WorldWideScience

Sample records for cerebral ischemic rats

  1. Pharmacokinetic Study of Piracetam in Focal Cerebral Ischemic Rats.

    Science.gov (United States)

    Paliwal, Pankaj; Dash, Debabrata; Krishnamurthy, Sairam

    2018-04-01

    Cerebral ischemia affects hepatic enzymes and brain permeability extensively. Piracetam was investigated up to phase III of clinical trials and there is lack of data on brain penetration in cerebral ischemic condition. Thus, knowledge of the pharmacokinetics and brain penetration of piracetam during ischemic condition would aid to improve pharmacotherapeutics in ischemic stroke. Focal cerebral ischemia was induced by middle cerebral artery occlusion for 2 h in male Wistar rats followed by reperfusion. After 24 h of middle cerebral artery occlusion or 22 h of reperfusion, piracetam was administered for pharmacokinetic, brain penetration, and pharmacological experiments. In pharmacokinetic study, blood samples were collected at different time points after 200-mg/kg (oral) and 75-mg/kg (intravenous) administration of piracetam through right external jugular vein cannulation. In brain penetration study, the cerebrospinal fluid, systemic blood, portal blood, and brain samples were collected at pre-designated time points after 200-mg/kg oral administration of piracetam. In a separate experiment, the pharmacological effect of the single oral dose of piracetam in middle cerebral artery occlusion was assessed at a dose of 200 mg/kg. All the pharmacokinetic parameters of piracetam including area under curve (AUC 0-24 ), maximum plasma concentration (C max ), time to reach the maximum plasma concentration (t max ), elimination half-life (t 1/2 ), volume of distribution (V z ), total body clearance, mean residence time, and bioavailability were found to be similar in ischemic stroke condition except for brain penetration. Piracetam exposure (AUC 0-2 ) in brain and CSF were found to be 2.4- and 3.1-fold higher, respectively, in ischemic stroke compared to control rats. Piracetam significantly reduced infarct volume by 35.77% caused by middle cerebral artery occlusion. There was no change in the pharmacokinetic parameters of piracetam in the ischemic stroke model except for

  2. Sequential changes in ischemic edema following transient focal cerebral ischemia in rats; Magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Nagahiro, Shinji; Goto, Satoshi; Kogo, Kasei; Sumi, Minako; Takahashi, Mutsumasa; Ushio, Yukitaka [Kumamoto Univ. (Japan). School of Medicine

    1994-07-01

    Sequential and regional changes in ischemic edema following various durations of focal cerebral ischemia were studied by magnetic resonance (MR) imaging in a rat unilateral intraluminal middle cerebral artery occlusion model. Occlusion was performed from 5 minutes to 5 hours. T[sub 2]-weighted images were obtained chronologically 6 hours after onset of ischemia, on day 1 and day 7. An immunohistochemical study using antibodies to calcineurin and glial fibrillary acidic protein was performed to observe histological changes in the ischemic brain. The T[sub 2] high-signal-intensity areas representing ischemic edema were observed in the lateral striatum and/or the cerebral cortex by day 1 in all rats with 1- to 5-hour ischemia, and the areas were larger and detected earlier with longer durations of ischemia. In three of six rats with 15-minute ischemia and five of six rats with 30-minute ischemia, the T[sub 2] high-signal-intensity areas appeared transiently on day 1 in the dorsolateral striatum where loss of neurons expressing calcineurin immunoreactivity and associated gliosis were found. MR imaging in animal models of reversible focal ischemia can achieve sequential and noninvasive evaluation of dynamic regional changes in ischemic edema. (author).

  3. Protective effects of alkaloid extract from Leonurus heterophyllus on cerebral ischemia reperfusion injury by middle cerebral ischemic injury (MCAO) in rats.

    Science.gov (United States)

    Liang, Hao; Liu, Ping; Wang, Yunshan; Song, Shuliang; Ji, Aiguo

    2011-07-15

    The neuronal damage following cerebral ischemia is a serious risk to stroke patients. The aim of this study was to investigate the neuroprotective effects of alkaloid extract from Leonurus heterophyllus (LHAE) on cerebral ischemic injury. After 24 h of reperfusion following ischemia for 2 h induced by middle cerebral artery occlusion (MCAO), some rats were intraperitoneally administered different doses of LHAE (3.6, 7.2, 14.4 mg/kg, respectively). Neurological examination was measured in all animals. Infarct volume, myeloperoxidase (MPO) activity, levels of nitrate/nitrite metabolite (NO) and apoptosis ratio of nerve fiber in brain were determined. The results showed that LHAE at 7.2 mg/kg or 14.4 mg/kg exerted significantly decreasing neurological deficit scores and reducing the infarct volume on rats with focal cerebral ischemic injury (pagent. Further studies are warranted to assess the efficacy and safety of LHAE in patients. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. Lysine and arginine reduce the effects of cerebral ischemic insults and inhibit glutamate-induced neuronal activity in rats

    Directory of Open Access Journals (Sweden)

    Takashi Kondoh

    2010-06-01

    Full Text Available Intravenous administration of arginine was shown to be protective against cerebral ischemic insults via nitric oxide production and possibly via additional mechanisms. The present study aimed at evaluating the neuroprotective effects of oral administration of lysine (a basic amino acid, arginine, and their combination on ischemic insults (cerebral edema and infarction and hemispheric brain swelling induced by transient middle cerebral artery occlusion/reperfusion in rats. Magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining were performed two days after ischemia induction. In control animals, the major edematous areas were observed in the cerebral cortex and striatum. The volumes associated with cortical edema were significantly reduced by lysine (2.0 g/kg, arginine (0.6 g/kg, or their combined administration (0.6 g/kg each. Protective effects of these amino acids on infarction were comparable to the inhibitory effects on edema formation. Interestingly, these amino acids, even at low dose (0.6 g/kg, were effective to reduce hemispheric brain swelling. Additionally, the effects of in vivo microiontophoretic (juxtaneuronal applications of these amino acids on glutamate-evoked neuronal activity in the ventromedial hypothalamus were investigated in awake rats. Glutamate-induced neuronal activity was robustly inhibited by microiontophoretic applications of lysine or arginine onto neuronal membranes. Taken together, our results demonstrate the neuroprotective effects of oral ingestion of lysine and arginine against ischemic insults (cerebral edema and infarction, especially in the cerebral cortex, and suggest that suppression of glutamate-induced neuronal activity might be the primary mechanism associated with these neuroprotective effects.

  5. Establishment of modified reversible regional cerebral ischemic models

    International Nuclear Information System (INIS)

    Ji Xunming; Ling Feng; Zhao Xiqing; Xuan Yun; Wang Yueqin; Ling Xiaolan; Chang Hongjun; Zhang Zhiping

    2005-01-01

    Objective: Modifying the method of establishing reversible middle cerebral ischemic models in rats for improvement of the stability and rate of success, so as to raise the reliability of cerebral ischemic study. Methods: Sixty male Wistar rats were randomly divided into two groups, modified and control groups, 30 rats in each group. The method of silicone- tipping on one end of the nylon suture was used to modify the establishment of embolus, and tip-heating method was used to establish the traditional embolus with all the other steps of the procedure just the same. The Zea Longa 5 scoring scale was used to estimate the neurological deficiency while TTC staining method was used to measure and calculate the volume of cerebral infarction. The percentage of successful models with 3-4 grade scorings and the coefficient of the variations of cerebral infarct volume were used to estimate the stability of the models. Results: The rate of success of establishment models in the modification group was significantly higher in comparing with the traditional group (93% vs 60%, χ 2 =9.32, P=0.002). The percentage of model establishment with 3-4 grade neurological scores in modification group was higher than that in the traditional group 96.4% vs 61.2%, χ 2 =9.51, P=0.002). The cerebral infarct volume in modification group and traditional group were (4.1450±0.5019) cm 3 and (3.8435 ± 0.8164) cm 3 , and the coefficients of variation were 12.01% and 21.24% respectively, which indicated that the stability of models was significantly higher in modification group than in the traditional one. Conclusions: The rates of success and stability of the models for reversible focal cerebral ischemia made by the modification method were significantly improved, with decreasing the cost of model creation and increasing the accuracy of study of ischemic cerebral vascular disease. (authors)

  6. ischemic brain injury in neonatal rats

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, ... Methods: Forty-eight rats (P7-pups) were randomly assigned to one of four groups: ... Keywords: Hypoxic–ischemic brain injury, α-Lipoic acid, Cerebral infarct area, Edema, Antioxidants, .... Of the 48 rats initially used in the current study, 5.

  7. Study on the Mechanism of mTOR-Mediated Autophagy during Electroacupuncture Pretreatment against Cerebral Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Zhou-Quan Wu

    2016-01-01

    Full Text Available This study is aimed at investigating the association between the electroacupuncture (EA pretreatment-induced protective effect against early cerebral ischemic injury and autophagy. EA pretreatment can protect cerebral ischemic and reperfusion injuries, but whether the attenuation of early cerebral ischemic injury by EA pretreatment was associated with autophagy is not yet clear. This study used the middle cerebral artery occlusion model to monitor the process of ischemic injury. For rats in the EA pretreatment group, EA pretreatment was conducted at Baihui acupoint before ischemia for 30 min for 5 consecutive days. The results suggested that EA pretreatment significantly increased the expression of autophagy in the cerebral cortical area on the ischemic side of rats. But the EA pretreatment-induced protective effects on the brain could be reversed by the specific inhibitor 3-methyladenine of autophagy. Additionally, the Pearson correlation analysis indicated that the impact of EA pretreatment on p-mTOR (2481 was negatively correlated with its impact on autophagy. In conclusion, the mechanism of EA pretreatment at Baihui acupoint against cerebral ischemic injury is mainly associated with the upregulation of autophagy expression, and its regulation of autophagy may depend on mTOR-mediated signaling pathways.

  8. Characterization of neuronal damage by iomazenil binding and cerebral blood flow in an ischemic rat model

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Takeuchi, Akira; Koga, Sukehiko; Matsumura, Kaname; Nakashima, Hiromichi; Takeda, Kan; Yoshida, Toshimichi; Ichise, Masanori

    1998-01-01

    I-123-iomazenil is a SPECT probe for central benzodiazepine receptors (BZR) which may reflect intact cortical neuron density after ischemic insults. We evaluated whether neuronal damage in rats could be characterized by iomazenil as compared with cerebral blood flow (CBF). Serial changes in I-125-iomazenil for BZR and I-123-IMP for CBF were analyzed after the unilateral middle cerebral artery occlusion in rats by using an in vivo dualtracer technique. Uptake ratios of affected to contralateral regions were calculated. The iomazenil as well as IMP were decreased in all regions except for the cerebellum (remote area). Both iomazenil and IMP increased over time except in the temporal region (ischemic core). The iomazenil uptake was higher than IMP except in the ischemic core between 1 and 3-4 wk when iomazenil was lower than IMP. Iomazenil showed a moderate decrease in the proximal and middle parietal regions (peri-infarct areas) at 3-4 wk. The triphenyl-tetrazolium-chloride (TTC) stain at 1 wk demonstrated unstained tissue in the temporal region indicating tissue necrosis. With hematoxylin-eosin (HE) stain at 1 wk, widespread neuronal necrosis with occasional intact neurons were found in the proximal parietal region, and isolated necrotic neurons were represented in the distal parietal region. Iomazenil correlated well with the neuron distribution and the finding of a discrepancy between iomazenil and IMP might be useful in evaluating the neuronal damage. (author)

  9. Reduction of mitochondrial electron transport complex activity is restricted to the ischemic focus after transient focal cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Christensen, Thomas; Diemer, Nils Henrik

    2003-01-01

    Using histochemical methods offering high topographical resolution for evaluation of changes in the ischemic focus and the penumbra, the mitochondrial electron transport chain (ETC) complexes I, II, and IV were examined in rats subjected to 2 h of proximal occlusion of the middle cerebral artery...

  10. Protection by the gross saponins of Tribulus terrestris against cerebral ischemic injury in rats involves the NF-κB pathway

    Directory of Open Access Journals (Sweden)

    En-ping Jiang

    2011-06-01

    Full Text Available The aim of this study was to investigate whether the gross saponins of Tribulus terrestris (GSTT, a traditional Chinese herbal medicine, have neuroprotective effects on rats subjected to middle cerebral artery occlusion (MCAO, through nuclear factor-κB (NF-κB pathway and inflammatory mediators. Cerebral ischemia was produced by MCAO in either untreated (control or GSTT-pretreated rats, and the animals were examined for infarct volume, cerebral edema, neuro-behavioral abnormality and pathological changes. Meanwhile, the expression of NF-κB protein in brain tissue was analyzed on Western blots and the serum levels of TNF-α and IL-1 were determined by ELISA. The experimental results demonstrated that, compared with the control MCAO group, GSTT-pretreated MCAO group had significantly reduced infarct volume, brain edema and neuro-behavioral abnormality, and lesser degree of pathologic changes in the brain, as well as had lower levels of serum TNF-α and IL-1β, and higher levels of brain NF-κB (P<0.05. Furthermore, treatment with an NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC abolished the protective effects of GSTT against MCAO-induced cerebral ischemic injury. These results indicated that GSTT's ability to protect against cerebral ischemic injury was mediated through the NF-κB signaling pathway, and that GSTT may act through inhibition of the production of inflammatory mediators.

  11. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    OpenAIRE

    Najmeh Kabiri; Mahbubeh Setorki

    2016-01-01

    The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99). Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly hi...

  12. Current status and outlook of endovascular therapy for cerebral ischemic diseases

    International Nuclear Information System (INIS)

    Li Minghua; Zhao Jungong

    2005-01-01

    Improvement of diagnostic technology and increasing advent of new materials for intervention has created a new area for endovascular therapy of cerebral ischemic diseases. Current research findings have shown that endovascular thrombolysis in acute stage of cerebral infarction can accelerate the rate of re-canalization of occluded arteries and greatly decrease the morbidity and mortality of cerebral ischemic vascular diseases. Stenting of arterial stenosis can the improve of blood supply distal to the lesion, prevent recurrent cerebral ischemic stroke. As a result, endovascular thrombolysis for acute cerebral infarction and stenting for intracranial and carotid arterial stenosis are booming both at home and abroad. Proper selection of patients of acute cerebral infarction for endovascular thrombolysis with less complications could be achieved through CT perfusion, MR perfusion-weighted image (PWI) and diffusion-weighted image (DWI), non-invasive vascular imaging technology including CEMRA and CTA for confirming and demonstrating the sites and causes of cerebral ischemia, and furthermore for evaluating the survival ability and etc. The research team administered albumin and magnesium sulfate as neurological protection drug to treat rat infarction model within 6 hours of onset resulting with the same effect of decreasing the damage of ischemic cerebral tissue and without hemorrhagic complication. It is certain that hemorrhagic complication in thrombolysis is a result of multiple factors with no single drug being able to solve the problem. It is predictable that, based on semi-quantitative or quantitative parameters of CT or MRI in conjunction with PWI/DWI mismatch model rather than simply on the onset time of infarction for proper selection of patients of cerebral infarction, mechanic thrombus-disruption and/or intra-arterial thrombolysis together with intervention of neurological protection drug will be the trend for treating acute cerebral infarction in the future

  13. Cerebral collateral therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies.

    Science.gov (United States)

    Beretta, Simone; Versace, Alessandro; Carone, Davide; Riva, Matteo; Dell'Era, Valentina; Cuccione, Elisa; Cai, Ruiyao; Monza, Laura; Pirovano, Silvia; Padovano, Giada; Stiro, Fabio; Presotto, Luca; Paternò, Giovanni; Rossi, Emanuela; Giussani, Carlo; Sganzerla, Erik P; Ferrarese, Carlo

    2017-10-01

    Cerebral collaterals are dynamically recruited after arterial occlusion and highly affect tissue outcome in acute ischemic stroke. We investigated the efficacy and safety of four pathophysiologically distinct strategies for acute modulation of collateral flow (collateral therapeutics) in the rat stroke model of transient middle cerebral artery (MCA) occlusion. A composed randomization design was used to assign rats (n = 118) to receive phenylephrine (induced hypertension), polygeline (intravascular volume load), acetazolamide (cerebral arteriolar vasodilation), head down tilt (HDT) 15° (cerebral blood flow diversion), or no treatment, starting 30 min after MCA occlusion. Compared to untreated animals, treatment with collateral therapeutics was associated with lower infarct volumes (62% relative mean difference; 51.57 mm 3 absolute mean difference; p Collateral therapeutics acutely increased cerebral perfusion in the medial (+40.8%; p collaterals is feasible and provides a tissue-saving effect in the hyperacute phase of ischemic stroke prior to recanalization therapy.

  14. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    Directory of Open Access Journals (Sweden)

    Najmeh Kabiri

    2016-09-01

    Full Text Available The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99. Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly higher than the Sham group, although right hemispheres in all of the treated groups illustrated higher brain water content than the left ones. Brain anti-oxidant capacity elevated in the ischemic rats treated with Kombucha and in the Sham group. Brain and plasma malondialdehyde concentrations significantly decreased in both of the ischemic groups injected with Kombucha. The findings suggest that Kombucha tea could be useful for the prevention of cerebral damage.

  15. Metabolite changes in the ipsilateral and contralateral cerebral hemispheres in rats with middle cerebral artery occlusion

    Directory of Open Access Journals (Sweden)

    Lei Ruan

    2017-01-01

    Full Text Available Cerebral ischemia not only causes pathological changes in the ischemic areas but also induces a series of secondary changes in more distal brain regions (such as the contralateral cerebral hemisphere. The impact of supratentorial lesions, which are the most common type of lesion, on the contralateral cerebellum has been studied in patients by positron emission tomography, single photon emission computed tomography, magnetic resonance imaging and diffusion tensor imaging. In the present study, we investigated metabolite changes in the contralateral cerebral hemisphere after supratentorial unilateral ischemia using nuclear magnetic resonance spectroscopy-based metabonomics. The permanent middle cerebral artery occlusion model of ischemic stroke was established in rats. Rats were randomly divided into the middle cerebral artery occlusion 1-, 3-, 9- and 24-hour groups and the sham group. 1H nuclear magnetic resonance spectroscopy was used to detect metabolites in the left and right cerebral hemispheres. Compared with the sham group, the concentrations of lactate, alanine, γ-aminobutyric acid, choline and glycine in the ischemic cerebral hemisphere were increased in the acute stage, while the concentrations of N-acetyl aspartate, creatinine, glutamate and aspartate were decreased. This demonstrates that there is an upregulation of anaerobic glycolysis (shown by the increase in lactate, a perturbation of choline metabolism (suggested by the increase in choline, neuronal cell damage (shown by the decrease in N-acetyl aspartate and neurotransmitter imbalance (evidenced by the increase in γ-aminobutyric acid and glycine and by the decrease in glutamate and aspartate in the acute stage of cerebral ischemia. In the contralateral hemisphere, the concentrations of lactate, alanine, glycine, choline and aspartate were increased, while the concentrations of γ-aminobutyric acid, glutamate and creatinine were decreased. This suggests that there is a

  16. Imaging of rat cerebral ischemia-reperfusion injury using99mTc-labeled duramycin

    International Nuclear Information System (INIS)

    Zhang Yuqing; Stevenson, Gail D.; Barber, Christy; Furenlid, Lars R.; Barrett, Harrison H.; Woolfenden, James M.; Zhao Ming; Liu Zhonglin

    2013-01-01

    Objectives: Prompt identification of necrosis and apoptosis in the infarct core and penumbra region is critical in acute stroke for delineating the underlying ischemic/reperfusion molecular pathologic events and defining therapeutic alternatives. The objective of this study was to investigate the capability of 99m Tc-labeled duramycin in detecting ischemia-reperfusion injury in rat brain after middle cerebral artery (MCA) occlusion. Methods: Ischemic cerebral injury was induced in ten rats by vascular insertion of a nylon suture in the left MCA for 3 hr followed by 21–24 hr reperfusion. After i.v. injection of 99m Tc-duramycin (1.0-3.5 mCi), dynamic cerebral images were acquired for 1 hr in six rats using a small-animal SPECT imager. Four other rats were imaged at 2 hr post-injection. Ex vivo images were obtained by autoradiography after sacrifice. Histologic analyses were performed to assess cerebral infarction and apoptosis. Results: SPECT images showed that 99m Tc-duramycin uptake in the left cerebral hemisphere was significantly higher than that in the right at 1 and 2 hr post-injection. The level of radioactive uptake in the ischemic brain varied based on ischemic severity. The average ratio of left cerebral hot-spot uptake to right hemisphere radioactivity, as determined by computerized ROI analysis, was 4.92 ± 0.79. Fractional washout at 1 hr was 38.2 ± 4.5% of peak activity for left cerebral hot-spot areas and 80.9 ± 2.0% for remote control areas (P 99m Tc-duramycin SPECT imaging may be useful for detecting and quantifying ongoing apoptotic neuronal cell loss induced by ischemia-reperfusion injury.

  17. Arctigenin protects focal cerebral ischemia-reperfusion rats through inhibiting neuroinflammation.

    Science.gov (United States)

    Fan, Tao; Jiang, Wei Long; Zhu, Jian; Feng Zhang, Yu

    2012-01-01

    Stroke is the third leading cause of death in industrialized countries and the most important cause of acquired adult disability. Many evidences suggest that inflammation accounts for the progression of cerebral ischemic injury. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignin isolated from certain plants, has shown anti-inflammatory activity against diabetes and Alzheimer's disease. In this study, we tested whether arctigenin can protect middle cerebral artery occluded (MCAO) rats. Male Sprague-Dawley rats were pretreated with arctigenin or vehicle for 7 d before being subjected to transient occlusion of middle cerebral artery and reperfusion. Rats were evaluated at 24 h after MCAO for neurological deficit scoring. Furthermore, the mechanism of the anti-inflammatory effect of arctigenin was investigated with a focus on inflammatory cells, proinflammatory cytokines, and transcriptional factors. Arctigenin significantly reduced cerebral infarction and improved neurological outcome. Arctigenin suppressed the activation of microglia and decreased the expression of interleukin (IL)- 1β and tumor necrosis factor (TNF)-α. These results revealed that arctigenin has a promising therapeutic effect in ischemic stroke treatment through an anti-inflammatory mechanism.

  18. A Microarray Study of Middle Cerebral Occlusion Rat Brain with Acupuncture Intervention

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2015-01-01

    Full Text Available Microarray analysis was used to investigate the changes of gene expression of ischemic stroke and acupuncture intervention in middle cerebral artery occlusion (MCAo rat brain. Results showed that acupuncture intervention had a remarkable improvement in neural deficit score, cerebral blood flow, and cerebral infarction volume of MCAo rats. Microarray analysis showed that a total of 627 different expression genes were regulated in ischemic stroke. 417 genes were upregulated and 210 genes were downregulated. A total of 361 different expression genes were regulated after acupuncture intervention. Three genes were upregulated and 358 genes were downregulated. The expression of novel genes after acupuncture intervention, including Tph1 and Olr883, was further analyzed by Real-Time Quantitative Polymerase Chain Reaction (RT-PCR. Upregulation of Tph1 and downregulation of Olr883 indicated that the therapeutic effect of acupuncture for ischemic stroke may be closely related to the suppression of poststroke depression and regulation of olfactory transduction. In conclusion, the present study may enrich our understanding of the multiple pathological process of ischemic brain injury and indicate possible mechanisms of acupuncture on ischemic stroke.

  19. Potential neuroprotective effects of acupuncture stimulation on diabetes mellitus in a global ischemic rat model

    International Nuclear Information System (INIS)

    Choi, Samjin; Lee, Gi-Ja; Chae, Su-Jin; Kang, Sung Wook; Park, Hun-Kuk; Yin, Chang-Shik; Lee, Seung-Hoon; Choi, Seok Keun

    2010-01-01

    Acupuncture (ACU) is known to be effective in ischemia treatment, and glutamate (GLU) excitotoxicity is an important factor in neuronal cell death. We observed the effect of ACU on cerebral blood flow (%CBF) and ΔGLU (the changes in GLU release) in the ischemic stroke rat model of diabetic mellitus (DM). A global ischemia was induced using the eleven-vessel occlusion (11-VO) method in 14 Sprague-Dawley rats (DM), which were randomly divided into two groups: the control group and the ACU-treatment group. Extracellular ΔGLU was assessed using an intra-cerebral biosensor system measuring 256 samples per second, simultaneously with %CBF and electroencephalogram. ACU stimulation was applied to ACU points GB34 and GB39 during the ischemic period. Twenty-three diagnostic parameters were proposed first for a detailed analysis of changes in %CBF and GLU release during ischemia/reperfusion. ACU rats showed a significant decrease in ischemic (p < 0.05) and reperfusion %CBF (p < 0.0001) than control rats, and a significantly larger decrease in ischemic ΔGLU (p < 0.05) and peak level of reperfusion ΔGLU (p < 0.005) than control rats. From these results, we suggest that ACU stimulation is responsible for the potential protection of neurons through suppression of %CBF response in the increased plasma osmolality and extracellular ΔGLU in diabetic rats under ischemic conditions

  20. Effect of Pre-nutrion of Flax Seed Oil (Linum Usitatissimum on the amount of Cerebral ischemic lesion and motor nerve disorders in animal model rat.

    Directory of Open Access Journals (Sweden)

    SV Hosseini

    2015-10-01

    Full Text Available Background & aim: Stroke is the third death agent (factor in industrial countries after cardiovascular disease and cancer. With regard to high content of antioxidant materials in flax seed oil like &alpha-linolenic acid, lignan as well as phenolic combinations like secoisolarisirsinol (SDG, this study performed for studding relationship between of cerebral ischemic lesion and motor-nerve disorders in model of stroke in rat. Methods: in the study, 35 male mice from strain Wistar divided to 5 groups. The groups included control, sham and 3 experimental groups. They received doses 0.25, 0.5 and 0.75 ml/kg from flax seed oil orally. By gavage for 30 days two control and sham groups received aqua distillate (distil water. Two hours after the last gavaged dose, overly group with 7 pieces operated for measurement of the amount of cerebral lesion and motor-nerve disorders. (Middle Cerebral Artery Occlusion Model. Middle cerebral Artery Occlusion by the model resulted in local ischemic stroke in animal. Data analyzed by software SPSS, test ANOVA and disorders by test mann-Whitney. Findings: Average of records of motor-nerve disorders decreased significantly in group with dose 0.5 and 0.75 using flax seed oil (P<0.05. The amount of cerebral ischemic lesion in doses 0.5 and 0.75 than to control group is indicated meaning full different, but percent of the total cerebral lesion in control group in compared group with dose 0.25 is not indicated meaningful different. Percent of the amount of ischemic lesion in region penumbra in group 0.75 and 0.5 than to control group is indicated meaningful different, but percent of the amount of lesion in region penumbra in control group in compared region penumbra in group with dose 0.25 is not indicated meaning full different. Results: Findings of the study indicated that flax seed oil, particular in doses 0.5 and 0.75 resulted to decrease of the amount of cerebral ischemic lesion and decrease of motor-nerve disorders in

  1. Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity.

    Science.gov (United States)

    Guo, Hong; Hu, Li-Min; Wang, Shao-Xia; Wang, Yu-Lin; Shi, Fang; Li, Hui; Liu, Yang; Kang, Li-Yuan; Gao, Xiu-Mei

    2011-12-31

    An increasing number of studies has indicated that hypoxic-ischemic-induced cerebral injury is partly mediated via oxidative stress. Recent researches have focused on searching for drug and herbal manipulations to protect against hypoxic-ischemic-induced oxidative cell damage. Scutellarin is a flavonoid derived from the Erigeron breviscapus (vant.) and has been reported to exhibit neuroprotective properties. However, its precise mechanism, particularly its antioxidation mechanism, remains elusive. In the present study, we investigated the neuroprotective effects of scutellarin on middle cerebral artery occlusion (MCAO)-induced brain damage in rats, and oxygen-glucose deprivation (OGD)-induced toxicity in primary culture of rat cortical neurons. In vivo, intraperitoneal injections of scutellarin (20 and 60 mg/kg) improved the neurological score and diminished the percentage of brain infarct volume. At the same time, scutellarin significantly increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) level in ischemic brain tissues, enhancing endogenous antioxidant activity. Moreover, pretreatment of scutellarin (25, 50 and 100 μM) protected neurons against lethal stimuli, decreased the percentage of apoptotic cells and inhibited reactive oxygen species (ROS) generation in OGD-induced primary cortical neurons in vitro. These results suggest that the preventive and therapeutic potential of scutellarin in cerebral injury patients is, at least in part, ascribed to augmentation of cellular antioxidant defense capacity.

  2. Investigation of Epidermal Growth Factor, Tumor Necrosis Factor-alpha and Thioredoxin System in Rats Exposed to Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Erol-Demirbilek Melike

    2016-09-01

    Full Text Available Background: Thioredoxin reductase (TrxR, epidermal growth factor (EGF and tumor necrosis factor-α (TNF-α have neuroprotective/neurotoxic effects in cerebral ischemia. We aimed to investigate the TrxR activity, EGF and TNF-α levels in cerebral ischemic, sham-operated and non-ischemic rat brains.

  3. Hemopexin induces neuroprotection in the rat subjected to focal cerebral ischemia.

    Science.gov (United States)

    Dong, Beibei; Cai, Min; Fang, Zongping; Wei, Haidong; Zhu, Fangyun; Li, Guochao; Dong, Hailong; Xiong, Lize

    2013-06-10

    The plasma protein hemopexin (HPX) exhibits the highest binding affinity to free heme. In vitro experiments and gene-knock out technique have suggested that HPX may have a neuroprotective effect. However, the expression of HPX in the brain was not well elucidated and its expression after cerebral ischemia-reperfusion injury was also poorly studied. Furthermore, no in vivo data were available on the effect of HPX given centrally on the prognosis of focal cerebral ischemia. In the present study, we systematically investigated expression of HPX in normal rat brain by immunofluorescent staining. The results showed that HPX was mainly expressed in vascular system and neurons, as well as in a small portion of astrocytes adjacent to the vessels in normal rat brain. Further, we determined the role of HPX in the process of focal cerebral ischemic injury and explored the effects of HPX treatment in a rat model of transient focal cerebral ischemia. After 2 h' middle cerebral artery occlusion (MCAO) followed by 24 h' reperfusion, the expression of HPX was increased in the neurons and astrocytes in the penumbra area, as demonstrated by immunohistochemistry and Western blot techniques. Intracerebroventricular injection of HPX at the onset of reperfusion dose-dependently reduced the infarct volumes and improved measurements of neurological function of the rat subjected to transient focal cerebral ischemia. The neuroprotective effects of HPX sustained for up to 7 days after experiments. Our study provides a new insight into the potential neuroprotective role of HPX as a contributing factor of endogenous protective mechanisms against focal cerebral ischemia injury, and HPX might be developed as a potential agent for treatment of ischemic stroke.

  4. LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats

    International Nuclear Information System (INIS)

    Fang, T.; Zhou, D.; Lu, L.; Tong, X.; Wu, J.; Yi, L.

    2016-01-01

    Inflammation plays a pivotal role in ischemic stroke, when activated microglia release excessive pro-inflammatory mediators. The inhibition of integrin αvβ3 improves outcomes in rat focal cerebral ischemia models. However, the mechanisms by which microglia are neuroprotective remain unclear. This study evaluated whether post-ischemic treatment with another integrin αvβ3 inhibitor, the cyclic arginine-glycine-aspartic acid (RGD) peptide-cGRGDdvc (LXW7), alleviates cerebral ischemic injury. The anti-inflammatory effect of LXW7 in activated microglia within rat focal cerebral ischemia models was examined. A total of 108 Sprague-Dawley rats (250–280 g) were subjected to middle cerebral artery occlusion (MCAO). After 2 h, the rats were given an intravenous injection of LXW7 (100 μg/kg) or phosphate-buffered saline (PBS). Neurological scores, infarct volumes, brain water content (BWC) and histology alterations were determined. The expressions of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], and Iba1-positive activated microglia, within peri-ischemic brain tissue, were assessed with ELISA, western blot and immunofluorescence staining. Infarct volumes and BWC were significantly lower in LXW7-treated rats compared to those in the MCAO + PBS (control) group. The LXW7 treatment lowered the expression of pro-inflammatory cytokines. There was a reduction of Iba1-positive activated microglia, and the TNF-α and IL-1β expressions were attenuated. However, there was no difference in the Zea Longa scores between the ischemia and LXW7 groups. The results suggest that LXW7 protected against focal cerebral ischemia and attenuated inflammation in activated microglia. LXW7 may be neuroprotective during acute MCAO-induced brain damage and microglia-related neurodegenerative diseases

  5. LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fang, T.; Zhou, D.; Lu, L.; Tong, X.; Wu, J.; Yi, L. [Department of Neurology, Shenzhen Hospital, Peking University, Shenzhen (China)

    2016-08-01

    Inflammation plays a pivotal role in ischemic stroke, when activated microglia release excessive pro-inflammatory mediators. The inhibition of integrin αvβ3 improves outcomes in rat focal cerebral ischemia models. However, the mechanisms by which microglia are neuroprotective remain unclear. This study evaluated whether post-ischemic treatment with another integrin αvβ3 inhibitor, the cyclic arginine-glycine-aspartic acid (RGD) peptide-cGRGDdvc (LXW7), alleviates cerebral ischemic injury. The anti-inflammatory effect of LXW7 in activated microglia within rat focal cerebral ischemia models was examined. A total of 108 Sprague-Dawley rats (250–280 g) were subjected to middle cerebral artery occlusion (MCAO). After 2 h, the rats were given an intravenous injection of LXW7 (100 μg/kg) or phosphate-buffered saline (PBS). Neurological scores, infarct volumes, brain water content (BWC) and histology alterations were determined. The expressions of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], and Iba1-positive activated microglia, within peri-ischemic brain tissue, were assessed with ELISA, western blot and immunofluorescence staining. Infarct volumes and BWC were significantly lower in LXW7-treated rats compared to those in the MCAO + PBS (control) group. The LXW7 treatment lowered the expression of pro-inflammatory cytokines. There was a reduction of Iba1-positive activated microglia, and the TNF-α and IL-1β expressions were attenuated. However, there was no difference in the Zea Longa scores between the ischemia and LXW7 groups. The results suggest that LXW7 protected against focal cerebral ischemia and attenuated inflammation in activated microglia. LXW7 may be neuroprotective during acute MCAO-induced brain damage and microglia-related neurodegenerative diseases.

  6. Imaging of cerebral ischemic edema and neuronal death

    Energy Technology Data Exchange (ETDEWEB)

    Kummer, Ruediger von [Universitaetsklinikum Carl Gustav Carus, Institut fuer Diagnostische und Interventionelle Neuroradiologie, Dresden (Germany); Dzialowski, Imanuel [Elblandklinikum Meissen, Neurologische Rehabilitationsklinik Grossenhain, Meissen (Germany)

    2017-06-15

    In acute cerebral ischemia, the assessment of irreversible injury is crucial for treatment decisions and the patient's prognosis. There is still uncertainty how imaging can safely differentiate reversible from irreversible ischemic brain tissue in the acute phase of stroke. We have searched PubMed and Google Scholar for experimental and clinical papers describing the pathology and pathophysiology of cerebral ischemia under controlled conditions. Within the first 6 h of stroke onset, ischemic cell injury is subtle and hard to recognize under the microscope. Functional impairment is obvious, but can be induced by ischemic blood flow allowing recovery with flow restoration. The critical cerebral blood flow (CBF) threshold for irreversible injury is ∝15 ml/100 g x min. Below this threshold, ischemic brain tissue takes up water in case of any residual capillary flow (ionic edema). Because tissue water content is linearly related to X-ray attenuation, computed tomography (CT) can detect and measure ionic edema and, thus, determine ischemic brain infarction. In contrast, diffusion-weighted magnetic resonance imaging (DWI) detects cytotoxic edema that develops at higher thresholds of ischemic CBF and is thus highly sensitive for milder levels of brain ischemia, but not specific for irreversible brain tissue injury. CT and MRI are complimentary in the detection of ischemic stroke pathology and are valuable for treatment decisions. (orig.)

  7. Pre-Ischemic Treadmill Training for Prevention of Ischemic Brain Injury via Regulation of Glutamate and Its Transporter GLT-1

    Directory of Open Access Journals (Sweden)

    Jingchun Guo

    2012-07-01

    Full Text Available Pre-ischemic treadmill training exerts cerebral protection in the prevention of cerebral ischemia by alleviating neurotoxicity induced by excessive glutamate release following ischemic stroke. However, the underlying mechanism of this process remains unclear. Cerebral ischemia-reperfusion injury was observed in a rat model after 2 weeks of pre-ischemic treadmill training. Cerebrospinal fluid was collected using the microdialysis sampling method, and the concentration of glutamate was determined every 40 min from the beginning of ischemia to 4 h after reperfusion with high-performance liquid chromatography (HPLC-fluorescence detection. At 3, 12, 24, and 48 h after ischemia, the expression of the glutamate transporter-1 (GLT-1 protein in brain tissues was determined by Western blot respectively. The effect of pre-ischemic treadmill training on glutamate concentration and GLT-1 expression after cerebral ischemia in rats along with changes in neurobehavioral score and cerebral infarct volume after 24 h ischemia yields critical information necessary to understand the protection mechanism exhibited by pre-ischemic treadmill training. The results demonstrated that pre-ischemic treadmill training up-regulates GLT-1 expression, decreases extracellular glutamate concentration, reduces cerebral infarct volume, and improves neurobehavioral score. Pre-ischemic treadmill training is likely to induce neuroprotection after cerebral ischemia by regulating GLT-1 expression, which results in re-uptake of excessive glutamate.

  8. Anti-ischemic effect of curcumin in rat brain.

    Science.gov (United States)

    Shukla, Pradeep K; Khanna, Vinay K; Ali, Mohd M; Khan, Mohd Y; Srimal, Rikhab C

    2008-06-01

    Turmeric has been in use since ancient times as a condiment and due to its medicinal properties. Curcumin, the yellow colouring principle in turmeric, is polyphenolic and major active constituent. Besides anti-inflammatory, thrombolytic and anticarcinogenic activities, curcumin also possesses strong antioxidant property. In view of the novel combination of properties, neuroprotective efficacy of curcumin was studied in rat middle cerebral artery occlusion (MCAO) model. Rats were subjected to 2 h of focal ischemia followed by 72 h of reperfusion. They were pre-treated with curcumin (100 mg/kg, po) for 5 days prior to MCAO and for another 3 days after MCAO. The parameters studied were behavioural, biochemical and histological. Treatment with curcumin could significantly improve neurobehavioral performance compared to untreated ischemic rats as judged by its effect on rota-rod performance and grid walking. A significant inhibition in lipid peroxidation and an increase in superoxide dismutase (SOD) activity in corpus striatum and cerebral cortex was observed following treatment with curcumin in MCAO rats as compared to MCAO group. Intracellular calcium levels were decreased following treatment with curcumin in MCAO rats. Histologically, a reduction in the infarct area from 33% to 24% was observed in MCAO rats treated with curcumin. The study demonstrates the protective efficacy of curcumin in rat MCAO model.

  9. Effect of electroacupuncture on TRPM7 mRNA expression after cerebral ischemia/reperfusion in rats via TrkA pathway.

    Science.gov (United States)

    Zhao, Li; Shi, Jing; Sun, Ning; Tian, Shunlian; Meng, Xianfang; Liu, Xiaochun; Li, Lingli

    2005-01-01

    The effect of electroacupuncture (EA) on TRPM7 mRNA expression of focal cerebral ischemia in rats and further the role of EA in the relationship between TRPM7 and trkA pathway was investigated. Thirty SD rats were randomly divided into 5 groups : normal group, ischemia/reperfusion group, EA treated group (ischemic rats with EA treatment), TE infusion group (ischemic rats with EA treatment and TE buffer infusion), AS-ODN group (ischemic rats with EA treatment and antisense trkA oligonucleotide infusion). The stroke animal model was established by the modified method of middle cerebral artery occlusion. Antisense trkA oligonucleotide that blocked NGFs effects was injected into cerebroventricle before EA. The TRPM7 mRNA was detected by RT-PCR method. The results showed that there were low TRPM7 mRNA levels in cortex and hippocampus in normal group. Compared with normal group, TRPM7 mRNA expression was increased significantly in ischemia/reperfusion group (PPM7 mRNA was found in EA treated group in contrast to ischemia/reperfusion group (P<0.05). The expression of TRPM7 mRNA in AS-ODN group was remarkably increased compared with EA treated group and TE infusion group (P<0.05). The results indicated that TRPM7 channels in the ischemic cortex and hippocampus in rats might play a key role in ischemic brain injury. EA could reverse the overexpression of TRPM7 in cerebral ischemia/reperfusion rats. And the inhibitory effect of EA on TRPM7 channels might be through trkA pathway.

  10. Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-09-01

    α-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined α-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in α-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased α-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that α-synuclein regulates neuronal survival, and low levels of α-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in α-synuclein and consequently causes serious brain damage.

  11. Sevoflurane postconditioning against cerebral ischemic neuronal injury is abolished in diet-induced obesity: role of brain mitochondrial KATP channels.

    Science.gov (United States)

    Yang, Zecheng; Chen, Yunbo; Zhang, Yan; Jiang, Yi; Fang, Xuedong; Xu, Jingwei

    2014-03-01

    Obesity is associated with increased infarct volumes and adverse outcomes following ischemic stroke. However, its effect on anesthetic postconditioning‑induced neuroprotection has not been investigated. The present study examined the effect of sevoflurane postconditioning on focal ischemic brain injury in diet‑induced obesity. Sprague‑Dawley rats were fed a high‑fat diet (HF; 45% kcal as fat) for 12 weeks to develop obesity syndrome. Rats fed a low‑fat diet (LF; 10% kcal as fat) served as controls. The HF or LF‑fed rats were subjected to focal cerebral ischemia for 60 min, followed by 24 h of reperfusion. Postconditioning was performed by exposure to sevoflurane for 15 min immediately at the onset of reperfusion. The involvement of the mitochondrial KATP (mitoKATP) channel was analyzed by the administration of a selective inhibitor of 5‑hydroxydecanoate (5‑HD) prior to sevoflurane postconditioning or by administration of diazoxide (DZX), a mitoKATP channel opener, instead of sevoflurane. The cerebral infarct volume, neurological score and motor coordination were evaluated 24 h after reperfusion. The HF‑fed rats had larger infarct volumes, and lower neurological scores than the LF‑fed rats and also failed to respond to neuroprotection by sevoflurane or DZX. By contrast, sevoflurane and DZX reduced the infarct volumes and improved the neurological scores and motor coordination in the LF‑fed rats. Pretreatment with 5‑HD inhibited sevoflurane‑induced neuroprotection in the LF‑fed rats, whereas it had no effect in the HF‑fed rats. Molecular studies demonstrated that the expression of Kir6.2, a significant mitoKATP channel component, was reduced in the brains of the HF‑fed rats compared with the LF‑fed rats. The results of this study indicate that diet‑induced obesity eliminates the ability of anesthetic sevoflurane postconditioning to protect the brain against cerebral ischemic neuronal injury, most likely due to an impaired brain

  12. Prdx6 Upregulation by Curcumin Attenuates Ischemic Oxidative Damage via SP1 in Rats after Stroke

    Directory of Open Access Journals (Sweden)

    Gongwei Jia

    2017-01-01

    Full Text Available Background. The role of Peroxiredoxin 6 (Prdx6 in brain ischemia remains unclear. Curcumin (Cur treatment elicits neuroprotective effects against cerebral ischemic injury, and the associated mechanisms may involve Prdx6. In this study, we investigated whether Prdx6 and the transcription factor specific protein 1 (SP1 were involved in the antioxidant effect of Cur after stoke. Methods. Focal cerebral ischemic injury was induced by transient middle cerebral artery occlusion for 2 hours in male Sprague-Dawley rats treated with or without Prdx6 siRNA. Expression of Prdx6 in the penumbra was assessed by Real-Time PCR (RT-PCR, Western blot analysis, and immunoflourescent staining. In addition, infarct volume, neurological deficit score, and oxidative stress were evaluated. Prdx6 levels were also determined in the presence and absence of SP1 antagonist mithramycin A (MTM-A. Results. Cur treatment upregulated Prdx6 protein expression and the number of Prdx6-positive neuronal cells 24 hours after reperfusion. Cur treatment also attenuated oxidative stress and induced neuroprotective effects against ischemic damage, whereas the beneficial effects of Cur treatment were lost in animals treated with Prdx6-siRNA. Prdx6 upregulation by Cur treatment was abolished by SP1 antagonists MTM. Conclusions. Prdx6 upregulation by Cur treatment attenuates ischemic oxidative damage through SP1 induction in rats after stroke. This represents a novel mechanism of Cur-induced neuroprotection against cerebral ischemia.

  13. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    International Nuclear Information System (INIS)

    Jing, Xu; Ren, Dongmei; Wei, Xinbing; Shi, Huanying; Zhang, Xiumei; Perez, Ruth G.; Lou, Haiyan; Lou, Hongxiang

    2013-01-01

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury

  14. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Xu [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Ren, Dongmei [Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, Jinan 250012 (China); Wei, Xinbing; Shi, Huanying; Zhang, Xiumei [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Perez, Ruth G. [Health Science Center, Paul L. Foster School of Medicine, Texas Tech University, El Paso, TX, 79905 (United States); Lou, Haiyan, E-mail: louhaiyan@sdu.edu.cn [Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012 (China); Lou, Hongxiang [Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, Jinan 250012 (China)

    2013-12-15

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury.

  15. Goreisan Inhibits Upregulation of Aquaporin 4 and Formation of Cerebral Edema in the Rat Model of Juvenile Hypoxic-Ischemic Encephalopathy

    Science.gov (United States)

    Yano, Hajime; Takahashi, Hisaaki; Yoshimoto, Kouhei; Tsuda, Shinji; Fujiyama, Kenta; Izumo-Shimizu, Yusuke; Motoie, Ryota; Ito, Masanori; Tanaka, Junya; Ishii, Eiichi

    2017-01-01

    Secondary cerebral edema regulation is of prognostic significance in hypoxic-ischemic encephalopathy (HIE), and aquaporin 4 (AQP4) plays an important role in the pathogenesis of cerebral edema. The traditional Japanese herbal medicine Goreisan relieves brain edema in adults; however, its effect and pharmacological mechanism in children are unknown. We investigated the effects of Goreisan on HIE-associated brain edema and AQP4 expression in a juvenile rat model, established by combined occlusion of middle cerebral and common carotid arteries. Magnetic resonance imaging showed that the lesion areas were significantly smaller in the Goreisan- (2 g/kg) treated group than in the nontreated (saline) group at 24 and 48 h postoperatively. AQP4 mRNA levels in the lesion and nonlesion sides were significantly suppressed in the Goreisan group compared with the nontreated group 36 h postoperatively. Western blotting revealed that levels of AQP4 protein were significantly decreased in the Goreisan group compared with the nontreated group in the lesion side 72 h postoperatively, but not at 12 or 36 h. After 14 days, the Goreisan group had a significantly better survival rate. These findings suggest that Goreisan suppresses brain edema in HIE and improves survival in juvenile rats, possibly via regulation of AQP4 expression and function. PMID:29234383

  16. Goreisan Inhibits Upregulation of Aquaporin 4 and Formation of Cerebral Edema in the Rat Model of Juvenile Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yano

    2017-01-01

    Full Text Available Secondary cerebral edema regulation is of prognostic significance in hypoxic-ischemic encephalopathy (HIE, and aquaporin 4 (AQP4 plays an important role in the pathogenesis of cerebral edema. The traditional Japanese herbal medicine Goreisan relieves brain edema in adults; however, its effect and pharmacological mechanism in children are unknown. We investigated the effects of Goreisan on HIE-associated brain edema and AQP4 expression in a juvenile rat model, established by combined occlusion of middle cerebral and common carotid arteries. Magnetic resonance imaging showed that the lesion areas were significantly smaller in the Goreisan- (2 g/kg treated group than in the nontreated (saline group at 24 and 48 h postoperatively. AQP4 mRNA levels in the lesion and nonlesion sides were significantly suppressed in the Goreisan group compared with the nontreated group 36 h postoperatively. Western blotting revealed that levels of AQP4 protein were significantly decreased in the Goreisan group compared with the nontreated group in the lesion side 72 h postoperatively, but not at 12 or 36 h. After 14 days, the Goreisan group had a significantly better survival rate. These findings suggest that Goreisan suppresses brain edema in HIE and improves survival in juvenile rats, possibly via regulation of AQP4 expression and function.

  17. Ischemic lesions related to cerebral angiography: Evaluation by diffusion weighted MR imaging

    International Nuclear Information System (INIS)

    Kato, Koki; Tomura, Noriaki; Takahashi, Satoshi; Sakuma, Ikuo; Watarai, Jiro

    2003-01-01

    We examined the incidence of ischemic lesions occurring after cerebral angiography by means of diffusion weighted MR imaging (DWI). Fifty patients were included in this study. Balloon occlusion tests of the internal carotid artery were performed in 9 of the 50 patients. DWI was performed on the same day as the cerebral angiography or on the following day. No new neurological deficits were found after cerebral angiography. However, 13 of the 50 cases revealed new ischemic lesions after cerebral angiography. The incidence of ischemic lesions was significantly different between patients who underwent balloon occlusion tests and patients who did not. The incidence of ischemic lesions was not influenced by the duration of the procedure, use of additional catheters, total amount of contrast material or the type of contrast material. The incidence of clinically silent ischemic lesions related to cerebral angiography is greater than the incidence of neurological complications. In patients who underwent occlusion tests of the internal carotid artery, the incidence of silent lesions was significantly higher than in patients who did not. (orig.)

  18. Cerebral ischemic stroke: is gender important?

    Science.gov (United States)

    Gibson, Claire L

    2013-09-01

    Cerebral stroke continues to be a major cause of death and the leading cause of long-term disability in developed countries. Evidence reviewed here suggests that gender influences various aspects of the clinical spectrum of ischemic stroke, in terms of influencing how a patients present with ischemic stroke through to how they respond to treatment. In addition, this review focuses on discussing the various pathologic mechanisms of ischemic stroke that may differ according to gender and compares how intrinsic and hormonal mechanisms may account for such gender differences. All clinical trials to date investigating putative neuroprotective treatments for ischemic stroke have failed, and it may be that our understanding of the injury cascade initiated after ischemic injury is incomplete. Revealing aspects of the pathophysiological consequences of ischemic stroke that are gender specific may enable gender relevant and effective neuroprotective strategies to be identified. Thus, it is possible to conclude that gender does, in fact, have an important role in ischemic stroke and must be factored into experimental and clinical investigations of ischemic stroke.

  19. Amelioration of cognitive, motor and endogenous defense functions with silymarin, piracetam and protocatechuic acid in the cerebral global ischemic rat model.

    Science.gov (United States)

    Muley, Milind M; Thakare, Vishnu N; Patil, Rajesh R; Bafna, Pallavi A; Naik, Suresh R

    2013-07-19

    The neuroprotective activities of silymarin, piracetam and protocatechuic acid ethyl ester (PCA) on cerebral global ischemic/reperfusion were evaluated in a rat model. A midline ventral incision was made in the throat region. The right and left common carotid arteries were located and a bilateral common carotid artery occlusion (BCCAO) was performed for 30min using atraumatic clamps followed by a 24h period of reperfusion. Neurological/behavioral functions (cognitive and motor), endogenous defense systems (lipid peroxidation, glutathione, catalase, and superoxide dismutase), reduced water content and infarct size and histopathological alterations were then studied. Silymarin and PCA treatments significantly improved cognitive, motor and endogenous defense functions, histopathological alterations, and, reduced both water content and infarct size compared to the vehicle-treated ischemic control group. Piracetam treatment improved neurological and histopathological alterations, reduced water content and infarct size, but failed to restore/prevent the impaired endogenous defense functions significantly. Silymarin showed better neuroprotection than piracetam and PCA in experimentally induced global ischemic/reperfusion and was able to facilitate mnemonic performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. An experimental study on cerebral ischemic penumbra imaging with 99Tcm-HL91

    International Nuclear Information System (INIS)

    Zhu Cansheng; Jiang Ningyi

    2002-01-01

    Objective: To investigate the biodistribution of 99 Tc m -4,9-diaza-3,3,10,10-tetramethyl dodecan-2,11-dione dioxime (HL91) in rat model of middle cerebral artery occlusion (MCAO). Methods: Thirty-one MCAO rats were established. Fourteen rats were used to study the biodistribution of 99 Tc m -HL91 and 15 rats were used to study the distribution of 99 Tc m -HL91 in the brain of MCAO model rats. Autoradiographic study of brain was also done in 16 MCAO model rats. Results: The liver and kidney retention were higher than that in other tissues. At 1 h after injection, small intestine retention was also high. But radioactivity in normal brain was low. Retention in target site was higher than that in non-target site. Difference between subgroups of operation and that of pseudo operation was significant (P 99 Tc m -HL91 at the target-ischemic area was shown in the autoradiograph. By using computer-enhanced image analysis, difference between target site and non-target site in the same autoradiograph and the differences between operation subgroups and that of pseudo-subgroups were all significant via Dunnett t-test and One-Way ANOVA. Conclusions: 99 Tc m -HL91 can be avidly taken up by ischemic penumbra and target/non-target ratio is high. 99 Tc m -HL91 is a potential agent for hypoxic tissue imaging, and 99 Tc m -HL91 SPECT is a promising modality in detecting the ischemic penumbra

  1. Changes of resting cerebral activities in subacute ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2015-01-01

    Full Text Available This study aimed to detect the difference in resting cerebral activities between ischemic stroke patients and healthy participants, define the abnormal site, and provide new evidence for pathological mechanisms, clinical diagnosis, prognosis prediction and efficacy evaluation of ischemic stroke. At present, the majority of functional magnetic resonance imaging studies focus on the motor dysfunction and the acute stage of ischemic stroke. This study recruited 15 right-handed ischemic stroke patients at subacute stage (15 days to 11.5 weeks and 15 age-matched healthy participants. A resting-state functional magnetic resonance imaging scan was performed on each subject to detect cerebral activity. Regional homogeneity analysis was used to investigate the difference in cerebral activities between ischemic stroke patients and healthy participants. The results showed that the ischemic stroke patients had lower regional homogeneity in anterior cingulate and left cerebrum and higher regional homogeneity in cerebellum, left precuneus and left frontal lobe, compared with healthy participants. The experimental findings demonstrate that the areas in which regional homogeneity was different between ischemic stroke patients and healthy participants are in the cerebellum, left precuneus, left triangle inferior frontal gyrus, left inferior temporal gyrus and anterior cingulate. These locations, related to the motor, sensory and emotion areas, are likely potential targets for the neural regeneration of subacute ischemic stroke patients.

  2. Neuroprotective actions of taurine on hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Zhu, Xiao-Yun; Ma, Peng-Sheng; Wu, Wei; Zhou, Ru; Hao, Yin-Ju; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2016-06-01

    Taurine is an abundant amino acid in the nervous system, which has been proved to possess antioxidation, osmoregulation and membrane stabilization. Previously it has been demonstrated that taurine exerts ischemic brain injury protective effect. This study was designed to investigate whether the protective effect of taurine has the possibility to be applied to treat neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with left carotid artery ligation followed by exposure to 8% oxygen to generate the experimental group. The cerebral damage area was measured after taurine post-treatment with 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxyline-Eosin (HE) staining and Nissl staining. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), myeloperoxtidase (MPO), ATP and Lactic Acid productions were assayed with ipsilateral hemisphere homogenates. Western-blot and immunofluorescence assay were processed to detect the expressions of AIF, Cyt C, Bax, Bcl-2 in brain. We found that taurine significantly reduced brain infarct volume and ameliorated morphological injury obviously reversed the changes of SOD, MDA, GSH-Px, T-AOC, ATP, MPO, and Lactic Acid levels. Compared with hypoxic-ischemic group, it showed marked reduction of AIF, Cyt C and Bax expressions and increase of Bcl-2 after post-treatment. We conclude that taurine possesses an efficacious neuroprotective effect after cerebral hypoxic-ischemic damage in neonatal rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cerebral hemodynamics in adult ischemic-type patients with moyamoya disease compared with those of atherothrombotic middle cerebral artery occlusion

    International Nuclear Information System (INIS)

    Idei, Masaru; Yamane, Kanji; Nishida, Masahiro; Manabe, Kazufumi; Yokota, Akira

    2005-01-01

    We measured regional cerebral blood flow (rCBF) in adult ischemic-type patients with moyamoya disease and in patients with atherothrombotic middle cerebral artery occlusion (MCAO) to investigate cerebral hemodynamics in adult ischemic-type of moyamoya disease. In this study we measured rCBF and regional cerebro-vascular response (rCVR) using acetazolamide by Xe-non-enhanced CT. Our subjects consisted of 15 adult ischemic-type patients with moyamoya disease and 27 atherothrombotic stroke patients with proximal occlusion of the middle cerebral artery. The region of inter est was conducted in the anterior cerebral artery, middle cerebral artery and posterior cerebral artery territories as well as basal ganglia regions. rGBF was preserved in all regions of patients with moyamoya disease. However, rCVR severely decreased in the anterior circulation territory in patients with moyamoya disease compared with those of MCAO. These results suggest that rCBF in the anterior circulation territory of adult ischemic-type patients with moyamoya disease is preserved by vasodilation of the cerebral arteries, while cerebral hemodynamic reserve capacity is severely reduced. The results indicated that basal moyamoya vessels are dilated. These findings may be one of the reasons why stroke occurs more frequently in adult than child patients with moyamoya disease. (author)

  4. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism

    Directory of Open Access Journals (Sweden)

    Yao-xian Xiang

    2015-01-01

    Full Text Available Vagus nerve stimulation exerts protective effects against ischemic brain injury; however, the underlying mechanisms remain unclear. In this study, a rat model of focal cerebral ischemia was established using the occlusion method, and the right vagus nerve was given electrical stimulation (constant current of 0.5 mA; pulse width, 0.5 ms; frequency, 20 Hz; duration, 30 seconds; every 5 minutes for a total of 60 minutes 30 minutes, 12 hours, and 1, 2, 3, 7 and 14 days after surgery. Electrical stimulation of the vagus nerve substantially reduced infarct volume, improved neurological function, and decreased the expression levels of tumor necrosis factor-and interleukin- 6 in rats with focal cerebral ischemia. The experimental findings indicate that the neuroprotective effect of vagus nerve stimulation following cerebral ischemia may be associated with the inhibition of tumor necrosis factor- and interleukin-6 expression.

  5. [Identification of early irreversible damage area in a rat model of cerebral ischemia and reperfusion].

    Science.gov (United States)

    Liu, S; Guo, Y

    2000-02-01

    To observe the early neuron ischemic damage in focal cerebral ischemia/reperfusion with histostaining methods of argyrophil III (AG III), Toludine blue(TB), and H&E, and to make out the 'separating line' between the areas of reversible and irreversible early ischemic damage. Forty-two male Wistar rats were randomly divided into the following groups: pseudo-surgical, blank-control, O2R0(occluded for 2 hours and reperfused for 0 hour), O2R0.5, O2R2, O2R4, O2R24. There were 6 rats in each group. Rats in experimental groups were suffered focal cerebral ischemia/reperfusion through a nylon suture method. After a special processor for tissue manage, the brain were coronal sectioned and stained with H&E, TB, and AG III. The area where dark neurons dwell in (ischemic core) were calculated with image analysis system. The success rate of ischemic model for this experiment is 90%. After being stained with argyrophil III method, normal neurons appear yellow or pale brown, which is hardly distinguished from the pale brown background. The ischemic neuron stained black, and has collapsed body and "corkscrew-like" axon or dentries, which were broken to some extent. The neuropil in the dark neurons dwelt area appears gray or pale black, which is apparently different from the pale brown neighborhood area. The distribution of dark neurons in cortex varies according to different layers, and has a character of columnar form. The dark neurons present as early as 2 hours ischemia without reperfusion with AG III method. AG III stain could selectively display early ischemic neurons, the area dwelt by dark neurons represent early ischemic core. Dark neuron is possibly the irreversibly damaged neuron. Identification of dark neurons could be helpful in the discrimination between early ischemic center and penumbra.

  6. EEG patterns from acute to chronic stroke phases in focal cerebral ischemic rats: correlations with functional recovery.

    Science.gov (United States)

    Zhang, Shao-jie; Ke, Zheng; Li, Le; Yip, Shea-ping; Tong, Kai-yu

    2013-04-01

    Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural

  7. EEG patterns from acute to chronic stroke phases in focal cerebral ischemic rats: correlations with functional recovery

    International Nuclear Information System (INIS)

    Zhang, Shao-jie; Ke, Zheng; Tong, Kai-yu; Li, Le; Yip, Shea-ping

    2013-01-01

    Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague–Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely

  8. UCAO (UNILATERAL CEREBRAL ARTERY OCCLUSSION METHOD INCREASES THE LEVEL OF MMP- 9 BRAIN TISSUE IN RATS MODEL OF ISCHEMIC STROKE

    Directory of Open Access Journals (Sweden)

    M. Rasjad Indra

    2016-07-01

    Full Text Available Background. For the last 5 years, 15.4% of total population died because of stroke, which 42.9% of those are caused by ischemic stroke. UCAO (Unilateral Cerebral Artery Occlusion is a stroke induction method by ligating mice’s carotid artery for 45 minutes. Thus, giving a hypoxic condition similar to stroke attack in human. This method is less complicated and far more efficient. MMP-9 is a stroke marker which is assayed by ELISA from the blood of test animal. Objective. This research was conducted to prove UCAO (Unilateral Cerebral Artery Occlusion method is capable to raise MMP-9 concentration in mice’s blood. Methods. This research was an experimental laboratory research with post-test only controlled group design. 8 male rats (8-10 weeks were divided into 2 groups, control and treatment which would be inducted into stroke by UCAO method. A day after the treatment group had been induced to stroke, both group were tested to measure the MMP-9 blood concentration through ELISA. Results. In this research, UCAO method had increased MMP-9 blood concentration in treatment group, compared to the control group. It is proved by the statistic tests, Mann-Whitney and Kruskal-Wallis, which showed a significant increase in treatment group (p < 0.05. Conclusion. Based on this result, it can be concluded that UCAO method is accepted as a method to create an ischemic stroke mice model.

  9. Targeted Temperature Management at 33°C or 36°C Produces Equivalent Neuroprotective Effects in the Middle Cerebral Artery Occlusion Rat Model of Ischemic Stroke.

    Science.gov (United States)

    Lee, Jung Ho; Lim, Jisoo; Chung, Yong Eun; Chung, Sung Phil; Park, Incheol; Kim, Chul Hoon; You, Je Sung

    2018-01-15

    Targeted temperature management (TTM, 32°C to 36°C) is one of the most successful achievements in modern resuscitation medicine. It has become standard treatment for survivors of sudden cardiac arrest to minimize secondary brain damage. TTM at 36°C is just as effective as TTM at 33°C and is actually preferred because it reduces adverse TTM-associated effects. TTM also likely has direct neuroprotective effects in ischemic brains in danger of stroke. It remains unclear, however, whether higher temperature TTM is equally effective in protecting the brain from the effects of stroke. Here, we asked whether TTM at 36°C is as effective as TTM at 33°C in improving outcomes in a middle cerebral artery occlusion (MCAO) model of ischemic stroke. After dividing rats randomly into MCAO, MCAO+33°C TTM, MCAO+36°C TTM and sham groups, we subjected all of them except for the sham group to MCAO for 3 h (for the behavioral tests) or 4 h (for all other biochemical analyses). We found TTM protocols at both 33°C and 36°C produce comparable reductions of infarct volumes in the MCAO territory and equally attenuate the extracellular release of high mobility group box 1 (HMGB1) in post-ischemic brains. Both TTM conditions prevent the mRNA induction of a major pro-inflammatory cytokine, TNF-α, in the ischemic penumbra region. Finally, both TTM protocols produce similar improvements in neurological outcomes in rats, as measured by a battery of behavior tests 21 h after the start of reperfusion. These data acquired in a rat MCAO model suggest TTM at 36°C has excellent therapeutic potential for improving clinical outcomes for patients with acute ischemic stroke.

  10. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Nabi Shamsaei; Mehdi Khaksari; Sohaila Erfani; Hamid Rajabi; Nahid Aboutaleb

    2015-01-01

    Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral isch-emic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction th rough occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic ex-ercise signiifcantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.

  11. Delayed treatment with ADAMTS13 ameliorates cerebral ischemic injury without hemorrhagic complication.

    Science.gov (United States)

    Nakano, Takafumi; Irie, Keiichi; Hayakawa, Kazuhide; Sano, Kazunori; Nakamura, Yoshihiko; Tanaka, Masayoshi; Yamashita, Yuta; Satho, Tomomitsu; Fujioka, Masayuki; Muroi, Carl; Matsuo, Koichi; Ishikura, Hiroyasu; Futagami, Kojiro; Mishima, Kenichi

    2015-10-22

    Tissue plasminogen activator (tPA) is the only approved therapy for acute ischemic stroke. However, delayed tPA treatment increases the risk of cerebral hemorrhage and can result in exacerbation of nerve injury. ADAMTS13, a von Willebrand factor (VWF) cleaving protease, has a protective effect against ischemic brain injury and may reduce bleeding risk by cleaving VWF. We examined whether ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA in mice subjected to middle cerebral artery occlusion (MCAO). ADAMTS13 (0.1mg/kg) or tPA (10mg/kg) was administered i.v., immediately after reperfusion of after 2-h or 4-h MCAO for comparison of the therapeutic time windows in ischemic stroke. Infarct volume, hemorrhagic volume, plasma high-mobility group box1 (HMGB1) levels and cerebral blood flow were measured 24h after MCAO. Both ADAMTS13 and tPA improved the infarct volume without hemorrhagic complications in 2-h MCAO mice. On the other hand, ADAMTS13 reduced the infarct volume and plasma HMGB1 levels, and improved cerebral blood flow without hemorrhagic complications in 4-h MCAO mice, but tPA was not effective and these animals showed massive intracerebral hemorrhage. These results indicated that ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA, and ADAMTS13 may be useful as a new therapeutic agent for ischemic stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke

    OpenAIRE

    Wang, Hailian; Li, Peiying; Xu, Na; Zhu, Ling; Cai, Mengfei; Yu, Weifeng; Gao, Yanqin

    2016-01-01

    Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects...

  13. Nicardipine reduces calcium accumulation and electrolyte derangements in regional cerebral ischemia in rats

    International Nuclear Information System (INIS)

    Hadani, M.; Young, W.; Flamm, E.S.

    1988-01-01

    We studied the effects of the calcium channel blocker nicardipine on regional tissue Ca 2+ , Na + , K + , and water shifts in the brains of seven Sprague-Dawley rats after permanent occlusions of the middle cerebral artery. We also assessed the entry of [ 14 C]nicardipine into the brains of five rats; the highest concentrations of [ 14 C]nicardipine were in the infarcted area. Nicardipine treatment significantly reduced Ca 2+ accumulation in the middle cerebral artery territory by 60% compared with six untreated rats 6 hours after arterial occlusion. Eight 125-micrograms/kg boluses of nicardipine given every 30 minutes starting 5 minutes after arterial occlusion also significantly reduced the Na + and K + shifts in the middle cerebral artery territory by 40% and 50%, respectively, 6 hours after arterial occlusion. Nicardipine appears to reduce Ca 2+ accumulation more than it reduces Na + and water accumulation and K + loss. Our results suggest that a calcium channel blocker can protect brain tissues in a model of focal cerebral infarction by directly reducing Ca 2+ entry into ischemic cells

  14. Niosomes of ascorbic acid and α-tocopherol in the cerebral ischemia-reperfusion model in male rats.

    Science.gov (United States)

    Varshosaz, Jaleh; Taymouri, Somayeh; Pardakhty, Abbas; Asadi-Shekaari, Majid; Babaee, Abodolreza

    2014-01-01

    The objective of the present study was to prepare a stable iv injectable formulation of ascorbic acid and α-tocopherol in preventing the cerebral ischemia. Different niosomal formulations were prepared by Span and Tween mixed with cholesterol. The physicochemical characteristics of niosomal formulations were evaluated in vitro. For in vivo evaluation, the rats were made ischemic by middle cerebral artery occlusion model for 30 min and the selected formulation was used for determining its neuroprotective effect against cerebral ischemia. Neuronal damage was evaluated by optical microscopy and transmission electron microscopy. The encapsulation efficiency of ascorbic acid was increased to more than 84% by remote loading method. The cholesterol content of the niosomes, the hydrophilicity potential of the encapsulated compounds, and the preparation method of niosomes were the main factors affecting the mean volume diameter of the prepared vesicles. High physical stability of the niosomes prepared from Span 40 and Span 60 was demonstrated due to negligible size change of vesicles during 6 months storage at 4-8(°)C. In vivo studies showed that ST60/Chol 35 : 35 : 30 niosomes had more neuroprotective effects against cerebral ischemic injuries in male rats than free ascorbic acid.

  15. Transplanted Dental Pulp Stem Cells Migrate to Injured Area and Express Neural Markers in a Rat Model of Cerebral Ischemia.

    Science.gov (United States)

    Zhang, Xuemei; Zhou, Yinglian; Li, Hulun; Wang, Rui; Yang, Dan; Li, Bing; Cao, Xiaofang; Fu, Jin

    2018-01-01

    Ischemic stroke is a major cause of disability and mortality worldwide, while effective restorative treatments are limited at present. Stem cell transplantation holds therapeutic potential for ischemic vascular diseases and may provide an opportunity for neural regeneration. Dental pulp stem cells (DPSCs) origin from neural crest and have neuro-ectodermal features including proliferation and multilineage differentiation potentials. The rat model of middle cerebral artery occlusion (MCAO) was used to evaluate whether intravenous administration of DPSCs can reduce infarct size and to estimate the migration and trans-differentiation into neuron-like cells in focal cerebral ischemia models. Brain tissues were collected at 4 weeks following cell transplantation and analyzed with immunofluorescence, immunohistochemistry and real-time polymerase chain reaction (RT-PCR) methods. Intravenously administration of rat-derived DPSCs were found to migrate into the boundary of ischemic areas and expressed neural specific markers, reducing infarct volume and cerebral edema. These results suggest that DPSCs treatment may serve as a potential therapy for clinical stroke patients in the future. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. Radial extracorporeal shock wave therapy improves cerebral blood flow and neurological function in a rat model of cerebral ischemia.

    Science.gov (United States)

    Kang, Nan; Zhang, Jing; Yu, Xiaotong; Ma, Yuewen

    2017-01-01

    We performed middle cerebral artery occlusion (MCAO) in rats to investigate the effect and some of the underlying mechanisms of radial extracorporeal shock wave therapy (rESWT) in cerebral ischemia rats. We measured neurological function and cerebral blood flow (CBF) using a full-field laser perfusion imager and brain infarct volume on days 3, 12, and 30. Immunofluorescence, western blot, and real-time polymerase chain reaction (PCR) techniques were used to detect the expression of vascular endothelial growth factor (VEGF), neuron-specific enolase (NSE), nestin, Wnt3a, and β-catenin in the ischemic hemisphere. The dose of rESWT used on the head revealed remarkable advantages over sham rESWT, as demonstrated by improved neurological function scores, increased CBF, and reduced brain infarct volume. Furthermore, applying rESWT to the head and limbs enhanced short-term neurological function. Our results confirmed that rESWT can induce VEGF expression over an extended period with a profound effect, which may be the primary reason for CBF recovery. High NSE and nestin expression levels suggest that rESWT enhanced the number of neurons and neural stem cells (NSCs). Wnt3a and β-catenin expression were up-regulated in the ischemic hemisphere, indicating that rESWT promoted NSC proliferation and differentiation via the Wnt/β-catenin pathway. Overall, our findings suggest that an appropriate rESWT dose delivered to the head of rats helps restore neurological function and CBF, and additional application of rESWT to the limbs is more effective than treating the head alone.

  17. Sulforaphane exerts neuroprotective effects via suppression of the inflammatory response in a rat model of focal cerebral ischemia

    OpenAIRE

    Ma, Li-Li; Xing, Guo-Ping; Yu, Yin; Liang, Hui; Yu, Tian-Xia; Zheng, Wei-Hong; Lai, Tian-Bao

    2015-01-01

    Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Sulforaphane exerts protective effects in a rat model of focal cerebral ischemia/reperfusion injury by alleviating brain edema. However, the possible mechanisms of sulforaphane after cerebral ischemia/reperfusion injury have not been fully elucidated. Therefore, in the present study, we investigated the effect of sulforaphane on inflammatory reaction and the potent...

  18. The synergetic effect of edaravone and borneol in the rat model of ischemic stroke.

    Science.gov (United States)

    Wu, Hai-Yin; Tang, Ying; Gao, Li-Yan; Sun, Wei-Xiang; Hua, Yao; Yang, Shi-Bao; Zhang, Zheng-Ping; Liao, Gao-Yong; Zhou, Qi-Gang; Luo, Chun-Xia; Zhu, Dong-Ya

    2014-10-05

    Free radical production contributes to the early ischemic response and the neuroinflammatory response to injury initiates the second wave of cell death following ischemic stroke. Edaravone is a free radical scavenger, and borneol has shown anti-inflammatory effect. We investigated the synergistic effect of these two drugs in the rat model of transient cerebral ischemia. Edaravone scavenged OH, NO and ONOO─ concentration-dependently, and borneol inhibited ischemia/reperfusion-induced tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) expressions. In the rat model of transient cerebral ischemia and reperfusion, the combination of edaravone and borneol significantly ameliorated ischemic damage with an optimal proportion of 4:1. Emax (% inhibition) of edaravone, borneol and two drugs in combination was 55.7%, 65.8% and 74.3% respectively. ED50 of edaravone and borneol was 7.17 and 0.36 mg/kg respectively. When two drugs in combination, ED50 was 0.484 mg/kg, in which edaravone was 0.387 mg/kg (ineffective dose) and borneol was 0.097 mg/kg (ineffective dose). Combination index (CI)edaravone and borneol. The combination exhibited a therapeutic time window of 6h in ischemia/reperfusion model, and significantly ameliorated damages in permanent ischemia model. Moreover, two drugs in combination promoted long-term effect, including improved elemental vital signs, sensorimotor functions and spatial cognition. Our results suggest that the combination of edaravone and borneol have a synergistic effect for treating ischemic stroke. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Function and mechanism of toll-like receptors in cerebral ischemic tolerance: from preconditioning to treatment

    OpenAIRE

    Wang, Peng-Fei; Xiong, Xiao-Yi; Chen, Jing; Wang, Yan-Chun; Duan, Wei; Yang, Qing-Wu

    2015-01-01

    Increasing evidence suggests that toll-like receptors (TLRs) play an important role in cerebral ischemia-reperfusion injury. The endogenous ligands released from ischemic neurons activate the TLR signaling pathway, resulting in the production of a large number of inflammatory cytokines, thereby causing secondary inflammation damage following cerebral ischemia. However, the preconditioning for minor cerebral ischemia or the preconditioning with TLR ligands can reduce cerebral ischemic injury b...

  20. Electroacupuncture improves cerebral blood flow and attenuates moderate ischemic injury via Angiotensin II its receptors-mediated mechanism in rats.

    Science.gov (United States)

    Li, Jing; He, Jiaojun; Du, Yuanhao; Cui, Jingjun; Ma, Ying; Zhang, Xuezhu

    2014-11-11

    To investigate the effects and potential mechanism of electroacupuncture intervention on expressions of Angiotensin II and its receptors-mediated signaling pathway in experimentally induced cerebral ischemia. Totally 126 male Wistar rats were randomly divided into control group, model group and EA group. The latter two were further divided into ten subgroups (n = 6) following Middle Cerebral Artery Occlusion (MCAO). Changes in regional cerebral blood flow (rCBF) and expressions of Angiotensin II and its receptors (AT1R, AT2R), as well as effector proteins in phosphatidyl inositol signal pathway were monitored before and at different times after MCAO. MCAO-induced decline of ipsilateral rCBF was partially suppressed by electroacupuncture, and contralateral blood flow was also superior to that of model group. Angiotensin II level was remarkably elevated immediately after MCAO, while electroacupuncture group exhibited significantly lower levels at 1 to 3 h and the value was significantly increased thereafter. The enhanced expression of AT1R was partially inhibited by electroacupuncture, while increased AT2R level was further induced. Electroacupuncture stimulation attenuated and postponed the upregulated-expressions of Gq and CaM these upregulations. ELISA results showed sharply increased expressions of DAG and IP3, which were remarkably neutralized by electroacupuncture. MCAO induced significant increases in expression of Angiotensin II and its receptor-mediated signal pathway. These enhanced expressions were significantly attenuated by electroacupuncture intervention, followed by reduced vasoconstriction and improved blood supply in ischemic region, and ultimately conferred beneficial effects on cerebral ischemia.

  1. Use of hypoxia imaging agent 99mTc-HL91 in rat cerebral ischemia models

    International Nuclear Information System (INIS)

    Zhou Ying; Qu Wanying; Li Meng; Chen Fang; Yao Zhiming; Zhu Ming; Zhu Lin

    1999-01-01

    Objective: To explore the possibility of diagnosis for cerebrovascular disease by a novel synthetic hypoxia agent 99m Tc-HL91 used in rat cerebral ischemia models. Methods: Pharmacological experiments of 99m Tc-HL91 were carried out including common properties, radiochemical purity, stability in vitro, anomalous toxicity test and biodistribution in mice. Fifteen cerebral ischemic rat models were established and received 99m Tc-HL91 scintigraphy. Results: 1) HL91 kits were labelled with 99m Tc easily and showed high radiochemical purity and stability. 2) Rapid clearance in blood, heart and lungs and high activity in liver, kidneys and intestines were observed. Relatively low uptake in brain was identified. 3) The radioactivity in ischemic brain tissue increased significantly at 4h postinjection in both rat images and isolated brain images. 4) The radioactivity ratios of lesion to normal brain tissue by drawing ROIs in isolated brain planar images were 0.98 +- 0.06, 0.99 +- 0.05, 1.29 +- 0.03, 1.56 +- 0.14 and 1.66 +- 0.06 at 1,2,4,8 and 12 h postinjection, respectively. There were significant differences among all groups except for 1 h and 2 h, 8 h and 12 h postinjection (P 99m Tc-HL91 in the hypoxic, ischemic brain tissue have been proved. It is appropriate to perform imaging at 4 h postinjection

  2. Progesterone induces neuroprotection following reperfusion-promoted mitochondrial dysfunction after focal cerebral ischemia in rats.

    Science.gov (United States)

    Andrabi, Syed Suhail; Parvez, Suhel; Tabassum, Heena

    2017-06-01

    Organelle damage and increases in mitochondrial permeabilization are key events in the development of cerebral ischemic tissue injury because they cause both modifications in ATP turnover and cellular apoptosis/necrosis. Early restoration of blood flow and improvement of mitochondrial function might reverse the situation and help in recovery following an onset of stroke. Mitochondria and related bioenergetic processes can be effectively used as pharmacological targets. Progesterone (P4), one of the promising neurosteroids, has been found to be neuroprotective in various models of neurological diseases, through a number of mechanisms. This influenced us to investigate the possible role of P4 in the mitochondria-mediated neuroprotective mechanism in an ischemic stroke model of rat. In this study, we have shown the positive effect of P4 administration on behavioral deficits and mitochondrial health in an ischemic stroke injury model of transient middle cerebral artery occlusion (tMCAO). After induction of tMCAO, the rats received an initial intraperitoneal injection of P4 (8 mg/kg body weight) or vehicle at 1 h post-occlusion followed by subcutaneous injections at 6, 12 and 18 h. Behavioral assessment for functional deficits included grip strength, motor coordination and gait analysis. Findings revealed a significant improvement with P4 treatment in tMCAO animals. Staining of isolated brain slices from P4-treated rats with 2,3,5-triphenyltetrazolium chloride (TTC) showed a reduction in the infarct area in comparison to the vehicle group, indicating the presence of an increased number of viable mitochondria. P4 treatment was also able to attenuate mitochondrial reactive oxygen species (ROS) production, as well as block the mitochondrial permeability transition pore (mPTP), in the tMCAO injury model. In addition, it was also able to ameliorate the altered mitochondrial membrane potential and respiration ratio in the ischemic animals, thereby suggesting that P4 has

  3. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Jittiwat, Jinatta; Tongun, Terdthai; Muchimapura, Supaporn; Ingkaninan, Kornkanok

    2011-01-01

    Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO). Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia. PMID:21197427

  4. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2011-01-01

    Full Text Available Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO. Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.

  5. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Praticò Andrea D

    2010-09-01

    Full Text Available Abstract Hypoxic-ischemic encephalopathy (HIE is the most important cause of cerebral damage and long-term neurological sequelae in the perinatal period both in term and preterm infant. Hypoxic-ischemic (H-I injuries develop in two phases: the ischemic phase, dominated by necrotic processes, and the reperfusion phase, dominated by apoptotic processes extending beyond ischemic areas. Due to selective ischemic vulnerability, cerebral damage affects gray matter in term newborns and white matter in preterm newborns with the typical neuropathological aspects of laminar cortical necrosis in the former and periventricular leukomalacia in the latter. This article summarises the principal physiopathological and biochemical processes leading to necrosis and/or apoptosis of neuronal and glial cells and reports recent insights into some endogenous and exogenous cellular and molecular mechanisms aimed at repairing H-I cerebral damage.

  6. Niosomes of Ascorbic Acid and α-Tocopherol in the Cerebral Ischemia-Reperfusion Model in Male Rats

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2014-01-01

    Full Text Available The objective of the present study was to prepare a stable iv injectable formulation of ascorbic acid and α-tocopherol in preventing the cerebral ischemia. Different niosomal formulations were prepared by Span and Tween mixed with cholesterol. The physicochemical characteristics of niosomal formulations were evaluated in vitro. For in vivo evaluation, the rats were made ischemic by middle cerebral artery occlusion model for 30 min and the selected formulation was used for determining its neuroprotective effect against cerebral ischemia. Neuronal damage was evaluated by optical microscopy and transmission electron microscopy. The encapsulation efficiency of ascorbic acid was increased to more than 84% by remote loading method. The cholesterol content of the niosomes, the hydrophilicity potential of the encapsulated compounds, and the preparation method of niosomes were the main factors affecting the mean volume diameter of the prepared vesicles. High physical stability of the niosomes prepared from Span 40 and Span 60 was demonstrated due to negligible size change of vesicles during 6 months storage at 4–8°C. In vivo studies showed that ST60/Chol 35 : 35 : 30 niosomes had more neuroprotective effects against cerebral ischemic injuries in male rats than free ascorbic acid.

  7. Investigation of redox status in chronic cerebral hypoperfusion-induced neurodegeneration in rats

    Directory of Open Access Journals (Sweden)

    Anil Kumar Saxena

    2015-06-01

    Full Text Available Aging related reduction in cerebral blood flow (CBF has been linked with neurodegenerative disorders including Alzheimer's disease and dementia. Experimentally, a condition of chronic cerebral hypoperfusion due to reduced CBF can be induced by permanent bilateral occlusion of common carotid arteries (2-vessel occlusion, 2VO in rats. Since oxidative stress, leading to neuronal apoptosis and death, is one of the mechanisms, which is thought to play a significant role in chronic degenerative neurological disorders, the present study was planned to assess the ROS status by measuring the levels of anti-oxidant enzymes that might occur during chronic cerebral hypoperfusion. Antioxidant enzymes namely glutathione peroxidase (GPx, superoxide dismutase (SOD, and catalase were measured in the brain tissue at eight weeks of 2VO induction in rats. Results show significantly elevated levels of GPx, SOD, and catalase enzymes as compared with the control group. It is possible that compensatory rise in antioxidant enzymes occurs in response to increased oxidative stress following ischemic insult.

  8. (1)H NMR-based metabonomics revealed protective effect of Naodesheng bioactive extract on ischemic stroke rats.

    Science.gov (United States)

    Luo, Lan; Zhen, Lifeng; Xu, Yatao; Yang, Yongxia; Feng, Suxiang; Wang, Shumei; Liang, Shengwang

    2016-06-20

    Stroke is a leading cause of death and disability in the world. However, current therapies are limited. Naodesheng, a widely used traditional Chinese medicine prescription, has shown a good clinical curative effect on ischemic stroke. Also, Naodesheng has been suggested to have neuroprotective effect on focal cerebral ischemia rats, but the underlying molecular mechanism remains unclear. The present study was designed to evaluate the effect of Naodesheng bioactive extract on the metabolic changes in brain tissue, plasma and urine induced by cerebral ischemia perfusion injury, and explore the possible metabolic mechanisms by using a (1)H NMR-based metabonomics approach. A middle cerebral artery occlusion rat model was established and confirmed by the experiments of neurobehavioral abnormality evaluation, brain tissue TTC staining and pathological examination. The metabolic changes in brain tissue, plasma and urine were then assessed by a (1)H NMR technique combined with multivariate statistical analysis method. These NMR data showed that cerebral ischemia reperfusion induced great metabolic disorders in brain tissue, plasma and urine metabolisms. However, Naodesheng bioactive extract could reverse most of the imbalanced metabolites. Meanwhile, it was found that both the medium and high dosages of Naodesheng bioactive extract were more effective on the metabolic changes than the low dosage, consistent with histopathological assessments. These results revealed that Naodesheng had protective effect on ischemic stroke rats and the underlying mechanisms involved multiple metabolic pathways, including energy metabolism, amino acid metabolism, oxidative stress and inflammatory injury. The present study could provide evidence that metabonomics revealed its capacity to evaluate the holistic efficacy of traditional Chinese medicine and explore the underlying mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    Science.gov (United States)

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  10. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor κB p65 activation

    International Nuclear Information System (INIS)

    Xue, Xia; Qu, Xian-Jun; Yang, Ying; Sheng, Xie-Huang; Cheng, Fang; Jiang, E-Nang; Wang, Jian-hua; Bu, Wen; Liu, Zhao-Ping

    2010-01-01

    Research highlights: → Permanent NF-κB p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. → Baicalin can markedly inhibit the nuclear NF-κB p65 expression and m RNA levels after ischemia-reperfusion injury in rats. → Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-κB p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at doses of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-κB p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 ± 0.7 to 1.2 ± 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-κB p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-κB p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-κB p65.

  11. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke

    Science.gov (United States)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  12. CT fogging effect with ischemic cerebral infarcts

    International Nuclear Information System (INIS)

    Becker, H.; Desch, H.; Hacker, H.; Pencz, A.; Frankfurt Univ.

    1979-01-01

    Systematic CT studies on ten patients with persistent ischemic cerebral infarct revealed a constant phenomenon, the fogging effect. The hypodense infarct at the beginning will be isodense, or close to isodense, on the plain CT during the second or third week and at a later stage will be hypodense again. The fogging infarcted area shows homogeneous intensive contrast enhancement. Knowledge of the fogging effect is important for correct interpretation of the CT image and the indication for contrast medium CT. CT without contrast medium may lead to misinterpretation during the second and third week after the onset of cerebral infarction. (orig.) [de

  13. CT fogging effect with ischemic cerebral infarcts

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H; Desch, H; Hacker, H; Pencz, A [Frankfurt Univ. (Germany, F.R.). Abt. fuer Neurologie; Frankfurt Univ. (Germany, F.R.). Abt. fuer Neuroradiologie)

    1979-01-01

    Systematic CT studies on ten patients with persistent ischemic cerebral infarct revealed a constant phenomenon, the fogging effect. The hypodense infarct at the beginning will be isodense, or close to isodense, on the plain CT during the second or third week and at a later stage will be hypodense again. The fogging infarcted area shows homogeneous intensive contrast enhancement. Knowledge of the fogging effect is important for correct interpretation of the CT image and the indication for contrast medium CT. CT without contrast medium may lead to misinterpretation during the second and third week after the onset of cerebral infarction.

  14. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Jielu Tan; Xiangrong Zheng; Shanshan Zhang; Yujia Yang; Xia Wang; Xiaohe Yu; Le Zhong

    2014-01-01

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  15. Green Tea Extract Ameliorates Learning and Memory Deficits in Ischemic Rats via Its Active Component Polyphenol Epigallocatechin-3-gallate by Modulation of Oxidative Stress and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Kuo-Jen Wu

    2012-01-01

    Full Text Available Ischemic stroke results in brain damage and behavioral deficits including memory impairment. Protective effects of green tea extract (GTex and its major functional polyphenol (−-epigallocatechin gallate (EGCG on memory were examined in cerebral ischemic rats. GTex and EGCG were administered 1 hr before middle cerebral artery ligation in rats. GTex, EGCG, and pentoxifylline (PTX significantly improved ishemic-induced memory impairment in a Morris water maze test. Malondialdehyde (MDA levels, glutathione (GSH, and superoxide dismutase (SOD activity in the cerebral cortex and hippocampus were increased by long-term treatment with GTex and EGCG. Both compounds were also associated with reduced cerebral infraction breakdown of MDA and GSH in the hippocampus. In in vitro experiments, EGCG had anti-inflammatory effects in BV-2 microglia cells. EGCG inhibited lipopolysaccharide- (LPS- induced nitric oxide production and reduced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV-2 cells. GTex and its active polyphenol EGCG improved learning and memory deficits in a cerebral ischemia animal model and such protection may be due to the reduction of oxidative stress and neuroinflammation.

  16. Niosomes of Ascorbic Acid and α-Tocopherol in the Cerebral Ischemia-Reperfusion Model in Male Rats

    OpenAIRE

    Varshosaz, Jaleh; Taymouri, Somayeh; Pardakhty, Abbas; Asadi-Shekaari, Majid; Babaee, Abodolreza

    2014-01-01

    The objective of the present study was to prepare a stable iv injectable formulation of ascorbic acid and α-tocopherol in preventing the cerebral ischemia. Different niosomal formulations were prepared by Span and Tween mixed with cholesterol. The physicochemical characteristics of niosomal formulations were evaluated in vitro. For in vivo evaluation, the rats were made ischemic by middle cerebral artery occlusion model for 30 min and the selected formulation was used for determining its neur...

  17. Gene interference regulates aquaporin-4 expression in swollen tissue of rats with cerebral ischemic edema: Correlation with variation in apparent diffusion coefficient.

    Science.gov (United States)

    Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong

    2012-07-25

    To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25-6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5-4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema.

  18. Changes of cerebral contents of neuropeptides in rat models of multiple ischemic dementia (MID)

    International Nuclear Information System (INIS)

    Zheng Xianghong; Guo Jingcai; Song Changyi; Wang Shejiao; Chen Wei

    2005-01-01

    Objective: To investigate the significance of changes of cerebral contents of the neuropeptides somatostatin (SS), arginine vasopressin (AVP) and substance P in rat models of MID. Methods: The rat models consisted of 15 rats undergoing intracarotid injection of autogenous thrombus powder. Another group of 15 rats undergoing sham operation served as controls. Learning and memory ability in these rats was assessed with daily passive avoidance task testing for 10 consecutive days. The animals were sacrificed on 30d and contents of the neuropeptides in tissue homogenate from different areas of brain (frontal cortex, temporal cortex, hippocampus, thalamus and corpus striatum) were measured with (RIA). Results: On the first day of passive avoidance task testing, the frequency of errors in the MID group and the control group was about the same. From the third day on, the frequency of errors in the MID group was significantly higher than that in the control group (P<0.05). The neuropeptides contents of all these cerebral areas in the MID group were significantly higher than those in the control group (P<0.05 or P<0.01) with the only exception of the contents of substance P in thalamus (no significant difference between the contents in the two groups). Conclusion: The impairment of learning and memory in rat models with MID was possibly related to the lowered contents of SS, AVP and substance P in the brain tissue. (authors)

  19. Evaluation of hypoxic tissue dynamics with 18F-FMISO PET in a rat model of permanent cerebral ischemia.

    Science.gov (United States)

    Rojas, Santiago; Herance, José Raul; Abad, Sergio; Jiménez, Xavier; Pareto, Deborah; Ruiz, Alba; Torrent, Èlia; Figueiras, Francisca P; Popota, Foteini; Fernández-Soriano, Francisco J; Planas, Anna M; Gispert, Juan D

    2011-06-01

    [¹⁸F]Fluoromisonidazole (¹⁸F-FMISO) is a nitroimidazole derivative that has been proposed as a positron emission tomography (PET) radiotracer to detect hypoxic tissue in vivo. This compound accumulates in hypoxic but viable tissue and may be a good candidate for evaluating the ischemic penumbra. We evaluated the time course of ¹⁸F-FMISO uptake using PET in a rat model of permanent cerebral ischemia and the correlation with histological changes. Rats (n = 14) were subjected to permanent ischemia by intraluminal occlusion of the middle cerebral artery in order to assess by PET the uptake of ¹⁸F-FMISO at various times over 24 h following ischemia. The PET results were compared to histological changes with Nissl and 2,3,5 triphenyltetrazolium chloride staining. Elevated uptake of ¹⁸F-FMISO was detected in the infarcted area up to 8 h after occlusion but was no longer detected at 24 h, a time point coincident with pan necrosis of the tissue. Our findings suggest that salvageable tissue persists for up to 8 h in this rat model of brain ischemia. We propose ¹⁸F-FMISO PET as a tool for evaluating the ischemic penumbra after cerebral ischemia.

  20. Relationship between hypertensive cerebral hemorrhage and ischemic lesions

    International Nuclear Information System (INIS)

    Yamaguchi, Shinya; Tsuchiya, Takashi; Yamaguchi, Takenori

    1991-01-01

    Patchy parenchymal lesions of increased intensity were frequently identified in patients with cerebral hemorrhage in T2-weighted image of high-fields MR imaging. We studied 64 patients with brain hemorrhage to determine the frequency and distribution of those lesions. We defined an area with high intensity in T2 weighted and low or iso-intensity area in T1 weighted images smaller than 1.5 cm in diameter to be 'ischemic lesion'. Ishemic lesions were found in 48 (75%) of all cases; in 25 (75%) of 32 patients with putaminal hemorrhage, in 15 (100%) of 15 with thalamic hemorrhage, in 3 (33%) of 9 with subcortical hemorrhage. Multiple ischemic lesions were more frequently seen in thalamic hemorrhage than in putaminal hemorrhage. Only 5 (10%) of 48 cases with associated ischemic lesions had a previous history related to those lesions. Multivariable regression analysis identified hypertension as the major predictor of the presence of ischemic lesions. Patients with brain hemorrhage frequently accompanied with incidental ischemic lesions, making it difficult to establish a guideline of blood pressure control for prevention of recurrent stroke. (author)

  1. Sulforaphane exerts neuroprotective effects via suppression of the inflammatory response in a rat model of focal cerebral ischemia.

    Science.gov (United States)

    Ma, Li-Li; Xing, Guo-Ping; Yu, Yin; Liang, Hui; Yu, Tian-Xia; Zheng, Wei-Hong; Lai, Tian-Bao

    2015-01-01

    Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Sulforaphane exerts protective effects in a rat model of focal cerebral ischemia/reperfusion injury by alleviating brain edema. However, the possible mechanisms of sulforaphane after cerebral ischemia/reperfusion injury have not been fully elucidated. Therefore, in the present study, we investigated the effect of sulforaphane on inflammatory reaction and the potential molecular mechanisms in cerebral ischemia rats. We found that sulforaphane significantly attenuated the blood-brain barrier (BBB) disruption; decreased the levels of pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β; reduced the nitric oxide (NO) levels and inducible nitric oxide synthase (iNOS) activity; inhibited the expression of iNOS and cyclooxygenase-2 (COX-2). In addition, sulforaphane inhibits the expression of p-NF-κB p65 after focal cerebral ischemia-reperfusion injury. Taken together, our results suggest that sulforaphane suppresses the inflammatory response via inhibiting the NF-κB signaling pathway in a rat model of focal cerebral ischemia, and sulforaphane may be a potential therapeutic agent for the treatment of cerebral ischemia injury.

  2. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature

    Directory of Open Access Journals (Sweden)

    Qing-quan Li

    2015-01-01

    Full Text Available The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial fibrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identified using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromodeoxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial fibrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our findings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  3. Klotho upregulation contributes to the neuroprotection of ligustilide against cerebral ischemic injury in mice.

    Science.gov (United States)

    Long, Fang-Yi; Shi, Meng-Qi; Zhou, Hong-Jing; Liu, Dong-Ling; Sang, Na; Du, Jun-Rong

    2018-02-05

    Klotho, an aging-suppressor gene, encodes a protein that potentially acts as a neuroprotective factor. Our previous studies showed that ligustilide minimizes the cognitive dysfunction and brain damage induced by cerebral ischemia; however, the underlying mechanisms remain unclear. This study aims to investigate whether klotho is involved in the protective effects of ligustilide against cerebral ischemic injury in mice. Cerebral ischemia was induced by bilateral common carotid arterial occlusion. Neurobehavioral tests as well as Nissl and Fluoro-Jade B staining were used to evaluate the protective effects of ligustilide in cerebral ischemia, and Western blotting and ELISA approaches were used to investigate the underlying mechanisms. Administration of ligustilide prevented the development of neurological deficits and reduced neuronal loss in the hippocampal CA1 region and the caudate putamen after cerebral ischemia. The protective effects were associated with inhibition of the RIG-I/NF-κB p65 and Akt/FoxO1 pathways and with prevention of inflammation and oxidative stress in the brain. Further, downregulation of klotho could attenuate the neuroprotection of ligustilide against cerebral ischemic injury. Ligustilide exerted neuroprotective effects in mice after cerebral ischemia by regulating anti-inflammatory and anti-oxidant signaling pathways. Furthermore, klotho upregulation contributes to the neuroprotection of LIG against cerebral ischemic injury. These results indicated that ligustilide may be a promising therapeutic agent for the treatment of cerebral ischemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Computerized tomographic evaluation of chronic ischemic lesions in cerebral white matter

    International Nuclear Information System (INIS)

    Yamanouchi, Hiroshi; Tohgi, Hideo; Iio, Masahiro; Tomonaga, Masanori.

    1981-01-01

    The purpose of this study is to clarify the correlation between the low density areas and periventricular lucency (PVL) on CT and the histopathologic changes of chronic ischemic lesions in cerebral white matter. Thirty seven brains from chronic cases with stroke and 17 brains from patients who showed PVLs on CT were examined histologically. CT scans were performed using GE CT/T. Chronic ischemic lesions with severe demyelination or diffuse cavitation were detected as low density areas on CT. But if associated with severe gliosis, those lesions could not be detected on CT. Areas with myelin pallor could not be detected on CT. In some cases diffuse ischemic lesions as demyelination and cavitation were found in the areas corresponding to PVLs on CT. However, they were not always expressed on CT. Other cases with PVL had no histological changes in the frontal white matter. In conclusion, chronic ischemic lesions in the cerebral white matter could not always be detected as low density areas on CT. This may be partly because decreased density due to demyelination and cavitation was counterbalanced by severe gliosis which tends to increase the density. In some cases PVLs were related to diffuse ischemic lesions in the frontal white matter, but this was not always the case. (author)

  5. Stimulation of neurotrophic factors and inhibition of proinflammatory cytokines by exogenous application of triiodothyronine in the rat model of ischemic stroke.

    Science.gov (United States)

    Sabbaghziarani, Fatemeh; Mortezaee, Keywan; Akbari, Mohammad; Kashani, Iraj Ragerdi; Soleimani, Mansooreh; Hassanzadeh, Gholamreza; Zendedel, Adib

    2017-01-01

    There is a positive relation between decreases of triiodothyronine (T3) amounts and severity of stroke. The aim of this study was to evaluate the effect of exogenous T3 application on levels of neurogenesis markers in the subventricular zone. Cerebral ischemia was induced by middle cerebral artery occlusion in male Wistar rats. There were 4 experimental groups: sham, ischemic, vehicle, and treatment. Rats were injected with T3 (25 μg/kg, IV injection) at 24 hours after ischemia. Animals were sacrificed at day 7 after ischemia. There were high levels of brain-derived neurotrophic factor, nestin, and Sox2 expressions in gene and protein levels in the T3 treatment group (P ≤ .05 vs ischemic group). Treatment group showed high levels of sera T3 and thyroxine (T4) but low levels of thyrotropin (TSH), tumor necrosis factor-α, and interleukin-6 (P ≤ .05 vs ischemic group) at day 4 after ischemia induction. Findings of this study revealed the effectiveness of exogenous T3 application in the improvement of neurogenesis possibly via regulation of proinflammatory cytokines. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Salvia miltiorrhiza Bunge (Danshen) extract attenuates permanent cerebral ischemia through inhibiting platelet activation in rats.

    Science.gov (United States)

    Fei, Yu-Xiang; Wang, Si-Qi; Yang, Li-Jian; Qiu, Yan-Ying; Li, Yi-Ze; Liu, Wen-Yuan; Xi, Tao; Fang, Wei-Rong; Li, Yun-Man

    2017-07-31

    Danshen is a crude herbal drug isolated from dried roots of Salvia miltiorrhiza Bunge. This plant is widely used in oriental medicine for the treatment of cardiovascular and cerebrovascular diseases. The supercritical CO 2 extract from Danshen (SCED) (57.85%, 5.67% and 4.55% for tanshinone IIA, tanshinone I and cryptotanshinone respectively) was studied in this article, whose potential molecular mechanism remains unclear, especially in anti-thrombosis. The present study was designed to observe the protective effect of SCED on ischemic stroke in rats and to explore the underlying anti-thrombosis mechanism. Following induction of cerebral ischemia in rats by permanent middle cerebral artery occlusion (pMCAO). Neurological defect score, cerebral blood flow, infarct size, and brain edema were measured to evaluate the injury. Arteriovenous shunt thrombosis model and adenosine 5'-diphosphate (ADP) induced acute pulmonary embolism model were conducted to estimate the antithrombotic effect of SCED. In order to investigate the effects of SCED on platelet aggregation, rat platelet-rich-plasma (PRP) were incubated with SCED prior to the addition of the stimuli (ADP or 9, 11-dideoxy-11α, 9α-epoxymethanoprostaglandin F2α (U46619)). Aggregation was monitored in a light transmission aggregometer. Inhibitory effect of SCED on thromboxane A2 (TXA 2 ) release was detected by ELISA kit. Phospholipase C (PLC)/ Protein kinase C (PKC) signaling pathway was analyzed by a Western blot technique. The effect of the SCED was also studied in vivo on bleeding time in mice. SCED improved the neurological defect score, increased cerebral blood flow, reduced infarct size and alleviated brain edema in rats exposed to pMCAO. After administration of SCED, thrombosis formation in arteriovenous shunt was inhibited and recovery time in pulmonary embolism was shortened. The inhibitory effect of SCED on platelet activation was further confirmed by TXB 2 ELISA kit and Western blot analysis of PLC

  7. Intra-artery thrombolytic therapy for acute ischemic cerebral infarction

    International Nuclear Information System (INIS)

    Du Wei; Shao Chengmin; Wang Jianlin; Lei Jin; Jia Fan; Cao Lanfang; Chai Ruchang; Su Wei; Gu Jinchuan

    2004-01-01

    Objective: To evaluate the clinical effects of intra-arterial thrombolytic therapy for acute ischemic cerebral infarction and analyze the factors influencing the clinical prognosis. Methods: 32 patients were treated with intra-arterial thrombolysis using urokinase (median dose, 65 x 10 4 U) within 2-20 hours, after the onset. The patient's condition was assessed by neurologists using National Institutes of Health Stroke Scale (NIHSS) score right at the admission. Clinical outcome was assessed after 3 months and graded as good for Modified Rankin Scale (MRS) scores of 0 to 3 and poor for MRS scores of 4 or 5 and death. Results: Follow up cerebral angiography of 14 cases treated within 6 hours after onset showed complete/partial recanalization in 13 cases. Other 18 patients whose treatment started beyond 6 hours after onset out-came with complete/partial in 7. 20 (62.5%) of the 32 patients had good out-come, 12(37.5%) had poor outcome and two patients(9.4%) died. Cerebral hemorrhage occurred in 2 of the 32 patients. Good outcome was associated with an initial NIHSS score of <20 (P<0.01) and vascular recanalization (P<0.025). Recanalization was more likely to be obtained if thrombolysis began within 6 hours (P<0.05). Conclusion: Intra-arterial thrombolysis is a safe and effective therapy for acute ischemic cerebral infarction. (authors)

  8. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke.

    Science.gov (United States)

    Wang, Hailian; Li, Peiying; Xu, Na; Zhu, Ling; Cai, Mengfei; Yu, Weifeng; Gao, Yanqin

    2016-01-01

    Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms.

  9. Curcumin Protects Neuron against Cerebral Ischemia-Induced Inflammation through Improving PPAR-Gamma Function

    OpenAIRE

    Zun-Jing Liu; Wei Liu; Lei Liu; Cheng Xiao; Yu Wang; Jing-Song Jiao

    2013-01-01

    Cerebral ischemia is the most common cerebrovascular disease worldwide. Recent studies have demonstrated that curcumin had beneficial effect to attenuate cerebral ischemic injury. However, it is unclear how curcumin protects against cerebral ischemic injury. In the present study, using rat middle cerebral artery occlusion model, we found that curcumin was a potent PPAR ? agonist in that it upregulated PPAR ? expression and PPAR ? -PPRE binding activity. Administration of curcumin markedly dec...

  10. Curcumin Protects Neuron against Cerebral Ischemia-Induced Inflammation through Improving PPAR-Gamma Function

    Directory of Open Access Journals (Sweden)

    Zun-Jing Liu

    2013-01-01

    Full Text Available Cerebral ischemia is the most common cerebrovascular disease worldwide. Recent studies have demonstrated that curcumin had beneficial effect to attenuate cerebral ischemic injury. However, it is unclear how curcumin protects against cerebral ischemic injury. In the present study, using rat middle cerebral artery occlusion model, we found that curcumin was a potent PPARγ agonist in that it upregulated PPARγ expression and PPARγ-PPRE binding activity. Administration of curcumin markedly decreased the infarct volume, improved neurological deficits, and reduced neuronal damage of rats. In addition, curcumin suppressed neuroinflammatory response by decreasing inflammatory mediators, such as IL-1β, TNF-α, PGE2, NO, COX-2, and iNOS induced by cerebral ischemia of rats. Furthermore, curcumin suppressed IκB degradation that was caused by cerebral ischemia. The present data also showed that PPARγ interacted with NF-κB-p65 and thus inhibited NF-κB activation. All the above protective effects of curcumin on cerebral ischemic injury were markedly attenuated by GW9662, an inhibitor of PPARγ. Our results as described above suggested that PPARγ induced by curcumin may play a critical role in protecting against brain injury through suppression of inflammatory response. It also highlights the potential of curcumin as a therapeutic agent against cerebral ischemia.

  11. Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model.

    Science.gov (United States)

    Kitamura, Youji; Iida, Yasuhiko; Abe, Jun; Ueda, Masashi; Mifune, Masaki; Kasuya, Fumiyo; Ohta, Masayuki; Igarashi, Kazuo; Saito, Yutaka; Saji, Hideo

    2006-02-01

    In this study, we investigated the effect of vesicular zinc on ischemic neuronal injury. In cultured neurons, addition of a low concentration (under 100 microM) of zinc inhibited both glutamate-induced calcium influx and neuronal death. In contrast, a higher concentration (over 150 microM) of zinc decreased neuronal viability, although calcium influx was inhibited. These results indicate that zinc exhibits biphasic effects depending on its concentration. Furthermore, in cultured neurons, co-addition of glutamate and CaEDTA, which binds extra-cellular zinc, increased glutamate-induced calcium influx and aggravated the neurotoxicity of glutamate. In a rat transient middle cerebral artery occlusion (MCAO) model, the infarction volume, which is related to the neurotoxicity of glutamate, increased rapidly on the intracerebral ventricular injection of CaEDTA 30 min prior to occlusion. These results suggest that zinc released from synaptic vesicles may provide a protective effect against ischemic neuronal injury.

  12. Therapeutic effects of different durations of acupuncture on rats with middle cerebral artery occlusion

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2015-01-01

    Full Text Available Acupuncture is regarded as an effective therapy for cerebral ischemia. Different acupuncture manipulations and durations may result in different therapeutic effects. In the present study, the Neiguan (PC6 acupoint of rats with occluded middle cerebral arteries was needled at a fixed frequency (3 Hz with different durations, i.e., 5, 60 and 180 seconds under a twisting-rotating acupuncture method. Results showed that different durations of acupuncture had different therapeutic effects, with 60 seconds yielding a better therapeutic effect than the other two groups. This duration of treatment demonstrated rapid cerebral blood flow, encouraging recovery of neurological function, and small cerebral infarct volume. Experimental findings indicated that under 3 Hz frequency, the treatment of needling Neiguan for 60 seconds is effective for ischemic stroke

  13. A Promising Approach to Integrally Evaluate the Disease Outcome of Cerebral Ischemic Rats Based on Multiple-Biomarker Crosstalk

    Directory of Open Access Journals (Sweden)

    Guimei Ran

    2017-01-01

    Full Text Available Purpose. The study was designed to evaluate the disease outcome based on multiple biomarkers related to cerebral ischemia. Methods. Rats were randomly divided into sham, permanent middle cerebral artery occlusion, and edaravone-treated groups. Cerebral ischemia was induced by permanent middle cerebral artery occlusion surgery in rats. To form a simplified crosstalk network, the related multiple biomarkers were chosen as S100β, HIF-1α, IL-1β, PGI2, TXA2, and GSH-Px. The levels or activities of these biomarkers in plasma were detected before and after ischemia. Concurrently, neurological deficit scores and cerebral infarct volumes were assessed. Based on a mathematic model, network balance maps and three integral disruption parameters (k, φ, and u of the simplified crosstalk network were achieved. Results. The levels or activities of the related biomarkers and neurological deficit scores were significantly impacted by cerebral ischemia. The balance maps intuitively displayed the network disruption, and the integral disruption parameters quantitatively depicted the disruption state of the simplified network after cerebral ischemia. The integral disruption parameter u values correlated significantly with neurological deficit scores and infarct volumes. Conclusion. Our results indicate that the approach based on crosstalk network may provide a new promising way to integrally evaluate the outcome of cerebral ischemia.

  14. Point application with Angong Niuhuang sticker protects hippocampal and cortical neurons in rats with cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Dong-shu Zhang

    2015-01-01

    Full Text Available Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological functions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris and Realgar, we used transdermal enhancers to deliver Angong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg were administered to the Dazhui (DU14, Qihai (RN6 and Mingmen (DU4 of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application of Angong Niuhuang stickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efficacy similar to interventions by electroacupuncture at Dazhui (DU14, Qihai (RN6 and Mingmen (DU4. Our experimental findings indicate that point application with Angong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efficacy to acupuncture.

  15. A comparative study on the efficacy of 10% hypertonic saline and equal volume of 20% mannitol in the treatment of experimentally induced cerebral edema in adult rats

    Directory of Open Access Journals (Sweden)

    Fang Ming

    2010-12-01

    Full Text Available Abstract Background Hypertonic saline and mannitol are commonly used in the treatment of cerebral edema and elevated intracranial pressure (ICP at present. In this connection, 10% hypertonic saline (HS alleviates cerebral edema more effectively than the equal volume of 20% mannitol. However, the exact underlying mechanism for this remains obscure. This study aimed to explore the possible mechanism whereby 10% hypertonic saline can ameliorate cerebral edema more effectively than mannitol. Results Adult male Sprague-Dawley (SD rats were subjected to permanent right-sided middle cerebral artery occlusion (MCAO and treated with a continuous intravenous infusion of 10% HS, 20% mannitol or D-[1-3H(N]-mannitol. Brain water content (BWC as analyzed by wet-to-dry ratios in the ischemic hemisphere of SD rats decreased more significantly after 10% HS treatment compared with 20% mannitol. Concentration of serum Na+ and plasma crystal osmotic pressure of the 10% HS group at 2, 6, 12 and 18 h following permanent MCAO increased significantly when compared with 20% mannitol treated group. Moreover, there was negative correlation between the BWC of the ipsilateral ischemic hemisphere and concentration of serum Na+, plasma crystal osmotic pressure and difference value of concentration of serum Na+ and concentration of brain Na+ in ipsilateral ischemic hemisphere in the 10% HS group at the various time points after MCAO. A remarkable finding was the progressive accumulation of mannitol in the ischemic brain tissue. Conclusions We conclude that 10% HS is more effective in alleviating cerebral edema than the equal volume of 20% mannitol. This is because 10% HS contributes to establish a higher osmotic gradient across BBB and, furthermore, the progressive accumulation of mannitol in the ischemic brain tissue counteracts its therapeutic efficacy on cerebral edema.

  16. [Effect of "Xingnao Kaiqiao Zhenfa" (Acupuncture Technique for Restoring Consciousness) Combined with Rehabilitation Training on Nerve Repair and Expression of Growth-associated Protein-43 of Peri-ischemic Cortex in Ischemic Stroke Rats].

    Science.gov (United States)

    Xu, Lei; Yan, Xing-Zhou; Li, Zhen-Yu; Cao, Xiao-Fang; Wang, Min

    2017-06-25

    To observe the effect of "Xingnao Kaiqiao Zhenfa" (acupuncture technique for restoring consciousness) combined with enriched rehabilitation training on motor function and expression of growth-associated protein-43 (GAP-43) of peri-ischemic cortex in ischemic stroke rats, so as to investigate its mechanism underlying improvement of ischemic stroke. SD rats were randomly divided into sham operation, model, rehabilitation and comprehensive rehabilitation groups, which were further divided into 3 time-points:7, 14 and 21 d ( n =6 in each). Cerebral ischemia(CI) model was established by occlusion of the middle cerebral artery with heat-coagulation. The rehabilitation group was treated by enriched rehabilitation training, once a day. The comprehensive rehabilitation group was treated by acupuncture combined with enriched rehabilitation training. Acupuncture was applied to bilateral "Neiguan"(PC 6) and "Shuigou"(GV 26) for 30 min, once a day. The neurological function score, balance-beam walking test and rotating-rod walking test were evaluated at the end of the corresponding treatment time. The expression of GAP-43 in peri-ischemic cortex was detected by immunohistochemistry. In comparison with the sham operation group, the scores of neurological function, beam walking test and rotating-rod walking test were significantly higher in the model group ( P beam walking and rotating-rod walking tests in the rehabilitation group compared with the model group on day 7 ( P >0.05). Compared with the model group at the other time points, the scores of neurological function, balance-beam walking test and rotating-rod walking test were significantly lower in the rehabilitation and comprehensive rehabilitation groups ( P beam walking test and rotating-rod walking test were significantly lower in the comprehensive rehabilitation group ( P <0.05). In comparison with the sham operation group, the number of GAP-43 positive cells of peri-ischemic cortex was significantly higher in the

  17. Paradigms and mechanisms of inhalational anesthetics mediated neuroprotection against cerebral ischemic stroke

    Directory of Open Access Journals (Sweden)

    Hailian Wang

    2016-01-01

    Full Text Available Cerebral ischemic stroke is a leading cause of serious long-term disability and cognitive dysfunction. The high mortality and disability of cerebral ischemic stroke is urging the health providers, including anesthesiologists and other perioperative professioners, to seek effective protective strategies, which are extremely limited, especially for those perioperative patients. Intriguingly, several commonly used inhalational anesthetics are recently suggested to possess neuroprotective effects against cerebral ischemia. This review introduces multiple paradigms of inhalational anesthetic treatments that have been investigated in the setting of cerebral ischemia, such as preconditioning, proconditioning and postconditioning with a variety of inhalational anesthetics. The pleiotropic mechanisms underlying these inhalational anesthetics-afforded neuroprotection against stroke are also discussed in detail, including the common pathways shared by most of the inhalational anesthetic paradigms, such as anti-excitotoxicity, anti-apoptosis and anti-inflammation. There are also distinct mechanisms involved in specific paradigms, such as preserving blood brain barrier integrity, regulating cerebral blood flow and catecholamine release. The ready availability of these inhalational anesthetics bedside and renders them a potentially translatable stroke therapy attracting great efforts for understanding of the underlying mechanisms.

  18. Ischemia preconditioning is neuroprotective in a rat cerebral ischemic injury model through autophagy activation and apoptosis inhibition

    International Nuclear Information System (INIS)

    Xia, D.Y.; Li, W.; Qian, H.R.; Yao, S.; Liu, J.G.; Qi, X.K.

    2013-01-01

    Sublethal ischemic preconditioning (IPC) is a powerful inducer of ischemic brain tolerance. However, its underlying mechanisms are still not well understood. In this study, we chose four different IPC paradigms, namely 5 min (5 min duration), 5×5 min (5 min duration, 2 episodes, 15-min interval), 5×5×5 min (5 min duration, 3 episodes, 15-min intervals), and 15 min (15 min duration), and demonstrated that three episodes of 5 min IPC activated autophagy to the greatest extent 24 h after IPC, as evidenced by Beclin expression and LC3-I/II conversion. Autophagic activation was mediated by the tuberous sclerosis type 1 (TSC1)-mTor signal pathway as IPC increased TSC1 but decreased mTor phosphorylation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and hematoxylin and eosin staining confirmed that IPC protected against cerebral ischemic/reperfusion (I/R) injury. Critically, 3-methyladenine, an inhibitor of autophagy, abolished the neuroprotection of IPC and, by contrast, rapamycin, an autophagy inducer, potentiated it. Cleaved caspase-3 expression, neurological scores, and infarct volume in different groups further confirmed the protection of IPC against I/R injury. Taken together, our data indicate that autophagy activation might underlie the protection of IPC against ischemic injury by inhibiting apoptosis

  19. Ischemia preconditioning is neuroprotective in a rat cerebral ischemic injury model through autophagy activation and apoptosis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Xia, D.Y. [Department of Neurology, Navy General Hospital of PLA, Beijing (China); Li, W. [General Hospital of Shenyang Military Command, Department of Neurology, Shenyang, China, Department of Neurology, General Hospital of Shenyang Military Command, Shenyang (China); Qian, H.R.; Yao, S.; Liu, J.G.; Qi, X.K. [Department of Neurology, Navy General Hospital of PLA, Beijing (China)

    2013-08-10

    Sublethal ischemic preconditioning (IPC) is a powerful inducer of ischemic brain tolerance. However, its underlying mechanisms are still not well understood. In this study, we chose four different IPC paradigms, namely 5 min (5 min duration), 5×5 min (5 min duration, 2 episodes, 15-min interval), 5×5×5 min (5 min duration, 3 episodes, 15-min intervals), and 15 min (15 min duration), and demonstrated that three episodes of 5 min IPC activated autophagy to the greatest extent 24 h after IPC, as evidenced by Beclin expression and LC3-I/II conversion. Autophagic activation was mediated by the tuberous sclerosis type 1 (TSC1)-mTor signal pathway as IPC increased TSC1 but decreased mTor phosphorylation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and hematoxylin and eosin staining confirmed that IPC protected against cerebral ischemic/reperfusion (I/R) injury. Critically, 3-methyladenine, an inhibitor of autophagy, abolished the neuroprotection of IPC and, by contrast, rapamycin, an autophagy inducer, potentiated it. Cleaved caspase-3 expression, neurological scores, and infarct volume in different groups further confirmed the protection of IPC against I/R injury. Taken together, our data indicate that autophagy activation might underlie the protection of IPC against ischemic injury by inhibiting apoptosis.

  20. Electroacupuncture acutely improves cerebral blood flow and attenuates moderate ischemic injury via an endothelial mechanism in mice.

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    Full Text Available Electroacupuncture (EA is a novel therapy based on traditional acupuncture combined with modern eletrotherapy that is currently being investigated as a treatment for acute ischemic stroke. Here, we studied whether acute EA stimulation improves tissue and functional outcome following experimentally induced cerebral ischemia in mice. We hypothesized that endothelial nitric oxide synthase (eNOS-mediated perfusion augmentation was related to the beneficial effects of EA by interventions in acute ischemic injury. EA stimulation at Baihui (GV20 and Dazhui (GV14 increased cerebral perfusion in the cerebral cortex, which was suppressed in eNOS KO, but there was no mean arterial blood pressure (MABP response. The increased perfusion elicited by EA were completely abolished by a muscarinic acetylcholine receptor (mAChR blocker (atropine, but not a β-adrenergic receptor blocker (propranolol, an α-adrenergic receptor blocker (phentolamine, or a nicotinic acetylcholine receptor (nAChR blocker (mecamylamine. In addition, EA increased acetylcholine (ACh release and mAChR M3 expression in the cerebral cortex. Acute EA stimulation after occlusion significantly reduced infarct volume by 34.5% when compared to a control group of mice at 24 h after 60 min-middle cerebral artery occlusion (MCAO (moderate ischemic injury, but not 90-min MCAO (severe ischemic injury. Furthermore, the impact of EA on moderate ischemic injury was totally abolished in eNOS KO. Consistent with a smaller infarct size, acute EA stimulation led to prominent improvement of neurological function and vestibule-motor function. Our results suggest that acute EA stimulation after moderate focal cerebral ischemia, but not severe ischemia improves tissue and functional recovery and ACh/eNOS-mediated perfusion augmentation might be related to these beneficial effects of EA by interventions in acute ischemic injury.

  1. Electroacupuncture preconditioning reduces cerebral ischemic injury via BDNF and SDF-1α in mice

    Directory of Open Access Journals (Sweden)

    Kim Ji Hyun

    2013-01-01

    Full Text Available Abstract Background This study was designed to determine if electroacupuncture (EA preconditioning improves tissue outcome and functional outcome following experimentally induced cerebral ischemia in mice. In addition, we investigated whether the expression of brain-derived neurotrophic factor (BDNF and stromal cell derived factor-1α (SDF-1α and infarct volume were related with improvement in neurological and motor function by interventions in this study. Methods After treatment with EA at the acupoints ‘Baihui (GV20’ and ‘Dazhui (GV14’ for 20 min, BDNF was assessed in the cortical tissues based on Western blot and the SDF-1α and vascular endothelial growth factor (VEGF levels in the plasma determined by ELISA. To assess the protective effects of EA against ischemic injury, the mice received once a day 20 min EA preconditioning for three days prior to the ischemic event. Focal cerebral ischemia was then induced by photothrombotic cortical ischemia. Infarct volumes, neurobehavioral deficit and motor deficit were evaluated 24 h after focal cerebral ischemia. Results The expression of BDNF protein increased significantly from 6 h, reaching a plateau at 12 h after the end of EA treatment in the cerebral cortex. Furthermore, SDF-1α, not VEGF, increased singnificantly from 12 h to 48 h after EA stimulation in the plasma. Moreover, EA preconditioning reduced the infarct volume by 43.5% when compared to control mice at 24 h after photothrombotic cortical ischemia. Consistent with a smaller infarct size, EA preconditioning showed prominent improvement of neurological function and motor function such as vestibule-motor function, sensori-motor function and asymmetric forelimb use. The expression of BDNF colocalized within neurons and SDF-1α colocalized within the cerebral vascular endothelium was observed throughout the ischemic cortex by EA. Conclusions Pretreatment with EA increased the production of BDNF and SDF-1α, which elicited

  2. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats.

    Science.gov (United States)

    Sun, Bao-Liang; He, Mei-Qing; Han, Xiang-Yu; Sun, Jing-Yi; Yang, Ming-Feng; Yuan, Hui; Fan, Cun-Dong; Zhang, Shuai; Mao, Lei-Lei; Li, Da-Wei; Zhang, Zong-Yong; Zheng, Cheng-Bi; Yang, Xiao-Yi; Li, Yang V; Stetler, R Anne; Chen, Jun; Zhang, Feng

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.

  3. Real-time ischemic condition monitoring in normoglycemic and hyperglycemic rats

    International Nuclear Information System (INIS)

    Choi, Samjin; Kang, Sung Wook; Lee, Gi-Ja; Chae, Su-Jin; Park, Hun-Kuk; Choi, Seok Keun; Chung, Joo-Ho

    2010-01-01

    An increase in excitotoxic amino acid glutamate (GLU) concentration associated with neuronal damage might be the cause of the ischemic damage observed in stroke patients suffering from hyperglycemia. However, the effect has never been investigated by real-time in vivo monitoring. Therefore, this study examined the effects of the functional responses of ischemia-evoked electroencephalography (EEG), cerebral blood flow (%CBF) and ΔGLU in hyperglycemia through real-time in vivo monitoring. Five Sprague-Dawley rats were treated with streptozocin (hyperglycemia) and five normal rats were used as the controls. Global ischemia was induced using an 11-vessel occlusion model. The experimental protocols consisting of 10 min pre-ischemic, 10 min ischemic and 40 min reperfusion periods were applied to both groups. Under these conditions, the responses of the ischemia-evoked EEG, %CBF and ΔGLU were monitored in real time. The EEG showed flat patterns during ischemia followed by poor recovery during reperfusion. The peak reperfusion %CBF was decreased significantly in the hyperglycemia group compared to the control group (p < 0.05, n = 5). The extracellular ΔGLU releases increased significantly during ischemia (p < 0.0001, n = 5) and reperfusion (p < 0.001, n = 5) in the hyperglycemia group compared to the control group. The decrease in reperfusion %CBF during short-term hyperglycemia might be related to the increased plasma osmolality, decreased adenosine levels and swollen endothelial cells with decreased vascular luminal diameters under hyperglycemic conditions. And, the increase in ΔGLU during short-term hyperglycemia might be related to the neurotoxic effects of the high extracellular concentrations of ΔGLU and the inhibition of GLU uptake

  4. Carvacrol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in Middle Cerebral Artery Occlusion Rats.

    Science.gov (United States)

    Li, Zhenlan; Hua, Cong; Pan, Xiaoqiang; Fu, Xijia; Wu, Wei

    2016-08-01

    Increasing evidence demonstrates that inflammation plays an important role in cerebral ischemia. Carvacrol, a monoterpenic phenol, is naturally occurring in various plants belonging to the family Lamiaceae and exerts protective effects in a mice model of focal cerebral ischemia/reperfusion injury by reducing infarct volume and decreasing the expression of cleaved caspase-3. However, the anti-inflammatory mechanisms by which carvacrol protect the brain have yet to be fully elucidated. We investigated the effects of carvacrol on inflammatory reaction and inflammatory mediators in middle cerebral artery occlusion rats. The results of the present study showed that carvacrol inhibited the levels of inflammatory cytokines and myeloperoxidase (MPO) activity, as well as the expression of iNOS and COX-2. It also increased SOD activity and decreased MDA level in ischemic cortical tissues. In addition, carvacrol treatment suppressed the ischemia/reperfusion-induced increase in the protein expression of nuclear NF-kB p65. In conclusion, we have shown that carvacrol inhibits the inflammatory response via inhibition of the NF-kB signaling pathway in a rat model of focal cerebral ischemia. Therefore, carvacrol may be a potential therapeutic agent for the treatment of cerebral ischemia injury.

  5. The role of exogenous neural stem cells transplantation in cerebral ischemic stroke.

    Science.gov (United States)

    Chen, Lukui; Qiu, Rong; Li, Lushen; He, Dan; Lv, Haiqin; Wu, Xiaojing; Gu, Ning

    2014-11-01

    transplantation group. The Nissl dyeing showed that there was a large area of neuronal necrosis and apoptosis in the ischemia and PBS transplantation groups, and damage was mainly focused in the striatum. Degeneration and damage of nerve cells were significantly reduced in the NSCs transplantation group. The Tunel assay showed that the number of apoptosis-positive cells in the NSCs transplantation group was less than that in the PBS transplantation group at each time point. Double immunofluorescent labeling showed that the proliferation of endogenous neural stem cells began at the third day, reaching the peak at the 7th day, and was significantly reduced at the 14th day in the SVZ. The number of BrdU/NeuN increased significantly in the NSCs transplantation group compared to that in the PBS transplantation group (P < 0.05). The number of BrdU/GFAP decreased significantly in the NSCs transplantation group compared to that of PBS transplantation group (P < 0.05). The number of BrdU/GFAP-positive cells in the striatum was observed to be much more in the PBS transplantation group than in the NSCs transplantation group. Both neurological deficits and coordination capacity of rats with cerebral ischemia were significantly improved via transplantation of the neural stem cells. In conclusion, transplantation of neural stem cells can therefore possibly promote the differentiation of endogenous NSCs into neurons and reduce their differentiation towards glial cells. Transplantation of the neural stem cells may also change the ischemic microenvironment of striatum, possibly inhibiting the proliferation of glial cells.

  6. The Effect of Photoluminescence of Bioceramic Irradiation on Middle Cerebral Arterial Occlusion in Rats

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-01-01

    Full Text Available The purpose of this study is to determine the possible effect of photoluminescence of bioceramic (PLB on ischemic cerebral infarction (stroke, by using an animal model of transient middle cerebral artery occlusion (MCAO. Sprague-Dawley rats were used to induce MCAO to block the origin of the left MCAO; three months later, the positive chronic stroke rats were selected by running tunnel maze; the MCAO rats with significant chronic stroke and neurological defects were used for treadmill experiments with varying speed settings to test their capability for restoration after muscular fatigue under conditions of with and without PLB irradiation. As a result, PLB irradiation could improve exercise completion rate and average running speed during slow and fast treadmill settings. After PLB irradiation, the selected MCAO rats successfully completed all the second-round treadmill exercises at the maximum speed setting, and they had better restoration from muscular fatigue. An in vitro cell study on astrocytes of rats by bioceramic irradiation further demonstrated increased intracellular nitric oxide. To explain these results, we suggest that cortical brain stimulation of microcirculation and enhancement of peripheral muscular activity are the main causes of the improved exercise performance in MCAO rats by PLB.

  7. Cerebral Microbleeds and the Risk of Incident Ischemic Stroke in CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy).

    Science.gov (United States)

    Puy, Laurent; De Guio, François; Godin, Ophélia; Duering, Marco; Dichgans, Martin; Chabriat, Hugues; Jouvent, Eric

    2017-10-01

    Cerebral microbleeds are associated with an increased risk of intracerebral hemorrhage. Recent data suggest that microbleeds may also predict the risk of incident ischemic stroke. However, these results were observed in elderly individuals undertaking various medications and for whom causes of microbleeds and ischemic stroke may differ. We aimed to test the relationship between the presence of microbleeds and incident stroke in CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy)-a severe monogenic small vessel disease known to be responsible for both highly prevalent microbleeds and a high incidence of ischemic stroke in young patients. We assessed microbleeds on baseline MRI in all 378 patients from the Paris-Munich cohort study. Incident ischemic strokes were recorded during 54 months. Survival analyses were used to test the relationship between microbleeds and incident ischemic stroke. Three hundred sixty-nine patients (mean age, 51.4±11.4 years) were followed-up during a median time of 39 months (interquartile range, 19 months). The risk of incident ischemic stroke was higher in patients with microbleeds than in patients without (35.8% versus 19.6%, hazard ratio, 1.87; 95% confidence interval, 1.16-3.01; P =0.009). These results persisted after adjustment for history of ischemic stroke, age, sex, vascular risk factors, and antiplatelet agents use (hazard ratio, 1.89; 95% confidence interval, 1.10-3.26; P =0.02). The presence of microbleeds is an independent risk marker of incident ischemic stroke in CADASIL, emphasizing the need to carefully interpret MRI data. © 2017 American Heart Association, Inc.

  8. Preliminary evaluation of [1-11C]octanoate as a PET tracer for studying cerebral ischemia. A PET study in rat and canine models of focal cerebral ischemia

    International Nuclear Information System (INIS)

    Kuge, Yuji; Kawashima, Hidefumi; Hashimoto, Tadatoshi

    2000-01-01

    Octanoate is taken up into the brain and is converted in astrocytes to glutamine through the tricarboxylic acid (TCA) cycle after β-oxidation. We speculate that [1- 11 C]octanoate may be used as a tracer for astroglial functions and/or fatty acid metabolism in the brain and may be useful for studying cerebral ischemia. In the present study we investigated brain distribution of [1- 11 C]octanoate and compared it with cerebral blood flow (CBF) by using rat and canine models of middle cerebral artery (MCA) occlusion and a high resolution PET. In rats brain distribution of [ 15 O]H 2 O measured 1-2 h and 5-6 h after insult was compared with that of [1- 11 C]octanoate measured 3-4 h after insult. Radioactivity ratios of lesioned to normal hemispheres determined with [ 15 O]H 2 O were lower than those determined with [1- 11 C]octanoate. These results were confirmed by a study on a canine model of MCA-occlusion. Twenty-four hours after insult, CBF decreased in the MCA-territory of the occluded hemisphere, whereas normal or higher accumulation of [1- 11 C]octanoate was observed in the ischemic regions. The uptake of [1- 11 C]octanoate-derived radioactivity therefore increased relative to CBF in the ischemic regions, indicating that [1- 11 C]octanoate provides functional information different from CBF. In conclusion, we found that [1- 11 C]octanoate is a potential radiopharmaceutical for studying the pathophysiology of cerebral ischemia. (author)

  9. Computerized tomography of the brain and associated risk factors in 240 patients iwth reversible cerebral ischemic attacks (RIAs)

    International Nuclear Information System (INIS)

    Bozzao, L.; Fantozzi, L.M.; Carolei, A.; Pappata, S.; Vesentini, G.; Allori, L.; Rasura, M.; Fieschi, C.

    1985-01-01

    The frequency and distribution of focal low density cerebral ischemic lesions in RIA patients with regard to factors as age at onset, number and temporal profile of the reversible cerebral ischemic events on admission, presence of associated medical conditions such as hypertension and diabetes mellitus, have been investigated with computerized tomography of the brain. (author). 7 refs.; 1 tab

  10. Increased Expression Of Toll-Like Receptor 2 Mrna Following Permanent Middle Cerebral Artery Occlusion In Rat: Role Of TRPV1 Receptors

    Directory of Open Access Journals (Sweden)

    Amir Moghadam Ahmadi

    2017-02-01

    Full Text Available Background: Stroke is a major cause of mortality and long term disability in adults. TRPV1 has a pivotal role in neuroinflammation. Among TLRs, TLR2 significantly participate in induction of inflammation in brain. In this study, the effect of TRPV1 receptor agonist and antagonist on outcome and gene expression of TLR2 in a rat model of permanent middle cerebral artery occlusion (MCAO was investigated. Methods: Forty male rats were assigned to the following groups: sham, vehicle stroke, AMG9810 (selective TRPV1 antagonist, 0.5 mg/kg; 3 h after stroke, and capsaicin (1 mg/kg; 3 h after stroke. Stroke was induced by permanent middle cerebral artery occlusion and behavioral functions were assessed 1, 3, and 7 days after stroke. Infarct volume, brain edema and mRNA expression of TLR2 were also evaluated at the end of the study. Results: While stroke animals showed infarctions and behavioral functions, we did not observe any cerebral infarction and behavioral functions in sham-operated animals. AMG9810 decreased neurological deficits 7 days after cerebral ischemia (P<0.01. In the ledged beam-walking test, the slip ratio was increased following ischemia (*P < 0.05. AMG9810 improved this index in animals undergone stroke. However, capsaicin enhanced the slip ratio 3 and 7 days after cerebral ischemia (#P<0.05. TLR2 P<0.05(mRNA expression was elevated in ischemic rats.   Conclusion: Our data indicate that pharmacological blockade of TRPV1 by AMG9810 attenuates behavioral function and mRNA expression of TLR2. Therefore, it might be useful as a potential target for the treatment of ischemic stroke.

  11. MR-angiography allows defining severity grades of cerebral vasospasm in an experimental double blood injection subarachnoid hemorrhage model in rats.

    Directory of Open Access Journals (Sweden)

    Vesna Malinova

    Full Text Available Magnetic resonance (MR imaging has been used for the detection of cerebral vasospasm (VSP related infarction in experimental subarachnoid hemorrhage (eSAH in rats. Conventional angiography is generally used to visualize VSP, which is an invasive technique with a possible increase in morbidity and mortality. In this study we evaluated the validity of MR-angiography (MRA in detecting VSP and its feasibility to define VSP severity grades after eSAH in rats.SAH was induced using the double-hemorrhage model in 12 rats. In two rats, saline solution was injected instead of blood (sham group. MR was performed on day 1, 2 and on day 5. T1-, T2-, T2*-weighted and time-of-flight MR sequences were applied, which were analyzed by two blinded neuroradiologists. Vessel narrowing of 25-50% was defined as mild, 50-75% as moderate and >75% as severe VSP.We performed a total of 34 MRAs in 14 rats. In 14 rats, MRA was performed on day 2 and day 5. In six rats MRA was additionally performed on day1 before the blood injection. A good visualization of cerebral vessels was possible in all cases. No VSP was seen in the sham group neither on day 2 nor on day 5. We found vasospasm on day 2 in 7 of the 14 rats (50% whereas all 7 rats had mild and one rat had additionally moderate and severe vasospasm in one vessel, respectively. On day 5 we found vasospasm in 8 of the 14 rats (60% whereas 4 rats had severe vasospasm, 1 rat had moderate vasospasm and 3 rats demonstrated mild vasospasm. In 4 of the 14 rats (30% an ischemic lesion was detected on day 5. Three of these rats had severe vasospasm and one rat had mild vasospasm. Severe vasospasm on day 5 was statistically significant correlated with the occurrence of ischemic lesions (Fisher's Exact test, OR 19.5, p = 0.03.MRA is a noninvasive diagnostic tool, which allows a good visualization of the cerebral vasculature and provides reproducible results concerning the detection of VSP and the differentiation into three severity

  12. Protective effect of tetraethyl pyrazine against focal cerebral ischemia/reperfusion injury in rats: therapeutic time window and its mechanism.

    Science.gov (United States)

    Jia, Jie; Zhang, Xi; Hu, Yong-Shan; Wu, Yi; Wang, Qing-Zhi; Li, Na-Na; Wu, Cai-Qin; Yu, Hui-Xian; Guo, Qing-Chuan

    2009-03-01

    Tetramethyl pyrazine has been considered an effective agent in treating neurons ischemia/reperfusion injury, but the mechanism of its therapeutic effect remains unclear. This study was to explore the therapeutic time window and mechanism of tetramethyl pyrazine on temporary focal cerebral ischemia/reperfusion injury. Middle cerebral artery occlusion was conducted in male Sprague-Dawley rats and 20 mg/kg of tetramethyl pyrazine was intraperitoneally injected at different time points. At 72 h after reperfusion, all animals' neurologic deficit scores were evaluated. Cerebrums were removed and cerebral infarction volume was measured. The expression of thioredoxin and thioredoxin reductase mRNA was determined at 6 and 24 h after reperfusion. Cerebral infarction volume and neurological deficit scores were significantly decreased in the group with tetramethyl pyrazine treatment. The expression of thioredoxin-1/thioredoxin-2 and thioredoxin reductase-1/thioredoxin reductase-2 was significantly decreased in rats with ischemia/reperfusion injury, while it was increased by tetramethyl pyrazine administration. Treatment with tetramethyl pyrazine, within 4 h after reperfusion, protects the brain from ischemic reperfusion injury in rats. The neuroprotective mechanism of tetramethyl pyrazine treatment is, in part, mediated through the upregulation of thioredoxin transcription.

  13. Electroacupuncture ameliorates post-stroke learning and memory through minimizing ultrastructural brain damage and inhibiting the expression of MMP-2 and MMP-9 in cerebral ischemia-reperfusion injured rats.

    Science.gov (United States)

    Lin, Ruhui; Yu, Kunqiang; Li, Xiaojie; Tao, Jing; Lin, Yukun; Zhao, Congkuai; Li, Chunyan; Chen, Li-Dian

    2016-07-01

    The aim of the present study was to investigate the potential neuroprotective effects of electroacupuncture (EA) in the treatment of cerebral ischemia/reperfusion (I/R) injury, and to elucidate the association between this neuroprotective effect and brain ultrastructure and expression of matrix metalloproteinase (MMP)‑2 and 9. Rats underwent focal cerebral I/R injury by arterial ligation and received in vivo therapeutic EA at the Baihui (DU20) and Shenting (DU24) acupoints. The therapeutic efficacy was then evaluated following the surgery. The results of the current study demonstrated that EA treatment significantly ameliorated neurological deficits and reduced cerebral infarct volume compared with I/R injured rats. Furthermore, EA improved the learning and memory ability of rats following I/R injury, inhibited blood brain barrier breakdown and reduced neuronal damage in the ischemic penumbra. Furthermore, EA attenuated ultrastructural changes in the brain tissue following ischemia and inhibited MMP‑2/MMP‑9 expression in cerebral I/R injured rats. The results suggest that EA ameliorates anatomical deterioration, and learning and memory deficits in rats with cerebral I/R injury.

  14. Alpha-Tocopherol Reduces Brain Edema and Protects Blood-Brain Barrier Integrity following Focal Cerebral Ischemia in Rats.

    Science.gov (United States)

    Haghnejad Azar, Adel; Oryan, Shahrbanoo; Bohlooli, Shahab; Panahpour, Hamdollah

    2017-01-01

    This study was conducted to examine the neuroprotective effects of α-tocopherol against edema formation and disruption of the blood-brain barrier (BBB) following transient focal cerebral ischemia in rats. Ninety-six male Sprague-Dawley rats were divided into 3 major groups (n = 32 in each), namely the sham, and control and α-tocopherol-treated (30 mg/kg) ischemic groups. Transient focal cerebral ischemia (90 min) was induced by occlusion of the left middle cerebral artery. At the end of the 24-hour reperfusion period, the animals were randomly selected and used for 4 investigations (n = 8) in each of the 3 main groups: (a) assessment of neurological score and measurement of infarct size, (b) detection of brain edema formation by the wet/dry method, (c) evaluation of BBB permeability using the Evans blue (EB) extravasation technique, and (d) assessment of the malondialdehyde (MDA) and reduced glutathione (GSH) concentrations using high-performance liquid chromatography methods. Induction of cerebral ischemia in the control group produced extensive brain edema (brain water content 83.8 ± 0.11%) and EB leakage into brain parenchyma (14.58 ± 1.29 µg/g) in conjunction with reduced GSH and elevated MDA levels (5.86 ± 0.31 mmol/mg and 63.57 ± 5.42 nmol/mg, respectively). Treatment with α-tocopherol significantly lowered brain edema formation and reduced EB leakage compared with the control group (p < 0.001, 80.1 ± 0.32% and 6.66 ± 0.87 µg/g, respectively). Meanwhile, treatment with α-tocopherol retained tissue GSH levels and led to a lower MDA level (p < 0.01, 10.17 ± 0.83 mmol/mg, and p < 0.001, 26.84 ± 4.79 nmol/mg, respectively). Treatment with α-tocopherol reduced ischemic edema formation and produced protective effects on BBB function following ischemic stroke occurrence. This effect could be through increasing antioxidant activity. © 2016 S. Karger AG, Basel.

  15. Hemispheric distribution of middle cerebral artery ischemic strokes in patients admitted to military hospital rawalpindi

    International Nuclear Information System (INIS)

    Tariq, M.; Ishtiaq, S.; Zulfiqar, S.O.

    2016-01-01

    Objective: To determine the difference in the frequency of middle cerebral artery (MCA) ischemic strokes between left and right cerebral hemispheres in the adult patients admitted to the Military Hospital (MH) Rawalpindi. Study Design: A descriptive study. Place and Duration of Study: MH Rawalpindi from 01 Dec 2013 to 30 Mar 2014. Patients and Methods: Seventy eight adult patients admitted to MH Rawalpindi with neurologic deficits consistent with MCA strokes and having no evidence of intracerebral haemorrhage on Computed Tomographic (CT) scan of brain. Descriptive Statistics were calculated using SPSS version 17. Results: A total of 78 patients met the inclusion criteria of the study; 35 (45 percent) patients had right MCA stroke while 43 (55 percent) had left MCA stroke. Conclusion: Left MCA ischemic strokes are more common than right MCA ischemic strokes. (author)

  16. The experimental study of CT-guided hepatocyte growth factor gene therapy for cerebral ischemic diseases

    International Nuclear Information System (INIS)

    Zhang Xiaobo; Jin Zhengyu; Li Mingli; Wang Renzhi; Li Guilin; Kong Yanguo; Wang Jianming; Gao Shan; Guan Hongzhi; Wang Detian; Luo Yufeng

    2006-01-01

    Objectives: To investigate the feasibility of CT guided hepatocyte growth factor (HGF) gene therapy for cerebral ischemic diseases. Methods: Human HGF cDNA was ligated to pIRES 2 -EGFP vector. The recombinant plasmid was transfected into the penumbra tissue with liposome, guided by CT perfusion images. After seven days of transfer with recombinant plasmid, the cut sections of rat brain tissues of the treated and control groups were analyzed including immunohistochemistry, vessel count, cerebral blood flow and infarct volume etc. in order to investigate HGF gene expression and biological effect. Results: Enzymatic digestion and electrophoresis confirmed that HGF fragments had been correctly cloned into the space between the BamH I and Sal I sites of pIRES 2 -EGFP. After 7 days of HGF gene transfection, expression of HGF in transfected neurocytes of treated group was observed with immunohistochemistry. The number of vessels in penumbra tissues transfected with HGF vectors and the CBF measured by perfusion CT all were significantly increased than those of the controls (P 2 -EGFP-HGF complexes can transfect the penumbra tissues and definitely express HGF protein. The HGF gene products can stimulate angiogenesis, promote collateral circulation formation and reduce infarct volume in vivo and therefore is beneficial to the treatment of cerebral ischemia. (authors)

  17. Anti neuroinflammatory effect of Vildagliptin in ischaemia-reperfusion induced cerebral infarction in normal and STZ induced type-II diabetic rats

    Directory of Open Access Journals (Sweden)

    Kaleru Purnachander

    2016-03-01

    Full Text Available Diabetes is one of the major risk factor for cerebral ischemic stroke. Increased base line levels of oxidative stress in diabetes will lead to cerebral ischemic damage. In pathological conditions such as cerebral ischemia/reperfusion injury, free radicals cause oxidative stress and inflammation leading to increased injury of brain. Inflammation is one of the major pathological mechanisms involved in cerebral ischemia and reperfusion injury. Vildagliptin newer anti-diabetic drug of the class DPP-4 inhibitors is reported to have anti-inflammatory properties apart from its antihyperglycemic activity. Therefore the aim of the present study is to evaluate the anti-inflammatory effect of Vildagliptin against cerebral infarction induced ischemia reperfusion injury in normal and STZ induced diabetic Wistar rats. Cerebral infarction was induced by bilateral common carotid artery occlusion followed by 4 hr reperfusion. Percent infarction, inflammatory markers such as MPO, TNF-α, IL-6 and IL-10 were analysed. Treatment with Vildagliptin for a period of four weeks produced significant reduction in percent cerebral infarct volume. Vildagliptin at 10 mg/kg dose, showed significant reduction in markers like MPO, TNF-α, IL-6 and IL-1β in diabetic group when compared to normal group and in contrast significant increase in anti-inflammatory marker like IL-10 levels. Vildagliptin showed significant cerebroprotective effect by antiinflammatory mechanisms.

  18. Neuroprotection of lamotrigine on hypoxic-ischemic brain damage in neonatal rats: Relations to administration time and doses

    Directory of Open Access Journals (Sweden)

    Yong-Hong Yi

    2008-06-01

    Full Text Available Yong-Hong Yi1, Wen-Chao Guo1, Wei-Wen Sun1, Tao Su1, Han Lin1, Sheng-Qiang Chen1, Wen-Yi Deng1, Wei Zhou2, Wei-Ping Liao11Department of Neurology, Institute of Neurosciences and the Second Affiliated Hospital, 2Department of Neonatology, Affiliated Guangzhou Children’s Hospital, Guangzhou Medical College, Guangzhou, Guangdong Province, P.R. ChinaAbstract: Lamotrigine (LTG, an antiepileptic drug, has been shown to be able to improve cerebral ischemic damage by limiting the presynaptic release of glutamate. The present study investigated further the neuroprotective effect of LTG on hypoxic-ischemic brain damage (HIBD in neonatal rats and its relations to administration time and doses. The HIBD model was produced in 7-days old SD rats by left common carotid artery ligation followed by 2 h hypoxic exposure (8% oxygen. LTG was administered intraperitoneally with the doses of 5, 10, 20, and 40 mg/kg 3 h after operation and the dose of 20 mg/kg 1 h before and 3 h, 6 h after operation. Blood and brain were sampled 24 h after operation. Nissl staining, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL, and neuron-specific enolase (NSE immunohistochemical staining were used for morphological studies. Water content in left cortex and NSE concentration in serum were determined. LTG significantly reduced water content in the cerebral cortex, as well as the number of TUNEL staining neurons in the dentate gyrus and cortex in hypoxic-ischemia (HI model. Furthermore, LTG significantly decreased the NSE level in serum and increased the number of NSE staining neurons in the cortex. These effects, except that on water content, were dose-dependent and were more remarkable in the pre-treated group than in the post-treated groups. These results demonstrate that LTG may have a neuroprotective effect on acute HIBD in neonates. The effect is more prominent when administrated with higher doses and before HI.Keywords: hypoxic-ischemic brain

  19. Edaravone, a free radical scavenger, attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia.

    Science.gov (United States)

    Okamura, Koichi; Tsubokawa, Tamiji; Johshita, Hiroo; Miyazaki, Hiroshi; Shiokawa, Yoshiaki

    2014-01-01

    Thrombolysis due to acute ischemic stroke is associated with the risk of hemorrhagic infarction, especially after reperfusion. Recent experimental studies suggest that the main mechanism contributing to hemorrhagic infarction is oxidative stress caused by disruption of the blood-brain barrier. Edaravone, a free radical scavenger, decreases oxidative stress, thereby preventing hemorrhagic infarction during ischemia and reperfusion. In this study, we investigated the effects of edaravone on hemorrhagic infarction in a rat model of hemorrhagic transformation. We used a previously established hemorrhagic transformation model of rats with hyperglycemia. Hyperglycemia was induced by intraperitoneal injection of glucose to all rats (n  =  20). The rats with hyperglycemia showed a high incidence of hemorrhagic infarction. Middle cerebral artery occlusion (MCAO) for 1.5 hours followed by reperfusion for 24 hours was performed in edaravone-treated rats (n  =  10) and control rats (n  =  10). Upon completion of reperfusion, both groups were evaluated for infarct size and hemorrhage volume and the results obtained were compared. Edaravone significantly decreased infarct volume, with the average infarct volume in the edaravone-treated rats (227.6 mm(3)) being significantly lower than that in the control rats (264.0 mm(3)). Edaravone treatment also decreased the postischemic hemorrhage volumes (53.4 mm(3) in edaravone-treated rats vs 176.4 mm(3) in controls). In addition, the ratio of hemorrhage volume to infarct volume was lower in the edaravone-treated rats (23.5%) than in the untreated rats (63.2%). Edaravone attenuates cerebral infarction and hemorrhagic infarction in rats with hyperglycemia.

  20. Improvement in regional CBF by L-serine contributes to its neuroprotective effect in rats after focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Tao-Jie Ren

    Full Text Available To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF. Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1 reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2 improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3 increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca(2+-activated K(+ channels on the cerebral blood vessel endothelium.

  1. S100B protein in serum is elevated after global cerebral ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Bao-di Sun; Hong-mei Liu; Shi-nan Nie

    2013-01-01

    BACKGROUND:S100B protein in patients with cardiac arrest,hemorrhagic shock and other causes of global cerebral ischemic injury will be dramatically increased.Ischemic brain injury may elevate the level of serum S100 B protein and the severity of brain damage.METHODS:This article is a critical and descriptive review on S100 B protein in serum after ischemic brain injury.We searched Pubmed database with key words or terms such as 'S100B protein', 'cardiac arrest', 'hemorrhagic shock' and 'ischemia reperfusion injury' appeared in the last five years.RESULTS:S100B protein in patients with cardiac arrest,hemorrhagic shock and other causes of ischemic brain injury will be dramatically increased.Ischemic brain injury elevated the level of serum S100 B protein,and the severity of brain damage.CONCLUSION:The level of S100 B protein in serum is elevated after ischemic brain injury,but its mechanism is unclear.

  2. Intake of antioxidants and B vitamins is inversely associated with ischemic stroke and cerebral atherosclerosis

    Science.gov (United States)

    Choe, Hansaem; Hwang, Ji-Yun; Yun, Jin A; Kim, Ji-Myung; Song, Tae-Jin; Chang, Namsoo; Kim, Yong-Jae

    2016-01-01

    BACKGROUND/OBJECTIVES This study was conducted to examine relationships between dietary habits and intakes of antioxidants and B vitamins and the risk of ischemic stroke, and to compare dietary factors according to the presence of cerebral artery atherosclerosis and stroke subtypes. SUBJECTS/METHODS A total of 147 patients and 144 control subjects were recruited consecutively in the metropolitan area of Seoul, Korea. Sixty participants each in the case and control groups were included in analyses after 1:1 frequency matching. In addition, 117 acute ischemic stroke patients were classified into subtypes according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) guidelines. Dietary intake was measured using a semi-quantitative food frequency questionnaire composed of 111 food items and plasma lipid and homocysteine levels were analyzed. RESULTS When compared with control subjects, stroke patients had unfavorable dietary behaviors and lower intakes of fruits (73.1 ± 83.2 g vs. 230.9 ± 202.1 g, P < 0.001), vegetables (221.1 ± 209.0 g vs. 561.7 ± 306.6 g, P < 0.001), and antioxidants, including vitamins C, E, B6, β-carotene, and folate. The intakes of fruits, vegetables, vitamin C, and folate were inversely associated with the risk of ischemic stroke after adjusting for confounding factors. Intakes of vegetables, vitamins C, B6, B12, and folate per 1,000 kcal were lower in ischemic stroke with cerebral atherosclerosis than in those without. Overall vitamin B12 intake per 1,000 kcal differed according to the TOAST classification (P = 0.004), but no differences among groups existed based on the post-hoc test. CONCLUSIONS When compared with control subjects, ischemic stroke patients, particularly those with cerebral atherosclerosis, had unfavorable dietary intake, which may have contributed to the development of ischemic stroke. These results indicate that proper dietary recommendations are important for the prevention of ischemic stroke. PMID:27698959

  3. Neuroprotective Effect of Xueshuantong for Injection (Lyophilized in Transient and Permanent Rat Cerebral Ischemia Model

    Directory of Open Access Journals (Sweden)

    Xumei Wang

    2015-01-01

    Full Text Available Xueshuantong for Injection (Lyophilized (XST, a Chinese Materia Medica standardized product extracted from Panax notoginseng (Burk., is used extensively for the treatment of cerebrovascular diseases such as acutely cerebral infarction clinically in China. In the present study, we evaluated the acute and extended protective effects of XST in different rat cerebral ischemic model and explored its effect on peroxiredoxin (Prx 6-toll-like receptor (TLR 4 signaling pathway. We found that XST treatment for 3 days could significantly inhibit transient middle cerebral artery occlusion (MCAO induced infarct volume and swelling percent and regulate the mRNA expression of interleukin-1β (IL-1β, IL-17, IL-23p19, tumor necrosis factor-α (TNFα, and inducible nitric oxide synthase (iNOS in brain. Further study demonstrated that treatment with XST suppressed the protein expression of peroxiredoxin (Prx 6-toll-like receptor (TLR 4 and phosphorylation level of p38 and upregulated the phosphorylation level of STAT3. In permanent MCAO rats, XST could reduce the infarct volume and swelling percent. Moreover, our results revealed that XST treatment could increase the rats’ weight and improve a batch of functional outcomes. In conclusion, the present data suggested that XST could protect against ischemia injury in transient and permanent MCAO rats, which might be related to Prx6-TLR4 pathway.

  4. Tanshinone IIA attenuates the cerebral ischemic injury-induced increase in levels of GFAP and of caspases-3 and -8.

    Science.gov (United States)

    Zhou, L; Bondy, S C; Jian, L; Wen, P; Yang, F; Luo, H; Li, W; Zhou, Jun

    2015-03-12

    Tanshinone IIA (TSA) is a lipid soluble agent derived from the root of Salvia miltiorrhiza (Danshen). This plant is a traditional Chinese herb, which has been used widely in China especially for enhancing circulation. However mechanisms underlying its efficacy remain poorly understood. The present study was designed to illuminate events that may underlie the apparently neuroprotective effects of TSA following ischemic insult. Adult Sprague-Dawley rats were subjected to transient focal cerebral ischemia by use of a middle cerebral artery occlusion model. They were then randomly divided into a sham-operated control group, and cerebral ischemia/reperfusion groups receiving a two-hour occlusion. Further subsets of groups received the same durations of occlusion or were sham-operated but then received daily i.p. injections of high or low doses of TSA, for seven or 15days. Hematoxylin and eosin staining revealed lesions in the entorhinal cortex of both rats subject to ischemia and to a lesser extent to those receiving TSA after surgery. Levels of glial fibrillary acidic protein (GFAP), caspase-3 and caspase-8, were quantified by both immunohistochemistry and Western blotting. TSA treatment after middle cerebral artery occlusion, markedly reduced infarct size, and reduced the expression of caspase-3 and caspase-8. These changes were considered protective and were generally proportional to the dose of TSA used. These results suggest that TSA may effect neuroprotection by way of reduction of the extent of cell inflammation and death within affected regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Dl-3-n-Butylphthalide Treatment Enhances Hemodynamics and Ameliorates Memory Deficits in Rats with Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Zhilin Xiong

    2017-07-01

    Full Text Available Our previous study has revealed that chronic cerebral hypoperfusion (CCH activates a compensatory vascular mechanism attempting to maintain an optimal cerebral blood flow (CBF. However, this compensation fails to prevent neuronal death and cognitive impairment because neurons die prior to the restoration of normal CBF. Therefore, pharmacological invention may be critical to enhance the CBF for reducing neurodegeneration and memory deficit. Dl-3-n-butylphthalide (NBP is a compound isolated from the seeds of Chinese celery and has been proven to be able to prevent neuronal loss, reduce inflammation and ameliorate memory deficits in acute ischemic animal models and stroke patients. In the present study, we used magnetic resonance imaging (MRI techniques, immunohistochemistry and Morris water maze (MWM to investigate whether NBP can accelerate CBF recovery, reduce neuronal death and improve cognitive deficits in CCH rats after permanent bilateral common carotid artery occlusion (BCCAO. Rats were intravenously injected with NBP (5 mg/kg daily for 14 days beginning the first day after BCCAO. The results showed that NBP shortened recovery time of CBF to pre-occlusion levels at 2 weeks following BCCAO, compared to 4 weeks in the vehicle group, and enhanced hemodynamic compensation through dilation of the vertebral arteries (VAs and increase in angiogenesis. NBP treatment also markedly reduced reactive astrogliosis and cell apoptosis and protected hippocampal neurons against ischemic injury. The escape latency of CCH rats in the MWM was also reduced in response to NBP treatment. These findings demonstrate that NBP can accelerate the recovery of CBF and improve cognitive function in a rat model of CCH, suggesting that NBP is a promising therapy for CCH patients or vascular dementia.

  6. Studies on cerebral protection of digoxin against hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Peng, Kaiwei; Tan, Danfeng; He, Miao; Guo, Dandan; Huang, Juan; Wang, Xia; Liu, Chentao; Zheng, Xiangrong

    2016-08-17

    Hypoxic-ischemic brain damage (HIBD) is a major cause of neonatal acute deaths and chronic nervous system damage. Our present study was designed to investigate the possible neuroprotective effect of digoxin-induced pharmacological preconditioning after hypoxia-ischemia and underlying mechanisms. Neonatal rats were assigned randomly to control, HIBD, or HIBD+digoxin groups. Pharmacological preconditioning was induced by administration of digoxin 72 h before inducing HIBD by carotid occlusion+hypoxia. Behavioral assays, and neuropathological and apoptotic assessments were performed to examine the effects; the expression of Na/K ATPase was also assessed. Rats in the HIBD group showed deficiencies on the T-maze, radial water maze, and postural reflex tests, whereas the HIBD+digoxin group showed significant improvements on all behavioral tests. The rats treated with digoxin showed recovery of pathological conditions, increased number of neural cells and proliferative cells, and decreased number of apoptotic cells. Meanwhile, an increased expression level of Na/K ATPase was observed after digoxin preconditioning treatment. The preconditioning treatment of digoxin contributed toward an improved functional recovery and exerted a marked neuroprotective effect including promotion of cell proliferation and reduction of apoptosis after HIBD, and the neuroprotective action was likely associated with increased expression of Na/K ATPase.

  7. Relaxation along a fictitious field (RAFF and Z-spectroscopy using alternating-phase irradiation (ZAPI in permanent focal cerebral ischemia in rat.

    Directory of Open Access Journals (Sweden)

    Kimmo T Jokivarsi

    Full Text Available Cerebral ischemia alters the molecular dynamics and content of water in brain tissue, which is reflected in NMR relaxation, diffusion and magnetization transfer (MT parameters. In this study, the behavior of two new MRI contrasts, Relaxation Along a Fictitious Field (RAFF and Z-spectroscopy using Alternating-Phase Irradiation (ZAPI, were quantified together with conventional relaxation parameters (T1, T2 and T1ρ and MT ratios in acute cerebral ischemia in rat. The right middle cerebral artery was permanently occluded and quantitative MRI data was acquired sequentially for the above parameters for up to 6 hours. The following conclusions were drawn: 1 Time-dependent changes in RAFF and T1ρ relaxation are not coupled to those in MT. 2 RAFF relaxation evolves more like transverse, rather than longitudinal relaxation. 3 MT measured with ZAPI is less sensitive to ischemia than conventional MT. 4 ZAPI data suggest alterations in the T2 distribution of macromolecules in acute cerebral ischemia. It was shown that both RAFF and ZAPI provide complementary MRI information from acute ischemic brain tissue. The presented multiparametric MRI data may aid in the assessment of brain tissue status early in ischemic stroke.

  8. Investigation of cerebral iron deposition in aged patients with ischemic cerebrovascular disease using susceptibility-weighted imaging

    Directory of Open Access Journals (Sweden)

    Liu Y

    2016-08-01

    Full Text Available Yin Liu, Jun Liu, Huanghui Liu, Yunjie Liao, Lu Cao, Bin Ye, Wei Wang Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China Objective: The aim of this study was to investigate focal iron deposition level in the brain in patients with ischemic cerebrovascular disease and its correlation with cerebral small vessel disease imaging markers.Patients and methods: Seventy-four patients with first-ever transient ischemic attack (median age: 69 years; 30 males and 44 females and 77 patients with positive ischemic stroke history (median age: 72 years; 43 males and 34 females were studied retrospectively. On phase image of susceptibility-weighted imaging and regions of interest were manually drawn at the bilateral head of the caudate nucleus, lenticular nucleus (LN, thalamus (TH, frontal white matter, and occipital white matter. The correlation between iron deposition level and the clinical and imaging variables was also investigated.Results: Iron deposition level at LN was significantly higher in patients with previous stroke history. It linearly correlated with the presence and number of cerebral microbleeds (CMBs but not with white matter hyperintensity and lacunar infarct. Multiple linear regression analysis showed that deep structure CMBs were the most relevant in terms of iron deposition at LN.Conclusion: Iron deposition at LN may increase in cases of more severe ischemia in aged patients with transient ischemic attack, and it may be an imaging marker for CMB of ischemic origin. Keywords: cerebral microbleed, ischemia, susceptibility-weighted imaging, iron, lenticular nucleus

  9. In vivo measurements of cerebral metabolic abnormalities by proton spectroscopy after a transient ischemic attack revealing an internal carotid stenosis > 70%

    International Nuclear Information System (INIS)

    Giroud, M.; Becker, F.; Lemesle, M.; Walker, P.; Guy, F.; Martin, D.; Baudouin, N.; Brunotte, F.; Dumas, R.

    1996-01-01

    Aims: The aim of this work is to look for cerebral metabolic abnormalities within the first 3 days after a transient ischemic attack revealing an internal carotid stenosis > 70 %. Methods: Five patients with a transient ischemic attack lasting between 30 and 180 minutes, affecting sensory and motor brachio-facial territory, with or without aphasia. Were studied. A CT-scan, an EEG, a cervical Doppler ultrasound, a standard arteriography, a magnetic resonance imaging and a proton spectroscopy were performed within the cerebral area affected by the transient ischemic attack. We measured 2 markers: N-acetyl-aspartate, the marker of the neuronal mass, and lactate, the marker of anaerobe metabolism. In each case, a contralateral internal stenosis was diagnosed by cervical Doppler ultrasound and standard arteriography. No cerebral infarction was observed. Results: With the affected cerebral area defined according to clinical and EEG features, proton spectroscopy showed a significant rise of lactate, without any change in N-acetyl-aspartate levels. Conclusions: Within the first 3 days after a transient ischemic attack, there is a significant risk of lactate inside the affected cerebral area. This change may reflect a localized and transient hypoperfusion, but long enough to induce a rise of lactate but not sufficient to produce a cerebral infarct. This area is probably at risk to induce cerebral infarct. This data lead us to study the metabolic change induced by the asymptomatic internal carotid stenosis. (authors). 18 refs

  10. Interstitial pO2 in ischemic penumbra and core are differentially affected following transient focal cerebral ischemia in rats.

    Science.gov (United States)

    Liu, Shimin; Shi, Honglian; Liu, Wenlan; Furuichi, Takamitsu; Timmins, Graham S; Liu, Ke Jian

    2004-03-01

    Stroke causes heterogeneous changes in tissue oxygenation, with a region of decreased blood flow, the penumbra, surrounding a severely damaged ischemic core. Treatment of acute ischemic stroke aims to save this penumbra before its irreversible damage by continued ischemia. However, effective treatment remains elusive due to incomplete understanding of processes leading to penumbral death. While oxygenation is central in ischemic neuronal death, it is unclear exactly what actual changes occur in interstitial oxygen tension (pO2) in ischemic regions during stroke, particularly the penumbra. Using the unique capability of in vivo electron paramagnetic resonance (EPR) oximetry to measure localized interstitial pO2, we measured both absolute values, and temporal changes of pO2 in ischemic penumbra and core during ischemia and reperfusion in a rat model. Ischemia rapidly decreased interstitial pO2 to 32% +/- 7.6% and 4% +/- 0.6% of pre-ischemic values in penumbra and core, respectively 1 hour after ischemia. Importantly, whilst reperfusion restored core pO2 close to its pre-ischemic value, penumbral pO2 only partially recovered. Hyperoxic treatment significantly increased penumbral pO2 during ischemia, but not in the core, and also increased penumbral pO2 during reperfusion. These divergent, important changes in pO2 in penumbra and core were explained by combined differences in cellular oxygen consumption rates and microcirculation conditions. We therefore demonstrate that interstitial pO2 in penumbra and core is differentially affected during ischemia and reperfusion, providing new insights to the pathophysiology of stroke. The results support normobaric hyperoxia as a potential early intervention to save penumbral tissue in acute ischemic stroke.

  11. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Nirmal

    2007-01-01

    The present study has been designed to pharmacologically investigate the role of phosphoinositide 3-kinase in ischemic postconditioning-induced reversal of global cerebral ischemia and reperfusion-induced behavioral dysfunction in mice. Bilateral carotid artery occlusion for 10 min followed by reperfusion for 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in mice. Short-term memory was evaluated using the elevated plus maze test. The inclined beam walking test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced impaired short-term memory, motor co-ordination and lateral push response. Three episodes of carotid artery occlusion for a period of 10 s and reperfusion of 10 s (ischemic postconditioning) significantly prevented ischemia-reperfusion-induced behavioral deficit measured in terms of loss of short-term memory, motor coordination and lateral push response. Wortmannin (2 mg/kg, iv), a phosphoinositide 3-kinase inhibitor given 10 min before ischemia attenuated the beneficial effects of ischemic postconditioning. It may be concluded that beneficial effects of ischemic postconditioning on global cerebral ischemia and reperfusion-induced behavioral deficits may involve activation of phosphoinositide 3-kinase-linked pathway.

  12. Feasibility of arterial blood bypass using microcatheter in intraarterial thrombolysis for acute cerebral ischemic stroke

    International Nuclear Information System (INIS)

    Wang Wei; Li Cheng; Liu Zhensheng; Zhang Xinjiang; Zhou Longjiang; Yin Haiyan

    2010-01-01

    Objective: To assess the feasibility of arterial blood bypass using microcatheter in intraarterial thrombolysis for acute cerebral ischemic stroke. Methods: Six patients with acute cerebral infarction within 6 hours underwent intraarterial thrombolysis, in which arterial blood bypass was used. A 2.3 F microcatheter was advanced through the clot and two milliliters of contrast was injected beyond the clot that remained stagnant in the major branches. At this point, 20 ml of oxygenated blood from femoral artery was injected for 2 minutes through the microcatheter past the occluding clot. Then, conventional intraarterial thrombolysis, including fibrinolytic agents infusion and mechanical disruption, was performed. Intraarterial thrombolysis and oxygenated blood infusion alternated every 30 minutes. Results: Every patient received arterial blood bypass with average three times (from 1 to 5 times) in the process of the intraarterial thrombolysis, which cost (8.0 ± 3.2) min. Recanalization was achieved in all 6 patients, but minor subarachnoid hemorrhage developed in one patient. All the patients got favorable clinical outcome. The life conditions is excellent in 4 cases and good in 2 cases. Conclusions: Arterial blood bypass using microcatheter in intraarterial thrombolysis for acute cerebral ischemic stroke might be feasible, which did not interfere with conventional intraarterial thrombolysis and prolong the operation time significantly but could protect ischemic penumbra. (authors)

  13. Antrodia camphorata Potentiates Neuroprotection against Cerebral Ischemia in Rats via Downregulation of iNOS/HO-1/Bax and Activated Caspase-3 and Inhibition of Hydroxyl Radical Formation

    Directory of Open Access Journals (Sweden)

    Po-Sheng Yang

    2015-01-01

    Full Text Available Antrodia camphorata (A. camphorata is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO rats. A selective occlusion of the middle cerebral artery (MCA with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day alone or combined with aspirin (5 mg/kg/day. To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS, haem oxygenase-1 (HO-1, and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P<0.001, iNOS (P<0.001, and Bax (P<0.01 in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day. Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P<0.01. Moreover, treatment of A. camphorata significantly (P<0.05 reduced fenton reaction-induced hydroxyl radical (OH• formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH• signals.

  14. Multi-site laser Doppler flowmetry for assessing collateral flow in experimental ischemic stroke: Validation of outcome prediction with acute MRI.

    Science.gov (United States)

    Cuccione, Elisa; Versace, Alessandro; Cho, Tae-Hee; Carone, Davide; Berner, Lise-Prune; Ong, Elodie; Rousseau, David; Cai, Ruiyao; Monza, Laura; Ferrarese, Carlo; Sganzerla, Erik P; Berthezène, Yves; Nighoghossian, Norbert; Wiart, Marlène; Beretta, Simone; Chauveau, Fabien

    2017-06-01

    High variability in infarct size is common in experimental stroke models and affects statistical power and validity of neuroprotection trials. The aim of this study was to explore cerebral collateral flow as a stratification factor for the prediction of ischemic outcome. Transient intraluminal occlusion of the middle cerebral artery was induced for 90 min in 18 Wistar rats. Cerebral collateral flow was assessed intra-procedurally using multi-site laser Doppler flowmetry monitoring in both the lateral middle cerebral artery territory and the borderzone territory between middle cerebral artery and anterior cerebral artery. Multi-modal magnetic resonance imaging was used to assess acute ischemic lesion (diffusion-weighted imaging, DWI), acute perfusion deficit (time-to-peak, TTP), and final ischemic lesion at 24 h. Infarct volumes and typology at 24 h (large hemispheric versus basal ganglia infarcts) were predicted by both intra-ischemic collateral perfusion and acute DWI lesion volume. Collateral flow assessed by multi-site laser Doppler flowmetry correlated with the corresponding acute perfusion deficit using TTP maps. Multi-site laser Doppler flowmetry monitoring was able to predict ischemic outcome and perfusion deficit in good agreement with acute MRI. Our results support the additional value of cerebral collateral flow monitoring for outcome prediction in experimental ischemic stroke, especially when acute MRI facilities are not available.

  15. Compromised Wound Healing in Ischemic Type 2 Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Peilang Yang

    Full Text Available Ischemia is one of the main epidemic factors and characteristics of diabetic chronic wounds, and exerts a profound effect on wound healing. To explore the mechanism of and the cure for diabetic impaired wound healing, we established a type 2 diabetic rat model. We used an 8 weeks high fat diet (HFD feeding regimen followed by multiple injections of streptozotocin (STZ at a dose of 10mg/kg to induce Wister rat to develop type 2 diabetes. Metabolic characteristics were assessed at the 5th week after the STZ injections to confirm the establishment of diabetes mellitus on the rodent model. A bipedicle flap, with length to width ratio 1.5, was performed on the back of the rat to make the flap area ischemic. Closure of excisional wounds on this bipedicle flap and related physiological and pathological changes were studied using histological, immunohistochemical, real time PCR and protein immunoblot approaches. Our results demonstrated that a combination of HFD feeding and a low dose of STZ is capable of inducing the rats to develop type 2 diabetes with noticeable insulin resistance, persistent hyperglycemia, moderate degree of insulinemia, as well as high serum cholesterol and high triglyceride levels. The excision wounds on the ischemic double pedicle flap showed deteriorative healing features comparing with non-ischemic diabetic wounds, including: delayed healing, exorbitant wound inflammatory response, excessive and prolonged ROS production and excessive production of MMPs. Our study suggested that HFD feeding combined with STZ injection could induce type 2 diabetes in rat. Our ischemic diabetic wound model is suitable for the investigation of human diabetic related wound repair; especically for diabetic chronic wounds.

  16. Neuroprotective Effect of the Ginsenoside Rg1 on Cerebral Ischemic Injury In Vivo and In Vitro Is Mediated by PPARγ-Regulated Antioxidative and Anti-Inflammatory Pathways

    Directory of Open Access Journals (Sweden)

    Yang Li

    2017-01-01

    Full Text Available The ginsenoside Rg1 exerts a neuroprotective effect during cerebral ischemia/reperfusion injury. Rg1 has been previously reported to improve PPARγ expression and signaling, consequently enhancing its regulatory processes. Due to PPARγ’s role in the suppression of oxidative stress and inflammation, Rg1’s PPARγ-normalizing capacity may play a role in the observed neuroprotective action of Rg1 during ischemic brain injury. We utilized a middle cerebral artery ischemia/reperfusion injury model in rats in addition to an oxygen glucose deprivation model in cortical neurons to elucidate the mechanisms underlying the neuroprotective effects of Rg1. We found that Rg1 significantly increased PPARγ expression and reduced multiple indicators of oxidative stress and inflammation. Ultimately, Rg1 treatment improved neurological function and diminished brain edema, indicating that Rg1 may exert its neuroprotective action on cerebral ischemia/reperfusion injury through the activation of PPARγ signaling. In addition, the present findings suggested that Rg1 was a potent PPARγ agonist in that it upregulated PPARγ expression and was inhibited by GW9662, a selective PPARγ antagonist. These findings expand our previous understanding of the molecular basis of the therapeutic action of Rg1 in cerebral ischemic injury, laying the ground work for expanded study and clinical optimization of the compound.

  17. Experimental Focal Cerebral Ischemia

    DEFF Research Database (Denmark)

    Christensen, Thomas

    2007-01-01

    Focal cerebral ischemia due to occlusion of a major cerebral artery is the cause of ischemic stroke which is a major reason of mortality, morbidity and disability in the populations of the developed countries. In the seven studies summarized in the thesis focal ischemia in rats induced by occlusion...... in the penumbra is recruited in the infarction process leading to a progressive growth of the infarct. The penumbra hence constitutes an important target for pharmacological treatment because of the existence of a therapeutic time window during which treatment with neuroprotective compounds may prevent...

  18. Imaging findings and cerebral perfusion in arterial ischemic stroke due to transient cerebral arteriopathy in children; Achados de imagem e perfusao arterial cerebral em acidente vascular cerebral isquemico devido a arteriopatia transitoria em crianca

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa Junior, Alcino Alves, E-mail: alcinojr@uol.com.br [Departamento de Diagnostico por Imagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Ellovitch, Saada Resende de Souza [Neuropediatria, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Pincerato, Rita de Cassia Maciel [Hospital Samaritano, Sao Paulo, SP (Brazil)

    2012-04-15

    We report the case of a 4-year-old female child who developed an arterial ischemic stroke in the left middle cerebral artery territory, due to a proximal stenosis of the supraclinoid internal carotid artery, most probably related to transient cerebral arteriopathy of childhood. Computed tomography scan, magnetic resonance imaging, perfusion magnetic resonance and magnetic resonance angiography are presented, as well as follow-up by magnetic resonance and magnetic resonance angiography exams. Changes in cerebral perfusion and diffusion-perfusion mismatch call attention. As far as we know, this is the first report of magnetic resonance perfusion findings in transient cerebral arteriopathy. (author)

  19. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs.

    Science.gov (United States)

    Zhang, Hai-Tao; Zhang, Ping; Gao, Yi; Li, Chen-Long; Wang, Hong-Jun; Chen, Ling-Chao; Feng, Yan; Li, Rui-Yan; Li, Yong-Li; Jiang, Chuan-Lu

    2017-01-01

    Vascular endothelial growth factor (VEGF) inhibition has been demonstrated to be an effective strategy in preserving the integrity of the blood-brain barrier (BBB) in patients with acute ischemic stroke. Loss of the BBB is the key event associated with morbidity and mortality in these patients. However, the underlying mechanisms remain poorly understood. In the present study, the effects of VEGF inhibition and the possible mechanism that underlies acute cerebral ischemia in rats was investigated. Following the induction of transient middle cerebral artery occlusion for a 90‑min period, either an anti‑VEGF neutralizing antibody (RB‑222; 5 or 10 µg), or IgG (control), was administered by intracerebroventricular injection at 1 h following reperfusion. Functional outcomes, BBB leakage, brain edema, microvessel numbers and the relative protein levels of VEGF, matrix metalloproteinase (MMP)-2, MMP-9, occludin and collagen-IV were then determined using neurological assessments, Evans Blue staining, brain water content, CD31 staining and western blotting. Treatment with RB‑222 at a dose of 5 and 10 µg significantly improved neurological functional outcomes and diminished infarct size, BBB leakage and brain edema compared with the MCAO and IgG groups at 24 h following reperfusion; 10 µg RB‑222 was more effective than a 5 µg dose of the antibody. In addition, RB‑222 reduced the number of immature microvessels, which subsequently attenuated BBB permeability. RB‑222 significantly repressed VEGF expression as well as decreased MMP‑2 and MMP‑9 expression. However, it enhanced occludin and collagen‑IV levels in the ischemic rat brain compared with the MCAO and IgG groups. Taken together, the results indicate that early inhibition of VEGF may have significant potential against cerebral ischemia, partly by regulating the expression of MMPs.

  20. Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats.

    Directory of Open Access Journals (Sweden)

    Tiffany N Eady

    Full Text Available Docosahexaenoic acid, a major omega-3 essential fatty acid family member, improves behavioral deficit and reduces infarct volume and edema after experimental focal cerebral ischemia. We hypothesize that DHA elicits neuroprotection by inducing AKT/p70S6K phosphorylation, which in turn leads to cell survival and protects against ischemic stroke in young and aged rats.Rats underwent 2 h of middle cerebral artery occlusion (MCAo. DHA, neuroprotectin D1 (NPD1 or vehicle (saline was administered 3 h after onset of stroke. Neurological function was evaluated on days 1, 2, 3, and 7. DHA treatment improved functional recovery and reduced cortical, subcortical and total infarct volumes 7 days after stroke. DHA also reduced microglia infiltration and increased the number of astrocytes and neurons when compared to vehicle on days 1 and 7. Increases in p473 AKT and p308 AKT phosphorylation/activation were observed in animals treated with DHA 4 h after MCAo. Activation of other members of the AKT signaling pathway were also observed in DHA treated animals including increases in pS6 at 4 h and pGSK at 24 h. DHA or NPD1 remarkably reduced total and cortical infarct in aged rats. Moreover, we show that in young and aged rats DHA treatment after MCAo potentiates NPD1 biosynthesis. The phosphorylation of p308 AKT or pGSK was not different between groups in aged rats. However, pS6 expression was increased with DHA or NPD1 treatment when compared to vehicle.We suggest that DHA induces cell survival, modulates the neuroinflammatory response and triggers long term restoration of synaptic circuits. Both DHA and NPD1 elicited remarkable protection in aged animals. Accordingly, activation of DHA signaling might provide benefits in the management of ischemic stroke both acutely as well as long term to limit ensuing disabilities.

  1. Piroxicam-mediated modulatory action of 5-hydroxytryptamine serves as a "brake" on neuronal excitability in ischemic stroke

    Directory of Open Access Journals (Sweden)

    Pallab Bhattacharya

    2015-01-01

    Full Text Available Our previous studies indicated an increase in extracellular γ-aminobutyric acid (GABA in rodent′s ischemic brain after Piroxicam administration, leading to alleviation of glutamate mediated excitotoxicity through activation of type A GABA receptor (GABAA. This study was to investigate if GABAA activation by Piroxicam affects extracellular 5-hydroxytryptamine or not. High performance liquid chromatography revealed that there was a significant decrease in extracellular 5-hydroxytryptamine release in ischemic cerebral cortex and striatum in Piroxicam pre-treated rat brains. This suggests a probable role of Piroxicam in reducing extracellular 5-hydroxytryptamine release in ischemic cerebral cortex and striatum possibly due to the GABAA activation by Piroxicam.

  2. Exercise preconditioning improves behavioral functions following transient cerebral ischemia induced by 4-vessel occlusion (4-VO) in rats.

    Science.gov (United States)

    Tahamtan, Mahshid; Allahtavakoli, Mohammad; Abbasnejad, Mehdi; Roohbakhsh, Ali; Taghipour, Zahra; Taghavi, Mohsen; Khodadadi, Hassan; Shamsizadeh, Ali

    2013-12-01

    There is evidence that exercise decreases ischemia/reperfusion injury in rats. Since behavioral deficits are the main outcome in patients after stroke, our study was designed to investigate whether exercise preconditioning improves the acute behavioral functions and also brain inflammatory injury following cerebral ischemia. Male rats weighing 250-300 g were randomly allocated into five experimental groups. Exercise was performed on a treadmill 30min/day for 3 weeks. Ischemia was induced by 4-vessel occlusion method. Recognition memory was assessed by novel object recognition task (NORT) and step-through passive avoidance task. Sensorimotor function and motor movements were evaluated by adhesive removal test and ledged beam-walking test, respectively. Brain inflammatory injury was evaluated by histological assessment. In NORT, the discrimination ratio was decreased after ischemia (P test, a significant reduction in response latency was observed in the ischemic group. Exercise preconditioning significantly decreased the response latency in the ischemic rats (P test, latency to touch and remove the sticky labels from forepaw was increased following induction of ischemia (all P beam-walking test, the slip ratio was increased following ischemia (P < 0.05).  In the ischemia group, marked neuronal injury in hippocampus was observed. These neuropathological changes were attenuated by exercise preconditioning (P < 0.001). Our results showed that exercise preconditioning improves behavioral functions and maintains more viable cells in the dorsal hippocampus of the ischemic brain.

  3. Cerebral microbleeds in a neonatal rat model.

    Directory of Open Access Journals (Sweden)

    Brianna Carusillo Theriault

    Full Text Available In adult humans, cerebral microbleeds play important roles in neurodegenerative diseases but in neonates, the consequences of cerebral microbleeds are unknown. In rats, a single pro-angiogenic stimulus in utero predisposes to cerebral microbleeds after birth at term, a time when late oligodendrocyte progenitors (pre-oligodendrocytes dominate in the rat brain. We hypothesized that two independent pro-angiogenic stimuli in utero would be associated with a high likelihood of perinatal microbleeds that would be severely damaging to white matter.Pregnant Wistar rats were subjected to intrauterine ischemia (IUI and low-dose maternal lipopolysaccharide (mLPS at embryonic day (E 19. Pups were born vaginally or abdominally at E21-22. Brains were evaluated for angiogenic markers, microhemorrhages, myelination and axonal development. Neurological function was assessed out to 6 weeks.mRNA (Vegf, Cd31, Mmp2, Mmp9, Timp1, Timp2 and protein (CD31, MMP2, MMP9 for angiogenic markers, in situ proteolytic activity, and collagen IV immunoreactivity were altered, consistent with an angiogenic response. Vaginally delivered pups exposed to prenatal IUI+mLPS had spontaneous cerebral microbleeds, abnormal neurological function, and dysmorphic, hypomyelinated white matter and axonopathy. Pups exposed to the same pro-angiogenic stimuli in utero but delivered abdominally had minimal cerebral microbleeds, preserved myelination and axonal development, and neurological function similar to naïve controls.In rats, pro-angiogenic stimuli in utero can predispose to vascular fragility and lead to cerebral microbleeds. The study of microbleeds in the neonatal rat brain at full gestation may give insights into the consequences of microbleeds in human preterm infants during critical periods of white matter development.

  4. Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model.

    Directory of Open Access Journals (Sweden)

    Svitlana Garbuzova-Davis

    Full Text Available Comprehensive stroke studies reveal diaschisis, a loss of function due to pathological deficits in brain areas remote from initial ischemic lesion. However, blood-brain barrier (BBB competence in subacute diaschisis is uncertain. The present study investigated subacute diaschisis in a focal ischemic stroke rat model. Specific focuses were BBB integrity and related pathogenic processes in contralateral brain areas.In ipsilateral hemisphere 7 days after transient middle cerebral artery occlusion (tMCAO, significant BBB alterations characterized by large Evans Blue (EB parenchymal extravasation, autophagosome accumulation, increased reactive astrocytes and activated microglia, demyelinization, and neuronal damage were detected in the striatum, motor and somatosensory cortices. Vascular damage identified by ultrastuctural and immunohistochemical analyses also occurred in the contralateral hemisphere. In contralateral striatum and motor cortex, major ultrastructural BBB changes included: swollen and vacuolated endothelial cells containing numerous autophagosomes, pericyte degeneration, and perivascular edema. Additionally, prominent EB extravasation, increased endothelial autophagosome formation, rampant astrogliosis, activated microglia, widespread neuronal pyknosis and decreased myelin were observed in contralateral striatum, and motor and somatosensory cortices.These results demonstrate focal ischemic stroke-induced pathological disturbances in ipsilateral, as well as in contralateral brain areas, which were shown to be closely associated with BBB breakdown in remote brain microvessels and endothelial autophagosome accumulation. This microvascular damage in subacute phase likely revealed ischemic diaschisis and should be considered in development of treatment strategies for stroke.

  5. Protective Effect of Ischemic Postconditioning against Ischemia Reperfusion-Induced Myocardium Oxidative Injury in IR Rats

    Directory of Open Access Journals (Sweden)

    Jiangwei Ma

    2012-03-01

    Full Text Available Brief episodes of myocardial ischemia-reperfusion (IR employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR-induced myocardium oxidative injury in rat model. Results showed that ischemic postconditioning could improve arrhythmia cordis, reduce myocardium infarction and serum creatin kinase (CK, lactate dehydrogenase (LDH and aspartate transaminase (AST activities in IR rats. In addition, ischemic postconditioning could still decrease myocardium malondialdehyde (MDA level, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px and glutathione reductase (GR activities. It can be concluded that ischemic postconditioning possesses strong protective effects against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

  6. The protective effect of ischemic preconditioning on rat testis

    Directory of Open Access Journals (Sweden)

    Ciralik Harun

    2007-12-01

    Full Text Available Abstract Background It has been demonstrated that brief episodes of sublethal ischemia-reperfusion, so-called ischemic preconditioning, provide powerful tissue protection in different tissues such as heart, brain, skeletal muscle, lung, liver, intestine, kidney, retina, and endothelial cells. Although a recent study has claimed that there are no protective effects of ischemic preconditioning in rat testis, the protective effects of ischemic preconditioning on testicular tissue have not been investigated adequately. The present study was thus planned to investigate whether ischemic preconditioning has a protective effect on testicular tissue. Methods Rats were divided into seven groups that each contained seven rats. In group 1 (control group, only unilateral testicular ischemia was performed by creating a testicular torsion by a 720 degree clockwise rotation for 180 min. In group 2, group 3, group 4, group 5, group 6, and group 7, unilateral testicular ischemia was performed for 180 min following different periods of ischemic preconditioning. The ischemic preconditioning periods were as follows: 10 minutes of ischemia with 10 minutes of reperfusion in group 2; 20 minutes of ischemia with 10 minutes of reperfusion in group 3; 30 minutes of ischemia with 10 minutes of reperfusion in group 4; multiple preconditioning periods were used (3 × 10 min early phase transient ischemia with 10 min reperfusion in all episodes in group 5; multiple preconditioning periods were used (5, 10, and 15 min early phase transient ischemia with 10 min reperfusion in all episodes in group 6; and, multiple preconditioning periods were used (10, 20, and 30 min early phase transient ischemia with 10 min reperfusion in all episodes in group 7. After the ischemic protocols were carried out, animals were sacrificed by cervical dislocation and testicular tissue samples were taken for biochemical measurements (protein, malondialdehyde, nitric oxide and histological examination

  7. Prokineticin 2 is an endangering mediator of cerebral ischemic injury

    OpenAIRE

    Cheng, Michelle Y.; Lee, Alex G.; Culbertson, Collin; Sun, Guohua; Talati, Rushi K.; Manley, Nathan C.; Li, Xiaohan; Zhao, Heng; Lyons, David M.; Zhou, Qun-Yong; Steinberg, Gary K.; Sapolsky, Robert M.

    2012-01-01

    Stroke causes brain dysfunction and neuron death, and the lack of effective therapies heightens the need for new therapeutic targets. Here we identify prokineticin 2 (PK2) as a mediator for cerebral ischemic injury. PK2 is a bioactive peptide initially discovered as a regulator of gastrointestinal motility. Multiple biological roles for PK2 have been discovered, including circadian rhythms, angiogenesis, and neurogenesis. However, the role of PK2 in neuropathology is unknown. Using primary co...

  8. Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE

    Directory of Open Access Journals (Sweden)

    Benjamin Harding

    2016-12-01

    Full Text Available Hypoxic-ischemic encephalopathy (HIE resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been investigated. Of these, glucocorticoids have previously been shown to have neuroprotective effects. HIE is also frequently compounded by infectious inflammatory processes (sepsis and as such, the infants may be more amenable to treatment with an anti-inflammatory agent. Thus, the present study investigated dexamethasone and hydrocortisone treatment given after hypoxic-ischemic (HI insult in neonatal rats via intracerebroventricular (ICV injection and intranasal administration. In addition, we examined the effects of hydrocortisone treatment in HIE after lipopolysaccharide (LPS sensitization in a model of HIE and sepsis. We found that dexamethasone significantly reduced rat brain infarction size when given after HI treatment via ICV injection; however it did not demonstrate any neuroprotective effects when given intranasally. Hydrocortisone after HI insult also significantly reduced brain infarction size when given via ICV injection; and the intranasal administration showed to be protective of brain injury in male rats at a dose of 300 µg. LPS sensitization did significantly increase the brain infarction size compared to controls, and hydrocortisone treatment after LPS sensitization showed a significant decrease in brain infarction size when given via ICV injection, as well as intranasal administration in both genders at a dose of 300 µg. To conclude, these results show that glucocorticoids have significant neuroprotective effects when given after HI injury and that these effects may be even more pronounced when given in circumstances of additional

  9. Sodium phenylbutyrate ameliorates focal cerebral ischemic/reperfusion injury associated with comorbid type 2 diabetes by reducing endoplasmic reticulum stress and DNA fragmentation.

    Science.gov (United States)

    Srinivasan, Krishnamoorthy; Sharma, Shyam S

    2011-11-20

    Endoplasmic reticulum (ER) stress has been postulated to play a crucial role in the pathophysiology of cerebral ischemic/reperfusion (I/R) injury and diabetes. Diabetes is a major risk factor and also common amongst the people who suffer from stroke. In this study, we have investigated the neuroprotective potential of sodium 4-phenylbutyrate (SPB; 30-300mg/kg), a chemical chaperone by targeting ER stress in a rat model of transient focal cerebral ischemia associated with comorbid type 2 diabetes. Intraperitoneal treatment with SPB (100 and 300mg/kg) significantly ameliorated brain I/R damage as evidenced by reduction in cerebral infarct and edema volume. It also significantly improved the functional recovery of various neurobehavioral impairments (neurological deficit score, grip strength and rota rod) evoked by I/R compared with vehicle-treatment. Further, SPB (100mg/kg) significantly reduced the DNA fragmentation as shown by prominent reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells. This effect was observed concomitantly with significant attenuation in upregulation of 78kDa glucose regulated protein (GRP78), CCAAT/enhancer binding protein homologous protein or growth arrest DNA damage-inducible gene 153 (CHOP/GADD153) and activation of caspase-12, specific markers of ER stress/apoptosis. The neuroprotection observed with SPB was independent of its effect on cerebral blood flow and blood glucose. In conclusion, this study demonstrates the neuroprotective effect of SPB owing to amelioration of ER stress and DNA fragmentation. It also suggest that targeting ER stress might offer a promising therapeutic approach and benefits against ischemic stroke associated with comorbid type 2 diabetes. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2015-01-01

    Full Text Available Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ′learned non-use′ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model group, a CIMT + model (CIMT group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  11. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus

    Science.gov (United States)

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-01-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions. PMID:25317156

  12. Nrdp1 Increases Ischemia Induced Primary Rat Cerebral Cortical Neurons and Pheochromocytoma Cells Apoptosis Via Downregulation of HIF-1α Protein

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-09-01

    Full Text Available Neuregulin receptor degradation protein-1 (Nrdp1 is an E3 ubiquitin ligase that targets proteins for degradation and regulates cell growth, apoptosis and oxidative stress in various cell types. We have previously shown that Nrdp1 is implicated in ischemic cardiomyocyte death. In this study, we investigated the change of Nrdp1 expression in ischemic neurons and its role in ischemic neuronal injury. Primary rat cerebral cortical neurons and pheochromocytoma (PC12 cells were infected with adenoviral constructs expressing Nrdp1 gene or its siRNA before exposing to oxygen-glucose deprivation (OGD treatment. Our data showed that Nrdp1 was upregulated in ischemic brain tissue 3 h after middle cerebral artery occlusion (MCAO and in OGD-treated neurons. Of note, Nrdp1 overexpression by Ad-Nrdp1 enhanced OGD-induced neuron apoptosis, while knockdown of Nrdp1 with siRNA attenuated this effect, implicating a role of Nrdp1 in ischemic neuron injury. Moreover, Nrdp1 upregulation is accompanied by increased protein ubiquitylation and decreased protein levels of ubiquitin-specific protease 8 (USP8 in OGD-treated neurons, which led to a suppressed interaction between USP8 and HIF-1α and subsequently a reduction in HIF-1α protein accumulation in neurons under OGD conditions. In conclusion, our data support an important role of Nrdp1 upregulation in ischemic neuronal death, and suppressing the interaction between USP8 and HIF-1α and consequently the hypoxic adaptive response of neurons may account for this detrimental effect.

  13. CaMKII and MEK1/2 inhibition time-dependently modify inflammatory signaling in rat cerebral arteries during organ culture

    DEFF Research Database (Denmark)

    Waldsee, Roya; Eftekhari, Sajedeh; Ahnstedt, Hilda

    2014-01-01

    MKII) II and extracellular signal-regulated kinase1/2 (ERK1/2) on inflammatory mediators in rat cerebral arteries using organ culture as a method for inducing ischemic-like vascular wall changes. METHODS: Rat basilar arteries were cultured in serum-free medium for 0, 3, 6 or 24 hours in the presence...... of phosphorylated c-Jun N-terminal kinase and p-p38, as evaluated by immunohistochemistry. KN93 affected the increase in caspase-3 mRNA expression only when given at the start of incubation, while U0126 had an inhibitory effect when given up to six hours later. Tumor necrosis factor receptor 1 was elevated after...

  14. Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Chin-Yi Cheng

    2016-01-01

    Full Text Available Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs, including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation.

  15. Cerebral Microbleeds are an Independent Predictor of Hemorrhagic Transformation Following Intravenous Alteplase Administration in Acute Ischemic Stroke.

    Science.gov (United States)

    Nagaraja, Nandakumar; Tasneem, Nudrat; Shaban, Amir; Dandapat, Sudeepta; Ahmed, Uzair; Policeni, Bruno; Olalde, Heena; Shim, Hyungsub; Samaniego, Edgar A; Pieper, Connie; Ortega-Gutierrez, Santiago; Leira, Enrique C; Adams, Harold P

    2018-05-01

    Intravenous alteplase (rt-PA) increases the risk of hemorrhagic transformation of acute ischemic stroke. The objective of our study was to evaluate clinical, laboratory, and imaging predictors on forecasting the risk of hemorrhagic transformation following treatment with rt-PA. We also evaluated the factors associated with cerebral microbleeds that increase the risk of hemorrhagic transformation. Consecutive patients with acute ischemic stroke admitted between January 1, 2009 and December 31, 2013 were included in the study if they received IV rt-PA, had magnetic resonance imaging (MRI) of the brain on admission, and computed tomography or MRI of the brain at 24 (18-36) hours later to evaluate for the presence of hemorrhagic transformation. The clinical data, lipid levels, platelet count, MRI, and computed tomography images were retrospectively reviewed. The study included 366 patients, with mean age 67 ± 15 years; 46% were women and 88% were white. The median National Institutes of Health Stroke Scale (NIHSS) score was 6 (interquartile range 3-15). Hemorrhagic transformation was observed in 87 (23.8%) patients and cerebral microbleeds were noted in 95 (25.9%). Patients with hemorrhagic transformation tended to be older, nonwhite, have atrial fibrillation, higher baseline NIHSS score, lower cholesterol and triglyceride levels, and cerebral microbleeds and nonlacunar infarcts. Patients with cerebral microbleeds were more likely to be older, have hypertension, hyperlipidemia, previous history of stroke, and prior use of antithrombotics. On multivariate analysis race, NIHSS score, nonlacunar infarct, and presence of cerebral microbleeds were independently associated with hemorrhagic transformation following treatment with rt-PA. Presence of cerebral microbleeds is an independent predictor of hemorrhagic transformation of acute ischemic stroke following treatment with rt-PA. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights

  16. Cerebral ischemia is exacerbated by extracellular nicotinamide phosphoribosyltransferase via a non-enzymatic mechanism.

    Directory of Open Access Journals (Sweden)

    Bing Zhao

    Full Text Available Intracellular nicotinamide phosphoribosyltransferase (iNAMPT in neuron has been known as a protective factor against cerebral ischemia through its enzymatic activity, but the role of central extracellular NAMPT (eNAMPT is not clear. Here we show that eNAMPT protein level was elevated in the ischemic rat brain after middle-cerebral-artery occlusion (MCAO and reperfusion, which can be traced to at least in part from blood circulation. Administration of recombinant NAMPT protein exacerbated MCAO-induced neuronal injury in rat brain, while exacerbated oxygen-glucose-deprivation (OGD induced neuronal injury only in neuron-glial mixed culture, but not in neuron culture. In the mixed culture, NAMPT protein promoted TNF-α release in a time- and concentration-dependent fashion, while TNF-α neutralizing antibody protected OGD-induced, NAMPT-enhanced neuronal injury. Importantly, H247A mutant of NAMPT with essentially no enzymatic activity exerted similar effects on ischemic neuronal injury and TNF-α release as the wild type protein. Thus, eNAMPT is an injurious and inflammatory factor in cerebral ischemia and aggravates ischemic neuronal injury by triggering TNF-α release from glia cells, via a mechanism not related to NAMPT enzymatic activity.

  17. Protective effects of traditional Chinese medicine formula NaoShuanTong capsule on haemorheology and cerebral energy metabolism disorders in rats with blood stasis.

    Science.gov (United States)

    Liu, Hong; Peng, Yao-Yao; Liang, Feng-Yin; Chen, Si; Li, Pei-Bo; Peng, Wei; Liu, Zhong-Zheng; Xie, Cheng-Shi; Long, Chao-Feng; Su, Wei-Wei

    2014-01-02

    NaoShuanTong capsule (NSTC), an oral traditional Chinese medicine formula, is composed of Pollen Typhae , Radix Paeoniae Rubra , Rhizoma Gastrodiae , Radix Rhapontici and Radix Curcumae . It has been widely used to treat ischemic stroke in clinic for many years in China. In addition to neuronal apoptosis, haemorheology and cerebral energy metabolism disorders also play an important role in the pathogenesis and development of ischemic stroke. The present study was designed to evaluate the in vivo protective effects of NSTC on haemorheology and cerebral energy metabolism disorders in rats with blood stasis. Sixty specific pathogen-free sprague-dawley rats, male only, were randomly divided into six groups (control group, model group, aspirin (100 mg/kg/d) group, NSTC low-dose (400 mg/kg/d) group, NSTC intermediate-dose (800 mg/kg/d) group, NSTC high-dose (1600 mg/kg/d) group) with 10 animals in each. The rats except those in the control group were placed in ice-cold water (0-4 °C) for 5 min during the time interval (4 h) of two adrenaline hydrochloride injections (0.8 mg/kg) to induce blood stasis. After treatment, whole blood viscosity at three shear rates, plasma viscosity and erythrocyte sedimentation rate significantly decreased in NSTC intermediate- and high-dose groups; erythrocyte aggregation index and red corpuscle electrophoresis index significantly decreased in all the three dose NSTC groups. Moreover, treatment with high-dose NSTC could significantly improve Na + -K + adenosine triphosphatase (ATPase) and Ca 2+ ATPase activity, as well as lower lactic acid level in brain tissues. These results demonstrated the protective effects of NSTC on haemorheology and cerebral energy metabolism disorders, which may provide scientific information for the further understanding of mechanism(s) of NSTC as a clinical treatment for ischemic stroke. Furthermore, the protective effects of activating blood circulation as observed in this study might create valuable

  18. Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Paulson, O B; Lassen, N A

    1986-01-01

    Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan...

  19. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Huang, Zhangjian [Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009 (China); Li, Ping [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Li, Jia [National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203 (China); Zhang, Luyong [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Saavedra, Juan M. [Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057 (United States); Liao, Hong, E-mail: liaohong56@hotmail.com [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Pang, Tao, E-mail: tpang@cpu.edu.cn [Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20057 (United States)

    2015-12-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro.

  20. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction

    International Nuclear Information System (INIS)

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi; Huang, Zhangjian; Li, Ping; Li, Jia; Zhang, Luyong; Saavedra, Juan M.; Liao, Hong; Pang, Tao

    2015-01-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague–Dawley rats, produced by occlusion of the middle cerebral artery for 2 h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. - Graphical abstract: It is unknown whether the natural product totarol has neuroprotective effects in vitro and in vivo. This study underscores that totarol prevents neuronal injury in vitro, not only by activating PI3K/Akt pathway, but also via induction of Nrf2, HO-1, GSH and SOD expressions. Totarol also ameliorated acute cerebral ischemic injury in a rat ischemic stroke model. The findings highlight that totarol may be exploited for protecting against ischemic stroke through Akt/HO-1 pathway. - Highlights: • Totarol protects glutamate- and OGD-induced neuronal injury in vitro.

  1. Deep cerebral microbleeds are negatively associated with HDL-C in elderly first-time ischemic stroke patients.

    Science.gov (United States)

    Igase, Michiya; Kohara, Katsuhiko; Igase, Keiji; Yamashita, Shiro; Fujisawa, Mutsuo; Katagi, Ryosuke; Miki, Tetsuro

    2013-02-15

    Cerebral microbleeds (CMBs) detected on T2*-weighted MRI gradient-echo have been associated with increased risk of cerebral infarction. We evaluated risk factors for these lesions in a cohort of first-time ischemic stroke patients. Presence of CMBs in consecutive first-time ischemic stroke patients was evaluated. The location of CMBs was classified by cerebral region as strictly lobar (lobar CMBs) and deep or infratentorial (deep CMBs). Logistic regression analysis was performed to determine the contribution of lipid profile to the presence of CMBs. One hundred and sixteen patients with a mean age of 70±10years were recruited. CMBs were present in 74 patients. The deep CMBs group had significantly lower HDL-C levels than those without CMBs. In univariable analysis, advanced periventricular hyperintensity grade (PVH>2) and decreased HDL-C were significantly associated with the deep but not the lobar CMB group. On logistic regression analysis, HDL-C (beta=-0.06, p=0.002) and PVH grade >2 (beta=3.40, p=0.005) were independent determinants of deep CMBs. Low HDL-C may be a risk factor of deep CMBs, including advanced PVH status, in elderly patients with acute ischemic stroke. Management of HDL-C levels might be a therapeutic target for the prevention of recurrence of stroke. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Monitoring stem cell transplantation in rat cerebral ischemic infarction model with 131I-FIAU/TK reporter gene system

    International Nuclear Information System (INIS)

    Wu Tao; An Rui; Zhang Binqing; Sun Xun; Lang Juntao

    2011-01-01

    Objective: To study the biodistribution of 131 I-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil (FIAU) in the rat middle cerebral artery occlusion model and the expression of thymidine kinase (TK) gene in brain tissue after gene-modified stem cell transplantation, and thus evaluate the possibility of further noninvasive monitoring of stem cell transplantation therapy in cerebral infarction. Methods: Adenovirus recombinant Ad5-TK-internal ribosome entry site-brain derived heterotrophic factor-enhanced green florescent protein(IRES-BDNF-EGFP) carrying TK-IRES-BDNF gene was prepared. Cerebral infarction model was established in rats by intraluminal middle cerebral artery occlusion with nylon monofilament. Gene modified bone marrow mesenchymal stem cells were transplanted via intraparenchymal route, lateral ventricle, carotid artery and tail vein, respectively. The normal rats were used as controls. 131 I-FAU was prepared to be the tracer for biodistribution study and the % ID/g was calculated based on measurement of the tissue radioactivity counts. The expression of TK gene was evaluated by quantitative real-time PCR (QR-PCR) and Western blot analysis. Data were analyzed with independent-samples t-test, one-way analysis of variance (ANOVA) test, and Pearson linear correlation test. Results: The % ID/g of infarcted brain tissue in the intraparenchymal group was 0.124 ± 0.013, which was significantly higher than that in lateral ventricle group (0.052 ±0.004), carotid artery group (0.061 ±0.002), tail vein group (0.059 ±0.005) and control group (0.005 ±0.001) (t=2.913-5.652, all P<0.05), while there were no statistically significant differences among the other route transplanted groups (t=0.694-1.448, all P>0.05). The differences of % ID/g between the infarcted and contralateral sides of brain tissue in all transplanted groups were statistically significant (t=9.004-15.734, all P<0.05), while there was no statistically significant difference of this parameter

  3. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Xin-juan Li

    2015-01-01

    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  4. Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Fang-fang Liu

    2015-01-01

    Full Text Available Previous studies have shown that up-regulation of transforming growth factor β1 results in neuroprotective effects. However, the role of the transforming growth factor β1 downstream molecule, SMAD2/3, following ischemia/reperfusion remains unclear. Here, we investigated the neuroprotective effects of SMAD2/3 by analyzing the relationships between SMAD2/3 expression and cell apoptosis and inflammation in the brain of a rat model of cerebral ischemia/reperfusion. Levels of SMAD2/3 mRNA were up-regulated in the ischemic penumbra 6 hours after cerebral ischemia/reperfusion, reached a peak after 72 hours and were then decreased at 7 days. Phosphorylated SMAD2/3 protein levels at the aforementioned time points were consistent with the mRNA levels. Over-expression of SMAD3 in the brains of the ischemia/reperfusion model rats via delivery of an adeno-associated virus containing the SMAD3 gene could reduce tumor necrosis factor-α and interleukin-1β mRNA levels, down-regulate expression of the pro-apoptotic gene, capase-3, and up-regulate expression of the anti-apoptotic protein, Bcl-2. The SMAD3 protein level was negatively correlated with cell apoptosis. These findings indicate that SMAD3 exhibits neuroprotective effects on the brain after ischemia/reperfusion through anti-inflammatory and anti-apoptotic pathways.

  5. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure.

    Science.gov (United States)

    Moor, Andrea N; Tummel, Evan; Prather, Jamie L; Jung, Michelle; Lopez, Jonathan J; Connors, Sarah; Gould, Lisa J

    2014-04-01

    Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.

  6. Protective effects of beef decoction rich in carnosine on cerebral ischemia injury by permanent middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Wang, Ai-Hong; Ma, Qian; Wang, Xin; Xu, Gui-Hua

    2018-02-01

    Inflammation has a role in the cerebral injury induced by ischemia and the present study aimed to determine the mechanism of the protective effect of beef decoction (BD) with carnosine against it. A rat model of permanent middle cerebral artery occlusion was established using a suture method in the vehicle and each of the BD groups. In experiment 1, 72 Sprague Dawley (SD) rats were randomly divided into three groups: Sham, vehicle and BD-treated group. Rats in the BD group were given 600 mg/kg BD by oral gavage for 1, 3 and 7 days. The sham and vehicle group rats received an equivalent amount of normal saline. In experiment 2, 60 SD rats were randomly divided into six groups: Sham-operated I, sham-operated II, vehicle, low-dose BD, medium-dose BD and high-dose BD group. Rats in the low-, medium- and high-dose BD groups were given BD at the dose of 200, 400 and 600 mg/kg, respectively, by oral gavage for 7 days. Rats in the sham-operated II group were given 600 mg/kg BD. Rats in the sham-operated I group and vehicle group were given the same volume of normal saline by oral gavage. The body weight, neurological deficits and infarct volume were recorded at 1, 3 and 7 days after the operation. Furthermore, the effect of different doses of BD on interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin-4 (IL-4) levels in peripheral blood was measured at 7 days. BD-treated rats showed less neurological deficits and a smaller infarct volume at 7 days. BD at 400 and 600 mg/kg significantly decreased the infarct volume in rats. At 600 mg/kg BD, a decline in IL-6, TNF-α, IFN-γ and an increase in IL-4 expression was observed in the BD groups, while no difference in body weight and neurological dysfunction was detected. In conclusion, BD is a neuroprotective agent that may be used as a supplement treatment of ischemic stroke.

  7. Protective effect of grifolin against brain injury in an acute cerebral ...

    African Journals Online (AJOL)

    levels in tissue homogenates of the cerebral ischemic rats compared with those in the negative control ... (NO) in LPS-stimulated RAW 264.7 cells [10]. ... experimentation and animal use [13]. .... decrease in the percentage of tailed cells in the.

  8. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Miyanohara, Jun [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Shirakawa, Hisashi, E-mail: shirakaw@pharm.kyoto-u.ac.jp [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Sanpei, Kazuaki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Nakagawa, Takayuki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital (Japan); Kaneko, Shuji [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan)

    2015-11-20

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca{sup 2+} permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO mice.

  9. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    International Nuclear Information System (INIS)

    Miyanohara, Jun; Shirakawa, Hisashi; Sanpei, Kazuaki; Nakagawa, Takayuki; Kaneko, Shuji

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca"2"+ permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO mice.

  10. Identification of ischemic regions in a rat model of stroke.

    Science.gov (United States)

    Popp, Anke; Jaenisch, Nadine; Witte, Otto W; Frahm, Christiane

    2009-01-01

    Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia. Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed. TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study.

  11. Double-tracer autoradiographic study of protein synthesis and glucose consumption in rats with focal cerebral ischemia

    DEFF Research Database (Denmark)

    Christensen, Thomas; Balchen, T; Bruhn, T

    1999-01-01

    A double-tracer autoradiographic method for simultaneous measurement of regional glucose utilization (rCMRglc) and regional protein synthesis (PS) in consecutive brain sections is described and applied to study the metabolism of the ischemic penumbra 2 h after occlusion of the middle cerebral...... artery (MCAO) in rats. In halothane anesthesia, the left middle cerebral artery was permanently occluded. Two hours after MCAO an i.v. bolus injection of 14C-deoxyglucose and 3H-leucine was given and circulated for 45 min. Two sets of brain sections were processed for quantitative autoradiography....... Neighboring brain sections exposed an X-ray film (3H-insensitive), and a 3H-sensitive for determination of rCMRglc and PS, respectively. Sections for PS determination were washed in trichloroacetic acid (TCA) prior to film exposure in order to remove 14C-deoxyglucose and unincorporated 3H-leucine. Regional...

  12. Reperfusion promotes mitochondrial dysfunction following focal cerebral ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available BACKGROUND AND PURPOSE: Mitochondrial dysfunction has been implicated in the cell death observed after cerebral ischemia, and several mechanisms for this dysfunction have been proposed. Reperfusion after transient cerebral ischemia may cause continued and even more severe damage to the brain. Many lines of evidence have shown that mitochondria suffer severe damage in response to ischemic injury. The purpose of this study was to observe the features of mitochondrial dysfunction in isolated mitochondria during the reperfusion period following focal cerebral ischemia. METHODS: Male Wistar rats were subjected to focal cerebral ischemia. Mitochondria were isolated using Percoll density gradient centrifugation. The isolated mitochondria were fixed for electron microscopic examination; calcium-induced mitochondrial swelling was quantified using spectrophotometry. Cyclophilin D was detected by Western blotting. Fluorescent probes were used to selectively stain mitochondria to measure their membrane potential and to measure reactive oxidative species production using flow cytometric analysis. RESULTS: Signs of damage were observed in the mitochondrial morphology after exposure to reperfusion. The mitochondrial swelling induced by Ca(2+ increased gradually with the increasing calcium concentration, and this tendency was exacerbated as the reperfusion time was extended. Cyclophilin D protein expression peaked after 24 hours of reperfusion. The mitochondrial membrane potential was decreased significantly during the reperfusion period, with the greatest decrease observed after 24 hours of reperfusion. The surge in mitochondrial reactive oxidative species occurred after 2 hours of reperfusion and was maintained at a high level during the reperfusion period. CONCLUSIONS: Reperfusion following focal cerebral ischemia induced significant mitochondrial morphological damage and Ca(2+-induced mitochondrial swelling. The mechanism of this swelling may be mediated by

  13. Impaired cerebral autoregulation and brain injury in newborns with hypoxic-ischemic encephalopathy treated with hypothermia.

    Science.gov (United States)

    Massaro, An N; Govindan, R B; Vezina, Gilbert; Chang, Taeun; Andescavage, Nickie N; Wang, Yunfei; Al-Shargabi, Tareq; Metzler, Marina; Harris, Kari; du Plessis, Adre J

    2015-08-01

    Impaired cerebral autoregulation may contribute to secondary injury in newborns with hypoxic-ischemic encephalopathy (HIE). Continuous, noninvasive assessment of cerebral pressure autoregulation can be achieved with bedside near-infrared spectroscopy (NIRS) and systemic mean arterial blood pressure (MAP) monitoring. This study aimed to evaluate whether impaired cerebral autoregulation measured by NIRS-MAP monitoring during therapeutic hypothermia and rewarming relates to outcome in 36 newborns with HIE. Spectral coherence analysis between NIRS and MAP was used to quantify changes in the duration [pressure passivity index (PPI)] and magnitude (gain) of cerebral autoregulatory impairment. Higher PPI in both cerebral hemispheres and gain in the right hemisphere were associated with neonatal adverse outcomes [death or detectable brain injury by magnetic resonance imaging (MRI), P < 0.001]. NIRS-MAP monitoring of cerebral autoregulation can provide an ongoing physiological biomarker that may help direct care in perinatal brain injury. Copyright © 2015 the American Physiological Society.

  14. Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools.

    Science.gov (United States)

    Kelsen, Jesper; Larsen, Marianne H; Sørensen, Jens Christian; Møller, Arne; Frøkiaer, Jørgen; Nielsen, Søren; Nyengaard, Jens R; Mikkelsen, Jens D; Rønn, Lars Christian B

    2010-04-06

    We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats (SHRs) and Sprague-Dawley rats (SDs) one week after tMCAo; (2) to present the practical use of the optical fractionator and 2D nucleator in stereological brain tissue analyses; and (3) to report our experiences with an intraluminal tMCAo model where the occluding filament is advanced 22 mm beyond the carotid bifurcation and the common carotid artery is clamped during tMCAo. Twenty-three SDs and twenty SHRs were randomized into four groups subjected to 90 minutes tMCAo or sham. BrdU (50 mg/kg) was administered intraperitoneally twice daily on Day 4 to 7 after surgery. On Day 8 all animals were euthanized. NeuN-stained tissue sections were used for brain and infarct volume estimation with the 2D nucleator and Cavalieri principle. Brains were studied for the presence of activated microglia (ED-1) and hippocampal BrdU incorporation using the optical fractionator. We found no significant difference or increase in post-ischemic NPC proliferation between the two strains. However, the response to remote ischemia may differ between SDs and SHRs. In three animals increased post-stroke NPC proliferation was associated with hippocampal ischemic injury. The mean infarct volume was 89.2 +/- 76.1 mm3 in SHRs and 16.9 +/- 22.7 mm3 in SDs (p < 0.005). Eight out of eleven SHRs had ischemic neocortical damage in contrast to only one out of 12 SDs. We observed involvement of the anterior choroidal and hypothalamic arteries in several animals from both strains and the anterior cerebral artery in two SHRs. We found no evidence of an early hippocampal NPC proliferation one week after tMCAo in both strains. Infarction within the anterior choroidal artery could induce hippocampal ischemia and

  15. Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep

    Directory of Open Access Journals (Sweden)

    Wolfgang Härtig

    2017-08-01

    Full Text Available As part of the extracellular matrix (ECM, perineuronal nets (PNs are polyanionic, chondroitin sulfate proteoglycan (CSPG-rich coatings of certain neurons, known to be affected in various neural diseases. Although these structures are considered as important parts of the neurovascular unit (NVU, their role during evolution of acute ischemic stroke and subsequent tissue damage is poorly understood and only a few preclinical studies analyzed PNs after acute ischemic stroke. By employing three models of experimental focal cerebral ischemia, this study was focused on histopathological alterations of PNs and concomitant vascular, glial and neuronal changes according to the NVU concept. We analyzed brain tissues obtained 1 day after ischemia onset from: (a mice after filament-based permanent middle cerebral artery occlusion (pMCAO; (b rats subjected to thromboembolic MACO; and (c sheep at 14 days after electrosurgically induced focal cerebral ischemia. Multiple fluorescence labeling was applied to explore simultaneous alterations of NVU and ECM. Serial mouse sections labeled with the net marker Wisteria floribunda agglutinin (WFA displayed largely decomposed and nearly erased PNs in infarcted neocortical areas that were demarcated by up-regulated immunoreactivity for vascular collagen IV (Coll IV. Subsequent semi-quantitative analyses in mice confirmed significantly decreased WFA-staining along the ischemic border zone and a relative decrease in the directly ischemia-affected neocortex. Triple fluorescence labeling throughout the three animal models revealed up-regulated Coll IV and decomposed PNs accompanied by activated astroglia and altered immunoreactivity for parvalbumin, a calcium-binding protein in fast-firing GABAergic neurons which are predominantly surrounded by neocortical PNs. Furthermore, ischemic neocortical areas in rodents simultaneously displayed less intense staining of WFA, aggrecan, the net components neurocan, versican and the

  16. Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Paulson, O B; Lassen, N A

    1986-01-01

    . They showed in the acute phase (Days 1-3) very large low-flow areas, larger than the hypodense areas seen on the CT scan. The cerebral vasoconstrictor and vasodilator capacity was tested in the acute phase following aminophylline and acetazolamide, respectively. A preserved but reduced reactivity was seen......Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan...

  17. Bexarotene reduces blood-brain barrier permeability in cerebral ischemia-reperfusion injured rats.

    Directory of Open Access Journals (Sweden)

    Lu Xu

    Full Text Available Matrix metalloproteinase-9 (MMP-9 over-expression disrupts the blood-brain barrier (BBB in the ischemic brain. The retinoid X receptor agonist bexarotene suppresses MMP-9 expression in endothelial cells and displays neuroprotective effects. Therefore, we hypothesized that bexarotene may have a beneficial effect on I/R-induced BBB dysfunction.A total of 180 rats were randomized into three groups (n = 60 each: (i a sham-operation group, (ii a cerebral ischemia-reperfusion (I/R group, and (iii an I/R+bexarotene group. Brain water content was measured by the dry wet weight method. BBB permeability was analyzed by Evans Blue staining and the magnetic resonance imaging contrast agent Omniscan. MMP-9 mRNA expression, protein expression, and activity were assessed by reverse transcription polymerase chain reaction, Western blotting, and gelatin zymography, respectively. Apolipoprotein E (apoE, claudin-5, and occludin expression were analyzed by Western blotting.After 24 h, 48 h, and 72 h post-I/R, several effects were observed with bexarotene administration: (i brain water content and BBB permeability were significantly reduced; (ii MMP-9 mRNA and protein expression as well as activity were significantly decreased; (iii claudin-5 and occludin expression were significantly increased; and (iv apoE expression was significantly increased.Bexarotene decreases BBB permeability in rats with cerebral I/R injury. This effect may be due in part to bexarotene's upregulation of apoE expression, which has been previously shown to reduce BBB permeability through suppressing MMP-9-mediated degradation of the tight junction proteins claudin-5 and occludin. This work offers insight to aid future development of therapeutic agents for cerebral I/R injury in human patients.

  18. Study on diffusion anisotropy of cerebral ischemia using diffusion weighted echo-planar MRI

    International Nuclear Information System (INIS)

    Kajima, Toshio

    1997-01-01

    Focal cerebral ischemia was produced by occlusion of the intracranial main cerebral artery with a silicone cylinder in Wistar rats. Diffusion-weighted echo-planar images (DW-EPls) using the motion-probing gradient (MPG) method were acquired at 1-3 hours and 24-48 hours after occlusion. Apparent diffusion coefficients (ADCs) were calculated from these images in ischemic lesions and in normal unoccluded regions. Results were as follows. Ischemic lesions could be detected on the DW-EPIs at 1 hour after occlusion. The ADC of water in the brain tissue was smaller than that of free water as a result of restricted diffusion. Anisotropic diffusion that probably can be attributed to the myelin sheath was observed in the normal white matter. In the ischemic lesions, the ADC decreased rapidly within 1-3 hours after occlusion and then decreased gradually after 24-48 hours. In the ischemic white matter, diffusion anisotropy disappeared at 24-48 hours after occlusion. Diffusion-weighted imaging may have applications in the examination of pathophysiological mechanisms in cerebral ischemia by means of evaluation of ADC and diffusion anisotropy. (author)

  19. Topical fentanyl stimulates healing of ischemic wounds in diabetic rats

    Science.gov (United States)

    FAROOQUI, Mariya; ERICSON, Marna E; GUPTA, Kalpna

    2016-01-01

    Background Topically applied opioids promote angiogenesis and healing of ischemic wounds in rats. We examined if topical fentanyl stimulates wound healing in diabetic rats by stimulating growth-promoting signaling, angiogenesis, lymphangiogenesis and nerve regeneration. Methods We used Zucker diabetic fatty rats that develop obesity and diabetes on a high fat diet due to a mutation in the Leptin receptor. Fentanyl blended with hydrocream was applied topically on ischemic wounds twice daily, and wound closure was analyzed regularly. Wound histology was analyzed by hematoxylin and eosin staining. Angiogenesis, lymphangiogenesis, nerve fibers and phospho-PDGFR-β were visualized by CD31-, lymphatic vessel endothelium-1, protein gene product 9.5- and anti-phospho PDGFR-β-immunoreactivity, respectively. Nitric oxide synthase (NOS) and PDGFR-β signaling were analyzed using Western immunoblotting. Results Fentanyl significantly promoted wound closure as compared to PBS. Histology scores were significantly higher in fentanyl-treated wounds, indicative of increased granulation tissue formation, reduced edema and inflammation, and increased matrix deposition. Fentanyl treatment resulted in increased wound angiogenesis, lymphatic vasculature, nerve fibers, nitric oxide, NOS and PDGFR-β signaling as compared to PBS. Phospho PDGFR-β co-localized with CD31 co-staining for vasculature. Conclusions Topically applied fentanyl promotes closure of ischemic wounds in diabetic rats. Increased angiogenesis, lymphangiogenesis, peripheral nerve regeneration, NO and PDGFR-β signaling are associated with fentanyl-induced tissue remodeling and wound healing. PMID:25266258

  20. Early Exercise Protects against Cerebral Ischemic Injury through Inhibiting Neuron Apoptosis in Cortex in Rats

    Directory of Open Access Journals (Sweden)

    Junfa Wu

    2013-03-01

    Full Text Available Early exercise is an effective strategy for stroke treatment, but the underlying mechanism remains poorly understood. Apoptosis plays a critical role after stroke. However, it is unclear whether early exercise inhibits apoptosis after stroke. The present study investigated the effect of early exercise on apoptosis induced by ischemia. Adult SD rats were subjected to transient focal cerebral ischemia by middle cerebral artery occlusion model (MCAO and were randomly divided into early exercise group, non-exercise group and sham group. Early exercise group received forced treadmill training initiated at 24 h after operation. Fourteen days later, the cell apoptosis were detected by TdT-mediated dUTP-biotin nick-end labeling (TUNEL and Fluoro-Jade-B staining (F-J-B. Caspase-3, cleaved caspase-3 and Bcl-2 were determined by western blotting. Cerebral infarct volume and motor function were evaluated by cresyl violet staining and foot fault test respectively. The results showed that early exercise decreased the number of apoptotic cells (118.74 ± 6.15 vs. 169.65 ± 8.47, p < 0.05, n = 5, inhibited the expression of caspase-3 and cleaved caspase-3 (p < 0.05, n = 5, and increased the expression of Bcl-2 (p < 0.05, n = 5. These data were consistent with reduced infarct volume and improved motor function. These results suggested that early exercise could provide neuroprotection through inhibiting neuron apoptosis.

  1. Xinnao Shutong Modulates the Neuronal Plasticity Through Regulation of Microglia/Macrophage Polarization Following Chronic Cerebral Hypoperfusion in Rats

    Directory of Open Access Journals (Sweden)

    Liye Wang

    2018-05-01

    Full Text Available Xinnao shutong (XNST capsules have been clinically used in China to treat cerebrovascular diseases. Previous studies have demonstrated that XNST has significant neuroprotective effects against acute cerebral ischemic stroke. The present study investigated the effects and mechanisms of XNST treatment following chronic cerebral hypoperfusion. Thirty-six adult male Sprague-Dawley rats were treated with XNST or vehicle following permanent bilateral common carotid artery (BCCA ligation. Body weight was recorded on days 0, 3, 7, 14, 28, and 42 post-surgery. The Morris water maze (MWM test was used to assess cognitive function in rats. Immunofluorescent staining and western blot were used to assess the severity of neuronal plasticity, white matter injury, and the numbers and/or phenotypic changes incurred to microglia. Protein levels of p-AKT (Thr308 and p-ERK (Thr202/Tyr204 were detected 42 days after BCCA ligation was performed. The results indicate that XNST treatment significantly reduced escape latency, decreased the frequency of platform crossing compared to the vehicle group. Synaptophysin, protein levels improved and white matter injury ameliorated following XNST treatment. Meanwhile, XNST reduced the number of M1 microglia and increased the number of M2 microglia. Furthermore, p-AKT (Thr308 and p-ERK (Thr202/Tyr204 levels were increased 42 days following BCCA ligation. In summary, our results suggest that XNST mitigates memory impairments by restoration of neuronal plasticity and by modulation of microglial polarization following chronic cerebral hypoperfusion in rats.

  2. Cerebral ischemic lesions detected with diffusion-weighted magnetic resonance imaging after carotid artery stenting: Comparison of several anti-embolic protection devices.

    Science.gov (United States)

    Taha, Mahmoud M; Maeda, Masayuki; Sakaida, Hiroshi; Kawaguchi, Kenji; Toma, Naoki; Yamamoto, Akitaka; Hirose, Tomofumi; Miura, Youichi; Fujimoto, Masashi; Matsushima, Satoshi; Taki, Waro

    2009-09-01

    Distal embolism is an important periprocedural technical complication with carotid angioplasty and carotid artery stenting (CAS). We evaluated the safety and efficacy of protection devices used during CAS by detecting new cerebral ischemic lesions using diffusion-weighted magnetic resonance imaging in 95 patients who underwent 98 CAS procedures: 34 using single PercuSurge GuardWire, 31 using double balloon protection, 15 using proximal flow reverse protection devices, 14 using Naviballoon, and 4 using filter anti-embolic devices. Diffusion-weighted imaging was performed preoperatively and postoperatively to evaluate the presence of any new embolic cerebral lesions. Postoperative diffusion-weighted imaging revealed 117 new ischemic lesions. Three patients had new ischemic stroke, two minor and one major, all ipsilateral to the treated carotid artery. The remaining patients had clinically silent ischemia. The incidence of new embolic lesions was lower using the proximal flow reverse protection device than with the double balloon protection (33% vs. 48.4%), but the volume of ipsilateral new ischemic lesions per patient was 136.6 mm(3) vs. 86.9 mm(3), respectively. Neuroprotection with Naviballoon yielded ipsilateral lesions of large volume (86.6 mm(3)) and higher number (5.7 lesions per patient) than using the filter anti-embolic device (34.8 mm(3) and 1 lesion per patient). New cerebral ischemic lesions after neuroprotected CAS are usually silent. The lower incidence of distal ischemia using proximal flow reverse and double balloon protection devices is limited by the larger volume and higher number of ischemic lesions.

  3. Cerebral ischemic lesions detected with diffusion-weighted magnetic resonance imaging after carotid artery stenting. Comparison of several anti-embolic protection devices

    International Nuclear Information System (INIS)

    Taha, M.M.; Maeda, Masayuki; Sakaida, Hiroshi

    2009-01-01

    Distal embolism is an important periprocedural technical complication with carotid angioplasty and carotid artery stenting (CAS). We evaluated the safety and efficacy of protection devices used during CAS by detecting new cerebral ischemic lesions using diffusion-weighted magnetic resonance imaging in 95 patients who underwent 98 CAS procedures: 34 using single PercuSurge GuardWire, 31 using double balloon protection, 15 using proximal flow reverse protection devices, 14 using Naviballoon, and 4 using filter anti-embolic devices. Diffusion-weighted imaging was performed preoperatively and postoperatively to evaluate the presence of any new embolic cerebral lesions. Postoperative diffusion-weighted imaging revealed 117 new ischemic lesions. Three patients had new ischemic stroke, two minor and one major, all ipsilateral to the treated carotid artery. The remaining patients had clinically silent ischemia. The incidence of new embolic lesions was lower using the proximal flow reverse protection device than with the double balloon protection (33% vs. 48.4%), but the volume of ipsilateral new ischemic lesions per patient was 136.6 mm 3 vs. 86.9 mm 3 , respectively. Neuroprotection with Naviballoon yielded ipsilateral lesions of large volume (86.6 mm 3 ) and higher number (5.7 lesions per patient) than using the filter anti-embolic device (34.8 mm 3 and 1 lesion per patient). New cerebral ischemic lesions after neuroprotected CAS are usually silent. The lower incidence of distal ischemia using proximal flow reverse and double balloon protection devices is limited by the larger volume and higher number of ischemic lesions. (author)

  4. Protective effects of geniposide and ginsenoside Rg1 combination treatment on rats following cerebral ischemia are mediated via microglial microRNA‑155‑5p inhibition.

    Science.gov (United States)

    Wang, Jun; Li, Dan; Hou, Jincai; Lei, Hongtao

    2018-02-01

    Geniposide, an active component of Gardenia, has been reported to protect against cerebral ischemia in animals. Ginsenoside Rg1, a component of Panax notoginseng, is usually administered in combination with Gardenia for the treatment of acute ischemic stroke; however, there are unknown effects of ginsenoside Rg1 that require further investigation. In the present study, the effects of geniposide and ginsensoide Rg1 combination treatment on focal cerebral ischemic stroke were investigated. For in vivo analysis, male rats were separated into three groups, including the (control), model and geniposide + ginsenoside Rg1 groups (n=8 per group). A middle cerebral artery occlusion model was established as the model group. The treatment group was treated with geniposide (30 mg/kg, tail vein injection) + ginsenoside Rg1 (6 mg/kg, tail vein injection), and the model group received saline instead. Neurobehavioral deficits, infarct volume, brain edema, and the expression of microRNA (miR)‑155‑5p and CD11b by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and immunohistochemistry, were assessed following 24 h of ischemia. For in vitro analysis, BV2 mouse microglial cells were cultured and exposed to geniposide (40 µg/ml) + ginsenoside Rg1 (8 µg/ml) during various durations of oxygen‑glucose deprivation (OGD). The expression levels of miR‑155‑5p, pri‑miR‑155 and pre‑miR‑155 were detected by RT‑qPCR. The results demonstrated that increases in brain infarct volume, edema volume, CD11b‑positive cells and miR‑155‑5p levels were alleviated following geniposide + ginsenoside administration in rats exposed to ischemia. Furthermore, geniposide + ginsenoside Rg1 treatment suppressed the miR‑155‑5p, pri‑miR‑155 and pre‑miR‑155 expression levels in OGD‑injured BV2 microglial cells. The results of the present study demonstrated that tail vein administration of geniposide in combination with ginsenoside Rg1

  5. Ischemic stroke in patient with existing congenital hypoplasia of the middle cerebral artery

    International Nuclear Information System (INIS)

    Manchev, I.; Manolova, T.; Manchev, L.

    2015-01-01

    Presented is a clinical case of a woman 29 years old with ischemic stroke (IS), which has developed abruptly in existing congenital hypoplasia and occlusion of the middle cerebral artery. There are no other well or less well documented risk factors for cerebrovascular disease. In family history noted that the father of the patient died suddenly at the age of 45 years from stroke, also without evidence of vascular disease. On magnetic resonance imaging (MRI) of the brain is found high signal zone in the left nucleus lentiformis. We discussed the possibilities for implementing conventional angiography and eventually surgical procedures unfortunately rejected due to the high risk to the patient. Key words: Ischemic Stroke. Magnetic Resonance Imaging. Hypoplasia

  6. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic–ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Fenghua Tian

    2016-01-01

    Full Text Available Cerebral autoregulation represents the physiological mechanisms that keep brain perfusion relatively constant in the face of changes in blood pressure and thus plays an essential role in normal brain function. This study assessed cerebral autoregulation in nine newborns with moderate-to-severe hypoxic–ischemic encephalopathy (HIE. These neonates received hypothermic therapy during the first 72 h of life while mean arterial pressure (MAP and cerebral tissue oxygenation saturation (SctO2 were continuously recorded. Wavelet coherence analysis, which is a time-frequency domain approach, was used to characterize the dynamic relationship between spontaneous oscillations in MAP and SctO2. Wavelet-based metrics of phase, coherence and gain were derived for quantitative evaluation of cerebral autoregulation. We found cerebral autoregulation in neonates with HIE was time-scale-dependent in nature. Specifically, the spontaneous changes in MAP and SctO2 had in-phase coherence at time scales of less than 80 min (<0.0002 Hz in frequency, whereas they showed anti-phase coherence at time scales of around 2.5 h (~0.0001 Hz in frequency. Both the in-phase and anti-phase coherence appeared to be related to worse clinical outcomes. These findings suggest the potential clinical use of wavelet coherence analysis to assess dynamic cerebral autoregulation in neonatal HIE during hypothermia.

  7. Relative cerebral blood volume as a marker of durable tissue-at-risk viability in hyperacute ischemic stroke.

    Science.gov (United States)

    Cortijo, Elisa; Calleja, Ana Isabel; García-Bermejo, Pablo; Mulero, Patricia; Pérez-Fernández, Santiago; Reyes, Javier; Muñoz, Ma Fe; Martínez-Galdámez, Mario; Arenillas, Juan Francisco

    2014-01-01

    Selection of best responders to reperfusion therapies could be aided by predicting the duration of tissue-at-risk viability, which may be dependant on collateral circulation status. We aimed to identify the best predictor of good collateral circulation among perfusion computed tomography (PCT) parameters in middle cerebral artery (MCA) ischemic stroke and to analyze how early MCA response to intravenous thrombolysis and PCT-derived markers of good collaterals interact to determine stroke outcome. We prospectively studied patients with acute MCA ischemic stroke treated with intravenous thrombolysis who underwent PCT before treatment showing a target mismatch profile. Collateral status was assessed using a PCT source image-based score. PCT maps were quantitatively analyzed. Cerebral blood volume (CBV), cerebral blood flow, and Tmax were calculated within the hypoperfused volume and in the equivalent region of unaffected hemisphere. Occluded MCAs were monitored by transcranial Duplex to assess early recanalization. Main outcome variables were brain hypodensity volume and modified Rankin scale score at day 90. One hundred patients with MCA ischemic stroke imaged by PCT received intravenous thrombolysis, and 68 met all inclusion criteria. A relative CBV (rCBV) >0.93 emerged as the only predictor of good collaterals (odds ratio, 12.6; 95% confidence interval, 2.9-55.9; P=0.001). Early MCA recanalization was associated with better long-term outcome and lower infarct volume in patients with rCBV<0.93, but not in patients with high rCBV. None of the patients with rCBV<0.93 achieved good outcome in absence of early recanalization. High rCBV was the strongest marker of good collaterals and may characterize durable tissue-at-risk viability in hyperacute MCA ischemic stroke.

  8. The Protective Effect of Human Umbilical Cord Blood CD34+ Cells and Estradiol against Focal Cerebral Ischemia in Female Ovariectomized Rat: Cerebral MR Imaging and Immunohistochemical Study.

    Directory of Open Access Journals (Sweden)

    Ching-Chung Liang

    Full Text Available Human umbilical cord blood derived CD34+ stem cells are reported to mediate therapeutic effects in stroke animal models. Estrogen was known to protect against ischemic injury. The present study wished to investigate whether the protective effect of CD34+ cells against ischemic injury can be reinforced with complemental estradiol treatment in female ovariectomized rat and its possible mechanism. Experiment 1 was to determine the best optimal timing of CD34+ cell treatment for the neuroprotective effect after 60-min middle cerebral artery occlusion (MCAO. Experiment 2 was to evaluate the adjuvant effect of 17β-estradiol on CD34+ cell neuroprotection after MCAO. Experiment 1 showed intravenous infusion with CD34+ cells before MCAO (pre-treatment caused less infarction size than those infused after MCAO (post-treatment on 7T magnetic resonance T2-weighted images. Experiment 2 revealed infarction size was most significantly reduced after CD34+ + estradiol pre-treatment. When compared with no treatment group, CD34+ + estradiol pre-treatment showed significantly less ADC reduction at 2 h and 2 d, less CBF reduction at 2 h and less hyperperfusion at 2 d. The immunoreactivity of c-Fos, c-Jun and GFAP was attenuated, and BDNF showed significant recovery from 2 h to 2 d after MCAO, especially after CD34+ + estradiol pre-treatment. The present study suggests pre-treatment with CD34+ cells with complemental estradiol can be most protective against ischemic injury, which may act through stabilization of cerebral hemodynamics and normalization of the expressions of immediate early genes and BDNF.

  9. A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion

    Science.gov (United States)

    Mitsios, Nick; Saka, Mohamad; Krupinski, Jerzy; Pennucci, Roberta; Sanfeliu, Coral; Wang, Qiuyu; Rubio, Francisco; Gaffney, John; Kumar, Pat; Kumar, Shant; Sullivan, Matthew; Slevin, Mark

    2007-01-01

    Background Altered gene expression is an important feature of ischemic cerebral injury and affects proteins of many functional classes. We have used microarrays to investigate the changes in gene expression at various times after middle cerebral artery occlusion in human and rat brain. Results Our results demonstrated a significant difference in the number of genes affected and the time-course of expression between the two cases. The total number of deregulated genes in the rat was 335 versus 126 in the human, while, of 393 overlapping genes between the two array sets, 184 were changed only in the rat and 36 in the human with a total of 41 genes deregulated in both cases. Interestingly, the mean fold changes were much higher in the human. The expression of novel genes, including p21-activated kinase 1 (PAK1), matrix metalloproteinase 11 (MMP11) and integrase interactor 1, was further analyzed by RT-PCR, Western blotting and immunohistochemistry. Strong neuronal staining was seen for PAK1 and MMP11. Conclusion Our findings confirmed previous studies reporting that gene expression screening can detect known and unknown transcriptional features of stroke and highlight the importance of research using human brain tissue in the search for novel therapeutic agents. PMID:17997827

  10. Sodium 4-phenylbutyrate protects against cerebral ischemic injury.

    Science.gov (United States)

    Qi, Xin; Hosoi, Toru; Okuma, Yasunobu; Kaneko, Masayuki; Nomura, Yasuyuki

    2004-10-01

    Sodium 4-phenylbutyrate (4-PBA) is a low molecular weight fatty acid that has been used for treatment of urea cycle disorders in children, sickle cell disease, and thalassemia. It has been demonstrated recently that 4-PBA can act as a chemical chaperone by reducing the load of mutant or mislocated proteins retained in the endoplasmic reticulum (ER) under conditions associated with cystic fibrosis and liver injury. In the present study, we evaluated the neuroprotective effect of 4-PBA on cerebral ischemic injury. Pre- or post-treatment with 4-PBA at therapeutic doses attenuated infarction volume, hemispheric swelling, and apoptosis and improved neurological status in a mouse model of hypoxia-ischemia. Moreover, 4-PBA suppressed ER-mediated apoptosis by inhibiting eukaryotic initiation factor 2alpha phosphorylation, CCAAT/enhancer-binding protein homologous protein induction, and caspase-12 activation. In neuroblastoma neuro2a cells, 4-PBA reduced caspase-12 activation, DNA fragmentation, and cell death induced by hypoxia/reoxygenation. It protected against ER stress-induced but not mitochondria-mediated cell death. Additionally, 4-PBA inhibited the expression of inducible nitric-oxide synthase and tumor necrosis factor-alpha in primary cultured glial cells under hypoxia/reoxygenation. These results indicate that 4-PBA could protect against cerebral ischemia through inhibition of ER stress-mediated apoptosis and inflammation. Therefore, the multiple actions of 4-PBA may provide a strong effect in treatment of cerebral ischemia, and its use as a chemical chaperone would provide a novel approach for the treatment of stroke.

  11. Neuroprotective Efficacy of an Aminopropyl Carbazole Derivative P7C3-A20 in Ischemic Stroke.

    Science.gov (United States)

    Wang, Shu-Na; Xu, Tian-Ying; Wang, Xia; Guan, Yun-Feng; Zhang, Sai-Long; Wang, Pei; Miao, Chao-Yu

    2016-09-01

    NAMPT is a novel therapeutic target of ischemic stroke. The aim of this study was to investigate the effect of a potential NAMPT activator, P7C3-A20, an aminopropyl carbazole derivative, on ischemic stroke. In vitro study, neuron protection effect of P7C3-A20 was investigated by co-incubation with primary neurons subjected to oxygen-glucose deprivation (OGD) or oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo experiment, P7C3-A20 was administrated in middle cerebral artery occlusion (MCAO) rats and infarct volume was examined. Lastly, the brain tissue nicotinamide adenine dinucleotide (NAD) levels were detected in P7C3-A20 treated normal or MCAO mice. Cell viability, morphology, and Tuj-1 staining confirmed the neuroprotective effect of P7C3-A20 in OGD or OGD/R model. P7C3-A20 administration significantly reduced cerebral infarction in MCAO rats. Moreover, brain NAD levels were elevated both in normal and MCAO mice after P7C3-A20 treatment. P7C3-A20 has neuroprotective effect in cerebral ischemia. The study contributes to the development of NAMPT activators against ischemic stroke and expands the horizon of the neuroprotective effect of aminopropyl carbazole chemicals. © 2016 John Wiley & Sons Ltd.

  12. The role in thanatogenesis of generalized brain edema in ischemic cerebral infarction (computer-morphometric research

    Directory of Open Access Journals (Sweden)

    E. A. Dyadyk

    2012-12-01

    Full Text Available This work presents the results of computer-morphometric study of perivascular and pericellular free (oedematous spaces in brain cortex at death from the ischemic cerebral infarction and from reasons unconnected directly with cerebral pathology. It was revealed, that the mean area of perivascular spaces (vasogenic edema index at brain infarction in 13 times exceeds such at extracerebral pathology, and mean area of pericellular spaces (cytotoxic edema index – almost in 12 times, but also it substantially differs on the degree of variation (in 2,5 times higher, than area of perivascular spaces.

  13. Drug Delivery to the Ischemic Brain

    Science.gov (United States)

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  14. Rehabilitation Outcomes: Ischemic versus Hemorrhagic Strokes

    OpenAIRE

    Perna, Robert; Temple, Jessica

    2015-01-01

    Background. Ischemic and hemorrhagic strokes have different pathophysiologies and possibly different long-term cerebral and functional implications. Hemorrhagic strokes expose the brain to irritating effects of blood and ischemic strokes reflect localized or diffuse cerebral vascular pathology. Methods. Participants were individuals who suffered either an ischemic (n = 172) or hemorrhagic stroke (n = 112) within the past six months and were involved in a postacute neurorehabilitation program....

  15. Progressive Ischemic Stroke due to Thyroid Storm-Associated Cerebral Venous Thrombosis

    Science.gov (United States)

    Tanabe, Natsumi; Hiraoka, Eiji; Hoshino, Masataka; Deshpande, Gautam A.; Sawada, Kana; Norisue, Yasuhiro; Tsukuda, Jumpei; Suzuki, Toshihiko

    2017-01-01

    Patient: Female, 49 Final Diagnosis: Cerebral venous thrombosis Symptoms: Altered mental state • weakness in limbs Medication: — Clinical Procedure: — Specialty: Endocrinology and Metabolic Objective: Rare co-existance of disease or pathology Background: Cerebral venous thrombosis (CVT) is a rare but fatal complication of hyperthyroidism that is induced by the hypercoagulable state of thyrotoxicosis. Although it is frequently difficult to diagnose CVT promptly, it is important to consider it in the differential diagnosis when a hyperthyroid patient presents with atypical neurologic symptoms. Care Report: A 49-year-old Japanese female with unremarkable medical history came in with thyroid storm and multiple progressive ischemic stroke identified at another hospital. Treatment for thyroid storm with beta-blocker, glucocorticoid, and potassium iodide-iodine was started and MR venography was performed on hospital day 3 for further evaluation of her progressive ischemic stroke. The MRI showed CVT, and anticoagulation therapy, in addition to the anti-thyroid agents, was initiated. The patient’s thyroid function was successfully stabilized by hospital day 10 and further progression of CVT was prevented. Conclusions: Physicians should consider CVT when a patient presents with atypical course of stroke or with atypical MRI findings such as high intensity area in apparent diffusion coefficient (ADC) mapping. Not only is an early diagnosis and initiation of anticoagulation important, but identifying and treating the underlying disease is essential to avoid the progression of CVT. PMID:28228636

  16. Electroacupuncture modulates stromal cell-derived factor-1α expression and mobilization of bone marrow endothelial progenitor cells in focal cerebral ischemia/reperfusion model rats.

    Science.gov (United States)

    Xie, Chenchen; Gao, Xiang; Luo, Yong; Pang, Yueshan; Li, Man

    2016-10-01

    Stromal cell-derived factor-1α(SDF-1α) plays a crucial role in regulating the mobilization, migration and homing of endothelial progenitor cells(EPCs). Electroacupuncture(EA), a modern version of Traditional Chinese Medicine, can improve neurological recovery and angiogenesis in cerebral ischemic area. This study aimed to investigate the effects of electroacupuncture(EA) on the mobilization and migration of bone marrow EPCs and neurological functional recovery in rats model after focal cerebral ischemia/reperfusion and the potentially involved mechanisms. Sprague-Dawley rats received filament occlusion of the right middle cerebral artery for 2h followed by reperfusion for 12h, 1d, 2d, 3d, 7d respectively. Rats were randomly divided into sham group, model group and EA group. After 2h of the reperfusion, EA was given at the "Baihui" (GV 20)/Siguan ("Hegu" (LI 4)/"Taichong" (LR 3)) acupoints in the EA group. Modified neurological severity score (mNSS) was used to assess the neurological functional recovery. EPCs number and SDF-1α level in bone marrow(BM) and peripheral blood(PB) were detected by using fluorescence-activated cell sorting (FACS) analysis and quantitative real time polymerase chain reaction (qRT-PCR) respectively. An mNSS test showed that EA treatment significantly improved the neurological functional outcome. EPCs number in PB and BM were obviously increased in the EA group. After cerebral ischemia, the SDF-1α level was decreased in BM while it was increased in PB, which implied a gradient of SDF-1α among BM and PB after ischemia. It suggested that the forming of SDF-1α concentration gradient can induce the mobilization and homing of EPCs. Eletroacupuncture as a treatment can accelerate and increase the forming of SDF-1α concentration gradient to further induce the mobilization of EPCs and angiogenesis in ischemic brain and improve the neurological function recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Computer assisted radionuclide angiography to confirm reversible ischemic cerebral dysfunction

    International Nuclear Information System (INIS)

    Buell, U.; Lanksch, W.; Tosch, U.; Kleinhans, E.; Steinhoff, H.

    1982-01-01

    Computer assisted radionuclide angiography (CARNA) was employed in patients with transient ischemic attack (TIA) or prolonged reversible ischemic neurologic deficit (PRIND) to establish the sensitivity of CARNA in detecting and quantifying changes of cerebral perfusion in such selected patients. Moreover, results of CARNA were compared with findings of cranial radiographic angiography (RGA) to obtain data on combined sensitivities of these methods. CARNA may be the preferred noninvasive procedure employed because it detects and quantifies the vascular supply disorder in patients with TIA and PRIND. If no computer assistance is used to evaluate cranial radionuclide angiography, results are considerable less accurate. Specifity of CARNA is 84.6%. If CARNA is negative (25.2% in TIA; 12.7% in PRIND), a further method must be employed to confirm the cranial vascular origin of the attack. This may be RGA in TIA and transmission computed axial tomography (T-CAT) T-CAT in PRIND. This diagnos - tic sequence lead to 92.4% true positive in TIA and to 93.2% true positives in PRIND

  18. Regional cerebral blood flow in acute stage with ischemic cerebrovascular disease by xenon-133 inhalation and single photon emission computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Hiroyuki; Iino, Katsuro; Kojima, Hisashi; Saito, Hitoshi; Suzuki, Mikio; Watanabe, Kazuo; Kato, Toshiro

    1987-05-01

    Single photon emission computed tomography (SPECT) with xenon-133 inhalation method was undertaken within 48 hr after the onset in 68 patients with ischemic cerebrovascular disease. The results for regional cerebral blood flow (rCBF) were compared with concurrently available computed tomography (CT) scans. In patients with cerebral infarction, SPECT detected ischemic lesions earlier than CT, with the detectability being 92 %. The area with a decreased blood flow, as seen on SPECT, was more extensive than the low density area on CT, with a concomitant decrease in blood flow in the contralateral cerebral hemisphere. Crossed cerebellar diaschisis was associated with stenosis of the internal carotid artery in 50 % (7/14), and with stenosis of the middle cerebral artery in 35 % (9/26). Abnormal SPECT findings were seen in 47 % (8/17) of the patients with transient ischemic attack (TIA). Five TIA patients had a decreased rCBF on SPECT, which was not provided by CT scans. On the contrary, small infarct lesions in the cerebral basal ganglia, as observed in 4 patients, was not detected by SPECT, but detected by CT. This may imply the limitations of SPECT in the detection of deep-seated lesions of the cerebrum. The results led to the conclusion that SPECT can be performed safely even in acute, seriously ill patients to know changes in rCBF because it is noninvasive and is capable of being repeated in a short time. (Namekawa, K.).

  19. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM-Mediated Protection of Ischemic Brain.

    Directory of Open Access Journals (Sweden)

    Chi-Hsin Lin

    Full Text Available The protective value of neuron-derived conditioned medium (NCM in cerebral ischemia and the underlying mechanism(s responsible for NCM-mediated brain protection against cerebral ischemia were investigated in the study. NCM was first collected from the neuronal culture growing under the in vitro ischemic condition (glucose-, oxygen- and serum-deprivation or GOSD for 2, 4 or 6 h. Through the focal cerebral ischemia (bilateral CCAO/unilateral MCAO animal model, we discovered that ischemia/reperfusion (I/R-induced brain infarction was significantly reduced by NCM, given directly into the cistern magna at the end of 90 min of CCAO/MCAO. Immunoblocking and chemical blocking strategies were applied in the in vitro ischemic studies to show that NCM supplement could protect microglia, astrocytes and neurons from GOSD-induced cell death, in a growth factor (TGFβ1, NT-3 and GDNF and p-ERK dependent manner. Brain injection with TGFβ1, NT3, GDNF and ERK agonist (DADS alone or in combination, therefore also significantly decreased the infarct volume of ischemic brain. Moreover, NCM could inhibit ROS but stimulate IL-1β release from GOSD-treated microglia and limit the infiltration of IL-β-positive microglia into the core area of ischemic brain, revealing the anti-oxidant and anti-inflammatory activities of NCM. In overall, NCM-mediated brain protection against cerebral ischemia has been demonstrated for the first time in S.D. rats, due to its anti-apoptotic, anti-oxidant and potentially anti-glutamate activities (NCM-induced IL-1β can inhibit the glutamate-mediated neurotoxicity and restriction upon the infiltration of inflammatory microglia into the core area of ischemic brain. The therapeutic potentials of NCM, TGFβ1, GDNF, NT-3 and DADS in the control of cerebral ischemia in human therefore have been suggested and require further investigation.

  20. Expression of S100 protein and protective effect of arundic acid on the rat brain in chronic cerebral hypoperfusion.

    Science.gov (United States)

    Ohtani, Ryo; Tomimoto, Hidekazu; Wakita, Hideaki; Kitaguchi, Hiroshi; Nakaji, Kayoko; Takahashi, Ryosuke

    2007-03-02

    S100 protein is expressed primarily by astroglia in the brain, and accumulates in and around the ischemic lesions. Arundic acid, a novel astroglia-modulating agent, is neuroprotective in acute cerebral infarction, whereas the protective effects remain unknown during chronic cerebral hypoperfusion. Rats undergoing chronic cerebral hypoperfusion were subjected to a bilateral ligation of the common carotid arteries, and were allowed to survive for 3, 7 and 14 days. The animals received a daily intraperitoneal injection of 5.0, 10.0 or 20.0 mg/kg of arundic acid, or vehicle, for 14 days. Alternatively, other groups of rats received a delayed intraperitoneal injection of 20.0 mg/kg of arundic acid or vehicle, which started from 1, 3 or 7 days after ligation and continued to 14 days. The degree of white matter (WM) lesions and the numerical density of S100 protein-immunoreactive astroglia were estimated. In the WM of rats with vehicle injections, the number of S100 protein-immunoreactive astroglia increased significantly after chronic cerebral hypoperfusion as compared to the sham-operation. A dosage of 10.0 and 20.0 mg/kg of arundic acid suppressed the numerical increase in S100 protein-immunoreactive astroglia and the WM lesions. These pathological changes were suppressed with delayed treatment up to 7 days in terms of astroglial activation, and up to 3 days in terms of the WM lesions. The protective effects of arundic acid against WM lesions were demonstrated in a dose-dependent manner, and even after postischemic treatments. These results suggest the potential usefulness of arundic acid in the treatment of cerebrovascular WM lesions.

  1. Opiates and cerebral functional activity in rats

    International Nuclear Information System (INIS)

    Trusk, T.C.

    1986-01-01

    Cerebral activity was measured using the free-fatty acid [1- 14 C] octanoate as a fast functional tracer in conscious, unrestrained rats 5 minutes after intravenous injection of heroin, cocaine or saline vehicle. Regional changes of octanoate labeling density in the autoradiograms relative to saline-injected animals were used to determine the functional activity effects of each drug. Heroin and cocaine each produced a distinctive pattern of activity increases and suppression throughout the rat brain. Similar regional changes induced by both drugs were found in limbic brain regions implicated in drug reinforcement. Labeled octanoate autoradiography was used to measure the cerebral functional response to a tone that had previously been paired to heroin injections. Rats were trained in groups of three consisting of one heroin self-administration animal, and two animals receiving yoked infusion of heroin or saline. A tone was paired with each infusion during training. Behavioral experiments in similarly trained rats demonstrated that these training conditions impart secondary reinforcing properties to the tone in animals previously self-administering heroin, while the tone remains behaviorally neutral in yoked-infusion rats. Cerebral functional activity was measured during presentation of the tone without drug infusion. Octanoate labeling density changed in fifteen brain areas in response to the tone previously paired to heroin without response contingency. Labeling density was significantly modified in sixteen regions as a result of previously pairing the tone to response-contingent heroin infusions

  2. Opiates and cerebral functional activity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Trusk, T.C.

    1986-01-01

    Cerebral activity was measured using the free-fatty acid (1-/sup 14/C) octanoate as a fast functional tracer in conscious, unrestrained rats 5 minutes after intravenous injection of heroin, cocaine or saline vehicle. Regional changes of octanoate labeling density in the autoradiograms relative to saline-injected animals were used to determine the functional activity effects of each drug. Heroin and cocaine each produced a distinctive pattern of activity increases and suppression throughout the rat brain. Similar regional changes induced by both drugs were found in limbic brain regions implicated in drug reinforcement. Labeled octanoate autoradiography was used to measure the cerebral functional response to a tone that had previously been paired to heroin injections. Rats were trained in groups of three consisting of one heroin self-administration animal, and two animals receiving yoked infusion of heroin or saline. A tone was paired with each infusion during training. Behavioral experiments in similarly trained rats demonstrated that these training conditions impart secondary reinforcing properties to the tone in animals previously self-administering heroin, while the tone remains behaviorally neutral in yoked-infusion rats. Cerebral functional activity was measured during presentation of the tone without drug infusion. Octanoate labeling density changed in fifteen brain areas in response to the tone previously paired to heroin without response contingency. Labeling density was significantly modified in sixteen regions as a result of previously pairing the tone to response-contingent heroin infusions.

  3. Serum uric acid levels and cerebral microbleeds in patients with acute ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Wi-Sun Ryu

    Full Text Available Unlike experimental studies indicating a neuroprotective property of uric acid, clinical studies have shown that elevated levels of uric acid are associated with a risk of ischemic stroke. However, the association of uric acid with cerebral hemorrhage has seldom been tested. We aimed to elucidate the association between uric acid and cerebral microbleeds (CMBs, a hemorrhage-prone cerebral microangiopathy. Seven hundred twenty-four patients with ischemic stroke who were consecutively admitted to our hospital were included in this study. We collected demographic, clinical, and laboratory data, including uric acid level, and examined the presence of CMBs using T2*-weighted gradient-echo MRI. We used logistic regression analysis to examine an independent association between uric acid and CMBs. Two-hundred twenty-six patients had CMBs (31.2%. After adjusting for possible confounders, elevated uric acid was independently associated with the presence of CMBs (the highest quartile vs. lowest quartile, adjusted odd ratio [OR], 1.98; 95% confidence interval [CI], 1.16-3.39. This association retained in patients with deep or infratentorial CMBs (with or without lobar CMBs but not among those with lobar CMBs. In addition, this association was robust among patients with hypertension (the highest quartile vs. lowest quartile, adjusted OR, 2.74; 95% CI, 1.43-5.24. In contrast, we did not find the association in patients without hypertension. We demonstrated that serum uric acid is independently associated with the presence of CMBs. In particular, the relation between uric acid and CMBs was robust in hypertensive patients.

  4. Serum uric acid levels and cerebral microbleeds in patients with acute ischemic stroke.

    Science.gov (United States)

    Ryu, Wi-Sun; Kim, Chi Kyung; Kim, Beom Joon; Lee, Seung-Hoon

    2013-01-01

    Unlike experimental studies indicating a neuroprotective property of uric acid, clinical studies have shown that elevated levels of uric acid are associated with a risk of ischemic stroke. However, the association of uric acid with cerebral hemorrhage has seldom been tested. We aimed to elucidate the association between uric acid and cerebral microbleeds (CMBs), a hemorrhage-prone cerebral microangiopathy. Seven hundred twenty-four patients with ischemic stroke who were consecutively admitted to our hospital were included in this study. We collected demographic, clinical, and laboratory data, including uric acid level, and examined the presence of CMBs using T2*-weighted gradient-echo MRI. We used logistic regression analysis to examine an independent association between uric acid and CMBs. Two-hundred twenty-six patients had CMBs (31.2%). After adjusting for possible confounders, elevated uric acid was independently associated with the presence of CMBs (the highest quartile vs. lowest quartile, adjusted odd ratio [OR], 1.98; 95% confidence interval [CI], 1.16-3.39). This association retained in patients with deep or infratentorial CMBs (with or without lobar CMBs) but not among those with lobar CMBs. In addition, this association was robust among patients with hypertension (the highest quartile vs. lowest quartile, adjusted OR, 2.74; 95% CI, 1.43-5.24). In contrast, we did not find the association in patients without hypertension. We demonstrated that serum uric acid is independently associated with the presence of CMBs. In particular, the relation between uric acid and CMBs was robust in hypertensive patients.

  5. Effects of total saponins from Trillium tschonoskii rhizome on grey and white matter injury evaluated by quantitative multiparametric MRI in a rat model of ischemic stroke.

    Science.gov (United States)

    Li, Manzhong; Ouyang, Junyao; Zhang, Yi; Cheng, Brian Chi Yan; Zhan, Yu; Yang, Le; Zou, Haiyan; Zhao, Hui

    2018-04-06

    Trillium tschonoskii rhizome (TTR), a medicinal herb, has been traditionally used to treat traumatic brain injury and headache in China. Although the potential neuroprotective efficacy of TTR has gained increasing interest, the pharmacological mechanism remains unclear. Steroid saponins are the main bioactive components of the herb. To investigate the protective and repair-promoting effects of the total saponins from TTR (TSTT) on grey and white matter damages in a rat model of middle cerebral artery occlusion (MCAO) using magnetic resonance imaging (MRI) assay. Ischemic stroke was induced by MCAO. TSTT and Ginaton (positive control) were administered orally to rats 6h after stroke and daily thereafter. After 15 days of treatment, the survival rate of each group was calculated. We then conducted neurological deficit scores and beam walking test to access the neurological function after ischemic stroke. Subsequently, T2-weighted imaging (T2WI) and T2 relaxometry mapping were performed to measure infarct volume and grey and white matter integrity, respectively. Moreover, diffusion tensor imaging (DTI) was carried out to evaluate the grey and white matter microstructural damage. Additionally, arterial spin labelling (ASL) - cerebral blood flow (CBF) and magnetic resonance angiography (MRA) images provided dynamic information about vascular hemodynamic dysfunction after ischemic stroke. Finally, haematoxylin and eosin (HE) staining was carried out to evaluate the stroke-induced pathological changes in the brain. The survival rate and neurological behavioural outcomes (Bederson scores and beam walking tests) were markedly ameliorated by TSTT (65mg/kg) treatment within 15 days after ischemic stroke. Moreover, T2WI and T2 relaxometry mapping showed that TSTT (65mg/kg) significantly reduced infarct volume and attenuated grey and white matter injury, respectively, which was confirmed by histopathological evaluation of brain tissue. The results obtained from DTI showed that

  6. Analysis of ischemic cerebral lesions using 3.0-T diffusion-weighted imaging and magnetic resonance angiography after revascularization surgery for ischemic disease.

    Science.gov (United States)

    Murai, Yasuo; Mizunari, Takayuki; Takagi, Ryo; Amano, Yasuo; Mizumura, Sunao; Komaba, Yuichi; Okubo, Seiji; Kobayashi, Shiro; Teramoto, Akira

    2013-07-01

    Cerebral revascularization surgery (CRS) is increasingly recognized as an important component in the treatment of complex cerebral vascular disease and tumors. CRS requires that the incidence of perioperative neurological complications should be minimized, because CRS for ischemic disease is often not the goal of treatment, but rather a prophylactic surgery. CRS carries the risk of focal postoperative neurological deficits. Little has been established concerning mechanisms of post-CRS ischemia. We used 3.0-T diffusion-weighted magnetic resonance imaging (DWI) and magnetic resonance angiography (MRA) to analyze the incidence and mechanism of ischemic lesions. We studied the anterior circulation territory after 20 CRS procedures involving 33 vascular anastomosis procedures (13 double anastomoses and 7 single anastomoses) in 12 men and 8 women between June 2007 and October 2011. The operations included single or double superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis to treat internal carotid artery/MCA occlusions or severe MCA stenosis. A combined STA-MCA anastomosis and indirect bypass were performed for moyamoya disease. Postoperative DWI and MRA were obtained in all patients between 24 and 96 h after surgery to detect thromboembolism, hypoperfusion, or procedural ischemic complications and vasospasms of the donor STA. Follow-up DWI and MRA were carried out 1.8±0.6 days after CRS (range, 1-4 days). Temporary occlusion time for anastomoses averaged 18.9 min (range, 16-32 min). Asymptomatic new hyperintensities occurred in the ipsilateral hemisphere of 2 patients on postoperative DWI (10% patients/6.0% anastomoses), and 1 moyamoya patient (5.0% patients/3.0% anastomoses) developed a symptomatic hyperintensity in the ipsilateral occipital lobe in response to the operation. Two abnormal small (3.0-T DWI study of CRS and related clinical events. The incidence of symptomatic postoperative DWI abnormalities was restricted to 1 moyamoya patient

  7. Early cerebral hemodynamic, metabolic and histological changes in hypoxic-ischemic fetal lambs during postnatal life

    Directory of Open Access Journals (Sweden)

    Carmen eRey-Santano

    2011-09-01

    Full Text Available The hemodynamic, metabolic and biochemical changes produce during transition from fetal to neonatal life could be aggravated if asphyctic event occur during fetal life. The aim of the study was to examine the regional cerebral blood flow (RCBF, histological changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of oxidative stress for the first hours of postnatal life following severe fetal asphyxia. 18 chronically instrumented fetal lambs were assigned to: hypoxic-ischemic group, following fetal asphyxia animals were delivered and maintained on intermittent-positive-pressure-ventilation for 3 hours, and non-injured animals that were managed similarly to the previous group and used as control group. During hypoxic-ischemic insult, injured group developed acidosis, hypoxia, hypercapnia, latacidaemia and tachycardia in comparison to control group, without hypotension. Intermittent-positive-pressure-ventilation transiently improved gas exchange and cardiovascular parameters. After HI injury and during ventilation-support, the increased RCBF in inner zones was maintained for hypoxic-ischemic group, but cortical flow did not exhibit differences compared to the control group. Also, the increase of TUNEL positive cells (apoptosis and antioxidant enzymes, and decrease of ATP reserves was significantly higher in the brain regions where the RCBF were not increased.In conclusion, early metabolic, histological and hemodynamic changes involved in brain damage have been intensively investigated and reported in premature asphyctic lambs for the first 3 hours of postnatal life. Those changes have been described in human neonates, so our model could be useful to test the security and the effectiveness of different neuroprotective or ventilatory strategies when are applied in the first hours after fetal hypoxic-ischemic injury.

  8. Neonatal rat hearts cannot be protected by ischemic postconditioning

    Czech Academy of Sciences Publication Activity Database

    Doul, J.; Charvátová, Z.; Ošťádalová, Ivana; Kohutiar, M.; Maxová, H.; Ošťádal, Bohuslav

    2015-01-01

    Roč. 64, č. 6 (2015), s. 789-794 ISSN 0862-8408 Institutional support: RVO:67985823 Keywords : neonatal rats * ischemic postconditioning * tolerance to ischemia * contractile function * lactate dehydrogenase Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.643, year: 2015

  9. Superselective intra-arterial fibrinolysis for acute cerebral ischemic infarct : usefulness of diffusion weighted MR imaging

    International Nuclear Information System (INIS)

    Byun, Woo Mok; Lee, Se Jin; Kim, Yong Sun; Han, Gun Soo; Bae, Won Kyong

    1999-01-01

    To evaluate the efficacy of superselective intra-arterial fibrinolysis for acute cerebral stroke and the usefulness of pre-and postfibrinolysis diffusion-weighted MRI (DWI). In 41 patients with acute ischemic stroke whose treatment involved intra-arterial fibrinolysis, the occlusion site, degree of recanalization, and clinical results were compared. In 12 patients, diffusion weighted MRI was performed before fibrinolysis, and eight of these also underwent diffusion-weighted MRI after fibrinolysis. Using diffusion-weighted MRI, neurological outcomes were compared with signal intensity ratio (SIR, or the average signal intensity within the region of interest divided by that in the contralateral, nonischemic, homologous region). Twenty patients showed complete recanalization, nine partial recanalization, and in twelve there was no recanalization. Fourteen patients (34%) improved neurologically. No relationship existed between occlusion sites, degree of recanalization, and clinical outcome. Among 12 patients who underwent DWI before fibrinolysis, complete recanalization was noted in eight. Neurological improvement was seen in four patients with low SIR( 1.7), neurological outcome was poor despite complete recanalization. Although superselective intra-arterial fibrinolysis for acute cerebral stroke is a good therapeutic method for recanalization, the clinical outcome can be disappointing. We therefore suggest that in cases of acute cerebral ischemic infaret, SIR-as seen on DWI-might be useful for predicting the benefits of recanalization. In such cases, further investigation of the use of DWI prior to fibrinolysis is therefore needed

  10. Effect of growth hormone on glycogenesis in rat cerebral cortical slices

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Azad, V.S.S.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    Incubation of cerebral cortical slices of growth hormone treated diabetic and normal rats with U- 14 C glucose showed a two-fold increase in glycogenesis in diabetic rats. Glucose-6-phosphatase activity was lowered while the activities of phosphoglucomutase and phosphorylase were elevated in the cerebral cortex of diabetic rats treated with growth hormone. However, glycogen synthetase activity was slightly depressed. (author). 13 refs., 2 tabs

  11. The neuroprotective effects of intramuscular insulin-like growth factor-I treatment in brain ischemic rats.

    Directory of Open Access Journals (Sweden)

    Heng-Chih Chang

    Full Text Available Brain ischemia leads to muscle inactivity-induced atrophy and may exacerbate motor function deficits. Intramuscular insulin-like growth factor I (IGF-I injection has been shown to alleviate the brain ischemia-induced muscle atrophy and thus improve the motor function. Motor function is normally gauged by the integrity and coordination of the central nervous system and peripheral muscles. Whether brain ischemic regions are adaptively changed by the intramuscular IGF-I injection is not well understood. In this study, the effect of intramuscular IGF-I injection was examined on the central nervous system of brain ischemic rats. Rats were divided into 4 groups: sham control, brain ischemia control, brain ischemia with IGF-I treatment, and brain ischemia with IGF-I plus IGF-I receptor inhibitor treatment. Brain ischemia was induced by right middle cerebral artery occlusion. IGF-I and an IGF-1 receptor inhibitor were injected into the affected calf and anterior tibialis muscles of the treated rats for 4 times. There was an interval of 2 days between each injection. Motor function was examined and measured at the 24 hours and 7 days following a brain ischemia. The affected hind-limb muscles, sciatic nerve, lumbar spinal cord, and motor cortex were collected for examination after euthanizing the rats. IGF-I expression in the central nervous system and affected muscles were significantly decreased after brain ischemia. Intramuscular IGF-I injection increased the IGF-I expression in the affected muscles, sciatic nerve, lumbar spinal cord, and motor cortex. It also increased the p-Akt expression in the affected motor cortex. Furthermore, intramuscular IGF-I injection decreased the neuronal apoptosis and improved the motor function. However, co-administration of the IGF-I receptor inhibitor eliminated these effects. Intramuscular IGF-I injection after brain ischemia attenuated or reversed the decrease of IGF-I in both central and peripheral tissues, and

  12. GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats.

    Science.gov (United States)

    Wang, Wei; Li, Mingchang; Wang, Yuefei; Li, Qian; Deng, Gang; Wan, Jieru; Yang, Qingwu; Chen, Qianxue; Wang, Jian

    2016-12-01

    Hemorrhagic transformation (HT) is a devastating complication for patients with acute ischemic stroke who are treated with tissue plasminogen activator (tPA). It is associated with high morbidity and mortality, but no effective treatments are currently available to reduce HT risk. Therefore, methods to prevent HT are urgently needed. In this study, we used TWS119, an inhibitor of glycogen synthase kinase 3β (GSK-3β), to evaluate the role of the Wnt/β-catenin signaling pathway in recombinant tPA (rtPA)-induced HT. Sprague-Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) model of ischemic stroke and then were administered rtPA, rtPA combined with TWS119, or vehicle at 4 h. The animals were sacrificed 24 h after infarct induction. Rats treated with rtPA showed evident HT, had more severe neurologic deficit, brain edema, and blood-brain barrier breakdown, and had larger infarction volume than did the vehicle group. Rats treated with TWS119 had significantly improved outcomes compared with those of rats treated with rtPA alone. In addition, Western blot analysis showed that TWS119 increased the protein expression of β-catenin, claudin-3, and ZO-1 while suppressing the expression of GSK-3β. These results suggest that TWS119 reduces rtPA-induced HT and attenuates blood-brain barrier disruption, possibly through activation of the Wnt/β-catenin signaling pathway. This study provides a potential therapeutic strategy to prevent tPA-induced HT after acute ischemic stroke.

  13. CT diagnosis of hypoxic ischemic encephalopathy

    International Nuclear Information System (INIS)

    Zhao Xiang; Ma Jiwei; Wu Lide

    2004-01-01

    Objective: To explore CT characteristics of hypoxic ischemic encephalopathy (HIE), and to improve the accuracy of CT diagnosis. Methods: 50 cases of neonatal asphyxia in perinatal period diagnosed as hypoxic ischemic encephalopathy by CT was analyzed. Results: The main manifestation of hypoxic ischemic encephalopathy is cerebral edema and intracranial hemorrhage. Focal or diffuse hypo-dense lesion and hyper-dense area in various location and morphology were seen on CT images. (1) Localized diffuse hypo-dense area in 1 or 2 cerebral lobe were found in 17 cases, and the lesions were localized in frontal lobe (n=6), in frontotemporal lobe (n=5), and in temporo-occipital lobe (n=6). (2) Hypo-density region involving more than three cerebral lobes were found in 18 cases, and abnormalities were found in frontotemporal and parietal lobe (n=8), accompanying with subarachnoid hemorrhage (n=2); in frontal, temporal and occipital lobe (n=6), in which cerebral hemorrhage was complicated (n=1); and in other cerebral lobe (n=4). (3) Diffuse low-density region in all cerebral lobe were found in 15 cases, in which subarachnoid hemorrhage was complicated in 4 cases, and ventricular hemorrhage was found in 2 case. Conclusion: CT imaging plays an important role in diagnosis of hypoxic ischemic encephalopathy and has shown its clinical value

  14. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke

    Science.gov (United States)

    Hu, Xiaoming; De Silva, T. Michael; Chen, Jun; Faraci, Frank M.

    2017-01-01

    The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury following ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier (BBB) is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in BBB integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events. PMID:28154097

  15. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Science.gov (United States)

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  16. Electroacupuncture ameliorates cognitive impairment through inhibition of NF-κB-mediated neuronal cell apoptosis in cerebral ischemia-reperfusion injured rats.

    Science.gov (United States)

    Feng, Xiaodong; Yang, Shanli; Liu, Jiao; Huang, Jia; Peng, Jun; Lin, Jiumao; Tao, Jing; Chen, Lidian

    2013-05-01

    Cognitive impairment is a serious mental deficit following stroke that severely affects the quality of life of stroke survivors. Nuclear factor‑κB (NF-κB)-mediated neuronal cell apoptosis is involved in the development of post-stroke cognitive impairment; therefore, it has become a promising target for the treatment of impaired cognition. Acupuncture at the Baihui (DU20) and Shenting (DU24) acupoints is commonly used in China to clinically treat post‑stroke cognitive impairment; however, the precise mechanism of its action is largely unknown. In the present study, we evaluated the therapeutic efficacy of electroacupuncture against post-stroke cognitive impairment and investigated the underlying molecular mechanisms using a rat model of focal cerebral ischemia-reperfusion (I/R) injury. Electroacupuncture at Baihui and Shenting was identified to significantly ameliorate neurological deficits and reduce cerebral infarct volume. Additionally, electroacupuncture improved learning and memory ability in cerebral I/R injured rats, demonstrating its therapeutic efficacy against post-stroke cognitive impairment. Furthermore, electroacupuncture significantly suppressed the I/R-induced activation of NF-κB signaling in ischemic cerebral tissues. The inhibitory effect of electroacupuncture on NF-κB activation led to the inhibition of cerebral cell apoptosis. Finally, electroacupuncture markedly downregulated the expression of pro-apoptotic Bax and Fas, two critical downstream target genes of the NF-κB pathway. Collectively, our findings suggest that inhibition of NF-κB‑mediated neuronal cell apoptosis may be one mechanism via which electroacupuncture at Baihui and Shenting exerts a therapeutic effect on post-stroke cognitive impairment.

  17. Adoptive regulatory T-cell therapy preserves systemic immune homeostasis after cerebral ischemia.

    Science.gov (United States)

    Li, Peiying; Mao, Leilei; Zhou, Guoqing; Leak, Rehana K; Sun, Bao-Liang; Chen, Jun; Hu, Xiaoming

    2013-12-01

    Cerebral ischemia has been shown to result in peripheral inflammatory responses followed by long-lasting immunosuppression. Our recent study demonstrated that intravenous delivery of regulatory T cells (Tregs) markedly protected against transient cerebral ischemia by suppressing neutrophil-derived matrix metallopeptidase 9 production in the periphery. However, the effect of Tregs on systemic inflammatory responses and immune status has not been fully characterized. Cerebral ischemia was induced by middle cerebral artery occlusion for 60 minutes in mice or 120 minutes in rats. Tregs were isolated from donor animals by CD4 and CD25 double selection and transferred intravenously to ischemic recipients at 2 hours after middle cerebral artery occlusion. Animals were euthanized on different days after reperfusion. The effects of Tregs on systemic inflammation and immune status were evaluated using flow cytometry, ELISAs, and immunohistochemistry. Systemic administration of purified Tregs raises functional Tregs in the blood and peripheral organs, including spleen and lymph nodes. These exogenous Tregs remain in the blood and peripheral organs for ≥12 days. Functionally, Treg adoptive transfer markedly inhibits middle cerebral artery occlusion-induced elevation of inflammatory cytokines (interleukin-6 and tumor necrosis factor α) in the blood. Furthermore, Treg treatment corrects long-term lymphopenia and improves cellular immune functions after ischemic brain injury. As a result, Treg-treated animals exhibit decreased bacterial loads in the blood during recovery from cerebral ischemic attack. Treg treatment did not exacerbate poststroke immunosuppression. On the contrary, Treg-treated animals displayed improved immune status after focal cerebral ischemia.

  18. Functional response of cerebral blood flow induced by somatosensory stimulation in rats with subarachnoid hemorrhage

    Science.gov (United States)

    Li, Zhiguo; Huang, Qin; Liu, Peng; Li, Pengcheng; Ma, Lianting; Lu, Jinling

    2015-09-01

    Subarachnoid hemorrhage (SAH) is often accompanied by cerebral vasospasm (CVS), which is the phenomenon of narrowing of large cerebral arteries, and then can produce delayed ischemic neurological deficit (DIND) such as lateralized sensory dysfunction. CVS was regarded as a major contributor to DIND in patients with SAH. However, therapy for preventing vasospasm after SAH to improve the outcomes may not work all the time. It is important to find answers to the relationship between CVS and DIND after SAH. How local cerebral blood flow (CBF) is regulated during functional activation after SAH still remains poorly understood, whereas, the regulation of CBF may play an important role in weakening the impact of CVS on cortex function. Therefore, it is worthwhile to evaluate the functional response of CBF in the activated cortex in an SAH animal model. Most evaluation of the effect of SAH is presently carried out by neurological behavioral scales. The functional imaging of cortical activation during sensory stimulation may help to reflect the function of the somatosensory cortex more locally than the behavioral scales do. We investigated the functional response of CBF in the somatosensory cortex induced by an electrical stimulation to contralateral forepaw via laser speckle imaging in a rat SAH model. Nineteen Sprague-Dawley rats from two groups (control group, n=10 and SAH group, n=9) were studied. SAH was induced in rats by double injection of autologous blood into the cisterna magna after CSF aspiration. The same surgical procedure was applied in the control group without CSF aspiration or blood injection. Significant CVS was found in the SAH group. Meanwhile, we observed a delayed peak of CBF response in rats with SAH compared with those in the control group, whereas no significant difference was found in magnitude, duration, and areas under curve of relative CBF changes between the two groups. The results suggest that the regulation function of local CBF during

  19. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart.

    Directory of Open Access Journals (Sweden)

    Boyd R Rorabaugh

    Full Text Available We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury.Adult male and female rats received daily injections of methamphetamine (5 mg/kg or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining.Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine.Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.

  20. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart

    Science.gov (United States)

    Seeley, Sarah L.; Stoops, Thorne S.; D’Souza, Manoranjan S.

    2017-01-01

    Background We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Methods Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Results Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Conclusions Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse. PMID:28575091

  1. Quantification of convection-enhanced delivery to the ischemic brain

    International Nuclear Information System (INIS)

    Haar, Peter J; Broaddus, William C; Chen, Zhi-jian; Gillies, George T; Fatouros, Panos P; Corwin, Frank D

    2010-01-01

    Convection-enhanced delivery (CED) could have clinical application in the delivery of neuroprotective agents following ischemic stroke. However, ischemic brain tissue changes such as cytotoxic edema, in which cellular swelling decreases the fractional volume of the extracellular space, would be expected to significantly alter the distribution of neuroprotective agents delivered by CED. We sought to predict and characterize these effects using the magnetic resonance contrast agent gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) as a model therapeutic agent. CED was observed using MRI in a normal rat brain and in a middle cerebral artery (MCA) occlusion rat model of brain ischemia. Gd-DTPA was infused to the caudate putamen in the normal rat (n = 6) and MCA occlusion model (n = 6). In each rat, baseline apparent diffusion coefficient images were acquired prior to infusion, and T1 maps were then acquired 13 times throughout the duration of the experiment. These T1 maps were used to compute Gd-DTPA concentrations throughout each brain. In the MCA occlusion group, CED delivered Gd-DTPA to a comparatively larger volume with lower average tissue concentrations. Following the infusion, the total content of Gd-DTPA decreased more slowly in the MCA occlusion group than in the normal group. This quantitative characterization confirms that edematous ischemic tissue changes alter the distribution of agents by CED. These findings may have important implications for CED in the treatment of brain injury, and will assist in future efforts to model the distribution of therapeutic agents

  2. Green tea polyphenols alleviate early BBB damage during experimental focal cerebral ischemia through regulating tight junctions and PKCalpha signaling.

    Science.gov (United States)

    Liu, Xiaobai; Wang, Zhenhua; Wang, Ping; Yu, Bo; Liu, Yunhui; Xue, Yixue

    2013-07-21

    It has been supposed that green tea polyphenols (GTPs) have neuroprotective effects on brain damage after brain ischemia in animal experiments. Little is known regarding GTPs' protective effects against the blood-brain barrier (BBB) disruption after ischemic stroke. We investigated the effects of GTPs on the expression of claudin-5, occludin, and ZO-1, and the corresponding cellular mechanisms involved in the early stage of cerebral ischemia. Male Wistar rats were subjected to a middle cerebral artery occlusion (MCAO) for 0, 30, 60, and 120 min. GTPs (400 mg/kg/day) or vehicle was administered by intragastric gavage twice a day for 30 days prior to MCAO. At different time points, the expression of claudin-5, occludin, ZO-1, and PKCα signaling pathway in microvessel fragments of cerebral ischemic tissue were evaluated. GTPs reduced BBB permeability at 60 min and 120 min after ischemia as compared with the vehicle group. Transmission electron microscopy also revealed that GTPs could reverse the opening of tight junction (TJ) barrier at 60 min and 120 min after MACO. The decreased mRNA and protein expression levels of claudin-5, occludin, and ZO-1 in microvessel fragments of cerebral ischemic tissue were significantly prevented by treatment with GTPs at the same time points after ischemia in rats. Furthermore, GTPs could attenuate the increase in the expression levels of PKCα mRNA and protein caused by cerebral ischemia. These results demonstrate that GTPs may act as a potential neuroprotective agent against BBB damage at the early stage of focal cerebral ischemia through the regulation of TJ and PKCα signaling.

  3. Autoradiographic imaging of cerebral ischemia using hypoxic marker: Tc-99m-HL91 in animal models

    International Nuclear Information System (INIS)

    Jiang, N.Y.; Zhu, C.S.; Hu, X.K.

    2002-01-01

    Objective: To explore the possibility of Tc-99m-HL91 imaging in detecting the ischemic penumbra during acute stoke. Methods: 16 Sprague-Dawley (SD) rats were divided into operation group (n=12) and pseudo-operation group (n=4) randomly. In operation group, 12 middle cerebral artery occlusion animal (MCAO) models were established by electrocautery. 4 rats in pseudo-operation group were treated as a control without occlusion. All animals were injected Tc-99m-HL91 intravenously 2 hours after occlusion. Animals were killed at different time after injection and brains were removed rapidly from the skull to do the autoradiographic study. Result: The ischemic territory accumulated more Tc-99m-HL91 than the opposite site in the autoradiogram at 1 hour after injection. The ischemic cerebral tissue can be visualized clearly. At 2, 4 hours after injection, the difference of accumulation of Tc-99m-HL91 in target and non-target site became more obvious. By using computer-enhanced imaging analysis, the optical density (OD) ratio differences between each subgroup of operation group and pseudo-operation group were all significant. Conclusion : Tc-99m-HL91 can be avidly taken up by ischemic penumbra. Tc-99m-HL91 is a potential agent for imaging hypoxic tissue, and Tc-99m-HL91 SPECT may be a promising imaging method in detecting the ischemic penumbra

  4. Autoradiographic imaging of cerebral ischaemia using hypoxic marker: 99mTc-HL91 in animal models

    International Nuclear Information System (INIS)

    Ningyi, J.; Cansheng, Z.; Xiaoke, H.

    2002-01-01

    Objective: To explore the possibility of 99mTc-HL91 imaging in detecting the ischemic penumbra during acute stoke. Methods 16 Sprague-Dawley (SD) rats were divided into operation group (n=12) and pseudo-operation group (n=4) randomly. In operation group, 12 middle cerebral artery occlusion animal (MCAO) models were established by electrocautery. 4 rats in pseudo-operation group were treated as a control without occlusion. All animals were injected 99mTc-HL91 intravenously 2 hours after occlusion. Animals were killed at different time after injection and brains were removed rapidly from the skull to do the autoradiographic study. Result The ischemic territory accumulated more 99mTc-HL91 than the opposite site in the autoradiogram at 1 hour after injection. The ischemic cerebral tissue can be visualized clearly. At 2, 4 hours after injection, the difference of accumulation of 99mTc-HL91 in target and non-target site became more obvious. By using computer-enhanced imaging analysis, the optical density (OD) ratio differences between each subgroup of operation group and pseudo-operation group were all significant. Conclusion 99mTc-HL91 can be avidly taken up by ischemic penumbra. 99mTc-HL91 is a potential agent for imaging hypoxic tissue, and 99mTc-HL91 SPECT may be a promising imaging method in detecting the ischemic penumbra

  5. Neurovascular regulation in the ischemic brain.

    Science.gov (United States)

    Jackman, Katherine; Iadecola, Costantino

    2015-01-10

    The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory.

  6. Aquaporin-4 inhibition mediates piroxicam-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rodents.

    Science.gov (United States)

    Bhattacharya, Pallab; Pandey, Anand Kumar; Paul, Sudip; Patnaik, Ranjana; Yavagal, Dileep R

    2013-01-01

    Aquaporin-4(AQP4) is an abundant water channel protein in brain that regulates water transport to maintain homeostasis. Cerebral edema resulting from AQP4 over expression is considered to be one of the major determinants for progressive neuronal insult during cerebral ischemia. Although, both upregulation and downregulation of AQP4 expression is associated with brain pathology, over expression of AQP4 is one of the chief contributors of water imbalance in brain during ischemic pathology. We have found that Piroxicam binds to AQP4 with optimal binding energy value. Thus, we hypothesized that Piroxicam is neuroprotective in the rodent cerebral ischemic model by mitigating cerebral edema via AQP4 regulation. Rats were treated with Piroxicam OR placebo at 30 min prior, 2 h post and 4 h post 60 minutes of MCAO followed by 24 hour reperfusion. Rats were evaluated for neurological deficits and motor function just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, RT-PCR and western blot experiments. Piroxicam pretreatment thirty minutes prior to ischemia and four hour post reperfusion afforded neuroprotection as evident through significant reduction in cerebral infarct volume, improvement in motor behavior, neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde were also found to be significantly reduced in ischemic brain regions in treated animals. This neuroprotection was found to be associated with inhibition of acid mediated rise in intracellular calcium levels and also downregulated AQP4 expression. Findings of the present study provide significant evidence that Piroxicam acts as a potent AQP4 regulator and renders neuroprotection in focal cerebral ischemia. Piroxicam could be clinically exploited for the treatment of brain stroke along with other anti-stroke therapeutics in future.

  7. Paeoniflorin, a Monoterpene Glycoside, Protects the Brain from Cerebral Ischemic Injury via Inhibition of Apoptosis.

    Science.gov (United States)

    Zhang, Yuqin; Li, Huang; Huang, Mingqing; Huang, Mei; Chu, Kedan; Xu, Wei; Zhang, Shengnan; Que, Jinhua; Chen, Lidian

    2015-01-01

    Paeoniflorin (PF) is a principal bioactive component, which exhibits many pharmacological effects, including protection against ischemic injury. This paper aimed to investigate the protective effect of PF both in vivo and in vitro. Middle cerebral artery occlusion (MCAO) was performed on male Sprague-Dawley (SD) rat for 2 h, and different doses of PF or vehicle were administered 2 h after reperfusion. Rats were sacrificed after 7 days treatment of PF/vehicle. PF treatment for 7 days ameliorated MCAO-induced neurological deficit and decreased the infarct area. Further study demonstrated that PF inhibited the over-activation of astrocytes and apoptosis of neurons, and PF promoted up-regulation of neuronal specific marker neuron-specific nuclear (NeuN) and microtubule-associated protein 2 (MAP-2) in brain. Moreover, NMDA-induced neuron apoptosis was employed. The in vitro study revealed that PF treatment protected against NMDA-induced cell apoptosis and neuronal loss via up-regulation of neuronal specific marker NeuN, MAP-2 and Bcl-2 and the down-regulation Bax. Taken together, the present study demonstrates that PF produces its protective effect by inhibiting the over-activation of astrocytes, apoptosis of neurons and up-regulation of neuronal specific marker NeuN, MAP-2, and B-cell lymphoma-2 (Bcl-2), and down-regulation Bax. Our study reveals that PF may be a potential neuroprotective agent for stroke and can provide basic data for clinical use.

  8. Predictors of early infection in cerebral ischemic stroke.

    Science.gov (United States)

    Ashour, Wmr; Al-Anwar, A D; Kamel, A E; Aidaros, M A

    2016-01-01

    Infection is the most common complication of stroke. To determine the risk factors and predictors of post-stroke infection (PSI), which developed within 7 days from the onset of acute ischemic stroke. The study included 60 ischemic stroke patients admitted in the Neurology Department of Zagazig University, Egypt, who were subdivided into: [Non Stroke Associated Infection group (nSAI); 30 patients having stroke without any criteria of infection within 7 days from the onset and Stroke Associated Infection group (SAI); 30 patients having stroke with respiratory tract infection (RTI) or urinary tract infection within 7 days], in addition to 30 healthy sex and age-matching subjects as control. All the patients had a detailed history taking, thorough clinical general and neurological examination, laboratory tests (Urine analysis & urine culture, blood sugar, lipid profile and serum tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-10), a chest radiography to assess RTI and brain computed tomography (CT) to exclude the hemorrhagic stroke and to confirm the ischemic stroke. SAI patients were found to be significantly older with higher baseline blood glucose level. Also the number of patients with tube feeding, lower conscious level, more stroke severity and more large size infarcts were significantly higher in SAI patients. There was a significant elevation in the IL-10, a significant decrease in the TNF-α and a significant decrease in the TNF-α/ IL-10 ratio, in the SAI group. The baseline serum level of IL-10 ≥ 14.5 pg/ ml and size of infarct area > 3.5 cm3 were found to be the independent predictors of PSI. Patients with older age, tube feeding, lower conscious level, worse baseline stroke severity, large cerebral infarcts in CT scan, and increased IL-10 serum level were more susceptible to infection. The baseline serum level of IL-10 ≥ 14.5 pg/ ml and the size of infarct area > 3.5 cm3 were the independent predictors of PSI.

  9. [Effects of exogenous high mobility group protein box 1 on angiogenesis in ischemic zone of early scald wounds of rats].

    Science.gov (United States)

    Dai, L; Guo, X; Huang, H J; Liao, X M; Luo, X Q; Li, D; Zhou, H; Gao, X C; Tan, M Y

    2018-04-20

    Objective: To observe effects of exogenous high mobility group protein box 1 (HMGB1) on angiogenesis in ischemic zone of early scald wounds of rats. Methods: Thirty-six Sprague-Dawley rats were divided into HMGB1 group and simple scald (SS) group according to the random number table, with 18 rats in each group. Comb-like copper mould was placed on the back of rats for 20 s after being immersed in 100 ℃ hot water for 3 to 5 min to make three ischemic zones of wound. Immediately after scald, rats in HMGB1 group were subcutaneously injected with 0.4 μg HMGB1 and 0.1 mL phosphate buffer solution (PBS), and rats in SS group were subcutaneously injected with 0.1 mL PBS from boarders of ischemic zone of scald wound. At post scald hour (PSH) 24, 48, and 72, 6 rats in each group were collected. Protein expressions of vascular endothelial growth factor (VEGF) in ischemic zone of wound at PSH 24, 48, and 72 and protein expressions of CD31 in ischemic zone of wound at PSH 48 and 72 were detected by immunohistochemistry. The number of microvessel in CD31 immunohistochemical sections of ischemic zone of wound at PSH 48 and 72 was calculated after observing by the microscope. The mRNA expressions of VEGF and CD31 in ischemic zone of wound were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction at PSH 24, 48, and 72. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) At PSH 24, 48, and 72, protein expressions of VEGF in ischemic zone of wound of rats in HMGB1 group were significantly higher than those of rats in SS group ( t =7.496, 4.437, 5.402, P zone of wound of rats in HMGB1 group were 0.038 8±0.007 9 and 0.057 7±0.001 2 respectively, significantly higher than 0.013 4±0.004 9 and 0.030 3±0.004 0 of rats in SS group ( t =10.257, 15.055, P zone of wound of rats in HMGB1 group was obviously more than that of rats in SS group ( t =3.536, 4.000, P zone of wound of

  10. Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Xiao-ge Yan

    2015-01-01

    Full Text Available Apelin-13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 µg/g was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immunohistochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immunoreactivity and decreased caspase-3 immunoreactivity. Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis.

  11. Effect of thuringiensin on adenylate cyclase in rat cerebral cortex

    International Nuclear Information System (INIS)

    Tsai, S.-F.; Yang Chi; Wang, S.-C.; Wang, J.-S.; Hwang, J.-S.; Ho, S.-P.

    2004-01-01

    The purpose of this work is to evaluate the effect of thuringiensin on the adenylate cyclase activity in rat cerebral cortex. The cyclic adenosine 3'5'-monophosphate (cAMP) levels were shown to be dose-dependently elevated 17-450% or 54-377% by thuringiensin at concentrations of 10 μM-100 mM or 0.5-4 mM, due to the activation of basal adenylate cyclase activity of rat cerebral cortical membrane preparation. Thuringiensin also activated basal activity of a commercial adenylate cyclase from Escherichia coli. However, the forskolin-stimulated adenylate cyclase activity in rat cerebral cortex was inhibited by thuringiensin at concentrations of 1-100 μM, thus cAMP production decreased. Furthermore, thuringiensin or adenylate cyclase inhibitor (MDL-12330A) reduced the forskolin (10 μM)-stimulated adenylate cyclase activity at concentrations of 10 μM, 49% or 43% inhibition, respectively. In conclusion, this study demonstrated that thuringiensin could activate basal adenylate cyclase activity and increase cAMP concentrations in rat cerebral cortex or in a commercial adenylate cyclase. Comparing the dose-dependent effects of thuringiensin on the basal and forskolin-stimulated adenylate cyclase activity, thuringiensin can be regarded as a weak activator of adenylate cyclase or an inhibitor of forskolin-stimulated adenylate cyclase

  12. Induction of interleukin-1β mRNA after focal cerebral ischaemia in the rat

    NARCIS (Netherlands)

    Buttini, M.; Sauter, A.; Boddeke, H.W.G.M.

    1994-01-01

    The expression of interleukin-1β (IL-1β) mRNA in the brain in response to cerebral ischaemia in rats was examined using in situ hybridization histochemistry. Focal cerebral ischaemia was induced in spontaneously hypertensive rats by permanent occlusion of the left middle cerebral artery (MCAO).

  13. INDUCTION OF INTERLEUKIN-1-BETA MESSENGER-RNA AFTER FOCAL CEREBRAL-ISCHEMIA IN THE RAT

    NARCIS (Netherlands)

    BUTTINI, M; SAUTER, A; BODDEKE, HWGM

    The expression of interleukin-1beta (IL-1beta) mRNA in the brain in response to cerebral ischaemia in rats was examined using in situ hybridization histochemistry. Focal cerebral ischaemia was induced in spontaneously hypertensive rats by permanent occlusion of the left middle cerebral artery

  14. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Directory of Open Access Journals (Sweden)

    Elham Hakimizadeh

    2017-08-01

    Full Text Available Objective(s: Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1 channels and toll-like receptors (TLRs are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist -treated and capsaicin (TRPV1 agonist -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke.

  15. Arctigenin attenuates ischemic stroke via SIRT1-dependent inhibition of NLRP3 inflammasome.

    Science.gov (United States)

    Zhang, Shimeng; Jiang, Liangjun; Che, Fengyuan; Lu, Yucheng; Xie, Zhongxiang; Wang, Hao

    2017-11-04

    Arctigenin (ARC), a phenylpropanoid dibenzylbutyrolactone lignan derived from Arctium lappa L, has been reported to protect against cerebral ischemia injury in rats, but the underlying mechanism is unclear. In this study, we investigated whether ARC ameliorated ischemic stroke by inhibiting NLRP3 inflammasome-derived neuroinflammation and whether SIRT1 signaling was involved in this process. ARC (20 mg/kg) or vehicle were intraperitoneally injected to Sprague-Dawley rats for 3 days before middle cerebral artery occlusion (MCAO) surgery performed. The infarct volume, neurological score, brain water content, neuroinflammation, NLRP3 inflammasome activation and SIRT1 protein expression were assessed. Furthermore, we also investigated whether ARC protected against cerebral ischemia via SIRT1-dependent inhibition of NLRP3 inflammasome by administrating EX527, a specific SIRT1 inhibitor, under oxygen-glucose deprivation (OGD) condition. We found that ARC pretreatment decreased infarct volume, neurological score and brain water content. Moreover, ARC treatment effectively inhibited cerebral ischemia induced NLRP3 inflammasome activation and IL-1β, IL-18 secretion both in vivo and in vitro. Futhermore, ARC treatment activated Silent information regulator 1 (SIRT1) singnaling in the brain. Importantly, suppress of SIRT1 reversed the inhibitory effect of ARC on NLRP3 inflammasome activation. Taken together our results demonstrated that ARC may confer protection against ischemic stroke by inhibiting NLRP3 inflammasome activation. The activation of SIRT1 signaling pathway may contribute to the neuroprotection of ARC in MCAO. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Hyperglycemia decreases preoxiredoxin-2 expression in a middle cerebral artery occlusion model.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-06-01

    Diabetes is a major risk factor for stroke and is also associated with worsened outcomes following a stroke. Peroxiredoxin-2 exerts potent neuroprotective effects against oxidative stress. In the present study, we identified altered peroxiredoxin-2 expression in an ischemic stroke model under hyperglycemic conditions. Adult male rats were administrated streptozotocin (40 mg/kg) via intraperitoneal injection to induce diabetes. Middle cerebral artery occlusion (MCAO) was induced surgically 4 weeks after streptozotocin treatment and cerebral cortex tissues were isolated 24 hours after MCAO. Peroxiredoxin-2 expression was evaluated in the cerebral cortex of MCAO-operated animals using a proteomics approach, and was found to be decreased. In addition, the reduction in peroxiredoxin-2 levels was more severe in cerebral ischemia with diabetes compared to animals without diabetes. Reverse-transcriptase PCR and Western blot analyses confirmed the significantly reduced peroxiredoxin-2 expression in MCAO-operated animals under hyperglycemic conditions. It is an accepted fact that peroxiredoxin-2 has antioxidative activity against ischemic injury. Thus, the findings of this study suggest that a more severe reduction in peroxiredoxin-2 under hyperglycemic conditions leads to worsened brain damage during cerebral ischemia with diabetes.

  17. Rivaroxaban does not influence hemorrhagic transformation in a diabetes ischemic stroke and endovascular thrombectomy model.

    Science.gov (United States)

    Liu, Feng-Di; Zhao, Rong; Feng, Xiao-Yan; Shi, Yan-Hui; Wu, Yi-Lan; Shen, Xiao-Lei; Li, Ge-Fei; Liu, Yi-Sheng; Zhao, Ying; He, Xin-Wei; Yin, Jia-Wen; Zhuang, Mei-Ting; Zhao, Bing-Qiao; Liu, Jian-Ren

    2018-05-09

    Managing endovascular thrombectomy (ET) in diabetic ischemic stroke (IS) with novel anticoagulants is challenging due to putative risk of intracerebral hemorrhage. The study evaluates increased hemorrhagic transformation (HT) risk in Rivaroxaban-treated diabetic rats post ET. Diabetes was induced in male Sprague-Dawley rats by intraperitoneal injection of 60 mg/kg streptozotocin. After 4-weeks, rats were pretreated orally with 30 mg/kg Rivaroxaban/saline; prothrombin time was monitored. IS and ET was induced after 1 h, by thread-induced transient middle cerebral artery occlusion (tMCAO) that mimicked mechanical ET for proximal MCA occlusion at 60 min. After 24 h reperfusion, infarct volumes, HT, blood-brain barrier (BBB) permeability, tight junction at peri-ischemic lesion and matrix metalloproteinase-9 (MMP-9) activity was measured. Diabetic rats seemed to exhibit increased infarct volume and HT at 24 h after ET than normal rats. Infarct volumes and functional outcomes did not differ between Rivaroxaban and diabetic control groups. A significant increase in HT volumes and BBB permeability under Rivaroxaban treatment was not detected. Compared to diabetic control group, neither the occludin expression was remarkably lower in the Rivaroxaban group nor the MMP-9 activity was higher. Together, Rivaroxaban does not increase HT after ET in diabetic rats with proximal MCA occlusion, since Rivaroxaban has fewer effects on post-ischemic BBB permeability.

  18. Regional cerebral blood flow in patients with transient ischemic attacks studied by Xenon-133 inhalation and emission tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Hemmingsen, R; Henriksen, L

    1983-01-01

    Cerebral blood flow CBF was studied in 14 patients with transient ischemic attacks TIA and arteriosclerotic neck vessel disease. CBF was measured by a rapidly rotating single photon emission computerized tomograph using Xenon-133 inhalation. This method yields images of 3 brain slices depicting CBF...... with no abnormality on the CT-scan. The abnormal blood flow pattern was found to be unchanged after clinically successful reconstructive vascular surgery. This suggests the presence of irreversible ischemic tissue damage without gross emollition (incomplete infarction). It is concluded, that TIAs are often harmful...... events, as no less than 9 of the 14 patients studied had evidence of complete and/or incomplete infarction. Thorough examination and rational therapy should be instituted as soon as possible to prevent further ischemic lesions....

  19. [Focal cerebral ischemia in rats with estrogen deficiency and endothelial dysfunction].

    Science.gov (United States)

    Litvinov, A A; Volotova, E V; Kurkin, D V; Logvinova, E O; Darmanyan, A P; Tyurenkov, I N

    2017-01-01

    To assess an effect of ovariectomy (OE) on the cerebral blood flow, endothelium-dependent vasodilation, neurological, cognitive and locomotor deficit as markers of brain damage after focal ischemia in rats. The study was conducted in 48 female Wistar rats. Ovariectomy was performed with ovaries and uterine body extirpation, cerebral ischemia was performed by middle cerebral artery occlusion (MCAO) in rats. To assess brain damage, Combs and Garcia scores, 'open field' test (OFT), 'extrapolatory escape test' (EET), 'passive avoidance test' (PAT), 'beam-walking test' were used. Cerebral blood flow was measured using ultrasonic flowmetry. After 7 days of MCAO, the cerebral blood flow in ovarioectomized animals was reduced by 20% compared to sham-ovariectomized animals. Ovariectomized animals with MCAO showed a three-fold endothelium-dependent vasodilation reduction (the reaction of cerebral vessels to the introduction of acetylcholine and N-L-arginine), indicating the presence of severe endothelial dysfunction. In ovarioectomized animals, the cerebral blood flow was reduced by 34% compared to sham-operated animals. MCAO and OE taken together resulted in more than 2-fold increase in neurological, motor disturbances, 3-fold decrease in motor activity of the animals in the OP test. Focal ischemia in ovarioectomized animals with endothelial dysfunction led to memory decrease by 1/5 fold in PAT and by 2-fold in EET.

  20. Enhanced vasomotion of cerebral arterioles in spontaneously hypertensive rats

    Science.gov (United States)

    Lefer, D. J.; Lynch, C. D.; Lapinski, K. C.; Hutchins, P. M.

    1990-01-01

    Intrinsic rhythmic changes in the diameter of pial cerebral arterioles (30-70 microns) in anesthetized normotensive and hypertensive rats were assessed in vivo to determine if any significant differences exist between the two strains. All diameter measurements were analyzed using a traditional graphic analysis technique and a new frequency spectrum analysis technique known as the Prony Spectral Line Estimator. Graphic analysis of the data revealed that spontaneously hypertensive rats (SHR) possess a significantly greater fundamental frequency (5.57 +/- 0.28 cycles/min) of vasomotion compared to the control Wistar-Kyoto normotensive rats (WKY) (1.95 +/- 0.37 cycles/min). Furthermore, the SHR cerebral arterioles exhibited a significantly greater amplitude of vasomotion (10.07 +/- 0.70 microns) when compared to the WKY cerebral arterioles of the same diameter (8.10 +/- 0.70 microns). Diameter measurements processed with the Prony technique revealed that the fundamental frequency of vasomotion in SHR cerebral arterioles (6.14 +/- 0.39 cycles/min) was also significantly greater than that of the WKY cerebral arterioles (2.99 +/- 0.42 cycles/min). The mean amplitudes of vasomotion in the SHR and WKY strains obtained by the Prony analysis were found not to be statistically significant in contrast to the graphic analysis of the vasomotion amplitude of the arterioles. In addition, the Prony system was able to consistently uncover a very low frequency of vasomotion in both strains of rats that was typically less than 1 cycle/min and was not significantly different between the two strains. The amplitude of this slow frequency was also not significantly different between the two strains. The amplitude of the slow frequency of vasomotion (less than 1 cycle/min) was not different from the amplitude of the higher frequency (2-6 cycles/min) vasomotion by Prony or graphic analysis. These data suggest that a fundamental intrinsic defect exists in the spontaneously hypertensive rat

  1. Transcriptomics and proteomics analyses of the PACAP38 influenced ischemic brain in permanent middle cerebral artery occlusion model mice

    Directory of Open Access Journals (Sweden)

    Hori Motohide

    2012-11-01

    Full Text Available Abstract Introduction The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP is considered to be a potential therapeutic agent for prevention of cerebral ischemia. Ischemia is a most common cause of death after heart attack and cancer causing major negative social and economic consequences. This study was designed to investigate the effect of PACAP38 injection intracerebroventrically in a mouse model of permanent middle cerebral artery occlusion (PMCAO along with corresponding SHAM control that used 0.9% saline injection. Methods Ischemic and non-ischemic brain tissues were sampled at 6 and 24 hours post-treatment. Following behavioral analyses to confirm whether the ischemia has occurred, we investigated the genome-wide changes in gene and protein expression using DNA microarray chip (4x44K, Agilent and two-dimensional gel electrophoresis (2-DGE coupled with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS, respectively. Western blotting and immunofluorescent staining were also used to further examine the identified protein factor. Results Our results revealed numerous changes in the transcriptome of ischemic hemisphere (ipsilateral treated with PACAP38 compared to the saline-injected SHAM control hemisphere (contralateral. Previously known (such as the interleukin family and novel (Gabra6, Crtam genes were identified under PACAP influence. In parallel, 2-DGE analysis revealed a highly expressed protein spot in the ischemic hemisphere that was identified as dihydropyrimidinase-related protein 2 (DPYL2. The DPYL2, also known as Crmp2, is a marker for the axonal growth and nerve development. Interestingly, PACAP treatment slightly increased its abundance (by 2-DGE and immunostaining at 6 h but not at 24 h in the ischemic hemisphere, suggesting PACAP activates neuronal defense mechanism early on. Conclusions This study provides a detailed inventory of PACAP influenced gene expressions

  2. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Milos R Ljubisavljevic

    Full Text Available Although repetitive Transcranial Magnetic Stimulation (rTMS in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS and intermittent (iTBS theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS and pattern (cTBS vs. iTBS. The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss

  3. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury

    Science.gov (United States)

    Ljubisavljevic, Milos R.; Javid, Asma; Oommen, Joji; Parekh, Khatija; Nagelkerke, Nico; Shehab, Safa; Adrian, Thomas E.

    2015-01-01

    Although repetitive Transcranial Magnetic Stimulation (rTMS) in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO) with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS) and intermittent (iTBS) theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause) in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS) and pattern (cTBS vs. iTBS). The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss functions. PMID

  4. Effects of Remote Ischemic Conditioning Methods on Ischemia-Reperfusion Injury in Muscle Flaps: An Experimental Study in Rats

    Directory of Open Access Journals (Sweden)

    Durdane Keskin

    2017-09-01

    Full Text Available Background The aim of this study was to investigate the effects of remote ischemic conditioning on ischemia-reperfusion injury in rat muscle flaps histopathologically and biochemically. Methods Thirty albino rats were divided into 5 groups. No procedure was performed in the rats in group 1, and only blood samples were taken. A gracilis muscle flap was elevated in all the other groups. Microclamps were applied to the vascular pedicle for 4 hours in order to achieve tissue ischemia. In group 2, no additional procedure was performed. In groups 3, 4, and 5, the right hind limb was used and 3 cycles of ischemia-reperfusion for 5 minutes each (total, 30 minutes was applied with a latex tourniquet (remote ischemic conditioning. In group 3, this procedure was performed before flap elevation (remote ischemic preconditoning. In group 4, the procedure was performed 4 hours after flap ischemia (remote ischemic postconditioning. In group 5, the procedure was performed after the flap was elevated, during the muscle flap ischemia episode (remote ischemic perconditioning. Results The histopathological damage score in all remote conditioning ischemia groups was lower than in the ischemic-reperfusion group. The lowest histopathological damage score was observed in group 5 (remote ischemic perconditioning. Conclusions The nitric oxide levels were higher in the blood samples obtained from the remote ischemic perconditioning group. This study showed the effectiveness of remote ischemic conditioning procedures and compared their usefulness for preventing ischemia-reperfusion injury in muscle flaps.

  5. Effects of Remote Ischemic Conditioning Methods on Ischemia-Reperfusion Injury in Muscle Flaps: An Experimental Study in Rats.

    Science.gov (United States)

    Keskin, Durdane; Unlu, Ramazan Erkin; Orhan, Erkan; Erkilinç, Gamze; Bogdaycioglu, Nihal; Yilmaz, Fatma Meric

    2017-09-01

    The aim of this study was to investigate the effects of remote ischemic conditioning on ischemia-reperfusion injury in rat muscle flaps histopathologically and biochemically. Thirty albino rats were divided into 5 groups. No procedure was performed in the rats in group 1, and only blood samples were taken. A gracilis muscle flap was elevated in all the other groups. Microclamps were applied to the vascular pedicle for 4 hours in order to achieve tissue ischemia. In group 2, no additional procedure was performed. In groups 3, 4, and 5, the right hind limb was used and 3 cycles of ischemia-reperfusion for 5 minutes each (total, 30 minutes) was applied with a latex tourniquet (remote ischemic conditioning). In group 3, this procedure was performed before flap elevation (remote ischemic preconditoning). In group 4, the procedure was performed 4 hours after flap ischemia (remote ischemic postconditioning). In group 5, the procedure was performed after the flap was elevated, during the muscle flap ischemia episode (remote ischemic perconditioning). The histopathological damage score in all remote conditioning ischemia groups was lower than in the ischemic-reperfusion group. The lowest histopathological damage score was observed in group 5 (remote ischemic perconditioning). The nitric oxide levels were higher in the blood samples obtained from the remote ischemic perconditioning group. This study showed the effectiveness of remote ischemic conditioning procedures and compared their usefulness for preventing ischemia-reperfusion injury in muscle flaps.

  6. Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Kakihana, M.; Fukuda, N.; Suno, M.; Nagaoka, A.

    1988-02-01

    The effects of cytidine 5'-diphosphocholine (CDP-choline) on neurologic deficits and cerebral glucose metabolism were studied in a rat model of transient cerebral ischemia. Cerebral ischemia was induced by occluding both common carotid arteries for 20 or 30 minutes 24 hours after the vertebral arteries were permanently occluded by electrocautery. CDP-choline was administered intraperitoneally twice daily for 4 days after reestablishing carotid blood flow. CDP-choline at two dosages (50 and 250 mg/kg) shortened the time required for recovery of spontaneous motor activity in a dose-related manner; recovery time was measured early after reperfusion. Neurologic signs were observed for 10 days. High-dose CDP-choline improved neurologic signs in the rats within 20-30 minutes of ischemia. When cerebral glucose metabolism was assessed on Day 4, increases in the levels of glucose and pyruvate were accompanied by decreases in the synthesis of labeled acetylcholine from uniformly labeled (/sup 14/C)glucose measured in the cerebral cortex of rats with 30 minutes of ischemia. High-dose CDP-choline also attenuated changes in these variables. CDP-(1,2-/sup 14/C)choline injected intravenously 10 minutes after reperfusion was used for membrane lipid biosynthesis. These results indicate that CDP-choline has beneficial effects on brain dysfunction induced by cerebral ischemia, which may be due in part to the restorative effects of CDP-choline on disturbed cerebral glucose metabolism, probably by stimulating phospholipid biosynthesis.

  7. Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia

    International Nuclear Information System (INIS)

    Kakihana, M.; Fukuda, N.; Suno, M.; Nagaoka, A.

    1988-01-01

    The effects of cytidine 5'-diphosphocholine (CDP-choline) on neurologic deficits and cerebral glucose metabolism were studied in a rat model of transient cerebral ischemia. Cerebral ischemia was induced by occluding both common carotid arteries for 20 or 30 minutes 24 hours after the vertebral arteries were permanently occluded by electrocautery. CDP-choline was administered intraperitoneally twice daily for 4 days after reestablishing carotid blood flow. CDP-choline at two dosages (50 and 250 mg/kg) shortened the time required for recovery of spontaneous motor activity in a dose-related manner; recovery time was measured early after reperfusion. Neurologic signs were observed for 10 days. High-dose CDP-choline improved neurologic signs in the rats within 20-30 minutes of ischemia. When cerebral glucose metabolism was assessed on Day 4, increases in the levels of glucose and pyruvate were accompanied by decreases in the synthesis of labeled acetylcholine from uniformly labeled [ 14 C]glucose measured in the cerebral cortex of rats with 30 minutes of ischemia. High-dose CDP-choline also attenuated changes in these variables. CDP-[1,2- 14 C]choline injected intravenously 10 minutes after reperfusion was used for membrane lipid biosynthesis. These results indicate that CDP-choline has beneficial effects on brain dysfunction induced by cerebral ischemia, which may be due in part to the restorative effects of CDP-choline on disturbed cerebral glucose metabolism, probably by stimulating phospholipid biosynthesis

  8. Role of fractalkine/CX3CR1 signaling pathway in the recovery of neurological function after early ischemic stroke in a rat model.

    Science.gov (United States)

    Liu, Yan-Zhi; Wang, Chun; Wang, Qian; Lin, Yong-Zhong; Ge, Yu-Song; Li, Dong-Mei; Mao, Geng-Sheng

    2017-09-01

    This study aims to explore the role of fractalkine/CX3C chemokine receptor 1 (CX3CR1) signaling pathway in the recovery of neurological functioning after an early ischemic stroke in rats. After establishment of permanent middle cerebral artery occlusion (pMCAO) models, 50 rats were divided into blank, sham, model, positive control and CX3CR1 inhibitor groups. Neurological impairment, walking and grip abilities, and cortical and hippocampal infarctions were evaluated by Zea Longa scoring criterion, beam-walking assay and grip strength test, and diffusion-weighted magnetic resonance imaging. qRT-PCR and Western blotting were performed to detect mRNA and protein expressions. ELISA was conducted to measure concentration of sFractalkine (sFkn), interleukin-1β (IL-1β) and TNF-α. The recovery rate of neurological functioning impairment and reduced walking and grip abilities was faster in the positive control and CX3CR1 inhibitor groups than the model group. The model, positive control and CX3CR1 inhibitor groups showed increased mRNA and protein expression of chemokine C-X3-C motif ligand 1 (CX3CL1) and CX3CR1, concentration of sFkn, IL-1β and TNF-α, and size of cortical and cerebral infarctions while decreased expression of NGF and BDNF compared with the blank and sham groups. Compared with the model group, the mRNA and protein expression of CX3CL1 and CX3CR1, concentration of sFkn, IL-1β and TNF-α, and size of cortical and cerebral infarctions decreased while expression of NGF and BDNF increased in the positive control and CX3CR1 inhibitor groups. Thus, the study suggests that inhibition of fractalkine/CX3CR1 signaling pathway promotes the recovery of neurological functioning after the occurrence of an early ischemic stroke. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Rapid and long-term induction of effector immediate early genes (BDNF, Neuritin and Arc) in peri-infarct cortex and dentate gyrus after ischemic injury in rat brain

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Teilum, Maria; Wieloch, Tadeusz

    2007-01-01

    including cerebral cortex and hippocampus. Brain-derived neurotrophic factor (BDNF), Neuritin and Activity-regulated cytoskeleton-associated protein (Arc) belong to a subgroup of immediate early genes implicated in synaptic plasticity known as effector immediate early genes. Here, we investigated...... at 0-6 h of reperfusion for Neuritin and 0-12 h of reperfusion for Arc while BDNF was induced 0-9 h of reperfusion. Our study demonstrates a rapid and long-term activation of effector immediate early genes in distinct brain areas following ischemic injury in rat. Effector gene activation may be part...

  10. [Sensitivity and specificity of the cerebral blood flow reactions to acupuncture in the newborn infants presenting with hypoxic ischemic encephalopathy].

    Science.gov (United States)

    Filonenko, A V; Vasilenko, A M; Khan, M A

    2015-01-01

    To evaluate the effects of acupuncture integrated into the standard therapy, the condition of cerebral blood flow, and other syndromes associated with cerebral ischemia in the newborn infants. MATERIAL AND METHODS. A total of 131 pairs of puerperae and newborns with hypoxic ischemic encephalopathy were divided into four treatment groups. 34 children of the first group were given standard therapy (control), in the second group comprised of 33 mothers and children the standard treatment was supplemented by acupuncture, the third group included only 32 mothers given the acupuncture treatment alone, and the fourth group contained only 32 newborn infants treated by acupuncture. Each course of acupuncture treatment consisted of five sessions. Sensitivity and specificity of cerebral blood flow reactions were determined based on the results of the ROC-analysis and the area under the curve before and after the treatment. The treatment with the use of acupuncture greatly improved the cerebrospinal hemodynamics (p newborn babies. The high level of sensitivity (84.4-94.8%) associated with good specificity makes it possible to distinguish between the true positive and true negative cases. Acupuncture integrated into the treatment of "mother-baby" pairs presenting with hypoxic ischemic encephalopathy can be used to improve the initially low level of cerebral blood flow in neonates presenting with this condition.

  11. Cerebral Microbleeds Are Not Associated with Long-Term Cognitive Outcome in Patients with Transient Ischemic Attack or Minor Stroke

    NARCIS (Netherlands)

    Brundel, Manon; Kwa, Vincent I. H.; Bouvy, Willem H.; Algra, Ale; Kappelle, L. Jaap; Biessels, Geert Jan; Algra, A.; Kappelle, L. J.; Ramos, L. M. P.; de Schryver, E. L. L. M.; Kwa, V. I. H.; Jöbsis, G. J.; van der Sande, J. J.; Brouwers, P. J. A. M.; Roos, Y. E. B. M.; Stam, J.; Bakker, S. L. M.; Verbiest, H. B. C.; Schoonewille, W. J.; Linn, F. H. H.; Hertzberger, L. I.; van Gemert, H. M. A.; Berntsen, P. J. I. M.

    2014-01-01

    Background: Cerebral microbleeds have been related to cerebrovascular disease and dementia. They occur more frequently in patients with ischemic stroke than in the general population, but their relation to cognition in these patients is uncertain, particularly in the long run. We examined the

  12. Clinical significance of cerebral microbleeds on MRI : A comprehensive meta-analysis of risk of intracerebral hemorrhage, ischemic stroke, mortality, and dementia in cohort studies (vI)

    NARCIS (Netherlands)

    A. Charidimou (Andreas); S. Shams (Sara); J.R. Romero (Jose Rafael); J. Ding (Jie); R. Veltkamp (Roland); S. Horstmann (Solveig); G. Eiriksdottir (Gudny); M.A. van Buchem (Mark); V. Gudnason (Vilmundur); J.J. Himali (Jayandra); M.E. Gurol (Edip); A. Viswanathan (Anand); T. Imaizumi (Toshio); M.W. Vernooij (Meike); S. Seshadri (Sudha); S.M. Greenberg (Steven); O.R. Benavente (Oscar); L.J. Launer (Lenore); A. Shoamanesh (Ashkan)

    2018-01-01

    markdownabstract__Background:__ Cerebral microbleeds can confer a high risk of intracerebral hemorrhage, ischemic stroke, death and dementia, but estimated risks remain imprecise and often conflicting. We investigated the association between cerebral microbleeds presence and these outcomes in a

  13. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    Science.gov (United States)

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  14. Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat

    Directory of Open Access Journals (Sweden)

    Maddahi Aida

    2009-06-01

    Full Text Available Abstract Background Cerebral ischemia is usually characterized by a reduction in local blood flow and metabolism and by disruption of the blood-brain barrier in the infarct region. The formation of oedema and opening of the blood-brain barrier in stroke is associated with enhanced expression of metalloproteinase-9 (MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1. Results Here, we found an infarct volume of 24.8 ± 2% and a reduced neurological function after two hours of middle cerebral artery occlusion (MCAO, followed by 48 hours of recirculation in rat. Immunocytochemistry and confocal microscopy revealed enhanced expression of MMP-9, TIMP-1, and phosphorylated ERK1/2 in the smooth muscle cells of the ischemic MCA and associated intracerebral microvessels. The specific MEK1/2 inhibitor U0126, given intraperitoneal zero or 6 hours after the ischemic event, reduced the infarct volume significantly (11.8 ± 2% and 14.6 ± 3%, respectively; P Conclusion These data are the first to show that the elevated vascular expression of MMP-9 and TIMP-1, associated with breakdown of the blood-brain barrier following focal ischemia, are transcriptionally regulated via the MEK/ERK pathway.

  15. Activation-induced resetting of cerebral oxygen and glucose uptake in the rat

    DEFF Research Database (Denmark)

    Madsen, P L; Linde, R; Hasselbalch, S G

    1998-01-01

    In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose...... and oxygen in the awake rat. Global CBF was measured by the Kety-Schmidt technique, and the ratio between cerebral uptake rates for oxygen, glucose, and lactate was calculated from cerebral arterial-venous differences. During baseline conditions, rats were kept in a closed box designed to minimize...... interference. During baseline conditions CBF was 1.08 +/- 0.25 mL x g(-1) x minute(-1), and the cerebral oxygen to glucose uptake ratio was 5.5. Activation was induced by opening the sheltering box for 6 minutes. Activation increased CBF to 1.81 mL x g(-1) x minute(-1). During activation cerebral glucose...

  16. Stress test with adenosine in cerebral perfusion imaging for the diagnosis of ischemic cerebrovascular disease

    International Nuclear Information System (INIS)

    Yuan Gengbiao; Kuang Anren; Chen Xuehong; Li Xihuan; Feng Jianzhong

    2004-01-01

    Objective: This study purpose is to evaluate cerebrovascular response and reserve capacity (CVR, CVRC) by stress test with adenosine in cerebral perfusion imaging for the diagnosis of ischemic cerebrovascular diseases. Methods There were 25 patients suffered from transient ischemia attack and 16 patients suffered from occlusive cerebral artery in this study. The rest cerebral perfusion imaging was obtained 30 minutes post-injection of 99mTC-ethylene cysteinate dimmer. After 2-5 days, adenosine stress tests were performed. Adenosine (0.14 mg/kg min) was administered intravenously 3 minutes pre-injection of 99mTC-ECD.Under same condition, the rest and stress tests of cerebral perfusion imaging were performed. By visual and semiquantitative analysis, the results of the rest/stress imaging were divided into the following four patterns: A: The stress imaging showed an expand areas of hypoperfusion, asymmetry index (AI) was decreased; B: Rest imaging was normal but new hypoperfused areas appeared with AI index declining in stress test; C: The hypoperfused areas were decreased or disappeared in size with AI index increasing in stress test; D: No changes showed in cerebral perfusion imaging patterns and Al index between rest and stress tests. AI index was ratio of radio account of interest regions than average radio account of cerebella. Results It was found that A, B, C and D type were 24%,12%,56% and 8% respectively in the group of transient ischemia attack patients, and 31%,44%, 19% and 6% respectively in the group of occlusive cerebrovascular patients. In rest test, of 41 patients of cerebrovascular disease, there were 28 cases decreased of radio uptake, moreover in stress test, there were 38 case decreased of radio uptake, positive rate were 68.29% and 92.68% respectively. Compared to X±SD of AI index of rest/stress test, it is found to increasing and being significant statistics (p<0.01, Spass 8.0 statistics software). Conclusion: Adenosinal-induced vasodilatation

  17. Modulation of the major histocompatibility complex by neural stem cell-derived neurotrophic factors used for regenerative therapy in a rat model of stroke

    Directory of Open Access Journals (Sweden)

    Sun Chongran

    2010-08-01

    Full Text Available Abstract Background The relationship between functional improvements in ischemic rats given a neural stem cell (NSC transplant and the modulation of the class I major histocompatibility complex (MHC mediated by NSC-derived neurotrophins was investigated. Methods The levels of gene expression of nerve growth factor (NGF, brain-derived neurotropic factor (BDNF and neurotrophin-3 (NT-3 were assayed from cultures of cortical NSC from Sprague-Dawley rat E16 embryos. The levels of translated NGF in spent culture media from NSC cultures and the cerebral spinal fluid (CSF of rats with and without NGF injection or NSC transplant were also measured. Results We found a significant increase of NGF, BDNF and NT-3 transcripts and NGF proteins in both the NSC cultures and the CSF of the rats. The immunochemical staining for MHC in brain sections and the enzyme-linked immunosorbent assay of CSF were carried out in sham-operated rats and rats with surgically induced focal cerebral ischemia. These groups were further divided into animals that did and did not receive NGF administration or NSC transplant into the cisterna magna. Our results show an up-regulation of class I MHC in the ischemic rats with NGF and NSC administration. The extent of caspase-III immunoreactivity was comparable among three arms in the ischemic rats. Conclusion Readouts of somatosensory evoked potential and the trap channel test illustrated improvements in the neurological function of ischemic rats treated with NGF administration and NSC transplant.

  18. Enhancing hippocampal blood flow after cerebral ischemia and vasodilating basilar arteries: in vivo and in vitro neuroprotective effect of antihypertensive DDPH

    Directory of Open Access Journals (Sweden)

    Li Sun

    2015-01-01

    Full Text Available 1-(2,6-Dimethylphenoxy-2-(3,4-dimethoxyphenylethylamino-propane hydrochloride (DDPH is a novel antihypertensive agent based on structural characteristics of mexiletine and verapamine. We investigated the effect of DDPH on vasodilatation and neuroprotection in a rat model of cerebral ischemia in vivo, and a rabbit model of isolated basilar arteries in vitro. Our results show that DDPH (10 mg/kg significantly increased hippocampal blood flow in vivo in cerebral ischemic rats, and exerted dose-dependent relaxation of isolated basilar arteries contracted by histamine or KCl in the in vitro rabbit model. DDPH (3 × 10 -5 M also inhibited histamine-stimulated extracellular calcium influx and intracellular calcium release. Our findings suggest that DDPH has a vasodilative effect both in vivo and in vitro, which mediates a neuroprotective effect on ischemic nerve tissue.

  19. [Effect of Electroacupuncture on Cerebro-cortex Caspase-3 Expression and Blood Lipid Levels in Hyperlipemia Rats with Cerebral Ischemia].

    Science.gov (United States)

    Wang, Zhuo-Yu; Ma, Jia-Jia; Guan, Han-Yu; Tian, Yao; Ren, Xiu-Jun; Ma, Hui-Fang

    2017-04-25

    as Caspase-3 immunoactivity level were significantly increased in the model group( P 0.05). H.E. staining showed a reduction of the apoptotic cells and inflammatory cells in both EA group I and Ⅱ. Both EA and EA+MA interventions can improve neurological function in HL-CI rats,which may be related to their effects in adjusting the levels of serum lipids and down-regulating the expression of cell apoptosis-related Caspase-3 protein in the ischemic cortex. Moreover, the cerebral ischemia injury may be lightened by EA-lowering hyperlipemia first.

  20. Impact of treatment with melatonin on cerebral circulation in old rats

    Science.gov (United States)

    Dupuis, François; Régrigny, Olivier; Atkinson, Jeffrey; Limiñana, Patrick; Delagrange, Philippe; Scalbert, Elizabeth; Chillon, Jean-Marc

    2004-01-01

    Melatonin deprival in young rats induces alterations in cerebral arteriolar wall similar to those observed during aging: atrophy and a decrease in distensibility. In this study, we examined the effects of melatonin treatment on cerebral arteriolar structure and distensibility and on the lower limit of cerebral blood flow autoregulation (LLCBF) in old rats. We measured cerebral blood flow (arbitrary unit, laser Doppler, open skull preparation) prior to and during stepwise hypotension (SH) in adult (12/13 months) and old (24/25 months) IcoWI and WAG/Rij male rats. Old rats were untreated or treated for 3 months with melatonin (0.39 (IcoWi) and 0.44 (Wag/Rij) mg kg−1 day−1, drinking water). Stress–strain relationships were determined using cross-sectional area (CSA, μm2, histometry) and values of arteriolar internal diameter (μm) obtained during a second SH following arteriolar deactivation (EDTA, 67 mmol l−1). Aging induced (a) atrophy of the arteriolar wall in IcoWI (616±20 vs 500±27 μm2, P<0.05) but not in WAG/Rij rats (328±25 vs 341±20 μm2), (b) a decrease in arteriolar wall distensibility and (c) an increase in the LLCBF in both strains (67±10 mmHg in 12-month-old vs 95±6 mmHg in 24-month-old IcoWi, P<0.05 and 53±2 mmHg in 13-month-old vs 67±6 mmHg in 25-month-old WAG/Rij). Melatonin treatment induced in IcoWI and WAG/Rij rats (a) hypertrophy of the arteriolar wall (643±34 and 435±25 μm2, respectively), (b) an increase in arteriolar wall distensibility and (c) a decrease in the LLCBF (64±6 and 45±4 mmHg, respectively). Melatonin treatment of old rats induced hypertrophy of the arteriolar wall, prevented the age-linked decrease in cerebral arteriolar distensibility and decreased the LLCBF. PMID:14718260

  1. Effect of baicalin on the autophagy and Beclin-1 expression in rats with cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Xiang-Long Hong

    2016-07-01

    Full Text Available Objective: To explore the effect of baicalin on the autophagy and Beclin-1 expression in rats with cerebral ischemia, and the role of autophagy in the cerebral ischemia injury. Methods: The healthy male SD rats were randomized into the sham operation group, the ischemia model group, baicalin treatment group (100 mg/kg, and 3MA group (15 mg/kg, with 10 rats in each group. Transient focal cerebral ischemia injury model in rats was induced by occlusion of middle cerebral artery (MCA for 180 min. The rats were given the corresponding drugs through the tail veins 30 min before molding. Half of the specimens were used for TTC staining to analyze the cerebral infarction volume. The others were used to determine the expression of Beclin-1 in the brain tissues by Western-blot. Results: When compared with the ischemia model group, the cerebral infarction volume in 3MA group was significantly increased, while that in baicalin treatment group was significantly reduced, and the comparison among the groups was statistically significant. When compared with the ischemia model group, Beclin-1 expression level in baicalin treatment group was significantly elevated, while Beclin-1 expression level in 3MA group was significantly higher than that in the sham-operation group but lower than that in the ischemia model group. Conclusions: The autophagy level of brain tissues in normal rats is low. The cerebral ischemia can activate autophagy. The activated autophagy is probably involved in the neuroprotection of cerebral ischemia injury. Application of 3MA to inhibit the occurrence of autophagy can aggravate the cerebral injury. Baicalin can significantly improve the cerebral ischemia injury and promote the occurrence of autophagy, whose mechanism is probably associated with the up-regulation of Beclin-1 expression to promote the activation of type III PI3K signal transduction pathway.

  2. High dose infusion of activated protein C (rhAPC) fails to improve neuronal damage and cognitive deficit after global cerebral ischemia in rats.

    Science.gov (United States)

    Brückner, Melanie; Lasarzik, Irina; Jahn-Eimermacher, Antje; Peetz, Dirk; Werner, Christian; Engelhard, Kristin; Thal, Serge C

    2013-09-13

    Recent studies demonstrated anticoagulatory, antiinflammatory, antiapoptotic, and neuroprotective properties of activated protein C (APC) in rodent models of acute neurodegenerative diseases, suggesting APC as promising broad acting therapeutic agent. Unfortunately, continuous infusion of recombinant human APC (rhAPC) failed to improve brain damage following cardiac arrest in rats. The present study was designed to investigate the neuroprotective effect after global cerebral ischemia (GI) with an optimized infusion protocol. Rats were subjected to bilateral clip occlusion of the common carotid arteries (BCAO) and controlled hemorrhagic hypotension to 40 mm Hg for 14 min and a subsequent 5h-infusion of rhAPC (2mg/kg bolus+6 mg/kg/h continuous IV) or vehicle (0.9% NaCl). The dosage was calculated to maintain plasma hAPC activity at 150%. Cerebral inflammation, apoptosis and neuronal survival was determined at day 10. rhAPC infusion did not influence cortical cerebral perfusion during reperfusion and failed to reduce neuronal cell loss, microglia activation, and caspase 3 activity. Even an optimized rhAPC infusion protocol designed to maintain a high level of APC plasma activity failed to improve the sequels following GI. Despite positive reports about protective effects of APC following, e.g., ischemic stroke, the present study supports the notion that infusion of APC during the early reperfusion phase does not result in sustained neuroprotection and fails to improve outcome after global cerebral ischemia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Is elevated SUA associated with a worse outcome in young Chinese patients with acute cerebral ischemic stroke?

    Directory of Open Access Journals (Sweden)

    Zhang Bin

    2010-09-01

    Full Text Available Abstract Background Elevated serum uric acid (SUA levels can enhance its antioxidant prosperities and reduce the occurrence of cerebral infarction. Significantly elevated SUA levels have been associated with a better prognosis in patients with cerebral infarction; however, the results from some studies on the relationship between SUA and the prognosis of patients with cerebral infarction remain controversial. Methods We analyzed the relationship between SUA and clinical prognosis of 585 young Chinese adults with acute ischemic stroke as determined by the modified Rankin Scale at discharge. Using multivariate logistic regression modeling, we explore the relationship between SUA levels and patient's clinical prognosis. Results Lower SUA levels at time of admission were observed more frequently in the lowest quintile for patients with severe stroke (P = 0.02. Patients with cerebral infarction patients caused by small-vessel blockage had higher SUA concentrations (P = 0.01 and the lower mRS scores (P Conclusion Elevated SUA is an independent predictor for good clinical outcome of acute cerebral infarction among young adults.

  4. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    Science.gov (United States)

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS Improves Functional Recovery by Enhancing Neurogenesis and Activating BDNF/TrkB Signaling in Ischemic Rats

    Directory of Open Access Journals (Sweden)

    Jing Luo

    2017-02-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS has rapidly become an attractive therapeutic approach for stroke. However, the mechanisms underlying this remain elusive. This study aimed to investigate whether high-frequency rTMS improves functional recovery mediated by enhanced neurogenesis and activation of brain-derived neurotrophic factor (BDNF/tropomyosin-related kinase B (TrkB pathway and to compare the effect of conventional 20 Hz rTMS and intermittent theta burst stimulation (iTBS on ischemic rats. Rats after rTMS were sacrificed seven and 14 days after middle cerebral artery occlusion (MCAO, following evaluation of neurological function. Neurogenesis was measured using specific markers: Ki67, Nestin, doublecortin (DCX, NeuN and glial fibrillary acidic protein (GFAP, and the expression levels of BDNF were visualized by Western blotting and RT-PCR analysis. Both high-frequency rTMS methods significantly improved neurological function and reduced infarct volume. Moreover, 20 Hz rTMS and iTBS significantly promoted neurogenesis, shown by an increase of Ki67/DCX, Ki67/Nestin, and Ki67/NeuN-positive cells in the peri-infarct striatum. These beneficial effects were accompanied by elevated protein levels of BDNF and phosphorylated-TrkB. In conclusion, high-frequency rTMS improves functional recovery possibly by enhancing neurogenesis and activating BDNF/TrkB signaling pathway and conventional 20 Hz rTMS is better than iTBS at enhancing neurogenesis in ischemic rats.

  6. Human Recombinant Peptide Sponge Enables Novel, Less Invasive Cell Therapy for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Michiyuki Miyamoto

    2018-01-01

    Full Text Available Bone marrow stromal cell (BMSC transplantation has the therapeutic potential for ischemic stroke. However, it is unclear which delivery routes would yield both safety and maximal therapeutic benefits. We assessed whether a novel recombinant peptide (RCP sponge, that resembles human collagen, could act as a less invasive and beneficial scaffold in cell therapy for ischemic stroke. BMSCs from green fluorescent protein-transgenic rats were cultured and Sprague–Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAo. A BMSC-RCP sponge construct was transplanted onto the ipsilateral intact neocortex 7 days after MCAo. A BMSC suspension or vehicle was transplanted into the ipsilateral striatum. Rat motor function was serially evaluated and histological analysis was performed 5 weeks after transplantation. The results showed that BMSCs could proliferate well in the RCP sponge and the BMSC-RCP sponge significantly promoted functional recovery, compared with the vehicle group. Histological analysis revealed that the RCP sponge provoked few inflammatory reactions in the host brain. Moreover, some BMSCs migrated to the peri-infarct area and differentiated into neurons in the BMSC-RCP sponge group. These findings suggest that the RCP sponge may be a promising candidate for animal protein-free scaffolds in cell therapy for ischemic stroke in humans.

  7. Computer-aided diagnosis of acute ischemic stroke based on cerebral hypoperfusion using 4D CT angiography

    Science.gov (United States)

    Charbonnier, Jean-Paul; Smit, Ewoud J.; Viergever, Max A.; Velthuis, Birgitta K.; Vos, Pieter C.

    2013-02-01

    The presence of collateral blood flow is found to be a strong predictor of patient outcome after acute ischemic stroke. Collateral blood flow is defined as an alternative way to provide oxygenated blood to ischemic cerebral tissue. Assessment of collateral blood supply is currently performed by visual inspection of a Computed Tomography Angiogram (CTA) which introduces inter-observer variability and depends on the grading scale. Furthermore, variations in the arterial contrast arrival time may lead to underestimation of collateral blood supply in a CTA which exerts a negative influence on the prediction of patient outcome. In this study, the feasibility of a Computer-aided Diagnosis system is investigated capable of objectively predicting patient outcome. We present a novel automatic method for quantitative assessment of cerebral hypoperfusion in timing-invariant (i.e. delay insensitive) CTA (TI-CTA). The proposed Vessel Density Symmetry algorithm automatically generates descriptive maps based on hemispheric asymmetry of blood vessels. Intensity and symmetry based features are extracted from these descriptive maps and subjected to a best-first-search feature selection. Linear Discriminant Analysis is performed to combine selected features into a likelihood of good patient outcome. Receiver operating characteristic (ROC) analysis is conducted to evaluate the diagnostic performance of the CAD by leave-one- patient-out cross validation. A Positive Predicting Value of 1 was obtained at a sensitivity of 25% with an area under the ROC-curve of 0.86. The results show that the CAD is feasible to objectively predict patient outcome. The presented CAD could make an important contribution to acute ischemic stroke diagnosis and treatment.

  8. Neuroprotective effect of cathodal transcranial direct current stimulation in a rat stroke model.

    Science.gov (United States)

    Notturno, Francesca; Pace, Marta; Zappasodi, Filippo; Cam, Etrugul; Bassetti, Claudio L; Uncini, Antonino

    2014-07-15

    Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15 min on and 15 min off) starting 45 min after middle cerebral artery occlusion and lasting 4 h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6 h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans. Copyright © 2014. Published by Elsevier B.V.

  9. Neurotherapeutic activity of the recombinant heat shock protein Hsp70 in a model of focal cerebral ischemia in rats

    Directory of Open Access Journals (Sweden)

    Shevtsov MA

    2014-05-01

    Full Text Available Maxim A Shevtsov,1,2 Boris P Nikolaev,3 Ludmila Y Yakovleva,3 Anatolii V Dobrodumov,4 Anastasiy S Dayneko,5 Alexey A Shmonin,5,6 Timur D Vlasov,5 Elena V Melnikova,5 Alexander D Vilisov,4,5 Irina V Guzhova,1 Alexander M Ischenko,3 Anastasiya L Mikhrina,7 Oleg V Galibin,5 Igor V Yakovenko,2 Boris A Margulis1 1Institute of Cytology of the Russian Academy of Sciences (RAS, St Petersburg, Russia; 2AL Polenov Russian Research Scientific Institute of Neurosurgery, St Petersburg, Russia; 3Research Institute of Highly Pure Biopreparations, St Petersburg, Russia; 4Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS, St Petersburg, Russia; 5First St Petersburg IP Pavlov State Medical University, St Petersburg, Russia; 6Federal Almazov Medical Research Centre, St Petersburg, Russia; 7IM Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (RAS, St Petersburg, Russia Abstract: Recombinant 70 kDa heat shock protein (Hsp70 is an antiapoptotic protein that has a cell protective activity in stress stimuli and thus could be a useful therapeutic agent in the management of patients with acute ischemic stroke. The neuroprotective and neurotherapeutic activity of recombinant Hsp70 was explored in a model of experimental stroke in rats. Ischemia was produced by the occlusion of the middle cerebral artery for 45 minutes. To assess its neuroprotective capacity, Hsp70, at various concentrations, was intravenously injected 20 minutes prior to ischemia. Forty-eight hours after ischemia, rats were sacrificed and brain tissue sections were stained with 2% triphenyl tetrazolium chloride. Preliminary treatment with Hsp70 significantly reduced the ischemic zone (optimal response at 2.5 mg/kg. To assess Hsp70’s neurotherapeutic activity, we intravenously administered Hsp70 via the tail vein 2 hours after reperfusion (2 hours and 45 minutes after ischemia. Rats were then kept alive for 72 hours. The

  10. Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Paulson, O B; Lassen, N A

    1986-01-01

    Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan....... They showed in the acute phase (Days 1-3) very large low-flow areas, larger than the hypodense areas seen on the CT scan. The cerebral vasoconstrictor and vasodilator capacity was tested in the acute phase following aminophylline and acetazolamide, respectively. A preserved but reduced reactivity was seen...... had occlusion of the relevant internal carotid artery. In all 6 patients, CBF studies at 2 and 6 months resembled the acute phase, showing large areas with reduced flow. At the 6 months follow-up, the vasodilatory stress test was repeated, and all but one showed a preserved but reduced vasoreactivity...

  11. Chronic Exposure to Subtherapeutic Antibiotics Aggravates Ischemic Stroke Outcome in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Dong

    2017-10-01

    Full Text Available Subtherapeutic antibiotics have been widely used in agriculture since the 1950s, which can be accumulated in human body through various approaches and may have long-term consequences. However, there is limited information about the link between chronic subtherapeutic antibiotic exposure and the outcome of ischemic brain injury. Here we showed that long-term treatment with subtherapeutic chlortetracycline, penicillin or vancomycin, which were widely used in agriculture approved by US Food and Drug Administration (FDA, could impair EPC functions, reduce ischemic brain angiogenesis and aggravate cerebral ischemic injury and long-term stroke outcomes in mice. In addition, transplantated EPCs from chronic antibiotic-treated mice showed a lower therapeutic effect on cerebral ischemic injury reduction and local angiogenesis promotion compared to those from control mice, and EPCs from the donor animals could integrate into the recipient ischemic brain in mice. Furthermore, transplanted EPCs might exert paracrine effects on cerebral ischemic injury reduction in mice, which could be impaired by chronic antibiotic exposure. In conclusion, chronic subtherapeutic antibiotic exposure aggravated cerebral ischemic injury in mice, which might be partly attributed to the impairment of both EPC-mediated angiogenesis and EPCs' paracrine effects. These findings reveal a previously unrecognized impact of chronic subtherapeutic antibiotic exposure on ischemic injury.

  12. Differential Temporal Evolution Patterns in Brain Temperature in Different Ischemic Tissues in a Monkey Model of Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Zhihua Sun

    2012-01-01

    Full Text Available Brain temperature is elevated in acute ischemic stroke, especially in the ischemic penumbra (IP. We attempted to investigate the dynamic evolution of brain temperature in different ischemic regions in a monkey model of middle cerebral artery occlusion. The brain temperature of different ischemic regions was measured with proton magnetic resonance spectroscopy (1H MRS, and the evolution processes of brain temperature were compared among different ischemic regions. We found that the normal (baseline brain temperature of the monkey brain was 37.16°C. In the artery occlusion stage, the mean brain temperature of ischemic tissue was 1.16°C higher than the baseline; however, this increase was region dependent, with 1.72°C in the IP, 1.08°C in the infarct core, and 0.62°C in the oligemic region. After recanalization, the brain temperature of the infarct core showed a pattern of an initial decrease accompanied by a subsequent increase. However, the brain temperature of the IP and oligemic region showed a monotonously and slowly decreased pattern. Our study suggests that in vivo measurement of brain temperature could help to identify whether ischemic tissue survives.

  13. Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats.

    Science.gov (United States)

    Wang, Qin; Dai, Peng; Bao, Han; Liang, Ping; Wang, Wei; Xing, An; Sun, Jianbin

    2017-01-01

    Stroke is one of the leading causes of mortality worldwide. Protective agents that can diminish injuries caused by cerebral ischemia-reperfusion (I/R) are important in alleviating the harmful outcomes of stroke. The aim of the present study was to investigate the protective role of sanguinarine in cerebral I/R injury. A rat middle cerebral artery occlusion model was used to assess the clinical effect of sanguinarine, and inflammatory cytokines in the serum were detected by ELISA. Western blotting was performed to examine the change in levels of apoptosis-associated proteins in the injured brains. The results suggested that sanguinarine, an anti-inflammatory agent derived from the roots of Sanguinaria canadensis , improved the state of cerebral ischemia in a rat model. The data demonstrated that when rats were treated with sanguinarine prior to middle cerebral artery occlusion, the infarct volume was reduced significantly. The inflammatory factors tumor necrosis factor-α, interleukin (IL)-6 and IL-1β were measured in sanguinarine and vehicle-treated groups using an enzyme-linked immunosorbent assay, and the expression levels of the three factors were significantly reduced following treatment with sanguinarine (Pprotective effect in cerebral ischemia, and that this effect is associated with the anti-inflammatory and anti-apoptotic properties of sanguinarine.

  14. Impact of perinatal systemic hypoxic-ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic-ischemic encephalopathy in early preterm newborns.

    Directory of Open Access Journals (Sweden)

    Yuejun Huang

    Full Text Available In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

  15. Impact of Perinatal Systemic Hypoxic–Ischemic Injury on the Brain of Male Offspring Rats: An Improved Model of Neonatal Hypoxic–Ischemic Encephalopathy in Early Preterm Newborns

    Science.gov (United States)

    Xu, Hongwu; Wu, Weizhao; Lai, Xiulan; Ho, Guyu; Ma, Lian; Chen, Yunbin

    2013-01-01

    In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE) in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND) 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions. PMID:24324800

  16. Protective Effect Of Bosentan In Experimental Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Eser Ataş

    2013-02-01

    Full Text Available OBJECTIVE: In cerebral ischemia, there are many factors that start the events leading to cell death. These factors contain free radical production, excitotoxicity, sodium and calcium flow disruption, enzymatic changes, stimulation of the inflamatuar process, the activation of platelets and leukocytes, delayed coagulation, endothelial dysfunction and endothelin (ET release. Bosentan is the competitive antagonist of endothelin receptors; ETA and ETB. The aim of this study is to determine whether the protective effects of bosentan in experimental cerebral ischemia reperfusion injury. MATERIAL and METHODS: In this study, after ischemia-reperfusion procedure, bosentan molecule was regularly given to rats for 5 days. The brain tissues of decapitated rats were histopathologically examined. The levels of oxidant and antioxidant were determined in these brain tissues. RESULTS: It was observed that antioxidant levels and histopathological examinations were in rats given bosentan better than control group rats. CONCLUSION: In conclusion, this study has showed that bosentan may be an agent which could reduce negative effects resulting from neuronal death associated with ischemic stroke.

  17. Clinical application of dynamic digital subtraction angiography in cerebrovascular ischemic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Yoshifumi; Nonaka, Nobuhito; Matsukado, Yasuhiko; Takahashi, Mutsumasa

    1987-09-01

    Dynamic intravenous digital subtraction angiography (IV-DSA) was performed in 37 patients with cerebrovascular ischemic diseases. The time density curve of IV-DSA was analysed, and peak time, mean transit time and mode of transit time were obtained in each patient. On the basis of these values, cerebral perfusion was classified into low, normal and high perfusion patterns. Normal perfusion pattern was noted in 40% of patients with transient ischemic attack (TIA) and 7 % of patients with cerebral infarction. Low perfusion pattern was observed in 60 % of patients with TIA and 87 % of patients with cerebral infarction. High perfusion pattern was encountered only in 7 % of patients with cerebral infarction. In ischemic patients with moyamoya disease, extremely prolonged cerebral circulation time was evidenced by the presence of a flat or uphill type of the time density curve. This finding well correlated with decreased cerebral blood flow on single photon emission tomography. These findings suggest that the analysis of dynamic DSA is very important and useful in the clinical evaluation of patients with cerebrovascular ischemic diseases.

  18. Protective effect of naringenin in experimental ischemic stroke: down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression.

    Science.gov (United States)

    Bai, Xue; Zhang, Xiangjian; Chen, Linyu; Zhang, Jian; Zhang, Lan; Zhao, Xumeng; Zhao, Ting; Zhao, Yuan

    2014-08-01

    Inflammatory damage plays a pivotal, mainly detrimental role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Naringenin (NG) has gained growing appreciation for its beneficial biological effects through its anti-inflammatory property. Whether this protective effect applies to cerebral ischemic injury, we therefore investigate the potential neuroprotective role of NG and the underlying mechanisms. Focal cerebral ischemia in male Sprague-Dawley rats was induced by permanent middle cerebral artery occlusion (pMCAO) and NG was pre-administered intragastrically once daily for four consecutive days before surgery. Neurological deficit, brain water content and infarct volume were measured at 24 h after stroke. Immunohistochemistry, Western blot and RT-qPCR were used to explore the anti-inflammatory potential of NG in the regulation of NOD2, RIP2 and NF-κB in ischemic cerebral cortex. Additionally, the activities of MMP-9 and claudin-5 were analyzed to detect NG's influence on blood-brain barrier. Compared with pMCAO and Vehicle groups, NG noticeably improved neurological deficit, decreased infarct volume and edema at 24 h after ischemic insult. Consistent with these results, our data also indicated that NG significantly downregulated the expression of NOD2, RIP2, NF-κB and MMP-9, and upregulated the expression of claudin-5 (P < 0.05). The results provided a neuroprotective profile of NG in cerebral ischemia, this effect was likely exerted by down-regulated NOD2, RIP2, NF-κB, MMP-9 and up-regulated claudin-5 expression.

  19. 99mTc-HMPAO Regional Cerebral Blood Flow SPECT in Transient Ischemic Attacks

    International Nuclear Information System (INIS)

    Ahn, Myeong Im; Park, Young Ha; Lee, Sung Yong; Chung, Soo Kyo; Kim, Jong Woo; Bahk, Yong Whee

    1989-01-01

    Transient ischemic attacks (TJAs) is a syndrome resulting from brain ischemia lasting less than 24 hours. The mechanisms of TIAs may be similar to those of cerebral embolism and thrombosis, and thus TIAs may be followed by cerebral infarction. Despite the availability of CT scanning, the diagnosis and management of TIAs continue to be difficult. Recently SPECT has been advocated as a diagnostic imaging modality. We performed 99m Tc-HMPAO regional cerebral blood flow (rCRF) SPECT in 24 patients with the clinical diagnosis of TIAs to assess its ability to detect early changes of rCBF, and determine the diagnostic value. Ten men and fourteen women with an average of 51 years (range; 27-74 years) were included. All but 8 patients had normal brain CT prior to SPECT. The two patients had moderate degree of brain atrophy and the 6 patients nonspecific calcifications. Eighteen of the 24 patients had abnormal 99m Tc-HMPAO rCBF SPECT. Fifteen had unilateral involvement and the other three had bilateral involvements. Seventy-five percents of the defects were found in the left cerebral hemisphere. According to the distribution of the lesions (total number: 34 lesions), fourteen were in the parietal, eight in the temporal, and the remainders were elsewhere. 99m Tc-HMPAO rCHF SPECT is sensitive in detecting rCRF abnormalities in patients with TIAs, and represent the most accurate diagnostic tool available in the diagnosis of TIAs

  20. Lower Serum Caveolin-1 Is Associated with Cerebral Microbleeds in Patients with Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-01-01

    Full Text Available Caveolin-1 (Cav-1 plays pivotal roles in the endothelial damage following stroke. The present study aimed to investigate whether serum Cav-1 level is associated with the presence of cerebral small vessel disease (cSVD in patients with acute ischemic stroke. To this end, 156 patients were consecutively enrolled. Cranial magnetic resonance imaging was analyzed to determine the surrogates of cSVD, including cerebral microbleeds (CMBs, silent lacunar infarcts (SLIs, and white matter hyperintensities (WMHs. After adjusting for potential confounders, patients with low Cav-1 level had a higher risk of CMBs than patients with high Cav-1 level (OR: 4.05, 95% CI: 1.77–9.30. However, there was no relationship between Cav-1 and the presence of SLIs or WMHs. When CMBs were stratified by location and number, a similar association was found in patients with deep or infratentorial CMBs (OR: 4.04, 95% CI: 1.59–10.25 and with multiple CMBs (OR: 3.18, 95% CI: 1.16–8.72. These results suggest lower serum Cav-1 levels may be associated with CMBs, especially those that are multiple and located in deep brain or infratentorial structures, in patients with acute ischemic stroke. Cav-1 may be involved in the pathophysiology of CMBs, and may act as a potential target for treating cSVD.

  1. Pharmacological and molecular comparison of K(ATP) channels in rat basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Ploug, Kenneth Beri; Edvinsson, Lars; Olesen, Jes

    2006-01-01

    , we studied the possible involvement of endothelial K(ATP) channels by pressurized arteriography after luminal administration of synthetic K(ATP) channel openers to rat basilar and middle cerebral arteries. Furthermore, we examined the mRNA and protein expression profile of K(ATP) channels to rat...... basilar and middle cerebral arteries using quantitative real-time PCR (Polymerase Chain Reaction) and Western blotting, respectively. In the perfusion system, we found no significant responses after luminal application of three K(ATP) channel openers to rat basilar and middle cerebral arteries...

  2. TIA model is attainable in Wistar rats by intraluminal occlusion of the MCA for 10min or shorter.

    Science.gov (United States)

    Durukan Tolvanen, A; Tatlisumak, E; Pedrono, E; Abo-Ramadan, U; Tatlisumak, T

    2017-05-15

    Transient ischemic attack (TIA) has received only little attention in the experimental research field. Recently, we introduced a TIA model for mice, and here we set similar principles for simulating this human condition in Wistar rats. In the model: 1) transient nature of the event is ensured, and 2) 24h after the event animals are free from any sensorimotor deficit and from any detectable lesion by magnetic resonance imaging (MRI). Animals experienced varying durations of ischemia (5, 10, 12.5, 15, 25, and 30min, n=6-8pergroup) by intraluminal middle cerebral artery occlusion (MCAO). Ischemia severity and reperfusion rates were controlled by cerebral blood flow measurements. Sensorimotor neurological evaluations and MRI at 24h differentiated between TIA and ischemic stroke. Hematoxylin and eosin staining and apoptotic cell counts revealed pathological correlates of the event. We found that already 12.5min of ischemia was long enough to induce ischemic stroke in Wistar rats. Ten min or shorter durations induced neither gross neurological deficits nor infarcts visible on MRI, but histologically caused selective neuronal necrosis. A separate group of animals with 10min of ischemia followed up to 1week after reperfusion remained free of infarction and any MRI signal change. Thus, 10min or shorter focal cerebral ischemia induced by intraluminal MCAO in Wistar rats provides a clinically relevant TIA the rat. This model is useful for studying molecular correlates of TIA. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Regional cerebral blood flow before and after vascular surgery in patients with transient ischemic attacks with 133-xenon inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Hemmingsen, Ralf; Lindewald, H

    1982-01-01

    Cerebral blood flow CBF was studied in 14 patients with transient ischemic attacks TIA and arteriosclerotic neck vessel disease. CBF was measured by a rapidly rotating single photon emission computerized tomograph using Xenon-133 inhalation. This method yields images of 3 brain slices depicting CBF...... with no abnormality on the CT-scan. The abnormal blood flow pattern was found to be unchanged after clinically successful reconstructive vascular surgery. This suggests the presence of irreversible ischemic tissue damage without gross emollition (incomplete infarction). It is concluded, that TIAs are often harmful...... events, as no less than 9 of the 14 patients studied had evidence of complete and/or incomplete infarction. Thorough examination and rational therapy should be instituted as soon as possible to prevent further ischemic lesions....

  4. Purine Metabolism in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Ye. V. Oreshnikov

    2008-01-01

    Full Text Available Objective: to study the specific features of purine metabolism in clinically significant acute cerebral ischemia. Subjects and materials. Three hundred and fifty patients with the acutest cerebral ischemic stroke were examined. The parameters of gas and electrolyte composition, acid-base balance, the levels of malonic dialdehyde, adenine, guanine, hypox-anthine, xanthine, and uric acid, and the activity of xanthine oxidase were determined in arterial and venous bloods and spinal fluid. Results. In ischemic stroke, hyperuricemia reflects the severity of cerebral metabolic disturbances, hemodynamic instability, hypercoagulation susceptiility, and the extent of neurological deficit. In ischemic stroke, hyperuri-corachia is accompanied by the higher spinal fluid levels of adenine, guanine, hypoxanthine, and xanthine and it is an indirect indicator of respiratory disorders of central genesis, systemic acidosis, hypercoagulation susceptibility, free radical oxidation activation, the intensity of a stressor response to cerebral ischemia, cerebral metabolic disturbances, the depth of reduced consciousness, and the severity of neurological deficit. Conclusion. The high venous blood activity of xanthine oxidase in ischemic stroke is associated with the better neurological parameters in all follow-up periods, the better early functional outcome, and lower mortality rates. Key words: hyperuricemia, stroke, xanthine oxidase, uric acid, cerebral ischemia.

  5. High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats

    International Nuclear Information System (INIS)

    Landim, M.B.P.; Dourado, P.M.M.; Casella-Filho, A.; Chagas, A.C.P.; Luz, P.L. da

    2013-01-01

    A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs 0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats

  6. High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Landim, M.B.P.; Dourado, P.M.M.; Casella-Filho, A.; Chagas, A.C.P.; Luz, P.L. da [Unidade de Aterosclerose, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-05-10

    A low concentration of nitric oxide associated with a high concentration of asymmetric dimethylarginine (ADMA) can explain the lack of ischemic cardioprotection observed in the presence of hypercholesterolemia. The objective of the present study was to evaluate the effect of hypercholesterolemia on ischemic pre- and postconditioning and its correlation with plasma concentrations of ADMA. Male Wistar rats (6-8 weeks old) fed a 2% cholesterol diet (n = 21) for 8 weeks were compared to controls (n = 25) and were subjected to experimental myocardial infarction and reperfusion, with ischemic pre- and postconditioning. Total cholesterol and ADMA were measured in plasma before the experimental infarct and the infarct area was quantified. Weight, total cholesterol and plasma ADMA (means ± SE; 1.20 ± 0.06, 1.27 ± 0.08 and 1.20 ± 0.08 vs 0.97 ± 0.04, 0.93 ± 0.05 and 0.97 ± 0.04 µM) were higher in animals on the hypercholesterolemic diet than in controls, respectively. Cardioprotection did not reduce infarct size in the hypercholesterolemic animals (pre: 13.55% and post: 8% compared to 7.95% observed in the group subjected only to ischemia and reperfusion), whereas infarct size was reduced in the animals on a normocholesterolemic diet (pre: 8.25% and post: 6.10% compared to 12.31%). Hypercholesterolemia elevated ADMA and eliminated the cardioprotective effects of ischemic pre- and postconditioning in rats.

  7. Cerebral ammonia metabolism in hyperammonemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, A J; Mora, S N; Cruz, N F; Gelbard, A S

    1985-06-01

    The short-term metabolic fate of blood-borne (/sup 13/N)ammonia was determined in the brains of chronically (8- or 14-week portacaval-shunted rats) or acutely (urease-treated) hyperammonemic rats. Using a freeze-blowing technique it was shown that the overwhelming route for metabolism of blood-borne (/sup 13/N)ammonia in normal, chronically hyperammonemic and acutely hyperammonemic rat brain was incorporation into glutamine (amide). However, the rate of turnover of (/sup 13/N)ammonia to L-(amide-/sup 13/N)glutamine was slower in the hyperammonemic rat brain than in the normal rat brain. The activities of several enzymes involved in cerebral ammonia and glutamate metabolism were also measured in the brains of 14-week portacaval-shunted rats. The rat brain appears to have little capacity to adapt to chronic hyperammonemia because there were no differences in activity compared with those of weight-matched controls for the following brain enzymes involved in glutamate/ammonia metabolism: glutamine synthetase, glutamate dehydrogenase, aspartate aminotransferase, glutamine transaminase, glutaminase, and glutamate decarboxylase. The present findings are discussed in the context of the known deleterious effects on the CNS of high ammonia levels in a variety of diseases.

  8. Magnetic resonance imaging in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Kouichi [Mito Red Cross Hospital (Japan)

    2000-01-01

    This paper summarizes current MRI technology used in the diagnosis of acute cerebral infarction and discusses tasks for further improvement of MRI technology. First, the principles and methods of MRI imaging are described in terms of 1) diffusion-weighted imaging (DWI) and ADC maps, 2) perfusion imaging, 3) the fluid-attenuated inversion recovery (FLAIR) method, and 4) MR angiography (MRA). Then, the actual use of MRI in the early phase of ischemic cerebrovascular disorders is discussed focusing on general MRI procedures, cases in which an ischemic lesion dose not yield a high signal with DWI in the acute phase, and chronological changes in DWI signal strength and ADC. Third, chronological changes in acute cerebrovascular disorder in an animal model of local cerebral ischemia are summarized in terms of expansion of reduced ADC areas and ischemic penumbras in the acute phase of cerebral ischemia. Finally, chronological changes in acute ischemic disorders in patients with cerebrovascular disorders are assessed by reviewing the development of reduced ADC and expansion of DWI lesions. Whether MRI can identify cerebral tissues that can be rescued by the reperfusion method by examining the mismatchs between perfusion images and DWI, relative CBV, and ADC is also discussed. (K.H.)

  9. Region-specific effects on brain metabolites of hypoxia and hyperoxia overlaid on cerebral ischemia in young and old rats: a quantitative proton magnetic resonance spectroscopy study

    Directory of Open Access Journals (Sweden)

    Giuliani Patricia

    2010-02-01

    Full Text Available Abstract Background Both hypoxia and hyperoxia, deregulating the oxidative balance, may play a role in the pathology of neurodegenerative disorders underlain by cerebral ischemia. In the present study, quantitative proton magnetic resonance spectroscopy was used to evaluate regional metabolic alterations, following a 24-hour hypoxic or hyperoxic exposure on the background of ischemic brain insult, in two contrasting age-groups of rats: young - 3 months old and aged - 24 months old. Methods Cerebral ischemia was induced by ligation of the right common carotid artery. Concentrations of eight metabolites (alanine, choline-containing compounds, total creatine, γ-aminobutyric acid, glutamate, lactate, myo-inositol and N-acetylaspartate were quantified from extracts in three different brain regions (fronto-parietal and occipital cortices and the hippocampus from both hemispheres. Results In the control normoxic condition, there were significant increases in lactate and myo-inositol concentrations in the hippocampus of the aged rats, compared with the respective values in the young ones. In the ischemia-hypoxia condition, the most prevalent changes in the brain metabolites were found in the hippocampal regions of both young and aged rats; but the effects were more evident in the aged animals. The ischemia-hyperoxia procedure caused less dedicated changes in the brain metabolites, which may reflect more limited tissue damage. Conclusions We conclude that the hippocampus turns out to be particularly susceptible to hypoxia overlaid on cerebral ischemia and that old age further increases this susceptibility.

  10. Comparative studies of D2 receptors and cerebral blood flow in hemi-Parkinsonism rats

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    2000-01-01

    Objective: To study the relationship between dopamine D 2 receptors and cerebral blood flow in hemi-Parkinsonism rats. Methods: Hemi-Parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra and ventral tegmental area, apomorphine (Apo) which could induce the successful model rat to rotate toward the intact side was used to select the rat models, 125 I-IBZM in vivo autoradiography and 99 Tc m -HMPAO regional cerebral biodistribution analysis were used to study D 2 receptors and cerebral blood flow. The HPLC-ECD was used to measure striatum DA and its metabolite content . Results: the lesioned side striatum DA and its metabolites homovanillic acid (HVA) 3,4-dihyroxy-phenylacetic acid (DOPAC) reduced significantly than that of the intact side and pseudo-operated group, striatum/cerebellum 125 I-IBZM uptake ratio was 8.04 +- 0.71 in lesioned side of hemi-Parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (P 0.05). Conclusions: the 6-OH-DA lesioned side DA content decreased significantly and thus induced a compensative up-regulation of striatum D 2 receptor binding sites in hemi-Parkinsonism rats, which show good correlation with rotation behavior induced by Apo. Comparing with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-Parkinsonism

  11. Subarachnoid hemorrhage enhances endothelin receptor expression and function in rat cerebral arteries

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Hoel, Natalie Løvland; Zhou, Mingfang

    2003-01-01

    OBJECTIVE: Inspired by organ culture-induced changes in the vascular endothelin (ET) receptor population, we investigated whether such changes occur in cerebral arteries in a rat subarachnoid hemorrhage (SAH) model. METHODS: SAH was induced with injection of 250 microl of blood into the prechiasm......OBJECTIVE: Inspired by organ culture-induced changes in the vascular endothelin (ET) receptor population, we investigated whether such changes occur in cerebral arteries in a rat subarachnoid hemorrhage (SAH) model. METHODS: SAH was induced with injection of 250 microl of blood...... into the prechiasmatic cistern. After 2 days, the middle cerebral artery, basilar artery, and posterior communicating artery were harvested. Pharmacological studies were performed in vitro, and levels of messenger ribonucleic acid (mRNA) were quantified in real-time reverse transcriptase-polymerase chain reaction assays....... RESULTS: In the middle cerebral artery and basilar artery from rats with induced SAH, enhanced biphasic responses to ET-1 were observed. The -log(50% effective concentration) value for the high-affinity phase was approximately 12, compared with approximately 8.5 for sham-operated animals...

  12. Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.

    Science.gov (United States)

    Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin

    2013-12-15

    Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (ppills had protective effects on focal cerebral ischemia rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Ilexonin A Promotes Neuronal Proliferation and Regeneration via Activation of the Canonical Wnt Signaling Pathway after Cerebral Ischemia Reperfusion in Rats

    Directory of Open Access Journals (Sweden)

    Bi-Qin Zhang

    2016-01-01

    Full Text Available Aims. Ilexonin A (IA, a component of the Chinese medicine Ilex pubescens, has been shown to be neuroprotective during ischemic injury. However, the specific mechanism underlying this neuroprotective effect remains unclear. Methods. In this study, we employed a combination of immunofluorescence staining, western blotting, RT-PCR, and behavioral tests, to investigate the molecular mechanisms involved in IA regulation of neuronal proliferation and regeneration after cerebral ischemia and reperfusion in rodents. Results. Increases in β-catenin protein and LEF1 mRNA and decreases in GSK3β protein and Axin mRNA observed in IA-treated compared to control rodents implicated the canonical Wnt pathway as a key signaling mechanism activated by IA treatment. Furthermore, rodents in the IA treatment group showed less neurologic impairment and a corresponding increase in the number of Brdu/nestin and Brdu/NeuN double positive neurons in the parenchymal ischemia tissue following middle cerebral artery occlusion compared to matched controls. Conclusion. Altogether, our data indicate that IA can significantly diminish neurological deficits associated with cerebral ischemia reperfusion in rats as a result of increased neuronal survival via modulation of the canonical Wnt pathway.

  14. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    DEFF Research Database (Denmark)

    Maddahi, A.; Edvinsson, L.

    2008-01-01

    ), the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score. CONCLUSION: Our results show that MCAO results in upregulation of cerebrovascular ETB, AT1 and 5-HT1B receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced...... the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126. METHODS AND RESULT: Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO) followed by reperfusion for 48-h and the ischemic area was calculated. The expression...... of phosphorylated ERK1/2 and Elk-1, and of endothelin ETA and ETB, angiotensin AT1, and 5-hydroxytryptamine 5-HT1B receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ETB receptor was analyzed...

  15. Neuroprotective effect of safranal, an active ingredient of Crocus sativus , in a rat model of transient cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Hamid R. Sadeghnia

    2017-09-01

    Full Text Available Safranal is a monoterpene aldehyde found in saffron (Crocus sativus L. petals. It has been previously reported that safranal has a wide range of activities such as antioxidant and anti-inflammatory effects. In this study, we examined the effect of safranal on brain injuries in a transient model of focal cerebral ischemia. Transient focal cerebral ischemia was induced by middle cerebral artery occlusion for 30 min, followed by 24 h of reperfusion. Safranal in the doses of 72.5 and 145 mg/kg was administered intraperitoneally at 0, 3, and 6 h after reperfusion. Neurobehavioral deficit, infarct volume, hippocampal cell loss and markers of oxidative stress including thiobarbituric acid reactive substances (TBARS, total sulfhydryl (SH content, and antioxidant capacity (using FRAP assay were also assessed. The focal cerebral ischemia induced a significant increase in the neurological score, infarct volume and neuronal cell loss in the ipsilateral hippocampal CA1 and CA3 subfields (p < 0.001 and also oxidative stress markers (p < 0.01. Following safranal administration, the total SH content and antioxidant capacity significantly increased, while marked decreases were observed in the neurological score, infarct volume and hippocampal cell loss, as well as TBARS level. This study concluded that safranal had protective effects on ischemic reperfusion injury in the rat model of stroke. Such effects of safranal may have been exerted mainly by suppressing the production of free radicals and increasing antioxidant activity.

  16. Neuroprotective effect of TAT-14-3-3ε fusion protein against cerebral ischemia/reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Yuanjun Zhu

    Full Text Available Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB due to its large size. A protein transduction domain (PTD of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP, which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic

  17. Alpha-MSH decreases core and brain temperature during global cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Spulber, S.; Moldovan, Mihai; Oprica, M.

    2005-01-01

    -vessel occlusion forebrain ischemia on core temperature (CT) and brain temperature (BT), respectively. After 10 min cerebral ischemia, BT was lower in alpha-MSH- than in saline-injected animals. After 10 min reperfusion, both CT and BT were lower than the corresponding pre-ischemic levels after injection of alpha...

  18. Retinal ischemic injury rescued by sodium 4-phenylbutyrate in a rat model.

    Science.gov (United States)

    Jeng, Yung-Yue; Lin, Nien-Ting; Chang, Pen-Heng; Huang, Yuan-Ping; Pang, Victor Fei; Liu, Chen-Hsuan; Lin, Chung-Tien

    2007-03-01

    Retinal ischemia is a common cause of visual impairment for humans and animals. Herein, the neuroprotective effects of phenylbutyrate (PBA) upon retinal ischemic injury were investigated using a rat model. Retinal ganglion cells (RGCs) were retrograde labeled with the fluorescent tracer fluorogold (FG) applied to the superior collicoli of test Sprague-Dawley rats. High intraocular pressure and retinal ischemia were induced seven days subsequent to such FG labeling. A dose of either 100 or 400 mg/kg PBA was administered intraperitoneally to test rats at two time points, namely 30 min prior to the induction of retinal ischemia and 1 h subsequent to the cessation of the procedure inducing retinal ischemia. The test-rat retinas were collected seven days subsequent to the induction of retinal ischemia, and densities of surviving RGCs were estimated by counting FG-labeled RGCs within the retina. Histological analysis revealed that ischemic injury caused the loss of retinal RGCs and a net decrease in retinal thickness. For PBA-treated groups, almost 100% of the RGCs were preserved by a pre-ischemia treatment with PBA (at a dose of either 100 or 400 mg/kg), while post-ischemia treatment of RGCs with PBA did not lead to the preservation of RGCs from ischemic injury by PBA as determined by the counting of whole-mount retinas. Pre-ischemia treatment of RGCs with PBA (at a dose of either 100 or 400 mg/kg) significantly reduced the level of ischemia-associated loss of thickness of the total retina, especially the inner retina, and the inner plexiform layer of retina. Besides, PBA treatment significantly reduced the ischemia-induced loss of cells in the ganglion-cell layer of the retina. Taken together, these results suggest that PBA demonstrates a marked neuroprotective effect upon high intraocular pressure-induced retinal ischemia when the PBA is administered prior to ischemia induction.

  19. Tetramethylpyrazine analogue CXC195 protects against cerebral ischemia/reperfusion-induced apoptosis through PI3K/Akt/GSK3β pathway in rats.

    Science.gov (United States)

    Chen, Lin; Wei, Xinbing; Hou, Yunfeng; Liu, Xiaoqian; Li, Senpeng; Sun, Baozhu; Liu, Xinyong; Liu, Huiqing

    2014-01-01

    CXC195 showed strongest protective effects among the ligustrazine derivatives in cells and prevented apoptosis induced by H2O2 injury. We recently demonstrated that CXC195 protected against cerebral ischemia/reperfusion (I/R) injury by its antioxidant activity. However, whether the anti-apoptotic action of CXC195 is involved in cerebral I/R injury is unknown. Here, we investigated the role of CXC195 in apoptotic processes induced by cerebral I/R and the possible signaling pathways. Male Wistar rats were submitted to transient middle cerebral artery occlusion for 2h, followed by 24h reperfusion. CXC195 was injected intraperitoneally at 2h and 12h after the onset of ischemia. The number of apoptotic cells was measured by TUNEL assay, apoptosis-related protein cleaved caspase-3, Bcl-2, Bax and the phosphorylation levels of Akt and GSK3β in ischemic penumbra were assayed by western blot. The results showed that administration of CXC195 at the doses of 3mg/kg and 10mg/kg significantly inhibited the apoptosis by decreasing the number of apoptotic cells, decreasing the level of cleaved caspase-3 and Bax, and increasing the level of Bcl-2 in rats subjected to I/R injury. Simultaneously, CXC195 treatment markedly increased the phosphorylation of Akt and GSK3β. Blockade of PI3K activity by wortmannin, dramatically abolished its anti-apoptotic effect and lowered both Akt and GSK3β phosphorylation levels. Our study firstly demonstrated that CXC195 protected against cerebral I/R injury by reducing apoptosis in vivo and PI3K/Akt/GSK3β pathway involved in the anti-apoptotic effect. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  20. Effect of chronic (-)-nicotine treatment on rat cerebral benzodiazepine receptors

    International Nuclear Information System (INIS)

    Magata, Yasuhiro; Kitano, Haruhiro; Shiozaki, Toshiki; Iida, Yasuhiko; Nishizawa, Sadahiko; Saji, Hideo; Konishi, Junji

    2000-01-01

    The purpose of this study was to clarify the effect of (-)-nicotine on cerebral benzodiazepine receptors (BzR) with radiotracer methods. The effect of (-)-nicotine on BzR was examined in in vitro studies using chronic (-)-nicotine-treated rats using 3 H-diazepam. The in vitro radioreceptor assay showed a 14% increase in the maximum number of binding sites of BzR in chronic (-)-nicotine-treated rats in comparison with the control rats. Moreover, a convenient in vivo uptake index of 125 I-iomazenil was calculated and a higher uptake of the radioactivity was observed in the chronic (-)-nicotine-treated group than in the control group. Although further studies of the mechanism of (-)-nicotine on such BzR changes are required, an increase in the amount of BzR in the cerebral cortex was found in rats that underwent chronic (-)-nicotine treatment, and this result contributed to the understanding of the effects of (-)-nicotine and smoking on neural functions

  1. Early segmental changes in ischemic acute tubular necrosis of the rat kidney

    DEFF Research Database (Denmark)

    Faarup, Poul; Nørgaard, Tove; Hegedüs, Viktor

    2004-01-01

    The background and mechanisms of ischemic acute tubular necrosis are still essentially unclarified. Therefore a quantitative morphological technique was applied for evaluation of the early structural changes in different fractions of the proximal convoluted tubule in the rat renal cortex. In male...

  2. New asymptomatic ischemic lesions on diffusion-weighted imaging after cerebral angiography

    International Nuclear Information System (INIS)

    Shibazaki, Kensaku

    2006-01-01

    Conventional cerebral angiography (CAG) is relatively low risk for neurological complications. However, diffusion-weighted imaging (DWI) after CAG occasionally reveal an asymptomatic ischemic lesion on the brain. The aim of this study was to investigate the frequency of new asymptomatic or symptomatic DWI lesions after CAG and to clarify the factors associated with them. Fifty-six patients with acute ischemic stroke and transient ischemic attack were prospectively enrolled. Magnetic resonance imaging (MRI) studies including DWI were studied twice, within 48 hours before and after CAG. The following factors were assessed; age, gender, history of stroke, history of ischemic heart disease, vascular risk factors, National Institutes of Health Stroke Scale (NIHSS) score on admission, stroke subtype, treatment before stroke or transient ischemic attack (TIA) (antiplatelets or warfarin), approach for catheters (transbrachial or femoral artery), amount of contrast medium used, length of the angiographic procedure, and fluoroscophy time. We divided the patients into two groups according to the presence of new DWI lesions after CAG; Positive group had new DWI lesions, whereas the Negative group had none. After CAG, no patients had new neurological deficits. New asymptomatic DWI lesions were observed in 24 patients (42.9%). The significant differences observed between two groups were as follows; age (69.8±11.3 for the Positive group versus 61.9±11.3 for the Negative group, p=0.043), female (54% versus 28%, p=0.048), non-small vessel occlusion (100% versus 66%, p=0.009), catheter approach for transfemoral artery (63% versus 13%, p<0.001), mean length of the angiographic procedure (63.1±21.6 min versus 43.7±14.2 min, p<0.001), mean fluoroscopy time (26.5±13.0 min versus 14.9±5.9 mm, p<0.001). Sensitivity and specificity analysis to discriminate the positive and negative groups revealed 17 minutes to be the critical threshold point (sensitivity 66.6% and specificity 68

  3. Morphologic changes of cerebral veins in hypertensive rats: venous collagenosis is associated with hypertension.

    Science.gov (United States)

    Zhou, Min; Mao, Lijuan; Wang, Ying; Wang, Qian; Yang, Zhiyun; Li, Shurong; Li, Ling

    2015-03-01

    The aims of this study were to determine whether arterial hypertension could affect the venous system of brain and to find out the consequent pathologic changes of cerebral veins. Thirty male Sprague-Dawley rats were divided into 2 groups: a sham-clipped group and a stroke-prone renovascular hypertensive rat group. A 2-kidney 2-clip rat model was used to induce renovascular hypertension in the hypertensive group. Systolic blood pressure was measured by tail cuff once each week. Susceptibility-weighted imaging (SWI) was performed at 12, 16, and 20 weeks after surgery. All the rats were sacrificed after the SWI examination at 20 weeks after surgery. The brains were extracted and embedded in paraffin for histologic examination. Masson trichrome staining was performed to identify venous collagenosis. The sham group demonstrated less prominence of cerebral veins compared with hypertensive groups (P veins on SWI as a sign of venous hypertension and the thickened cerebral venous walls (venous collagenosis), which may play a role in cerebral ischemia and/or infarction, are both consequences of long-term hypertension in hypertensive rats. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Delayed perfusion phenomenon in a rat stroke model at 1.5 T MR: An imaging sign parallel to spontaneous reperfusion and ischemic penumbra?

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Department of Radiology, Zhong Da Hospital, Southeast University, 87 Ding Jia Qiao Road, Nanjing 210009, Jiangsu Province (China); Suzuki, Yasuhiro [Department of Molecular and Cellular Medicine, Faculty of Medicine, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Department of Pharmacology, Hamamatsu University School of Medicine, 1-20-1 Handayama, 431-3192 Hamamatsu (Japan); Nagai, Nobuo [Department of Molecular and Cellular Medicine, Faculty of Medicine, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Sun Xihe [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Department of Radiology, the Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong Province (China); Coudyzer, Walter [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Yu Jie [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Marchal, Guy [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium); Ni Yicheng [Department of Radiology, University Hospitals, Catholic University of Leuven, Herestraat 49, B-3000 Leuven (Belgium)]. E-mail: Yicheng.Ni@med.kuleuven.ac.be

    2007-01-15

    Introduction: Delayed perfusion (DP) sign at MR imaging was reported in stroke patients. We sought to experimentally elucidate its relation to spontaneous reperfusion and ischemic penumbra. Methods: Stroke was induced by photothrombotic occlusion of middle cerebral artery in eight rats and studied up to 72 h using a 1.5 T MR scanner with T2 weighted imaging (T2WI), diffusion weighted imaging (DWI), and dynamic susceptibility contrast-enhanced perfusion weighted imaging (DSC-PWI). Relative signal intensity (rSI), relative lesion volume (rLV), relative cerebral blood flow (rCBF), PWI{sub rLV}-DWI{sub rLV} mismatch (penumbra) and DP{sub rLV} were quantified and correlated with neurological deficit score (NDS), triphenyl tetrazolium chloride (TTC) staining, microangiography (MA) and histopathology. Results: The rSI and rLV characterized this stroke model on different MRI sequences and time points. DSC-PWI reproduced cortical DP in all rats, where rCBF evolved from 88.9% at 1 h through 64.9% at 6 h to 136.3% at 72 h. The PWI{sub rLV}-DWI{sub rLV} mismatch reached 10 {+-} 5.4% at 1 h, remained positive through 12 h and decreased to -3.3 {+-} 4.5% at 72 h. The incidence and rLV of the DP were well correlated with those of the penumbra (p < 0.01, r {sup 2} = 0.85 and p < 0.0001, r {sup 2} = 0.96, respectively). Shorter DP durations and more collateral arterioles occurred in rats without (n = 4) than with (n = 4) cortex involvement (p < 0.05). Rats without cortex involvement tended to earlier reperfusion and a lower NDS. Microscopy confirmed MRI, MA and TTC findings. Conclusions: In this rat stroke model, we reproduced clinically observed DP on DSC-PWI, confirmed spontaneous reperfusion, and identified the penumbra extending to 12 h post-ischemia, which appeared interrelated.

  5. Real-time monitoring of ischemic and contralateral brain pO2 during stroke by variable length multisite resonators.

    Science.gov (United States)

    Hou, Huagang; Li, Hongbin; Dong, Ruhong; Khan, Nadeem; Swartz, Harold

    2014-06-01

    Electron paramagnetic resonance (EPR) oximetry using variable length multi-probe implantable resonator (IR), was used to investigate the temporal changes in the ischemic and contralateral brain pO2 during stroke in rats. The EPR signal to noise ratio (S/N) of the IR with four sensor loops at a depth of up to 11 mm were compared with direct implantation of lithium phthalocyanine (LiPc, oximetry probe) deposits in vitro. These IRs were used to follow the temporal changes in pO2 at two sites in each hemisphere during ischemia induced by left middle cerebral artery occlusion (MCAO) in rats breathing 30% O2 or 100% O2. The S/N ratios of the IRs were significantly greater than the LiPc deposits. A similar pO2 at two sites in each hemisphere prior to the onset of ischemia was observed in rats breathing 30% O2. However, a significant decline in the pO2 of the left cortex and striatum occurred during ischemia, but no change in the pO2 of the contralateral brain was observed. A significant increase in the pO2 of only the contralateral non-ischemic brain was observed in the rats breathing 100% O2. No significant difference in the infarct volume was evident between the animals breathing 30% O2 or 100% O2 during ischemia. EPR oximetry with IRs can repeatedly assess temporal changes in the brain pO2 at four sites simultaneously during stroke. This oximetry approach can be used to test and develop interventions to rescue ischemic tissue by modulating cerebral pO2 during stroke. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Cerebral microangiopathies

    International Nuclear Information System (INIS)

    Linn, Jennifer

    2011-01-01

    Cerebral microangiopathies are a very heterogenous group of diseases characterized by pathological changes of the small cerebral vessels. They account for 20 - 30 % of all ischemic strokes. Degenerative microangiopathy and sporadic cerebral amyloid angiography represent the typical acquired cerebral microangiopathies, which are found in over 90 % of cases. Besides, a wide variety of rare, hereditary microangiopathy exists, as e.g. CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), Fabrys disease and MELAS syndrome (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes). (orig.)

  7. Hemorrhagic Transformation After Large Cerebral Infarction in Rats Pretreated With Dabigatran or Warfarin.

    Science.gov (United States)

    Kwon, Il; An, Sunho; Kim, Jayoung; Yang, Seung-Hee; Yoo, Joonsang; Baek, Jang-Hyun; Nam, Hyo Suk; Kim, Young Dae; Lee, Hye Sun; Choi, Hyun-Jung; Heo, Ji Hoe

    2017-10-01

    It is uncertain whether hemorrhagic transformation (HT) after large cerebral infarction is less frequent in dabigatran users than warfarin users. We compared the occurrence of HT after large cerebral infarction among rats pretreated with dabigatran, warfarin, or placebo. This was a triple-blind, randomized, and placebo-controlled experiment. After treatment with warfarin (0.2 mg/kg), dabigatran (20 mg/kg), or saline for 7 days, Wistar rats were subjected to transient middle cerebral artery occlusion. As the primary outcome, HT was determined by gradient-recalled echo imaging. For the secondary outcome, intracranial hemorrhage was assessed via gradient-recalled echo imaging in surviving rats and via autopsy for dead rats. Of 62 rats, there were 33 deaths (53.2%, 17 technical reasons). Of the intention-to-treat population, 33 rats underwent brain imaging. HT was less frequent in the dabigatran group than the warfarin group (placebo 2/14 [14%], dabigatran 0/10 [0%], and warfarin 9/9 [100%]; dabigatran versus warfarin; P warfarin group (19/29 [65.5%]; P =0.003), but not in the dabigatran group (6/19 [31.6%]; P =0.420). Mortality was significantly higher in the warfarin group than the dabigatran group (79.3% versus 47.4%; P =0.022), but not related to the hemorrhage frequency. The risk of HT after a large cerebral infarction was significantly increased in rats pretreated with warfarin than those with dabigatran. However, the results here may not have an exact clinical translation. © 2017 American Heart Association, Inc.

  8. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway.

    Directory of Open Access Journals (Sweden)

    Jingxian Wu

    Full Text Available Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of curcumin against experimental stroke. Oxygen and glucose deprivation/reoxygenation (OGD/R was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular expression of NAD(PH: quinone oxidoreductase1 (NQO1 induced by OGD was counteracted by curcumin post-treatment, which paralleled attenuated cell injury. The reduction of phosphorylation Akt induced by OGD was restored by curcumin. Consequently, NQO1 expression and the binding activity of nuclear factor-erythroid 2-related factor 2 (Nrf2 to antioxidant response element (ARE were increased. LY294002 blocked the increase in phospho-Akt evoked by curcumin and abolished the associated protective effect. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 60 minutes. Curcumin administration significantly reduced infarct size. Curcumin also markedly reduced oxidative stress levels in middle cerebral artery occlusion (MCAO rats; hence, these effects were all suppressed by LY294002. Taken together, these findings provide evidence that curcumin protects neurons against ischemic injury, and this neuroprotective effect involves the Akt/Nrf2 pathway. In addition, Nrf2 is involved in the neuroprotective effects of curcumin against oxidative damage.

  9. Neuroprotection by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway

    Science.gov (United States)

    Wu, Jingxian; Li, Qiong; Wang, Xiaoyan; Yu, Shanshan; Li, Lan; Wu, Xuemei; Chen, Yanlin; Zhao, Jing; Zhao, Yong

    2013-01-01

    Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of curcumin against experimental stroke. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular expression of NAD(P)H: quinone oxidoreductase1 (NQO1) induced by OGD was counteracted by curcumin post-treatment, which paralleled attenuated cell injury. The reduction of phosphorylation Akt induced by OGD was restored by curcumin. Consequently, NQO1 expression and the binding activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) to antioxidant response element (ARE) were increased. LY294002 blocked the increase in phospho-Akt evoked by curcumin and abolished the associated protective effect. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 60 minutes. Curcumin administration significantly reduced infarct size. Curcumin also markedly reduced oxidative stress levels in middle cerebral artery occlusion (MCAO) rats; hence, these effects were all suppressed by LY294002. Taken together, these findings provide evidence that curcumin protects neurons against ischemic injury, and this neuroprotective effect involves the Akt/Nrf2 pathway. In addition, Nrf2 is involved in the neuroprotective effects of curcumin against oxidative damage. PMID:23555802

  10. Therapeutic potential of the novel hybrid molecule JM-20 against focal cortical ischemia in rats

    Directory of Open Access Journals (Sweden)

    Yanier Núñez Figueredo

    2016-08-01

    Full Text Available Context: Despite the great mortality and morbidity of stroke, treatment options remain limited. We previously showed that JM-20, a novel synthetic molecule, possessed a strong neuroprotective effect in rats subjected to transient middle cerebral artery occlusion. However, to verify the robustness of the pre-clinical neuroprotective effects of JM-20 to get good prognosis in the translation to the clinic, it is necessary to use other experimental models of brain ischemia. Aims: To evaluate the neuroprotective effects of JM-20 following the onset of permanent focal cerebral ischemia induced in rats by thermocoagulation of blood into pial blood vessels of cerebral cortices. Methods: Ischemic lesion was induced by thermocoagulation of blood into pial blood vessels of primary motor and somatosensory cortices. Behavioral performance was evaluated by the cylinder testing for a period of 2, 3 and 7 days after surgery, and was followed by histopathological study in brain cortex stained with hematoxylin- eosin. Results: Ischemic injury resulted in impaired function of the forelimb evidenced by high asymmetry punctuation, and caused histopathological alterations indicative of tissue damage at cerebral cortex. JM-20 treatment (4 and 8 mg/kg significantly decreased asymmetry scores and histological alterations with a marked preservation of cortical neurons. Conclusions: The effects of permanent brain ischemia were strongly attenuated by JM-20 administration, which expands and improves the current preclinical data of JM-20 as neuroprotector against cerebral ischemia, and strongly support the examination of its translation to the clinic to treat acute ischemic stroke.

  11. Discovery of 3-n-butyl-2,3-dihydro-1H-isoindol-1-one as a potential anti-ischemic stroke agent

    Directory of Open Access Journals (Sweden)

    Lan Z

    2015-06-01

    Full Text Available Zujian Lan, Xiaoyu Xu, Wenkai Xu, Jin Li, Zengrong Liang, Xuefei Zhang, Ming Lei, Chunshun Zhao School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China Abstract: To develop novel anti-ischemic stroke agents with better therapeutic efficacy and bioavailability, we designed and synthesized a series of 3-alkyl-2,3-dihydro-1H-isoindol-1-ones compounds (3a–i derivatives, one of which (3d exhibited the strongest inhibitory activity for the adenosine diphosphate-induced and arachidonic acid-induced platelet aggregation. This activity is superior to that of 3-n-butylphthalide and comparable with aspirin and edaravone. Meanwhile, 3d not only exhibited a potent activity in scavenging free radicals and improving the survival of HT22 cells against the reactive oxygen species-mediated cytotoxicity in vitro but also significantly attenuated the ischemia/reperfusion-induced oxidative stress in ischemic rat brains. Results from transient middle cerebral artery occlusion and permanent middle cerebral artery occlusion model, indicated that 3d could significantly reduce infarct size, improve neurobehavioral deficits, and prominently decrease attenuation of cerebral damage. Most importantly, 3d possessed a very high absolute bioavailability and was rapidly distributed in brain tissue to keep high plasma drug concentration for the treatment of ischemic strokes. In conclusion, our findings suggest that 3-alkyl-2,3-dihydro-1H-isoindol-1-ones, a novel series of compounds, might be candidate drugs for the treatment of acute ischemic strokes, and 3d may be a promising therapeutic agent for the primary and secondary prevention of ischemic stroke. Keywords: stroke, platelet aggregation, ischemia/reperfusion, middle cerebral artery occlusion, 3-alkyl-2,3-dihydro-1H-isoindol-1-ones

  12. Fermented Chinese formula Shuan-Tong-Ling attenuates ischemic stroke by inhibiting inflammation and apoptosis

    Directory of Open Access Journals (Sweden)

    Zhi-gang Mei

    2017-01-01

    Full Text Available The fermented Chinese formula Shuan-Tong-Ling is composed of radix puerariae (Gegen, salvia miltiorrhiza (Danshen, radix curcuma (Jianghuang, hawthorn (Shanzha, salvia chinensis (Shijianchuan, sinapis alba (Baijiezi, astragalus (Huangqi, panax japonicas (Zhujieshen, atractylodes macrocephala koidz (Baizhu, radix paeoniae alba (Baishao, bupleurum (Chaihu, chrysanthemum (Juhua, rhizoma cyperi (Xiangfu and gastrodin (Tianma, whose aqueous extract was fermented with lactobacillus, bacillus aceticus and saccharomycetes. Shuan-Tong-Ling is a formula used to treat brain diseases including ischemic stroke, migraine, and vascular dementia. Shuan-Tong-Ling attenuated H2O2-induced oxidative stress in rat microvascular endothelial cells. However, the potential mechanism involved in these effects is poorly understood. Rats were intragastrically treated with 5.7 or 17.2 mL/kg Shuan-Tong-Ling for 7 days before middle cerebral artery occlusion was induced. The results indicated Shuan-Tong-Ling had a cerebral protective effect by reducing infarct volume and increasing neurological scores. Shuan-Tong-Ling also decreased tumor necrosis factor-α and interleukin-1β levels in the hippocampus on the ischemic side. In addition, Shuan-Tong-Ling upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of acetylated-protein 53 and Bax. Injection of 5 mg/kg silent information regulator 1 (SIRT1 inhibitor EX527 into the subarachnoid space once every 2 days, four times, reversed the above changes. These results demonstrate that Shuan-Tong-Ling might benefit cerebral ischemia/reperfusion injury by reducing inflammation and apoptosis through activation of the SIRT1 signaling pathway.

  13. [Mechanism of treatment effect of Huanglian-Huangqin herb pairs on cerebral ischemia rats based on metabolomic approach].

    Science.gov (United States)

    Cao, Hui-Ting; Zhu, Hua-Xu; Zhang, Qi-Chun; Guo, Li-Wei

    2017-06-01

    The metabolic effect of Huanglian-Huangqin herb pairs on cerebral ischemia rats was studied by using metabolomic method. The rat model of ischemia reperfusion injury induced by introduction of transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Ultra high performance liquid chromatography-series four pole time of flight mass spectrometry method(UPLC-Q-TOF/MS), Markerlynx software, and principal component analysis and partial least-squares discriminant analysis were used to analyze the different endogenous metabolites among the urine samples of sham rats, cerebral ischemia model rats, Huanglian groups (HL), Huangqin groups (HQ) and Huanglian-Huangqin herb pairs groups (LQ) was achieved, combined with accurate information about the endogenous metabolites level and secondary fragment ions, retrieval and identification of possible biological markers, metabolic pathway which build in MetPA database. The 20 potential biomarkers were found in the urine of rats with cerebral ischemia, which mainly involved in the neurotransmitter regulation, amino acid metabolism, energy metabolism, lipid metabolism and so on. Those metabolic pathways were disturbed in cerebral ischemia model rats, the principal component analysis showed that the normal and cerebral ischemia model is clearly distinguished, and the compound can be given to the normal state of change after HL, HQ, LQ administration. This study index the interpretation of cerebral ischemia rat metabolism group and mechanism, the embodiment of metabonomics can reflect the physiological and metabolic state, which can better reflect the traditional Chinese medicine as a whole view, system view and the features of multi ingredient synergistic or antagonistic effects. Copyright© by the Chinese Pharmaceutical Association.

  14. Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats.

    Science.gov (United States)

    Zhao, Jing; Zhao, Yong; Zheng, Weiping; Lu, Yuyu; Feng, Gang; Yu, Shanshan

    2008-09-10

    Curcumin, a member of the curcuminoid family of compounds, is a yellow colored phenolic pigment obtained from the powdered rhizome of C. longa Linn. Recent studies have demonstrated that curcumin has protective effects against cerebral ischemia/reperfusion injury. However, little is known about its mechanism. Hence, in the present study the neuroprotective potential of curcumin was investigated in middle cerebral artery occlusion (MCAO) induced focal cerebral IR injury. Administration of curcumin 100 and 300 mg/kg i.p. 60 min after MCAO significantly diminished infarct volume, and improved neurological deficit in a dose-dependent manner. Nissl staining showed that the neuronal injury was significantly improved after being treated with curcumin. Curcumin significantly decreased the expression of caspase-3 protein. A higher number of TUNEL-positive cells were found in the vehicle group, but they were significantly decreased in the treated group. Taken together, these results suggest that the neuroprotective potentials of curcumin against focal cerebral ischemic injury are, at least in part, ascribed to its anti-apoptotic effects.

  15. [Retrospective analysis of risk factors in 900 patients with ischemic cerebral stroke of wind-phlegm collateral obstruction syndrome and qi deficiency blood stasis syndrome in Wuhan District].

    Science.gov (United States)

    Qiu, Xin; Wang, Kai-xin; Chen, Guo-hua

    2011-11-01

    To analyze the correlation between risk factors and ischemic cerebral stroke of wind-phlegm collateral obstruction syndrome and qi deficiency blood stasis syndrome. Totally 900 patients of the two syndrome types were recruited. Risk factors correlated to ischemic cerebral stroke such as gender, age, time of onset, site of infarction, tongue proper, tongue fur, pulse picture, hypertension, diabetes, past stroke history, hyperlipidemia, hematocrit, smoking, drinking, genetic factor, blood type, complications were analyzed using Chi-square test and non-conditional Logistic regression analysis. Statistical significance existed between the two syndrome types in age (X2 = 8.2392, P = 0.0413), hyperlipidemia (X2 = 4.8386, P = 0.0278), tongue proper (X2 = 7.9470, P = 0.0048), and tongue fur (X2 = 4.3298, P = 0.0375). Statistical significance existed between the two syndrome types in hyperlipidemia, tongue proper, and tongue fur, and their OR value was 0.699 (P = 0.0282), 0.332 (P =0.0071), and 0.667 (P = 0.0382) respectively. The OR value of the past stroke history was 3.226 (P = 0.0314), that of complications 0.203 (P = 0.0705), and that of anterior circulation infarction 0.214 (P = 0.0098). Among different ages groups, the constituent ratio of qi deficiency blood stasis syndrome was obviously higher than that of wind-phlegm collateral obstruction syndrome. Besides, patients of qi deficiency blood stasis syndrome were liable to suffer from hyperlipidemia, anterior circulation infarction, and complications. The age, blood lipid levels, site of infarction, complications are closely correlated with Chinese syndrome types of ischemic cerebral stroke, which can provide objective indices for typing ischemic cerebral stroke.

  16. Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available We recently reported isolation of viable rat amniotic fluid-derived stem (AFS cells [1]. Here, we tested the therapeutic benefits of AFS cells in a rodent model of ischemic stroke. Adult male Sprague-Dawley rats received a 60-minute middle cerebral artery occlusion (MCAo. Thirty-five days later, animals exhibiting significant motor deficits received intravenous transplants of rat AFS cells or vehicle. At days 60-63 post-MCAo, significant recovery of motor and cognitive function was seen in stroke animals transplanted with AFS cells compared to vehicle-infused stroke animals. Infarct volume, as revealed by hematoxylin and eosin (H&E staining, was significantly reduced, coupled with significant increments in the cell proliferation marker, Ki67, and the neuronal marker, MAP2, in the dentate gyrus (DG [2] and the subventricular zone (SVZ of AFS cell-transplanted stroke animals compared to vehicle-infused stroke animals. A significantly higher number of double-labeled Ki67/MAP2-positive cells and a similar trend towards increased Ki67/MAP2 double-labeling were observed in the DG and SVZ of AFS cell-transplanted stroke animals, respectively, compared to vehicle-infused stroke animals. This study reports the therapeutic potential of AFS cell transplantation in stroke animals, possibly via enhancement of endogenous repair mechanisms.

  17. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia.

    Science.gov (United States)

    Park, Ji H; Long, Aaron; Owens, Katrina; Kristian, Tibor

    2016-11-01

    Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor for multiple cellular metabolic reactions and has a central role in energy production. Brain ischemia depletes NAD(+) pools leading to bioenergetics failure and cell death. Nicotinamide mononucleotide (NMN) is utilized by the NAD(+) salvage pathway enzyme, nicotinamide adenylyltransferase (Nmnat) to generate NAD(+). Therefore, we examined whether NMN could protect against ischemic brain damage. Mice were subjected to transient forebrain ischemia and treated with NMN or vehicle at the start of reperfusion or 30min after the ischemic insult. At 2, 4, and 24h of recovery, the proteins poly-ADP-ribosylation (PAR), hippocampal NAD(+) levels, and expression levels of NAD(+) salvage pathway enzymes were determined. Furthermore, animal's neurologic outcome and hippocampal CA1 neuronal death was assessed after six days of reperfusion. NMN (62.5mg/kg) dramatically ameliorated the hippocampal CA1 injury and significantly improved the neurological outcome. Additionally, the post-ischemic NMN treatment prevented the increase in PAR formation and NAD(+) catabolism. Since the NMN administration did not affect animal's temperature, blood gases or regional cerebral blood flow during recovery, the protective effect was not a result of altered reperfusion conditions. These data suggest that administration of NMN at a proper dosage has a strong protective effect against ischemic brain injury. Published by Elsevier Inc.

  18. Autoradiographic imaging of cerebral ischemia using hypoxic marker: 99mTc-HL91 in animal models

    International Nuclear Information System (INIS)

    Zhu Cansheng; Jiang Ningyi; Hu Xiaoke

    2001-01-01

    Objective: To explore the possibility of 99m Tc-HL91 imaging in detecting the ischemic penumbra during acute stoke. Methods; 16 Sprague-Dawley (SD) rats were divided into operation group (n=12) and pseudo-operation group (n=4) randomly. In operation group, 12 middle cerebral artery occlusion animal (MCAO) models were established by electrocautery. 4 rats in pseudo-operation group were treated as a control without occlusion. All animals were injected 99m Tc-HL91 intravenously 2 hours after occlusion. Animals were killed at different time after injection and brains were removed rapidly from the skull to do the autoradiographic study. Results: The ischemic territory accumulated more 99m Tc-HL91 than the opposite site in the autoradiogram at 1 hour after injection. The ischemic cerebral tissue can be visualized clearly. At 2, 4 hours after injection, the difference of accumulation of 99m Tc-HL91 in target and non-target site became more obvious. By using computer-enhanced imaging analysis, the optical density (OD) ratio differences between each subgroup of operation group and pseudo-operation group were all significant. The OD ratios (T/N) were 1.2691±0.0189, 1.3542±0.0119, 2.1201±0.0616, 2.5369±0.1214 respectively at 1, 2, 4 hours after 99m Tc-HL91 injection. Conclusion: 99m Tc-HL91 can be avidly taken up by ischemic penumbra. 99m Tc-HL91 is a potential agent for imaging hypoxic tissue, and 99m Tc-HL91 SPECT may be a promising imaging method in detecting the ischemic penumbra

  19. Acupuncture regulates the glucose metabolism in cerebral functional regions in chronic stage ischemic stroke patients---a PET-CT cerebral functional imaging study

    Directory of Open Access Journals (Sweden)

    Huang Yong

    2012-06-01

    Full Text Available Abstract Background Acupuncture has been applied to aid in the recovery of post-stroke patients, but its mechanism is unclear. This study aims to analyze the relationship between acupuncture and glucose metabolism in cerebral functional regions in post-stroke patients using 18 FDG PET-CT techniques. Forty-three ischemic stroke patients were randomly divided into 5 groups: the Waiguan (TE5 needling group, the TE5 sham needling group, the sham point needling group, the sham point sham needling group and the non-needling group. Cerebral functional images of all patients were then acquired using PET-CT scans and processed by SPM2 software. Results Compared with the non-needling group, sham needling at TE5 and needling/sham needling at the sham point did not activate cerebral areas. However, needling at TE5 resulted in the activation of Brodmann Area (BA 30. Needling/sham needling at TE5 and needling at the sham point did not deactivate any cerebral areas, whereas sham needling at the sham point led to deactivation in BA6. Compared with sham needling at TE5, needling at TE5 activated BA13, 19 and 47 and did not deactivate any areas. Compared with needling at the sham point, needling at TE5 had no associated activation but a deactivating effect on BA9. Conclusion Needling at TE5 had a regulating effect on cerebral functional areas shown by PET-CT, and this may relate to its impact on the recovery of post-stroke patients.

  20. Cerebroprotective Effect of Moringa oleifera against Focal Ischemic Stroke Induced by Middle Cerebral Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Woranan Kirisattayakul

    2013-01-01

    Full Text Available The protection against ischemic stroke is still required due to the limitation of therapeutic efficacy. Based on the role of oxidative stress in stroke pathophysiology, we determined whether Moringa oleifera, a plant possessing potent antioxidant activity, protected against brain damage and oxidative stress in animal model of focal stroke. M. oleifera leaves extract at doses of 100, 200 and 400 mg·kg−1 was orally given to male Wistar rats (300–350 g once daily at a period of 2 weeks before the occlusion of right middle cerebral artery (Rt.MCAO and 3 weeks after Rt.MCAO. The determinations of neurological score and temperature sensation were performed every 7 days throughout the study period, while the determinations of brain infarction volume, MDA level, and the activities of SOD, CAT, and GSH-Px were performed 24 hr after Rt.MCAO. The results showed that all doses of extract decreased infarction volume in both cortex and subcortex. The protective effect of medium and low doses of extract in all areas occurred mainly via the decreased oxidative stress. The protective effect of the high dose extract in striatum and hippocampus occurred via the same mechanism, whereas other mechanisms might play a crucial role in cortex. The detailed mechanism required further exploration.

  1. Pilocarpine-induced status epilepticus in rats involves ischemic and excitotoxic mechanisms.

    Directory of Open Access Journals (Sweden)

    Paolo Francesco Fabene

    Full Text Available The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE. Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology.

  2. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    Science.gov (United States)

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Systematic Analysis of RNA Regulatory Network in Rat Brain after Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2018-01-01

    Full Text Available Although extensive studies have identified large number of microRNAs (miRNAs and long noncoding RNAs (lncRNAs in ischemic stroke, the RNA regulation network response to focal ischemia remains poorly understood. In this study, we simultaneously interrogate the expression profiles of lncRNAs, miRNAs, and mRNAs changes during focal ischemia induced by transient middle cerebral artery occlusion. A set of 1924 novel lncRNAs were identified and may involve brain injury and DNA repair as revealed by coexpression network analysis. Furthermore, many short interspersed elements (SINE mediated lncRNA:mRNA duplexes were identified, implying that lncRNAs mediate Staufen1-mediated mRNA decay (SMD which may play a role during focal ischemia. Moreover, based on the competitive endogenous RNA (ceRNA hypothesis, a stroke regulatory ceRNA network which reveals functional lncRNA:miRNA:mRNA interactions was revealed in ischemic stroke. In brief, this work reports a large number of novel lncRNAs responding to focal ischemia and constructs a systematic RNA regulation network which highlighted the role of ncRNAs in ischemic stroke.

  4. Effects of MK-801 upon local cerebral glucose utilization in conscious rats and in rats anaesthetised with halothane

    International Nuclear Information System (INIS)

    Kurumaji, A.; McCulloch, J.

    1989-01-01

    The effects of MK-801 (0.5 mg/kg i.v.), a non-competitive N-methyl-D-aspartate (NMDA) antagonist, upon local cerebral glucose utilization were examined in conscious, lightly restrained rats and in rats anaesthetised with halothane in nitrous oxide by means of the quantitative autoradiographic [14C]-2-deoxyglucose technique. In the conscious rats, MK-801 produced a heterogenous pattern of altered cerebral glucose utilization with significant increases being observed in 12 of the 28 regions of gray matter examined and significant decreases in 6 of the 28 regions. Pronounced increases in glucose use were observed after MK-801 in the olfactory areas and in a number of brain areas in the limbic system (e.g., hippocampus molecular layer, dentate gyrus, subicular complex, posterior cingulate cortex, and mammillary body). In the cerebral cortices, large reductions in glucose use were observed after administration of MK-801, whereas in the extrapyramidal and sensory-motor areas, glucose use remained unchanged after MK-801 administration in conscious rats. In the halothane-anaesthetised rats, the pattern of altered glucose use after MK-801 differed qualitatively and quantitatively from that observed in conscious rats. In anaesthetised rats, significant reductions in glucose use were noted after MK-801 in 10 of the 28 regions examined, with no area displaying significantly increased glucose use after administration of the drug. In halothane-anaesthetised rats, MK-801 failed to change the rates of glucose use in the olfactory areas, the hippocampus molecular layer, and the dentate gyrus

  5. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2015-01-01

    Full Text Available Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20 and Qubin (GB7 acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/mL DAPT solution (10 mL infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.

  6. Estudo de fatores clínicos preditivos para crises epilépticas após acidente vascular cerebral isquêmico Preditive clinical factors for epileptic seizures after ischemic stroke

    Directory of Open Access Journals (Sweden)

    Marcia Maiumi Fukujima

    1996-06-01

    Full Text Available Apresentamos aspectos clínicos de 35 pacientes com acidente vascular cerebral isquêmico que evoluíram com crises epilépticas (Grupo 1, comparando-os a 35 pacientes com AVCI sem crises epilépticas (Grupo 2. A comparação das idades entre os grupos não mostrou diferença significante. O sexo masculino e a raça branca predominaram em ambos os grupos. Diabetes melito, hipertensão arterial, ataque isquêmico transitório, acidente vascular cerebral pregresso, enxaqueca, doença de Chagas, embolia cerebral cardiogênica e uso de anticoncepcional oral não diferiram significantemente entre os grupos. Tabagismo e etilismo foram significantemente mais freqüentes no Grupo 1 (pPreditive clinical factors for epileptic seizures after ischemic stroke. Clinical features of 35 patients with ischemic stroke who developed epilepsy (Group 1 were compared with those of 35 patients with ischemic stroke without epilepsy (Group 2. The age of the patients did not differ between the groups. There were more men than women and more white than other races in both groups. Diabetes melitus, hypertension, transient ischemic attack, previous stroke, migraine, Chagas disease, cerebral embolism of cardiac origin and use of oral contraceptive did not differ between the groups. Smokers and alcohol users were more frequent in Group 1 (p<0,05. Most patients of Group 1 presented with hemiparesis; none presented cerebellar or brainstem involvement. Perhaps strokes in smokers have some different aspects, that let them more epileptogenic than in non smokers.

  7. Noninvasive quantitative assessment of cerebral blood flow (CBF) using Tc-99m ECD SPECT with adjunctive radionuclide angiography in ischemic stroke

    International Nuclear Information System (INIS)

    Yim, Jun Sung; Choi, Yun Young; Kim, Seung Hyun; Kim, Myung Ho; Cho, Suk Shin

    1999-01-01

    Quantitative CBF measurements are essential for diagnosing ischemic lesion, evaluating the therapeutic effects and predicting the prognosis of cerebral ischemia. Even though several methods have been introduced, these techniques are too cumbersome and invasive to be applied to routine studies. In this study, a non-invasive simple method for the quantitative angiography. Fifteen normal controls and 27 patients with unilateral carotid ischemic stoke were selected. Brain perfusion index (BPI) of each hemisphere was measured in each subject by acquisition of serial radionuclide angiography after injection of 20mCi of Tc-99m ECD. With Lassen's correction algorithm of curve-linear relationship between the brain activity and blood flow, rCBF on transaxial SPECT slice corresponding with MRI lesion sites (ischemic core, border zone and contralateral mirror locus) were calculated. BPI values for normal controls showed a significant negative correlation with advantage age (r=-0.64, p=0.021) and hemisphric BPI were 11.02±1.6 and 7.8±1.4 for normal controls and patient, respectively. Significant differences were observed between two groups (p=0.0012). rCBF obtained from core zone (12±2.5 ml/100/min), boneder zone (29.2±8.1) and contralateral mirror locus (52.1±15.1) were clearly defined in each subject of patient group. Measurement of BPI and rCBF using Tc-99m ECD SPECT with adjunctive radionuclide angiography could be an useful, simple and non-invasive method in evaluation of the cerebral flood in the ischemic stroke

  8. Electroacupuncture Ameliorates Learning and Memory via Activation of the CREB Signaling Pathway in the Hippocampus to Attenuate Apoptosis after Cerebral Hypoperfusion

    OpenAIRE

    Han, Xiaohua; Zhao, Xiuxiu; Lu, Min; Liu, Fang; Guo, Feng; Zhang, Jinghui; Huang, Xiaolin

    2013-01-01

    Studies have shown that electroacupuncture (EA) ameliorates learning and memory after ischemic injury. However, there have been few studies elucidating the mechanisms of EA on learning and memory in cerebral hypoperfusion. In this study, we explored the cAMP response element-binding protein (CREB) signaling pathway-mediated antiapoptotic action involved in EA-induced improvement of learning and memory. EA at GV20 and GV14 acupoints was applied in cerebral hypoperfusion rats. A Morris water ma...

  9. QUANTITATIVE CHANGES IN REGIONAL CEREBRAL BLOOD FLOW INDUCED BY COLD, HEAT AND ISCHEMIC PAIN: A CONTINUOUS ARTERIAL SPIN LABELING STUDY

    Science.gov (United States)

    Frölich, Michael A.; Deshpande, Hrishikesh; Ness, Timothy; Deutsch, Georg

    2012-01-01

    Background The development of arterial spin labeling methods, has allowed measuring regional cerebral blood flow (rCBF) quantitatively and to show the pattern of cerebral activity associated with any state such as a sustained pain state or changes due to a neurotropic drug. Methods We studied the differential effects of three pain conditions in ten healthy subjects on a 3T scanner during resting baseline, heat, cold and ischemic pain using continuous arterial spin labeling. Results Cold pain showed the greatest absolute rCBF increases in left anterior cingulate cortex, left amygdala, left angular gyrus, and Brodmann Area 6, and a significant rCBF decrease in the cerebellum. Changes in rCBF were characteristic of the type of pain condition: cold and heat pain showed increases, while the ischemic condition showed a reduction in mean absolute gray matter flow compared to rest. An association of subjects’ pain tolerance and cerebral blood flow was noted. Conclusions The observation that quantitative rCBF changes are characteristic of the pain task employed and that there is a consistent rCBF change in Brodman area 6, an area responsible for the integration of a motor response to pain, should provide extremely useful information in the quest to develop an imaging biomarker of pain. Conceivably, response in BA6 may serve as an objective measure of analgesic efficacy. PMID:22913924

  10. Quantitative changes in regional cerebral blood flow induced by cold, heat and ischemic pain: a continuous arterial spin labeling study.

    Science.gov (United States)

    Frölich, Michael A; Deshpande, Hrishikesh; Ness, Timothy; Deutsch, Georg

    2012-10-01

    The development of arterial spin labeling methods has allowed measuring regional cerebral blood flow (rCBF) quantitatively and to show the pattern of cerebral activity associated with any state such as a sustained pain state or changes due to a neurotropic drug. The authors studied the differential effects of three pain conditions in 10 healthy subjects on a 3 Tesla scanner during resting baseline, heat, cold, and ischemic pain using continuous arterial spin labeling. Cold pain showed the greatest absolute rCBF increases in left anterior cingulate cortex, left amygdala, left angular gyrus, and Brodmann area 6, and a significant rCBF decrease in the cerebellum. Changes in rCBF were characteristic of the type of pain condition: cold and heat pain showed increases, whereas the ischemic condition showed a reduction in mean absolute gray matter flow compared with rest. An association of subjects' pain tolerance and cerebral blood flow was noted. The observation that quantitative rCBF changes are characteristic of the pain task used and that there is a consistent rCBF change in Brodman area 6, an area responsible for the integration of a motor response to pain, should provide extremely useful information in the quest to develop an imaging biomarker of pain. Conceivably, response in BA6 may serve as an objective measure of analgesic efficacy.

  11. Short-term sleep deprivation stimulates hippocampal neurogenesis in rats following global cerebral ischemia/reperfusion.

    Directory of Open Access Journals (Sweden)

    Oumei Cheng

    Full Text Available Sleep deprivation (SD plays a complex role in central nervous system (CNS diseases. Recent studies indicate that short-term SD can affect the extent of ischemic damage. The aim of this study was to investigate whether short-term SD could stimulate hippocampal neurogenesis in a rat model of global cerebral ischemia/reperfusion (GCIR.One hundred Sprague-Dawley rats were randomly divided into Sham, GCIR and short-term SD groups based on different durations of SD; the short-term SD group was randomly divided into three subgroups: the GCIR+6hSD*3d-treated, GCIR+12hSD-treated and GCIR+12hSD*3d-treated groups. The GCIR rat model was induced via the bilateral occlusion of the common carotid arteries and hemorrhagic hypotension. The rats were sleep-deprived starting at 48 h following GCIR. A Morris water maze test was used to assess learning and memory ability; cell proliferation and differentiation were analyzed via 5-bromodeoxyuridine (BrdU and neuron-specific enolase (NSE, respectively, at 14 and 28 d; the expression of hippocampal BDNF was measured after 7 d.The different durations of short-term SD designed in our experiment exhibited improvement in cognitive function as well as increased hippocampal BDNF expression. Additionally, the short-term SD groups also showed an increased number of BrdU- and BrdU/NSE-positive cells compared with the GCIR group. Of the three short-term SD groups, the GCIR+12hSD*3d-treated group experienced the most substantial beneficial effects.Short-term SD, especially the GCIR+12hSD*3d-treated method, stimulates neurogenesis in the hippocampal dentate gyrus (DG of rats that undergo GCIR, and BDNF may be an underlying mechanism in this process.

  12. Gender and post-ischemic recovery of hypertrophied rat hearts

    Directory of Open Access Journals (Sweden)

    Popov Kirill M

    2006-03-01

    Full Text Available Abstract Background Gender influences the cardiac response to prolonged increases in workload, with differences at structural, functional, and molecular levels. However, it is unknown if post-ischemic function or metabolism of female hypertrophied hearts differ from male hypertrophied hearts. Thus, we tested the hypothesis that gender influences post-ischemic function of pressure-overload hypertrophied hearts and determined if the effect of gender on post-ischemic outcome could be explained by differences in metabolism, especially the catabolic fate of glucose. Methods Function and metabolism of isolated working hearts from sham-operated and aortic-constricted male and female Sprague-Dawley rats before and after 20 min of no-flow ischemia (N = 17 to 27 per group were compared. Parallel series of hearts were perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/L insulin to measure glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in the second. Statistical analysis was performed using two-way analysis of variance. The sequential rejective Bonferroni procedure was used to correct for multiple comparisons and tests. Results Female gender negatively influenced post-ischemic function of non-hypertrophied hearts, but did not significantly influence function of hypertrophied hearts after ischemia such that mass-corrected hypertrophied heart function did not differ between genders. Before ischemia, glycolysis was accelerated in hypertrophied hearts, but to a greater extent in males, and did not differ between male and female non-hypertrophied hearts. Glycolysis fell in all groups after ischemia, except in non-hypertrophied female hearts, with the reduction in glycolysis after ischemia being greatest in males. Post-ischemic glycolytic rates were, therefore, similarly accelerated in hypertrophied male and female hearts and higher in

  13. The ischemic perinatal brain damage

    International Nuclear Information System (INIS)

    Crisi, G.; Mauri, C.; Canossi, G.; Della Giustina, E.

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis

  14. Ceftriaxone attenuates hypoxic-ischemic brain injury in neonatal rats

    Directory of Open Access Journals (Sweden)

    Huang Yen

    2011-09-01

    Full Text Available Abstract Background Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE. Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE. Methods We used a neonatal rat model of HIE by unilateral ligation of carotid artery and subsequent exposure to 8% oxygen for 2 hrs on postnatal day 7 (P7 rats. Neonatal rats were administered three dosages of an antibiotic, ceftriaxone, 48 hrs prior to experimental HIE. Neurobehavioral tests of treated rats were assessed. Brain sections from P14 rats were examined with Nissl and immunohistochemical stain, and TUNEL assay. GLT1 protein expression was evaluated by Western blot and immunohistochemistry. Results Pre-treatment with 200 mg/kg ceftriaxone significantly reduced the brain injury scores and apoptotic cells in the hippocampus, restored myelination in the external capsule of P14 rats, and improved the hypoxia-ischemia induced learning and memory deficit of P23-24 rats. GLT1 expression was observed in the cortical neurons of ceftriaxone treated rats. Conclusion These results suggest that pre-treatment of infants at risk for HIE with ceftriaxone may reduce subsequent brain injury.

  15. MiR-335 Regulates Hif-1α to Reduce Cell Death in Both Mouse Cell Line and Rat Ischemic Models.

    Directory of Open Access Journals (Sweden)

    Fu Jia Liu

    Full Text Available Hypoxia inducible factor-1α facilitates cellular adaptation to hypoxic conditions. Hence its tight regulation is crucial in hypoxia related diseases such as cerebral ischemia. Changes in hypoxia inducible factor-1α expression upon cerebral ischemia influence the expression of its downstream genes which eventually determines the extent of cellular damage. MicroRNAs are endogenous regulators of gene expression that have rapidly emerged as promising therapeutic targets in several diseases. In this study, we have identified miR-335 as a direct regulator of hypoxia inducible factor-1α and as a potential therapeutic target in cerebral ischemia. MiR-335 and hypoxia inducible factor-1α mRNA showed an inverse expression profile, both in vivo and in vitro ischemic conditions. Given the biphasic nature of hypoxia inducible factor-1α expression during cerebral ischemia, miR-335 mimic was found to reduce infarct volume in the early time (immediately after middle cerebral artery occlusion of embolic stroke animal models while the miR-335 inhibitor appears to be beneficial at the late time of stroke (24 hrs after middle cerebral artery occlusion. Modulation of hypoxia inducible factor-1α expression by miR-335 also influenced the expression of crucial genes implicated in neurovascular permeability, cell death and maintenance of the blood brain barrier. These concerted effects, resulting in a reduction in infarct volume bring about a beneficial outcome in ischemic stroke.

  16. The protective effect of SCR(15-18) on cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Li, Shu; Xian, Jinhong; He, Li; Luo, Xue; Tan, Bing; Yang, Yongtao; Liu, Gaoke; Wang, Zhengqing

    2011-10-01

    Soluble complement receptor type 1 (sCR1), a potent inhibitor of complement activation, has been shown to protect brain cells against cerebral ischemic/reperfusion (CI/R) injury due to its decay-accelerating activity for C3/C5 convertase and co-factor activity for C3b/C4b degradation. However, the effect of short consensus repeats (SCRs) 15-18, one of active domains of sCR1 with high C3b/C4b degradability, has not been demonstrated. Here, we investigated the protective effect of recombinant SCR(15-18) protein in middle cerebral artery occlusion (MCAO)-induced focal CI/R injury. Recombinant SCR(15-18) protein was successfully expressed in Escherichia coli and refolded to its optimal bioactivity. Seventy-five Sprague-Dawley rats were randomly assigned into three groups: sham-operated group, CI/R group, and SCR(15-18)+CI/R group pretreated with 20 mg/kg SCR(15-18) protein. After 2 hours of MCAO and subsequent 24 hours of reperfusion, rats were evaluated for neurological deficits and cerebral infarction. Polymorphonuclear leukocyte accumulation, C3b deposition, and morphological changes in cerebral tissue were also estimated. SCR(15-18) pretreatment induced a 20% reduction of infarct size and an improvement of neurological function with 22·2% decrease of neurological deficit scores. Inhibition of cerebral neutrophils infiltration by SCR(15-18) was indicated from the reduction of myeloperoxidase activity in SCR(15-18)+CI/R rats. Decreased C3b deposition and improved morphological changes were also found in cerebral tissue of SCR(15-18)-treated rats. Our studies suggest a definitive moderately protective effect of SCR(15-18) against CI/R damage and provide preclinical experimental evidence supporting the possibility of using it as a small anti-complement therapeutic agent for CI/R injury therapy.

  17. Differentiation of the infarct core from ischemic penumbra within the first 4.5 hours, using diffusion tensor imaging-derived metrics: A rat model

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Duen Pang [Dept. of Electrical Engineering, National Taiwan University, Taipei (China); Lu, Chia Feng [Research Center of Translational Imaging, College of Medicine, Taipei Medical University, Taipei (China); Chen, Yung Chieh [Dept. of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei (China); Liou, Michelle [Institute of Statistical Science, Academia Sinica, Taipei (China); Chung, Hsiao Wen [Graduate Institute of Biomedical Electrics and Bioinformatics, National Taiwan University, Taipei (China)

    2017-04-15

    To investigate whether the diffusion tensor imaging-derived metrics are capable of differentiating the ischemic penumbra (IP) from the infarct core (IC), and determining stroke onset within the first 4.5 hours. All procedures were approved by the local animal care committee. Eight of the eleven rats having permanent middle cerebral artery occlusion were included for analyses. Using a 7 tesla magnetic resonance system, the relative cerebral blood flow and apparent diffusion coefficient maps were generated to define IP and IC, half hour after surgery and then every hour, up to 6.5 hours. Relative fractional anisotropy, pure anisotropy (rq) and diffusion magnitude (rL) maps were obtained. One-way analysis of variance, receiver operating characteristic curve and nonlinear regression analyses were performed. The evolutions of tensor metrics were different in ischemic regions (IC and IP) and topographic subtypes (cortical, subcortical gray matter, and white matter). The rL had a significant drop of 40% at 0.5 hour, and remained stagnant up to 6.5 hours. Significant differences (p < 0.05) in rL values were found between IP, IC, and normal tissue for all topographic subtypes. Optimal rL threshold in discriminating IP from IC was about -29%. The evolution of rq showed an exponential decrease in cortical IC, from -26.9% to -47.6%; an rq reduction smaller than 44.6% can be used to predict an acute stroke onset in less than 4.5 hours. Diffusion tensor metrics may potentially help discriminate IP from IC and determine the acute stroke age within the therapeutic time window.

  18. Monitoring of cerebral haemodynamics in newborn infants

    DEFF Research Database (Denmark)

    Liem, K Djien; Greisen, Gorm

    2010-01-01

    The most important cerebrovascular injuries in newborn infants, particularly in preterm infants, are cerebral haemorrhage and ischemic injury. The typical cerebral vascular anatomy and the disturbance of cerebral haemodynamics play important roles in the pathophysiology. The term 'cerebral haemod...

  19. Treadmill exercise promotes neuroprotection against cerebral ischemia–reperfusion injury via downregulation of pro-inflammatory mediators

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-12-01

    Full Text Available Ying Zhang,1,* Richard Y Cao,2,* Xinling Jia,3,* Qing Li,1 Lei Qiao,1 Guofeng Yan,4 Jian Yang1 1Department of Rehabilitation, 2Laboratory of Immunology, Shanghai Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 3School of Life sciences, Shanghai University, 4School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: Stroke is one of the major causes of morbidity and mortality worldwide, which is associated with serious physical deficits that affect daily living and quality of life and produces immense public health and economic burdens. Both clinical and experimental data suggest that early physical training after ischemic brain injury may reduce the extent of motor dysfunction. However, the exact mechanisms have not been fully elucidated. The aim of this study was to investigate the effects of aerobic exercise on neuroprotection and understand the underlying mechanisms.Materials and methods: Middle cerebral artery occlusion (MCAO was conducted to establish a rat model of cerebral ischemia–reperfusion injury to mimic ischemic stroke. Experimental animals were divided into the following three groups: sham (n=34, MCAO (n=39, and MCAO plus treadmill exercise (n=28. The effects of aerobic exercise intervention on ischemic brain injury were evaluated using functional scoring, histological analysis, and Bio-Plex Protein Assays.Results: Early aerobic exercise intervention was found to improve motor function, prevent death of neuronal cells, and suppress the activation of microglial cells and astrocytes. Furthermore, it was observed that aerobic exercise downregulated the expression of the cytokine interleukin-1β and the chemokine monocyte chemotactic protein-1 after transient MCAO in experimental rats.Conclusion: This study demonstrates that treadmill exercise rehabilitation promotes neuroprotection against cerebral

  20. Study of the influence and molecular mechanism of ticagrelor on cerebral ischemia reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Gui-Fa Chen

    2017-06-01

    Full Text Available Objective: To study the influence and molecular mechanism of ticagrelor on cerebral ischemia reperfusion injury in rats. Methods: SD rats were selected as experimental animals and divided into control group, model group, ticagrelor group and clopidogrel group, cerebral ischemic reperfusion injury models were made, then ticagrelor group were given intragastric administration of 150 mg ticagrelor, clopidogrel group were given intragastric administration of 90 mg clopidogrel. 1 week after intervention, the brain water content as well as the contents of oxidative stress molecules and inflammatory factors were measured. Results: Water content in brain, MDA, Ox-LDL, NF-kB, TNF-α, IL-1β and IL-6 contents in brain tissue as well as TNF-α, IL-1β and IL-6 contents in serum of model group were significantly higher than those of control group while SOD, GSH-Px and Prdx6 contents in brain tissue were significantly lower than those of control group; water content in brain, MDA, Ox-LDL, NFkB, TNF-α, IL-1β and IL-6 contents in brain tissue as well as TNF-α, IL-1β and IL-6 contents in serum of ticagrelor group and clopidogrel group were significantly lower than those of model group while SOD, GSH-Px and Prdx6 contents in brain tissue were significantly higher than those of model group; water content in brain, MDA, Ox-LDL, NF-kB, TNF-α, IL-1β and IL-6 contents in brain tissue as well as TNF-α, IL-1β and IL-6 contents in serum of ticagrelor group were significantly lower than those of clopidogrel group while SOD, GSHPx and Prdx6 contents in brain tissue were significantly higher than those of clopidogrel group. Conclusion: Ticagrelor can be more effective in inhibiting oxidative stress response and inflammatory response, and reducing the cerebral ischemia reperfusion injury than clopidogrel.

  1. Comparative studies of D2 receptors and cerebral blood flow in hemi-parkinsonism rats

    International Nuclear Information System (INIS)

    Lin, Y.; Lin, X.

    2000-01-01

    To study the relationship between dopamine (DA) D 2 receptors and cerebral blood flow in hemiparkinsonism rats. Hemi-parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra and ventral tegmental area, apomorphine (Apo) which could induce the successful model rat rotates toward the intact side was used to screen that rats, 125 I-IBZM in vivo autoradiography and 99m Tc-HM-PAO regional brain biodistribution were used to study D 2 receptors and cerebral blood flow. The HPLC-ECD were used to measure the concentration of DA and it metabolites homovanillic acid (HVA), 3,4-dehydroxyphenyl acetic acid (DOPAC) in bilateral striatum (ST). The lesioned side ST DA and its metabolites HVA DOPAC reduced significantly than that of the intact side and pseudo-operated control group, ST/cerebellum (CB) 125 I-IBZM uptake ratio was 8.04 ±0.71 in lesioned side of hemi-parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (p 99m Tc 30.1±4.53% enhancement as compared to the intact side, and also show good correlation with 30 min Apo induced rotation numbers (r=0.98), the regional cerebral blood flow study didn't show significant difference between bilateral brain cortex area (p>0.05). The DA content decreased significantly and induced an up-regulation of ST D 2 receptor binding sites in 6-OH-DA lesioned side in hemi-parkinsonism rats, the increased percentage of lesioned-intact side ST/CB 125 I-IBZM uptake ratio showed good correlation with rotation behavior induced by Apo. Compare with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-parkinsonism

  2. Distribution of ischemic infarction and stenosis of intra- and extracranial arteries in young Chinese patients with ischemic stroke.

    Science.gov (United States)

    Ojha, Rajeev; Huang, Dongya; An, Hedi; Liu, Rong; Du, Cui; Shen, Nan; Tu, Zhilan; Li, Ying

    2015-11-23

    The distribution of cerebral ischemic infarction and stenosis in ischemic stroke may vary with age-group, race and gender. This study was conducted to understand the risk factors and characteristics of cerebral infarction and stenosis of vessels in young Chinese patients with ischemic stroke. This was a retrospective study, from January 2007 to July 2012, of 123 patients ≤50 years diagnosed with acute ischemic stroke. Patient characteristics were compared according to sex (98 males and 25 females) and age group (51 patients were ≤45 years and 72 patients were 46-50 years). Characteristics of acute ischemic infarction were studied by diffusion weighted imaging. Stenosis of intra- and extracranial arteries was diagnosed by duplex sonography, head magnetic resonance angiography (MRA) or cervical MRA. Common risk factors were hypertension (72.4 %), dyslipidemia (55.3 %), smoking (54.4 %) and diabetes (33.3 %). Lacunar Infarction was most common in our patients (41.5 %). Partial anterior circulation infarction was predominant in females (52.0 vs 32.7 %; P = 0.073) and posterior circulation infarction in males (19.8 vs 4 %; P = 0.073). Multiple brain infarctions were found in 38 patients (30.9 %). Small artery atherosclerosis was found in 54 patients (43.9 %), with higher prevalence in patients of the 46-50 years age-group. Intracranial stenosis was more common than extracranial stenosis, and middle cerebral artery stenosis was most prevalent (27.3 %). Stenosis in the anterior circulation was more frequent than in the posterior circulation (P young patients, hypertension, smoking, dyslipidemia and diabetes were common risk factors. Intracranial stenosis was most common. The middle cerebral artery was highly vulnerable.

  3. Protective effects of D-Limonene against transient cerebral ischemia in stroke-prone spontaneously hypertensive rats.

    Science.gov (United States)

    Wang, Xifeng; Li, Gang; Shen, Wei

    2018-01-01

    Stroke is a leading cause of disability and death world-wide and there is currently a lack of effective treatments for acute stroke. D-Limonene is a common natural monocyclic monoterpene possessing various activities. The present study aimed to evaluate the therapeutic efficacy of D-limonene against ischemia-associated cerebral injury in hypertensive SHRsp rats. Although systolic blood pressure was not altered by ischemia, D-Limonene decreased the systolic blood pressure of SHRsp rats following stroke. Induction of stroke resulted in increased escape latency time, decreased time spent in the target quadrant in the probe trial, decreased capacity to distinguish between familiar objects and novel objects, and increased sensory neglect in the SHRsp rat, however these symptoms were significantly inhibited by D-limonene. D-limonene also decreased the cerebral infarct size in the SHRsp rats following stroke. D-Limonene markedly decreased the mRNA expression of interleukin-1β, monocyte chemoattractant protein-1 and cyclooxygenase-2 in SHRsp rats following stroke. The mRNA expression of vascular endothelial growth factor in the brain of SHRsp rats following stroke was significantly increased by D-Limonene. D-Limonene increased the activities of superoxide dismutase and catalase, decreased the malondialdehyde level, increased glutathione content and reduced the DHE-staining in SHRsp rats following stroke. Overall, inhibition of cerebral inflammation, vascular remodeling and antioxidant activities of D-Limonene may be involved in the protective effects against ischemia-induced damage in SHRsp rats. The present study identified D-Limonene as a potential therapeutic candidate for treatment of stroke-associated cerebral and vascular damage under conditions of hypertension.

  4. Numerous Fusiform and Saccular Cerebral Aneurysms in Central Nervous System Lupus Presenting with Ischemic Stroke.

    Science.gov (United States)

    Majidi, Shahram; Leon Guerrero, Christopher R; Gandhy, Shreya; Burger, Kathleen M; Sigounas, Dimitri

    2017-07-01

    Central nervous system (CNS) involvement occurs in up to 50% of patients with systemic lupus erythematosus (SLE). Cerebral aneurysm formation is a rare complication of CNS lupus. The majority of these patients present with subarachnoid hemorrhage. We report a patient with an active SLE flare who presented with a recurrent ischemic stroke and was found to have numerous unruptured fusiform and saccular aneurysms in multiple vascular territories. He was treated with high-dose steroid and rituximab along with aspirin and blood pressure control for stroke prevention. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  5. Neuroprotective effect of Buddleja officinalis extract on transient middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Lee, Dae-Hee; Ha, Nina; Bu, Yung-Min; Choi, Hyoung Il; Park, Yoo Guen; Kim, Yoon Bum; Kim, Mi-Yeon; Kim, Hocheol

    2006-08-01

    The flower buds of Buddleja officinalis MAXIM (Loganiaceae) are used to treat headache and inflammatory diseases in traditional Korean medicine. In the present study, the neuroprotective effects of the methanolic extract of B. officinalis (BOME) and of its hexane fraction (BOHF) were investigated in a middle cerebral artery occlusion (MCAo, 120 min occlusion, 24 h reperfusion) Sprague-Dawley rat model. BOME or BOHF (100 mg/kg, p.o.) was twice administered 30 min before the onset of MCAo and 2 h after reperfusion. BOME and BOHF treated groups showed infarct volumes reduced by 33.9% and 68.2%, respectively, at 2 h occlusion. In BOHF treated animals, cyclooxygenase-2 and iNOS inductions were inhibited in ischemic hemispheres at both the mRNA and protein levels. Furthermore, in vitro studies showed that BOME and BOHF both inhibited LPS-induced nitric oxide production in BV-2 mouse microglial cells. These results suggest that the anti-inflammatory and the microglial activation inhibitory effects of B. officinalis extract may contribute to its neuroprotective effects in brain ischemia.

  6. Effect of NMDA Receptor Antagonist on Local Cerebral Glucose Metabolic Rate in Focal Cerebral Ischemia

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Hong, Seung Bong; Yoon, Byung Woo

    1995-01-01

    There has recently been increasing interest in the use of NMDA receptor antagonists as potential neuroprotective agents for the treatment of ischemic stroke. To evaluate the neuroprotective effect of the selective non-competitive NMDA receptor antagonist MK-801 in focal cerebral ischemia, local cerebral glucose utilization (1CGU) was examined in 15 neuroanatomically discrete regions of the conscious rat brain using the 2-deoxy-D[14C]glucose quantitative autoradiographic technique 24 hr after left middle cerebral artery occlusion (MCAO). Animals received MK-801 (5 mg/kg i.v.) or saline vehicle before (20-30 min) or after (30 min) MCAO. Both pretreatment and posttreatment of MK-801 increased occluded/non-occluded 1CGU ratio in 7 and 5 of the 15 regions measured, respectively(most notably in cortical structures). Following MK-801 pretreatment, there was evidence of widespread increases in 1CCPU not only in the non-occluded hemisphere (12 of the 15 areas studied) but also in the occluded hemisphere (13 of the 15 areas studied), while MK-801 posttreatment did not significantly increase 1CGU both in the normal and occluded hemispheres. These data indicate that MK-801 has a neuroprotective effect in focal cerebral ischemia and demonstrate that MK-801 provides widespread alterations of glucose utilization in conscious animals.

  7. Intermittent fasting attenuates inflammasome activity in ischemic stroke.

    Science.gov (United States)

    Fann, David Yang-Wei; Santro, Tomislav; Manzanero, Silvia; Widiapradja, Alexander; Cheng, Yi-Lin; Lee, Seung-Yoon; Chunduri, Prasad; Jo, Dong-Gyu; Stranahan, Alexis M; Mattson, Mark P; Arumugam, Thiruma V

    2014-07-01

    Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16h of food deprivation daily) for 4months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The Traditional Herbal Medicine, Dangkwisoo-San, Prevents Cerebral Ischemic Injury through Nitric Oxide-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2011-01-01

    Full Text Available Dangkwisoo-San (DS is an herbal extract that is widely used in traditional Korean medicine to treat traumatic ecchymosis and pain by promoting blood circulation and relieving blood stasis. However, the effect of DS in cerebrovascular disease has not been examined experimentally. The protective effects of DS on focal ischemic brain were investigated in a mouse model. DS stimulated nitric oxide (NO production in human brain microvascular endothelial cells (HBMECs. DS (10–300 μg/mL produced a concentration-dependent relaxation in mouse aorta, which was significantly attenuated by the nitric oxide synthase (NOS inhibitor L-NAME, suggesting that DS causes vasodilation via a NO-dependent mechanism. DS increased resting cerebral blood flow (CBF, although it caused mild hypotension. To investigate the effect of DS on the acute cerebral injury, C57/BL6J mice received 90 min of middle cerebral artery occlusion followed by 22.5 h of reperfusion. DS administered 3 days before arterial occlusion significantly reduced cerebral infarct size by 53.7% compared with vehicle treatment. However, DS did not reduce brain infarction in mice treated with the relatively specific endothelial NOS (eNOS inhibitor, N5-(1-iminoethyl-L-ornithine, suggesting that the neuroprotective effect of DS is primarily endothelium-dependent. This correlated with increased phosphorylation of eNOS in the brains of DS-treated mice. DS acutely improves CBF in eNOS-dependent vasodilation and reduces infarct size in focal cerebral ischemia. These data provide causal evidence that DS is cerebroprotective via the eNOS-dependent production of NO, which ameliorates blood circulation.

  9. Pharmacologicalmodification of thegabaergicsystem as a potentialvariant of cerebral protection in acute cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Олександр Володимирович Тихоновський

    2015-10-01

    Full Text Available The aim is to study the possible impact of some derivatives of gamma-aminobutyric acid (GABA, piracetam, picamilon and Krebs cycle intermediates - succinate (as sodium salt on the pathobiochemical changes in the central nervous system, that occur under experimental playing of acute ischemic tissue damage of the cerebrum.Research methods: The study was conducted in 96 rats Wistar, who were on a standardized vivarium diet. Cerebral ischemia was caused by bond of the unilateral common carotid artery. All drugs were administered intraperitoneally once daily for 4 days after modeling of an acute cerebral ischemia after which animals were withdrawn from experiment. In the brain tissues concentrations of pyruvic, izocitric, dairy and apple acids were determined. The activity of antioxidant enzymes: catalase and superoxide dysmutaza. In addition, the brain tissues the contents of lipid peroxidation products were evaluated – diene conjugates and malonic dialdehyde. Level of brain energy production was judged by the content of the adenylic nucleotide and also phosphocreatine . The degree of destruction of the brain cells was assessed by activity of the enzyme lactate dehydrogenase in the blood and brain fraction of the creatine phosphokinase.Research results: As a result of studies, on the 4th day of ischemia a significant carbohydrate metabolism is detected, which is reflected in the sharp strengthening of anaerobic glycolysis and reduced activity of the Krebs cycle reactions, as evidenced by a significant increase in quantity of lactate and decrease in quantity of malate, isocitrate and pyruvate.A sharp strengthening of anaerobic glycolysis results in the accumulation of oxidized products and intermediates especially the latter product – lactic acid. Metabolic acidosis develops against the background of energy failure, which leads to activation of lipid peroxidation reactions. Courses appointment of the cyclic derivatives of GABA piracetam

  10. Protective effect of remote limb ischemic perconditioning on the liver grafts of rats with a novel model.

    Directory of Open Access Journals (Sweden)

    Junjun Jia

    Full Text Available Remote ischemic conditioning (RIC is a known manual conditioning to decrease ischemic reperfusion injury (IRI but not increase ischemic time. Here we tried to establish a rat RIC model of liver transplantation (LT, optimize the applicable protocols and investigate the protective mechanism.The RIC model was developed by a standard tourniquet. Sprague-Dawley rats were assigned randomly to the sham operated control (N, standard rat liver transplantation (OLT and RIC groups. According to the different protocols, RIC group was divided into 3 subgroups (10 min×3, n = 6; 5 min×3, n = 6; 1 min×3, n = 6 respectively. Serum transaminases (ALT, AST, creatine kinase (CK, histopathologic changes, malondialdehyde (MDA, myeloperoxidase (MPO and expressions of p-Akt were evaluated.Compared with the OLT group, the grafts subjected to RIC 5min*3 algorithm showed significant reduction of morphological damage and improved the graft function. Also, production of reactive oxygen species (MDA and neutrophil accumulation (MPO were markedly depressed and p-Akt was upregulated.In conclusion, we successfully established a novel model of RIC in rat LT, the optimal RIC 5min*3 algorithm seemed to be more efficient to alleviate IRI of the liver graft in both functional and morphological categories, which due to its antioxidative, anti-inflammation activities and activating PI3K Akt pathway.

  11. Agonist of inward rectifier K+ channels enhances the protection of ischemic postconditioning in isolated rat hearts.

    Science.gov (United States)

    Liao, Z; Feng, Z; Long, C

    2014-07-01

    Selective inhibition of inward rectifier K + channels could abolish the protection mediated by ischemic preconditioning, but the roles of these channels in ischemic postconditioning have not been well characterized. Our study aims to evaluate the effect of inward rectifier K + channels on the protection induced by ischemic postconditioning. Langendorff-perfused rat hearts (n=8 per group) were split into four groups: postconditioning hearts (IPO group); ischemic postconditioning with BaCl 2 hearts (PB group); ischemic postconditioning with zacopride hearts (PZ group); and without ischemic postconditioning (CON group). After suffering 30 minutes of global ischemia, groups IPO, PB and PZ went through 10 seconds of ischemic postconditioning with three different perfusates: respectively, Krebs-Henseleit buffer (IPO group); 20 μmol/L BaCl 2 (antagonist of the channel, PB group); 1 μmol/L zacopride (agonist of the channel, PZ group). At the end of reperfusion, the myocardial performance was better preserved in the PZ group than the other three groups. The PB group showed no significant differences from the CON group. Our study has shown that the I K1 channel agonist zacopride is associated with the enhancement of ischemic postconditioning. © The Author(s) 2014.

  12. The preliminary study of CT cerebral perfusion imaging in transient ischemic attacks

    International Nuclear Information System (INIS)

    Lu Jie; Li Kuncheng; Du Xiangying

    2002-01-01

    Objective: To probe the application of CT cerebral perfusion imaging on transient ischemic attacks (TIA). Methods: Conventional CT and CT cerebral perfusion imaging were performed on 5 normal adults and 20 patients with clinically diagnosed TIA. After regular CT examination, dynamic scans of 40 seconds were performed on selected slice (usually on the basal ganglia slice), while 40 ml non-ionic contrast material were bolus injected through antecubital vein with. These dynamic images were processed with the 'Perfusion CT' software package on a PC based workstation. Cerebral blood flow (CBF) and time to peak (TP) enhancement were measured within specific regions of the brain on CT perfusion images. Quantitative analysis was performed for these images. Results: A gradient of perfusion between gray matter and white matter was showed on cT perfusion images in normal adults and TIA patients. CBF and TP for normal cortical and white matter were 378.2 ml·min -1 ·L -1 , 7.8 s and 112.5 ml·min -1 ·L -1 , 9.9 s, respectively. In 20 cases with TIA, persisting abnormal perfusion changes corresponding to clinical symptoms were found in 15 cases with prolonged TP. Other 5 cases showed normal results. TP of affected side (11.8 +- 4.4) s compared with that of the contralateral side (9.1 +- 3.1) s was significantly prolonged (t = 5.277, P -1 · -1 ] and contralateral side [(229.1 +- 41.4) ml·min -1 ·L -1 ]. Conclusion: Perfusion CT provides valuable hemodynamic information and shows the extent of perfusion disturbances for patients with TIA

  13. Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats' response to chronic mild stress and the effects of Notch signaling.

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    Full Text Available Our previous research highlighted an inconsistency with Notch1 signaling-related compensatory neurogenesis after chronic mild stress (CMS in rodents suffering from cerebral ischemia, which continue to display post-stroke depressive symptoms. Here, we hypothesize that CMS aggrandized ischemia-related apoptosis injury and worsened synaptic integrity via gamma secretase-meditated Notch1 signaling. Adult rats were exposed to a CMS paradigm after left middle cerebral artery occlusion (MCAO. Open-field and sucrose consumption testing were employed to assess depression-like behavior. Gene expression of pro-apoptotic Bax, anti-apoptotic Bcl-2, and synaptic density-related synaptophysin were measured by western blotting and real-time PCR on Day 28 after MCAO surgery. CMS induced depressive behaviors in ischemic rats, which was accompanied by an elevation in Bax/bcl-2 ratio, TUNEL staining in neurons and reduced synaptophysin expression in the dentate gyrus. These collective effects were reversed by the gamma-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl]-S-phenyl-glycine t-butyl ester. We found that post-stroke stressors made neurons in the dentate gyrus vulnerable to apoptosis, which supports a putative role for Notch signaling in neural integrity, potentially in newborn cells' synaptic deficit with regard to preexisting cells. These findings suggest that post-stroke depression therapeutically benefits from blocking gamma secretase mediated Notch signaling, and whether this signaling pathway could be a therapeutic target needs to be further investigated.

  14. Effects of acupuncture at GV20 and ST36 on the expression of matrix metalloproteinase 2, aquaporin 4, and aquaporin 9 in rats subjected to cerebral ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Hong Xu

    Full Text Available BACKGROUND/PURPOSE: Ischemic stroke is characterized by high morbidity and mortality worldwide. Matrix metalloproteinase 2 (MMP2, aquaporin (AQP 4, and AQP9 are linked to permeabilization of the blood-brain barrier (BBB in cerebral ischemia/reperfusion injury (CIRI. BBB disruption, tissue inflammation, and MMP/AQP upregulation jointly provoke brain edema/swelling after CIRI, while acupuncture and electroacupuncture can alleviate CIRI symptoms. This study evaluated the hypothesis that acupuncture and electroacupuncture can similarly exert neuroprotective actions in a rat model of middle cerebral artery occlusion (MCAO by modulating MMP2/AQP4/APQ9 expression and inflammatory cell infiltration. METHODS: Eighty 8-week-old Sprague-Dawley rats were randomly divided into sham group S, MCAO model group M, acupuncture group A, electroacupuncture group EA, and edaravone group ED. The MCAO model was established by placement of a suture to block the middle carotid artery, and reperfusion was triggered by suture removal in all groups except group S. Acupuncture and electroacupuncture were administered at acupoints GV20 (governing vessel-20 and ST36 (stomach-36. Rats in groups A, EA, and ED received acupuncture, electroacupuncture, or edaravone, respectively, immediately after MCAO. Neurological function (assessed using the Modified Neurological Severity Score, infarct volume, MMP2/AQP4/AQP9 mRNA and protein expression, and inflammatory cell infiltration were all evaluated at 24 h post-reperfusion. RESULTS: Acupuncture and electroacupuncture significantly decreased infarct size and improved neurological function. Furthermore, target mRNA and protein levels and inflammatory cell infiltration were significantly reduced in groups A, EA, and ED vs. group M. However, MMP2/AQP levels and inflammatory cell infiltration were generally higher in groups A and EA than in group ED except MMP2 mRNA levels. CONCLUSIONS: Acupuncture and electroacupuncture at GV20 and ST36

  15. Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats

    OpenAIRE

    Wang, Qin; Dai, Peng; Bao, Han; Liang, Ping; Wang, Wei; Xing, An; Sun, Jianbin

    2016-01-01

    Stroke is one of the leading causes of mortality worldwide. Protective agents that can diminish injuries caused by cerebral ischemia-reperfusion (I/R) are important in alleviating the harmful outcomes of stroke. The aim of the present study was to investigate the protective role of sanguinarine in cerebral I/R injury. A rat middle cerebral artery occlusion model was used to assess the clinical effect of sanguinarine, and inflammatory cytokines in the serum were detected by ELISA. Western blot...

  16. Expression of tumor necrosis factor alpha after focal cerebral ischaemia in the rat

    NARCIS (Netherlands)

    Buttini, M; Appel, K; Sauter, A; GebickeHaerter, PJ; Boddeke, HWGM

    Induction of tumor necrosis factor alpha was studied in the brain of rats after focal cerebral ischaemia by occlusion of the left middle cerebral artery. Using a specific antisense riboprobe for in situ hybridization histochemistry, cells positive for tumor necrosis factor alpha messenger RNA were

  17. Identification of proteins regulated by ferulic acid in a middle cerebral artery occlusion animal model-a proteomics approach.

    Science.gov (United States)

    Sung, Jin-Hee; Cho, Eun-Hae; Cho, Jae-Hyeon; Won, Chung-Kil; Kim, Myeong-Ok; Koh, Phil-Ok

    2012-11-01

    Ferulic acid plays a neuroprotective role in cerebral ischemia. The aim of this study was to identify the proteins that are differentially expressed following ferulic acid treatment during ischemic brain injury using a proteomics technique. Middle cerebral artery occlusion (MCAO) was performed to induce a focal cerebral ischemic injury in adult male rats, and ferulic acid (100 mg/kg) or vehicle was administered immediately after MCAO. Brain tissues were collected 24 hr after MCAO. The proteins in the cerebral cortex were separated using two-dimensional gel electrophoresis and were identified by mass spectrometry. We detected differentially expressed proteins between vehicle- and ferulic acid-treated animals. Adenosylhomocysteinase, isocitrate dehydrogenase [NAD(+)], mitogen-activated protein kinase kinase 1 and glyceraldehyde-3-phosphate dehydrogenase were decreased in the vehicle-treated group, and ferulic acid prevented the injury-induced decreases in these proteins. However, pyridoxal phosphate phosphatase and heat shock protein 60 were increased in the vehicle-treated group, while ferulic acid prevented the injury-induced increase in these proteins. It is accepted that these enzymes are involved in cellular metabolism and differentiation. Thus, these findings suggest evidence that ferulic acid plays a neuroprotective role against focal cerebral ischemia through the up- and down-modulation of specific enzymes.

  18. Chinese herbal formula Tongluo Jiunao injection protects against cerebral ischemia by activating neurotrophin 3/tropomyosin-related kinase C pathway

    Directory of Open Access Journals (Sweden)

    Peiman Alesheikh

    2015-01-01

    Full Text Available The Chinese herbal formula Tongluo Jiunao, containing the active components Panax notoginseng and Gardenia jasminoides, has recently been patented and is in use clinically. It is known to be neuroprotective in cerebral ischemia, but the underlying pathway remains poorly understood. In the present study, we established a rat model of cerebral ischemia by occlusion of the middle cerebral artery, and administered Tongluo Jiunao, a positive control (Xuesai Tong, containing Panax notoginseng or saline intraperitoneally to investigate the pathway involved in the action of Tongluo Jiunao injection. 2,3,5-Triphenyltetrazolium chloride (TTC staining showed that the cerebral infarct area was significantly smaller in model rats that received Tongluo Jiunao than in those that received saline. Enzyme-linked immunosorbent assay revealed significantly greater expression of neurotrophin 3 and growth-associated protein 43 in ischemic cerebral tissue, and serum levels of neurotrophin 3, in the Tongluo Jiunao group than in the saline group. The reverse transcription polymerase chain reaction and immunohistochemical staining showed that after treatment with Tongluo Jiunao or Xuesai Tong, tropomyosin-related kinase C gene expression and immunoreactivity were significantly elevated compared with saline, with the greatest expression observed after Tongluo Jiunao treatment. These findings suggest that Tongluo Jiunao injection exerts a neuroprotective effect in rats with cerebral ischemia by activating the neurotrophin 3/tropomyosin-related kinase C pathway.

  19. Cerebral angiographic findings in thromboangiitis obliterans

    International Nuclear Information System (INIS)

    No, Young J.; Lee, Eun M.; Kim, Jong S.; Lee, Deok H.

    2005-01-01

    Transient ischemic attacks (TIAs) or ischemic stroke may complicate thromboangiitis obliterans (TAO). However, there has been debate regarding the mechanism of ischemic stroke in TAO. We report the case of a patient with TAO who developed repeated TIAs. An angiogram showed multiple alternative areas of arterial occlusions in the distal segments of both middle cerebral arteries. Extensive collateral vessels around the occluded segment were also observed, which resembled the ''tree root'' or ''corkscrew'' vessels described in the peripheral arteries in TAO. Our patient illustrates that cerebral manifestations of TAO may occur with vascular changes that are identical with those encountered in the limb arteries in TAO. (orig.)

  20. Therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Guo, Chao; Zhu, Yanrong; Weng, Yan; Wang, Shiquan; Guan, Yue; Wei, Guo; Yin, Ying; Xi, Miaomaio; Wen, Aidong

    2014-01-01

    Breviscapine injection is a Chinese herbal medicine standardized product extracted from Erigeron breviscapus (Vant.) Hand.-Mazz. It has been widely used for treating cardiovascular and cerebrovascular diseases. However, the therapeutic time window and the action mechanism of breviscapine are still unclear. The present study was designed to investigate the therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemic/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2h followed by 24h of reperfusion. Experiment part 1 was used to investigate the therapeutic time window of breviscapine. Rats were injected intravenously with 50mg/kg breviscapine at different time-points of reperfusion. After 24h of reperfusion, neurologic score, infarct volume, brain water content and serum level of neuron specific enolase (NSE) were measured in a masked fashion. Part 2 was used to explore the therapeutic mechanism of breviscapine. 4-Hydroxy-2-nonenal (4-HNE), 8-hydroxyl-2'- deoxyguanosine (8-OHdG) and the antioxidant capacity of ischemia cortex were measured by ELISA and ferric-reducing antioxidant power (FRAP) assay, respectively. Immunofluorescence and western blot analysis were used to analyze the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Part 1: breviscapine injection significantly ameliorated neurologic deficit, reduced infarct volume and water content, and suppressed the levels of NSE in a time-dependent manner. Part 2: breviscapine inhibited the increased levels of 4-HNE and 8-OHdG, and enhanced the antioxidant capacity of cortex tissue. Moreover, breviscapine obviously raised the expression of Nrf2 and HO-1 proteins after 24h of reperfusion. The therapeutic time window of breviscapine injection for cerebral ischemia/reperfusion injury seemed to be within 5h after reperfusion. By up-regulating the expression of Nrf2/HO-1 pathway

  1. Reduced microvascular volume and hemispherically deficient vasoreactivity to hypercapnia in acute ischemia: MRI study using permanent middle cerebral artery occlusion rat model.

    Science.gov (United States)

    Suh, J Y; Shim, Woo H; Cho, Gyunggoo; Fan, Xiang; Kwon, Seon J; Kim, Jeong K; Dai, George; Wang, Xiaoying; Kim, Young R

    2015-06-01

    Vasoreactivity to hypercapnia has been used for assessing cerebrovascular tone and control altered by ischemic stroke. Despite the high prognostic potential, traits of hypercapnia-induced hemodynamic changes have not been fully characterized in relation with baseline vascular states and brain tissue damage. To monitor cerebrovascular responses, T2- and T2*-weighted magnetic resonance imaging (MRI) images were acquired alternatively using spin- and gradient-echo echo plannar imaging (GESE EPI) sequence with 5% CO2 gas inhalation in normal (n=5) and acute stroke rats (n=10). Dynamic relative changes in cerebrovascular volume (CBV), microvascular volume (MVV), and vascular size index (VSI) were assessed from regions of interest (ROIs) delineated by the percent decrease of apparent diffusion coefficient (ADC). The baseline CBV was not affected by middle cerebral artery occlusion (MCAO) whereas the baseline MVV in ischemic areas was significantly lower than that in the rest of the brain and correlated with ADC. Vasoreactivity to hypercapnic challenge was considerably attenuated in the entire ipsilesional hemisphere including normal ADC regions, in which unsolicited, spreading depression-associated increases of CBV and MVV were observed. The lesion-dependent inhomogeneity in baseline MVV indicates the effective perfusion reserve for accurately delineating the true ischemic damage while the cascade of neuronal depolarization is probably responsible for the hemispherically lateralized changes in overall neurovascular physiology.

  2. The effect of S. pneumoniae bacteremia on cerebral blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Pedersen, Michael; Brandt, Christian T.; Knudsen, Gitte Moos

    2008-01-01

    during incremental reductions in cerebral perfusion pressure (CPP) by controlled hemorrhage. Autoregulation was preserved in all rats without meningitis (groups A and E) and was lost in 24 of 25 meningitis rats (groups B, C, and D) (P

  3. In vivo experimental stroke and in vitro organ culture induce similar changes in vasoconstrictor receptors and intracellular calcium handling in rat cerebral arteries

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Waldsee, Roya; Ahnstedt, Hilda

    2012-01-01

    Cerebral arteries subjected to different types of experimental stroke upregulate their expression of certain G-protein-coupled vasoconstrictor receptors, a phenomenon that worsens the ischemic brain damage. Upregulation of contractile endothelin B (ET(B)) and 5-hydroxytryptamine 1B (5-HT(1B......)) receptors has been demonstrated after subarachnoid hemorrhage and global ischemic stroke, but the situation is less clear after focal ischemic stroke. Changes in smooth muscle calcium handling have been implicated in different vascular diseases but have not hitherto been investigated in cerebral arteries...... and extracellular sources, whereas 5-HT(1B) receptor-mediated contraction was solely dependent on extracellular calcium. Organ culture and stroke increased basal intracellular calcium levels in MCA smooth muscle cells and decreased the expression of inositol triphosphate receptor and transient receptor potential...

  4. Is higher body temperature beneficial in ischemic stroke patients with normal admission CT angiography of the cerebral arteries?

    Science.gov (United States)

    Kvistad, Christopher Elnan; Khanevski, Andrej; Nacu, Aliona; Thomassen, Lars; Waje-Andreassen, Ulrike; Naess, Halvor

    2014-01-01

    Low body temperature is considered beneficial in ischemic stroke due to neuroprotective mechanisms, yet some studies suggest that higher temperatures may improve clot lysis and outcomes in stroke patients treated with tissue plasminogen activator (tPA). The effect of increased body temperature in stroke patients treated with tPA and with normal computed tomography angiography (CTA) on admission is unknown. We hypothesized a beneficial effect of higher body temperature in the absence of visible clots on CTA, possibly due to enhanced lysis of small, peripheral clots. Patients with ischemic stroke admitted to our Stroke Unit between February 2006 and April 2013 were prospectively registered in a database (Bergen NORSTROKE Registry). Ischemic stroke patients treated with tPA with normal CTA of the cerebral arteries were included. Outcomes were assessed by the modified Rankin Scale (mRS) after 1 week. An excellent outcome was defined as mRS=0, and a favorable outcome as mRS=0-1. A total of 172 patients were included, of which 48 (27.9%) had an admission body temperature ≥37.0°C, and 124 (72.1%) had a body temperature temperature ≥37.0°C was independently associated with excellent outcomes (odds ratio [OR]: 2.8; 95% confidence interval [CI]: 1.24-6.46; P=0.014) and favorable outcomes (OR: 2.8; 95% CI: 1.13-4.98; P=0.015) when adjusted for confounders. We found an association between higher admission body temperature and improved outcome in tPA-treated stroke patients with normal admission CTA of the cerebral arteries. This may suggest a beneficial effect of higher body temperature on clot lysis in the absence of visible clots on CTA.

  5. Resistance to Reperfusion Injury Following Short Term Postischemic Administration of Natural Honey in Globally Ischemic Isolated Rat Heart

    OpenAIRE

    Haleh Vaez; Mehrban Samadzadeh; Fahimeh Zahednezhad; Moslem Najafi

    2012-01-01

    Purpose: Results of our previous study revealed that preischemic perfusion of honey before zero flow global ischemia had cardioprotective effects in rat. The present study investigated potential resistance to reperfusion injury following short term postischemic administration of natural honey in globally ischemic isolated rat heart. Methods: Male Wistar rats were divided into five groups (n=10-13). The rat hearts were isolated, mounted on a Langendorff apparatus, allowed to equilibra...

  6. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Ying-bo Li

    2015-01-01

    Full Text Available Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 µM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent experiments. Whole-cell patch clamp showed that neural stem cells induced by 20 µM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypoxic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  7. Reduction of superoxide dismutase activity correlates with visualization of edema by T2-weighted MR imaging in focal ischemic rat brain

    International Nuclear Information System (INIS)

    Imaizumi, Shigeki; Chang, LeeHong; Cohen, Yoram; Chan, P.H.; Weinstein, P.R.; James, T.L.; Yoshimoto, Takashi.

    1994-01-01

    This study investigated the correlation between in vivo serial T 2 -weighted magnetic resonance (MR) imaging and changes in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, and water, sodium ion (Na + ), and potassium ion (K + ) contents measured in vitro using rat brain following right middle cerebral artery occlusion in conjunction with bilateral common carotid artery (CCA) occlusion. One hour later the left CCA was released. Serial MR images showed edema developed from the outer cortex towards the center. The T 2 signal intensity of the injured right cortex increased with time compared to that of the contralateral cortex. Increased Na + and water and decreased K + contents occurred in the injured cortex, indicating that serial T 2 -weighted MR imaging reflects the changes in water content and Na + and K + concentrations determined by biochemical techniques. GSH-Px activity was little changed. Total SOD in the injured cortex decreased 1 hour after ischemia and remained low throughout the experiment. In contrast, SOD activity in the noninfarcted left cortex also decreased after 1 hour but returned to normal after 2 hours of ischemia. Our results suggest that oxygen free radicals are important in developing ischemic brain edema and cerebral infarction. (author)

  8. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    Directory of Open Access Journals (Sweden)

    Edvinsson Lars

    2008-09-01

    Full Text Available Abstract Background MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2. Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA leading to the ischemic region. Here we explored the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126. Methods and result Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO followed by reperfusion for 48-h and the ischemic area was calculated. The expression of phosphorylated ERK1/2 and Elk-1, and of endothelin ETA and ETB, angiotensin AT1, and 5-hydroxytryptamine 5-HT1B receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ETB receptor was analyzed by quantitative Western blot. We demonstrate that there is an increase in the number of contractile smooth muscle receptors in the MCA and in micro- vessels within the ischemic region. The enhanced expression occurs in the smooth muscle cells as verified by co-localization studies. This receptor upregulation is furthermore associated with enhanced expression of pERK1/2 and of transcription factor pElk-1 in the vascular smooth muscle cells. Blockade of transcription with the MEK1 inhibitor U0126, given at the onset of reperfusion or as late as 6 hours after the insult, reduced transcription (pERK1/2 and pElk-1, the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score. Conclusion Our results show that MCAO results in upregulation of cerebrovascular ETB, AT1 and 5-HT1B receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced the enhanced vascular receptor expression and the associated cerebral infarction.

  9. Microangiographic study of the normal anatomy of the cerebral venous system in rats

    International Nuclear Information System (INIS)

    Schumacher, M.

    1984-01-01

    Microangiographic serial cuts were performed in 20 Sprague-Dawley rats for a systematic study of the normal anatomy of the cerebral veins. The draining pathways of the cerebral and cerebellar cortex, basal ganglia, hypothalamus, hippocampus and the midbrain are described and discussed with regard to their different functions. (orig.)

  10. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats.

    Directory of Open Access Journals (Sweden)

    Aparajita Ghosh

    Full Text Available Cerebral stroke is the leading cause of death and permanent disability among elderly people. In both humans and animals, cerebral ischemia damages the nerve cells in vulnerable regions of the brain, viz., hippocampus, cerebral cortex, cerebellum, and hypothalamus. The present study was conducted to evaluate the therapeutic efficacy of nanoencapsulated quercetin (QC in combating ischemia-reperfusion-induced neuronal damage in young and aged Swiss Albino rats. Cerebral ischemia was induced by occlusion of the common carotid arteries of both young and aged rats followed by reperfusion. Nanoencapsulated quercetin (2.7 mg/kg b wt was administered to both groups of animals via oral gavage two hours prior to ischemic insults as well as post-operation till day 3. Cerebral ischemia and 30 min consecutive reperfusion caused a substantial increase in lipid peroxidation, decreased antioxidant enzyme activities and tissue osmolality in different brain regions of both groups of animals. It also decreased mitochondrial membrane microviscosity and increased reactive oxygen species (ROS generation in different brain regions of young and aged rats. Among the brain regions studied, the hippocampus appeared to be the worst affected region showing increased upregulation of iNOS and caspase-3 activity with decreased neuronal count in the CA1 and CA3 subfields of both young and aged rats. Furthermore, three days of continuous reperfusion after ischemia caused massive damage to neuronal cells. However, it was observed that oral treatment of nanoencapsulated quercetin (2.7 mg/kg b wt resulted in downregulation of iNOS and caspase-3 activities and improved neuronal count in the hippocampal subfields even 3 days after reperfusion. Moreover, the nanoformulation imparted a significant level of protection in the antioxidant status in different brain regions, thus contributing to a better understanding of the given pathophysiological processes causing ischemic neuronal damage.

  11. Experimental study of icariin on vascular dementia in rats induced by 2-VO method

    Institute of Scientific and Technical Information of China (English)

    Rui-xiaXU; QinWU; Jing-shanSHI

    2004-01-01

    AIM: To study the effects of icariin (ICA) on the learning and memory of ischemic vascular dementia (VD) model of rats,and explore the protective mechanisms. METHODS: ICA was administered to the VD model rats induced by a permanent bilateral occlusion of both common carotids arteries(2-VO method) and by cerebral ischemia-reperfusion (I10-R 10-110 method). Morris water maze was used to examine the abilities of spatial learning and memory of VD model rats. The activity of SOD, level of

  12. Impaired cardiac ischemic tolerance in spontaneously hypertensive rats is attenuated by adaptation to chronic and acute stress.

    Science.gov (United States)

    Ravingerová, T; Bernátová, I; Matejíková, J; Ledvényiová, V; Nemčeková, M; Pecháňová, O; Tribulová, N; Slezák, J

    2011-01-01

    Chronic hypertension may have a negative impact on the myocardial response to ischemia. On the other hand, intrinsic ischemic tolerance may persist even in the pathologically altered hearts of hypertensive animals, and may be modified by short- or long-term adaptation to different stressful conditions. The effects of long-term limitation of living space (ie, crowding stress [CS]) and brief ischemia-induced stress on cardiac response to ischemia/reperfusion (I/R) injury are not yet fully characterized in hypertensive subjects. The present study was designed to test the influence of chronic and acute stress on the myocardial response to I/R in spontaneously hypertensive rats (SHR) compared with their effects in normotensive counterparts. In both groups, chronic, eight-week CS was induced by caging five rats per cage in cages designed for two rats (200 cm(2)/rat), while controls (C) were housed four to a cage in cages designed for six animals (480 cm(2)/rat). Acute stress was evoked by one cycle of I/R (5 min each, ischemic preconditioning) before sustained I/R in isolated Langendorff-perfused hearts of normotensive and SHR rats. At baseline conditions, the effects of CS were manifested only as a further increase in blood pressure in SHR, and by marked limitation of coronary perfusion in normotensive animals, while no changes in heart mechanical function were observed in any of the groups. Postischemic recovery of contractile function, severity of ventricular arrhythmias and lethal injury (infarction size) were worsened in the hypertrophied hearts of C-SHR compared with normotensive C. However, myo-cardial stunning and reperfusion-induced ventricular arrhythmias were attenuated by CS in SHR, which was different from deterioration of I/R injury in the hearts of normotensive animals. In contrast, ischemic preconditioning conferred an effective protection against I/R in both groups, although the extent of anti-infarct and anti-arrhythmic effects was lower in SHR. Both

  13. Involvement of CCR-2 chemokine receptor activation in ischemic preconditioning and postconditioning of brain in mice.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Thakur Gurjeet

    2012-10-01

    The present study has been designed to investigate the potential role of CCR-2 chemokine receptor in ischemic preconditioning as well as postconditioning induced reversal of ischemia-reperfusion injury in mouse brain. Bilateral carotid artery occlusion of 17 min followed by reperfusion for 24h was employed in present study to produce ischemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using elevated plus-maze test and Morris water maze test. Rota rod test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired memory and motor co-ordination. Three preceding episodes of bilateral carotid artery occlusion for 1 min and reperfusion of 1 min were employed to elicit ischemic preconditioning of brain, while three episodes of bilateral carotid artery occlusion for 10s and reperfusion of 10s immediately after the completion of were employed to elicit ischemic postconditioning of brain. Both prior ischemic preconditioning as well as ischemic postconditioning immediately after global cerebral ischemia prevented markedly ischemia-reperfusion-induced cerebral injury as measured in terms of infarct size, loss of memory and motor coordination. RS 102895, a selective CCR-2 chemokine receptor antagonist, attenuated the neuroprotective effect of both the ischemic preconditioning as well as postconditioning. It is concluded that the neuroprotective effect of both ischemic preconditioning as well as ischemic postconditioning may involve the activation of CCR-2 chemokine receptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Advances of 11C-flumazenil receptor imaging in ischemic penumbra

    International Nuclear Information System (INIS)

    Zhang Jun

    2004-01-01

    The ischemic penumbra is the target of therapy for ischemic stroke patients, so it is extremely important to investigate an imaging technique that may identify accurately the viability of cerebral tissues early. The neuroreceptor imaging with positron emission tomography has achieved some successes in this study field, in particular, the 11 C-flumazenil receptor imaging, which can not only differentiate between the neurons of functional impairment and those of morphological destruction, and then distinguish the ischemic penumbra from the irreversible damage tissues, but predict the malignant course of cerebral infarction. Consequently, these will help to select the patients benefiting from the intervention therapy and plan effectively the therapeutic strategies. (authors)

  15. PET imaging of cerebral perfusion and oxygen consumption in acute ischemic stroke: Relation to outcome

    International Nuclear Information System (INIS)

    Marchal, G.; Serrati, C.; Rioux, P.; Petit-Taboue, M.C.; Viader, F.; Sayette, V. de la; Doze, F. le; Lonchon, P; Derlon, J.M.; Orgogozo, J.M.; Baron, J.C.

    1993-01-01

    The authors used positron emission tomography (PET) to assess the relation between combined imaging of cerebral blood flow and oxygen consumption 5-18 h after first middle cerebral artery (MCA) stroke and neurological outcome at 2 months. All 18 patients could be classified into three visually defined PET patterns of perfusion and oxygen consumption changes. Pattern 1 suggested extensive irreversible damage and was consistently associated with poor outcome. Pattern 2 suggested continuing ischemia and was associated with variable outcome. Pattern 3 with hyperperfusion and little or no metabolic alteration, was associated with excellent recovery, which suggests that early reperfusion is beneficial. This relation between PET and outcome was highly significant. The results suggest that within 5-18 h of stroke onset, PET is a good predictor of outcome in patterns 1 and 3, for which therapy seems limited. The absence of predictive value for pattern 2 suggests that it is due to a reversible ischemic state that is possibly amenable to therapy. These findings may have important implications for acute MCA stroke management and for patients' selection for therapeutic trials

  16. Long-term evolution of cerebral hemodynamics after brain irradiation in the rat

    International Nuclear Information System (INIS)

    Keyeux, A.; Ochrymowicz-Bemelmans, D.

    1985-01-01

    Long-term evolution of radioisotope indices, evaluating respectively the cerebral blood flow (CBF), the cerebral blood volume (CBV) and the cephalic specific distribution space of iodoantipyrine (ΔIAP) of rat, was studied after brain irradiation at 20 Gy. Radioinduced hemodynamic alterations evidenced by this approach are biphasic and support the prominent role of circulation impairment in the genesis of delayed brain radionecrosis [fr

  17. Manejo da hipertensão arterial na isquemia cerebral aguda Management of arterial hypertension in patients with acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    WALTER JOSÉ FAGUNDES-PEREYRA

    1999-12-01

    Full Text Available OBJETIVO: Avaliar o nível de conhecimento dos médicos, através de sua conduta, em paciente com quadro de hipertensão arterial na fase aguda da isquemia cerebral. Também comentamos as principais condutas nesta fase, com ênfase na tensão arterial (TA. MÉTODO: Foram entrevistados 120 médicos da clínica médica e da cirurgia geral, em dez dos maiores Hospitais de Belo Horizonte, em 1997. Todos responderam a um questionário contendo um caso clínico de paciente hipertenso leve, admitido com quadro de isquemia cerebral e tensão arterial de 186x110 mmHg. Os profissionais deveriam optar por reduzir, aumentar ou manter a TA. RESULTADOS: Dos entrevistados, 38 (31,7% responderam que reduziriam os níveis tensionais, 82 (68,3% optaram pela manutenção e nenhum aumentaria (pPURPOSE: We aimed with study to assess the current clinical practice about the management of high blood pressure in patients in the acute phase of ischemic stroke. We also comment some topics of ischemic stroke treatment. METHODS: A case report of a patient admitted 8 hours after onset of ischemic stroke and with blood pressure of 186x110 mmHg was presented to 120 surgeons and clinician. They were asked to decide the best therapeutic option: to increase, decrease or maintenance blood pressure. RESULTS: Thirty-eight physicians (31,7% considered decreasing blood pressure the best therapeutics, 82 (68,3% considered maintenance and none decided to increase it (p < 0.05. There was no difference between the two specialties conduct. The physicians, with more than 10 years of graduation, had a tendency to decrease the blood pressure (p <0.05. CONCLUSION: The maintenance of blood pressure may present a sufficient blood support to compensate brain flow. A high percentage of the physicians (31,7% do not know about the current concepts of therapeutics considering hypertension in acute ischemic stroke. The development on special units to treat these patients ("stroke units" may eventually

  18. Ischemic tolerance modulates TRAIL expression and its receptors and generates a neuroprotected phenotype.

    Science.gov (United States)

    Cantarella, G; Pignataro, G; Di Benedetto, G; Anzilotti, S; Vinciguerra, A; Cuomo, O; Di Renzo, G F; Parenti, C; Annunziato, L; Bernardini, R

    2014-07-17

    TNF-related apoptosis inducing ligand (TRAIL), a member of the TNF superfamily released by microglia, appears to be involved in the induction of apoptosis following focal brain ischemia. Indeed, brain ischemia is associated with progressive enlargement of damaged areas and prominent inflammation. As ischemic preconditioning reduces inflammatory response to brain ischemia and ameliorates brain damage, the purpose of the present study was to evaluate the role of TRAIL and its receptors in stroke and ischemic preconditioning and to propose, by modulating TRAIL pathway, a new therapeutic strategy in stroke. In order to achieve this aim a rat model of harmful focal ischemia, obtained by subjecting animals to 100 min of transient occlusion of middle cerebral artery followed by 24 h of reperfusion and a rat model of ischemic preconditioning in which the harmful ischemia was preceded by 30 mins of tMCAO, which represents the preconditioning protective stimulus, were used. Results show that the neuroprotection elicited by ischemic preconditioning occurs through both upregulation of TRAIL decoy receptors and downregulation of TRAIL itself and of its death receptors. As a counterproof, immunoneutralization of TRAIL in tMCAO animals resulted in significant restraint of tissue damage and in a marked functional recovery. Our data shed new light on the mechanisms that propagate ongoing neuronal damage after ischemia in the adult mammalian brain and provide new molecular targets for therapeutic intervention. Strategies aimed to repress the death-inducing ligands TRAIL, to antagonize the death receptors, or to activate the decoy receptors open new perspectives for the treatment of stroke.

  19. Rehabilitation Outcomes: Ischemic versus Hemorrhagic Strokes.

    Science.gov (United States)

    Perna, Robert; Temple, Jessica

    2015-01-01

    Background. Ischemic and hemorrhagic strokes have different pathophysiologies and possibly different long-term cerebral and functional implications. Hemorrhagic strokes expose the brain to irritating effects of blood and ischemic strokes reflect localized or diffuse cerebral vascular pathology. Methods. Participants were individuals who suffered either an ischemic (n = 172) or hemorrhagic stroke (n = 112) within the past six months and were involved in a postacute neurorehabilitation program. Participants completed three months of postacute neurorehabilitation and the Mayo Portland Adaptability Inventory-4 (MPAI-4) at admission and discharge. Admission MPAI-4 scores and level of functioning were comparable. Results. Group ANOVA comparisons show no significant group differences at admission or discharge or difference in change scores. Both groups showed considerably reduced levels of productivity/employment after discharge as compared to preinjury levels. Conclusions. Though the pathophysiology of these types of strokes is different, both ultimately result in ischemic injuries, possibly accounting for lack of findings of differences between groups. In the present study, participants in both groups experienced similar functional levels across all three MPAI-4 domains both at admission and discharge. Limitations of this study include a highly educated sample and few outcome measures.

  20. Rehabilitation Outcomes: Ischemic versus Hemorrhagic Strokes

    Directory of Open Access Journals (Sweden)

    Robert Perna

    2015-01-01

    Full Text Available Background. Ischemic and hemorrhagic strokes have different pathophysiologies and possibly different long-term cerebral and functional implications. Hemorrhagic strokes expose the brain to irritating effects of blood and ischemic strokes reflect localized or diffuse cerebral vascular pathology. Methods. Participants were individuals who suffered either an ischemic (n=172 or hemorrhagic stroke (n=112 within the past six months and were involved in a postacute neurorehabilitation program. Participants completed three months of postacute neurorehabilitation and the Mayo Portland Adaptability Inventory-4 (MPAI-4 at admission and discharge. Admission MPAI-4 scores and level of functioning were comparable. Results. Group ANOVA comparisons show no significant group differences at admission or discharge or difference in change scores. Both groups showed considerably reduced levels of productivity/employment after discharge as compared to preinjury levels. Conclusions. Though the pathophysiology of these types of strokes is different, both ultimately result in ischemic injuries, possibly accounting for lack of findings of differences between groups. In the present study, participants in both groups experienced similar functional levels across all three MPAI-4 domains both at admission and discharge. Limitations of this study include a highly educated sample and few outcome measures.

  1. The Long-Term Outcome Comparison of Different Time-Delayed Kallikrein Treatments in a Mouse Cerebral Ischemic Model

    Directory of Open Access Journals (Sweden)

    Yaohui Ni

    2018-01-01

    Full Text Available Delayed administration of kallikrein after cerebral infarction can improve neurological function. However, the appropriate kallkrein treatment time after ischemic stroke has not been illuminated. In this study, we compared the long-term outcome among three kallikrein therapeutic regimens starting at different time points following mouse cerebral ischemia. Furthermore, the protective mechanisms involving neurogenesis, angiogenesis, and AKT-GSK3β-VEGF signaling pathway were analyzed. Human tissue kallikrein was injected through the tail vein daily starting at 8 h, 24 h, or 36 h after right middle cerebral artery occlusion (MCAO until the 28th day. Three therapeutic regimens all protected against neurological dysfunction, but kallikrein treatment starting at 8 h after MCAO had the best efficacy. Additionally, kallikrein treatment at 8 h after MCAO significantly enhanced cell proliferation including neural stem cell and induced differentiation of neural stem cell into mature neuron. Kallikrein treatment starting at 8 h also promoted more angiogenesis than other two treatment regimens, which was associated with AKT-GSK3β-VEGF signaling pathway. Thus, we confirm that three delayed kallikrein treatments provide protection against cerebral infarction and furthermore suggest that kallikrein treatment starting at 8 h had a better effect than that at 24 h and 36 h. These findings provide the experimental data contributing to better clinical application of exogenous kallikrein.

  2. Neuronal network disturbance after focal ischemia in rats

    International Nuclear Information System (INIS)

    Kataoka, K.; Hayakawa, T.; Yamada, K.; Mushiroi, T.; Kuroda, R.; Mogami, H.

    1989-01-01

    We studied functional disturbances following left middle cerebral artery occlusion in rats. Neuronal function was evaluated by [14C]2-deoxyglucose autoradiography 1 day after occlusion. We analyzed the mechanisms of change in glucose utilization outside the infarct using Fink-Heimer silver impregnation, axonal transport of wheat germ agglutinin-conjugated-horseradish peroxidase, and succinate dehydrogenase histochemistry. One day after occlusion, glucose utilization was remarkably reduced in the areas surrounding the infarct. There were many silver grains indicating degeneration of the synaptic terminals in the cortical areas surrounding the infarct and the ipsilateral cingulate cortex. Moreover, in the left thalamus where the left middle cerebral artery supplied no blood, glucose utilization significantly decreased compared with sham-operated rats. In the left thalamus, massive silver staining of degenerated synaptic terminals and decreases in succinate dehydrogenase activity were observed 4 and 5 days after occlusion. The absence of succinate dehydrogenase staining may reflect early changes in retrograde degeneration of thalamic neurons after ischemic injury of the thalamocortical pathway. Terminal degeneration even affected areas remote from the infarct: there were silver grains in the contralateral hemisphere transcallosally connected to the infarct and in the ipsilateral substantia nigra. Axonal transport study showed disruption of the corticospinal tract by subcortical ischemia; the transcallosal pathways in the cortex surrounding the infarct were preserved. The relation between neural function and the neuronal network in the area surrounding the focal cerebral infarct is discussed with regard to ischemic penumbra and diaschisis

  3. [Relation between expression of cerebral beta-APP in the chronic alcoholism rats and death caused by TSAH].

    Science.gov (United States)

    Wei, Lai; Lei, Huai-Cheng; Yu, Xiao-Jun; Lai, Xiao-Ping; Qian, Hong; Xu, Xiao-Hu; Zhu, Fang-Cheng

    2013-04-01

    By observing the cerebral beta-amyloid precursor protein (beta-APP) expression in the chronic alcoholism rats with slight cerebral injury, to discuss the correlation of chronic alcoholism and death caused by traumatic subarachnoid haemorrhage (TSAH). Sixty male SD rats were randomly divided into watering group, watering group with strike, alcoholism group and alcoholism group with strike. Among them, the alcohol was used for continuous 4 weeks in alcoholism groups and the concussion was made in groups with strike. In each group, HE staining and immunohistochemical staining of the cerebral tissues were done and the results were analyzed by the histopathologic image system. In watering group, there was no abnormal. In watering group with strike, mild neuronic congestion was found. In alcoholism group, vascular texture on cerebral surface was found. And the neurons arranged in disorder with dilated intercellular space. In alcoholism group with strike, diffuse congestion on cerebral surface was found. And there was TSAH with thick-layer patches around brainstem following irregular axonotmesis. The quantity of beta-APP IOD in alcoholism group was significantly higher in the frontal lobe, hippocampus, cerebellum, brainstem than those in watering group with strike and alcoholism group with strike. The cerebral tissues with chronic alcoholism, due to the decreasing tolerance, could cause fatal TSAH and pathological changes in cerebral tissues of rats under slight cerebral injury.

  4. Protective effect of estrogen in endothelin-induced middle cerebral artery occlusion in female rats.

    Science.gov (United States)

    Glendenning, Michele L; Lovekamp-Swan, Tara; Schreihofer, Derek A

    2008-11-14

    Estrogen is a powerful endogenous and exogenous neuroprotective agent in animal models of brain injury, including focal cerebral ischemia. Although this protection has been demonstrated in several different treatment and injury paradigms, it has not been demonstrated in focal cerebral ischemia induced by intraparenchymal endothelin-1 injection, a model with many advantages over other models of experimental focal ischemia. Reproductively mature female Sprague-Dawley rats were ovariectomized and divided into placebo and estradiol-treated groups. Two weeks later, halothane-anesthetized rats underwent middle cerebral artery (MCA) occlusion by interparenchymal stereotactic injection of the potent vasoconstrictor endothelin 1 (180pmoles/2microl) near the middle cerebral artery. Laser-Doppler flowmetry (LDF) revealed similar reductions in cerebral blood flow in both groups. Animals were behaviorally evaluated before, and 2 days after, stroke induction, and infarct size was evaluated. In agreement with other models, estrogen treatment significantly reduced infarct size evaluated by both TTC and Fluoro-Jade staining and behavioral deficits associated with stroke. Stroke size was significantly correlated with LDF in both groups, suggesting that cranial perfusion measures can enhance success in this model.

  5. Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic [14C]iodoantipyrine technique in freely moving rats

    International Nuclear Information System (INIS)

    Nehlig, A.; Pereira de Vasconcelos, A.; Boyet, S.

    1989-01-01

    The postnatal changes in local cerebral blood flow in freely moving rats were measured by means of the quantitative autoradiographic [ 14 C]iodoantipyrine method. The animals were studied at 10, 14, 17, 21 and 35 days and at the adult stage. At 10 days after birth, rates of blood flow were very low and quite homogeneous in most cerebral structures except in a few posterior areas. From these relatively uniform levels, values of local cerebral blood flow rose notably to reach a peak at 17 days in all brain regions studied. Rates of blood flow decreased between 17 and 21 days after birth and then increased from weaning time to reach the known characteristic distribution of the adult rat. The postnatal evolution of local cerebral blood in the rat is in good agreement with previous studies in other species such as dog and humans that also show higher rates of cerebral blood flow and glucose utilization at immature stages. However, in the rat, local cerebral blood flow and local cerebral glucose utilization are not coupled over the whole postnatal period studied, since blood flow rates reach peak values at 17 days whereas glucose utilization remains still quite low at that stage. The high rate of cerebral blood flow in the 17-day-old rat may reflect the energetic and biosynthetic needs of the actively developing brain that are completed by the summation of glucose and ketone body utilization

  6. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    Science.gov (United States)

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  7. MRI of cerebral ischaemia in rats with occlusion of the middle cerebral artery

    International Nuclear Information System (INIS)

    Thuomas, K.AA.; Kotwica, Z.; Bergstroem, K.; Bolander, H.; Hillered, L.; Olsson, Y.; Ponten, U.; Persson, L.

    1991-01-01

    The development of ischaemic brain oedema caused by middle cerebral artery (MCA) occlusion was studied by serial magnetic resonance imaging (MRI) in rats. Multiple spin echo sequences were used with TR = 1500 ms and TE = 30-240 ms (8 echos). Substraction images were obtained by subtracting the last three echos from the first echo. Fourteen rats were studied 3, 6, and 12 h and 1, 1.5, 3, 4, 6, and 8 days after MCA occlusion, and 2 of them also 3 and 6 weeks later. Two T2 components could be separated, a fast one representing bound water and a slow one representing free bulk water. MR showed T2 prolongation even on the first examination, and the highest values were observed 24 h after occlusion. The subsequent examinations showed a slow reduction in oedema. MR studies 3 and 6 weeks after occlusion revealed an area of very long T2, which correlated well with infarction shown by histology. The substraction images demonstrated both the infarct location and the oedematous changes in the surrounding uninfarcted tissue. MRI imaging employing T2 components and subtraction images appears to be a valuable method for observing the time course of the development and resolution of oedema in cerebral infarction. (orig.)

  8. Effects of Mercury Chloride on the Cerebral Cortex of Adult Wistar Rats

    African Journals Online (AJOL)

    Mercury is among the heavy metals that have been reported to cause devastating health problem worldwide. The primary site of action of mercury chloride is the central nervous system. This study investigated the effect of mercury chloride on the cerebral cortex of adult wistar rats. Twenty-four (24) adult wistar rats were used ...

  9. Diaschisis with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Slater, R.; Reivich, M.; Goldberg, H.; Banka, R.; Greenberg, J.

    1977-01-01

    Fifteen patients admitted to Philadelphia General Hospital with acute strokes had repeated measurements of cerebral blood flow measured by the /sup 133/X inhalation method. A progressive decline in cerebral blood flow in both hemispheres was observed during the first week after infarction in twelve of these patients. This decline could be partially explained by loss of autoregulation, but could not be correlated with level of consciousness, clinical status of PCO2. This progressive decline in flow in the non-ischemic hemisphere indicates a process more complex than a simple destruction of axonal afferants to neurons as implied by the term diaschisis. The flow changes in the non-ischemic hemisphere are likely caused by a combination of the immediate effects of decreased neuronal stimulation modified by loss of autoregulation, release of vasoactive substances, cerebral edema, and other factors.

  10. A Case Of Transient Ischemic Attack Presenting As Hemichroea

    Directory of Open Access Journals (Sweden)

    Hasan Hüseyin Özdemir

    2013-12-01

    Full Text Available Chorea is defined as; involuntary movements of the distal parts of limbs which have arrhythmic, rapid, bouncing or smooth, simple or complex properties. Choreiform movements occur when putamen, globus pallidus and subthalamic nucleus are affected. Chorea can be observed during the course of metabolic and vascular diseases, neurodegenerative or hereditary diseases. Chorea may be a rare symptom of cerebral hypoperfusion. Transient ischemic attack is an event that occurs in short term characterized by a temporary ischemia of brain. A wide variety of symptoms can be seen depending on the localization of cerebral hypoperfusion. Hemichorea is a very rare finding observed during transient ischemic attacks. In this article hemichorea in a case of symptomatic transient ischemic attack is discussed with relevant literature.

  11. Reduction of superoxide dismutase activity correlates with visualization of edema by T[sub 2]-weighted MR imaging in focal ischemic rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Shigeki; Chang, LeeHong; Cohen, Yoram; Chan, P H; Weinstein, P R; James, T L [California Univ., San Francisco, CA (United States); Yoshimoto, Takashi

    1994-01-01

    This study investigated the correlation between in vivo serial T[sub 2]-weighted magnetic resonance (MR) imaging and changes in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, and water, sodium ion (Na[sup +]), and potassium ion (K[sup +]) contents measured in vitro using rat brain following right middle cerebral artery occlusion in conjunction with bilateral common carotid artery (CCA) occlusion. One hour later the left CCA was released. Serial MR images showed edema developed from the outer cortex towards the center. The T[sub 2] signal intensity of the injured right cortex increased with time compared to that of the contralateral cortex. Increased Na[sup +] and water and decreased K[sup +] contents occurred in the injured cortex, indicating that serial T[sub 2]-weighted MR imaging reflects the changes in water content and Na[sup +] and K[sup +] concentrations determined by biochemical techniques. GSH-Px activity was little changed. Total SOD in the injured cortex decreased 1 hour after ischemia and remained low throughout the experiment. In contrast, SOD activity in the noninfarcted left cortex also decreased after 1 hour but returned to normal after 2 hours of ischemia. Our results suggest that oxygen free radicals are important in developing ischemic brain edema and cerebral infarction. (author).

  12. Effect of hyperbaric oxygenation on mitochondrial function of neuronal cells in the cortex of neonatal rats after hypoxic-ischemic brain damage

    Directory of Open Access Journals (Sweden)

    L. Yang

    2016-01-01

    Full Text Available The timing and mechanisms of protection by hyperbaric oxygenation (HBO in hypoxic-ischemic brain damage (HIBD have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI.

  13. The Effect of Hydroxylated Fullerene Nanoparticles on Antioxidant Defense System in Brain Ischemia Rat

    Directory of Open Access Journals (Sweden)

    2017-05-01

    Full Text Available Background and Objectives: According to the previous findings, brain ischemia attenuates the brain antioxidant defense system. This study aimed to investigate the effect of hydroxylated fullerene nanoparticle on antioxidant defense system in ischemic brain rat. Methods: In this Experimental study, rats were divided into three groups (n=6 in each group: sham, ischemic control, and ischemic treatment group. Brain ischemia was induced by middle cerebral artery (MCA occlusion for 90 minutes followed by a 24-hour reperfusion. Ischemic treatment animals received fullerene nanoparticles intraperitoneally at a dose of 10mg/kg immediately after the end of MCA occlusion. After 24-h reperfusion period, brain catalase and superoxide dismutase (SOD, and glutathione activities were assessed by biochemical methods. The data were analyzed using one-way ANOVA and Tukey post-hoc test. Results: The mean glutathione level and catalase and SOD activities in sham animals were 1±0.18%, 1±0.20%, and 1±0.04%, respectively. Induction of brain ischemia decreased the value of glutathione level and catalase and SOD activities in control ischemic rats and their values were obtained to be 0.55±0.09%, 0.44±0.05%, and 0.86±0.02%, respectively. Fullerene significantly increased the activities of catalase (0.93±0.29% and SOD (1.33±0.22% in ischemic treatment group compared to ischemic control rats, but did not change the glutathione level (0.52±0.25%. Conclusion: The results of this study showed that treatment with fullerene nanoparticles improves the brain antioxidant defense system, which is weakened during brain ischemia, through increasing catalase and SOD activities.

  14. Acute posterior multifocal placoid pigment epitheliopathy associated with cerebral vasculitis.

    Science.gov (United States)

    Weinstein, J M; Bresnick, G H; Bell, C L; Roschmann, R A; Brooks, B R; Strother, C M

    1988-09-01

    Acute multifocal posterior placoid pigment epitheliopathy (APMPPE) is an unusual self-limited retinal disorder that has been associated with various systemic complications. To our knowledge, three prior cases associated with cerebral vasculitis have been described. This article describes a patient with APMPPE and angiographically documented cerebral vasculitis who was notable because of (a) the presence of two different cerebral ischemic events, occurring 1 month apart, and (b) the long latency (3 months) between the onset of ocular symptoms and the second cerebral ischemic event. Recognition of the association between APMPPE and cerebral vasculitis may permit early treatment of CNS involvement and prevention of morbidity.

  15. Effects of Electroacupuncture Combined with Repetitive Transcranial Magnetic Stimulation on the Expression of Nestin in Neural Stem Cell after Focal Cerebral Ischemia in Adult Rats

    Institute of Scientific and Technical Information of China (English)

    HUANG Guofu; HUANG Xiaolin; CHEN Hong; HAY Xiaohua

    2009-01-01

    Objective: To investigate the influence of electroacupuncture (EA) combined with repetitive transeranial magnetic stimulation(rTMS) on the temporal profile of nestin expression after induction of focal cerebral isehemia in adult rats and to explore the mechanism of EA combined with rTMS in treating ischemic brain injury. Method: The model of transient focal ischemia was produced by occlusion of middle cerebral artery. Seventy-five Wistar rats were randomly divided into normal group, model group, EA group, rTMS group and EA +rTMS group. The neurologic impairment rating and ability of learning and memory were observed at the 7th、14th and 28th d after infarction respectively. Meanwhile, Western blotting was used to observe the number of nestin expression positive cells. Result: Nestin-positive cells were found in cortex, subgranular zone (SGZ), subventricular zone (SVZ) of the ipsilateral side at different time points after cerebral isehemia. The number of nestin-positive cells peaked at the 7th d, began to decrease at the 14th d and was significantly higher in EA+rTMS group than that in model group (P<0.05), then almost reached normal at the 28th d. The improvement of neural motor function deficits as well as the indexes of learning and memory were more obvious in EA+rTMS group compared with model group (P<0.01, P<0.05). These effects were most obvious in EA+rTMS group compared with the EA and rTMS group (P<0.05). Conclusion: EA and rTMS possess the potency of building up and can increase the number of nestin-positive cells in some brain regions after focal cerebral ischemia, which might be one of the important mechanisms of EA combined with rTMS in treating ischemia brain injury.

  16. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Chen, Xing-miao; Chen, Han-sen; Xu, Ming-jing; Shen, Jian-gang

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.

  17. Computed microtomography visualization and quantification of mouse ischemic brain lesion by nonionic radio contrast agents.

    Science.gov (United States)

    Dobrivojević, Marina; Bohaček, Ivan; Erjavec, Igor; Gorup, Dunja; Gajović, Srećko

    2013-02-01

    To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema.

  18. Neuroprotection by Combined Administration with Maslinic Acid, a Natural Product from Olea europaea, and MK-801 in the Cerebral Ischemia Model

    Directory of Open Access Journals (Sweden)

    Yisong Qian

    2016-08-01

    Full Text Available Glutamate-mediated excitotoxicity is a major cause of ischemic brain damage. MK-801 confers neuroprotection by attenuating the activation of the N-methyl-d-aspartate (NMDA receptor, but it failed in clinical use due to the short therapeutic window. Here we aim to investigate the effects of maslinic acid, a natural product from Olea europaea, on the therapeutic time window and dose range for the neuroprotection of MK-801. Rats were administered with maslinic acid intracerebroventricularly and cerebral ischemia was induced by middle cerebral artery occlusion (MCAO followed by reperfusion. MK-801 was administered at 1 h, 2 h, 3 h and 4 h after ischemia, respectively. The cerebral infarct volume was determined by 2,3,5-Triphenyltetrazolium chloride (TTC staining, neuronal damage was assessed by Haematoxylin Eosin (H&E staining, and the expression of glial glutamate transporters and glial fibrillary acidic protein (GFAP was evaluated by immunohistochemistry and Western blot post-ischemia. Results showed that the presence of maslinic acid extended the therapeutic time window for MK-801 from 1 h to 3 h. Co-treatment of maslinic acid and MK-801 at a subthreshold dosage obviously induced neuroprotection after ischemia. The combination of these two compounds improved the outcome in ischemic rats. Moreover, maslinic acid treatment promoted the expression of GLT-1 and GFAP post-ischemia. These data suggest that the synergistic effect of maslinic acid on neurological protection might be associated with the improvement of glial function, especially with the increased expression of GLT-1. The combination therapy of maslinic acid and MK-801 may prove to be a potential strategy for treating acute ischemic stroke.

  19. Neuroprotection by Combined Administration with Maslinic Acid, a Natural Product from Olea europaea, and MK-801 in the Cerebral Ischemia Model.

    Science.gov (United States)

    Qian, Yisong; Tang, Xuzhen; Guan, Teng; Li, Yunman; Sun, Hongbin

    2016-08-19

    Glutamate-mediated excitotoxicity is a major cause of ischemic brain damage. MK-801 confers neuroprotection by attenuating the activation of the N-methyl-d-aspartate (NMDA) receptor, but it failed in clinical use due to the short therapeutic window. Here we aim to investigate the effects of maslinic acid, a natural product from Olea europaea, on the therapeutic time window and dose range for the neuroprotection of MK-801. Rats were administered with maslinic acid intracerebroventricularly and cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) followed by reperfusion. MK-801 was administered at 1 h, 2 h, 3 h and 4 h after ischemia, respectively. The cerebral infarct volume was determined by 2,3,5-Triphenyltetrazolium chloride (TTC) staining, neuronal damage was assessed by Haematoxylin Eosin (H&E) staining, and the expression of glial glutamate transporters and glial fibrillary acidic protein (GFAP) was evaluated by immunohistochemistry and Western blot post-ischemia. Results showed that the presence of maslinic acid extended the therapeutic time window for MK-801 from 1 h to 3 h. Co-treatment of maslinic acid and MK-801 at a subthreshold dosage obviously induced neuroprotection after ischemia. The combination of these two compounds improved the outcome in ischemic rats. Moreover, maslinic acid treatment promoted the expression of GLT-1 and GFAP post-ischemia. These data suggest that the synergistic effect of maslinic acid on neurological protection might be associated with the improvement of glial function, especially with the increased expression of GLT-1. The combination therapy of maslinic acid and MK-801 may prove to be a potential strategy for treating acute ischemic stroke.

  20. Acute treatment with docosahexaenoic acid complexed to albumin reduces injury after a permanent focal cerebral ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Tiffany N Eady

    Full Text Available Docosahexaenoic acid complexed to albumin (DHA-Alb is highly neuroprotective after temporary middle cerebral artery occlusion (MCAo, but whether a similar effect occurs in permanent MCAo is unknown. Male Sprague-Dawley rats (270-330 g underwent permanent MCAo. Neurological function was evaluated on days 1, 2 and 3 after MCAo. We studied six groups: DHA (5 mg/kg, Alb (0.63 or 1.25 g/kg, DHA-Alb (5 mg/kg+0.63 g/kg or 5 mg/kg+1.25 g/kg or saline. Treatment was administered i.v. at 3 h after onset of stroke (n = 7-10 per group. Ex vivo imaging of brains and histopathology were conducted on day 3. Saline- and Alb-treated rats developed severe neurological deficits but were not significantly different from one another. In contrast, rats treated with low and moderate doses of DHA-Alb showed improved neurological score compared to corresponding Alb groups on days 2 and 3. Total, cortical and subcortical lesion volumes computed from T2 weighted images were reduced following a moderate dose of DHA-Alb (1.25 g/kg by 25%, 22%, 34%, respectively, compared to the Alb group. The total corrected, cortical and subcortical infarct volumes were reduced by low (by 36-40% and moderate doses (by 34-42% of DHA-Alb treatment compared to the Alb groups. In conclusion, DHA-Alb therapy is highly neuroprotective in permanent MCAo in rats. This treatment can provide the basis for future therapeutics for patients suffering from ischemic stroke.

  1. Preliminary EEG study of protective effects of Tebonin in transient global cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Zagrean, L; Vatasescu, R; Munteanu, A M

    2000-01-01

    and metabolism. The objective of this study was to investigate the effects of preventive treatment with Ginkgo biloba extract (EGb 761--Tebonin) in cerebral global ischemia and reperfusion in rats using computerized EEG analysis. Ginkgo biloba extract, known to be, in vitro, a free radicals scavanger and a PAF......--antagonist, was administrated in dose of 100 mg/kg over 24 hours, for 5 days before and 5 days after cerebral ischemia--reperfusion. The apparition of isoelectric EEG (flat-line) following 4-vessel occlusion was observed after a mean time of 25 sec. in Ginkgo biloba treated rats and after 18 sec. in control rats (p

  2. Characterization of beta-adrenergic receptors in synaptic membranes from rat cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Lautens, L.

    1986-01-01

    Beta-adrenergic receptor ligand binding sites have been characterized in synaptic membranes from rat cerebral cortex and cerebellum using radioligand binding techniques. The equilibrium and kinetic properties of binding were assessed. The binding sites were non-interacting and exhibited two states of agonist binding which were sensitive to guanyl nucleotide. Synaptic membranes from cerebral cortex contained an equal number of beta 1 - and beta 2 -receptors; membranes from cerebellum possessed more beta 2 -than beta 1 -receptors. Photoaffinity labeling experiments revealed two different beta-adrenergic receptor polypeptides, R 1 and R 2 (and possibly a third, R 3 ) in synaptic membranes. The ratios of incorporation of photoaffinity label into R 1 : 2 were approximately 1:1 (cerebral cortex) and 5:1 (cerebellum). Photoaffinity labeling of R 1 and R 2 was inhibited equally well by both agonist and antagonist in synaptic membranes from cerebellum; whereas agonist was a less potent inhibitor in membranes from cerebral cortex. Both subtypes of beta-adrenergic receptors exhibited the same apparent molecular weight in synaptic membranes from cerebral cortex. The beta-adrenergic receptors in synaptic membranes from cerebral cortex and cerebellum were glycoproteins which exhibited the same apparent molecular weight after exposure to endoglycosidase F. The partial proteolytic digest maps of photoaffinity labeled beta-adrenergic receptors from rat cerebral cortex, cerebellum, lung and heart were compared

  3. No improvement of neuronal metabolism in the reperfusion phase with melatonin treatment after hypoxic-ischemic brain injury in the neonatal rat.

    Science.gov (United States)

    Berger, Hester R; Morken, Tora Sund; Vettukattil, Riyas; Brubakk, Ann-Mari; Sonnewald, Ursula; Widerøe, Marius

    2016-01-01

    Mitochondrial impairment is a key feature underlying neonatal hypoxic-ischemic (HI) brain injury and melatonin is potentially neuroprotective through its effects on mitochondria. In this study, we have used (1) H and (13) C NMR spectroscopy after injection of [1-(13) C]glucose and [1,2-(13) C]acetate to examine neuronal and astrocytic metabolism in the early reperfusion phase after unilateral HI brain injury in 7-day-old rat pups, exploring the effects of HI on mitochondrial function and the potential protective effects of melatonin on brain metabolism. One hour after hypoxia-ischemia, astrocytic metabolism was recovered and glycolysis was normalized, whereas mitochondrial metabolism in neurons was clearly impaired. Pyruvate carboxylation was also lower in both hemispheres after HI. The transfer of glutamate from neurons to astrocytes was higher whereas the transfer of glutamine from astrocytes to neurons was lower 1 h after HI in the contralateral hemisphere. Neuronal metabolism was equally affected in pups treated with melatonin (10 mg/kg) immediately after HI as in vehicle treated pups indicating that the given dose of melatonin was not capable of protecting the neuronal mitochondria in this early phase after HI brain injury. However, any beneficial effects of melatonin might have been masked by modulatory effects of the solvent dimethyl sulfoxide on cerebral metabolism. Neuronal and astrocytic metabolism was examined by (13) C and (1) H NMR spectroscopy in the early reperfusion phase after unilateral hypoxic-ischemic brain injury and melatonin treatment in neonatal rats. One hour after hypoxia-ischemia astrocytic mitochondrial metabolism had recovered and glycolysis was normalized, whereas mitochondrial metabolism in neurons was impaired. Melatonin treatment did not show a protective effect on neuronal metabolism. © 2015 International Society for Neurochemistry.

  4. [Results of thrombolyses procedures in acute ischemic cerebral stroke realized in Kraków 2004-2007--Grant Ministry of Science and Information].

    Science.gov (United States)

    Popiela, Tadeusz J; Urbanik, Andrzej; Słowik, Agnieszka

    2010-01-01

    To lower the number of complications of acute cerebral ischemic stroke and to reduce the time of rehabilitation in these patients it is necessary to induce treatment within the first 3 hours of the onset of the stroke. Early intervention however, is possible only in cases with the confirm localized ischemic focus visualized in one of the diagnostic imaging methods. The most widespread is CT, hovewer the first symptoms of ischemic stroke can be seen not beforel2 hours of the onset. The study evaluated the effectiveness of early diagnostics of ischemic stroke using perfusion CT (pCT) with subsequent intravenous or intra-arterial thrombolysis. The patients with ischemic stroke confirmed by pCT and qualified to thrombolysis in the first 3 hours of the onset of the stroke were randomly selected to intravenous or intra-arterial thrmobolysis. Those, who were 3 to 6 hours of the onset of the stroke were qualified to intra-arterial thrombolysis. A study group consisted of 377 patients hospitalized due to ischemic stroke. Of these pCT was performed in 76 cases, intravenous thrombolysis in 4 and intra-arterial thrombolysis in 2. Clinical condition substantially improved in 3 patients. Obtained results indicate the necessity to introduce pCT to the routine diagnostics of the acute ischemic stroke. A small number of patients eligible for thrombolysis does not allow to compare the effectiveness of intra-arterial and intravenous thrombolysis, however the project allowed to work out the efficient system of diagnostics and treatment of the acute ischemic stroke in the area of Krakow based on the standards used in the European countries.

  5. Retinoic acid-pretreated Wharton's jelly mesenchymal stem cells in combination with triiodothyronine improve expression of neurotrophic factors in the subventricular zone of the rat ischemic brain injury.

    Science.gov (United States)

    Sabbaghziarani, Fatemeh; Mortezaee, Keywan; Akbari, Mohammad; Kashani, Iraj Ragerdi; Soleimani, Mansooreh; Moini, Ashraf; Ataeinejad, Nahid; Zendedel, Adib; Hassanzadeh, Gholamreza

    2017-02-01

    Stroke is the consequence of limited blood flow to the brain with no established treatment to reduce the neurological deficits. Focusing on therapeutic protocols in targeting subventricular zone (SVZ) neurogenesis has been investigated recently. This study was designed to evaluate the effects of retinoic acid (RA)-pretreated Wharton's jelly mesenchymal stem cells (WJ-MSCs) in combination with triiodothyronine (T3) in the ischemia stroke model. Male Wistar rats were used to induce focal cerebral ischemia by middle cerebral artery occlusion (MCAO). There were seven groups of six animals: Sham, Ischemic, WJ-MSCs, RA-pretreated WJ-MSCs, T3, WJ-MSCs +T3, and RA-pretreated WJ-MSCs + T3. The treatment was performed at 24 h after ischemia, and animals were sacrificed one week later for assessments of retinoid X receptor β (RXRβ), brain-derived neurotrophic factor (BDNF), Sox2 and nestin in the SVZ. Pro-inflammatory cytokines in sera were measured at days four and seven after ischemia. RXRβ, BDNF, Sox2 and nestin had the significant expressions in gene and protein levels in the treatment groups, compared with the ischemic group, which were more vivid in the RA-pretreated WJ-MSCs + T3 (p ≤ 0.05). The same trend was also resulted for the levels of TNF-α and IL-6 at four days after ischemia (p ≤ 0.05). In conclusion, application of RA-pretreated WJ-MSCs + T3 could be beneficial in exerting better neurotrophic function probably via modulation of pro-inflammatory cytokines.

  6. NEUROPROTECTIVE EFFICACY OF SUBCUTANEOUS INSULIN-LIKE GROWTH FACTOR-I ADMINISTRATION IN NORMOTENSIVE AND HYPERTENSIVE RATS WITH AN ISCHEMIC STROKE

    NARCIS (Netherlands)

    de Geyter, D.; Stoop, W.; Sarre, S.; de Keyser, J.; Kooijman, R.

    2013-01-01

    The aim of this study was to test the insulin-like growth factor-I (IGF-I) as a neuroprotective agent in a rat model for ischemic stroke and to compare its neuroprotective effects in conscious normotensive and spontaneously hypertensive rats. The effects of subcutaneous IGF-I injection were

  7. β2-Adrenergic Receptor-Mediated HIF-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Yanyun Sun

    2017-08-01

    Full Text Available Disruption of the blood brain barrier (BBB within the thrombolytic time window is an antecedent event to intracerebral hemorrhage in ischemic stroke. Our recent studies showed that 2-h cerebral ischemia induced BBB damage in non-infarcted area and secreted matrix metalloproteinase-2 (MMP-2 accounted for this disruption. However, the factors that affect MMP-2 secretion and regulate BBB damage remains unknown. Since hypoxia-inducible factor-1 alpha (HIF-1α was discovered as a mater regulator in hypoxia, we sought to investigate the roles of HIF-1α in BBB damage as well as the factors regulating HIF-1α expression in the ischemic brain. in vivo rat middle cerebral artery occlusion (MCAO and in vitro oxygen glucose deprivation (OGD models were used to mimic ischemia. Pretreatment with HIF-1α inhibitor YC-1 significantly inhibited 2-h MCAO-induced BBB damage, which was accompanied by suppressed occludin degradation and vascular endothelial growth factor (VEGF mRNA upregulation. Interestingly, β2-adrenergic receptor (β2-AR antagonist ICI 118551 attenuated ischemia-induced BBB damage by regulating HIF-1α expression. Double immunostaining showed that HIF-1α was upregulated in ischemic neurons but not in astrocytes andendothelial cells. Of note, HIF-1α inhibition with inhibitor YC-1 or siRNA significantly prevented OGD-induced VEGF upregulation as well as the secretion of VEGF and MMP-2 in neurons. More importantly, blocking β2-AR with ICI 118551 suppressedHIF-1α upregulation in ischemic neurons and attenuated occludin degradation induced by the conditioned media of OGD-treatedneurons. Taken together, blockade of β2-AR-mediated HIF-1α upregulation mediates BBB damage during acute cerebral ischemia. These findings provide new mechanistic understanding of early BBB damage in ischemic stroke and may help reduce thrombolysis-related hemorrhagic complications.

  8. Cerebral microbleeds are not associated with long-term cognitive outcome in patients with transient ischemic attack or minor stroke.

    Science.gov (United States)

    Brundel, Manon; Kwa, Vincent I H; Bouvy, Willem H; Algra, Ale; Kappelle, L Jaap; Biessels, Geert Jan

    2014-01-01

    Cerebral microbleeds have been related to cerebrovascular disease and dementia. They occur more frequently in patients with ischemic stroke than in the general population, but their relation to cognition in these patients is uncertain, particularly in the long run. We examined the relationship between microbleeds in patients with a transient ischemic attack (TIA) or minor ischemic stroke, and cognitive performance 4 years later. Participants were recruited from a prospective multicenter cohort of patients with a TIA or minor ischemic stroke (n=397). They underwent magnetic resonance imaging (MRI), including a T2*-weighted sequence, within 3 months after their ischemic event. Microbleeds, atrophy, lacunae and white matter hyperintensities (WMH) were rated visually. Cognitive status was examined in 94% of all patients who were still alive after a mean interval of 3.8 years by the Dutch version of the Telephone Interview for Cognitive Status (TICS; n=280) or by an Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) obtained from a close relative if a TICS could not be obtained (n=48). The relationship between presence of microbleeds and TICS or IQCODE score was assessed with linear regression analyses adjusted for age, sex, educational level and time interval between MRI and cognitive evaluation. The mean age was 65±12 years at inclusion. The vascular event at inclusion was a TIA in 170 patients (52%) and a minor ischemic stroke in 155 patients (47%). Microbleeds were present in 11.6% of the patients. Patients with microbleeds were significantly older than patients without microbleeds (70±9 vs. 64±12 years), more often had hypertension, and had more cerebral atrophy, WMH and lacunae on MRI (all pTICS score was 35.3±5.9 for patients with microbleeds (n=29) and 34.6±5.2 for patients without microbleeds (n=251); the adjusted mean difference (95% CI) was 1.69 (-0.01 to 3.38). The total IQCODE score was 66.0±10.8 for patients with microbleeds (n=9

  9. Vildagliptin reduces cardiac ischemic-reperfusion injury in obese orchiectomized rats.

    Science.gov (United States)

    Pongkan, Wanpitak; Pintana, Hiranya; Jaiwongkam, Thidarat; Kredphoo, Sasiwan; Sivasinprasasn, Sivaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-10-01

    Obesity and testosterone deprivation are associated with coronary artery disease. Testosterone and vildagliptin (dipeptidyl peptidase-4 inhibitors) exert cardioprotection during ischemic-reperfusion (I/R) injury. However, the effect of these drugs on I/R heart in a testosterone-deprived, obese, insulin-resistant model is unclear. This study investigated the effects of testosterone and vildagliptin on cardiac function, arrhythmias and the infarct size in I/R heart of testosterone-deprived rats with obese insulin resistance. Orchiectomized (O) or sham operated (S) male Wistar rats were divided into 2 groups to receive normal diet (ND) or high-fat diet (HFD) for 12 weeks. Orchiectomized rats in each diet were divided to receive testosterone (2 mg/kg), vildagliptin (3 mg/kg) or the vehicle daily for 4 weeks. Then, I/R was performed by a 30-min left anterior descending coronary artery ligation, followed by a 120-min reperfusion. LV function, arrhythmia scores, infarct size and cardiac mitochondrial function were determined. HFD groups developed insulin resistance at week 12. At week 16, cardiac function was impaired in NDO, HFO and HFS rats, but was restored in all testosterone- and vildagliptin-treated rats. During I/R injury, arrhythmia scores, infarct size and cardiac mitochondrial dysfunction were prominently increased in NDO, HFO and HFS rats, compared with those in NDS rats. Treatment with either testosterone or vildagliptin similarly attenuated these impairments during I/R injury. These finding suggest that both testosterone replacement and vildagliptin share similar efficacy for cardioprotection during I/R injury by decreasing the infarct size and attenuating cardiac mitochondrial dysfunction caused by I/R injury in testosterone-deprived rats with obese insulin resistance. © 2016 Society for Endocrinology.

  10. Early Recurrence and Cerebral Bleeding in Patients With Acute Ischemic Stroke and Atrial Fibrillation: Effect of Anticoagulation and Its Timing: The RAF Study.

    Science.gov (United States)

    Paciaroni, Maurizio; Agnelli, Giancarlo; Falocci, Nicola; Caso, Valeria; Becattini, Cecilia; Marcheselli, Simona; Rueckert, Christina; Pezzini, Alessandro; Poli, Loris; Padovani, Alessandro; Csiba, Laszló; Szabó, Lilla; Sohn, Sung-Il; Tassinari, Tiziana; Abdul-Rahim, Azmil H; Michel, Patrik; Cordier, Maria; Vanacker, Peter; Remillard, Suzette; Alberti, Andrea; Venti, Michele; Scoditti, Umberto; Denti, Licia; Orlandi, Giovanni; Chiti, Alberto; Gialdini, Gino; Bovi, Paolo; Carletti, Monica; Rigatelli, Alberto; Putaala, Jukka; Tatlisumak, Turgut; Masotti, Luca; Lorenzini, Gianni; Tassi, Rossana; Guideri, Francesca; Martini, Giuseppe; Tsivgoulis, Georgios; Vadikolias, Kostantinos; Liantinioti, Chrissoula; Corea, Francesco; Del Sette, Massimo; Ageno, Walter; De Lodovici, Maria Luisa; Bono, Giorgio; Baldi, Antonio; D'Anna, Sebastiano; Sacco, Simona; Carolei, Antonio; Tiseo, Cindy; Acciarresi, Monica; D'Amore, Cataldo; Imberti, Davide; Zabzuni, Dorjan; Doronin, Boris; Volodina, Vera; Consoli, Domenico; Galati, Franco; Pieroni, Alessio; Toni, Danilo; Monaco, Serena; Baronello, Mario Maimone; Barlinn, Kristian; Pallesen, Lars-Peder; Kepplinger, Jessica; Bodechtel, Ulf; Gerber, Johannes; Deleu, Dirk; Melikyan, Gayane; Ibrahim, Faisal; Akhtar, Naveed; Mosconi, Maria Giulia; Bubba, Valentina; Silvestri, Ilenia; Lees, Kennedy R

    2015-08-01

    The best time for administering anticoagulation therapy in acute cardioembolic stroke remains unclear. This prospective cohort study of patients with acute stroke and atrial fibrillation, evaluated (1) the risk of recurrent ischemic event and severe bleeding; (2) the risk factors for recurrence and bleeding; and (3) the risks of recurrence and bleeding associated with anticoagulant therapy and its starting time after the acute stroke. The primary outcome of this multicenter study was the composite of stroke, transient ischemic attack, symptomatic systemic embolism, symptomatic cerebral bleeding and major extracranial bleeding within 90 days from acute stroke. Of the 1029 patients enrolled, 123 had 128 events (12.6%): 77 (7.6%) ischemic stroke or transient ischemic attack or systemic embolism, 37 (3.6%) symptomatic cerebral bleeding, and 14 (1.4%) major extracranial bleeding. At 90 days, 50% of the patients were either deceased or disabled (modified Rankin score ≥3), and 10.9% were deceased. High CHA2DS2-VASc score, high National Institutes of Health Stroke Scale, large ischemic lesion and type of anticoagulant were predictive factors for primary study outcome. At adjusted Cox regression analysis, initiating anticoagulants 4 to 14 days from stroke onset was associated with a significant reduction in primary study outcome, compared with initiating treatment before 4 or after 14 days: hazard ratio 0.53 (95% confidence interval 0.30-0.93). About 7% of the patients treated with oral anticoagulants alone had an outcome event compared with 16.8% and 12.3% of the patients treated with low molecular weight heparins alone or followed by oral anticoagulants, respectively (P=0.003). Acute stroke in atrial fibrillation patients is associated with high rates of ischemic recurrence and major bleeding at 90 days. This study has observed that high CHA2DS2-VASc score, high National Institutes of Health Stroke Scale, large ischemic lesions, and type of anticoagulant administered

  11. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    International Nuclear Information System (INIS)

    Beck, T.; Krieglstein, J.

    1987-01-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O 2 . Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded [ 14 C]2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur

  12. Homocysteine Aggravates Cortical Neural Cell Injury through Neuronal Autophagy Overactivation following Rat Cerebral Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Yaqian Zhao

    2016-07-01

    Full Text Available Elevated homocysteine (Hcy levels have been reported to be involved in neurotoxicity after ischemic stroke. However, the underlying mechanisms remain incompletely understood to date. In the current study, we hypothesized that neuronal autophagy activation may be involved in the toxic effect of Hcy on cortical neurons following cerebral ischemia. Brain cell injury was determined by hematoxylin-eosin (HE staining and TdT-mediated dUTP Nick-End Labeling (TUNEL staining. The level and localization of autophagy were detected by transmission electron microscopy, western blot and immunofluorescence double labeling. The oxidative DNA damage was revealed by immunofluorescence of 8-Hydroxy-2′-deoxyguanosine (8-OHdG. Hcy treatment aggravated neuronal cell death, significantly increased the formation of autophagosomes and the expression of LC3B and Beclin-1 in the brain cortex after middle cerebral artery occlusion-reperfusion (MCAO. Immunofluorescence analysis of LC3B and Beclin-1 distribution indicated that their expression occurred mainly in neurons (NeuN-positive and hardly in astrocytes (GFAP-positive. 8-OHdG expression was also increased in the ischemic cortex of Hcy-treated animals. Conversely, LC3B and Beclin-1 overexpression and autophagosome accumulation caused by Hcy were partially blocked by the autophagy inhibitor 3-methyladenine (3-MA. Hcy administration enhanced neuronal autophagy, which contributes to cell death following cerebral ischemia. The oxidative damage-mediated autophagy may be a molecular mechanism underlying neuronal cell toxicity of elevated Hcy level.

  13. Evaluation of asymmetries of blood flow rate and of circulation time by intravenous radionuclide cerebral angiography in patients with ischemic completed stroke.

    Science.gov (United States)

    Bartolini, A; Primavera, A; Gasparetto, B

    1984-12-01

    155 patients with ischemic completed stroke of varying severity and outcome have been evaluated by radionuclide cerebral angiography with analysis of regional time-activity curves. Two parameters have been evaluated: area under the upslope of the curve (Aup) reflecting regional blood flow rate and moment of the whole curve reflecting tracer circulation time (rABCT) Combination of these two methods ensured increased detection of perfusion asymmetries.

  14. In vivo measurements of cerebral metabolic abnormalities by proton spectroscopy after a transient ischemic attack revealing an internal carotid stenosis > 70%; Anomalies metaboliques cerebrales mesurees in vivo par la spectroscopie du proton dans les accidents ischemiques transitoires revelant une stenose de la carotide interne superieure a 70%

    Energy Technology Data Exchange (ETDEWEB)

    Giroud, M.; Becker, F.; Lemesle, M.; Walker, P.; Guy, F.; Martin, D.; Baudouin, N.; Brunotte, F.; Dumas, R. [Centre Hospitalier Universitaire, 21 -Dijon (France)

    1996-06-01

    Aims: The aim of this work is to look for cerebral metabolic abnormalities within the first 3 days after a transient ischemic attack revealing an internal carotid stenosis > 70 %. Methods: Five patients with a transient ischemic attack lasting between 30 and 180 minutes, affecting sensory and motor brachio-facial territory, with or without aphasia. Were studied. A CT-scan, an EEG, a cervical Doppler ultrasound, a standard arteriography, a magnetic resonance imaging and a proton spectroscopy were performed within the cerebral area affected by the transient ischemic attack. We measured 2 markers: N-acetyl-aspartate, the marker of the neuronal mass, and lactate, the marker of anaerobe metabolism. In each case, a contralateral internal stenosis was diagnosed by cervical Doppler ultrasound and standard arteriography. No cerebral infarction was observed. Results: With the affected cerebral area defined according to clinical and EEG features, proton spectroscopy showed a significant rise of lactate, without any change in N-acetyl-aspartate levels. Conclusions: Within the first 3 days after a transient ischemic attack, there is a significant risk of lactate inside the affected cerebral area. This change may reflect a localized and transient hypoperfusion, but long enough to induce a rise of lactate but not sufficient to produce a cerebral infarct. This area is probably at risk to induce cerebral infarct. This data lead us to study the metabolic change induced by the asymptomatic internal carotid stenosis. (authors). 18 refs.

  15. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    Science.gov (United States)

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc

  16. Protective effects of incensole acetate on cerebral ischemic injury.

    Science.gov (United States)

    Moussaieff, Arieh; Yu, Jin; Zhu, Hong; Gattoni-Celli, Sebastiano; Shohami, Esther; Kindy, Mark S

    2012-03-14

    The resin of Boswellia species is a major anti-inflammatory agent that has been used for centuries to treat various conditions including injuries and inflammatory conditions. Incensole acetate (IA), a major constituent of this resin, has been shown to inhibit NF-κB activation and concomitant inflammation, as well as the neurological deficit following head trauma. Here, we show that IA protects against ischemic neuronal damage and reperfusion injury in mice, attenuating the inflammatory nature of ischemic damage. IA given post-ischemia, reduced infarct volumes and improved neurological activities in the mouse model of ischemic injury in a dose dependent fashion. The protection from damage was accompanied by inhibition of TNF-α, IL-1β and TGF-β expression, as well as NF-κB activation following injury. In addition, IA is shown to have a therapeutic window of treatment up to 6h after ischemic injury. Finally, the protective effects of IA were partially mediated by TRPV3 channels as determined by the TRPV3 deficient mice and channel blocker studies. This study suggests that the anti-inflammatory and neuroprotective activities of IA may serve as a novel therapeutic treatment for ischemic and reperfusion injury, and as a tool in the ongoing research of mechanisms for neurological damage. Published by Elsevier B.V.

  17. Transient ischemic attacks with and without a relevant infarct on computed tomographic scans cannot be distinguished clinically. Dutch Transient Ischemic Attack Study Group

    NARCIS (Netherlands)

    Koudstaal, P. J.; van Gijn, J.; Lodder, J.; Frenken, W. G.; Vermeulen, M.; Franke, C. L.; Hijdra, A.; Bulens, C.

    1991-01-01

    We prospectively studied clinical and computed tomographic (CT) scan findings in 79 patients with a transient ischemic attack (TIA) and a relevant cerebral infarction on CT, also known as cerebral infarction with transient signs (CITS). We compared the results with those of 527 concurrent patients

  18. Pathophysiological studies of experimental brain edema and cerebral ischemia using MRI/S

    International Nuclear Information System (INIS)

    Naruse, Shoji; Higuchi, Toshihiro; Horikawa, Yoshiharu; Tanaka, Chuzo; Hirakawa, Kimiyoshi

    1987-01-01

    Pathophysiological changes in experimental brain edema and cerebral ischemia were examined by the in vivo 1 H- and 31 P-NMR method. Two types of experimental brain edema were induced in rats by cold injury and by triethyltin (TET) intoxication. Experimental cerebral ischemia was induced in rats by the four-vessel occlusion method. During the course of these pathological conditions, the 1 H-MRIs and 31 P-NMR spectra were measured sequentially with a single NMR spectrometer (4.8 tesla, 9 cm bore magnet). In the cold-injury edema, high-intensity lesions were detected in the gray and white matters of the injured hemisphere by means of SE images with a long Te 3 hours after the injury. The intensity reached its maximum 16 to 24 hours after the injury, and then returned to normal 7 days later. These high-intensity lesions indicated an increase in the T2 value in the edematous tissue. There were no changes in the 31 P-NMR spectra during the course of edema formation and absorption. In the TET-induced edema, high-intensity lesions were also detected in the bilateral white matter by means of SE images with a long Te from the 3rd day up to the 7th day during the injection of TET. These high-intensity lesions subsided 42 days after the discontinuance of injecting TET. There were no changes in the 31 P-NMR spectra during the whole course of TET-induced edema. In the cerebral ischemia, no remarkable changes in the MRI were detected in either SE or IR images during the ischemic and recirculated periods. However, dynamic changes in the 31 P-NMR spectra were detected during the course of cerebral ischemia. In the pre-ischemic period, the peaks of the ATP, PCr, phosphodiesters (PDE), Pi, and phosphomonoesters (PME) were detected. After the induction of ischemia, the ATP and PCr peaks decreased, while one Pi peak increased rapidly. (J.P.N.)

  19. Pathophysiological studies of experimental brain edema and cerebral ischemia using MRI/S

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, S; Higuchi, T; Horikawa, Y; Tanaka, C; Hirakawa, K

    1987-02-01

    Pathophysiological changes in experimental brain edema and cerebral ischemia were examined by the in vivo /sup 1/H- and /sup 31/P-NMR method. Two types of experimental brain edema were induced in rats by cold injury and by triethyltin (TET) intoxication. Experimental cerebral ischemia was induced in rats by the four-vessel occlusion method. During the course of these pathological conditions, the /sup 1/H-MRIs and /sup 31/P-NMR spectra were measured sequentially with a single NMR spectrometer (4.8 tesla, 9 cm bore magnet). In the cold-injury edema, high-intensity lesions were detected in the gray and white matters of the injured hemisphere by means of SE images with a long Te 3 hours after the injury. The intensity reached its maximum 16 to 24 hours after the injury, and then returned to normal 7 days later. These high-intensity lesions indicated an increase in the T2 value in the edematous tissue. There were no changes in the /sup 31/P-NMR spectra during the course of edema formation and absorption. In the TET-induced edema, high-intensity lesions were also detected in the bilateral white matter by means of SE images with a long Te from the 3rd day up to the 7th day during the injection of TET. These high-intensity lesions subsided 42 days after the discontinuance of injecting TET. There were no changes in the /sup 31/P-NMR spectra during the whole course of TET-induced edema. In the cerebral ischemia, no remarkable changes in the MRI were detected in either SE or IR images during the ischemic and recirculated periods. However, dynamic changes in the /sup 31/P-NMR spectra were detected during the course of cerebral ischemia. In the pre-ischemic period, the peaks of the ATP, PCr, phosphodiesters (PDE), Pi, and phosphomonoesters (PME) were detected. After the induction of ischemia, the ATP and PCr peaks decreased, while one Pi peak increased rapidly.

  20. Mortality study for a decade: ischemic stroke in the elderly.

    Directory of Open Access Journals (Sweden)

    Javier J. García Zacarías

    2014-09-01

    Full Text Available Cerebrovascular diseases are among the top three causes of death in Cuba and the world, about 80 % of these patients belong to Ischemic Stroke. The objective of this paper is to describe the clinical and developmental profile of patients who died of Ischemic Stroke. A descriptive, prospective research, cross- sectional study was made, the sample included all deaths from ischemic stroke at the University Hospital "Camilo Cienfuegos" Sancti Spiritus, between January 1st, 2001 and December 31, 2010, and persons over 60 years of age with necropsy performed. Atherothrombotic stroke was the most frequent category, the highest mortality rates were observed in persons over 80 years of age and in females, hypertension, ischemic heart disease and transient ischemic attack were the main significant medical history; most patients were admitted in the stroke unit and died in Middle Progressive Care, cerebral edema and intracranial hypertension and hypostatic bronchopne umonia were complications and specific main causes of most frequent death. Value of cerebral edema and hypostatic bronchopneumonia as clinical complications and causes of death in patients investigated is confirmed.

  1. Brain scan in cerebral ischemia. An experimental model in the rat

    International Nuclear Information System (INIS)

    Turner, J.H.

    1975-01-01

    A rapid embolic method for consistent induction of stroke in the rat is described. Brain scans were performed using a micro-pinhole collimator system, and the value of the model for studies in localization of radiopharmaceuticals in cerebral ischemia is demonstrated

  2. Neuroprotective mechanism of BNG-1 against focal cerebral ischemia: a neuroimaging and neurotrophin study.

    Science.gov (United States)

    Chi, Nai-Fang; Liu, Ho-Ling; Yang, Jen-Tsung; Lin, Jr-Rung; Liao, Shu-Li; Peng, Bo-Han; Lee, Yen-Tung; Lee, Tsong-Hai

    2014-01-01

    BNG-1 is a herb complex used in traditional Chinese medicine to treat stroke. In this study, we attempted to identify the neuroprotective mechanism of BNG-1 by using neuroimaging and neurotrophin analyses of a stroke animal model. Rats were treated with either saline or BNG-1 for 7 d after 60-min middle cerebral artery occlusion by filament model. The temporal change of magnetic resonance (MR) imaging of brain was studied using a 7 Tesla MR imaging (MRI) system and the temporal expressions of neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) in brain were analyzed before operation and at 4 h, 2 d, and 7 d after operation. Compared with the saline group, the BNG-1 group exhibited a smaller infarction volume in the cerebral cortex in T2 image from as early as 4 h to 7 d, less edema in the cortex in diffusion weighted image from 2 to 7 d, earlier reduction of postischemic hyperperfusion in both the cortex and striatum in perfusion image at 4 h, and earlier normalization of the ischemic pattern in the striatum in susceptibility weighted image at 2 d. NT-3 and BDNF levels were higher in the BNG-1 group than the saline group at 7 d. We concluded that the protective effect of BNG-1 against cerebral ischemic injury might act through improving cerebral hemodynamics and recovering neurotrophin generation.

  3. An emboligenic pulmonary abscess leading to ischemic stroke and secondary brain abscess

    Directory of Open Access Journals (Sweden)

    Albrecht Philipp

    2012-11-01

    Full Text Available Abstract Background Ischemic stroke by septic embolism occurs primarily in the context of infective endocarditis or in patients with a right-to-left shunt and formation of a secondary cerebral abscess is a rare event. Erosion of pulmonary veins by a pulmonary abscess can lead to transcardiac septic embolism but to our knowledge no case of septic embolic ischemic stroke from a pulmonary abscess with secondary transformation into a brain abscess has been reported to date. Case presentation We report the case of a patient with a pulmonary abscess causing a septic embolic cerebral infarction which then transformed into a cerebral abscess. After antibiotic therapy and drainage of the abscess the patient could be rehabilitated and presented an impressive improvement of symptoms. Conclusion Septic embolism should be considered as cause of ischemic stroke in patients with pulmonary abscess and can be followed by formation of a secondary cerebral abscess. Early antibiotic treatment and repeated cranial CT-scans for detection of a secondary abscess should be performed.

  4. Increased radiosensitivity of cerebral capillaries in neonatal Gunn rats as compared to Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Landolt, R.; Arn, D.

    1979-01-01

    The extent of petechial haemorrhages of the cerebral cortex examined between 14 hours and 4 days after X-irradiation to the head was compared in Sprague-Dawley and homozygous Gunn rats with congenital hyperbilirubinaemia. Animals 1 to 2 days old received single doses of either 250, 500 or 750 rad. By means of a special scoring scale the degree of the damage to the micro vasculature was semi-quantitatively estimated. In both strains a significant difference in effect was obtained between 250 and 500 rad, but not between 500 and 750 rad. The shape of the dose-effect curve in Gunn rats was similar to that of Sprague-Dawley rats, but displaced upwards. In Gunn rats the effect of 250 rad was greater that that of 750 rad in Sprague-Dawley rats. Possible radiosensitizing mechanisms are discussed with reference to the literature and these results. (author)

  5. Specific neuroprotective effects of manual stimulation of real ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effectiveness and specific effects of acupuncture on ischemic-induced damage in rats after permanent middle cerebral artery occlusion. Cerebral ischemia was induced by middle cerebral artery occlusion in male Wistar rats. The rats were divided into the following 4 groups: ...

  6. Electroacupunctre improves motor impairment via inhibition of microglia-mediated neuroinflammation in the sensorimotor cortex after ischemic stroke.

    Science.gov (United States)

    Liu, Weilin; Wang, Xian; Yang, Shanli; Huang, Jia; Xue, Xiehua; Zheng, Yi; Shang, Guanhao; Tao, Jing; Chen, Lidian

    2016-04-15

    Electroacupuncture (EA) is one of the safety and effective therapies for improving neurological and sensorimotor impairment via blockade of inappropriate inflammatory responses. However, the mechanisms of anti-inflammation involved is far from been fully elucidated. Focal cerebral ischemic stroke was administered by the middle cerebral artery occlusion and reperfusion (MCAO/R) surgery. The MCAO/R rats were accepted EA treatment at the LI 11 and ST 36 acupoints for consecutive 3days. The neurological outcome, animal behaviors test and molecular biology assays were used to evaluate the MCAO/R model and therapeutic effect of EA. EA treatment for MCAO rats showed a significant reduction in the infarct volumes accompanied by functional recovery in mNSS outcomes, motor function performances. The possible mechanisms that EA treatment attenuated the over-activation of Iba-1 and ED1 positive microglia in the peri-infract sensorimotor cortex. Simultaneously, both tissue and serum protein levels of the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were decreased by EA treatment in MCAO/R injured rats. The levels of inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were decreased in the peri-infract sensorimotor cortex and blood serum of MCAO/R injured rats after EA treatment. Furthermore, we found that EA treatment prevented from the nucleus translocation of NF-κB p65 and suppressed the expression of p38 mitogen-activated protein kinase (p38 MAPK) and myeloid differentiation factor 88 (MyD88) in the peri-infract sensorimotor cortex. The findings from this study indicated that EA improved the motor impairment via inhibition of microglia-mediated neuroinflammation that invoked NF-κB p65, p38 MAPK and MyD88 produced proinflammatory cytokine in the peri-infract sensorimotor cortex of rats following ischemic stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Chronic photoperiod disruption does not increase vulnerability to focal cerebral ischemia in young normotensive rats.

    Science.gov (United States)

    Ku Mohd Noor, Ku Mastura; Wyse, Cathy; Roy, Lisa A; Biello, Stephany M; McCabe, Christopher; Dewar, Deborah

    2017-11-01

    Photoperiod disruption, which occurs during shift work, is associated with changes in metabolism or physiology (e.g. hypertension and hyperglycaemia) that have the potential to adversely affect stroke outcome. We sought to investigate if photoperiod disruption affects vulnerability to stroke by determining the impact of photoperiod disruption on infarct size following permanent middle cerebral artery occlusion. Adult male Wistar rats (210-290 g) were housed singly under two different light/dark cycle conditions ( n = 12 each). Controls were maintained on a standard 12:12 light/dark cycle for nine weeks. For rats exposed to photoperiod disruption, every three days for nine weeks, the lights were switched on 6 h earlier than in the previous photoperiod. T 2 -weighted magnetic resonance imaging was performed at 48 h after middle cerebral artery occlusion. Disruption of photoperiod in young healthy rats for nine weeks did not alter key physiological variables that can impact on ischaemic damage, e.g. blood pressure and blood glucose immediately prior to middle cerebral artery occlusion. There was no effect of photoperiod disruption on infarct size after middle cerebral artery occlusion. We conclude that any potentially adverse effect of photoperiod disruption on stroke outcome may require additional factors such as high fat/high sugar diet or pre-existing co-morbidities.

  8. [Effects of combined use of total alkaloids of Uncaria rhynchophylla and Coryadlis ambailis migo on cerebral ischemia-reperfusion injury in rats].

    Science.gov (United States)

    Hu, Xue-yong; Sun, An-sheng; Sui, Yu-xia

    2007-11-01

    To study the effects of combined use of total alkaloids (TA) of Uncaria rhynchophylla (UR) and Coryadlis ambailis migo (CAM) on cerebral ischemia/reperfusion injury in rats. Rat model of middle cerebral artery ischemia/reperfusion was established, the changes of neurological state was scored before and after treatment with the two kinds of TA, single or combined, and the changes of cerebral infarcted volume, cerebral water content, activities of NOS and SOD and content of MDA in rats' brain were estimated as well. After being treated with the combination of both TA, the average neurological score, cerebral infracted volume, cerebral water content, activity of NOS and content of MDA in the model rats significantly decreased, and the activity of SOD was significantly increased (all P < 0.05). The effect of combined use of the two TA was higher than that of use TA of UR or CAM alone (P <0.05). Moreover, the central nervous system inhibitory effect induced by combined TA was significantly weaker than that of UR. Combined use of TA of UR and CAM may facilitate the protection against cerebral ischemia/reperfusion damage, the action mechanism might be relevant to reducing the lipid peroxidation injury of brain cells through inhibiting the NOS activity and increasing the SOD activity.

  9. Cerebral atrophic and degenerative changes following various cerebral diseases, (1)

    International Nuclear Information System (INIS)

    Kino, Masao; Anno, Izumi; Yano, Yuhiko; Anno, Yasuro.

    1980-01-01

    Patients having cerebral atrophic and degenerative changes following hypoglycemia, cerebral contusion, or cerebral hypoxia including cerebrovascular disorders were reported. Description was made as to cerebral changes visualized on CT images and clinical courses of a patient who revived 10 minutes after heart stoppage during neurosurgery, a newborn with asphyxia, a patient with hypoglycemia, a patient who suffered from asphyxia by an accident 10 years before, a patient with carbon monoxide poisoning at an acute stage, a patient who had carbon monoxide poisoning 10 years before, a patient with diffuse cerebral ischemic changes, a patient with cerebral edema around metastatic tumor, a patient with respiration brain, a patient with neurological sequelae after cerebral contusion, a patient who had an operation to excise right parietal lobe artery malformation, and a patient who was shooted by a machine gun and had a lead in the brain for 34 years. (Tsunoda, M.)

  10. Nimodipine Effects on Cerebral Microvessels and Sciatic Nerve in Aging Rats

    NARCIS (Netherlands)

    de Jong, Giena; Jansen, Arthur; Horvath, E.; Gispen, W.H.; Luiten, P.G.M.

    1992-01-01

    At the ultrastructural level different anomalies of the cerebral microvasculature were encountered in the brains of aged rats. These aberrations can either be attributed to degeneration processes or to the perivascular deposition of, e.g., collagen fibrils and other, unidentified, proteinous debris.

  11. Characteristics and dynamics of cognitive impairment in patients with primary and recurrent cerebral ischemic hemispheric stroke

    Directory of Open Access Journals (Sweden)

    A. A. Kozyolkin

    2014-08-01

    Full Text Available Acute cerebrovascular disease is a global medical and social problem of the modern angioneurology, occupying leading positions in the structure of morbidity and mortality among adult population of the world. Ischemic stroke – is one of the most common pathology. Today this disease took out the world pandemic. More than 16 million new cases of cerebral infarction recorded in the world each year and it “kills” about 7 million of people. About 111,953 cases of cerebral stroke were registered in 2013 in Ukraine. Cognitive impairment, t hat significantly disrupt daily activities and life of the patient, is one of the most significant post-stroke complications that have social, medical and biological significance. Aim. The purpose of this investigation was to study features and dynamics of cognitive impairments in patients with primary and recurrent cerebral hemispheric ischemic stroke (CHIS in the acute stage of the disease. Materials and methods. To achieve the aim, and the decision of tasks in the clinic of nervous diseases Zaporozhye State Medical University (supervisor - Doctor of Medicine, Professor Kozelkin A. based on the department of acute cerebrovascular disease were performed comparative, prospective cohort study, which included comprehensive clinical and paraclinical examinations of 41 patients (26 men and 15 women aged 45 to 85 years (mean age 66,4 ± 1,4 years with acute left-hemispheric (2 patients and right - hemispheric (39 patients CHIS . First up was a group of 28 patients (19 men and 9 women, mean age 65,6 ± 1,6 years, who suffered from primary CHIS. The second group consisted of 13 patients (7 men and 6 women, mean age 68,1 ± 2,5 years with recurrent CHIS. The groups were matched by age, sex, localization of the lesion and the initial level of neurological deficit. All patients underwent physical examination, neurological examination. Dynamic clinical neurological examination assessing the severity of stroke was conducted

  12. Usefulness of perfusion MR imaging in hyperacute ischemic stroke

    International Nuclear Information System (INIS)

    Park, Ji Hoon; Kim, Jae Hyoung; Shin, Tae Min; Lee, Eun Ja; Chung, Sung Hoon; Choi, Nack Cheon; Lim, Byeong Hoon; Kim, In One

    1998-01-01

    Perfusion MR imaging is a new technique for the assessment of acute ischemic stroke. The aim of this study was to evaluate the usefulness of this imaging in hyperacute ischemic stroke in comparison with conventional CT and MR imaging. Eight patients presenting the symptoms of acute ischemic stroke due to middle cerebral artery occlusion were included in this study. Within 2 hours of initial CT scan and 6 hours after the onset of stroke, perfusion MR imaging was performed in all patients using a single-section dynamic contrast-enhanced T2*-weighted imager in conjunction with conventional routine MR imaging and MR angiography. Cerebral blood volume (CBV) maps were then obtained from dynamic MR imaging data by using numerical integration techniques. The findings of CBV maps were compared with those of initial and follow-up CT or MR images. The findings of CBV maps were obviously abnormal in all patients, as compared with normal or focal subtle abnormal findings seen on initial CT and MR images. CBV in the occluded arterial territory was lower in all eight patients;two had focal regions of increased CBV within the affected territory, indicating reperfusion hyperemia. In all patients, regions of abnormal CBV were eventually converted to infarctions on follow-up images. Perfusion MR imaging was useful for the evaluation of hemodynamic change occurring during cerebral perfusion in hyperacute ischemic stroke, and prediction of the final extent of infarction. These results suggest that pertusion MR imaging can play an important role in the diagnosis and management of hyperacute ischemic stroke.=20

  13. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Prida, Javier [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Pavón-Fuentes, Nancy [International Centre for Neurological Restoration (CIREN), Ave. 25 e/ 158 y 160, Playa, PO Box: 11300, Havana (Cuba); Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R. [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Delgado-Roche, Liván [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pardo-Andreu, Gilberto L. [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Polentarutti, Nadia [Istituto Clinico Humanitas (IRCCS), Rozzano (Italy); Riva, Federica [Department of Veterinary Science and Public Health (DIVET), University of Milano (Italy); Pentón-Arias, Eduardo [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pentón-Rol, Giselle [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba)

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  14. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    International Nuclear Information System (INIS)

    Marín-Prida, Javier; Pavón-Fuentes, Nancy; Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R.; Delgado-Roche, Liván; Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto; Pardo-Andreu, Gilberto L.; Polentarutti, Nadia; Riva, Federica; Pentón-Arias, Eduardo; Pentón-Rol, Giselle

    2013-01-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H 2 O 2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H 2 O 2 and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy

  15. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway

    Science.gov (United States)

    CHEN, BIN; TAO, JING; LIN, YUKUN; LIN, RUHUI; LIU, WEILIN; CHEN, LIDIAN

    2015-01-01

    Electro-acupuncture (EA) is a novel therapy based on combining traditional acupuncture with modern electrotherapy, and it is currently being investigated as a treatment for ischemic stroke. In the present study, we aimed to investigate the mechanisms through which EA regulates the proliferation of neural progenitor cells (NPCs) in the cortical peri-infarct area after stroke. The neuroprotective effects of EA on ischemic rats were evaluated by determining the neurological deficit scores and cerebral infarct volumes. The proliferation of the NPCs and the activation of the Wnt/β-catenin signaling pathway in the cortical peri-infarct area were examined. Our results revealed that EA significantly alleviated neurological deficits, reduced the infarct volume and enhanced NPC proliferation [nestin/glial fibrillary acidic protein (GFAP)-double positive] in the cortex of rats subjected to middle cerebral artery occlusion (MCAO). Moreover, the Wnt1 and β-catenin mRNA and protein levels were increased, while glycogen synthase kinase-3 (GSK3) transcription was suppressed by EA. These results suggest that the upregulatory effects of EA on the Wnt/β-catenin signaling pathway may promote NPC proliferation in the cortical peri-infarct area after stroke, consequently providing a therapeutic effect against cerebral ischemia. PMID:26329606

  16. Asymmetry in the brain influenced the neurological deficits and infarction volume following the middle cerebral artery occlusion in rats

    OpenAIRE

    Zhang Meizeng; Gao Huanmin

    2008-01-01

    Abstract Background Paw preference in rats is similar to human handedness, which may result from dominant hemisphere of rat brain. However, given that lateralization is the uniqueness of the humans, many researchers neglect the differences between the left and right hemispheres when selecting the middle cerebral artery occlusion (MCAO) in rats. The aim of this study was to evaluate the effect of ischemia in the dominant hemisphere on neurobehavioral function and on the cerebral infarction vol...

  17. Neuroprotective Effect of Matricaria chamomilla Extract on Motor Dysfunction Induced by Transient Global Cerebral Ischemia and Reperfusion in Rat

    Directory of Open Access Journals (Sweden)

    Azam Moshfegh

    2017-09-01

    Full Text Available Background Stroke can cause paralysis, muscle weakness, and loss of balance that may affect walking and routine activities. Objectives The aim of this study was to evaluate the effect of ethyl alcohol extract of Matricaria chamomilla on cerebral ischemia-induced motor dysfunctions in rats. Methods In this experimental study, forty two male Wistar rats were divided into 6 groups consisting of control group, sham group, ischemia/reperfusion group and three treatment groups [treated with 50, 100, and 200 mg/kg doses of M. chamomilla extract and undergoing ischemia/reperfusion(I/R]. Motor coordination and balance were evaluated using Rotarod test. Total antioxidant capacity, malondialdehyde (MDA, and nitric oxide (NO levels of serum and brain were also determined. Results The extract of M. chamomilla significantly improved I/R-induced motor dysfunction. Induction of I/R led to increase serum MDA, while the extract of M, chamomlla significantly reduced it. Administration all doses of M. chamomilla extract to the ischemic rats did not reduce the hippocampus MDA levels (P > 0.05. The extract of M. chamomilla at dose of 200 mg/kg slightly decreased cortex MDA (P > 0.01. It had no significant effects on the total antioxidant capacity of the brain (hippocampus and cortex and serum. Injection of Matricaria chamomilla extract also did not change serum NO level. Conclusions Our findings suggested that the Matricaria chamomilla extract could improve motor dysfunction.

  18. Analysis of CD45- [CD34+/KDR+] endothelial progenitor cells as juvenile protective factors in a rat model of ischemic-hemorrhagic stroke.

    Directory of Open Access Journals (Sweden)

    Julius L Decano

    Full Text Available Identification of juvenile protective factors (JPFs which are altered with age and contribute to adult-onset diseases could identify novel pathways for reversing the effects of age, an accepted non-modifiable risk factor to adult-onset diseases. Since endothelial progenitor cells (EPCs have been observed to be altered in stroke, hypertension and hypercholesterolemia, said EPCs are candidate JPFs for adult-onset stroke. A priori, if EPC aging plays a 'master-switch JPF-role' in stroke pathogenesis, juvenile EPC therapy alone should delay stroke-onset. Using a hypertensive, transgenic-hyperlipidemic rat model of spontaneous ischemic-hemorrhagic stroke, spTg25, we tested the hypothesis that freshly isolated juvenile EPCs are JPFs that can attenuate stroke progression and delay stroke onset.FACS analysis revealed that CD45- [CD34+/KDR+] EPCs decrease with progression to stroke in spTg25 rats, exhibit differential expression of the dual endodthelin-1/VEGFsp receptor (DEspR and undergo differential DEspR-subtype specific changes in number and in vitro angiogenic tube-incorporation. In vivo EPC infusion of male, juvenile non-expanded cd45-[CD34+/KDR+] EPCs into female stroke-prone rats prior to stroke attenuated progression and delayed stroke onset (P<0.003. Detection of Y-chromosome DNA in brain microvessels of EPC-treated female spTg25 rats indicates integration of male EPCs into female rat brain microvessels. Gradient-echo MRI showed delay of ischemic-hemorrhagic lesions in EPC-treated rats. Real-time RT-PCR pathway-specific array-analysis revealed age-associated gene expression changes in CD45-[CD34+/KDR]EPC subtypes, which were accelerated in stroke-prone rats. Pro-angiogenic genes implicated in intimal hyperplasia were increased in stroke-prone rat EPCs (P<0.0001, suggesting a maladaptive endothelial repair system which acts like a double-edged sword repairing while predisposing to age-associated intimal hyperplasia.Altogether, the data

  19. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    International Nuclear Information System (INIS)

    Wong, D.T.; Threlkeld, P.G.; Lumeng, L.; Li, Ting-Kai

    1990-01-01

    Saturable [ 3 H]-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The B max values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding K D values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats

  20. Experimental Model of Cerebral Hypoperfusion Produced Memory-learning Deficits, and Modifications in Gene Expression

    Directory of Open Access Journals (Sweden)

    Rilda LEÓN

    2015-01-01

    Full Text Available Cerebral ischemia is a major cause of death, for this reason animal models of cerebral ischemia are widely used to study both the pathophysiology of ischemic phenomenon and the evaluation of possible therapeutic agents with protective or regenerative properties. The objectives of this study were to examine the presence of neuronal damage in different brain areas following the ischemic event, and assess consequences of such activities on the processes of memory and learning. The study group included an experimental group ischemic animals (30 rats with permanent bilateral occlusion of the carotids, and a control group. Was evaluated gene expression and inflammatory ischemic by qPCR techniques 24h post injury, brain tissue morphology in areas of cortex, striatum and hippocampus seven days post injury and processes of memory and learning, 12 days post injury. The morphological studies showed that the procedure induces death of cell populations in cortex, striatum and hippocampus, ischemia modified gfap gene expression and ho, il-6, il-17 and ifn-γ, which can be used as a marker of early ischemic process. Additionally, the ischemic injury caused spatial memory decline. This characterization gives us an experimental model to develop future studies on the pathophysiology of ischemic events and assessing therapeutic strategies. MODELO EXPERIMENTAL DE HIPOPERFUSIÓN CEREBRAL PRODUCE DÉFICIT DE LA MEMORIA Y APRENDIZAJE Y MODIFICACIONES EN LA EXPRESIÓN DE GENES. A escala mundial, la isquemia cerebral constituye una de las principales causas de muerte, por lo que los modelos animales de isquemia cerebral son extensamente usados tanto en el estudio de la pato-fisiología del fenómeno isquémico; como en la evaluación de agentes terapéuticos con posible efecto protector o regenerador.  Los objetivos de este estudio fueron examinar la presencia de daño neuronal en diferentes áreas cerebrales como consecuencia del evento isquémico; así como evaluar

  1. Expression of glutamic acid decarboxylase and identification of GABAergic cells in the ischemic rat dentate gyrus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Dogonowski, Anne-Marie; Finsen, Bente

    2006-01-01

    We have investigated the glutamic acid dexcarboxylase (GAD) mRNA and protein isoforms as markers for ischemic loss of GABAergic neurons in the dentate hilus. Stereological counts of these neurons were performed in rats surviving 8 days after 10 min of transient forebrain ischemia, and in control...

  2. The neuroprotective efficacy of MK-801 in focal cerebral ischemia varies with rat strain and vendor.

    Science.gov (United States)

    Oliff, H S; Marek, P; Miyazaki, B; Weber, E

    1996-08-26

    The present study was designed to evaluate whether the neuroprotective efficacy of MK-801 in focal cerebral ischemia was dependent on strain and/or vendor differences. MK-801 (0.12 mg/kg i.v. bolus followed by 0.108 mg/kg/h infusion or 0.60 mg/kg i.v. bolus followed by 0.540 mg/kg/h infusion) or saline was administered just after intraluminal middle cerebral artery occlusion. Administration of 0.540 mg/kg/h MK-801 provided strain/line-dependent neuroprotection in the following rank order: Simonsen Laboratories Sprague-Dawley rats > Simonsen Laboratories Wistar rats > Taconic Laboratories Sprague-Dawley rats. After 0.108 mg/kg/h MK-801 treatment, Simonsen Laboratories Wistar rats were the only strain/line that were significantly neuroprotected. These results indicate that the neuroprotective effect of an experimental drug may be influenced by rat strain and vendor differences.

  3. Regional cerebral blood flow in patients with transient ischemic attacks studied by Xenon-133 inhalation and emission tomography

    International Nuclear Information System (INIS)

    Vorstrup, S.; Hemmingsen, R.; Henriksen, L.; Lindewald, H.; Engell, H.C.; Lassen, N.A.

    1983-01-01

    Cerebral blood flow CBF was studied in 14 patients with transient ischemic attacks TIA and arteriosclerotic neck vessel disease. CBF was measured by a rapidly rotating single photon emission computerized tomograph using Xenon-133 inhalation. This method yields images of 3 brain slices depicting CBF with a spatial resolution of 1.7 cm. Based primarily on the clinical evidence and on the angiographical findings embolism was considered the pathogenetic factor in 10 cases, whereas chronic hemodynamic insufficiency rendered symptomatic by postural factors probably accounted for the symptoms in 4 patients. Of the 14 patients, all studied days to weeks after the most recent TIA, four showed hypoperfused areas on the CBF-tomograms and with roughly the same location hypodense areas on CT-scanning, i.e. areas of complete infarction. However, an additional five patients showed reduction of CBF in areas with no abnormality on the CT-scan. The abnormal blood flow pattern was found to be unchanged after clinically successful reconstructive vascular surgery. This suggests the presence of irreversible ischemic tissue damage without gross emollition (incomplete infarction). It is concluded, that TIAs are often harmful events, as no less than 9 of the 14 patients studied had evidence of complete and/or incomplete infarction. Thorough examination and rational therapy should be instituted as soon as possible to prevent further ischemic lesions

  4. Drug-Induced Hypothermia as Beneficial Treatment before and after Cerebral Ischemia

    DEFF Research Database (Denmark)

    Johansen, Flemming F; Hasseldam, Henrik; Rasmussen, Rune Skovgaard

    2014-01-01

    Objectives: Hypothermia is still unproven as beneficial treatment in human stroke, although in animal models, conditioning the brain with hypothermia has induced tolerance to insults. Here, we delineate the feasibility of drug-induced mild hypothermia in reducing ischemic brain damage when...... conditioning before (preconditioning) and after (postconditioning) experimental stroke. Methods: Hypothermia was induced in rats with a bolus of 6 mg/kg talipexole followed by 20 h continuous talipexole infusion of 6 mg/kg in total. Controls received similar treatment with saline. The core body temperature...... was continuously monitored. In preconditioning, hypothermia was terminated before either reversible occlusion of the middle cerebral artery (MCAO) for 60 min or global ischemia for 10 min with 2-vessel occlusion and hypotension. In postconditioning, rats experienced 60 min of MCAO before hypothermia was induced...

  5. Reduction of cerebral injury in stroke-prone spontaneously hypertensive rats by amlodipine

    NARCIS (Netherlands)

    Blezer, E.L.A.; Nicolaij, K.; Goldschmeding, R.C.; Koomans, H.A.; Joles, Jaap

    2002-01-01

    Dihydropyridine Ca2+ channel antagonists, initiated together with high salt intake, prevent the development of hypertension and subsequent cerebral damage in stroke-prone spontaneously hypertensive rats (SHRSP). We hypothesized that the dihydropyridine Ca2+ channel antagonist amlodipine

  6. Ischemic perinatal brain damage. Neuropathologic and CT correlations

    Energy Technology Data Exchange (ETDEWEB)

    Crisi, G; Mauri, C; Canossi, G; Della Giustina, E

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis. 31 refs.

  7. Effects of hyperbaric oxygen and nerve growth factor on the long-term neural behavior of neonatal rats with hypoxic ischemic brain damage.

    Science.gov (United States)

    Wei, Lixia; Ren, Qing; Zhang, Yongjun; Wang, Jiwen

    2017-04-01

    To evaluate the effects of HBO (Hyperbaric oxygen) and NGF (Nerve growth factor) on the long-term neural behavior of neonatal rats with HIBD (Neonatal hypoxic ischemic brain damage). The HIBD model was produced by ligating the right common carotid artery of 7 days old SD (Sprague-Dawley) rats followed by 8% O2 + 92% N2 for 2h. Totally 40 rats were randomly divided into 5 groups including sham-operated group, HIBD control group, HBO treated group, NGF treated group and NGF + HBO treated group. The learning and memory ability of these rats was evaluated by Morris water maze at 30 days after birth, and sensory motor function was assessed by experiments of foot error and limb placement at 42 days after birth. The escape latency of HBO treated group, NGF treated group and NGF + HBO treated group was shorter than that of HIBD control group (pmemory ability and sensory motor function in neonatal rats after hypoxic ischemic brain damage.

  8. Influence exerted by new pyrimidine derivatives on cerebral circulation auto-regulation and vasodilatating function of vessels endothelium in rats' brains under chronic hemic hypoxia

    Directory of Open Access Journals (Sweden)

    A.V. Voronkov

    2018-03-01

    Full Text Available Our research goal was to examine influences exerted by new pyrimidine derivatives coded as BL0 and BL2 on cerebral hemodynamics auto-regulation parameters and vasodilatating function of vessels endothelium as risk factors causing ischemic and hemorrhagic strokes under chronic hemic hypoxia. We performed an experiment on white Wistar rats to prove that endothelial dysfunction which evolves under chronic hemic hypoxia leads to disorders in endothelium-mediated mechanisms for cerebral circulation auto-regulation in rats. We modeled hypoxia in animals via granting them free access to 0.2 % sodium nitrite solution instead of ordinary drinking water. Endothelial dysfunction was confirmed as per disorders in vasodilatation and vasoconstriction reactions at intravenous introduction of acetyl choline (0.1 mg/kg and methyl ether hydrochloride nitro-L-arginine (10 mg/kg. Cerebral blood flow speed was measured with MM-D-K-Minimax v.2.1. ultrasound Doppler. We assessed cerebral circulation auto-regulation as per compression test results which allowed us to calculate overshoot coefficient and auto-regulation power. Examined pyrimidine derivatives and comparison preparations were introduced orally 60 minutes prior to taking readings. Mexidol doses were calculated on the basis of interspecific recalculation of a maximum daily dose for a man. Nicergoline dose was taken as a most effective one as per literature data. When new pyrimidine derivatives BL0 and BL2 are applied under chronic hemic hypoxia, it causes overshoot coefficient to grow authentically higher than in a negative control group but it doesn't exert any positive influence on collateral reserve parameter, namely auto-regulation power. BL0 and BL2 improve endothelium vasodilatating function at intravenous acetylcholine introduction (0.1 mg/kg and don't exert any influence on vasoconstricting function at L-NAME intravenous introduction (10 mg/kg. The examined substance BL0 has more apparent

  9. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.

    Science.gov (United States)

    Dahlquist, G; Persson, B

    1976-11-01

    Cerebral blood flow (CBF) was measured by means of Celabeled microspheres in infant (20-day-old) and adult (3-month-old) rats, anesthetised with Na-5-ethyl-5-(1-methylpropyl)2-thiobarbituric acid. Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate, and oxygen and brain DNA content were determined in other groups of similarly treated infant and adult animals fed or starved for 48 or 72 hr. The mean CBF values of 0.48+/-0.04 and 0.62+/-0.07 ml/(g X min), +/- SEM, in infant and adult animals, respectively, were not significantly different. CBF was unaffected by starvation. At any given arterial concentration the cerebral arteriovenous difference of acetoacetate was significantly higher in infant than adult rats. The same was true for D-beta-hydroxybutyrate at arterial concentrations above 1 mmol/liter. There was an approximately linear relationship between arterial concentration of acetoacetate and its cerebral arteriovenous difference in both infant and adult rats. A similar relationship was found for D-beta-hydroxybutyrate only in infant animals. In the fed state, the cerebral uptake of glucose and ketone bodies (micromoles per (mg DNA X min)) was not different in infant and adult rats. During starvation, cerebral uptake of ketone bodies expressed as micromoles per (mg DNA X min) was higher in infant than adult rats, indicating a higher rate of utilization of ketone bodies per cell in these animals. For glucose, no such difference was found in either fed or starved groups (Table 3). The average percentage of the total cerebral uptake of substrates (micromoles per min) accounted for by ketone bodies increased in both infant and adult rats during starvation. This percentage value was clearly higher in infant than adult rats during starvation. After 72 hr of starvation the values were 38.8% and 15.2% in infant and adult rats, respectively (Fig. 3). Calculated cerebral metabolic rate for oxygen (CMRO2), assuming complete

  10. Tissue plasminogen activator; identifying major barriers related to intravenous injection in ischemic acute cerebral infraction

    Directory of Open Access Journals (Sweden)

    Fariborz Khorvash

    2017-01-01

    Full Text Available Background: According to previous publications, in patients with acute ischemic cerebral infarction, thrombolytic therapy using intravenous tissue plasminogen activator (IV-tPA necessitates precise documentation of symptoms' onset. The aim of this study was to identify major barriers related to the IV-tPA injection in such patients. Materials and Methods: Between the year 2014-2015, patients with definitive diagnosis of acute cerebral infarction (n = 180 who attended the neurology ward located at the Isfahan Alzahra Hospital were studied. To investigate barriers related to door to IV-tPA needle time, personal reasons, and criteria for inclusion or exclusion of patients, three questionnaire forms were designed based on the Food and Drug Administration-approved indications or contraindications. Results: The mean age of males versus females was 60 versus 77.5 years (ranged 23–93 vs. 29–70 years, respectively. Out of total population, only 10.7% transferred to hospital in <4.5 h after the onset of symptoms. Regarding to eligibility for IV-tPA, 68.9% of total population have had criteria for such treatment. Concerning to both items such as transferring to hospital in <4.5 h after the onset of symptoms and eligibility for IV-tPA, only 6.6% of total population met the criteria for such management. There was ignorance or inattention to symptoms in 75% of population studied. There was a mean of 195.92 ± 6.65 min (182.8–209.04 min for door to IV-tPA needle time. Conclusion: Despite the international guidelines for IV-tPA injection within 3–4.5 h of ischemic stroke symptoms' onset, the results of this study revealed that falling time due to ignorance of symptoms, literacy, and living alone might need further attention. As a result, to decrease death and disability, educational programs related to the symptoms' onset by consultant neurologist in Isfahan/Iran seem to be advantageous.

  11. Toll-like receptors in cerebral ischemic inflammatory injury

    OpenAIRE

    Wang, Yan-Chun; Lin, Sen; Yang, Qing-Wu

    2011-01-01

    Abstract Cerebral ischemia triggers acute inflammation, which has been associated with an increase in brain damage. The mechanisms that regulate the inflammatory response after cerebral ischemia are multifaceted. An important component of this response is the activation of the innate immune system. However, details of the role of the innate immune system within the complex array of mechanisms in cerebral ischemia remain unclear. There have been recent great strides in our understanding of the...

  12. Extracranial cerebral arterial atherosclerosis in Iranian patients suffering ischemic strokes

    Directory of Open Access Journals (Sweden)

    Sayed Ali Mousavi

    2006-12-01

    Full Text Available BACKGROUND: To determine the distribution and severity of extracranial carotid arterial atherosclerosis in Iranian patients with ischemic stroke. METHODS: 328 patients with ischemic stroke were included in this study. Doppler ultrasound was used for evaluation of atherosclerosis in extracranial carotid arteries. The NASCET criteria were used to measure carotid stenosis. RESULTS: Ninety of 328 patients (27.4% were found to have atherosclerotic plaques; 40 of these patients were women and 50 were men. Sixty-eight patients (20.7% had artery stenosis <50%, 13 patients (3.95% had 50-70 % artery stenosis and 6 (1.8% had >70% artery stenosis. CONCLUSIONS: Extracranial atherosclerosis is not rare in Iranian patients with ischemic stroke, but most carotid artery lesions were plaques with <50% stenosis. KEY WORDS: Atherosclerosis, ischemic stroke, carotid stenosis.

  13. No effect of ablation of surfactant protein-D on acute cerebral infarction in mice

    DEFF Research Database (Denmark)

    Lambertsen, Kate Lykke; Østergaard, Kamilla; Clausen, Bettina Hjelm

    2014-01-01

    known to be involved in extrapulmonary modulation of inflammation in mice. We investigated whether SP-D affected cerebral ischemic infarction and ischemia-induced inflammatory responses in mice. METHODS: The effect of SP-D was studied by comparing the size of ischemic infarction and the inflammatory...... and astroglial responses in SP-D knock out (KO) and wild type (WT) mice subjected to permanent middle cerebral artery occlusion. SP-D mRNA production was assessed in isolated cerebral arteries and in the whole brain by PCR, and SP-D protein in normal appearing and ischemic human brain by immunohistochemistry......-induced increase in TNF mRNA production one day after induction of ischemia; however the TNF response to the ischemic insult was affected at five days. SP-D mRNA was not detected in parenchymal brain cells in either naïve mice or in mice subjected to focal cerebral ischemia. However, SP-D mRNA was detected...

  14. Combination therapy with normobaric oxygen (NBO plus thrombolysis in experimental ischemic stroke

    Directory of Open Access Journals (Sweden)

    Singhal Aneesh B

    2009-07-01

    Full Text Available Abstract Background The widespread use of tissue plasminogen activator (tPA, the only FDA-approved acute stroke treatment, remains limited by its narrow therapeutic time window and related risks of brain hemorrhage. Normobaric oxygen therapy (NBO may be a useful physiological strategy that slows down the process of cerebral infarction, thus potentially allowing for delayed or more effective thrombolysis. In this study we investigated the effects of NBO started simultaneously with intravenous tPA, in spontaneously hypertensive rats subjected to embolic middle cerebral artery (MCA stroke. After homologous clot injection, animals were randomized into different treatment groups: saline injected at 1 hour; tPA at 1 hour; saline at 1 hour plus NBO; tPA at 1 hour plus NBO. NBO was maintained for 3 hours. Infarct volume, brain swelling and hemorrhagic transformation were quantified at 24 hours. Outcome assessments were blinded to therapy. Results Upon clot injection, cerebral perfusion in the MCA territory dropped below 20% of pre-ischemic baselines. Both tPA-treated groups showed effective thrombolysis (perfusion restored to nearly 100% and smaller infarct volumes (379 ± 57 mm3 saline controls; 309 ± 58 mm3 NBO; 201 ± 78 mm3 tPA; 138 ± 30 mm3 tPA plus NBO, showing that tPA-induced reperfusion salvages ischemic tissue and that NBO does not significantly alter this neuroprotective effect. NBO had no significant effect on hemorrhagic conversion, brain swelling, or mortality. Conclusion NBO can be safely co-administered with tPA. The efficacy of tPA thrombolysis is not affected and there is no induction of brain hemorrhage or edema. These experimental results require clinical confirmation.

  15. Early MEK1/2 Inhibition after Global Cerebral Ischemia in Rats Reduces Brain Damage and Improves Outcome by Preventing Delayed Vasoconstrictor Receptor Upregulation

    DEFF Research Database (Denmark)

    Johansson, Sara Ellinor; Larsen, Stine Schmidt; Povlsen, Gro Klitgaard

    2014-01-01

    BACKGROUND: Global cerebral ischemia following cardiac arrest is associated with increased cerebral vasoconstriction and decreased cerebral blood flow, contributing to delayed neuronal cell death and neurological detriments in affected patients. We hypothesize that upregulation of contractile ETB...... and 5-HT1B receptors, previously demonstrated in cerebral arteries after experimental global ischemia, are a key mechanism behind insufficient perfusion of the post-ischemic brain, proposing blockade of this receptor upregulation as a novel target for prevention of cerebral hypoperfusion and delayed...... neuronal cell death after global cerebral ischemia. The aim was to characterize the time-course of receptor upregulation and associated neuronal damage after global ischemia and investigate whether treatment with the MEK1/2 inhibitor U0126 can prevent cerebrovascular receptor upregulation and thereby...

  16. Characteristics of diffusion and perfusion-weighted MRI in different cranial infarction areas of acute stroke in a rat model

    International Nuclear Information System (INIS)

    Zhao Jungong; Li Minghua; Cheng Yingsheng; Fang Chun; Qiao Ruihua

    2005-01-01

    Objective: To investigate the Characterization of DWI and PWI during cranio-ischemia in assessment of reversible ischemic penumbra in rats. Methods: All 22 rats were randomly divided into 2 groups, group A (n=17). The left middle cerebral arteries were occluded with filaments for 1.5 hours (n=3), 3 hours (n=6), 6 hours (n=3), 9 hours (n=5) respectively; group B (n=5) with sham operation was set up for control study. The DWI and PWI were performed when rats experienced neurologic deficits. Their apparent diffusion coefficient (ADC), relative negative enhancement integral (rNEI), relative time to minimum (rTTM), relative max slope of increase (rMSI), relative max slope of decrease (rMSD) were measured at areas of ischemic core, ischemic margin, and cortex. Two rats of each sub-group were performed with TTC staining, histopathology, immunocheministry and laser scanning confocal microscope (LSCM) for control study. Results: ADC values significantly decreased in the ischemic core (0.29 x 10 -3 mm 2 /s) compared with ischemic margin (0.51 x 10 -3 mm 2 /s) and cortex (0.59 x 10 -3 mm 2 /s) (P -3 mm 2 /s for ADC, 70% for rNEI and 120% for rTTM would be the optimal standard suggesting the mild cranial tissue damage or with reversible tissue damage. Conclusions: Semi-quantitative parameters based on DWI and PWI of acute cranial ischemia can provide us new modalities for distinguishing and confirming the existences and extent of ischemic area. (authors)

  17. Cerebral Lactate Concentration in Neonatal Hypoxic-Ischemic Encephalopathy: In Relation to Time, Characteristic of Injury, and Serum Lactate Concentration

    Directory of Open Access Journals (Sweden)

    Tai-Wei Wu

    2018-05-01

    Full Text Available BackgroundCerebral lactate concentration can remain detectable in neonatal hypoxic-ischemic encephalopathy (HIE after hemodynamic stability. The temporal resolution of regional cerebral lactate concentration in relation to the severity or area of injury is unclear. Furthermore, the interplay between serum and cerebral lactate in neonatal HIE has not been well defined. The study aims to describe cerebral lactate concentration in neonatal HIE in relation to time, injury, and serum lactate.Design/methodsFifty-two newborns with HIE undergoing therapeutic hypothermia (TH were enrolled. Magnetic resonance imaging and spectroscopy (MRI + MR spectroscopy were performed during and after TH at 54.6 ± 15.0 and 156 ± 57.6 h of life, respectively. Severity and predominant pattern of injury was scored radiographically. Single-voxel 1H MR spectra were acquired using short-echo (35 ms PRESS sequence localized to the basal ganglia (BG, thalamus (Thal, gray matter (GM, and white matter. Cerebral lactate concentration was quantified by LCModel software. Serum and cerebral lactate concentrations were plotted based on age at time of measurement. Multiple comparisons of regional cerebral lactate concentration based on severity and predominant pattern of injury were performed. Spearman’s Rho was computed to determine correlation between serum lactate and cerebral lactate concentration at the respective regions of interest.ResultsOverall, serum lactate concentration decreased over time. Cerebral lactate concentration remained low for less severe injury and decreased over time for more severe injury. Cerebral lactate remained detectable even after TH. During TH, there was a significant higher concentration of cerebral lactate at the areas of injury and also when injury was more severe. However, these differences were no longer observed after TH. There was a weak correlation between serum lactate and cerebral lactate concentration at the BG (rs

  18. Inhibition of CD147 (Cluster of Differentiation 147) Ameliorates Acute Ischemic Stroke in Mice by Reducing Thromboinflammation.

    Science.gov (United States)

    Jin, Rong; Xiao, Adam Y; Chen, Rui; Granger, D Neil; Li, Guohong

    2017-12-01

    Inflammation and thrombosis currently are recognized as critical contributors to the pathogenesis of ischemic stroke. CD147 (cluster of differentiation 147), also known as extracellular matrix metalloproteinase inducer, can function as a key mediator of inflammatory and immune responses. CD147 expression is increased in the brain after cerebral ischemia, but its role in the pathogenesis of ischemic stroke remains unknown. In this study, we show that CD147 acts as a key player in ischemic stroke by driving thrombotic and inflammatory responses. Focal cerebral ischemia was induced in C57BL/6 mice by a 60-minute transient middle cerebral artery occlusion. Animals were treated with anti-CD147 function-blocking antibody (αCD147) or isotype control antibody. Blood-brain barrier permeability, thrombus formation, and microvascular patency were assessed 24 hours after ischemia. Infarct size, neurological deficits, and inflammatory cells invaded in the brain were assessed 72 hours after ischemia. CD147 expression was rapidly increased in ischemic brain endothelium after transient middle cerebral artery occlusion. Inhibition of CD147 reduced infarct size and improved functional outcome on day 3 after transient middle cerebral artery occlusion. The neuroprotective effects were associated with (1) prevented blood-brain barrier damage, (2) decreased intravascular fibrin and platelet deposition, which in turn reduced thrombosis and increased cerebral perfusion, and (3) reduced brain inflammatory cell infiltration. The underlying mechanism may include reduced NF-κB (nuclear factor κB) activation, MMP-9 (matrix metalloproteinase-9) activity, and PAI-1 (plasminogen activator inhibitor-1) expression in brain microvascular endothelial cells. Inhibition of CD147 ameliorates acute ischemic stroke by reducing thromboinflammation. CD147 might represent a novel and promising therapeutic target for ischemic stroke and possibly other thromboinflammatory disorders. © 2017 American Heart

  19. Mechanisms of Acupuncture Therapy for Cerebral Ischemia: an Evidence-Based Review of Clinical and Animal Studies on Cerebral Ischemia.

    Science.gov (United States)

    Zhu, Wen; Ye, Yang; Liu, Yi; Wang, Xue-Rui; Shi, Guang-Xia; Zhang, Shuai; Liu, Cun-Zhi

    2017-12-01

    Ischemic stroke is a major cause of mortality and disability worldwide. As a part of Traditional Chinese Medicine (TCM), acupuncture has been shown to be effective in promoting recovery after stroke. In this article, we review the clinical and experimental studies that demonstrated the mechanisms of acupuncture treatment for cerebral ischemia. Clinical studies indicated that acupuncture activated relevant brain regions, modulated cerebral blood flow and related molecules in stroke patients. Evidence from laboratory indicated that acupuncture regulates cerebral blood flow and metabolism after the interrupt of blood supply. Acupuncture regulates multiple molecules and signaling pathways that lead to excitoxicity, oxidative stress, inflammation, neurons death and survival. Acupuncture also promotes neurogenesis, angiogenesis as well as neuroplasticity after ischemic damage. The evidence provided from clinical and laboratory suggests that acupuncture induces multi-level regulation via complex mechanisms and a single factor may not be enough to explain the beneficial effects against cerebral ischemia.

  20. Cerebral postischemic hyperperfusion in PET and SPECT

    International Nuclear Information System (INIS)

    Cho, Inn Ho

    2001-01-01

    Cerebral post-ischemic hyperperfusion has been observed at the acute and subacute periods of ischemic stroke. In the animal stroke model, early post-ischemic hyperperfusion is the mark of recanalization of the occluded artery with reperfusion. In the PET studies to both humans and experimental animals, early post-ischemic hyperperfusion is not a key factor in the development of tissue infarction and indicates the spontaneous reperfusion of the ischemic brain tissue without late infarction or with small infarction. But late post-ischemic hyperperfusion shows the worse prognosis with reperfusion injury associated with brain tissue necrosis. Early post-ischemic hyperperfusion defined by PET and SPECT may be useful in predicting the prognosis of ischemic stroke and the effect of thrombolytic therapy

  1. Correction for Delay and Dispersion Results in More Accurate Cerebral Blood Flow Ischemic Core Measurement in Acute Stroke.

    Science.gov (United States)

    Lin, Longting; Bivard, Andrew; Kleinig, Timothy; Spratt, Neil J; Levi, Christopher R; Yang, Qing; Parsons, Mark W

    2018-04-01

    This study aimed to assess how the ischemic core measured by perfusion computed tomography (CTP) was affected by the delay and dispersion effect. Ischemic stroke patients having CTP performed within 6 hours of onset were included. The CTP data were processed twice, generating standard cerebral blood flow (sCBF) and delay- and dispersion-corrected CBF (ddCBF), respectively. Ischemic core measured by the sCBF and ddCBF was then compared at the relative threshold core were used: acute diffusion-weighted imaging or 24-hour diffusion-weighted imaging in patients with complete recanalization. Difference of core volume between CTP and diffusion-weighted imaging was estimated by Mann-Whitney U test and limits of agreement. Patients were also classified into favorable and unfavorable CTP patterns. The imaging pattern classification by sCBF and ddCBF was compared by the χ 2 test; their respective ability to predict good clinical outcome (3-month modified Rankin Scale score) was tested in logistic regression. Fifty-five patients were included in this study. Median sCBF ischemic core volume was 38.5 mL (12.4-61.9 mL), much larger than the median core volume of 17.2 mL measured by ddCBF (interquartile range, 5.5-38.8; P core much closer to diffusion-weighted imaging core references, with the mean volume difference of -0.1 mL (95% limits of agreement, -25.4 to 25.2; P =0.97) and 16.7 mL (95% limits of agreement, -21.7 to 55.2; P core measurement on CTP. © 2018 American Heart Association, Inc.

  2. Optimizing Cardiac Out-Put to Increase Cerebral Penumbral Perfusion in Large Middle Cerebral Artery Ischemic Lesion—OPTIMAL Study

    Directory of Open Access Journals (Sweden)

    Hannah Fuhrer

    2017-08-01

    Full Text Available IntroductionIn unsuccessful vessel recanalization, clinical outcome of acute stroke patients depends on early improvement of penumbral perfusion. So far, mean arterial blood pressure (MAP is the target hemodynamic parameter. However, the correlations of MAP to cardiac output (CO and cerebral perfusion are volume state dependent. In severe subarachnoid hemorrhage, optimizing CO leads to a reduction of delayed ischemic neurological deficits and improvement of clinical outcome. This study aims to investigate the effect of standard versus advanced cardiac monitoring with optimization of CO on the clinical outcome in patients with large ischemic stroke.Methods and analysisThe OPTIMAL study is a prospective, multicenter, open, into two arms (1:1 randomized, controlled trial. Sample size estimate: sample sizes of 150 for each treatment group (300 in total ensure an 80% power to detect a difference of 16% of a dichotomized level of functional clinical outcome at 3 months at a significance level of 0.05. Study outcomes: the primary endpoint is the functional outcome at 3 months. The secondary endpoints include functional outcome at 6 months follow-up, and complications related to hemodynamic monitoring and therapies.DiscussionThe results of this trial will provide data on the safety and efficacy of advanced hemodynamic monitoring on clinical outcome.Ethics and disseminationThe trial was approved by the leading ethics committee of Freiburg University, Germany (438/14, 2015 and the local ethics committees of the participating centers. The study is performed in accordance with the Declaration of Helsinki and the guidelines of Good Clinical Practice. It is registered in the German Clinical Trial register (DRKS; DRKS00007805. Dissemination will include submission to peer-reviewed professional journals and presentation at congresses. Hemodynamic monitoring may be altered in a specific stroke patient cohort if the study shows that advanced monitoring is

  3. Ischemic strokes and migraine

    Energy Technology Data Exchange (ETDEWEB)

    Bousser, M.G.; Baron, J.C.; Chiras, J.

    1985-11-01

    Lasting neurological deficits, though most infrequent, do occur in migrainous subjects and are well documented by clinical angiographic computed tomographic (CT scan) and even pathological studies. However the mechanism of cerebral ischemia in migraine remains widely unknown and the precise role of migraine in the pathogenesis of ischemic strokes is still debated. (orig./MG).

  4. Relationship between pattern of ischemic manifestation and hemodynamics in symptomatic M1 stenosis

    International Nuclear Information System (INIS)

    Tokumitsu, Naoki; Sako, Kazuhiro; Aizawa, Shizuka; Shirai, Wakako

    2002-01-01

    The mechanism through which ischemic manifestations develop in patients with middle cerebral artery (MCA) stenosis is still uncertain. It may cause ischemic symptoms through both embolic and hemodynamic mechanisms. In this study, we compared the findings from cerebral angiograms with single photon emission computed tomography (SPECT) in patients with M1 stenosis to determine the pathogenesis of ischema. At our hospital from 1994 to 2000, 14 patients (12 males and 2 females; mean age, 60.9; range, 31 to 85 years) with angiographically demonstrated symptomatic M1 stenosis were enrolled in this study. In 10, their stenotic lesion was located at the proximal site of the perforating arteries and for the other 4, stenosis was found at the distal site. Nine presented with transient ischemic attack (TIA) and 5 with completed stroke for an initial episode. The discrepancy in regional cerebral blood flow (rCBF) was evaluated in relation to the site and degree of stenosis, type of ischemic presentation, and frequency of ischemic events. There was no significant difference in CBF between the patients with stenosis involving the proximal site and those with distal stenosis; but the cortical CBF decreased significantly in those with severe stenosis compared with moderate stenosis. The cortical CBF of those who had a complete stroke is similar to that of the patients with TIA; but CBF of BGA decreased significantly in those with a complete stroke. The single ischemic event group showed a significant decrease in cortical CBF. On the other hand, the group with multiple ischemic events exhibited normal hemodynamics. We concluded that multiple ischemic events that occurred in M1 stenosis are caused by an embolic mechanism. (author)

  5. Effects of the duration of hyperlipidemia on cerebral lipids, vessels and neurons in rats.

    Science.gov (United States)

    Yang, Weichun; Shi, He; Zhang, Jianfen; Shen, Ziyi; Zhou, Guangyu; Hu, Minyu

    2017-01-31

    The present study was designed to investigate the effects of hyperlipidemia on the cerebral lipids, vessels and neurons of rats, and to provide experimental evidence for subsequent intervention. One hundred adult SD rats, half of which were male and half of which were female, were randomly divided into five groups on the basis of serum total cholesterol (TC) levels. Four groups were fed a hypercholesterolemic diet (rat chow supplemented with 4% cholesterol, 1% cholic acid and 0.5% thiouracil - this is also called a CCT diet) for periods of 1 week, 2 weeks, 3 weeks and 4 weeks, respectively. A control group was included. The levels of serum lipids, cerebral lipids, free fatty acids (FFA), interleukin-6 (IL-6), interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), oxidized low density lipoprotein (ox-LDL), A-beta precursor proteins (APP), amyloid beta (Aβ), glial fibrillary acidic protein (GFAP) and tight junction protein Claudin-5 were measured after the experiment. The pathologic changes and apoptosis of the rat brains were evaluated. Compared with the control group, after 1 week of a CCT diet, the levels of serum total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C) and brain triglycerides had increased by 2.40, 1.29 and 1.75 and 0.3 times, respectively. The serum high density lipoprotein cholesterol (HDL-C) had decreased by 0.74 times (P neurons, had increased (P neurons had increased (P neuronal apoptosis in the rat brains, and they all were negatively correlated with Claudin-5 (P neurons by causing the secretion of TNF-α and IL-1 in the brains of rats. In the metabolic procession, brain tissue was shown to generate FFA that aggravated the biosynthesis of ox-LDL. With the extension of the duration of hyperlipidemia, high levels of cerebral TC and LDL-C were shown to aggravate the deposition of Aβ, induce the secretion of VEGF, reduce the expression of tight

  6. CRYOPRESERVATION OF FRESHLY ISOLATED SYNAPTOSOMES PREPARED FROM THE CEREBRAL-CORTEX OF RATS

    NARCIS (Netherlands)

    GLEITZ, J; BEILE, A; WILFFERT, B; TEGTMEIER, F

    In the present study, we established a cryopreservation method for freshly isolated synaptosomes prepared from the cerebral cortex of rats. Freshly prepared synaptosomes were either shock-frozen or frozen under temperature-controlled conditions using a programmable temperature controller. Each group

  7. Endothelin-1-induced focal cerebral ischemia in the growth hormone/IGF-1 deficient Lewis Dwarf rat.

    Science.gov (United States)

    Yan, Han; Mitschelen, Matthew; Toth, Peter; Ashpole, Nicole M; Farley, Julie A; Hodges, Erik L; Warrington, Junie P; Han, Song; Fung, Kar-Ming; Csiszar, Anna; Ungvari, Zoltan; Sonntag, William E

    2014-11-01

    Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  8. A rare cause of ischemic stroke: Intravasculer B cell lymphoma

    Directory of Open Access Journals (Sweden)

    Şeyma Çiftçi

    2014-08-01

    Full Text Available Intravascular B cell lymphoma is rare and an agressive form of large B cell lymphoma which can affect central nervous system. Because of its varied clinical symptoms and the absence of lymphadenopathy, it is generally diagnosed postmortem. Cerebral infarction due to occlusion of arteries can be seen as a rare clinical form of central nervous system involvement. Large artery atherosclerosis, cardiyoembolism and small artery occlusion are the important causes of ischemic stroke but no any cause is detected in %15-40 of all cases. In this report, with the discussion of a case with ischemia like encephalopathy and multiple cerebral ischemic lesions at different stages in cranial MRI which was diagnosed by the help of brain biopsy as a intravascular B cell lymphoma, it is aimed to take attention intravascular lymphoma as a rare cause of ischemic stroke.

  9. Huang-Lian-Jie-Du-Decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via MAPK-mTOR signaling pathway.

    Science.gov (United States)

    Wang, Peng-Ran; Wang, Jun-Song; Zhang, Chao; Song, Xing-Fang; Tian, Na; Kong, Ling-Yi

    2013-08-26

    Huang-Lian-Jie-Du-Decotion (HLJDD, Hwangryun-Hae-Dok-Decotion in Japan), an ancient antipyretic and detoxifying traditional Chinese medicine formula, was reported to have protective effect on ischemic stroke. To investigate the therapeutic effect of HLJDD on ischemic stroke and explore its mode of action. A model of ischemic stroke in the rat was established after transient middle cerebral artery occlusion (MCAO) followed by reperfusion. Rats were assigned randomly to groups of control, sham, transient ischemia/reperfusion (I/R), and three treatment groups by HLJDD at 2.5, 5.0, 10.0mg/kg. The neurological deficit, the cerebral infarct size, morphology abnormality, biochemical parameters were examined, and the levels of relevant proteins were determined by immunoblotting analysis to evaluate the protective effects of HLJDD on ischemic stroke and explore the underlying mechanism. Compared with I/R group, HLJDD significantly ameliorated neurological deficit and histopathology changes, decreased infarct area, and restored the levels of biochemical indicators including nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), glutathione disulfide (GSSG), total superoxide dismutase (T-SOD), Cu/Zn-SOD, Mn-SOD and glutathione peroxidase (GSH-PX). HLJDD also notably elevated the levels of microtubule-associated protein 1 light chain 3 (LC3), Beclin-1, and other autophagy related genes (Atgs), promoted the activation of extracellular signal-regulated kinases (ERK), protein kinase B (Akt), 3-phosphoinositide-dependent kinase (PDK1), and inhibited the activation of mammalian target of rapamycin (mTOR), c-Jun N-terminal protein kinases (JNK), p38, phosphatase and tensin homolog (PTEN). HLJDD showed neuroprotective effects on ischemic stroke, at least in part to the induced protective autophagy via the regulation of mitogen-activated protein kinase (MAPK) signals. This Akt-independent protective autophagy is favorable in the treatment of stroke, avoiding unfavorable side

  10. Effects of Edaravone, a Free Radical Scavenger, on Photochemically Induced Cerebral Infarction in a Rat Hemiplegic Model

    OpenAIRE

    Ikeda, Satoshi; Harada, Katsuhiro; Ohwatashi, Akihiko; Kamikawa, Yurie

    2013-01-01

    Edaravone is a free radical scavenger that protects the adjacent cortex during cerebral infarction. We created a hemiparetic model of cerebral thrombosis from a photochemically induced infarction with the photosensitive dye, rose bengal, in rats. We examined the effects of edaravone on recovery in the model. A total of 36 adult Wistar rats were used. The right sensorimotor area was irradiated with green light with a wavelength of 533?nm (10?mm diameter), and the rose bengal was injected intra...

  11. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording

    Science.gov (United States)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  12. Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development.

    Science.gov (United States)

    Bruno, Alessandra Nejar; Da Silva, Rosane Souza; Bonan, Carla Denise; Battastini, Ana Maria Oliveira; Barreto-chaves, Maria Luiza M; Sarkis, João José Freitas

    2003-11-01

    Here we investigate the possible effects of the hyperthyroidism on the hydrolysis of the ATP to adenosine in the synaptosomes of hippocampus, cerebral cortex and blood serum of rats in different developmental phases. Manifestations of hyperthyroidism include anxiety, nervousness, tachycardia, physical hyperactivity and weight loss amongst others. The thyroid hormones modulate a number of physiological functions in central nervous system, including development, function, expression of adenosine A(1) receptors and transport of neuromodulator adenosine. Thus, hyperthyroidism was induced in male Wistar rats (5-, 60-, 150- and 330-day old) by daily injections of L-thyroxine (T4) for 14 days. Nucleotide hydrolysis was decreased by about 14-52% in both hippocampus and cerebral cortex in 5 to 60-day-old rats. These changes were also observed in rat blood serum. In addition, in 11-month-old rats, inhibition of ADP and AMP hydrolysis persisted in the hippocampus, whereas, in cerebral cortex, an increase in AMP hydrolysis was detected. Thus, hyperthyroidism affects the extracellular nucleotides balance and adenosine production, interfering in neurotransmitter release, development and others physiological processes in different systems.

  13. Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in a rat model of anterior ischemic optic neuropathy (rAION).

    Science.gov (United States)

    Chang, Chung-Hsing; Huang, Tzu-Lun; Huang, Shun-Ping; Tsai, Rong-Kung

    2014-01-01

    The purpose of this study was to investigate the neuroprotective effects of recombinant human granulocyte colony stimulating factor (G-CSF), as administered in a rat model of anterior ischemic optic neuropathy (rAION). Using laser-induced photoactivation of intravenously administered Rose Bengal in the optic nerve head of 60 adult male Wistar rats, an anterior ischemic optic neuropathy (rAION) was inducted. Rats either immediately received G-CSF (subcutaneous injections) or phosphate buffered saline (PBS) for 5 consecutive days. Rats were euthanized at 4 weeks post infarct. Density of retinal ganglion cells (RGCs) was counted using retrograde labeling of Fluoro-gold. Visual function was assessed by flash visual-evoked potentials (FVEP) at 4 weeks. TUNEL assay in the retinal sections and immunohistochemical staining of ED1 (marker of macrophage/microglia) were investigated in the optic nerve (ON) specimens. The RGC densities in the central and mid-peripheral retinas in the G-CSF treated rats were significantly higher than those of the PBS-treated rats (survival rate was 71.4% vs. 33.2% in the central retina; 61.8% vs. 22.7% in the mid-peripheral retina, respectively; both p optic nerve sections of G-CSF-treated rats (16 ± 6/HPF vs. 35 ± 10/HPF; p = 0.016). In conclusion, administration of G-CSF is neuroprotective in the rat model of anterior ischemic optic neuropathy, as demonstrated both structurally by RGC density and functionally by FVEP. G-CSF may work via the dual actions of anti-apoptosis for RGC surviving as well as anti-inflammation in the optic nerves as evidenced by less infiltration of ED1-povitive cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Tornabene, Erica; Brodin, Birger

    2016-01-01

    of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain......Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food...... and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding...

  15. [Effect of Scalp-acupuncture Stimulation on Neurological Function and Expression of ASIC 1 a and ASIC 2 b of Hippocampal CA 1 Region in Cerebral Ischemia Rats].

    Science.gov (United States)

    Tian, Liang; Wang, Jin-Hai; Zhao, Min; Bao, Ying-Cun; Shang, Jun-Fang; Yan, Qi; Zhang, Zhen-Chang; Du, Xiao-Zheng; Jiang, Hua; Sun, Run-Jie; Yuan, Bo; Zhang, Xing-Hua; Zhang, Ting-Zhuo; Li, Xing-Lan

    2016-10-25

    To observe the influence of scalp-acupuncture on the expression of acid-sensing ion channels (ASICs) 1 a and 2 b of hippocampal CA 1 region in cerebral ischemia (CI) rats, so as to investigate its mechanism underlying improvement of ischemic stroke. Thirty-two male SD rats were randomly allocated to normal control, model, scalp-acupuncture and Amiloride group ( n =8 in each group). The model of focal CI was established by middle cerebral artery occlusion (MCAO). Scalp acupuncture stimulation was applied to bilateral Dingnieqianxiexian (MS 6) and Dingniehouxiexian (MS 7), once daily for 7 days. Rats of the Amiloride group were fed with Amiloride solution, twice a day for 7 days, and those of the normal control and model groups were grabbled and fixed in the same way with the acupuncture and Amiloride groups. The neurological deficit score was given according to Longa's method. The expression of hippocampal ASIC 1 a and ASIC 2 b was detected by immunohistochemistry, and the Ca 2+ concentration in the hippocampal tissue assayed using flowing cytometry. After the intervention, the neurological deficit score of both the scalp-acupuncture and Amiloride groups were significantly decreased in comparison with pre-treatment ( P ASIC 1 a and ASIC 2 b in the hippocampal CA 1 region and hip-pocampal Ca 2+ concentration were significantly up-regulated in the model group compared with the normal control group ( P ASIC 1 a and ASIC 2 b expression and Ca 2+ concentration ( P >0.05). Scalp-acupuncture stimulation can improve neurological function in CI rats, which may be related to its effects in suppressing the increased expression of hippocampal ASIC 1 a and ASIC 2 b proteins and in reducing calcium overload in hip-pocampal neurocytes.

  16. Effects of captopril on cerebral blood flow in normotensive and hypertensive rats

    International Nuclear Information System (INIS)

    Barry, D.I.; Paulson, O.B.; Jarden, J.O.; Juhler, M.; Graham, D.I.; Strandgaard, S.

    1984-01-01

    Cerebrovascular effects of the angiotensin converting enzyme inhibitor captopril were examined in normotensive and hypertensive rats. Cerebral blood flow was measured with the intracarotid 133 xenon injection method in halothane-anesthetized animals. The blood-brain barrier permeability of captopril (determined with an integral-uptake method) was negligible, the permeability-surface area product in most brain regions being 1 X 10(-5) cm3/g per second, that is, three to four times lower than that of sodium ion. When administered into the cerebral ventricles to bypass the blood-brain barrier, captopril had no effect on cerebral blood flow: furthermore, cerebral blood flow autoregulation (studied by raising and lowering blood pressure) was identical to that in controls. In contrast, when given intravenously, captopril had a marked effect on cerebral blood flow autoregulation--both the lower and upper limits of autoregulation being shifted to a lower pressure (by about 20 to 30 and 50 to 60 mm Hg, respectively), and the autoregulatory range was shortened by about 40 mm Hg. This effect may be ascribed to inhibition of converting enzyme in the cerebral blood vessels rather than within the brain

  17. Effect of different component ratio of Astragalus total saponins and Verbena total glycosides on the cerebral infarction area and serum biochemical indicators in the focal cerebral ischemia-reperfusion rat model

    Directory of Open Access Journals (Sweden)

    Erping Xu

    2017-05-01

    Full Text Available Our purpose is to study the effect of different component ratio of Astragalus Total Saponins (ATS and Verbena Total Glycosides (VTG on the cerebral infarction area and the serum biochemical indicators in the focal cerebral ischemia-reperfusion rat model. Compared with the model group, different component ratio of ATS and VTG could significantly improve the neurological deficit scores to the focal cerebral ischemia-reperfusion rat model, and the group of 7:3, 6:4, 5:5 got the best results; it could reduce the mortality of rat model to a certain extent, and the group of 5:5 group got the best results; it can significantly reduce the cerebral infarction area, and the group of 7:3, 5:5, 4:6 got the best results; it could significantly reduce the content of TNF-α, and the group of 8:2, 6:4 got the best results; it could significantly reduce the content of NO, and the group of 7:3, 5:5 got the best results; it could significantly increase the content of SOD, and the group of 6:4, 5:5 got the best results. This indicates that different component ratio of ATS and VTG may protect the damage of focal cerebral ischemia-reperfusion rat model to a certain extent, which are compared using the comprehensive weight method and the ratio of 5:5 was proved to be the optimal active ratio.

  18. MR imaging of ischemic penumbra

    International Nuclear Information System (INIS)

    Abe, Osamu; Aoki, Shigeki; Shirouzu, Ichiro; Kunimatsu, Akira; Hayashi, Naoto; Masumoto, Tomohiko; Mori, Harushi; Yamada, Haruyasu; Watanabe, Makoto; Masutani, Yoshitaka; Ohtomo, Kuni

    2003-01-01

    Cerebral ischemic stroke is one of the most fatal diseases despite current advances in medical science. Recent demonstration of efficacy using intravenous and intra-arterial thrombolysis demands therapeutic intervention tailored to the physiologic state of the individual tissue and stratification of patients according to the potential risks for therapies. In such an era, the role of the neuroimaging becomes increasingly important to evaluate the extent and location of tissues at risk of infarction (ischemic penumbra), to distinguish it from unsalvageable infarcted tissues or doomed hemorrhagic parenchyma. In this review, we present briefly the current role and limitation of computed tomography and conventional magnetic resonance imaging (MRI). We also present the possible applications of advanced MR techniques, such as diffusion and perfusion imaging, concentrating on the delineation or detection of ischemic penumbra

  19. Histopathology of motor cortex in an experimental focal ischemic stroke in mouse model.

    Science.gov (United States)

    de Oliveira, Juçara Loli; Crispin, Pedro di Tárique Barreto; Duarte, Elisa Cristiana Winkelmann; Marloch, Gilberto Domingos; Gargioni, Rogério; Trentin, Andréa Gonçalves; Alvarez-Silva, Marcio

    2014-05-01

    Experimental ischemia results in cortical brain lesion followed by ischemic stroke. In this study, focal cerebral ischemia was induced in mice by occlusion of the middle cerebral artery. We studied cortical layers I, II/III, V and VI in the caudal forelimb area (CFA) and medial agranular cortex (AGm) from control and C57BL/6 mice induced with ischemic stroke. Based on our analysis of CFA and AGm motor cortex, significant differences were observed in the numbers of neurons, astrocytes and microglia in the superficial II/III and deep V cortical layers. Cellular changes were more prominent in layer V of the CFA with nuclear pyknosis, chromatin fragmentation, necrosis and degeneration, as well as, morphological evidence of apoptosis, mainly in neurons. As result, the CFA was more severely impaired than the AGm in this focal cerebral ischemic model, as evidenced by the proliferation of astrocytes, potentially resulting in neuroinflammation by microglia-like cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effects of the Rabdosia rubescens total flavonoids on focal cerebral ischemia reperfusion model in rats

    Directory of Open Access Journals (Sweden)

    Mingsan Miao

    2017-05-01

    Full Text Available The effect of the Rabdosia rubescens total flavonoids on focal cerebral ischemia reperfusion model in rats was observed. The model group, nimodipine group, cerebral collateral group, and large, medium and small dose group of the Rabdosia rubescens total flavonoids were administered with corresponding drugs but sham operation group and model group were administered the same volume of 0.5%CMC, 1 times a day, continuous administration of 7 d. After 1 h at 7 d to medicine, left incision in the middle of the neck of rats after anesthesia, we can firstly expose and isolate the left common carotid artery (CCA, and then expose external carotid artery (ECA and internal carotid artery (ICA. The common carotid artery and the external carotid artery are ligated. Then internal carotid artery with arterial clamp is temporarily clipped. Besides, cut the incision of 0.2 mm from 5 cm of the bifurcation of the common carotid artery. A thread Line bolt is inserted with more than 18–20 mm from bifurcation of CCA into the internal carotid artery until there is resistance. Then the entrance of the middle cerebral artery is blocked and internal carotid artery is ligated (the blank group only exposed the left blood vessel without Plugging wire. Finally it is gently pulled out the plug line after 2 h. Results: Compared with the model mice, Rabdosia rubescens total flavonoids can significantly relieve the injury of brain in hippocampus and cortex nerve cells; experimental rat focal cerebral ischemia was to improve again perfusion model of nerve function defect score mortality; significantly reduce brain homogenate NOS activity and no content, MDA, IL-1, TNF-a, ICAM-1 content; increase in brain homogenate SOD and ATPase activity (P < 0.05, P < 0.01; and reduce the serum S-100β protein content. Each dose group of the Rabdosia rubescens total flavonoids has a better Improvement effect on focal cerebral ischemia reperfusion model in rats.

  1. Protective effect of estrogen in endothelin-induced middle cerebral artery occlusion in female rats

    OpenAIRE

    Glendenning, Michele L.; Lovekamp-Swan, Tara; Schreihofer, Derek A.

    2008-01-01

    Estrogen is a powerful endogenous and exogenous neuroprotective agent in animal models of brain injury, including focal cerebral ischemia. Although this protection has been demonstrated in several different treatment and injury paradigms, it has not been demonstrated in focal cerebral ischemia induced by intraparenchymal endothelin-1 injection, a model with many advantages over other models of experimental focal ischemia. Reproductively mature female Sprague-Dawley rats were ovariectomized an...

  2. Synthetic Oligodeoxynucleotides Containing Multiple Telemeric TTAGGG Motifs Suppress Inflammasome Activity in Macrophages Subjected to Oxygen and Glucose Deprivation and Reduce Ischemic Brain Injury in Stroke-Prone Spontaneously Hypertensive Rats.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available The immune system plays a fundamental role in both the development and pathobiology of stroke. Inflammasomes are multiprotein complexes that have come to be recognized as critical players in the inflammation that ultimately contributes to stroke severity. Inflammasomes recognize microbial and host-derived danger signals and activate caspase-1, which in turn controls the production of the pro-inflammatory cytokine IL-1β. We have shown that A151, a synthetic oligodeoxynucleotide containing multiple telemeric TTAGGG motifs, reduces IL-1β production by activated bone marrow derived macrophages that have been subjected to oxygen-glucose deprivation and LPS stimulation. Further, we demonstrate that A151 reduces the maturation of caspase-1 and IL-1β, the levels of both the iNOS and NLRP3 proteins, and the depolarization of mitochondrial membrane potential within such cells. In addition, we have demonstrated that A151 reduces ischemic brain damage and NLRP3 mRNA levels in SHR-SP rats that have undergone permanent middle cerebral artery occlusion. These findings clearly suggest that the modulation of inflammasome activity via A151 may contribute to a reduction in pro-inflammatory cytokine production by macrophages subjected to conditions that model brain ischemia and modulate ischemic brain damage in an animal model of stroke. Therefore, modulation of ischemic pathobiology by A151 may have a role in the development of novel stroke prevention and therapeutic strategies.

  3. Cerebroprotective Actions of Triticum aestivum Linn Powder and Bauhinia purpurea Flower Powder in Surgically Induced Cerebral Infraction in Rats.

    Science.gov (United States)

    Annapurna, Akula; Vishala, Thonangi C; Bitra, Veera R; Rapaka, Deepthi; Shaik, Asmath

    2018-01-01

    The prime objective of this study is to evaluate the cerebroprotective actions of Triticum aestivum (wheatgrass) powder and Bauhinia purpurea flower (dev kanchan) powder against the experimentally induced global ischemia reperfusion injury in rats. In the first phase of the studies, 1 h before the surgical procedure, the Wistar rats were orally served with varied doses of wheatgrass powder (5, 10, 30, and 100 μg/kg) and Bauhinia flower powder (30, 100, 200, and 300 μg/kg), respectively. The ischemia was induced by 30-min bilateral carotid artery occlusion in succession to reperfusion for 4 h. It was proved that the wheatgrass powder and Bauhinia flower powder yielded a significant, dose-dependent cerebroprotection in terms of reduction in cerebral infarct size when compared with the control group. Coming to the second phase of the studies, a certain potential dose of 10 μg/kg of wheatgrass and 200 μg/kg of Bauhinia flower powders was selected keeping the protective action in view, and the animals were treated for 15 days. The major findings of the study are that wheatgrass and Bauhinia flower powders significantly augmented the magnitude of the antioxidant enzymes, viz., super oxide dismutase and catalase, and further reduced the levels of lipid peroxidation. The present study clearly showed that the wheatgrass powder and Bauhinia flower powder possess significant antioxidant properties that may act as a key ingredient in various ayurvedic preparations for the treatment of various diseases like cerebral ischemic reperfusion injury. The wheat grass contains high amount of bioflavonoids, alkaloids, SOD etc which are responsible for anti oxidant activity.The Bauhinia purpurea contains glycosides, flavonoids and also plays a major role in DPPH activity which is responsible for anti oxidant activity.The wheat grass (10 mg/kg) and bauhinia (200 mg/kg) significantly(P bauhinia (200 mg/kg) significantly (P <0.0001) reduced the lipid peroxidation (MDA) and increased SOD

  4. Characteristics of Misclassified CT Perfusion Ischemic Core in Patients with Acute Ischemic Stroke.

    Directory of Open Access Journals (Sweden)

    Ralph R E G Geuskens

    Full Text Available CT perfusion (CTP is used to estimate the extent of ischemic core and penumbra in patients with acute ischemic stroke. CTP reliability, however, is limited. This study aims to identify regions misclassified as ischemic core on CTP, using infarct on follow-up noncontrast CT. We aim to assess differences in volumetric and perfusion characteristics in these regions compared to areas that ended up as infarct on follow-up.This study included 35 patients with >100 mm brain coverage CTP. CTP processing was performed using Philips software (IntelliSpace 7.0. Final infarct was automatically segmented on follow-up noncontrast CT and used as reference. CTP and follow-up noncontrast CT image data were registered. This allowed classification of ischemic lesion agreement (core on CTP: rMTT≥145%, aCBV<2.0 ml/100g and infarct on follow-up noncontrast CT and misclassified ischemic core (core on CTP, not identified on follow-up noncontrast CT regions. False discovery ratio (FDR, defined as misclassified ischemic core volume divided by total CTP ischemic core volume, was calculated. Absolute and relative CTP parameters (CBV, CBF, and MTT were calculated for both misclassified CTP ischemic core and ischemic lesion agreement regions and compared using paired rank-sum tests.Median total CTP ischemic core volume was 49.7ml (IQR:29.9ml-132ml; median misclassified ischemic core volume was 30.4ml (IQR:20.9ml-77.0ml. Median FDR between patients was 62% (IQR:49%-80%. Median relative mean transit time was 243% (IQR:198%-289% and 342% (IQR:249%-432% for misclassified and ischemic lesion agreement regions, respectively. Median absolute cerebral blood volume was 1.59 (IQR:1.43-1.79 ml/100g (P<0.01 and 1.38 (IQR:1.15-1.49 ml/100g (P<0.01 for misclassified ischemic core and ischemic lesion agreement, respectively. All CTP parameter values differed significantly.For all patients a considerable region of the CTP ischemic core is misclassified. CTP parameters significantly

  5. By Improving Regional Cortical Blood Flow, Attenuating Mitochondrial Dysfunction and Sequential Apoptosis Galangin Acts as a Potential Neuroprotective Agent after Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2012-11-01

    Full Text Available Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS. These effects were consistent with improvements in the membrane potential level (Dym, membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose polymerase (PARP. All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.

  6. By improving regional cortical blood flow, attenuating mitochondrial dysfunction and sequential apoptosis galangin acts as a potential neuroprotective agent after acute ischemic stroke.

    Science.gov (United States)

    Li, Shaojing; Wu, Chuanhong; Zhu, Li; Gao, Jian; Fang, Jing; Li, Defeng; Fu, Meihong; Liang, Rixin; Wang, Lan; Cheng, Ming; Yang, Hongjun

    2012-11-09

    Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF) were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS). These effects were consistent with improvements in the membrane potential level (Dym), membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP). All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.

  7. Effects of apomorphine upon local cerebral glucose utilization in conscious rats and in rats anesthetized with chloral hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Grome, J.J.; McCulloch, J.

    1983-02-01

    The effects of the dopaminergic agonist apomorphine upon local cerebral glucose utilization in 43 anatomically discrete regions of the CNS were examined in conscious, lightly restrained rats and in rats anesthetized with chloral hydrate by means of the quantitative autoradiographic (/sup 14/C)2-deoxyglucose technique. In animals anesthetized with chloral hydrate, glucose utilization was reduced throughout all regions of the CNS from the levels observed in conscious animals. With chloral hydrate anesthesia, the proportionately most marked reductions in glucose use were noted in primary auditory nuclei, thalmaic relay nuclei, and neocortex, and the least pronounced reductions in glucose use (by 15-25% from conscious levels) were observed in limbic areas, some motor relay nuclei, and white matter. In conscious, lightly restrained rats, the administration of apomorphine effected significant increases in glucose utilization in 15 regions of the CNS, and significant reductions in glucose utilization in two regions of the CNS. In rats anesthetized with chloral hydrate, the effects of apomorphine upon local glucose utilization were less widespread and less marked than in conscious animals. The profound effects of chloral hydrate anesthesia upon local cerebral glucose use, and the modification by this anesthetic regime of the local metabolic responses to apomorphine, emphasize the difficulties which exists in the extrapolation of data from anesthetized animals to the conditions which prevail in the conscious animal.

  8. Admission Hyperglycemia and Clinical Outcome in Cerebral Venous Thrombosis

    NARCIS (Netherlands)

    Zuurbier, Susanna M.; Hiltunen, Sini; Tatlisumak, Turgut; Peters, Guusje M.; Silvis, Suzanne M.; Haapaniemi, Elena; Kruyt, Nyika D.; Putaala, Jukka; Coutinho, Jonathan M.

    2016-01-01

    Background and Purpose-Admission hyperglycemia is associated with poor clinical outcome in ischemic and hemorrhagic stroke. Admission hyperglycemia has not been investigated in patients with cerebral venous thrombosis. Methods-Consecutive adult patients with cerebral venous thrombosis were included

  9. Nutrition for brain recovery after ischemic stroke: an added value to rehabilitation.

    Science.gov (United States)

    Aquilani, Roberto; Sessarego, Paolo; Iadarola, Paolo; Barbieri, Annalisa; Boschi, Federica

    2011-06-01

    In patients who undergo rehabilitation after ischemic stroke, nutrition strategies are adopted to provide tube-fed individuals with adequate nutrition and/or to avoid the body wasting responsible for poor functional outcome and prolonged stay in the hospital. Investigations have documented that nutrition interventions can enhance the recovery of neurocognitive function in individuals with ischemic stroke. Experimental studies have shown that protein synthesis is suppressed in the ischemic penumbra. In clinical studies on rehabilitation patients designed to study the effects of counteracting or limiting this reduction of protein synthesis by providing protein supplementation, patients receiving such supplementation had enhanced recovery of neurocognitive function. Cellular damage in cerebral ischemia is also partly caused by oxidative damage secondary to free radical formation and lipid peroxidation. Increased oxidative stress negatively affects a patient's life and functional prognosis. Some studies have documented that nutrition supplementation with B-group vitamins may mitigate oxidative damage after acute ischemic stroke. Experimental investigations have also shown that cerebral ischemia changes synaptic zinc release and that acute ischemia increases zinc release, aggravating neuronal injury. In clinical practice, patients with ischemic stroke were found to have a lower than recommended dietary intake of zinc. Patients in whom daily zinc intake was normalized had better recovery of neurological deficits than subjects given a placebo. The aim of this review is to highlight those brain metabolic alterations susceptible to nutrition correction in clinical practice. The mechanisms underlying the relationship between cerebral ischemia and nutrition metabolic conditions are discussed.

  10. Effect of tetramethylpyrazine on the spatial learning and memory function of rats after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Jianjun Zhao; Yong Liu; Xinlin Chen; Jianxin Liu; Yingfang Tian; Pengbo Zhang; Qianyan Kang; Fen Qiu

    2006-01-01

    BACKGROUND: Tetramethylpyrazine (TMP) presents the effect of anti-platelet aggregation, reduces arterial resistance, increases cerebral blood flow, and improves microcirculation.OBJECTIVE: To observe the effects of TMP on the learning and memory abilities and the number of neurons in cortex and hippocampus after focal cerebral ischemia in rats DESIGN: A randomized controlled trial.SETTING: Department of Human Anatomy and Histological Embryology, School of Medicine, Xi'an Jiaotong University.MATERIALS: Fifty adult male Sprague-Dawley rats, weighing 250-300 g were supplied by the Experimental Animal Center, School of Medicine, Xi'an Jiaotong University. TMP was purchased from Wuxi Seventh Pharmaceutical Co. Ltd (Lot Number: 2004051106, Specification: 2 mL/piece).METHODS: The experiments were carried out in School of Medicine of Xi'an Jiaotong University from June 2004 to May 2005. The 50 rats were randomly divided into five groups according to the random number table method: sham-operated group, cerebral ischemia control group, Iow-dose TMP group, middle-dose TMP group and high-dose TMP group, 10 rats in each group. Rats in the TMP groups were immediately treated with intraperitoneal injection of TMP of 40, 80 and 120 mg/kg respectively, and those in the sham-operated group and cerebral ischemia control group were injected intraperitoneally by isovolume saline, once a day for 14 days successively. On the 15th day, the spatial learning and memory abilities of the rats were assessed with the Morris water maze test, and then the changes of neuron numbers in cortex and hippocampus were observed by Nissl staining of brain sections.MAIN OUTCOME MEASURES: The results of Morris water maze test and the changes of neuron numbers in cortex and hippocampus by Nissl staining of brain sections were observed,RESULTS : Finally 39 rats were involved in the analysis of results, and the other 11 died of excessive anesthesia or failure in model establishment. ① The rats in the

  11. [Effect of electric acupuncture on the expression of NgR in the cerebral cortex, the medulla oblongata, and the spinal cord of hypertensive rats after cerebral infarction].

    Science.gov (United States)

    Tan, Feng; Chen, Jie; Liang, Yan-Gui; Li, Yan-Ping; Wang, Xue-Wen; Meng, Di; Cheng, Nan-Fang

    2014-03-01

    To observe the effect of electric acupuncture (EA) on the Nogo receptors (NgR) protein expression in the cerebral cortex, the medulla oblongata, and the spinal cord of cerebral ischemia-reperfusion (I/R) stroke-prone renovascular hypertensive rats (RHRSP) with middle cerebral artery occlusion (MCAO) at different time points, and to investigate its possible mechanisms for remote-organ injury of acute cerebral infarction (ACI). The RHRSP model was duplicated in male SPF grade SD rats. Then the MCAO model was prepared by a thread stringing method. Rats were divided into the hypertension group,the sham-operation group, the MCAO group, the EA group, and the sham-acupoint group by random number table method, 60 in each group. Rats in the MCAO group only received MCAO reperfusion treatment. Those in the sham-operation group only received surgical trauma. Baihui (DU20) and Dazhui (DU14) were needled in the EA group, once daily for a total of 28 days.The needles were acupunctured at the skin one cun distant from Baihui (DU20) and Dazhui (DU14) and then the same EA treatment was performed in the sham-acupoint group. At day 1, 7, 14, 28 after treatment, six rats were executed from each group, and their right cortex and medulla oblongata, and the left spinal cord were isolated. The infarct volume was detected by Nissl's staining method. The NgR expression was detect by Western blot. (1) In the cortex area: compared with the hypertension group,the NgR expression increased in the MCAO group at day 1,7,14,and 28 after MCAO (P 0.05). At day 7, 14,and 28 after MCAO, the NgR expression decreased in the EA group (P 0.05). (2) In the medulla oblongata area: compared with the hypertension group, the NgR expression was equivalent in the sham-operation group. the MCAO group,the EA group, and the sham-acupoint group at 1 day after MCAO (P > 0.05). At day 7.14, and 28 after MCAO, the NgR expression increased in the MCAO group (P 0.05). (3) In the spinal cord area: compared with the

  12. Preliminary experience on early mechanical recanalization of middle cerebral artery for acute ischemic stroke and literature review

    International Nuclear Information System (INIS)

    Bai Weixing; Li Tianxiao; Zhu Liangfu; Xue Jiangyu; Wang Ziliang

    2012-01-01

    Objective: To evaluate the feasibility,efficacy and complication of early middle cerebral artery (MCA) mechanical recanalization (MER) for treatment of acute ischemic stroke. Methods: Seven cases undergone MER of MCA for the treatment of acute cerebral infarct were retrospectively reviewed and analyzed, including the etiology, mechanism, Qureshi grading scale, location and size of infarcts, NIHSS score of pre and post procedure, endovascular technique and complications. Referring to the literature, the indications of MCA recanalization were further identified. Results: A total of 7 cases with mean age of 48 yrs were reviewed, which included 3 cases of atherosclerotic thrombosis and 4 embolic cases with pre NIHSS score ranging from 3 to 22. Mechanical recanalization succeeded in 6 cases, but 2 cases of cardiogenic embolism died of intracranial hemorrhage postoperatively. Favorable clinical outcomes were achieved in 4 cases whereas 1 deteriorated. Overall complications seemed to be consistent with literatures reviewed. Conclusions: Early MER of MCA may benefit to a certain subset of acute ischemia stroke patients, however, embolic cases, elder patients and those with severe neurologic deficits are often accompanied by higher complications and unfavorable outcome. (authors)

  13. Effects of Edaravone, a Free Radical Scavenger, on Photochemically Induced Cerebral Infarction in a Rat Hemiplegic Model

    Directory of Open Access Journals (Sweden)

    Satoshi Ikeda

    2013-01-01

    Full Text Available Edaravone is a free radical scavenger that protects the adjacent cortex during cerebral infarction. We created a hemiparetic model of cerebral thrombosis from a photochemically induced infarction with the photosensitive dye, rose bengal, in rats. We examined the effects of edaravone on recovery in the model. A total of 36 adult Wistar rats were used. The right sensorimotor area was irradiated with green light with a wavelength of 533 nm (10 mm diameter, and the rose bengal was injected intravenously to create an infarction. The edaravone group was injected intraperitoneally with edaravone (3 mg/kg, and the control group was injected with saline. The recovery process of the hemiplegia was evaluated with the 7-step scale of Fenny. The infarcted areas were measured after fixation. The recovery of the paralysis in the edaravone-treated group was significantly earlier than that in the untreated group. Seven days later, both groups were mostly recovered and had scores of 7, and the infarction region was significantly smaller in the edaravone-treated group. Edaravone reduced the infarction area and promoted the functional recovery of hemiparesis from cerebral thrombosis in a rat model. These findings suggest that edaravone treatment would be effective in clinical patients recovering from cerebral infarction.

  14. Effects of edaravone, a free radical scavenger, on photochemically induced cerebral infarction in a rat hemiplegic model.

    Science.gov (United States)

    Ikeda, Satoshi; Harada, Katsuhiro; Ohwatashi, Akihiko; Kamikawa, Yurie

    2013-01-01

    Edaravone is a free radical scavenger that protects the adjacent cortex during cerebral infarction. We created a hemiparetic model of cerebral thrombosis from a photochemically induced infarction with the photosensitive dye, rose bengal, in rats. We examined the effects of edaravone on recovery in the model. A total of 36 adult Wistar rats were used. The right sensorimotor area was irradiated with green light with a wavelength of 533 nm (10 mm diameter), and the rose bengal was injected intravenously to create an infarction. The edaravone group was injected intraperitoneally with edaravone (3 mg/kg), and the control group was injected with saline. The recovery process of the hemiplegia was evaluated with the 7-step scale of Fenny. The infarcted areas were measured after fixation. The recovery of the paralysis in the edaravone-treated group was significantly earlier than that in the untreated group. Seven days later, both groups were mostly recovered and had scores of 7, and the infarction region was significantly smaller in the edaravone-treated group. Edaravone reduced the infarction area and promoted the functional recovery of hemiparesis from cerebral thrombosis in a rat model. These findings suggest that edaravone treatment would be effective in clinical patients recovering from cerebral infarction.

  15. Ischemic stroke and transient ischemic attack in young adults: risk factors, diagnostic yield, neuroimaging, and thrombolysis.

    Science.gov (United States)

    Ji, Ruijun; Schwamm, Lee H; Pervez, Muhammad A; Singhal, Aneesh B

    2013-01-01

    Approximately 10% to 14% of ischemic strokes occur in young adults. To investigate the yield of diagnostic tests, neuroimaging findings, and treatment of ischemic strokes in young adults. We retrospectively reviewed data from our Get with the Guidelines-Stroke database from 2005 through 2010. University hospital tertiary stroke center. A total of 215 consecutive inpatients aged 18 to 45 years with ischemic stroke/transient ischemic attack. The mean (SD) age was 37.5 (7) years; 51% were male. There were high incidence rates of hypertension (20%), diabetes mellitus (11%), dyslipidemia (38%), and smoking (34%). Relevant abnormalities were shown on cerebral angiography in 136 of 203 patients, on cardiac ultrasonography in 100 of 195, on Holter monitoring in 2 of 192; and on hypercoagulable panel in 30 of 189 patients. Multiple infarcts were observed in 31% and were more prevalent in individuals younger than age 35 years. Relevant arterial lesions were frequently detected in the middle cerebral artery (23%), internal carotid artery (13%), and vertebrobasilar arteries (13%). Cardioembolic stroke occurred in 47% (including 17% with isolated patent foramen ovale), and 11% had undetermined stroke etiology. The median National Institutes of Health Stroke Scale score was 3 (interquartile range, 0-9) and 81% had good outcome at hospital discharge. Of the 29 patients receiving thrombolysis (median National Institutes of Health Stroke Scale score, 14; interquartile range, 9-17), 55% had good outcome at hospital discharge and none developed symptomatic brain hemorrhage. This study shows the contemporary profile of ischemic stroke in young adults admitted to a tertiary stroke center. Stroke etiology can be determined in nearly 90% of patients with modern diagnostic tests. The causes are heterogeneous; however, young adults have a high rate of traditional vascular risk factors. Thrombolysis appears safe and short-term outcomes are favorable.

  16. Nylon filament coated with paraffin for intraluminal permanent middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Zuo, Xia-Lin; Wu, Ping; Ji, Ai-Min

    2012-06-21

    A variety of intraluminal nylon filament has been used in rat middle cerebral artery occlusion (MCAO) models. However the lesion extent and its reproducibility vary among laboratories. The properties of nylon filament play a part of reasons for these variations. In the present study, we used paraffin-coated nylon filament for rat MCAO model, tested the effects and advanced improvement for making the rat MCAO. Forty male Sprague-Dawley (SD) rats were randomized into two groups, MCAO with traditional uncoated nylon filament (uMCAO) and MCAO with paraffin-coated nylon filament (cMCAO), three rats as normal group and sham group respectively. Assessment included mortality rates, model success rates, neurological deficit evaluation, and infarct volume. The study showed two rats died in uMCAO group, no rat died in cMCAO group within the 12h. The model success rate of uMCAO was 100%, while the uMCAO group was 55% (n=20, two died within 12h, seven rats were excluded as the brain slices showed no TTC staining due to subarachanoid hemorrhage). Neurological evaluation demonstrated group cMCAO had more worse neurological outcomes than group uMCAO, and the difference was statistically signification (pparaffin-coated nylon filament intraluminal occlusion provide better occlusion of middle cerebral artery than the uncoated nylon filament, improve the consistent of model, and raise the success rate to reduce the number of experimental animals. These positive results are much encouraging and interesting. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Pathogenesis of transient ischemic attacks within the vertebrobasilar arterial system

    International Nuclear Information System (INIS)

    Naritomi, H.; Sakai, F.; Meyer, J.S.

    1979-01-01

    Regional cerebral blood flow (rCBF) was measured by xenon 133 inhalation in 36 patients with vertebrobasilar arterial insufficiency (VBI), three patients with brain stem infarction, and 15 age-matched normal controls before and after inducing postural hypotension. Probes mounted over the suboccipital area by means of a helmet were used to measure rCBF over the brain stem and cerebellar regions. When lying flat, rCBF values measured over both cerebral hemispheres and the brain stem-cerebellar regions in patients with VBI were not significantly different from normal controls. Unlike carotid transient ischemic attacks, regional flow reduction rarely persisted for three weeks after transient ischemic symptoms in patients with VBI. When postural hypotension was induced, rCBF became significantly reduced in patients with VBI whether or not they were treated with papaverine. Dysautoregulation was restricted to vertebral, basilar, and posterior cerebral arterial distribution in patients with VBI of 1 to 12 months' duration, but was more widespread and involved both cerebral hemispheres in long-standing VBI. Hemodynamic factors and dysautoregulation appear to play a part in the pathogenesis of symptoms of VBI

  18. Proteinuria precedes cerebral edema in stroke-prone rats : a magnetic resonance imaging study

    NARCIS (Netherlands)

    Blezer, E.L.A.; Schurink, M.; Nicolaij, K.; Dop Bär, P.R.; Jansen, G.H.; Koomans, H.A.; Joles, Jaap

    1998-01-01

    Background and Purpose: Stroke-prone spontaneously hypertensive rats (SHRSP) subjected to high sodium intake develop severe hypertension, cerebral edema, and proteinuria, culminating in organ damage and early death. MRI, which can be applied serially, provides the unique opportunity to study

  19. Curcumin modulates dopaminergic receptor, CREB and phospholipase c gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats

    Directory of Open Access Journals (Sweden)

    George Naijil

    2010-05-01

    Full Text Available Abstract Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  20. Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats.

    Science.gov (United States)

    Kumar, T Peeyush; Antony, Sherin; Gireesh, G; George, Naijil; Paulose, C S

    2010-05-31

    Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, B(max) showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.