behavior. In this context, physiological levels of TSP-1 appear to support VEGFR2 function on both the cellular and tissue level, because phosphorylation of VEGFR2 and vascular permeability in response to VEGF are decreased in TSP-1-null mice and isolated endothelial cells. A therapeutic agent based on the antiangiogenic domain of TSP-1, designated 3TSR (for three TSP-1 type 1 repeats), has significant antiangiogenic and antitumor efficacy. Systemic treatment of wild-type mice with 3TSR significantly decreased VEGF-induced permeability. Consistent with this result, VEGF-stimulated phosphorylation of VEGFR2 was also significantly decreased in lung extracts from 3TSR-treated mice. Moreover, 3TSR significantly decreased VEGF-stimulated VEGFR2 phosphorylation in human dermal microvascular endothelial cells in culture. Taken together, the results indicate that TSP-1 and 3TSR modulate the function of VEGFR2.

  4. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury

    Science.gov (United States)

    Mitra, Srabani

    2015-01-01

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury. PMID:26710067

  5. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Science.gov (United States)

    Mitra, Srabani; Wewers, Mark D; Sarkar, Anasuya

    2015-01-01

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  6. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  7. Na(+), K(+)-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures.

    Science.gov (United States)

    Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Katsuki, Hiroshi

    2016-08-01

    Cerebrovascular endothelial cell dysfunction resulting in imbalance of cerebral blood flow contributes to the onset of psychiatric disorders such as depression, schizophrenia and bipolar disorder. Although decrease in Na(+), K(+)-ATPase activity has been reported in the patients with schizophrenia and bipolar disorder, the contribution of Na(+), K(+)-ATPase to endothelial cell dysfunction remains poorly understood. Here, by using rat neonatal prefrontal cortex slice cultures, we demonstrated that pharmacological inhibition of Na(+), K(+)-ATPase by ouabain induced endothelial cell injury. Treatment with ouabain significantly decreased immunoreactive area of rat endothelial cell antigen-1 (RECA-1), a marker of endothelial cells, in a time-dependent manner. Ouabain also decreased Bcl-2/Bax ratio and phosphorylation level of glycogen synthase kinase 3β (GSK3β) (Ser9), which were prevented by lithium carbonate. On the other hand, ouabain-induced endothelial cell injury was exacerbated by concomitant treatment with LY294002, an inhibitor of phosphoinositide 3- (PI3-) kinase. We also found that xestospongin C, an inhibitor of inositol triphosphate (IP3) receptor, but not SEA0400, an inhibitor of Na(+), Ca(2+) exchanger (NCX), protected endothelial cells from cytotoxicity of ouabain. These results suggest that cerebrovascular endothelial cell degeneration induced by Na(+), K(+)-ATPase inhibition resulting in Ca(2+) release from endoplasmic reticulum (ER) and activation of GSK3β signaling underlies pathogenesis of these psychiatric disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cerebral microhemorrhages: mechanisms, consequences, and prevention.

    Science.gov (United States)

    Ungvari, Zoltan; Tarantini, Stefano; Kirkpatrick, Angelia C; Csiszar, Anna; Prodan, Calin I

    2017-06-01

    The increasing prevalence of multifocal cerebral microhemorrhages (CMHs, also known as "cerebral microbleeds") is a significant, newly recognized problem in the aging population of the Western world. CMHs are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function, potentially contributing to cognitive decline, geriatric psychiatric syndromes, and gait disorders. Clinical studies show that aging and hypertension significantly increase prevalence of CMHs. CMHs are also now recognized by the National Institutes of Health as a major factor in Alzheimer's disease pathology. Moreover, the presence of CMHs is an independent risk factor for subsequent larger intracerebral hemorrhages. In this article, we review the epidemiology, detection, risk factors, clinical significance, and pathogenesis of CMHs. The potential age-related cellular mechanisms underlying the development of CMHs are discussed, with a focus on the structural determinants of microvascular fragility, age-related alterations in cerebrovascular adaptation to hypertension, the role of oxidative stress and matrix metalloproteinase activation, and the deleterious effects of arterial stiffening, increased pulse pressure, and impaired myogenic autoregulatory protection on the brain microvasculature. Finally, we examine potential treatments for the prevention of CMHs based on the proposed model of aging- and hypertension-dependent activation of the reactive oxygen species-matrix metalloproteinases axis, and we discuss critical questions to be addressed by future studies.

  9. Adiponectin-deficiency exaggerates sepsis-induced microvascular dysfunction in the mouse brain.

    Science.gov (United States)

    Vachharajani, Vidula; Cunningham, Christie; Yoza, Barbara; Carson, John; Vachharajani, Tushar J; McCall, Charles

    2012-03-01

    Obesity increases circulating cell-endothelial cell interactions; an early marker of inflammation in laboratory model of sepsis, but little is known about the effect of different adipokines. Adiponectin is an anti-inflammatory adipokine secreted by adipocytes. Adiponectin deficiency is implicated in exaggerated proinflammatory phenotype in both obesity and sepsis via increased proinflammatory cytokine expression. However the effect of adiponectin deficiency on circulating cell-endothelial cell interactions in polymicrobial sepsis is unknown. Furthermore although brain dysfunction in septic patients is a known predictor of death, the pathophysiology involved is unknown. In the current study, we examined the effects of adiponectin deficiency on leukocyte (LA) and platelet adhesion (PA) in cerebral microcirculation of septic mice. Adiponectin deficient (Adipoq(-/-): Adko) and background strain C57Bl/6 (wild type (WT)) mice were used. Sepsis was induced using cecal ligation and puncture (CLP). We studied LA and PA in the cerebral microcirculation using intravital fluorescent video microscopy (IVM), blood brain barrier (BBB) dysfunction using Evans Blue (EB) leakage method and E-selectin expression using dual radiolabeling technique in different WT and Adko mice with CLP. Adiponectin deficiency significantly exaggerated LA (WT-CLP:201 ± 17; Adko-CLP: ± 53 cells/mm(2); P < 0.05) and PA (WT-CLP:125 ± 17; Adko-CLP:188 ± 20 cells/mm(2); P < 0.05) in cerebral microcirculation, EB leakage (WT-CLP:10 ± 3.7; Adko-CLP:24 ± 4.3 ng/g × µl plasma; P < 0.05) and E-selectin expression (WT-CLP:0.06 ± 0.11; Adko-CLP:0.44 ± 0.053 ng/g; P < 0.05) in the brain tissue of the mice with CLP. Furthermore, E-selectin monoclonal antibody (mAb) treatment attenuated cell adhesion and BBB dysfunction of Adko-CLP mice. Adiponectin deficiency is associated with exaggerated leukocyte and PA in cerebral microcirculation of mice with CLP via modulation of E-selectin expression.

  10. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Noboru Toda

    2016-08-01

    Full Text Available Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic nerves and nitric oxide (NO liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS/neuronal NOS (nNOS inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD. Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD.

  11. Peripheral Endothelial Function and Coronary Flow Velocity Reserve Are Not Associated in Women with Angina and No Obstructive Coronary Artery Disease

    DEFF Research Database (Denmark)

    Flintholm Raft, Kristoffer; Frestad, Daria; Michelsen, Marie Mide

    2017-01-01

    PURPOSE: We investigated whether impaired flow-mediated dilation (FMD) and plasma biomarkers reflecting endothelial dysfunction are associated with coronary microvascular dysfunction (CMD) in women with angina and no obstructive coronary artery disease (CAD). METHODS: Patients (n = 194) were...... Doppler flow echocardiography (TTDE) of the left anterior descending artery during rest and high-dose dipyridamole infusion. CMD was defined as CFVR ....45). CONCLUSIONS: FMD and biomarkers of endothelial dysfunction did not identify individuals with CMD assessed as impaired CFVR by TTDE in women with angina and no obstructive CAD....

  12. Clustering of microvascular complications in Type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Bjerg, Lasse; Hulman, Adam; Charles, Morten

    2018-01-01

    AIMS: To describe to what extent microvascular complications exhibit clustering in persons with Type 1 diabetes, and to assess whether the presence of one complication modified the strength of the association between the other two. METHODS: We conducted a cross-sectional analysis of the electronic...... duration and HbA1c, persons with neuropathy had an OR of 2.15 (95% CI: 1.73-2.66) for concurrent diabetic kidney disease. Those with retinopathy had an OR of 2.49 (1.92-3.24) for diabetic kidney disease and of 2.66 (1.94-3.64) for neuropathy. CONCLUSIONS: Microvascular complications in persons with Type 1...... medical records of 2276 persons with Type 1 diabetes treated in a specialized care hospital in Denmark in 2013. We used log-linear analysis to describe associations between diabetic kidney disease, neuropathy and retinopathy and logistic regression models to quantify the magnitude of associations...

  13. Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria

    DEFF Research Database (Denmark)

    Lennartz, Frank; Adams, Yvonne; Bengtsson, Anja

    2017-01-01

    Cerebral malaria is a deadly outcome of infection by Plasmodium falciparum, occurring when parasite-infected erythrocytes accumulate in the brain. These erythrocytes display parasite proteins of the PfEMP1 family that bind various endothelial receptors. Despite the importance of cerebral malaria...

  14. Atrial natriuretic peptide-mediated inhibition of microcirculatory endothelial Ca2+ and permeability response to histamine involves cGMP-dependent protein kinase I and TRPC6 channels.

    Science.gov (United States)

    Chen, Wen; Oberwinkler, Heike; Werner, Franziska; Gaßner, Birgit; Nakagawa, Hitoshi; Feil, Robert; Hofmann, Franz; Schlossmann, Jens; Dietrich, Alexander; Gudermann, Thomas; Nishida, Motohiro; Del Galdo, Sabrina; Wieland, Thomas; Kuhn, Michaela

    2013-09-01

    Histamine increases microvascular endothelial leakage by activation of complex calcium-dependent and -independent signaling pathways. Atrial natriuretic peptide (ANP) via its cGMP-forming guanylyl cyclase-A (GC-A) receptor counteracts this response. Here, we characterized the molecular mechanisms underlying this interaction, especially the role of cGMP-dependent protein kinase I (cGKI). We combined intravital microscopy studies of the mouse cremaster microcirculation with experiments in cultured microvascular human dermal endothelial cells. In wild-type mice, ANP had no direct effect on the extravasation of fluorescent dextran from postcapillary venules, but strongly reduced the histamine-provoked vascular leakage. This anti-inflammatory effect of ANP was abolished in mice with endothelial-restricted inactivation of GC-A or cGKI. Histamine-induced increases in endothelial [Ca(2+)]i in vitro and of vascular leakage in vivo were markedly attenuated by the Ca(2+)-entry inhibitor SKF96365 and in mice with ablated transient receptor potential canonical (TRPC) 6 channels. Conversely, direct activation of TRPC6 with hyperforin replicated the hyperpermeability responses to histamine. ANP, via cGKI, stimulated the inhibitory phosphorylation of TRPC6 at position Thr69 and prevented the hyperpermeability responses to hyperforin. Moreover, inhibition of cGMP degradation by the phosphodiesterase 5 inhibitor sildenafil prevented the edematic actions of histamine in wild types but not in mice with endothelial GC-A or cGKI deletion. ANP attenuates the inflammatory actions of histamine via endothelial GC-A/cGMP/cGKI signaling and inhibitory phosphorylation of TRPC6 channels. The therapeutic potential of this novel regulatory pathway is indicated by the observation that sildenafil improves systemic endothelial barrier functions by enhancing the endothelial effects of endogenous ANP.

  15. Microvascular free tissue transfer: results in 57 consecutive cases.

    Science.gov (United States)

    Fowler, J D; Degner, D A; Walshaw, R; Walker, D

    1998-01-01

    To evaluate the outcomes and complications in a consecutive series of animals undergoing microvascular reconstructive procedures at two veterinary institutions. Retrospective study. A total of 44 client-owned dogs and one red-necked wallaby. The medical records of all animals undergoing reconstructive microsurgical procedures at the Western College of Veterinary Medicine and Michigan State University were reviewed. Microvascular flap survival and related complications were described. Statistical analysis was performed to determine the significance of relationships between operative factors and outcome. A total of 57 microvascular procedures were performed on 55 animals. Reconstruction was required after trauma in 42 animals, after ablative cancer surgery in 11 animals and for correction of congenital tissue aplasia in I animal. Donor tissues included the superficial cervical cutaneous, medial saphenous fasciocutaneous or musculofasciocutaneous, caudal superficial epigastric cutaneous, trapezius muscle or musculocutaneous, caudal sartorius muscle, latissimus dorsi muscle or musculocutaneous, cranial abdominal myoperitoneal, carpal footpad, digital footpad, and vascularized ulnar bone flaps. A total of 53 of 57 flaps (93%) survived. There was a significant relationship between flap failure and level of assistant surgeon experience (P flaps were significantly more likely to fail when compared with pooled data from all other flap types (P flaps was not likely caused by an inherently deficient flap design, but was more likely attributed to the location and severity of trauma at the recipient site, the difficulty in isolating suitable recipient vessels for anastomosis or the absence of a trained assistant surgeon during these procedures. Clinical Relevance-This retrospective study documents the successful application of microvascular technique in a series of clinical cases requiring tissue reconstruction.

  16. Downregulation of circulating MOTS-c levels in patients with coronary endothelial dysfunction.

    Science.gov (United States)

    Qin, Qing; Delrio, Silvia; Wan, Junxiang; Jay Widmer, R; Cohen, Pinchas; Lerman, Lilach O; Lerman, Amir

    2018-03-01

    MOTS-c is one of the newly identified mitochondrial-derived peptides which play a role in regulating metabolic homeostasis. The current study aimed to investigate whether circulating MOTS-c levels are also associated with endothelial dysfunction(ED) in patients without significant structural coronary lesions. Forty patients undergoing coronary angiography and endothelial function testing for clinical indications of recurrent angina with no structural coronary lesions were included in the study. They were divided into two groups based on coronary blood flow response to intracoronary acetylcholine (ACh) as normal endothelial function (≥ 50% increase from baseline) or ED, (n=20 each). Aortic plasma samples were collected at the time of catheterization for analysis of circulating MOTS-c levels by ELISA. The effect of MOTS-c on vascular reactivity was assessed in organ chambers using aortic rings collected from rats and renal artery stenosis (RAS) mice. Baseline characteristics were similar between the two groups. MOTS-c plasma levels were lower in patients with ED compared with patients with normal endothelial function (p=0.007). Furthermore, plasma MOTS-c levels were positively correlated with microvascular (p=0.01) and epicardial (p=0.02) coronary endothelial function. Although MOTS-c did not have direct vasoactive effects, pretreating aortic rings from rats or RAS mice with MOTS-c (2μg/ml) improved vessel responsiveness to ACh compared with vessels without MOTS-c treatment. Lower circulating endogenous MOTS-c levels in human subjects are associated with impaired coronary endothelial function. In rodents, MOTS-c improves endothelial function in vitro. Thus, MOTS-c represents a novel potential therapeutic target in patients with ED. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. The role of endothelial microparticles in autoimmune disease patients with Raynaud's phenomenon

    Directory of Open Access Journals (Sweden)

    Yeong-Jian Jan Wu

    2017-12-01

    Full Text Available Background and aim: Raynaud's phenomenon (RP is a microvascular disorder characterized by episodic peripheral vasospasm and ischemia and is commonly found in patients with autoimmune diseases (AID. The vasomotor homoeostasis and endothelial cells damage are involved in RP. Endothelial microparticles (EMPs may act as a biomarker for endothelial damage. The aim of this study is to investigate the correlation between the levels of microparticles (MPs and microvasculopathy in AID with RP. Methods: Thirty-seven patients with AID and RP (RP group and 27 patients with AID but without RP (non-RP group were enrolled. The microvasculopathy score of RP was graded by nailfold capillary microscopy. The plasma levels of MPs were measured by flow cytometry utilizing specific labels for endothelial MPs (CD105 and CD144 and annexin V staining for phosphatidylserine bearing-MPs (annexin V+MPs. Results: The levels of circulating EMPs (CD105+ p = 0.005, CD144+ p = 0.004, and the annexin V+ MPs (p < 0.001 were significantly elevated in the RP group compared with the non-RP group. Moreover, the high microvasculopathy scores were closely related with annexinV+ MPs levels in the RP group (p = 0.041. Conclusions: Levels of circulating EMPs and annexin V+ MPs are elevated in AID patients with RP indicate the endothelial damage and endothelial dysfunctions. In addition, levels of annexin V+ MPs can predict the severity of microvasculopathy in AID with RP. Keywords: annexin V, autoimmune disease, endothelial microparticles, microvasculopathy, Raynaud's phenomenon

  18. [Nursing cooperation on circulation restore during microvascular submandibular gland transfer].

    Science.gov (United States)

    Kang, Xiao-Wei; Rong, Chen; Liu, Jie

    2011-06-01

    To summarize the cooperative measures on circulation restore during the operation of microvascular submandibular gland transfer. Fifty-six cases of microvascular submandibular gland transfer were performed in Peking University School & Hospital of Stomatology from January 2005 to March 2009. The related data was collected retrospectively and the cooperative measures on circulation restore during the operation were summarized. The circulation restore of transferred glands were satisfied in all 56 cases when the submandibular gland transfer operation finished. Thrombosis happened in 7 cases within the postoperative 48 hours and the secondary emergency operations were done. At last 6 glands were salvaged and the final successful rate was 98.21%. Successful circulation restore was one of the key points on microvascular submandibular gland transfer. The most important mission of the nursing during the operation was the prevention of vascular crisis. The main measures include persistent wet packing using narceine, fomentation using warm saline and special nursing on postoperative complications. Our experience proves that it is beneficial to the success of operation.

  19. Evaluation of gravimetric techniques to estimate the microvascular filtration coefficient.

    Science.gov (United States)

    Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M

    2011-06-01

    Microvascular permeability to water is characterized by the microvascular filtration coefficient (K(f)). Conventional gravimetric techniques to estimate K(f) rely on data obtained from either transient or steady-state increases in organ weight in response to increases in microvascular pressure. Both techniques result in considerably different estimates and neither account for interstitial fluid storage and lymphatic return. We therefore developed a theoretical framework to evaluate K(f) estimation techniques by 1) comparing conventional techniques to a novel technique that includes effects of interstitial fluid storage and lymphatic return, 2) evaluating the ability of conventional techniques to reproduce K(f) from simulated gravimetric data generated by a realistic interstitial fluid balance model, 3) analyzing new data collected from rat intestine, and 4) analyzing previously reported data. These approaches revealed that the steady-state gravimetric technique yields estimates that are not directly related to K(f) and are in some cases directly proportional to interstitial compliance. However, the transient gravimetric technique yields accurate estimates in some organs, because the typical experimental duration minimizes the effects of interstitial fluid storage and lymphatic return. Furthermore, our analytical framework reveals that the supposed requirement of tying off all draining lymphatic vessels for the transient technique is unnecessary. Finally, our numerical simulations indicate that our comprehensive technique accurately reproduces the value of K(f) in all organs, is not confounded by interstitial storage and lymphatic return, and provides corroboration of the estimate from the transient technique.

  20. Preventing microvascular complications in type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Vijay Viswanathan

    2015-01-01

    Full Text Available Patients with complications of diabetes such as retinopathy, nephropathy, and cardiovascular complications have increased hospital stay with greater economic burden. Prevention of complications should be started before the onset of type 1 diabetes mellitus (T1DM by working on risk factors and thereafter by intervention upon confirmatory diagnosis which can prevent further damage to β-cells. The actual risk of getting microvascular complications like microalbuminuria and retinopathy progression starts at glycated hemoglobin (HbA1c level of 7%. As per the American Diabetes Association, a new pediatric glycemic control target of HbA1c 20 years as compared to patients <10 years of age. Screening of these complications should be done regularly, and appropriate preventive strategies should be followed. Angiotensin converting enzyme inhibitors and angiotensin II receptor blocker reduce progression from microalbuminuria to macroalbuminuria and increase the regression rate to normoalbuminuria. Diabetic microvascular complications can be controlled with tight glycemic therapy, dyslipidemia management and blood pressure control along with renal function monitoring, lifestyle changes, including smoking cessation and low-protein diet. An integrated and personalized care would reduce the risk of development of microvascular complications in T1DM patients. The child with diabetes who receives limited care is more likely to develop long-term complications at an earlier age. Screening for subclinical complications and early interventions with intensive therapy is the need of the hour.

  1. The effect of L-arginine on microvascular reactivity in normotensive subjects with a family history of hypertension

    Directory of Open Access Journals (Sweden)

    Polona Zaletel

    2014-06-01

    Full Text Available Background: An increasing number of studies support the hypothesis that endothelial dysfunction due to reduced availability of nitric oxide plays a key role in initiation, development and progression of essential hypertension. The aim of our study was to determine whether the ingestion of L-arginine actually improves microvascular function in normotensive subjects with a family history of hypertension.Methods: 30 normotensive healthy men, aged 20–30 years, were divided into two groups according to the family history of hypertension. We measured ECG, heart rate, systolic and diastolic arterial pressure, cardiac output, stroke volume, total peripheral resistance (Task Force Monitor and laser Doppler (LD flux in the microvessels of the skin on the forearm at rest, before and after the administration of 0.9 g L-arginine. The endothelium-dependent vasodilation was assessed by iontophoresis of acetylcholine and the endothelium-independent vasodilation by iontophoresis of sodium nitroprusside.Results: After the ingestion of L-arginine the heart rate and the cardiac output statistically significantly decreased in both groups (paired t-test, p < 0.05. Arterial pressure did not change significantly. Stroke volume decreased and total peripheral resistance increased only in the group of subjects with a family history of hypertension (paired t-test, p < 0.05 The ingestion of L-arginine in predisposed normotensive subjects acutely improved the endothelium-dependent vasodilation (Dunnett’s test, p < 0.05, which is consistent with the assumption that endothelial dysfunction is already present in these subjects.Conclusions: In subjects with a family history of hypertension L-arginine improved endothelial function. This justifies L-arginine as a potential agent for the prevention and/or treatment of arterial hypertension.

  2. Short-term high salt intake reduces brachial artery and microvascular function in the absence of changes in blood pressure.

    Science.gov (United States)

    Cavka, Ana; Jukic, Ivana; Ali, Mohamed; Goslawski, Melissa; Bian, Jing-Tan; Wang, Edward; Drenjancevic, Ines; Phillips, Shane A

    2016-04-01

    The aims of this study were to test the hypothesis that short-term high salt intake reduces macrovascular and microvascular endothelial function in the absence of changes in blood pressure and to determine whether acute exercise restores endothelial function after high salt in women. Twelve women were administered high salt (11 g of sodium chloride for 7 days) and then underwent a weightlifting session. Brachial artery flow-mediated dilation and nitroglycerin dilation were measured with ultrasound at baseline, after high salt, and after weightlifting. Subcutaneous fat tissue biopsies were obtained at baseline, after high salt, and after weightlifting. Resistance arteries from biopsies were cannulated for vascular reactivity measurements in response to flow [flow-induced dilation (FID)] and acetylcholine. Blood pressure was similar before and after high salt diet. Brachial flow-mediated dilation was reduced after high salt diet but was not affected by acute weightlifting. Brachial nitroglycerin dilations were similar before and after high salt. FID and acetylcholine-induced dilation of resistance arteries were similar to that of before and after high salt diet. FID and acetylcholine-induced dilation was not altered by weightlifting after high salt diet. However, N-nitro-L-arginine methyl ester significantly reduced FID at baseline and after exercise but had no effect dilator reactivity after high salt diet alone. These data suggest that high salt intake reduces brachial artery endothelial function and switches the mediator of vasodilation in the microcirculation to a non-nitric oxide-dependent mechanism in healthy adults and acute exercise may switch the dilator mechanism back to nitric oxide during high salt diet.

  3. Endothelial RIG-I activation impairs endothelial function

    International Nuclear Information System (INIS)

    Asdonk, Tobias; Motz, Inga; Werner, Nikos; Coch, Christoph; Barchet, Winfried; Hartmann, Gunther; Nickenig, Georg; Zimmer, Sebastian

    2012-01-01

    Highlights: ► RIG-I activation impairs endothelial function in vivo. ► RIG-I activation alters HC