WorldWideScience

Sample records for cerebral glucose utilization

  1. Characteristics of cerebral glucose utilization in dementia

    International Nuclear Information System (INIS)

    To make clear the characteristics of cerebral glucose utilization in dementia, PET studies with 18F-FDG were carried out. Taking the pattern of 18F-FDG utilization, dementia can be subdivided into two types. One type shows a simultaneous and symmetrical reduction glucose utilization in the posterior part of neocortex covering the temporal, parietal and occipital association cortices. This is referred to as type I. Although this type constitutes only about 1/5 of all dementia patients, it is considered the fundamental type of dementia. Aside from this, there is type wherein a simultaneous and symmetrical reduction in glucose utilization of the neocortex. This is type II. It constitutes about 4/5 of all dementia patients which is far more type I. There are no essential difference in the characteristics of cerebral glucose utilization in AD and MID. However, with regards the mean, AD is lower than MID. Various organic defect in neocortex do not correlate with the global reduction in glucose utilization in dementia patients. These results suggest that the reduction in glucose utilization in dementia may be functional disorder. (author)

  2. Local cerebral glucose utilization during status epilepticus in newborn primates

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, D.G.; Dwyer, B.E.; Lake, R.R.; Wasterlain, C.G.

    1989-06-01

    The effect of bicuculline-induced status epilepticus (SE) on local cerebral metabolic rates for glucose (LCMRglc) was studied in 2-wk-old ketamine-anesthetized marmoset monkeys, using the 2-(/sup 14/C)-deoxy-D-glucose autoradiographical technique. To estimate LCMRglc in cerebral cortex and thalamus during SE, the lumped constant (LC) for 2-deoxy-D-glucose (2-DG) and the rate constants for 2-DG and glucose were calculated for these regions. The control LC was 0.43 in frontoparietal cortex, 0.51 in temporal cortex, and 0.50 in thalamus; it increased to 1.07 in frontoparietal cortex, 1.13 in temporal cortex, and 1.25 in thalamus after 30 min of seizures. With control LC values, LCMRglc in frontoparietal cortex, temporal cortex, and dorsomedial thalamus appeared to increase four to sixfold. With seizure LC values, LCMRglc increased 1.5- to 2-fold and only in cortex. During 45-min seizures, LCMRglc in cortex and thalamus probably increases 4- to 6-fold initially and later falls to the 1.5- to 2-fold level as tissue glucose concentrations decrease. Together with our previous results demonstrating depletion of high-energy phosphates and glucose in these regions, the data suggest that energy demands exceed glucose supply. The long-term effects of these metabolic changes on the developing brain remain to be determined.

  3. Effect of intracarotid injection of iopamidol on local cerebral glucose utilization in rat brain.

    Science.gov (United States)

    d'Avella, D; Cicciarello, R; Albiero, F; Piscitelli, G; Fiori, M G; Mesiti, M; Princi, P; d'Aquino, S

    1989-01-01

    We assessed, by means of the [14C]-2-deoxy-D-glucose autoradiography method, the effect of intracarotid injection of a nonionic, low-osmolar contrast medium (iopamidol) on local cerebral glucose utilization in the rat brain. Contrast medium was injected at 20 degrees C and at 37 degrees C, and the relative changes in local cerebral glucose utilization were measured. At 20 degrees C the viscosity of the contrast agent was about twice that of the same solution at 37 degrees C, and resulted in a statistically significant increase in local cerebral glucose utilization in the hemisphere ipsilateral to the side of intracarotid infusion. Saline control studies showed that the metabolic change was not related to either the solution temperature or the osmolality. These findings suggest that increased viscosity of a contrast medium may contribute to its neurotoxic effects during cerebral angiography, hence emphasizing the importance of preheating contrast material to avoid adverse reactions.

  4. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    International Nuclear Information System (INIS)

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions

  5. Measurement of regional cerebral glucose utilization in man by positron emission tomography

    International Nuclear Information System (INIS)

    The various methods available for the study of regional cerebral glucose consumption in man by positron emission tomography are described and their applications, limitations and principal physiopathological results are presented

  6. Effects of apomorphine upon local cerebral glucose utilization in conscious rats and in rats anesthetized with chloral hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Grome, J.J.; McCulloch, J.

    1983-02-01

    The effects of the dopaminergic agonist apomorphine upon local cerebral glucose utilization in 43 anatomically discrete regions of the CNS were examined in conscious, lightly restrained rats and in rats anesthetized with chloral hydrate by means of the quantitative autoradiographic (/sup 14/C)2-deoxyglucose technique. In animals anesthetized with chloral hydrate, glucose utilization was reduced throughout all regions of the CNS from the levels observed in conscious animals. With chloral hydrate anesthesia, the proportionately most marked reductions in glucose use were noted in primary auditory nuclei, thalmaic relay nuclei, and neocortex, and the least pronounced reductions in glucose use (by 15-25% from conscious levels) were observed in limbic areas, some motor relay nuclei, and white matter. In conscious, lightly restrained rats, the administration of apomorphine effected significant increases in glucose utilization in 15 regions of the CNS, and significant reductions in glucose utilization in two regions of the CNS. In rats anesthetized with chloral hydrate, the effects of apomorphine upon local glucose utilization were less widespread and less marked than in conscious animals. The profound effects of chloral hydrate anesthesia upon local cerebral glucose use, and the modification by this anesthetic regime of the local metabolic responses to apomorphine, emphasize the difficulties which exists in the extrapolation of data from anesthetized animals to the conditions which prevail in the conscious animal.

  7. The effects of apomorphine upon local cerebral glucose utilization in conscious rats and in rats anesthetized with chloral hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Grome, J.J.; McCulloch, J.

    1983-02-01

    The effects of the dopaminergic agonist apomorphine (1 mg . kg-1 i.v.) upon local cerebral glucose utilization in 43 anatomically discrete regions of the CNS were examined in conscious, lightly restrained rats and in rats anesthetized with chloral hydrate by means of the quantitative autoradiographic (/sup 14/C)2-deoxyglucose technique. In animals anesthetized with chloral hydrate, glucose utilization was reduced throughout all regions of the CNS from the levels observed in conscious animals, although the magnitude of the reductions in glucose use displayed considerable regional heterogeneity. With chloral hydrate anesthesia, the proportionately most marked reductions in glucose use (by 40-60% from conscious levels) were noted in primary auditory nuclei, thalmaic relay nuclei, and neocortex, and the least pronounced reductions in glucose use (by 15-25% from conscious levels) were observed in limbic areas, some motor relay nuclei, and white matter. In conscious, lightly restrained rats, the administration of apomorphine (1 mg . kg-1) effected significant increased in glucose utilization in 15 regions of the CNS (e.g., subthalamic nucleus, ventral thalamic nucleus, rostral neocortex, substantia nigra, pars reticulata), and significant reductions in glucose utilization in two regions of the CNS (lateral habenular nucleus and anterior cingulate cortex).

  8. PCP-induced alterations in cerebral glucose utilization in rat brain: blockade by metaphit, a PCP-receptor-acylating agent

    Energy Technology Data Exchange (ETDEWEB)

    Tamminga, C.A.; Tanimoto, K.; Kuo, S.; Chase, T.N.; Contreras, P.C.; Rice, K.C.; Jackson, A.E.; O' Donohue, T.L.

    1987-01-01

    The effects of phencyclidine (PCP) on regional cerebral glucose utilization was determined by using quantitative autoradiography with (/sup 14/C)-2-deoxyglucose. PCP increased brain metabolism in selected areas of cortex, particularly limbic, and in the basal ganglia and thalamus, whereas the drug decreased metabolism in areas related to audition. These results are consistent with the known physiology of central PCP neurons and may help to suggest brain areas involved in PCP-mediated actions. Moreover, based on the behavioral similarities between PCP psychosis and an acute schizophrenic episode, these data may be relevant to the understanding of schizophrenia. The PCP-receptor-acylating agent, metaphit, blocked most of these PCP actions. In addition, metaphit by itself was found to diminish glucose utilization rather uniformly throughout brain. These results indicate an antagonist effect of metaphit on the PCP system and suggest a widespread action of metaphit, putatively at a PCP-related site, possibly in connection with the N-methyl-D-aspartate (NMDA) receptor.

  9. Effect of electroanesthesia on local cerebral glucose utilization in the cat

    International Nuclear Information System (INIS)

    An autoradiographic method using tracer amounts of [14C]2-deoxy-D-glucose was used to detect areas of the brain in which glucose consumption was altered under extracranial electroanesthesia, as compared with ether-anesthetized cats. All brain structures studied exhibited higher glucose consumption rates than the homologous controls, by amounts varying from 14 to 174%. In 20 out of 31 structures, the increase was statistically significant. Brain structures were heterogeneous regarding the magnitude of their glucose metabolism and could be scaled accordingly: EA changed the scaling hierarchy. The periaqueductal gray (ventral part) and the red nucleus changed from moderately to highly active structures, and the cerebellar cortex became the most active of all. (author)

  10. 2-Deoxyglucose incorporation into rat brain glycogen during measurement of local cerebral glucose utilization by the 2-deoxyglucose method

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, T.; Kaufman, E.E.; Sokoloff, L.

    1984-10-01

    The incorporation of 14C into glycogen in rat brain has been measured under the same conditions that exist during the measurement of local cerebral glucose utilization by the autoradiographic 2-(14C)deoxyglucose method. The results demonstrate that approximately 2% of the total 14C in brain 45 min after the pulse of 2-(14C)deoxyglucose is contained in the glycogen portion, and, in fact, incorporated into alpha-1-4 and alpha-1-6 deoxyglucosyl linkages. When the brain is removed by dissection, as is routinely done in the course of the procedure of the 2-(14C)deoxyglucose method to preserve the structure of the brain for autoradiography, the portion of total brain 14C contained in glycogen falls to less than 1%, presumably because of postmortem glycogenolysis which restores much of the label to deoxyglucose-phosphates. In any case, the incorporation of the 14C into glycogen is of no consequence to the validity of the autoradiographic deoxyglucose method, not because of its small magnitude, but because 2-(14C)deoxyglucose is incorporated into glycogen via (14C)deoxyglucose-6-phosphate, and the label in glycogen represents, therefore, an additional ''trapped'' product of deoxyglucose phosphorylation by hexokinase. With the autoradiographic 2-(14C)deoxyglucose method, in which only total 14C concentration in the brain tissue is measured by quantitative autoradiography, it is essential that all the labeled products derived directly or indirectly from (14C)deoxyglucose phosphorylation by hexokinase be retained in the tissue; their chemical identity is of no significance.

  11. The Coupling of Cerebral Metabolic Rate of Glucose and Cerebral Blood Flow In Vivo

    DEFF Research Database (Denmark)

    Hasselbalch, Steen; Paulson, Olaf Bjarne

    2012-01-01

    The energy supplied to the brain by metabolic substrate is largely utilized for maintaining synaptic transmission. In this regulation cerebral blood flow and glucose consumption is tightly coupled as well in the resting condition as during activation. Quantification of cerebral blood flow...... and metabolism was originally performed using the Kety-Schmidt method and this method still represent the gold standard by which subsequent methods have been evaluated. However, in its classical setting, the method overestimates cerebral blood flow. Studies of metabolic changes during activation must take...... difficulties due to limitation in resolution and partial volume effects. In contrast to the tight coupling between regional glucose metabolism and cerebral blood flow, there is an uncoupling between flow and oxygen consumption as the latter only increases to a limited extend. The excess glucose uptake is thus...

  12. Cerebrospinal fluid ionic regulation, cerebral blood flow, and glucose use during chronic metabolic alkalosis

    Energy Technology Data Exchange (ETDEWEB)

    Schroeck, H.K.; Kuschinsky, W. (Univ. of Bonn (Germany, F.R.))

    1989-10-01

    Chronic metabolic alkalosis was induced in rats by combining a low K+ diet with a 0.2 M NaHCO3 solution as drinking fluid for either 15 or 27 days. Local cerebral blood flow and local cerebral glucose utilization were measured in 31 different structures of the brain in conscious animals by means of the iodo-(14C)antipyrine and 2-(14C)deoxy-D-glucose method. The treatment induced moderate (15 days, base excess (BE) 16 mM) to severe (27 days, BE 25 mM) hypochloremic metabolic alkalosis and K+ depletion. During moderate metabolic alkalosis no change in cerebral glucose utilization and blood flow was detectable in most brain structures when compared with controls. Cerebrospinal fluid (CSF) K+ and H+ concentrations were significantly decreased. During severe hypochloremic alkalosis, cerebral blood flow was decreased by 19% and cerebral glucose utilization by 24% when compared with the control values. The decrease in cerebral blood flow during severe metabolic alkalosis is attributed mainly to the decreased cerebral metabolism and to a lesser extent to a further decrease of the CSF H+ concentration. CSF K+ concentration was not further decreased. The results show an unaltered cerebral blood flow and glucose utilization together with a decrease in CSF H+ and K+ concentrations at moderate metabolic alkalosis and a decrease in cerebral blood flow and glucose utilization together with a further decreased CSF H+ concentration at severe metabolic alkalosis.

  13. Relationship between cerebral sodium-glucose transporter and hyperglycemia in cerebral ischemia.

    Science.gov (United States)

    Yamazaki, Yui; Harada, Shinichi; Tokuyama, Shogo

    2015-09-14

    Post-ischemic hyperglycemia exacerbates the development of cerebral ischemia. To elucidate this exacerbation mechanism, we focused on sodium-glucose transporter (SGLT) as a mediator that lead hyperglycemia to cerebral ischemia. SGLT transport glucose into the cell, together with sodium ion, using the sodium concentration gradient. We have previously reported that suppression of cerebral SGLT ameliorates cerebral ischemic neuronal damage. However, detail relationship cerebral between SGLT and post-ischemic hyperglycemia remain incompletely defined. Therefore, we examined the involvement of cerebral SGLT on cerebral ischemic neuronal damage with or without hyperglycemic condition. Cell survival rate of primary cultured neurons was assessed by biochemical assay. A mouse model of focal ischemia was generated using a middle cerebral artery occlusion (MCAO). Neuronal damage was assessed with histological and behavioral analyses. Concomitant hydrogen peroxide/glucose treatment exacerbated hydrogen peroxide alone-induced cell death. Although a SGLT family-specific inhibitor, phlorizin had no effect on developed hydrogen peroxide alone-induced cell death, it suppressed cell death induced by concomitant hydrogen peroxide/glucose treatment. α-MG induced a concentration-dependent and significant decrease in neuronal survival. PHZ administered on immediately after reperfusion had no effect, but PHZ given at 6h after reperfusion had an effect. Our in vitro study indicates that SGLT is not involved in neuronal cell death in non-hyperglycemic condition. We have already reported that post-ischemic hyperglycemia begins to develop at 6h after MCAO. Therefore, current our in vivo study show post-ischemic hyperglycemic condition may be necessary for the SGLT-mediated exacerbation of cerebral ischemic neuronal damage.

  14. Relationship between cerebral sodium-glucose transporter and hyperglycemia in cerebral ischemia.

    Science.gov (United States)

    Yamazaki, Yui; Harada, Shinichi; Tokuyama, Shogo

    2015-09-14

    Post-ischemic hyperglycemia exacerbates the development of cerebral ischemia. To elucidate this exacerbation mechanism, we focused on sodium-glucose transporter (SGLT) as a mediator that lead hyperglycemia to cerebral ischemia. SGLT transport glucose into the cell, together with sodium ion, using the sodium concentration gradient. We have previously reported that suppression of cerebral SGLT ameliorates cerebral ischemic neuronal damage. However, detail relationship cerebral between SGLT and post-ischemic hyperglycemia remain incompletely defined. Therefore, we examined the involvement of cerebral SGLT on cerebral ischemic neuronal damage with or without hyperglycemic condition. Cell survival rate of primary cultured neurons was assessed by biochemical assay. A mouse model of focal ischemia was generated using a middle cerebral artery occlusion (MCAO). Neuronal damage was assessed with histological and behavioral analyses. Concomitant hydrogen peroxide/glucose treatment exacerbated hydrogen peroxide alone-induced cell death. Although a SGLT family-specific inhibitor, phlorizin had no effect on developed hydrogen peroxide alone-induced cell death, it suppressed cell death induced by concomitant hydrogen peroxide/glucose treatment. α-MG induced a concentration-dependent and significant decrease in neuronal survival. PHZ administered on immediately after reperfusion had no effect, but PHZ given at 6h after reperfusion had an effect. Our in vitro study indicates that SGLT is not involved in neuronal cell death in non-hyperglycemic condition. We have already reported that post-ischemic hyperglycemia begins to develop at 6h after MCAO. Therefore, current our in vivo study show post-ischemic hyperglycemic condition may be necessary for the SGLT-mediated exacerbation of cerebral ischemic neuronal damage. PMID:26254165

  15. Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation

    DEFF Research Database (Denmark)

    Madsen, P L; Hasselbalch, S G; Hagemann, L P;

    1995-01-01

    Global cerebral blood flow (CBF), global cerebral metabolic rates for oxygen (CMRO2), and for glucose (CMRglc), and lactate efflux were measured during rest and during cerebral activation induced by the Wisconsin card sorting test. Measurements were performed in healthy volunteers using the Kety...... stress indicators returned to baseline values. Activation-induced resetting of the cerebral oxygen/glucose uptake ratio is not necessarily accounted for by increased lactate production from nonoxidative glucose metabolism....

  16. Activation-induced resetting of cerebral oxygen and glucose uptake in the rat

    DEFF Research Database (Denmark)

    Madsen, P L; Linde, R; Hasselbalch, S G;

    1998-01-01

    In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose and...... oxygen in the awake rat. Global CBF was measured by the Kety-Schmidt technique, and the ratio between cerebral uptake rates for oxygen, glucose, and lactate was calculated from cerebral arterial-venous differences. During baseline conditions, rats were kept in a closed box designed to minimize...... interference. During baseline conditions CBF was 1.08 +/- 0.25 mL x g(-1) x minute(-1), and the cerebral oxygen to glucose uptake ratio was 5.5. Activation was induced by opening the sheltering box for 6 minutes. Activation increased CBF to 1.81 mL x g(-1) x minute(-1). During activation cerebral glucose...

  17. Double-tracer autoradiographic study of protein synthesis and glucose consumption in rats with focal cerebral ischemia

    DEFF Research Database (Denmark)

    Christensen, Thomas; Balchen, T; Bruhn, T;

    1999-01-01

    A double-tracer autoradiographic method for simultaneous measurement of regional glucose utilization (rCMRglc) and regional protein synthesis (PS) in consecutive brain sections is described and applied to study the metabolism of the ischemic penumbra 2 h after occlusion of the middle cerebral art...

  18. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices

    Directory of Open Access Journals (Sweden)

    Torres I.L.S.

    2001-01-01

    Full Text Available It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  19. Cerebral metabolism of glucose in benign hereditary chorea

    International Nuclear Information System (INIS)

    Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by chorea of early onset with little or no progression. There is marked clinical variability in this disease with some subjects having onset in infancy and others with onset in early adulthood. In contrast to Huntington's disease (HD), there is no dementia. Computed tomography is normal in all subjects with no evidence of caudate nucleus atrophy. We present the results of positron emission tomography using 18F-2-fluorodeoxyglucose on three patients with this disorder from two families. Cerebral glucose metabolism in one patient was decreased in the caudate nucleus, as previously reported in HD. The other two persons from a second family showed a relative decrease in metabolic rates of glucose in the caudate when compared with the thalamus. It appears that caudate hypometabolism is not specific for HD. These findings suggest that the caudate nucleus may play a significant role in the pathophysiology of some persons with BHC

  20. Cerebral glucose metabolic abnormality in patients with congenital scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Seo, G. T.; Lee, J. S.; Kim, S. C.; Kim, I. J.; Kim, Y. K.; Jeon, S. M. [Pusan National University Hospital, Pusan (Korea, Republic of)

    2007-07-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with adolescent idiopathic scoliosis. The mean mini-mental status exam score in the congenital scoliosis group was significantly lower than that in the adolescent idiopathic scoliosis group. Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus. From this study, we could find the metabolic abnormalities of brain in patients with congenital scoliosis and suggest the possible role of voxel-based analysis of brain fluorodeoxyglucose positron emission tomography.

  1. Regional cerebral glucose metabolism in patients with Parkinson's disease with or without dementia

    International Nuclear Information System (INIS)

    By means of positron emission tomography, the cerebral glucose metabolism in 5 patients with Parkinson's disease with dementia was compared with that in 9 patients without dementia, and that in 5 normal volunteers. The metabolic rates for glucose were measured by placing one hundred regions of interest. In the demented patients, cerebral glucose metabolism was diffusely decreased compared with that of the non-demented patients and the normal controls. The most significant decrease in glucose metabolism was observed in the angular gyrus (49.7% of the normal controls). The glucose metabolism in the cingulate, pre- and postcentral, occipital and subcortical regions was relatively spared (62.1 to 85.5% of the normal controls). In the patients without dementia, the glucose metabolism in each region was not significantly different from that in the normal controls. These results suggest that diffuse glucose hypometabolism in the cerebral cortex may correlate with that of patients with Parkinson's disease with dementia. (author)

  2. Study of cerebral metabolism of glucose in normal human brain correlated with age

    International Nuclear Information System (INIS)

    Full text: The objective was to determine whether cerebral metabolism in various regions of the brain differs with advancing age by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They (with the age ranging from 21 to 88; mean age+/-SD: 49.77+/-13.51) were selected with: (i)absence of clear focal brain lesions (epilepsy.cerebrovascular diseases etc);(ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes;(iii) absence of psychiatric disorders and abuse of drugs and alcohol. They were sub grouped into six groups with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose were matched. All subgroups were compared to the control group of 31-40 years old (84 samples; mean age+/-SD: 37.15+/-2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later, their brains were scanned for 10min. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2) .The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three-dimensional localized by MNI Space utility (MSU) software. Results:Relative hypometabolic brain areas detected are mainly in the cortical structures such as bilateral prefrontal cortex, superior temporal gyrus(BA22), parietal cortex (inferior parietal lobule and precuneus(BA40, insula(BA13)), parahippocampal gyrus and amygdala (p<0.01).It is especially apparent in the prefrontal cortex (BA9)and sensory-motor cortex(BA5, 7) (p<0.001), while basal ganglia and cerebellum remained metabolically unchanged with advancing age. Conclusions Regional cerebral metabolism of glucose shows a descent tendency with aging, especially in the prefrontal cortex (BA9)and

  3. Decreased cerebral glucose metabolism associated with mental deterioration in multi-infarct dementia

    Energy Technology Data Exchange (ETDEWEB)

    Meguro, K. (Tohoku Univ. School of Medicine (Japan). Dept. of Geriatric Medicine Miyama Hospital (Japan)); Doi, C. (Tohoku Univ. School of Literature (Japan). Dept. of Psychology); Yamaguchi, T.; Sasaki, H. (Tohoku Univ. School of Medicine (Japan). Dept. of Geriatric Medicine); Matsui, H.; Yamada, K. (Tohoku Univ. (Japan). Research Inst. for Tuberculosis and Cancer); Kinomura, S. (Miyama Hospital (Japan) Tohoku Univ. (Japan). Research Inst. for Tuberculosis and Cancer); Itoh, M. (Tohoku Univ. School of Medicine (Japan). Cyclotron Radioisotope Center)

    1991-08-01

    Cerebral glucose metabolism of 18 patients with multi-infarct dementia (MID) and 10 age-matched normal subjects were examined with positron emission tomography and the {sup 18}-F-fluoro-deoxy-glucose technique. MID patients had significantly lower glucose metabolsim in all the grey matter regions measured and were also characterized by more individuality in metabolic pattern. MID patients were also evaluated as to intelligence quotient (IQ). A positive correlation between IQ as shown by the Tanaka-Binet test and glucose metabolism for the entire grey matter was found. The clinical applicability of this test for predicting cerebral metabolism is discussed. (orig.).

  4. Decreased cerebral glucose metabolism associated with mental deterioration in multi-infarct dementia

    International Nuclear Information System (INIS)

    Cerebral glucose metabolism of 18 patients with multi-infarct dementia (MID) and 10 age-matched normal subjects were examined with positron emission tomography and the 18-F-fluoro-deoxy-glucose technique. MID patients had significantly lower glucose metabolsim in all the grey matter regions measured and were also characterized by more individuality in metabolic pattern. MID patients were also evaluated as to intelligence quotient (IQ). A positive correlation between IQ as shown by the Tanaka-Binet test and glucose metabolism for the entire grey matter was found. The clinical applicability of this test for predicting cerebral metabolism is discussed. (orig.)

  5. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    Science.gov (United States)

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  6. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia***

    Institute of Scientific and Technical Information of China (English)

    Xiaoliang Shu; Yongsheng Zhang; Han Xu; Kai Kang; Donglian Cai

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance fol owing ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions fol owing cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the de-crease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpy-ruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor fol owing cerebral ischemia may be involved in the development of glucose intolerance.

  7. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    OpenAIRE

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 ...

  8. Stability of regional cerebral glucose metabolism in the normal brain measured by positron emission tomography

    International Nuclear Information System (INIS)

    Cerebral glucose utilization (LCMRGI) was measured using the [18F]fluorodeoxyglucose method with PET in two groups of ten healthy young volunteers, each scanned in a resting state under different methodological conditions. In addition, five subjects had a second scan within 48 hr. Mean hemispheric values averaged 45.8 +/- 3.3 mumol/100 g/min in the right cerebral hemisphere and 47.0 +/- 3.7 mumol/100 g/min in the left hemisphere. A four-way analysis of variance (group, sex, region, hemisphere) was carried out on the results using three different methods of data manipulation: (a) the raw values of glucose utilization, (b) LCMRGI values normalized by the mean hemispheric gray matter LCMRGI value, and (c) log transformed LCMRGI values. For all analysis techniques, significantly higher LCMRGI values were consistently seen in the left mid and posterior temporal area and caudate nucleus relative to the right, and in the right occipital region relative to the left. The coefficient of variation of intrasubject regional differences (9.9%) was significantly smaller than the coefficient of variation for regions between subjects (16.5%). No differences were noted between the sexes and no effect of repeat procedures was seen in subjects having multiple scans. In addition, inter-regional LCMRGI correlations were examined both in values from the 20 normal subjects, as well as in a set of hypothetical abnormal values. Results were compared with those reported from other PET centers; despite certain methodological differences, the intersubject and inter-regional variation of LCMRGI is fairly constant

  9. Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization.

    Science.gov (United States)

    Prawitt, Janne; Caron, Sandrine; Staels, Bart

    2014-05-01

    Intestinal bile acid (BA) sequestration efficiently lowers plasma glucose concentrations in type 2 diabetes (T2D) patients. Because BAs act as signaling molecules via receptors, including the G protein-coupled receptor TGR5 and the nuclear receptor FXR (farnesoid X receptor), to regulate glucose homeostasis, BA sequestration, which interrupts the entero-hepatic circulation of BAs, constitutes a plausible action mechanism of BA sequestrants. An increase of intestinal L-cell glucagon-like peptide-1 (GLP-1) secretion upon TGR5 activation is the most commonly proposed mechanism, but recent studies also argue for a direct entero-hepatic action to enhance glucose utilization. We discuss here recent findings on the mechanisms of sequestrant-mediated glucose lowering via an increase of splanchnic glucose utilization through entero-hepatic FXR signaling.

  10. The relationship between fasting serum glucose and cerebral glucose metabolism in late-life depression and normal aging

    Science.gov (United States)

    Marano, Christopher M.; Workman, Clifford I.; Lyman, Christopher H.; Kramer, Elisse; Hermann, Carol R.; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S.

    2015-01-01

    Evidence exists for late-life depression (LLD) as both a prodrome of and risk factor for Alzheimer’s disease (AD). The underlying neurobiological mechanisms are poorly understood. Impaired peripheral glucose metabolism may explain the association between depression and AD given the connection between type 2 diabetes mellitus with both depression and AD. Positron emission tomography (PET) measures of cerebral glucose metabolism are sensitive to detecting changes in neural circuitry in LLD and AD. Fasting serum glucose (FSG) in non-diabetic young (YC; n=20) and elderly controls (EC; n=12) and LLD patients (n=16) was correlated with PET scans of cerebral glucose metabolism on a voxel-wise basis. The negative correlations were more extensive in EC versus YC and in LLD patients versus EC. Increased FSG correlated with decreased cerebral glucose metabolism in LLD patients to a greater extent than in EC in heteromodal association cortices involved in mood symptoms and cognitive deficits observed in LLD and dementia. Negative correlations in YC were observed in sensory and motor regions. Understanding the neurobiological consequences of diabetes and associated conditions will have substantial public health significance given that this is a modifiable risk factor for which prevention strategies could have an important impact on lowering dementia risk. PMID:24650451

  11. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury

    OpenAIRE

    Moro, Nobuhiro; Ghavim, Sima; Harris, Neil G.; Hovda, David A.; Sutton, Richard L.

    2013-01-01

    Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients’ remains under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose ...

  12. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine) (and others)

    1989-11-01

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author).

  13. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author)

  14. Longitudinal Studies of Cerebral Glucose Metabolism in Late-Life Depression and Normal Aging

    Science.gov (United States)

    Marano, Christopher M.; Workman, Clifford I.; Kramer, Elisse; Hermann, Carol R.; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; Smith, Gwenn S.

    2014-01-01

    Objective Late-life depression (LLD) has a substantial public health impact and is both a risk factor for and prodrome of dementia. Positron Emission Tomography (PET) studies of cerebral glucose metabolism have demonstrated sensitivity in evaluating neural circuitry involved in depression, aging, incipient cognitive decline and dementia. The present study evaluated the long term effects of a course of antidepressant treatment on glucose metabolism in LLD patients. Methods Nine LLD patients and 7 non-depressed control subjects underwent clinical and cognitive evaluations as well as brain magnetic resonance imaging and PET studies of cerebral glucose metabolism at baseline, after 8 weeks of treatment with citalopram for a major depressive episode (patients only), and at an approximately 2 year follow-up. Results The majority of LLD patients were remitted at follow-up (7/9). Neither patients nor controls showed significant cognitive decline. The patients showed greater increases in glucose metabolism than the controls in regions associated with mood symptoms (anterior cingulate and insula). Both groups showed decreases in metabolism in posterior association cortices implicated in dementia. Conclusions Longitudinal changes in cerebral glucose metabolism are observed in controls and LLD patients without significant cognitive decline that are more extensive than the decreases in brain volume. Longer duration follow-up studies and the integration of other molecular imaging methods will have implications for understanding the clinical and neurobiological significance of these metabolic changes. PMID:22740289

  15. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    International Nuclear Information System (INIS)

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states

  16. Study of regional cerebral metabolic rate of glucose with positron emission computed tomography in Alzheimer's disease

    International Nuclear Information System (INIS)

    Using positron emission computed tomography with F-18 fluoro-D-deoxyglucose, regional cerebral metabolic rate of glucose (rCMRglc) was measured in 8 patients with Alzheimer's disease and 3 healthy volunteers. A decreased rCMRglc was observed in the widespread cortex and basal ganglia of the cerebrum, but not observed in white matter, thalamus, and cerebellum. There was no bilateral difference. rCMRglc was the lowest in the parietal lobe, followed by the temporal lobe and the curvature of the frontal lobe. A decrease in rCMRglu was relatively mild in the inner part of the frontal lobe, primary sensory and motor area of the cerebral cortex, and cerebral basilar ganglia. Alzheimer's disease proved to be characterized by severe glucose metabolic disorder in the association area of the bilateral cerebral cortices. The degree of metabolic disorder was correlated with the degree of dementia in the outer part of the left frontal lobe and the curvature of the cerebral cortex. (Namekawa, K.)

  17. Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers.

    Science.gov (United States)

    Domino, E F; Minoshima, S; Guthrie, S K; Ohl, L; Ni, L; Koeppe, R A; Cross, D J; Zubieta, J

    2000-01-01

    Eleven healthy tobacco smoking adult male volunteers of mixed race were tobacco abstinent overnight for this study. In each subject, positron emission tomographic images of regional cerebral metabolism of glucose with [18F]fluorodeoxyglucose were obtained in two conditions in the morning on different days: about 3min after approximately 1-2mg of nasal nicotine spray and after an equivalent volume of an active placebo spray of oleoresin of pepper in a random counterbalanced design. A Siemens/CTI 931/08-12 scanner with the capability of 15 horizontal brain slices was used. The images were further converted into a standard uniform brain format in which the mean data of all 11 subjects were obtained. Images were analysed in stereotactic coordinates using pixel-wise t statistics and a smoothed Gaussian model. Peak plasma nicotine levels varied three-fold and the areas under the curve(0-30min) varied seven-fold among the individual subjects. Nicotine caused a small overall reduction in global cerebral metabolism of glucose but, when the data were normalized, several brain regions showed relative increases in activity. Cerebral structures specifically activated by nicotine (nicotine minus pepper, Z score >4.0) included: left inferior frontal gyrus, left posterior cingulate gyrus and right thalamus. The visual cortex, including the right and left cuneus and left lateral occipito-temporal gyrus fusiformis, also showed an increase in regional cerebral metabolism of glucose with Z scores >3. 6. Structures with a decrease in regional cerebral metabolism of glucose (pepper minus nicotine) were the left insula and right inferior occipital gyrus, with Z scores >3.5. Especially important is the fact that the thalamus is activated by nicotine. This is consistent with the high density of nicotinic cholinoceptors in that brain region. However, not all brain regions affected by nicotine are known to have many nicotinic cholinoceptors. The results are discussed in relation to the

  18. Comparison of cerebral metabolism of glucose in normal human and cancer patients

    International Nuclear Information System (INIS)

    Full text: Objective: To determine whether the cerebral metabolism in various regions of the normal human brain differs from those of cancer patients in aging by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples so called 'normal group' (ranging 21 to 88; mean age+/-SD: 50+/-14) and 290 cancer patients called 'cancer group' (ranging 21 to 85; mean age+/-SD: 54+/-14) who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They were selected with: (i) absence of clear focal brain lesions (epilepsy, cerebrovascular diseases etc.); (ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes; (iii) absence of psychiatric disorders and abuse of drugs and alcohol;( iiii) cancer patients were diagnosed definitely of variable cancers except brain cancer or brain metastasis. Both groups were sub grouped into six with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose are matched. All 12 subgroups were compared to the subgroup of normal 31-40 years old called 'control subgroup' (84 samples; mean age+/-SD: 37.15+/- 2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later; their brains were scanned for 10 minutes. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2). The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three dimensional localized by MNI Space utility (MSU) software. Results:1.With increasing of age interval, similar hypometabolic brain areas are detected in both 'normal group' and 'cancer group', they are mainly in the cortical structures such as bilateral prefrontal cortex (BA9), superior temporal gyrus (BA22), parietal cortex (inferior parietal lobule and precuneus(BA40), insula (BA13

  19. Similarities of cerebral glucose metabolism in Alzheimer's and Parkinsonian dementia

    International Nuclear Information System (INIS)

    In the dementia of probable Alzheimer's Disease (AD), there is a decrease in the metabolic ratio of parietal cortex/caudate-thalamus which relates measures in the most and in the least severely affected locations. Since some demented patients with Parkinson's Disease (PDD) are known to share pathological and neurochemical features with AD patients, the authors evaluated if the distribution of cerebral hypometabolism in PDD and AD were the same. Local cerebral metabolic rates were determined using the FDG method and positron tomography in subjects with AD (N=23), and PDD (N=7), multiple infarct dementia (MID)(N=6), and controls (N=10). In MID, the mean par/caudthal ratio was normal (0.79 +- 0.9, N=6). In AD and PDD patients, this ratio correlated negatively with both the severity (r=-0.624, rho=0.001) and duration (r=-0.657, rho=0.001) of dementia. The ratio was markedly decreased in subjects with mild to severe dementia (0.46 +- 0.09, N=21) and with dementia duration greater than two years (0.44 +- 0.08, N=18), but the ratio was also significantly decreased in patients with less advanced disease, i.e., when dementia was only questionable (0.64 +- 0.14, N=9) (t=2.27, rho<0.037) and when duration was two years or less (0.62 +- 0.13, N=12)(t=2.88, rho<0.009). This similarity of hypometabolism in AD and PDD is additional evidence that a common mechanism may operate in both disorders. The par/caud-thal metabolic ratio may be an index useful in the differential diagnosis of early dementia

  20. Voxel-based statistical analysis of cerebral glucose metabolism in patients with permanent vegetative state after acquired brain injury

    Institute of Scientific and Technical Information of China (English)

    Yong Wook Kim; Hyoung Seop Kim; Young-Sil An; Sang Hee Im

    2010-01-01

    Background Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury.Methods We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scare. Statistical analysis was performed using statistical parametric mapping.Results Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (Pcorrected <0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (Pcorrected <0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (Puncorrected <0.005).Conclusion Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism

  1. Activation of cerebral sodium-glucose transporter type 1 function mediated by post-ischemic hyperglycemia exacerbates the development of cerebral ischemia.

    Science.gov (United States)

    Yamazaki, Y; Ogihara, S; Harada, S; Tokuyama, S

    2015-12-01

    The regulation of post-ischemic hyperglycemia plays an important role in suppressing neuronal damage in therapeutic strategies for cerebral ischemia. We previously reported that the cerebral sodium-glucose transporter (SGLT) was involved in the post-ischemic hyperglycemia-induced exacerbation of cerebral ischemic neuronal damage. Cortical SGLT-1, one of the cerebral SGLT isoforms, is dramatically increased by focal cerebral ischemia. In this study, we focused on the involvement of cerebral SGLT-1 in the development of cerebral ischemic neuronal damage. It was previously reported that activation of 5'-adenosine monophosphate-activated protein kinase (AMPK) increases SGLT-1 expression. Moreover, ischemic stress-induced activation of AMPK exacerbates cerebral ischemic neuronal damage. Therefore, we directly confirmed the relationship between cerebral SGLT-1 and cerebral AMPK activation using in vitro primary culture of mouse cortical neurons. An in vivo mouse model of focal cerebral ischemia was generated using a middle cerebral artery occlusion (MCAO). The development of infarct volume and behavioral abnormalities on day 3 after MCAO were ameliorated in cerebral SGLT-1 knock down mice. Cortical and striatal SGLT-1 expression levels were significantly increased at 12h after MCAO. Immunofluorescence revealed that SGLT-1 and the neuronal nuclear antigen (NeuN) were co-localized in the cortex and striatum of MCAO mice. In the in vitro study, primary cortical neurons were cultured for five days before each treatment with reagents. Concomitant treatment with hydrogen peroxide and glucose induced the elevation of SGLT-1 and phosphorylated AMPK/AMPK ratio, and this elevation was suppressed by compound C, an AMPK inhibitor in primary cortical neurons. Moreover, compound C suppressed neuronal cell death induced by concomitant hydrogen peroxide/glucose treatment in primary cortical neurons. Therefore, we concluded that enhanced cerebral SGLT-1 function mediated by post

  2. Regional Cerebral Glucose Metabolism in Novelty Seeking and Antisocial Personality: A Positron Emission Tomography Study

    Science.gov (United States)

    Park, So Hyeon; Park, Hyun Soo

    2016-01-01

    Novelty seeking (NS) and antisocial personality (ASP) are commonly exhibited by those who suffer from addictions, such as substance abuse. NS has been suggested to be a fundamental aspect of ASP. To investigate the neurobiological substrate of NS and ASP, we tested the relationship between regional cerebral glucose metabolism and the level of NS, determining the differences between individuals with and without ASP. Seventy-two healthy adults (43 males, mean age±SD=38.8±16.6 years, range=20~70 years; 29 females, 44.2±20.1 years, range=19~72 years) underwent resting-state brain positron emission tomography (PET) 40 minutes after 18F-fluorodeoxyglucose (FDG) injection. Within 10 days of the FDG PET study, participants completed Cloninger's 240-item Temperament and Character Inventory (TCI) to determine NS scores. Participants with and without ASP were grouped according to their TCI profiles. Statistical parametric mapping analysis was performed using the FDG PET and TCI profile data. NS scores positively correlated with metabolism in the left anterior cingulate gyrus and the insula on both sides of the brain and negatively correlated with metabolism in the right pallidum and putamen. Participants with ASP showed differences in cerebral glucose metabolism across various cortical and subcortical regions, mainly in the frontal and prefrontal areas. These data demonstrate altered regional cerebral glucose metabolism in individuals with NS and ASP and inform our understanding of the neurobiological substrates of problematic behaviors and personality disorders. PMID:27574485

  3. Regional cerebral glucose metabolism in frontotemporal lobar degeneration

    International Nuclear Information System (INIS)

    Purpose: Frontotemporal lobar degeneration (FTLD) is the third most common cause of dementia, following Alzheimer's disease and Lewy body disease. Four prototypic neuro behavioral syndromes can be produced by FTLD: frontotemporal dementia (FTD), frontotemporal dementia with motor neuron disease (MND), semantic dementia (SD), and progressive aphasia (PA). We investigated patterns of metabolic impairment in patients with FTLD presented with four different clinical syndromes. Methods: We analyzed glucose metabolic patterns on FDG PET images obtained from 34 patients with a clinical diagnosis of FTLD (19 FTD, 6 MND, 6 SD, and 3 PA, according to a consensus criteria for clinical syndromes associated with FTLD) and 7 age-matched healthy controls using SPM99. Results: Patients with FTD had metabolic deficit in the left frontal cortex and bilateral anterior temporal cortex. Hypometabolism in the bilateral pre-motor area was shown in patients with MND. Patients with SD had metabolic deficit in the left posterior temporal cortex including Wernicke's area, while hypometabolism in the bilateral inferior frontal gyrus including Broca's area and left angular gyrus was seen in patients with PA. These metabolic patterns were well correlated with clinical and neuropsychological features of FTLD syndromes. Conclusion: These data provide a biochemical basis of clinical classification of FTLD. FDG PET may help evaluate and classify patients with FTLD

  4. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-06-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system.

  5. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system

  6. Cerebral glucose metabolism in long-term survivors of childhood primary brain tumors treated with surgery and radiotherapy

    DEFF Research Database (Denmark)

    Andersen, Preben B.; Krabbe, Katja; Leffers, Anne M.;

    2003-01-01

    a median recurrence free survival of 16 years by MRI and Positron Emission Tomography using the glucose analog 2-18F-fluoro-2-deoxy-D-glucose (18FDG). Three patients were not analyzed further due to diffuse cerebral atrophy, which might be related to previous hydrocephalus. Twenty-one patients were...

  7. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  8. A longitudinal study of cerebral glucose metabolism, MRI, and disability in patients with MS

    DEFF Research Database (Denmark)

    Blinkenberg, M; Jensen, C.V.; Holm, S;

    1999-01-01

    OBJECTIVE: To study the time-related changes in cerebral metabolic rate of glucose (CMRglc) in MS patients and to correlate these with changes in MRI lesion load and disability. BACKGROUND: Measurements of MRI lesion load and neurologic disability are used widely to monitor disease progression...... in longitudinal studies of MS patients, but little is known about the associated changes in cerebral neural function. METHODS: The authors studied 10 patients with clinically definite MS who underwent serial measurements of CMRglc, MRI T2-weighted total lesion area (TLA), and clinical evaluation of disability...... and parietal cortical areas. There was a statistically significant increase of disability (pMS is decreased significantly during a 2...

  9. EFFECT OF ACUPUNCTURE STIMULATION AT SANYINJIAO (SP 6) ON CEREBRAL GLUCOSE METABOLISM IN DYSMENORRHEA PATIENTS

    Institute of Scientific and Technical Information of China (English)

    GONG Ping; ZHANG Ming-min; JIANG Li-ming; WU Zhi-jian; WANG Wei; HUANG Guang-ying

    2006-01-01

    Objective: To study the central mechanism of acupuncture stimulation of Sanyinjiao ( 三阴交 SP6) in relieving dysmenorrhea. Methods: A total of 6 dysmenorrhea volunteer patients were subjected into this study. On the first positron emission tomography (PET) scan examination, they were assigned to pseudoacupuncture group by using the acupuncture needle just to prick the skin of Sanyinjiao (SP 6); while on the second PET scans, they were assigned to acupuncture group by inserting the needle into the same acupoint.18F fluorodeoxyglucose (18F-FDG) PET of the whole brain was performed during pseudo-acupuncture and real acupuncture of Sanyinjiao (SP 6). The acquired PET data were analyzed by using statistical parametric mapping (SPM) software to determine changes of glucose metabolism in different cerebral regions. The patient's pain intensity was rated by using 0- 10 numerical pain intensity scale. Results: After pseudo-acupuncture stimulation of Sanyinjiao (SP 6), no significant changes were found in the pain intensity ( P >0.05), while after real-acupuncture stimulation, the pain intensity declined significantly (P < 0.01 ). Following acupuncture of the right Sanyinjiao (SP 6), multiple cerebral regions involving pain were activated (increase of glucose metabolism), including ipsilateral lenticular nucleus (globus pallidus, putamen), ipsilateral cerebellum and insular lobe, bilateral dorsal thalamus, ipsilateral paracentral lobule, bilateral amygdaloid bodies, contralateral substantia nigra of the midbrain, bilateral second somatosensory (S Ⅱ ) areas, ispsilateral hippocampal gyrus, frontal part of the ipsilateral cingulated gyrus, and bilateral mammary bodies of the hypothalamus. In addition, fewer regions of the cerebral cortex responded with decrease of the glucose metabolism after real acupuncture.

  10. A longitudinal study of cerebral glucose metabolism, MRI, and disability in patients with MS

    DEFF Research Database (Denmark)

    Blinkenberg, M; Jensen, C.V.; Holm, S;

    1999-01-01

    OBJECTIVE: To study the time-related changes in cerebral metabolic rate of glucose (CMRglc) in MS patients and to correlate these with changes in MRI lesion load and disability. BACKGROUND: Measurements of MRI lesion load and neurologic disability are used widely to monitor disease progression in...... (Expanded Disability Status Scale [EDSS]) over a period of approximately 2 years (three examinations). CMRglc was calculated using PET and 18-fluorodeoxyglucose (FDG). RESULTS: The global cortical CMRglc decreased with time (p<0.001) and the most pronounced reductions of CMRglc were detected in frontal and...

  11. Cerebral oxygen and glucose metabolism and blood flow in mitochondrial encephalomyopathy: a PET study

    International Nuclear Information System (INIS)

    Cerebral blood flow (CBF), oxygen metabolism (CMRO2), and glucose metabolism (CMRGlc) were measured using positron emission tomography in five patients diagnosed as having mitochondrial encephalomyopathy. The molar ratio between the oxygen and glucose consumptions was reduced diffusely, as CMRO2 was markedly decreased and CMRGlc was slightly reduced. The CBF showed less changes. The CBF increase on hypercapnia was smaller than normal, though this was not significant. CBF with hypocapnia demonstrated a significant reduction compared with the normal. These results suggest that oxidative metabolism is impaired and anaerobic glycolysis relatively stimulated, due to a primary defect of mitochondrial function, and that mild lactic acidosis occurs in brain tissue because of impaired utilisation of pyruvate in the TCA cycle. As these findings appear to indicate directly a characteristic of this disease, such measurements may be a useful tool for assessment of the pathophysiology and for diagnosis of mitochondrial encephalomyopathy. (orig.). With 1 fig., 4 tabs

  12. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    International Nuclear Information System (INIS)

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep

  13. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. (Univ. of California, Irvine (USA)); Gillin, J.C. (Univ. of California, San Diego (USA))

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  14. Cerebral glucose metabolism in Wernicke's, Broca's, and conduction aphasia

    Energy Technology Data Exchange (ETDEWEB)

    Metter, E.J.; Kempler, D.; Jackson, C.; Hanson, W.R.; Mazziotta, J.C.; Phelps, M.E.

    1989-01-01

    Cerebral glucose metabolism was evaluated in patients with either Wernicke's (N = 7), Broca's (N = 11), or conduction (N = 10) aphasia using /sup 18/F-2-fluoro-2-deoxy-D-glucose with positron emission tomography. The three aphasic syndromes differed in the degree of left-to-right frontal metabolic asymmetry, with Broca's aphasia showing severe asymmetry and Wernicke's aphasia mild-to-moderate metabolic asymmetry, while patients with conduction aphasia were metabolically symmetric. On the other hand, the three syndromes showed the same degree of metabolic decline in the left temporal region. The parietal region appeared to separate conduction aphasia from both Broca's and Wernicke's aphasias. Common aphasic features in the three syndromes appear to be due to common changes in the temporal region, while unique features were associated with frontal and parietal metabolic differences.

  15. In vivo glucose utilization in rat tissues during the three phases of starvation

    International Nuclear Information System (INIS)

    Three phases of starvation have been described from changes in protein and lipid utilization in birds and mammals. In the present study, tissue glucose utilization was measured in vivo during these three phases, using a 2-deoxy-[1-3H]glucose technique in the anesthetized rat. According to this technique, the term glucose utilization therefore refers to transport and phosphorylation of glucose in tissues, ie, whatever is the fate of glucose. Whole-body glucose turnover rate, which was determined by a continuous infusion of [3-3H]glucose, decreased by 40% during the first two days of starvation (phase 1); it did not change thereafter, neither in the protein-sparing phase 2 nor in phase 3, which is marked by an increase in net protein breakdown. Two days of starvation caused a marked decrease in the glucose utilization in skeletal muscles; this decrease was higher in oxidative muscles (65% in diaphragm, 66% in soleus) than in glycolytic muscles (31% in extensor digitorum longus, 34% in epitrochlearis). Glucose utilization also decreased in heart atria (75%), heart ventricles (93%), and white adipose tissue (54%); by contrast, there was a two-fold increase in glucose utilization in brown adipose tissue and no change in brain and skin. No variations were observed in glucose utilization in any of the tissues from phase 1 to phase 2. However, phase 3 was marked by a decrease in glucose utilization in extensor digitorum longus (45%), brown adipose tissue (76%), brain (29%), and skin (40%), whereas there was a 2.3- and 3.4-fold increase in glucose utilization in diaphragm and heart ventricles, respectively

  16. EXPLORING THE MECHANISM OF ACUPUNCTURE IN THE TREATMENT OF STROKE FROM CHANGES OF GLUCOSE METABOLISM IN THE CEREBRAL MOTOR CENTER

    Institute of Scientific and Technical Information of China (English)

    石现; 左芳; 关玲

    2004-01-01

    Objective:To observe the effect of acupuncture on cerebral glucose metabolism in stroke patients.Methods:Changes of cerebral glucose metabolism before and after acupuncture stimulation were observed in six cases of stroke patients by using positron emission tomography (PET) scanner. Electroacupuncture (EA,4 Hz, continuous waves and duration of 20 min) was applied to Baihui (百会GV 20) and right Qubin (曲鬓GB 7). 18 Fluorine deoxyglucose (18FDG), a developer (radioactive form of glucose) for showing the levels of the brain functional activity was given to the patients intravenously. SPM software was used to deal with the data of each pixel point by unilateral t-test (Ts: P=0.05), then, the regions showing increase/decrease of the glucose metabolism were obtained.Results:After acupuncture stimulation, significant increase of glucose metabolism was found to be in the first somatic motor cortical region (MI), supplementary motor area (SMA), premotor area (PMC), and the superior parietal lobule (LPs) on the healthy side of the brain; while the decrease of glucose metabolism found in MI, PMC and LPs on the focus side. In addition to the cerebral regions related to the motor function, changes of glucose metabolism were also found in the parietal lobule and basal ganglion area, central parietal gyrus, superior parietal gyrus, putamen, cerebellum, etc..Conclusion:Acupuncture of Qubin (GB 7) and Baihui (GV 20) can activate motor-related cerebral structures in the bilateral cerebral hemisphere and induce excitement reaction of the potentially correlative motor area so as to compensate or assist the injured motor area to play a role in improving motor function in stroke patients.

  17. EFFECT OF ELECTRO0-SCALP ACUPUNCTURE ON GLUCOSE METABOLISM OF THE CEREBRAL REGIONS INVOLVING MENTAL ACTIVITY IN HEAL THY PEOPLE

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong(黄泳); Win Moe Htut; LI Dong-jiang(李东江); TANG An-wu(唐安戊); LI Qiu-shi(李求实)

    2004-01-01

    Objective: To observe the effect of electro-scalp acupuncture on glucose metabolism of cerebral regions involving mental activity in healthy people. Methods: A total of 6 cases of volunteer healthy subjects (3 males and 3 females) ranging in age from 22 to 36 years were subjected to this study. Changes of cerebral glucose metabolism before and after electro-scalp acupuncture were observed by using positron emission tomography (PET) and semi-quantifying analysis method. Electro-scalp acupuncture stimulation (50 Hz, 2 mA) of Middle Line of Vertex (Dingzhongxian,顶中线,MS5), Middle Line of Forehead (Ezhongxian, 额中线,MS1) and bilateral Lateral Line 1 of Forehead (Epangyixian,额旁一线,MS2) was administered for 30 minutes. Then cerebral regions of interest (ROIs) were chosen and their average glucose metabolism levels (radioactivity of 18 fluorine deoxyglucose ) were analyzed. Results:After administration of electro-scalp acupuncture, the glucose metabolism levels in bilateral frontal lobes and bilateral caudate nuclei, left cingulate gyrus and right cerebellum increased significantly in comparison with those of pre-stimulation (P<0.05). Conclusion:Electro-scalp acupuncture of MS1, MS2 and MS5 can increase the glucose metabolism of certain cerebral regions involving in mental activity in healthy subjects.

  18. Simultaneous utilization of glucose and xylose for lipid accumulation in black soldier fly

    OpenAIRE

    Li, Wu; Li, Mingsun; Zheng, Longyu; Liu, Yusheng; Zhang, Yanlin; Yu, Ziniu; Ma, Zonghua; Li, Qing

    2015-01-01

    Background Lignocellulose is known to be an abundant source of glucose and xylose for biofuels. Yeasts can convert glucose into bioethanol. However, bioconversion of xylose by yeasts is not very efficient, to say nothing of the presence of both glucose and xylose. Efficient utilization of xylose is one of the critical factors for reducing the cost of biofuel from lignocelluloses. However, few natural microorganisms preferentially convert xylose to ethanol. The simultaneous utilization of both...

  19. Involvement of pregnane X receptor in the impaired glucose utilization induced by atorvastatin in hepatocytes.

    Science.gov (United States)

    Ling, Zhaoli; Shu, Nan; Xu, Ping; Wang, Fan; Zhong, Zeyu; Sun, Binbin; Li, Feng; Zhang, Mian; Zhao, Kaijing; Tang, Xiange; Wang, Zhongjian; Zhu, Liang; Liu, Li; Liu, Xiaodong

    2016-01-15

    Accumulating evidences demonstrated that statins impaired glucose utilization. This study was aimed to investigate whether PXR was involved in the atorvastatin-impaired glucose utilization. Rifampicin/PCN served as PXR activator control. Glucose utilization, glucose uptake, protein levels of GLUT2, GCK, PDK2, PEPCK1 and G6Pase in HepG2 cells were measured. PXR inhibitors, PXR overexpression and PXR siRNA were applied to verify the role of PXR in atorvastatin-impaired glucose utilization in cells. Hypercholesterolemia rats induced by high fat diet feeding, orally received atorvastatin (5 and 10 mg/kg), pravastatin (10 mg/kg) for 14 days, or intraperitoneally received PCN (35 mg/kg) for 4 days. Results showed that glucose utilization was markedly inhibited by atorvastatin, simvastatin, pitavastatin, lovastatin and rifampicin. Neither rosuvastatin nor pravastatin showed the similar effect. Atorvastatin and pravastatin were selected for the following study. Atorvastatin and rifampicin significantly inhibited glucose uptake and down-regulated GLUT2 and GCK expressions. Similarly, overexpressed PXR significantly down-regulated GLUT2 and GCK expressions and impaired glucose utilization. Ketoconazole and resveratrol attenuated the impaired glucose utilization by atorvastatin and rifampicin in both parental and overexpressed PXR cells. PXR knockdown significantly up-regulated GLUT2 and GCK proteins and abolished the decreased glucose consumption and uptake by atorvastatin and rifampicin. Animal experiments showed that atorvastatin and PCN significantly elicited postprandial hyperglycemia, leading to increase in glucose AUC. Expressions of GLUT2 and GCK in rat livers were markedly down-regulated by atorvastatin and PCN. In conclusion, atorvastatin impaired glucose utilization in hepatocytes via repressing GLUT2 and GCK expressions, which may be partly due to PXR activation. PMID:26616219

  20. Regional cerebral glucose metabolism in late-life depression and Alzheimer disease: a preliminary positron emission tomography study.

    OpenAIRE

    Kumar, A; Newberg, A; A. Alavi; Berlin, J; Smith, R.; Reivich, M

    1993-01-01

    Eight subjects with late-life depression, eight subjects with probable Alzheimer disease, and eight healthy age-matched controls were studied using 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography in the resting state with their eyes open and ears unoccluded. The depressed subjects showed widespread reductions in the regional cerebral metabolic rate for glucose in most major neocortical, subcortical, and paralimbic regions that were significantly different from control values (P <...

  1. Utilization of dietary glucose in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Alemany Marià

    2011-10-01

    Full Text Available Abstract This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia, which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation, helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis, hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may result in difficulties in the disposal of glucose, eliciting

  2. Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Abhay; Hussain, Nighat; Tang, Chi [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland); Rusling, James [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032 (United States); School of Chemistry, National University of Ireland, Galway (Ireland)

    2009-10-15

    Covalently linked layers of glucose oxidase, single-wall carbon nanotubes and poly-L-lysine on pyrolytic graphite resulted in a stable biofuel cell anode featuring direct electron transfer from the enzyme. Catalytic response observed upon addition of glucose was due to electrochemical oxidation of FADH{sub 2} under aerobic conditions. The electrode potential depended on glucose concentration. This system has essential attributes of an anode in a mediator-free biocatalytic fuel cell. (author)

  3. High mean fasting glucose levels independently predict poor outcome and delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage

    NARCIS (Netherlands)

    Kruyt, N. D.; Roos, Y. W. B. M.; Mees, S. M. Dorhout; van den Bergh, W. M.; Algra, A.; Rinkel, G. J. E.; Biessels, G. J.

    2008-01-01

    Background: Hyperglycaemia has been related to poor outcome and delayed cerebral ischaemia (DCI) after aneurysmal subarachnoid haemorrhage (aSAH). Objective: This study aimed to assess whether in patients with aSAH, levels of mean fasting glucose within the first week predict poor outcome and DCI be

  4. Decreased regional cerebral glucose metabolism in the prefrontal regions in adults' with internet game addiction

    International Nuclear Information System (INIS)

    Internet Game Addiction (IGA) is known to be associated with poor decision-making and diminished impulse control; however, the underlying neural substrates of IGA have not been identified. To investigate the neural substrates of IGA, we compared regional cerebral glucose metabolism between adults with and without IGA, primarily in the prefrontal brain regions, which have been implicated in inhibitory control. We studied 10 right-handed participants (5 controls: male, 23.8±0.75 y, 5 IGAs: male, 22.6±2.42 y) with FDG PET. A standardized questionnaire was used to assess the severity of IGA. Before scanning, all subjects carried out a computerized version of the Iowa Gambling Task (IGT) and the Balloon Analogue Risk Task (BART), as measures of behavioral inhibitory control. Statistical Parametric Mapping 2 (SPM2) was used to analyze differences in regional brain glucose metabolism between adults with and without IGA. Consistent with our predictions, compared to controls, significant reductions in FDG uptake in individuals with IGA were found in the bilateral orbitofrontal gyrus (BA 11, 47), bilateral inferior frontal gyrus (BA 44, 48), cingulate cortex (BA 24), and bilateral supplementary motor area (SMA) (BA 6); whereas increases were found in the bilateral hippocampus. Correlation analyses within the IGA group further showed that the level of glucose metabolism in the right orbitofrontal gyrus was marginally positively correlated with task scores in BART. Our results showed that IGA is associated with reduced glucose metabolism in the prefrontal regions involved in inhibitory control. This finding highlights dysfunctional inhibitory brain systems in individuals with IGA and offers implications for the development for therapeutic paradigms for IGA

  5. Double-injection FDG method to measure cerebral glucose metabolism twice in a single procedure

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Sadahiko; Ueno, Makoto; Shimono, Taro; Toyoda, Hiroshi; Konishi, Junji [Kyoto Univ. (Japan). Graduate School of Medicine; Kuwabara, Hiroto

    2001-06-01

    [{sup 18}F]fluorodeoxyglucose (FDG) and positron emission tomography (PET) may be used to examine changes in cerebral glucose metabolism in two physiological conditions. We proposed and evaluated a double injection-single session FDG method with biological constraints for this purpose. Simulated brain time-radioactivity curves (TACs) generated by using a plasma TAC from an actual study and physiological combinations of input values in a kinetic model were analyzed to evaluate the accuracy of the proposed method. The reproducibility of the estimated values obtained by this method was tested in five normal volunteers who were studied with a dynamic PET scan and two injections of FDG in a single session while fasting. The simulation study showed that the estimated values obtained by the proposed method agreed well with the input values. In the human study, plasma glucose levels were 5.3{+-}0.2 and 5.0{+-}0.2 mM in the first and second measurements, respectively. The difference between the plasma glucose measurements was small but statistically significant (p<0.05). Although no systematic deviations were noted in K{sup *}{sub 1} or rCMRglc, there were small deviations in K{sup *} (less than 10%) and LC (less than 5%) with a statistical significance (p<0.01). The deviation between the measurements in K{sup *} and LC seemed to relate to the difference in the plasma glucose level. The double-injection FDG method with biological constrains can be used to estimate rCMRglc and LC sequentially in a single PET scanning session. (author)

  6. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    International Nuclear Information System (INIS)

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for 82Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity

  7. Regional cerebral metabolic rate for glucose and cerebrospinal fluid monoamine metabolites in subacute sclerosing panencephalitis

    International Nuclear Information System (INIS)

    Regional cerebral metabolic rate for glucose (rCMRglu) and cerebrospinal fluid monoamine metabolites were measured in two cases of subacute sclerosing panencephalitis (SSPE) with different clinical courses. A marked decrease in rCMRglu was found in the cortical gray matter of a patient with rapidly developing SSPE (3.6 - 4.2 mg/100 g brain tissue/min). However, the rCMRglu was preserved in the caudate and lenticular nuclei of the patient (7.7 mg/100 g/min). The rCMRglu in a patient with slowly developing SSPE revealed patterns and values similar to those of the control. Cerebrospinal fluid monoamine metabolites ; homovanilic acid and 5-hydroxyindoleacetic acid, were decreased in both rapidly and slowly developing SSPE. These data indicated that rCMRglu correlated better with the neurological and psychological status and that dopaminergic and serotonergic abnormalities have been implicated in pathophysiology of SSPE. (author)

  8. Investigations on the effects of ''Ecstasy'' on cerebral glucose metabolism: an 18-FDG PET study

    International Nuclear Information System (INIS)

    Purpose: The aim of the present study was to determine the acute effects of the 'Ecstasy' analogue MDE (3,4-methylendioxyethamphetamine) on the cerebral glucose metabolism (rMRGlu) of healthy volunteers. Method: In a randomised double-blind trial, 16 healthy volunteers without a history of drug abuse were examined with 18-FDG PET 110-120 minutes after oral administration of 2 mg/kg MDE (n=8) or placebo (n=8). Beginning two minutes prior to radiotracer injection, a constant cognitive stimulation was maintained for 32 minutes using a word repetition paradigm in order to ensure constant and comparable mental conditions during cerebral 18-FDG uptake. Individual brain anatomy was represented using T1-weighted 3D flash MRI, followed by manual regionalisation into 108 regions-of-interest and PET/MRI overlay. Absolute quantification of rMRGlu and comparison of glucose metabolism under MDE versus placebo were performed using Mann-Whitney U-test. Results: Absolute global MRGlu was not significantly changed under MDE versus placebo (MDE: 41,8±11,1 μmol/min/100 g, placebo: 50,1±18,1 μmol/min/100 g, p=0,298). The normalised regional metabolic data showed a significantly decreased rMRGlu in the bilateral frontal cortex: Left frontal posterior (-7.1%, p<0.05) and right prefrontal superior (-4.6%, p<0.05). On the other hand, rMRGlu was significantly increased in the bilateral cerebellum (right: +10.1%, p<0.05; left: +7.6%, p<0.05) and in the right putamen (+6.2%, p<0.05). Conclusions: The present study revealed acute neurometabolic changes under the 'Ecstasy' analogon MDE indicating a fronto-striato-cerebellar dysbalance with parallels to other psychotropic substances and various endogenous psychoses respectively. (orig.)

  9. The Utility of Cerebral Blood Flow Assessment in TBI.

    Science.gov (United States)

    Akbik, Omar S; Carlson, Andrew P; Krasberg, Mark; Yonas, Howard

    2016-08-01

    Over the past few decades, intracranial monitoring technologies focused on treating and preempting secondary injury after traumatic brain injury (TBI) have experienced considerable growth. A physiological measure fundamental to the management of these patients is cerebral blood flow (CBF), which may be determined directly or indirectly. Direct measurement has proven difficult previously; however, invasive and non-invasive CBF monitors are now available. This article reviews the history of CBF measurements in TBI as well as the role of CBF in pathologies associated with TBI, such as cerebral autoregulation, hyperemia, and cortical spreading depression. The limitations of various CBF monitors are reviewed in order to better understand their role in TBI management. PMID:27315250

  10. Subarachnoid hemorrhage in the rat: cerebral blood flow and glucose metabolism during the late phase of cerebral vasospasm

    International Nuclear Information System (INIS)

    A double-isotope technique for the simultaneous measurement of CBF and CMRglu was applied to a subarachnoid hemorrhage (SAH) model in the rat. Cisternal injection of 0.07 ml blood caused a rather uniform 20% reduction in CBF together with an increase in glucose utilization of 30% during the late phase of vasospasm. In one-third of the SAH animals, there were focal areas where the flow was lowered to 30% of the control values and the glucose uptake increased to approximately 250% of control. We suggest that blood in the subarachnoid space via a neural mechanism induces the global flow and metabolic changes, and that the foci are caused by vasospasm superimposed on the global flow and metabolic changes. In the double-isotope autoradiographic technique, [14C]iodoantipyrine and [3H]deoxyglucose were used for CBF and CMRglu measurements, respectively, in the same animal. In half of the sections, the [14C]iodoantipyrine was extracted using 2,2-dimethoxypropane before the section was placed on a 3H- and 14C-sensitive film. The other sections were placed on x-ray film with an emulsion insensitive to 3H. The validity of the double-isotope method was tested by comparing the data with those obtained in animals receiving a single isotope. The CBF and metabolic values obtained in the two groups were similar

  11. Preferential Utilization of Aromatic Compounds over Glucose by Pseudomonas putida CSV86

    OpenAIRE

    Basu, Aditya; Apte, Shree K.; Phale, Prashant S.

    2006-01-01

    Pseudomonas putida CSV86, a naphthalene-degrading organism, exhibited diauxic growth on aromatic compounds plus glucose, with utilization of aromatics in the first log phase and of glucose in the second log phase. Glucose supplementation did not suppress the activity of degrading enzymes, which were induced upon addition of aromatic compounds. The induction was inhibited by chloramphenicol, suggesting that de novo protein synthesis was essential. Cells showed cometabolism of aromatic compound...

  12. Comparison of Cerebral Glucose Metabolism between Possible and Probable Multiple System Atrophy

    Directory of Open Access Journals (Sweden)

    Kyum-Yil Kwon

    2009-05-01

    Full Text Available Background: To investigate the relationship between presenting clinical manifestations and imaging features of multisystem neuronal dysfunction in MSA patients, using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET. Methods: We studied 50 consecutive MSA patients with characteristic brain MRI findings of MSA, including 34 patients with early MSA-parkinsonian (MSA-P and 16 with early MSA-cerebellar (MSA-C. The cerebral glucose metabolism of all MSA patients was evaluated in comparison with 25 age-matched controls. 18F-FDG PET results were assessed by the Statistic Parametric Mapping (SPM analysis and the regions of interest (ROI method. Results: The mean time from disease onset to 18F-FDG PET was 25.9±13.0 months in 34 MSA-P patients and 20.1±11.1 months in 16 MSA-C patients. Glucose metabolism of the putamen showed a greater decrease in possible MSA-P than in probable MSA-P (p=0.031. Although the Unified Multiple System Atrophy Rating Scale (UMSARS score did not differ between possible MSA-P and probable MSA-P, the subscores of rigidity (p=0.04 and bradykinesia (p= 0.008 were significantly higher in possible MSA-P than in probable MSA-P. Possible MSA-C showed a greater decrease in glucose metabolism of the cerebellum than probable MSA-C (p=0.016. Conclusions: Our results may suggest that the early neuropathological pattern of possible MSA with a predilection for the striatonigral or olivopontocerebellar system differs from that of probable MSA, which has prominent involvement of the autonomic nervous system in addition to the striatonigral or olivopontocerebellar system.

  13. Effects of hyperglycemia on glucose production and utilization in humans. Measurement with [3H]-2-, [3H]-3-, and [14C]-6-glucose

    International Nuclear Information System (INIS)

    Studies with tritiated isotopes of glucose have demonstrated that hyperglycemia per se stimulates glucose utilization and suppresses glucose production in humans. These conclusions rely on the assumption that tritiated glucose provides an accurate measure of glucose turnover. However, if in the presence of hyperglycemia the isotope either loses its label during futile cycling or retains its label during cycling through glycogen, then this assumption is not valid. To examine this question, glucose utilization and glucose production rates were measured in nine normal subjects with a simultaneous infusion of [3H]-2-glucose, an isotope that may undergo futile cycling but does not cycle through glycogen; [14C]-6-glucose, an isotope that may cycle through glycogen but does not futile cycle; and [3H]-3-glucose, an isotope that can both undergo futile cycling and cycle through glycogen. In the postabsorptive state at plasma glucose concentration of 95 mg X dl-1, glucose turnover determined with [14C]-6-glucose (2.3 +/- 0.1 mg X kg-1 X min-1) was greater than that determined with [33H]glucose (2.1 +/- 0.1 mg X kg-1 X min-1, P = 0.002) and slightly less than that determined with [3H]-2-glucose (2.7 +/- 0.2 mg X kg-1 X min-1, P = 0.08). Plasma glucose was then raised from 95 to 135 to 175 mg X dl-1 while insulin secretion was inhibited, and circulating insulin, glucagon, and growth hormone concentrations were maintained constant by infusion of these hormones and somatostatin. Glucose production and utilization rates determined with [14C]-6-glucose continued to be less than those determined with [3H]-2-glucose and greater than those seen with [3H]-3-glucose

  14. Abnormality of cerebral cortical glucose metabolism in temporal lobe epilepsy with cognitive function impairment

    International Nuclear Information System (INIS)

    Objective: People with epilepsy commonly report having problems with their memory. Many indicate that memory difficulties significantly hinder their functioning at work, in school, and at home. Besides, some studies have reported that memory performance as a prognostic factor is of most value in patients with risk of refractory epilepsy and when used in a multidisciplinary setting. However, the cerebral cortical areas involving memory impairment in epilepsy is still unknown. The purpose of this study was to access changes of cerebral glucose metabolism of epilepsy patients using [F-18] fluorodeoxyglucose positron emission tomography (FDG PET). Method: Nine temporal lobe epilepsy patients were studied. Each patient was confirmed with lesions in right mesial temporal lobe by MRI, PET and EEG. Serial cognition function tests were performed. Regional cerebral glucose metabolism (rCMRglc) was measured by PET at 45 minutes after injection of 370 MBq of FDG. Parametric images were generated by grand mean scaling each scan to 50. The images were then transformed into standard stereotactic space. Statistical parametric mapping (SPM2) was applied to find the correlations between verbal memory, figure memory, perception intelligent quotation (PIQ) and rCMRglc in epilepsy patients. The changes of rCMRglc were significant if corrected p value was less than 0.05. Results: There was no significant relationship between figure memory score and verbal memory score. FDG-PET scan showed changes of rCMRglc positive related with verbal memory score in precentral gyms of right frontal lobe (Brodmann area 4, corrected p < 0.001, voxel size 240) and cingulated gyms of right limbic lobe (Brodmann area 32, corrected p=0.002, voxel size 143). No negative relationship was demonstrable between verbal memory and rCMRglc in this study. Besides, significanfiy positive correlation between figure memory was shown in cuneus of right occipital lobe (Brodmann area 18, corrected p < 0.001, voxel size

  15. Chronic Stress Modulates Regional Cerebral Glucose Transporter Expression in an Age-Specific and Sexually-Dimorphic Manner

    Science.gov (United States)

    Kelly, Sean D.; Harrell, Constance S.; Neigh, Gretchen N.

    2014-01-01

    Facilitative glucose transporters (GLUT) mediate glucose uptake across the blood-brain-barrier into neurons and glia. Deficits in specific cerebral GLUT isoforms are linked to developmental and neurological dysfunction, but less is known about the range of variation in cerebral GLUT expression in normal conditions and the effects of environmental influences on cerebral GLUT expression. Knowing that puberty is a time of increased cerebral plasticity, metabolic demand, and shifts in hormonal balance for males and females, we first assessed gene expression of five GLUT subtypes in four brain regions in male and female adolescent and adult Wistar rats. The data indicated that sex differences in GLUT expression were most profound in the hypothalamus, and the transition from adolescence to adulthood had the most profound effect on GLUT expression in the hippocampus. Next, given the substantial energetic demands during adolescence and prior demonstrations of the adverse effects of adolescent stress, we determined the extent to which chronic stress altered GLUT expression in males and females in both adolescence and adulthood. Chronic stress significantly altered cerebral GLUT expression in males and females throughout both developmental stages but in a sexually dimorphic and brain region-specific manner. Collectively, our data demonstrate that cerebral GLUTs are expressed differentially based on brain region, sex, age, and stress exposure. These results suggest that developmental and environmental factors influence GLUT expression in multiple brain regions. Given the importance of appropriate metabolic balance within the brain, further assessment of the functional implications of life stage and environmentally-induced changes in GLUTs are warranted. PMID:24382486

  16. Visual and SPM analysis of regional cerebral glucose metabolism in adult patients with neurofibromatosis

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Joon Kee; An, Young Sil; Hong, Seon Pyo; Joh, Chul Woo; Yoon, Seok Nam [Ajou University, School of Medicine, Suwon (Korea, Republic of)

    2005-07-01

    We evaluated the regional cerebral glucose metabolism in adult patients with neurofibromatosis (NF) using visual and SPM analysis, and compared with MRI findings. A total of 11 adult patients with NF type I were prospectively included in the study. All patients underwent F-18 FDG PET and brain MRI within 2 month of each other. All hypometabolic areas on PET were determined visually by 2 nuclear medicine physician and compared with MRI findings. SPM analysis was done using 42 normal controls with p = 0.005. Seven of 11 PET images showed 10 hypometabolic areas and 4 of 11 MRIs showed 6 areas of signal change brain parenchyma. Hypometabolic areas were bilateral thalamus (n=5), left temporal cortex (n=4) and dentate nucleus (n=1). In only 2 lesions (thalamus and dentate nucleus), hypometabolic foci were consistently related to signal change on MRI. SPM analysis revealed significantly decreased area in bilateral thalamus and left temporal cortex. F-18 FDG PET revealed significant hypometabolism in bilateral thalamus and left temporal cortex in adult patients with NF, and it might be helpful in understanding developmental abnormality of NF.

  17. Cerebral glucose metabolic patterns in Alzheimer's disease. Effect of gender and age at dementia onset

    International Nuclear Information System (INIS)

    No previous study of Alzheimer's disease has, to our knowledge, assessed the effect of both age at dementia onset and gender on cerebral glucose metabolic patterns. To this end, we used positron emission tomography (fludeoxyglucose F 18 method) to study 24 patients with clinical diagnoses of probable Alzheimer's disease. Comparisons of the 13 patients with early-onset dementia (less than 65 years of age) with the 11 patients with late-onset dementia (greater than 65 years of age) revealed significantly lower left parietal metabolic ratios (left posterior parietal region divided by the hemispheric average) in the early-onset group. The metabolic ratio of posterior parietal cortex divided by the relatively disease-stable average of caudate and thalamus also separated patients with early-onset dementia from those with late-onset dementia, but not men from women. Further comparisons between sexes showed that, in all brain regions studied, the 9 postmenopausal women had higher nonweighted mean metabolic rates than the 15 men from the same age group, with hemispheric sex differences of 9% on the right and 7% on the left. These results demonstrate decreased parietal ratios in early-onset dementia of Alzheimer's disease, independent of a gender effect

  18. Age and sex differences in cerebral glucose consumption measured by pet using [18-F] fluorodeoxyglucose (FDG)

    International Nuclear Information System (INIS)

    Resting cerebral glucose metabolic rates (CMRglc) were measured in 23 subjects by PET using FDG. Subjects were divided into several groups (mean age +- S.D.) 5 young males (YM) (27 +- 6); 6 young females (YF)(33 +9); 5 elderly males (EM)(73 +- 5); 7 elderly females (EF)(69 +- 7). Additionally, from these groups 4 YM, 3YF, 5EM and 4EF were studied again within 6 weeks under identical conditions. CMRglc in the YF group again was significantly hider than YM (p 0.05). No obvious relationships of CMRglc to the phase of the menstrual cycle was found in this small group. There was a trend (p=0.06) toward a higher CMRglc in YF than EF. These results support the findings of higher CBF in YF versus YM. The differences between the results of Kuhl et al (J. Cereb. and a reduction of CMRglc with age was found in a mixed group of males and females (58and female), and where no age effect was found the males, are also resolved by these findings. The authors suggest that the apparent age effect, in females in this study, is principally a hormonal one

  19. Brazilein inhibits neuronal inflammation induced by cerebral ischemia and oxygen-glucose deprivation through targeting NOD2 expression.

    Science.gov (United States)

    Yan, Xiao-Jin; Chai, Yu-Shuang; Yuan, Zhi-Yi; Wang, Xin-Pei; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; DU, Li-Jun

    2016-05-01

    Brazilein is reported to have immunosuppressive effect on cardiovascular and cerebral-vascular diseases. The essential roles of innate immunity in cerebral ischemia are increasingly identified, but no studies concerning the influence of brazilein on the innate immunity receptors have been reported. The present study was designed to investigate the regulation of NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) by brazilein for its protection of neuron in cerebral ischemia in vivo and oxygen-glucose deprivation in vitro. The results showed that brazilein could reverse the elevated expression of NOD2 and TNFα (tumor necrosis factor alpha) elicited by cerebral ischemia and reperfusion. This reduction could also be detected in normal mice and C17.2 cells, indicating that this suppressive effect of brazilein was correlated with NOD2. The results from GFP reporter plasmid assay suggested brazilein inhibited NOD2 gene transcription. In conclusion, brazilein could attenuate NOD2 and TNFα expression in cerebral ischemia and NOD2 may be one possible target of brazilein for its immune suppressive effect in neuro-inflammation. PMID:27478098

  20. Relationship between glucose fluctuation and the degree of nervous dysfunction of the acute cerebral infarction in patients with type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    张名扬

    2014-01-01

    Objective To investigate the relationship between glucose fluctuation and the degree of nervous dysfunction of the acute cerebral infarction in patients with type 2 diabetes mellitus.Methods 30 patients with ACI and T2DM were chosen as observation group and 30 patients with T2DM without ACI as the control group.Glucose

  1. Regional cerebral glucose metabolism in frontotemporal dementia: a study with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S. S.; Jeong, J.; Kang, S. J.; Na, D. L.; Choe, Y. S.; Lee, K. H.; Choi, Y.; Kim, B. T.; Kim, S. E. [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Frontotemporal dementia (FTD) is a common cause of presenile dementia. We investigated the regional cerebral glucose metabolic impairments in patients with FTD using FDG PET. We analysed the regional metabolic patterns on FDG PET images obtained from 30 patients with FTD and age- and sex-matched 15 patients with Alzheimers disease (AD) and 11 healthy subjects using SPM99. We also compared the inter-hemispheric metabolic asymmetry among the three groups by counting the total metabolic activity of each hemisphere and computing asymmetry index (AL) between hemispheres. The hypometabolic brain regions in FTD patients compared with healthy controls were as follows: superior middle and medial frontal lobules, superior and middle temporal lobules, anterior and posterior cingulate gyri, uncus, insula, lateral globus pallidus and thalamus. The regions with decreased metabolism in FTD patients compared with AD patients were as follows: superior, inferior and medial frontal lobules, anterior cingulate gyrus, and caudate nucleus. Twenty-five (83%) out of the 30 FTD patients had AI values that was beyond the 95% confidence interval of the AI values obtained from healthy controls; 10 patients had hypometabolism more severe on the right and 15 patients had the opposite pattern. In comparison, 10 (67%) out of the 15 AD patients had asymmetric metabolism. Our SPM analysis of FDG PET revealed additional areas of decreased metabolism in FTD patients compared with prior studies using the ROI method, involving frontal, temporal, cingulate gyrus, corpus callosum, uncus, insula, and some subcortical areas. The inter-hemispheric metabolic asymmetry was common in FTD patients, which can be another metabolic feature that helps differentiate FTD from AD.

  2. Cerebral glucose metabolism in long-term survivors of childhood primary brain tumors treated with surgery and radiotherapy

    DEFF Research Database (Denmark)

    Andersen, Preben B.; Krabbe, Katja; Leffers, Anne M.;

    2003-01-01

    Delayed structural cerebral sequelae has been reported following cranial radiation therapy (CRT) to children with primary brain tumors, but little is known about potential functional changes. Twenty-four patients were included, diagnosed and treated at a median age of 11 years, and examined after...... that there is a general reduction in rCMRglc in long-term recurrence free survivors of childhood primary brain tumors treated with CRT in high doses (44-56 Gy)......Delayed structural cerebral sequelae has been reported following cranial radiation therapy (CRT) to children with primary brain tumors, but little is known about potential functional changes. Twenty-four patients were included, diagnosed and treated at a median age of 11 years, and examined after...... a median recurrence free survival of 16 years by MRI and Positron Emission Tomography using the glucose analog 2-18F-fluoro-2-deoxy-D-glucose (18FDG). Three patients were not analyzed further due to diffuse cerebral atrophy, which might be related to previous hydrocephalus. Twenty-one patients were...

  3. Correlation of glucose metabolism in brain cells and brain morphological changes with clinical typing in children with cerebral palsy

    Institute of Scientific and Technical Information of China (English)

    Qiongxiang Zhai; Huixian Qiao; Jiqing Liu

    2006-01-01

    BACKGROUND:It is widely known that fluorino-18-fluorodeoxyglucose positron emission tomography(18F-FDG PET)is commonly used to evaluate and diagnose epilepsy;however,whether it is beneficial to understand functional metabolism of bra in cells so as to reflect injured site and degree of brain cells or not should be studied further.OBJECTIVE:To evaluate the correlation between glucose metabolism and clinical typling as well as the conelation between active function of brain cells and degree of brain injury among children with cerbral palsy with 18F-FDG PET and MRI and compare the results of them.DESIGN:Case analysis.SETTING:Department of Pediatrics,People's Hospital of Guangdong Province.PARTICIPANTS:A total of 31 children with cerebral palsy were selected from Out-patient Clinic and In-patient Department of People's Hospital of Guangdong Province from July 2001 to August 2004.Based on clinical criteria of cerebral palsy,patients were classified into spasm(n=10),gradual movement(n=4),mixed type(n =13)and ataxia(n=4).There were 18 boys and 13 girls aged from 10 months to 4 years.All of them were met the diagnostic criteria of cerebral palsy and all parents of them were told the facts.Exclusion cdteria:Patients who had cerebral palsy caused by genetic metabolism disease were excluded.METHODS:①All children accepted MRI examination after hospitalization with Philips Acs NT 15T superconductling magnetic resonance scanner.②All children were fasted for 4 hours.And then,PET image of brain was collected based on T+EID type.If obvious hypermetabolism or hypometabolism region successively occurred on two layers, the image was regarded as abnormality. ③Different correlations of various abnormal greups of MRI and vadous types of cerebral palsy with PET image were compared and analyzed with Erusal-Willas rank sum test.MAIN OUTCOME MEASURES:①Results of 18F-FDG PET;②Results of MRI examination;③Correlation of variously abnormal groups of MRI and various types of cerebral

  4. Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum

    Directory of Open Access Journals (Sweden)

    Jin Guojie

    2011-08-01

    Full Text Available Abstract Background Biochemical conversion of lignocellulose hydrolysates remains challenging, largely because most microbial processes have markedly reduced efficiency in the presence of both hexoses and pentoses. Thus, identification of microorganisms capable of efficient and simultaneous utilization of both glucose and xylose is pivotal to improving this process. Results In this study, we found that the oleaginous yeast strain Trichosporon cutaneum AS 2.571 assimilated glucose and xylose simultaneously, and accumulated intracellular lipid up to 59 wt% with a lipid coefficient up to 0.17 g/g sugar, upon cultivation on a 2:1 glucose/xylose mixture in a 3-liter stirred-tank bioreactor. In addition, no classic pattern of diauxic growth behavior was seen; the microbial cell mass increased during the whole culture process without any lag periods. In shake-flask cultures with different initial glucose:xylose ratios, glucose and xylose were consumed simultaneously at rates roughly proportional to their individual concentrations in the medium, leading to complete utilization of both sugars at the same time. Simultaneous utilization of glucose and xylose was also seen during fermentation of corn-stover hydrolysate with a lipid content and coefficient of 39.2% and 0.15 g/g sugar, respectively. The lipid produced had a fatty-acid compositional profile similar to those of conventional vegetable oil, indicating that it could have potential as a raw material for biodiesel production. Conclusion Efficient lipid production with simultaneous consumption of glucose and xylose was achieved in this study. This process provides an exciting opportunity to transform lignocellulosic materials into biofuel molecules, and should also encourage further study to elucidate this unique sugar-assimilation mechanism.

  5. Co-Utilization of Glucose and Xylose for Enhanced Lignocellulosic Ethanol Production with Reverse Membrane Bioreactors

    Directory of Open Access Journals (Sweden)

    Mofoluwake M. Ishola

    2015-12-01

    Full Text Available Integrated permeate channel (IPC flat sheet membranes were examined for use as a reverse membrane bioreactor (rMBR for lignocellulosic ethanol production. The fermenting organism, Saccharomyces cerevisiae (T0936, a genetically-modified strain with the ability to ferment xylose, was used inside the rMBR. The rMBR was evaluated for simultaneous glucose and xylose utilization as well as in situ detoxification of furfural and hydroxylmethyl furfural (HMF. The synthetic medium was investigated, after which the pretreated wheat straw was used as a xylose-rich lignocellulosic substrate. The IPC membrane panels were successfully used as the rMBR during the batch fermentations, which lasted for up to eight days without fouling. With the rMBR, complete glucose and xylose utilization, resulting in 86% of the theoretical ethanol yield, was observed with the synthetic medium. Its application with the pretreated wheat straw resulted in complete glucose consumption and 87% xylose utilization; a final ethanol concentration of 30.3 g/L was obtained, which corresponds to 83% of the theoretical yield. Moreover, complete in situ detoxification of furfural and HMF was obtained within 36 h and 60 h, respectively, with the rMBR. The use of the rMBR is a promising technology for large-scale lignocellulosic ethanol production, since it facilitates the co-utilization of glucose and xylose; moreover, the technology would also allow the reuse of the yeast for several batches.

  6. Direct neuronal glucose uptake Heralds activity-dependent increases in cerebral metabolism

    DEFF Research Database (Denmark)

    Lundgaard, Iben; Li, Baoman; Xie, Lulu;

    2015-01-01

    Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two...... of glucose uptake as visualized by functional brain imaging....

  7. Regional differences of relationships between atrophy and glucose metabolism of cerebral cortex in patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Aim: The purpose of this paper is to estimate a correlation between the extent of atrophy and the decline in the brain function measured with PET study among the patients with Alzheimer's disease by each brain lobe. Materials and Methods: Two groups, the normal controls (male: 8, female: 22 age: 62.4±4.9) and the patients with Alzheimer's disease (male: 6, female: 24, age: 65.9±7.2) participated in this study. The extent of atrophy was evaluated from the extracted gyrus on 2D-projection magnetic resonance imaging (MRI) and the cerebral cortical glucose metabolism was assessed on 2D-projection positron emission tomography (PET) image, and then a relationship between the cerebral atrophy and the function was evaluated by each brain lobe extracted automatically. 2D-projection of PET and MR images were made by means of the Mollweide method which keeps the area of the brain surface. In order to extract brain lobes from each subject automatically, the bitmap with different value by each brain lobe was made from a standard brain image and was automatically transformed to match each subject's brain image by using SPM99. A correlation image was generated between 2D-projection images of glucose metabolism and the area of the sulcus and the gyrus extracted from the correlation between MR and PET images clustered by K-means method. Results: The glucose metabolism of Alzheimer's disease was lower than that of normal control subjects at the frontal, parietal, and temporal lobes with the same extent of atrophy as that of the normal. There was high correlation between the area of gyrus and the glucose metabolism, and the correlation tendency of the Alzheimer's disease was steeper than that of the normal control at the parietal lobe. Conclusions: Combined analysis of regional morphology and function may be useful to distinguish pathological process such as early stage of Alzheimer's disease from normal physiological aging

  8. Glucose utilization in the brain during acute seizure is a useful biomarker for the evaluation of anticonvulsants: effect of methyl ethyl ketone in lithium-pilocarpine status epilepticus rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Akifumi [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan)], E-mail: yamaaki@sahs.med.osaka-u.ac.jp; Momosaki, Sotaro; Hosoi, Rie [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan); Abe, Kohji [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan); Developmental Research Laboratories, Shionogi and Co., Ltd., Toyonaka, Osaka, 561-0825 (Japan); Yamaguchi, Masatoshi [Faculty of Pharmaceutical Sciences, Fukuoka University, Johnan, Fukuoka 814-0180 (Japan); Inoue, Osamu [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, 565-0871 (Japan)

    2009-11-15

    Enhancement of glucose utilization in the brain has been well known during acute seizure in various kinds of animal model of epilepsy. This enhancement of glucose utilization might be related to neural damage in these animal models. Recently, we found that methyl ethyl ketone (MEK) had both anticonvulsive and neuroprotective effects in lithium-pilocapine (Li-pilo) status epilepticus (SE) rat. In this article, we measured the uptake of [{sup 14}C]2-deoxyglucose ([{sup 14}C]DG) in the Li-pilo SE and Li-pilo SE with MEK rat brain in order to assess whether the glucose utilization was a useful biomarker for the detection of efficacy of anticonvulsive compounds. Significant increase of [{sup 14}C]DG uptake (45 min after the injection) in the cerebral cortex, hippocampus, amygdala and thalamus during acute seizure induced by Li-pilo were observed. On the other hand, the initial uptake of [{sup 14}C]DG (1 min after the injection) in the Li-pilo SE rats was not different from the control rats. Therefore, the enhancement of glucose metabolism during acute seizure was due to the facilitation of the rate of phosphorylation process of [{sup 14}C]DG in the brain. Pretreatment with MEK (8 mmol/kg) completely abolished the enhancement of glucose utilization in the Li-pilo SE rats. The present results indicated that glucose utilization in the brain during acute seizure might be a useful biomarker for the evaluation of efficacy of anticonvulsive compounds.

  9. Feasibility and utility of transradial cerebral angiography: experience during the learning period

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyung; Park, Yong Sung; Chung, Chul Gu; Park, Kyeong Sug; Chung, Dong Jin; Kim, Hyun Jin [Konyang University Hospital, Daejeon (Korea, Republic of)

    2006-03-15

    We wanted to present our experiences for performing transradial cerebral angiography during the learning period, and we also wanted to demonstrate this procedure's technical feasibility and utility in various clinical situations. Thirty-two patients were enrolled in the study. All of them had unfavorable situations for performing transfemoral angiography, i.e., IV lines in the bilateral femoral vein, a phobia for groin puncture, decreased blood platelet counts, large hematoma or bruise, atherosclerosis in the bilateral femoral artery and the insistence of patients for choosing another procedure. After con firming the patency of the ulnar artery with a modified Allen's test and a pulse oximeter, the procedure was done using a 21-G micorpuncture set and 5-F Simon II catheters. After angiography, hemostasis was achieved with 1-2 minutes of manual compression and the subsequent application of a hospital-made wrist brace for two hours. The technical feasibility and procedure-related immediate and delayed complications were evaluated. The procedure was successful in 30/32 patients (93.8%). Failure occurred in two patients; one patient had hypoplasia of the radial artery and one patient had vasospasm following multiple puncture trials for the radial artery. Transradial cerebral angiography was technically feasible without significant difficulties even though it was tried during the learning period. Pain in the forearm or arm developed in some patients during the procedures, but this was usually mild and transient. Procedure-related immediate complications included severe bruising in one patient and a small hematoma in one patient. Any clinically significant complication or delayed complication such as radial artery occlusion was not demonstrated in our series. Transradial cerebral angiography is a useful alternative for the patients who have unfavorable clinical situations or contraindications for performing transfemoral cerebral angiography. For the experienced

  10. Feasibility and utility of transradial cerebral angiography: experience during the learning period

    International Nuclear Information System (INIS)

    We wanted to present our experiences for performing transradial cerebral angiography during the learning period, and we also wanted to demonstrate this procedure's technical feasibility and utility in various clinical situations. Thirty-two patients were enrolled in the study. All of them had unfavorable situations for performing transfemoral angiography, i.e., IV lines in the bilateral femoral vein, a phobia for groin puncture, decreased blood platelet counts, large hematoma or bruise, atherosclerosis in the bilateral femoral artery and the insistence of patients for choosing another procedure. After con firming the patency of the ulnar artery with a modified Allen's test and a pulse oximeter, the procedure was done using a 21-G micorpuncture set and 5-F Simon II catheters. After angiography, hemostasis was achieved with 1-2 minutes of manual compression and the subsequent application of a hospital-made wrist brace for two hours. The technical feasibility and procedure-related immediate and delayed complications were evaluated. The procedure was successful in 30/32 patients (93.8%). Failure occurred in two patients; one patient had hypoplasia of the radial artery and one patient had vasospasm following multiple puncture trials for the radial artery. Transradial cerebral angiography was technically feasible without significant difficulties even though it was tried during the learning period. Pain in the forearm or arm developed in some patients during the procedures, but this was usually mild and transient. Procedure-related immediate complications included severe bruising in one patient and a small hematoma in one patient. Any clinically significant complication or delayed complication such as radial artery occlusion was not demonstrated in our series. Transradial cerebral angiography is a useful alternative for the patients who have unfavorable clinical situations or contraindications for performing transfemoral cerebral angiography. For the experienced

  11. Enhancement of Glucose Utilization in Provision of Carbon Skeletons for Ammonium Assimilation in Wheat Roots

    OpenAIRE

    Koga, Nobuhisa; Ikeda, Motoki

    2000-01-01

    In providing carbon skeletons to be expended for amide synthesis during ammonium assimilation, glucose utilization in roots was studied. The roots of young wheat plants grown without nitrogen for 3d and grown with 4 mM NO_3^- or NH_4^+ for 1d were fed with ^C-glucose for 3h in the presence of NO_3^- or NH_4^+, and the distribution of ^C-metabolites within the plants was examined. The NH_4^+ supply changed the distribution of ^C to a greater extent than the NO_3^- supply. In roots grown with N...

  12. Effect of ketone bodies on glucose production and utilization in the miniature pig.

    OpenAIRE

    Müller, M J; Paschen, U; Seitz, H J

    1984-01-01

    The effect of ketone bodies on glucose production (Ra) and utilization (Rd) was investigated in the 24-h starved, conscious unrestrained miniature pig. Infusing Na-DL-beta-OH-butyrate (Na-DL-beta-OHB) and thus shifting the blood pH from 7.40 to 7.56 resulted in a decrease of Ra by 52% and of Rd by 45%, as determined by the isotope dilution technique. Simultaneously, the concentrations of arterial insulin and glucagon were slightly enhanced, whereas the plasma levels of glucose, lactate, pyruv...

  13. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose

    Science.gov (United States)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.

    2016-08-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 min at room temperature. After centrifugation of the vials with cells, the supernatant was removed. The radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25 MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 min. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D-glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3 ± 0.15 MBq and 1.07 ± 0.6 MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio-D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  14. Decreased regional cerebral glucose metabolism in the prefrontal regions in adults' with internet game addiction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Soo; Bang, Soong Ae; Yoon, Eun Jin; Cho, Sang Soo; Kim, Sang Hee; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Internet Game Addiction (IGA) is known to be associated with poor decision-making and diminished impulse control; however, the underlying neural substrates of IGA have not been identified. To investigate the neural substrates of IGA, we compared regional cerebral glucose metabolism between adults with and without IGA, primarily in the prefrontal brain regions, which have been implicated in inhibitory control. We studied 10 right-handed participants (5 controls: male, 23.8{+-}0.75 y, 5 IGAs: male, 22.6{+-}2.42 y) with FDG PET. A standardized questionnaire was used to assess the severity of IGA. Before scanning, all subjects carried out a computerized version of the Iowa Gambling Task (IGT) and the Balloon Analogue Risk Task (BART), as measures of behavioral inhibitory control. Statistical Parametric Mapping 2 (SPM2) was used to analyze differences in regional brain glucose metabolism between adults with and without IGA. Consistent with our predictions, compared to controls, significant reductions in FDG uptake in individuals with IGA were found in the bilateral orbitofrontal gyrus (BA 11, 47), bilateral inferior frontal gyrus (BA 44, 48), cingulate cortex (BA 24), and bilateral supplementary motor area (SMA) (BA 6); whereas increases were found in the bilateral hippocampus. Correlation analyses within the IGA group further showed that the level of glucose metabolism in the right orbitofrontal gyrus was marginally positively correlated with task scores in BART. Our results showed that IGA is associated with reduced glucose metabolism in the prefrontal regions involved in inhibitory control. This finding highlights dysfunctional inhibitory brain systems in individuals with IGA and offers implications for the development for therapeutic paradigms for IGA.

  15. Blast overpressure waves induce transient anxiety and regional changes in cerebral glucose metabolism and delayed hyperarousal in rats

    Directory of Open Access Journals (Sweden)

    Hibah Omar Awwad

    2015-06-01

    Full Text Available Physiological alterations, anxiety and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI and are common symptoms in service personnel exposed to blasts. Since 2006, 25-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p<0.05; n=8-11. Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed hyperactivity and increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using F-18-fluorodeoxyglucose. Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p<0.05; n=4-6 and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p<0.05; n=5-6.

  16. Effects of bilateral subthalamic nucleus stimulation on resting-state cerebral glucose metabolism in advanced Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    赵永波; 孙伯民; 李殿友; 王乔树

    2004-01-01

    Background The major neuropathological symptoms of Parkinson's disease (PD) consist of a loss of pigmented dopaminergic neurons in the substantia nigra and the presence of Lewy bodies. This study was to investigate the effects of bilateral subthalamic nucleus (STN) stimulation on resting-state cerebral glucose metabolism in advanced PD, and investigate the mechanism of deep brain stimulation (DBS).Methods Seven consecutive advanced PD patients (4 men and 3 women, mean age 64±4 years, mean H-Y disability rating 4.4±0.65) receiving bilateral STN DBS underwent 18F-fluorodeoxyglucose (18F-FDG)/positron-emission tomography (PET) examinations at rest both preoperatively and one month postoperatively, with STN stimulation still on. The unified PD rating scale was used to evaluate the clinical state under each condition. Statistical parametric mapping (SPM) was used to investigate the regional cerebral metabolic rates of glucose (rCMRGlu) during STN stimulation, and to compare these values to rCMRGlu preoperation. Results STN stimulation clearly improved clinical symptoms in all patients. A significant increase in rCMRGlu was found in the bilateral lentiform nucleus, brainstem (midbrain and pons), bilateral premotor area (BA6), parietal-occipital cortex, and anterior cingulated cortex, and a marked decrease in rCMRGlu was noted in the left limbic lobe and bilateral inferior frontal cortex (P<0.05). Conclusion Bilateral STN stimulation may activate the projection axon from the STN, improving clinical symptoms in advanced PD patients by improving both ascending and descending pathways from the basal ganglia and increasing the metabolism of higher-order motor control in the frontal cortex.

  17. Decrease in cerebral metabolic rate of glucose after high-dose methotrexate in childhood acute lymphocytic leukemia

    International Nuclear Information System (INIS)

    We measured changes in the regional cerebral metabolic rate of glucose (rCMRGlu) using 18F-fluorodeoxyglucose and positron emission tomography for the assessment of neurotoxicity in childhood acute lymphocytic leukemia treated with high-dose methotrexate (HD-MTX) therapy. We studied 8 children with acute lymphocytic leukemia (mean age: 9.6 years) treated with HD-MTX (200 mg/kg or 2,000 mg/M2) therapy. CMRGlu after HD-MTX therapy was most reduced (40%) in the patient who had central nervous system leukemia and was treated with the largest total doses of both intrathecal MTX (IT-MTX) and HD-MTX. CMRGlu in the whole brain after HD-MTX therapy was reduced by an average of 21% (P less than 0.05). The reductions of CMRGlu in 8 patients were correlated with total doses of both IT-MTX (r = 0.717; P less than 0.05) and systemic HD-MTX (r = 0.784; P less than 0.05). CMRGlu of the cerebral cortex, especially the frontal and occipital cortex, was reduced more noticeably than that of the basal ganglia and white matter. We suggest that the measurement of changes in rCMRGlu after HD-MTX therapy is useful for detecting accumulated MTX neurotoxicity

  18. Lactate as a cerebral metabolic fuel for glucose-6-phosphatase deficient children.

    Science.gov (United States)

    Fernandes, J; Berger, R; Smit, G P

    1984-04-01

    The main substrates for brain energy metabolism were measured in blood samples taken from the carotid artery and the internal jugular bulb of four children with glycogen storage disease caused by deficiency of glucose-6-phosphatase. Multiple paired arterial and venous blood samples were analyzed for glucose, lactate, pyruvate, D-beta-hydroxybutyrate, acetoacetate, glycerol and O2, and the arteriovenous differences of the concentrations were calculated. In the first three patients the substrates were measured in two successive conditions with lower and higher glucose-intake, respectively, inducing reciprocally higher and lower concentrations of blood lactate. In the fourth patient medium chain triglycerides were administered simultaneously with the glucose-containing gastric drip feeding. Lactate appeared to be taken up significantly. It consumed, if completely oxidized, between 40-50% of the total O2 uptake in most cases. Only once in one patient the uptake of lactate switched to its release, when the blood lactate level decreased to normal. D-beta-hydroxybutyrate and acetoacetate arteriovenous (A-V) differences were small to negligible and these ketone bodies, therefore, did not contribute substantially to the brain's energy expenditure. Glycerol was not metabolized by the brain. Lactate thus appeared to be the second brain fuel next to glucose. It may protect the brain against fuel depletion in case of hypoglycemia.

  19. Cost effectiveness and cost utility of the noncoding blood glucose meter CONTOUR® TS

    Directory of Open Access Journals (Sweden)

    Przemyslaw Holko

    2011-02-01

    Full Text Available Przemyslaw Holko, Pawal KawalecHTA Centre, Kraków, PolandAims: This study assessed the cost efficacy and cost utility of the automatic blood glucose meter CONTOUR® TS from the public payer (National Health Fund [NHF] and payer (patient and NHF perspectives over a 26-year analysis horizon.Methods: Clinical effectiveness data were obtained from prior clinical studies of automatic versus manually coded blood glucose meters. Cost data were obtained from the NHF. The probability of procedure use related to diabetic complications was obtained from four medical centers in Poland. The incremental cost-effectiveness ratio related to 1 life year gained and the incremental cost-utility ratio related to 1 quality-adjusted life year gained were calculated.Results: Assuming co-funding from public funds, introduction of the CONTOUR® TS is associated with savings of Polish złoty (PLN 31,846.19 (€8916.93 and PLN 113,018.19 (€31,645.09 per life year gained from the payer and public payer perspectives, respectively. Cost utility analyses showed that the CONTOUR® TS is associated with savings of PLN 40,465.59 (€11,330.37 and PLN 11,434.82 (€3201.75 per quality-adjusted life year gained from the payer and the public payer perspectives, respectively.Conclusion: The CONTOUR® TS appears superior to manually coded meters available in Poland both from the payer and the public payer perspectives and may represent an improved strategy for glycemic control.Keywords: blood glucose self monitoring, costs and cost analysis, health care costs, diabetes mellitus, diabetes complications 

  20. Effects of Cooling and Supplemental Bovine Somatotropin on Milk Production relating to Body Glucose Metabolism and Utilization of Glucose by the Mammary Gland in Crossbred Holstein Cattle

    Directory of Open Access Journals (Sweden)

    Siravit Sitprija

    2010-01-01

    Full Text Available Problem statement: The low milk yield and shorter persistency of lactation of dairy cattle is the major problem for the dairy practices in the tropics. High environmental temperatures and rapid decline of plasma growth hormone level can influence milk production. Regulation of the milk yield of animals is mainly based on the mechanisms governing the quantity of glucose extracted by the mammary gland for lactose biosynthetic pathways. The mechanism(s underlying the effects of cooling and supplemental bovine somatotropin on milk production relating to body glucose metabolism and intracellular metabolism of glucose in the mammary gland of crossbred Holstein cattle in the tropics have not been investigated to date. Approach: Ten crossbred 87.5% Holstein cows were divided into two groups of five animals each. Animals were housed in Normal Shade barn (NS as non-cooled cows and cows in the second group were housed in barn which was equipped with a two Misty-Fan cooling system (MF as cooled cows. Supplementation of recombinant bovine Somatotropin (rbST (POSILAC, 500 mg per cow were performed in both groups to study body glucose metabolism and the utilization of glucose in the mammary gland using a continuous infusion of [3-3H] glucose and [U- 14C] glucose as markers in early, mid and late stages of lactation. Results: Milk yield significantly increased in both groups during supplemental rbST with a high level of mammary blood flow. Body glucose turnover rates were not significant different between cooled and non-cooled cows whether supplemental rbST or not. The glucose taken up by the mammary gland of both non-cooled and cooled cows increased flux through the lactose synthesis and the pentose cycle pathway with significant increases in NADPH formation for fatty acid synthesis during rbST supplementation. The utilization of glucose carbon incorporation into milk appeared to increase in milk lactose and milk triacylglycerol but not for

  1. Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions.

    Directory of Open Access Journals (Sweden)

    Gen Nakagawa

    Full Text Available In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode, the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor.

  2. Comparison of subtracted venography and phase contrast in cerebral regions by utilizing 3DT1TFE

    Science.gov (United States)

    Heo, Yeong-Cheol; Cho, Jae-Hwan; Jang, Hyon-Chol; Lee, Chang-Hee; Kim, Jung-Su; Lee, Hae-Kag

    2013-06-01

    In this study, we evaluated the 3D venography images and the phase contrast images that were subtracted by using the images that had been obtained before and after utilizing the contrast medium with a 3D, segmented, T1-weighted gradient echo sequence (3DT1TFE) when performing a cerebral magnetic resonance imaging (MRI) examination with contrast medium. The study was carried out in 10 patients who under went a brain examination with a contrast medium by using the 3.0T MR System and 8-channel sensitivity encoding (SENSE) head coil. The 3DT1TFE images after the contrast medium had been used was subtracted from the 3DT1TFE images before the utilization. The subtracted images were re-formed to venography images by using maximum intensity projection (MIP) techniques; then, the re-formed images and 3D phase contrast (PC) venography were evaluated qualitative analysis. The qualitative analysis was done to confirm the reliability of the ratings of the observers via the ICC (intraclass correlation coefficient) and then to evaluate of the statistical significance via an independent T-test. The ICC test showed that 3D PC venography images and subtracted venography images had reliabilities of 0.677 and 0.734 on average, respectively, indicating good reliability of the ratings by the observers. Because the proximal superior sagittal sinus (SSS), the middle SSS, the confluence SSS, the vein of labbe, the internal cerebral vein, and the Vein of Galen represented p > 0.05 a the independent T-test, no statistically significant difference was observed between the two images. However, a significant difference was observed between the images regarding the straight sinus (p images subtracted from the straight sinus would be better, because the average of the straight sinus was higher in subtracted venography.

  3. Age- and Sex-Associated Changes in Cerebral Glucose Metabolism in Normal Healthy Subjects: Statistical Parametric Mapping Analysis of F-18 Fluorodeoxyglucose Brain Positron Emission Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki (Dept. of Nuclear Medicine, Pusan National Univ. Hospital, Busan (Korea); Medical Research Institute, Pusan National Univ., Busan (Korea)). e-mail: growthkim@daum.net/growthkim@pusan.ac.kr)

    2009-12-15

    Background: The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. Purpose: To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Material and Methods: Seventy-eight healthy subjects (32 males, mean age 46.6+-18.2 years; 46 females, mean age 40.6+-19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. Results: In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Conclusion: Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake

  4. Age- and Sex-Associated Changes in Cerebral Glucose Metabolism in Normal Healthy Subjects: Statistical Parametric Mapping Analysis of F-18 Fluorodeoxyglucose Brain Positron Emission Tomography

    International Nuclear Information System (INIS)

    Background: The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. Purpose: To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Material and Methods: Seventy-eight healthy subjects (32 males, mean age 46.6±18.2 years; 46 females, mean age 40.6±19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. Results: In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Conclusion: Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake

  5. Utilization of glucose and UDPG by supprotoplasts of cotton fiber cells

    International Nuclear Information System (INIS)

    The authors have developed a subprotoplast system for cotton fiber cells isolated after initiation of secondary wall and cellulose synthesis. In the absence of a cell-free system for cellulose synthesis, protoplasts and subprotoplasts offer an opportunity to study cellulose synthesis as well as precursor utilization. In these systems, however, the incorporation of precursor is confused by an unknown mode of uptake from the culture medium. These studies were undertaken to clarify the uptake question. Results could corroborate a model of UDP-glucose utilization at the plasma membrane surface or uptake of an intact molecule. The cotton fiber subprotoplast system appears to synthesize a product characteristic of cellulose in enough quantity for further characterization, and may prove to be useful in studying some aspects of cellulose synthesis

  6. Cerebral glucose utilisation in hepatitis C virus infection-associated encephalopathy

    OpenAIRE

    Heeren, Meike; Weissenborn, Karin; Arvanitis, Dimitrios; Bokemeyer, Martin; Goldbecker, Annemarie; Tountopoulou, Argyro; Peschel, Thomas; Grosskreutz, Julian; Hecker, Hartmut; Buchert, Ralph; Berding, Georg

    2011-01-01

    Patients with hepatitis C virus (HCV) infection frequently show neuropsychiatric symptoms. This study aims to help clarify the neurochemical mechanisms behind these symptoms and to add further proof to the hypothesis that HCV may affect brain function. Therefore, 15 patients who reported increasing chronic fatigue, mood alterations, and/or cognitive decline since their HCV infection underwent neurologic and neuropsychological examination, magnetic resonance imaging, 18F-fluoro-deoxy-glucose p...

  7. Utility of Language Comprehension Tests for Unintelligible or Non-Speaking Children with Cerebral Palsy: A Systematic Review

    Science.gov (United States)

    Geytenbeek, Joke; Harlaar, Laurike; Stam, Marloes; Ket, Hans; Becher, Jules G.; Oostrom, Kim; Vermeulen, Jeroen

    2010-01-01

    Aim: To identify the use and utility of language comprehension tests for unintelligible or non-speaking children with severe cerebral palsy (CP). Method: Severe CP was defined as severe dysarthria (unintelligible speech) or anarthria (absence of speech) combined with severe limited mobility, corresponding to Gross Motor Function Classification…

  8. The relationship between the cerebral blood flow, oxygen consumption and glucose metabolism in primary degenerative dementia

    International Nuclear Information System (INIS)

    The CBF, CMRO2 and CMRGlu were measured in patients with primary degenerative dementia including 5 patients with dementia of Alzheimer's type and 4 patients with Pick's disease, and then the correlation between the cerebral blood flow and energy metabolism was evaluated. The control subjects consisted of 5 age-matched normal volunteers. The CBF, CMRO2 and CMRGlu decreased in the bilateral frontal, temporal and parietal regions in the patients with Alzheimer's dementia, while they decreased in the bilateral frontal and temporal regions in the patients with Pick's disease. Both the CBF and CMRO2 were closely correlated with each other. However, the CMRGlu was more severely impaired than the CBF or CMRO2 in both pathological conditions. These results suggested that CMRGlu began to decrease before the reduction of the aerobic metabolism and thus measuring the CMRGlu is considered to be the most sensitive method for detecting abnormal regions in primary degenerative dementia. (author)

  9. The significance of changes in cerebral oxygen and glucose metabolism in patients with cerebral hemorrhage caused by acute hypertension%急性高血压脑出血患者脑糖氧代谢变化及意义

    Institute of Scientific and Technical Information of China (English)

    马骏; 陈锷峰; 屠传建; 钱辉; 骆明; 顾志伟; 张建民

    2014-01-01

    Objective To study the clinical significance of early changes in cerebral oxygen and glucose metabolism in patients with cerebral hemorrhage and with Glasgow coma score (GCS) of 5-8 caused by acute hypertension in order to find relationship between those changes and prognosis.Methods From January 1,2011 to June 30,2012,a cohort of 43 patients with cerebral hemorrhage caused by acute hypertension were enrolled for retrospective study.Radial artery and internal jugular vein were separately cannulated retrogradely for collecting blood for blood gas analysis and blood glucose tests carried out 24 hours after the onset of the cerebral hemorrhage and then every 6-8 hours and as any major changes in physical signs of patients occurred.And this monitoring kept for consecutive 3 days.The data of these laboratory findings were analyzed and calculated to determine internal jugular vein oxygen saturation (SjVO2),cerebral oxygen utilization rate (CEO2),cerebral arterio-venous oxygen difference (AVDO2),arterio-venous blood glucose difference (V-Aglu),arterio-venous lactic acid difference (V-Alac) and absolute value of carbon dioxide pressure difference between jugular vein and artery (V-APCO2).All patients met the diagnostic criteria of hypertensive cerebral hemorrhage revised by the 4th National Academic Conference on cerebrovascular disease in 1995 requiring diagnosis confirmed by brain CT,admitted within 24 hours of onset,Glasgow coma score (GCS) 5-8 and a history of hypertension.Exclusion criteria were:cerebral hemorrhage caused by traumatic intracranial hematoma,spontaneous subarachnoid hemorrhage,arteriovenous malformation and Moyamoya disease,intracranial tumor apoplexy,cerebral bleeding derived from the disturbance of blood coagulation system,and cerebral hemorrhagic infarction.According to the short-term prognosis,the patients were divided into the death group and the survival group.Then the differences in biomarkers mentioned above between two groups were compared to

  10. Voxel-based analysis of cerebral glucose metabolism in AD and non-AD degenerative dementia using statistical parametric mapping

    International Nuclear Information System (INIS)

    Objective: It is know that Alzheimer's disease (AD) and non-AD degenerative dementia have some clinical features in common. The aim of this study was to investigate the specific patterns of regional, cerebral glucose metabolism of AD and non-AD degenerative dementia patients, using a voxel-based 18F-fluorodeoxyglucose (FDG) PET study. Methods: Twenty-three AD patients and 24 non-AD degenerative dementia patients including 9 Parkinson's disease with dementia(PDD), 7 frontal-temporal dementia (FTD), 8 dementia of Lewy bodies (DLB) patients, and 40 normal controls (NC)were included in the study. To evaluate the relative cerebral metabolic rate of glucose (rCMRglc), 18F-FDG PET imaging was performed in all subjects. Subsequently, statistical comparison of PET data with NC was performed using statistical parametric mapping (SPM). Results: The AD-associated FDG imaging pattern typically presented as focal cortical hypometabolism in bilateral parietotemporal association cortes and(or) frontal lobe and the posterior cingulate gyms. As compared with the comparative NC, FTD group demonstrated significant regional reductions in rCMRglc in bilateral frontal, parietal lobes, the cingulate gyri, insulae, left precuneus, and the subcortical structures (including right putamen, right medial dorsal nucleus and ventral anterior nucleus). The PDD group showed regional reductions in rCMRglc in bilateral frontal cortexes, parietotemporal association cortexes, and the subcortical structures (including left caudate, right putamen, the dorsomedial thalamus, lateral posterior nucleus, and pulvinar). By the voxel-by-voxel comparison between the DLB group and NC group, regional reductions in rCMRglc included bilateral occipital cortexes, precuneuses, frontal and parietal lobes, left anterior cingulate gyms, right superior temporal cortex, and the subcortical structures including putamen, caudate, lateral posterior nucleus, and pulvinar. Conclusions: The rCMRglc was found to be different

  11. ''Ecstasy''-induced changes of cerebral glucose metabolism and their correlation to acute psychopathology. A 18-FDG PET study

    International Nuclear Information System (INIS)

    The aim of this study was to determine the acute effects of the 'Ecstasy' analogue MDE (3,4-methylene dioxyethamphetamine) on cerebral glucose metabolism (rMRGlu) of healthy volunteers and to correlate neurometabolism with acute psychopathology. In a radomized double-blind trial, 15 healthy volunteers without a history of drug abuse were examined with fluorine-18-deoxyglucose (18FDG) positron emission tomography (PET) 110-120 min after oral administration of 2 mg/kg MDE (n=7) or placebo (n=8). Two minutes prior to radiotracer injection, constant cognitive stimulation was started and maintained for 32 min using a word repetition paradigm to ensure constant and comparable mental conditions during cerebral glucose uptake. Individual brain anatomy was represented using T1-weighted 3D flash magnetic resonance imaging (MRI), followed by manual regionalization into 108 regions of interest and PET/MRI overlay. After absolute quantification of rMR-Glu and normalization to global metabolism, normalized rMRGlu under MDE was compared to placebo using the Mann-Whitney U-test. Acute psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS) and rMRGlu was correlated to PANSS scores according to Spearman. MDE subjects showed significantly decreased rMRGlu in the bilateral frontal cortex: left frontal posterior (-7.1%, P<0.05) and right prefrontal superior (-4.6%, P<0.05). On the other hand, rMR-Glu was significantly increased in the bilateral cerebellum (right: +10.1%, P<0.05; left: +7.6%, P<0.05) and in the right putamen (+6.2%, P<0.05). There were positive correlations between rMRGlu in the middle right cingulate and grandiosity (r=0.87; P<0.05), both the right amygadala (r=0.90, P<0.01) and the left posterior cingulate (r=0.90, P<0.01) to difficulties in abstract thinking, and the right frontal inferior (r=0.85, P<0.05), right anterior cingulate (r=0.93, P<0.01), and left anterior cingulate (r=0.85, P<0.05) to attentional deficits. A negative

  12. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose.

    Science.gov (United States)

    Sasaki, Miho; Teramoto, Haruhiko; Inui, Masayuki; Yukawa, Hideaki

    2011-03-01

    Here, focus is on Corynebacterium glutamicum mannose metabolic genes with the aim to improve this industrially important microorganism's ability to ferment mannose present in mixed sugar substrates. cgR_0857 encodes C. glutamicum's protein with 36% amino acid sequence identity to mannose 6-phosphate isomerase encoded by manA of Escherichia coli. Its deletion mutant did not grow on mannose and exhibited noticeably reduced growth on glucose as sole carbon sources. In effect, C. glutamicum manA is not only essential for growth on mannose but also important in glucose metabolism. A double deletion mutant of genes encoding glucose and fructose permeases (ptsG and ptsF, respectively) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was not able to grow on mannose unlike the respective single deletion mutants with mannose utilization ability. A mutant deficient in ptsH, a general PTS gene, did not utilize mannose. These indicate that the glucose-PTS and fructose-PTS are responsible for mannose uptake in C. glutamicum. When cultured with a glucose and mannose mixture, mannose utilization of manA-overexpressing strain CRM1 was significantly higher than that of its wild-type counterpart, but with a strong preference for glucose. ptsF-overexpressing strain CRM2 co-utilized mannose and glucose, but at a total sugar consumption rate much lower than that of the wild-type strain and CRM1. Strain CRM3 overexpressing both manA and ptsF efficiently co-utilized mannose and glucose. Under oxygen-deprived conditions, high volumetric productivity of organic acids concomitant with the simultaneous consumption of the mixed sugars was achieved by the densely packed growth-arrested CRM3 cells.

  13. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats.

    Science.gov (United States)

    Awwad, Hibah O; Gonzalez, Larry P; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J; Awasthi, Vibhudutta; Standifer, Kelly M

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using (18)F-fluorodeoxyglucose ((18)F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5-6). PMID:26136722

  14. Cerebral perfusion and glucose metabolism in Alzheimer's disease and frontotemporal dementia: two sides of the same coin?

    International Nuclear Information System (INIS)

    Alzheimer's disease (AD) and frontotemporal (FTD) dementia can be differentiated using [18F]-2-deoxy-2-fluoro-D-glucose (FDG)-PET. Since cerebral blood flow (CBF) is related to glucose metabolism, our aim was to investigate the extent of overlap of abnormalities between AD and FTD. Normalized FDG-PET and arterial spin labelling (ASL-MRI)-derived CBF was measured in 18 AD patients (age, 64 ± 8), 12 FTD patients (age, 61 ± 8), and 10 controls (age, 56 ± 10). Voxel-wise comparisons, region-of-interest (ROI), correlation, and ROC curve analyses were performed. Voxel-wise comparisons showed decreased CBF and FDG uptake in AD compared with controls and FTD in both precuneus and inferior parietal lobule (IPL). Compared with controls and AD, FTD patients showed both hypometabolism and hypoperfusion in medial prefrontal cortex (mPFC). ASL and FDG were related in precuneus (r = 0.62, p < 0.001), IPL (r = 0.61, p < 0.001), and mPFC across groups (r = 0.74, p < 001). ROC analyses indicated comparable performance of perfusion and metabolism in the precuneus (AUC, 0.72 and 0.74), IPL (0.85 and 0.94) for AD relative to FTD, and in the mPFC in FTD relative to AD (both 0.68). Similar patterns of hypoperfusion and hypometabolism were observed in regions typically associated with AD and FTD, suggesting that ASL-MRI provides information comparable to FDG-PET. (orig.)

  15. Effect of postprandial hyperglycaemia in non-invasive measurement of cerebral metabolic rate of glucose in non-diabetic subjects

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Tatsuro; Itoh, Harumi [Department of Radiology, Fukui Medical University, Matsuoka (Japan); Sadato, Norihiro; Nishizawa, Sadahiko; Yonekura, Yoshiharu [Biomedical Imaging Research Center, Fukui Medical University (Japan)

    2002-02-01

    The aim of this study was to determine the effect of postprandial hyperglycaemia (HG) on the non-invasive measurement of cerebral metabolic rate of glucose (CMRGlc). Five patients who had a meal within an hour before a fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) examination were recruited in this study. They underwent intermittent arterial blood sampling (measured input function), and, based on this sampling, CMRGlc was calculated using an autoradiographic method (CMRGlc{sub real}). Simulated input functions were generated based on standardised input function, body surface area and net injected dose of FDG, and simulated CMRGlc (CMRGlc{sub sim}) was also calculated. Percent error of the area under the curve (AUC) between measured (AUC{sub real}) and simulated input function (AUC{sub IFsim}) and percent error between CMRGlc{sub real} and CMRGlc{sub sim} were calculated. These values were compared with those obtained from a previous study conducted under fasting conditions (F). The serum glucose level in the HG group was significantly higher than that in the F group (165{+-}69 vs 100{+-}9 mg/dl, P=0.0007). Percent errors of AUC and CMRGlc in grey matter and white matter in HG were significantly higher than those in F (12.9%{+-}1.3% vs 3.5%{+-}2.2% in AUC, P=0.0015; 18.2%{+-}2.2% vs 2.9%{+-}1.9% in CMRGlc in grey matter, P=0.0028; 24.0%{+-}4.6% vs 3.4%{+-}2.2% in CMRGlc in white matter, P=0.0028). It is concluded that a non-invasive method of measuring CMRGlc should be applied only in non-diabetic subjects under fasting conditions. (orig.)

  16. Cerebral perfusion and glucose metabolism in Alzheimer's disease and frontotemporal dementia: two sides of the same coin?

    Energy Technology Data Exchange (ETDEWEB)

    Verfaillie, Sander C.J.; Adriaanse, Sofie M.; Binnewijzend, Maja A.A.; Benedictus, Marije R.; Ossenkoppele, Rik [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); VU University Medical Centre, Alzheimer Centre and Department of Neurology, P.O. Box 7057, Amsterdam (Netherlands); Wattjes, Mike P.; Lammertsma, Adriaan A.; Boellaard, Ronald; Berckel, Bart N.M. van; Barkhof, Frederik [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Pijnenburg, Yolande A.L.; Scheltens, Philip [VU University Medical Centre, Alzheimer Centre and Department of Neurology, P.O. Box 7057, Amsterdam (Netherlands); Flier, Wiesje M. van der [VU University Medical Centre, Alzheimer Centre and Department of Neurology, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Centre, Department of Epidemiology and Biostatistics, Amsterdam (Netherlands); Kuijer, Joost P.A. [VU University Medical Centre, Department of Physics and Medical Technology, Amsterdam (Netherlands)

    2015-10-15

    Alzheimer's disease (AD) and frontotemporal (FTD) dementia can be differentiated using [{sup 18}F]-2-deoxy-2-fluoro-D-glucose (FDG)-PET. Since cerebral blood flow (CBF) is related to glucose metabolism, our aim was to investigate the extent of overlap of abnormalities between AD and FTD. Normalized FDG-PET and arterial spin labelling (ASL-MRI)-derived CBF was measured in 18 AD patients (age, 64 ± 8), 12 FTD patients (age, 61 ± 8), and 10 controls (age, 56 ± 10). Voxel-wise comparisons, region-of-interest (ROI), correlation, and ROC curve analyses were performed. Voxel-wise comparisons showed decreased CBF and FDG uptake in AD compared with controls and FTD in both precuneus and inferior parietal lobule (IPL). Compared with controls and AD, FTD patients showed both hypometabolism and hypoperfusion in medial prefrontal cortex (mPFC). ASL and FDG were related in precuneus (r = 0.62, p < 0.001), IPL (r = 0.61, p < 0.001), and mPFC across groups (r = 0.74, p < 001). ROC analyses indicated comparable performance of perfusion and metabolism in the precuneus (AUC, 0.72 and 0.74), IPL (0.85 and 0.94) for AD relative to FTD, and in the mPFC in FTD relative to AD (both 0.68). Similar patterns of hypoperfusion and hypometabolism were observed in regions typically associated with AD and FTD, suggesting that ASL-MRI provides information comparable to FDG-PET. (orig.)

  17. Compartmentalised cerebral metabolism of [1,6-13C]glucose determined by in vivo 13C NMR spectroscopy at 14.1 T

    Directory of Open Access Journals (Sweden)

    João M.N. Duarte

    2011-06-01

    Full Text Available Cerebral metabolism is compartmentalised between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by 13C NMR spectroscopy upon infusion of 13C-enriched compounds, especially glucose. Rats under light α-chloralose anaesthesia were infused with [1,6-13C]glucose and 13C enrichment in the brain metabolites was measured by 13C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining 13C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%. We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (VTCA and neurotransmission rate (VNT were 0.45±0.01 and 0.11±0.01 µmol/g/min, respectively. Glial VTCA was found to be for 38±3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (VPC was 0.069±0.004 µmol/g/min, i.e. 25±1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.

  18. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: Role of white adipose tissue

    International Nuclear Information System (INIS)

    In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by [3-3H]glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia. In obese compared with lean rats, tissue glucose uptake was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart in proximal intestine, and in total muscular mass of limbs. The data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake

  19. A metabolic trade-off between phosphate and glucose utilization in Escherichia coli.

    Science.gov (United States)

    Behrends, Volker; Maharjan, Ram P; Ryall, Ben; Feng, Lu; Liu, Bin; Wang, Lei; Bundy, Jacob G; Ferenci, Thomas

    2014-11-01

    Getting the most out of available nutrients is a key challenge that all organisms face. Little is known about how they optimize and balance the simultaneous utilization of multiple elemental resources. We investigated the effects of long-term phosphate limitation on carbon metabolism of the model organism Escherichia coli using chemostat cultures. We profiled metabolic changes in the growth medium over time and found evidence for an increase in fermentative metabolism despite the aerobic conditions. Using full-genome sequencing and competition experiments, we found that fitness under phosphate-limiting conditions was reproducibly increased by a mutation preventing flux through succinate in the tricarboxylic acid cycle. In contrast, these mutations reduced competitive ability under carbon limitation, and thus reveal a conflicting metabolic benefit in the role of the TCA cycle in environments limited by inorganic phosphate and glucose.

  20. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9{+-}4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7{+-} 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder.

  1. Utility of combined hip abduction angle for hip surveillance in children with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Akshay Divecha

    2011-01-01

    Full Text Available Background: Spontaneous hip lateralization complicates the management of non-ambulatory children with cerebral palsy (CP. It can be diagnosed early using radiographs, but it involves standardization of positioning and exposure to radiation. Hence, the aim of this study was to assess the utility of Combined hip abduction angle (CHAA in the clinical setting to identify those children with CP who were at greater risk to develop spontaneous progressive hip lateralization. Materials and Methods: One hundred and three children (206 hips with CP formed our study population. There were 48 boys and 55 girls aged 2-11 years (mean 5.03 years. 61 children were Gross Motor Function Classification System (GMFCS level 5, while 42 were GMFCS level 4. Clinical measurements of CHAA were statistically correlated with radiographic measurements of Reimer′s migration percentage (MP for bivariate associations using c2 and t tests. Results: CHAA is evaluated against MP which is considered as a reliable measure of hip subluxation. Thus, for CHAA, sensitivity was 74.07% and specificity was 67.35%. False-positive rate was 32.65% and false-negative rate was 25.93%. Conclusions: Our study shows that correlation exists between CHAA and MP, which has been proved to be useful for hip screening in CP children at risk of hip dislocation. CHAA is an easy, rapid, cost-effective clinical test which can be performed by paraclinical health practitioners (physiotherapists and orthopedic surgeons.

  2. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, Kwang Suk [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea); Seoul National University College of Medicine, Department of Biomedical Engineering, Seoul (Korea); Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul [Seoul National University College of Medicine, Department of Otolaryngology, Head and Neck Surgery, Seoul (Korea); Lee, Dong Soo; Jeong, Jae Min [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea)

    2005-06-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1-{sup 14}C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in

  3. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Xia Tian

    2012-06-01

    Full Text Available Abstract Background The efficient microbial utilization of lignocellulosic hydrolysates has remained challenging because this material is composed of multiple sugars and also contains growth inhibitors such as acetic acid (acetate. Using an engineered consortium of strains derived from Escherichia coli C and a synthetic medium containing acetate, glucose, xylose and arabinose, we report on both the microbial removal of acetate and the subsequent simultaneous utilization of the sugars. Results In a first stage, a strain unable to utilize glucose, xylose and arabinose (ALS1392, strain E. coli C ptsG manZ glk crr xylA araA removed 3 g/L acetate within 30 hours. In a subsequent second stage, three E. coli strains (ALS1370, ALS1371, ALS1391, which are each engineered to utilize only one sugar, together simultaneously utilized glucose, xylose and arabinose. The effect of non-metabolizable sugars on the metabolism of the target sugar was minimal. Additionally the deletions necessary to prevent the consumption of one sugar only minimally affected the consumption of a desired sugar. For example, the crr deletion necessary to prevent glucose consumption reduced xylose and arabinose utilization by less than 15% compared to the wild-type. Similarly, the araA deletion used to exclude arabinose consumption did not affect xylose- and glucose-consumption. Conclusions Despite the modest reduction in the overall rate of sugar consumption due to the various deletions that were required to generate the consortium of strains, the approach constitutes a significant improvement in any single-organism approach to utilize sugars found in lignocellulosic hydrolysate in the presence of acetate.

  4. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization

    Directory of Open Access Journals (Sweden)

    Klimacek Mario

    2010-03-01

    Full Text Available Abstract Background In spite of the substantial metabolic engineering effort previously devoted to the development of Saccharomyces cerevisiae strains capable of fermenting both the hexose and pentose sugars present in lignocellulose hydrolysates, the productivity of reported strains for conversion of the naturally most abundant pentose, xylose, is still a major issue of process efficiency. Protein engineering for targeted alteration of the nicotinamide cofactor specificity of enzymes catalyzing the first steps in the metabolic pathway for xylose was a successful approach of reducing xylitol by-product formation and improving ethanol yield from xylose. The previously reported yeast strain BP10001, which expresses heterologous xylose reductase from Candida tenuis in mutated (NADH-preferring form, stands for a series of other yeast strains designed with similar rational. Using 20 g/L xylose as sole source of carbon, BP10001 displayed a low specific uptake rate qxylose (g xylose/g dry cell weight/h of 0.08. The study presented herein was performed with the aim of analysing (external factors that limit qxylose of BP10001 under xylose-only and mixed glucose-xylose substrate conditions. We also carried out a comprehensive investigation on the currently unclear role of coenzyme utilization, NADPH compared to NADH, for xylose reduction during co-fermentation of glucose and xylose. Results BP10001 and BP000, expressing C. tenuis xylose reductase in NADPH-preferring wild-type form, were used. Glucose and xylose (each at 10 g/L were converted sequentially, the corresponding qsubstrate values being similar for each strain (glucose: 3.0; xylose: 0.05. The distribution of fermentation products from glucose was identical for both strains whereas when using xylose, BP10001 showed enhanced ethanol yield (BP10001 0.30 g/g; BP000 0.23 g/g and decreased yields of xylitol (BP10001 0.26 g/g; BP000 0.36 g/g and glycerol (BP10001 0.023 g/g; BP000 0.072 g/g as compared

  5. Reduction in muscle glycogen and protein utilization with glucose feeding during exercise.

    NARCIS (Netherlands)

    Hamont, D. van; Harvey, C.R.; Massicotte, D.; Frew, R.; Peronnet, F.; Rehrer, N.J.

    2005-01-01

    Effects of feeding glucose on substrate metabolism during cycling were studied. Trained (60.0 +/- 1.9 mL x kg(-1) x min(-1)) males (N = 5) completed two 75 min, 80% VO(2max) trials: 125 g 13(C)-glucose CHO); 13(C)-glucose tracer, 10 g (C). During warm-up (30 min 30% VO2max) 2 . 2 g 13(C)-glucose was

  6. 脑梗死与糖代谢异常相关性研究%The Correlation Study of Cerebral Infarction and Abnormal Glucose Metabolism

    Institute of Scientific and Technical Information of China (English)

    赵德成; 袁建喜

    2014-01-01

    目的:观察不同损害程度脑梗死患者的血糖水平,分析其糖代谢异常情况,探讨脑梗死与糖代谢异常的关系,为脑梗死的预防、诊断、治疗提供依据。方法:选取2010年1月-2013年8月入住本院脑病科的108例急性脑梗死患者,根据梗死范围将其分为轻度组41例、中度组40例、重度组27例,通过检测空腹血糖(FPG)、餐后2 h血糖(PG)、糖化血红蛋白(HbA1c),观察患者的糖代谢情况。结果:糖调节受损、糖尿病与正常血糖患者比较,中度及重度组脑梗死比率明显升高;糖尿病患者脑梗死中度组、重度组比率较糖调节受损患者明显升高;脑梗死中度组、重度组的HbA1c、FPG、2 h PG水平均明显高于脑梗死轻度组,重度组的HbA1c、FPG、2 h PG水平明显高于中度组,差异均有统计学意义(P<0.05)。结论:糖代谢异常与脑梗死的发生及损害程度明显相关,良好的血糖控制有利于降低脑梗死的发生率,监测血糖并控制正常范围内可改善预后。%Objective:To observe blood glucose levels of cerebral infarction patients with different damage degrees, and to analyze the situation of abnormal glucose metabolism of patients with cerebral infarction,and to explore the relationship between cerebral infarction and glucose metabolism in order to provide the reference for prevention,diagnosis and treatment of cerebral infarction.Method:108 cases of acute cerebral infarction were selected from January 2010 to August 2013 admitted to our hospital department of encephalopathy,according to the scope of infarction cerebral infarction the damage degrees, they were divided into the mild degree for 41 cases,the moderate degree for 40 cases and the severe degree for 27 cases,and the situation of glucose metabolism in patients were observed by detecting fasting plasma glucose(FPG),blood sugar 2 hours after meal(PG)and glycosylated hemoglobin(HbA1c

  7. Cerebral Glucose Metabolism is Associated with Verbal but not Visual Memory Performance in Community-Dwelling Older Adults.

    Science.gov (United States)

    Gardener, Samantha L; Sohrabi, Hamid R; Shen, Kai-Kai; Rainey-Smith, Stephanie R; Weinborn, Michael; Bates, Kristyn A; Shah, Tejal; Foster, Jonathan K; Lenzo, Nat; Salvado, Olivier; Laske, Christoph; Laws, Simon M; Taddei, Kevin; Verdile, Giuseppe; Martins, Ralph N

    2016-03-31

    Increasing evidence suggests that Alzheimer's disease (AD) sufferers show region-specific reductions in cerebral glucose metabolism, as measured by [18F]-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET). We investigated preclinical disease stage by cross-sectionally examining the association between global cognition, verbal and visual memory, and 18F-FDG PET standardized uptake value ratio (SUVR) in 43 healthy control individuals, subsequently focusing on differences between subjective memory complainers and non-memory complainers. The 18F-FDG PET regions of interest investigated include the hippocampus, amygdala, posterior cingulate, superior parietal, entorhinal cortices, frontal cortex, temporal cortex, and inferior parietal region. In the cohort as a whole, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in both the left hippocampus and right amygdala. There were no associations observed between global cognition, delayed recall in logical memory, or visual reproduction and 18F-FDG PET SUVR. Following stratification of the cohort into subjective memory complainers and non-complainers, verbal logical memory immediate recall was positively associated with 18F-FDG PET SUVR in the right amygdala in those with subjective memory complaints. There were no significant associations observed in non-memory complainers between 18F-FDG PET SUVR in regions of interest and cognitive performance. We observed subjective memory complaint-specific associations between 18F-FDG PET SUVR and immediate verbal memory performance in our cohort, however found no associations between delayed recall of verbal memory performance or visual memory performance. It is here argued that the neural mechanisms underlying verbal and visual memory performance may in fact differ in their pathways, and the characteristic reduction of 18F-FDG PET SUVR observed in this and previous studies likely reflects the pathophysiological changes in specific

  8. Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer’s disease

    Science.gov (United States)

    Willette, Auriel A.; Bendlin, Barbara B.; Starks, Erika J.; Birdsill, Alex C.; Johnson, Sterling C.; Christian, Bradley T.; Okonkwo, Ozioma C.; La Rue, Asenath; Hermann, Bruce P.; Koscik, Rebecca L.; Jonaitis, Erin M.; Sager, Mark A.; Asthana, Sanjay

    2015-01-01

    related to worse immediate memory (β=0.317, p<.001) and delayed memory (β=0.305, p<.001) performance. Conclusions Our results show that IR, a prevalent and increasingly common condition in developed countries, is associated with significantly lower regional cerebral glucose metabolism, which in turn may predict worse memory performance. Midlife may be a critical period for initiating treatments to lower peripheral IR in order to maintain neural metabolism and cognitive function. PMID:26214150

  9. Synergistic effect of calcium and zinc on glucose/xylose utilization and butanol tolerance of Clostridium acetobutylicum.

    Science.gov (United States)

    Wu, Youduo; Xue, Chuang; Chen, Lijie; Yuan, Wenjie; Bai, Fengwu

    2016-03-01

    Biobutanol outperforms bioethanol as an advanced biofuel, but is not economically competitive in terms of its titer, yield and productivity associated with feedstocks and energy cost. In this work, the synergistic effect of calcium and zinc was investigated in the acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum using glucose, xylose and glucose/xylose mixtures as carbon source(s). Significant improvements associated with enhanced glucose/xylose utilization, cell growth, acids re-assimilation and butanol biosynthesis were achieved. Especially, the maximum butanol and ABE production of 16.1 and 25.9 g L(-1) were achieved from 69.3 g L(-1) glucose with butanol/ABE productivities of 0.40 and 0.65 g L(-1) h(-1) compared to those of 11.7 and 19.4 g/L with 0.18 and 0.30 g L(-1) h(-1) obtained in the control respectively without any supplement. More importantly, zinc was significantly involved in the butanol tolerance based on the improved xylose utilization under various butanol-shock conditions (2, 4, 6, 8 and 10 g L(-1) butanol). Under the same conditions, calcium and zinc co-supplementation led to the best xylose utilization and butanol production. These results suggested that calcium and zinc could play synergistic roles improving ABE fermentation by C. acetobutylicum. PMID:26850441

  10. Lipid production through simultaneous utilization of glucose, xylose, and L-arabinose by Pseudozyma hubeiensis: a comparative screening study.

    Science.gov (United States)

    Tanimura, Ayumi; Takashima, Masako; Sugita, Takashi; Endoh, Rikiya; Ohkuma, Moriya; Kishino, Shigenobu; Ogawa, Jun; Shima, Jun

    2016-12-01

    Co-fermentation of glucose, xylose and L-arabinose from lignocellulosic biomass by an oleaginous yeast is anticipated as a method for biodiesel production. However, most yeasts ferment glucose first before consuming pentoses, due to glucose repression. This preferential utilization results in delayed fermentation time and lower productivity. Therefore, co-fermentation of lignocellulosic sugars could achieve cost-effective conversion of lignocellulosic biomass to microbial lipid. Comprehensive screening of oleaginous yeasts capable of simultaneously utilizing glucose, xylose, and L-arabinose was performed by measuring the concentration of sugars remaining in the medium and of lipids accumulated in the cells. We found that of 1189 strains tested, 12 had the ability to co-ferment the sugars. The basidiomycete yeast Pseudozyma hubeiensis IPM1-10, which had the highest sugars consumption rate of 94.1 %, was selected by culturing in a batch culture with the mixed-sugar medium. The strain showed (1) simultaneous utilization of all three sugars, and (2) high lipid-accumulating ability. This study suggests that P. hubeiensis IPM1-10 is a promising candidate for second-generation biodiesel production from hydrolysate of lignocellulosic biomass. PMID:27566647

  11. Effect of ginseng pretreatment on cerebral glucose metabolism in ischaemic rats using animal positron emission tomography (PET) and [18F]-FDG

    International Nuclear Information System (INIS)

    To investigate the effect of ginseng on damaged brain activity, we evaluated the cerebral metabolic rate of glucose (CMRglc) as a functional index in post-ischaemic rats and compared the results with those obtained after the administration of a ginseng extract. CMRglc was measured using high resolution animal positron emission tomography with 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG). The rats subjected to a 30-min occlusion showed a significant reduction of k3, the rate constant for phosphorylation of 18F-FDG by hexokinase, compared with the normal value. The ginseng pretreatment prevented the reduction in k3 and CMRglc caused by ischaemia. Although further investigation is needed to elucidate the mechanism of action, ginseng may be useful for prevention and treatment of ischaemia. © 1997 John Wiley & Sons, Ltd

  12. Voxel based statistical analysis method for microPET studies to assess the cerebral glucose metabolism in cat deafness model: comparison to ROI based method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su; Lee, Jae Sung; Park, Min Hyun; Lee, Jong Jin; Kang, Hye Jin; Lee, Hyo Jeong; Oh, Seung Ha; Kim, Chong Sun; Jung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of)

    2005-07-01

    Imaging research on the brain of sensory-deprived cats using small animal PET scanner has gained interest since the abundant information about the sensory system of ths animal is available and close examination of the brain is possible due to larger size of its brain than mouse or rat. In this study, we have established the procedures for 3D voxel-based statistical analysis (SPM) of FDG PET image of cat brain, and confirmed using ROI based-method. FDG PET scans of 4 normal and 4 deaf cats were acquired for 30 minutes using microPET R4 scanner. Only the brain cortices were extracted using a masking and threshold method to facilitate spatial normalization. After spatial normalization and smoothing, 3D voxel-wise and ROI based t-test were performed to identify the regions with significant different FDG uptake between the normal and deaf cats. In ROI analysis, 26 ROIs were drawn on both hemispheres, and regional mean pixel value in each ROI was normalized to the global mean of the brain. Cat brains were spatially normalized well onto the target brain due to the removal of background activity. When cerebral glucose metabolism of deaf cats were compared to the normal controls after removing the effects of the global count, the glucose metabolism in the auditory cortex, head of caudate nucleus, and thalamus in both hemispheres of the deaf cats was significantly lower than that of the controls (P<0.01). No area showed a significantly increased metabolism in the deaf cats even in higher significance level (P<0.05). ROI analysis also showed significant reduction of glucose metabolism in the same region. This study established and confirmed a method for voxel-based analysis of animal PET data of cat brain, which showed high localization accuracy and specificity and was useful for examining the cerebral glucose metabolism in a cat cortical deafness model.

  13. A proposed method for the determination of cerebral regional intermediary glucose metabolism in humans in vivo using specifically labeled 11C-glucose and positron emission transverse tomography (PETT). I. An animal model with 14C-glucose and rat brain autoradiography

    International Nuclear Information System (INIS)

    Based upon data obtained with our arterio-venous technique for the determination of cerebral metabolism in humans in vivo we have proposed a method for the determination of cerebral regional intermediary glucose metabolism in humans in vivo using specifically labeled 11C-glucose and positron emission transverse tomography (PETT). In it we would give the subject successive intravenous injections of [3,4-11C] glucose, [2,5-11C] glucose and [1-11C] glucose. There would be a 30 min period of continuous PETT measurements following each injection and a 2 hr interval after the first and second injections. The data would be used with suitable equations and algorithms to estimate for each specific region of the subject's brain the dynamics of the Embden-Meyerhof-Parnas (EMP) and the tricarboxylic acid cycle (TCA) metabolic pathways and the incorporation of glucose carbons into lactate, and the extent of dilution of glucose carbons into lactate, and the extent of dilution of glucose carbons in traversing the TCA with their subsequent incorporation into other carbon pools of the brain (ie, glutamate, glutamine, GABA, alanine). Using 14C as a model for 11C and autoradiographs made with rat brain slices, we have produced an animal model to demonstrate the feasibility of our proposed method. The resulting autoradiographs have provided evidence of the validity of the predictions made from our arterio-venous data. The model was employed to show the selective reductions in the rates of incorporation of specific carbon atoms of glucose into regions of the rat brain and evidence of altered metabolic pathways following a single electroconvulsive shock (ECS) and after a series of nine ECS

  14. Clinical utility of multislice computed tomographic angiography for detection of cerebral vasospasm in acute subarachnoid hemorrhage.

    Science.gov (United States)

    Joo, S P; Kim, T S; Kim, Y S; Moon, K S; Lee, J K; Kim, J H; Kim, S H

    2006-10-01

    Digital subtraction angiography (DSA) has been used as the standard method for detecting cerebral vasospasm after subarachnoid hemorrhage (SAH). Multislice computed tomographic angiography (CTA) is a relatively recent method used for evaluating the vasculature of the intracranial arteries. The purpose of this study was to compare multislice CTA and DSA for the detection and quantification of cerebral vasospasm after SAH, and to analyze the usefulness of multislice CTA. Eight patients with SAH underwent initial CTA with DSA within 72 hours after the onset of symptoms and follow-up multislice CTA and DSA 8 to 48 days after SAH. Five arterial locations were established in the A1 and A2 segments of the anterior cerebral artery, the M1 and M2 segments of the middle cerebral artery and the posterior cerebral artery (PCA) on both multislice CTA and DSA images. Vasospasm was classified as none, mild (up to 30% reduction in luminal diameter), moderate (31-60% reduction), and marked (at least 60% reduction) using the scale of Schneck and Kricheff. The multislice CT system used the following parameters: 1.25 mm collimation and 3.75 pitch with a 4-channel system. The degree of vasospasm revealed by the multislice CTA was significantly correlated with the degree of vasospasm revealed by DSA. In general, most discrepancies between CTA and DSA were in the detection of mild and moderate vasospasm. We found that the consistency between multislice CTA and DSA was greater for mild (100%, n=3) or moderate (100%, n=3) vasospasm than none (n=1) or marked vasospasm (n=1). However, it was unclear whether multislice CTA was more specific for a proximal location (A1, M1, PCA) or distal location (A2, M2) for evaluation of cerebral arteries. Multislice CTA can detect angiographic vasospasm after SAH with an accuracy similar to that of DSA. Multislice CTA is highly sensitive, specific and accurate in detecting mild and moderate cerebral vasospasm. It is less accurate for detecting no vasospasm

  15. Measurement of regional cerebral metabolic rate for glucose in the human subject with (F-18)-2-deoxy-2-fluoro-d-glucose and emission computed tomography: validation of the method

    International Nuclear Information System (INIS)

    Tracer techniques and models of in vitro quantitative autoradiography and tissue counting for the measure of regional metabolic rates (rMR) are combined with emission computed tomography (ECT). This approach, Physiologic Tomography (PT), provides atraumatic and analytical measurements of rMR. PT is exemplified with the regional measurement of the cerebral metabolic rate for glucose (CMRGlu) in man with (18F)-2-deoxy-2-fluoro-D-glucose (FDG) and positron ECT. Our model incorporates a k4* mediated hydrolysis of FDG-6-PO4 to FDG which then competes with phosphorylation (k3*) of FDG back to FDG-6-PO4 and reverse transport (k2*) back to blood. Although small, k4* is found to be significant. The ECAT positron tomograph was used to measure the rate constants (k1*→k4*), lumped constant (LC), stability, and reproducibility of the model in man. Since these parameters have not been measured for FDG in any species, comparisons are made to values for DG in rat and monkey. Compartmental concentrations of FDG and FDG-6-PO4 were determined and show that cerebral FDG-6-PO4 steadily accumulates for about 100 mins, plateaus and then slowly decreases due to hydrolysis. Cerebral blood FDG concentration was determined to be a minor contribution to tissue activity after 10 min. Regional CMRGlu measurements are reproducible to +- 5.5% over 5 hrs. PT allows the in vivo study ofregional biochemistry and physiology in normal and pathophysiologic states in man with a unique and fundamental capability

  16. Interleukin-7 mediates glucose utilization in lymphocytes through transcriptional regulation of the hexokinase II gene

    OpenAIRE

    Chehtane, Mounir; Khaled, Annette R.

    2010-01-01

    The cytokine interleukin-7 (IL-7) has essential growth activities that maintain the homeostatic balance of the immune system. Little is known of the mechanism by which IL-7 signaling regulates metabolic activity in support of its vital function in lymphocytes. We observed that IL-7 deprivation caused a rapid decline in the metabolism of glucose that was attributable to loss of intracellular glucose retention. To identify the transducer of the IL-7 metabolic signal, we examined the expression ...

  17. Glucose Transporter 8 (GLUT8) Regulates Enterocyte Fructose Transport and Global Mammalian Fructose Utilization

    OpenAIRE

    DeBosch, Brian J.; Chi, Maggie; Moley, Kelle H.

    2012-01-01

    Enterocyte fructose absorption is a tightly regulated process that precedes the deleterious effects of excess dietary fructose in mammals. Glucose transporter (GLUT)8 is a glucose/fructose transporter previously shown to be expressed in murine intestine. The in vivo function of GLUT8, however, remains unclear. Here, we demonstrate enhanced fructose-induced fructose transport in both in vitro and in vivo models of enterocyte GLUT8 deficiency. Fructose exposure stimulated [14C]-fructose uptake ...

  18. Change in hexose distribution volume and fractional utilization of ( sup 18 F)-2-deoxy-2-fluoro-D-glucose in brain during acute hypoglycemia in humans

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, E.T.; Cooper, M.; Chen, C.T.; Given, B.D.; Polonsky, K.S. (Univ. of Chicago, IL (USA))

    1990-02-01

    We used positron emission tomography (PET) to study the effects of mild hypoglycemia on cerebral glucose uptake and metabolism. Nine healthy men were studied under basal saline-infusion conditions, and during euglycemic and hypoglycemic clamp studies. Insulin was infused at the same rate (1 mU.kg-1.min-1) in both clamp studies. In euglycemic clamp studies, glucose was infused at a rate sufficient to maintain the basal plasma glucose concentration, whereas in hypoglycemic clamp studies, the glucose infusion rate was reduced to maintain the plasma glucose at 3.1 mM. Each study lasted 3 h and included a 30-min baseline period and a subsequent 150-min period in which insulin or glucose was administered. Blood samples for measurement of insulin, glucose, cortisol, growth hormone, and glucagon were obtained at 20- to 30-min intervals. A bolus injection of 5-10 mCi (18F)-2-deoxy-2-fluoro-D-glucose (2-DFG) was administered 120 min after initiation of the study, and plasma radioactivity and dynamic PET scans were obtained at frequent intervals for the remaining 40-60 min of the study. Cerebral regions of interest were defined, and concentrations of radioactivity were calculated and used in the three-compartment model of 2-DFG distribution described by Sokoloff. Glucose levels were similar during saline-infusion (4.9 +/- 0.1 mM) and euglycemic clamp (4.8 +/- 0.1 mM) studies, whereas the desired degree of mild hypoglycemia was achieved during the hypoglycemic clamp study (3.1 +/- 0.1 mM, P less than 0.05). The insulin level during saline infusion was 41 +/- 7 pM.

  19. Change in hexose distribution volume and fractional utilization of [18F]-2-deoxy-2-fluoro-D-glucose in brain during acute hypoglycemia in humans

    International Nuclear Information System (INIS)

    We used positron emission tomography (PET) to study the effects of mild hypoglycemia on cerebral glucose uptake and metabolism. Nine healthy men were studied under basal saline-infusion conditions, and during euglycemic and hypoglycemic clamp studies. Insulin was infused at the same rate (1 mU.kg-1.min-1) in both clamp studies. In euglycemic clamp studies, glucose was infused at a rate sufficient to maintain the basal plasma glucose concentration, whereas in hypoglycemic clamp studies, the glucose infusion rate was reduced to maintain the plasma glucose at 3.1 mM. Each study lasted 3 h and included a 30-min baseline period and a subsequent 150-min period in which insulin or glucose was administered. Blood samples for measurement of insulin, glucose, cortisol, growth hormone, and glucagon were obtained at 20- to 30-min intervals. A bolus injection of 5-10 mCi [18F]-2-deoxy-2-fluoro-D-glucose (2-DFG) was administered 120 min after initiation of the study, and plasma radioactivity and dynamic PET scans were obtained at frequent intervals for the remaining 40-60 min of the study. Cerebral regions of interest were defined, and concentrations of radioactivity were calculated and used in the three-compartment model of 2-DFG distribution described by Sokoloff. Glucose levels were similar during saline-infusion (4.9 +/- 0.1 mM) and euglycemic clamp (4.8 +/- 0.1 mM) studies, whereas the desired degree of mild hypoglycemia was achieved during the hypoglycemic clamp study (3.1 +/- 0.1 mM, P less than 0.05). The insulin level during saline infusion was 41 +/- 7 pM

  20. Strategies for improving the Voxel-based statistical analysis for animal PET studies: assessment of cerebral glucose metabolism in cat deafness model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Su; Lee, Jae Sung; Park, Min Hyun; Kang, Hye Jin; Im, Ki Chun; Moon, Dae Hyuk; Lim, Sang Moo; Oh, Seung Ha; Lee, Dong Soo [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    In imaging studies of the human brain, voxel-based statistical analysis method was widely used, since these methods were originally developed for the analysis of the human brain data, they are not optimal for the animal brain data. The aim of this study is to optimize the procedures for the 3D voxel-based statistical analysis of cat FDG PET brain images. A microPET Focus 120 scanner was used. Eight cats underwent FDG PET scans twice before and after inducing the deafness. Only the brain and adjacent regions were extracted from each data set by manual masking. Individual PET image at normal and deaf state was realigned to each other to remove the confounding effects by the different spatial normalization parameters on the results of statistical analyses. Distance between the sampling points on the reference image and kernel size of Gaussian filter applied to the images before estimating the realignment parameters were adjusted to 0.5 mm and 2 mm. Both data was then spatial normalized onto study-specific cat brain template. Spatially normalized PET data were smoothed and voxel-based paired t-test was performed. Cerebral glucose metabolism decreased significantly after the loss of hearing capability in parietal lobes, postcentral gyri, STG, MTG, lTG, and IC at both hemisphere and left SC (FDR corrected P < 0.05, k=50). Cerebral glucose metabolism in deaf cats was found to be significantly higher than in controls in the right cingulate (FDR corrected P < 0.05, k=50). The ROI analysis also showed significant reduction of glucose metabolism in the same areas as in the SPM analysis, except for some regions (P < 0.05). Method for the voxel-based analysis of cat brain PET data was optimized for analysis of cat brain PET. This result was also confirmed by ROI analysis. The results obtained demonstrated the high localization accuracy and specificity of the developed method, and were found to be useful for examining cerebral glucose metabolism in a cat cortical deafness model.

  1. Utility of hemoglobin A1c to screen for impaired glucose tolerance

    Directory of Open Access Journals (Sweden)

    Edy K. Ginting

    2014-07-01

    Full Text Available Background Childhood obesity is associated with an increased likelihood for having impaired glucose tolerance, dyslipidemia, and diabetes. Hemoglobin A1c (HbA1c has emerged as a recommended diagnostic tool for identifying diabetes and persons at risk for the disease. This recommendation was based on data in adults, showing the relationship between HbA1C and the future development of diabetes. However, studies in the pediatric population have been limited and no standard values of HbA1c levels in children have been established. Objective To evaluate HbA1c as a test for impaired glucose tolerance in obese children and adolescents and to identify the optimal HbA1c threshold level (cut off point. Methods We studied 65 obese and 4 overweight children (BMI ≥ +2 SD for age and gender aged 10-15 years in Palembang. All subjects underwent HbA1c and oral glucose tolerance tests. Results Nineteen out of 69 subjects (28% had impaired glucose tolerance. Based on the receiver operating characteristic curve, the optimal cut off point of HbA1c related to impaired glucose tolerance as diagnosed by oral glucose tolerance test was found to be 5.25%, with 63% sensitivity and 64% specificity, 40% positive predictive value, and 82% negative predictive value. The area under the receiver operating characteristic curve was 0.687 (95%CI 0.541–0.833; P < 0.001. Conclusion A HbA1c cut off value of 5.25% may be used as a screening tool to identify children and adolescents with impaired glucose tolerance. [Paediatr Indones. 2014;54:223-6.].

  2. Utility of Intraoperative Fetal Heart Rate Monitoring for Cerebral Arteriovenous Malformation Surgery during Pregnancy

    OpenAIRE

    FUKUDA, Kenji; MASUOKA, Jun; TAKADA, Shigeki; Katsuragi, Shinji; Ikeda, Tomoaki; IIHARA, Koji

    2014-01-01

    We report two methods of intraoperative fetal heart rate (FHR) monitoring in cases of cerebral arteriovenous malformation surgery during pregnancy. In one case in her third trimester, cardiotocography was used. In another case in her second trimester, ultrasound sonography was used, with a transesophageal echo probe attached to her lower abdomen. Especially, the transesophageal echo probe was useful because of the advantages of being flexible and easy to attach to the mother's lower abdomen c...

  3. Over-estimation of glucose-6-phosphatase activity in brain in vivo. Apparent difference in rates of [2-3H]glucose and [U-14C]glucose utilization is due to contamination of precursor pool with 14C-labeled products and incomplete recovery of 14C-labeled metabolites

    International Nuclear Information System (INIS)

    Significant dephosphorylation of glucose 6-phosphate due to glucose-6-phosphatase activity in rat brain in vivo was recently reported. The evidence was an apparent more rapid 3H than 14C loss from the glucose pool and faster [2-3H]glucose than [U-14C]glucose utilization following pulse labeling of the brain with [2-3H,U-14C]glucose. Radiochemical purity of the glucose and quantitative recovery of the labeled products of glucose metabolism isolated from the brain were obviously essential requirements of their study, but no evidence for purity and recovery was provided. When we repeated these experiments with the described isolation procedures, we replicated the results, but found that: 1) the precursor glucose pool contained detritiated, 14C-labeled contaminants arising from glucose metabolism, particularly 2-pyrrolidone-5-carboxylic acid derived from [14C]glutamine; 2) [14C]glucose metabolite were not quantitatively recovered; 3) the procedure used to isolate the glucose itself produced detritiated, 14C-labeled derivatives of [2-3H,U-14C]glucose. These deficiencies in the isolation procedures could fully account for the observations that were interpreted as evidence of significant glucose 6-phosphate dephosphorylation by glucose-6-phosphatase activity. When glucose was isolated by more rigorous procedures and its purity verified in the present studies, no evidence for such activity in rat brain was found

  4. Alterations in local cerebral glucose metabolism and endogenous thyrotropin-releasing hormone levels in rolling mouse Nagoya and effect of thyrotropin-releasing hormone tartrate.

    Science.gov (United States)

    Nakayama, T; Nagai, Y

    1996-11-01

    To identify the brain region(s) responsible for the expression of ataxic gaits in an ataxic mutant mouse model, Rolling mouse Nagoya (RMN), changes in local cerebral glucose metabolism in various brain regions and the effect of thyrotropin-releasing hormone tartrate (TRH-T), together with alterations in endogenous thyrotropin-releasing hormone (TRH) levels in the brains of RMN, were investigated. Ataxic mice [RMN (rol/rol)] showed significant decreases in glucose metabolism in regions of the diencephalon: thalamic dorsomedial nucleus, lateral geniculate body and superior colliculus; brain stem: substantia nigra, raphe nucleus and vestibular nucleus; and cerebellar nucleus as compared with normal controls [RMN (+/+)]. When RMN (rol/rol) was treated with TRH-T (10 mg/kg, equivalent to 7 mg/kg free TRH), glucose metabolism was significantly increased in these regions. These results suggest that these regions may be responsible for ataxia. We also found that TRH levels in the cerebellum and brain stem of RMN (rol/rol) were significantly higher than those of RMN (+/+). These results suggest that ataxic symptoms in RMN (rol/rol) may relate to the abnormal metabolism of TRH and energy metabolism in the cerebellum and/or brain stem and that exogenously given TRH normalizes them.

  5. An Outer Membrane Protein Involved in the Uptake of Glucose Is Essential for Cytophaga hutchinsonii Cellulose Utilization.

    Science.gov (United States)

    Zhou, Hong; Wang, Xia; Yang, Tengteng; Zhang, Weixin; Chen, Guanjun; Liu, Weifeng

    2016-03-01

    Cytophaga hutchinsonii specializes in cellulose digestion by employing a collection of novel cell-associated proteins. Here, we identified a novel gene locus, CHU_1276, that is essential for C. hutchinsonii cellulose utilization. Disruption of CHU_1276 in C. hutchinsonii resulted in complete deficiency in cellulose degradation, as well as compromised assimilation of cellobiose or glucose at a low concentration. Further analysis showed that CHU_1276 was an outer membrane protein that could be induced by cellulose and low concentrations of glucose. Transcriptional profiling revealed that CHU_1276 exerted a profound effect on the genome-wide response to both glucose and Avicel and that the mutant lacking CHU_1276 displayed expression profiles very different from those of the wild-type strain under different culture conditions. Specifically, comparison of their transcriptional responses to cellulose led to the identification of a gene set potentially regulated by CHU_1276. These results suggest that CHU_1276 plays an essential role in cellulose utilization, probably by coordinating the extracellular hydrolysis of cellulose substrate with the intracellular uptake of the hydrolysis product in C. hutchinsonii. PMID:26773084

  6. The PPARα/γ Agonist, Tesaglitazar, Improves Insulin Mediated Switching of Tissue Glucose and Free Fatty Acid Utilization In Vivo in the Obese Zucker Rat

    Directory of Open Access Journals (Sweden)

    Kristina Wallenius

    2013-01-01

    Full Text Available Metabolic flexibility was assessed in male Zucker rats: lean controls, obese controls, and obese rats treated with the dual peroxisome proliferator activated receptor (PPAR agonist, tesaglitazar, 3 μmol/kg/day for 3 weeks. Whole body glucose disposal rate ( and hepatic glucose output (HGO were assessed under basal fasting and hyperinsulinemic isoglycemic clamp conditions using [3,3H]glucose. Indices of tissue specific glucose utilization ( were measured at basal, physiological, and supraphysiological levels of insulinemia using 2-deoxy-D-[2,6-3H]glucose. Finally, whole body and tissue specific FFA and glucose utilization and metabolic fate were evaluated under basal and hyperinsulinemic conditions using a combination of [U-13C]glucose, 2-deoxy-D-[U-14C]glucose, [U-14C]palmitate, and [9,10-3H]-(R-bromopalmitate. Tesaglitazar improved whole body insulin action by greater suppression of HGO and stimulation of compared to obese controls. This involved increased insulin stimulation of in fat and skeletal muscle as well as increased glycogen synthesis. Tesaglitazar dramatically improved insulin mediated suppression of plasma FFA level, whole body turnover (, and muscle, liver, and fat utilization. At basal insulin levels, tesaglitazar failed to lower HGO or compared to obese controls. In conclusion, the results demonstrate that tesaglitazar has a remarkable ability to improve insulin mediated control of glucose and FFA fluxes in obese Zucker rats.

  7. Clinical utility and accuracy of a blood glucose meter for the detection of neonatal hypoglycemia

    International Nuclear Information System (INIS)

    Objective: To determine the accuracy and reliability of a glucometer in comparison to hexokinase method in detecting neonatal hypoglycemia. Subjects and Methods: All neonates presenting with known risk factors or suggestive clinical features were screened for hypoglycemia by using capillary blood on Accutrend alpha glucometer. Simultaneously the venous blood glucose values were done on Hitachi 902 autoanalyser by hexokinase method. A level of 40 mg/dl or less was taken as neonatal hypoglycemia. Results: A total of 292-paired samples were taken from 223 neonates. Hypoglycemia was detected in 112 samples (38.4%). Correlation of glucometer values with laboratory values of blood glucose levels was excellent throughout the range with coefficient of correlation (r) of 0.976 (p-value < 0.001). For blood glucose values equal or less than 40 mg/dl, r was 0.547 (p-value < 0.001). The instrument used showed a sensitivity of 98% and specificity of 93% to detect neonatal hypoglycemia (equal or less than 40 mg/dl) with a positive predictive value of 88% and negative predictive value 99%. Conclusion: The blood glucose reflectance meter can be a useful and accurate instrument for screening and detecting neonatal hypoglycemia in symptomatic babies under stress. All low values by glucometer should be promptly analyzed and confirmed by chemical laboratory. (author)

  8. Effect of magnesium treatment and glucose levels on delayed cerebral ischemia in patients with subarachnoid hemorrhage : a substudy of the Magnesium in Aneurysmal Subarachnoid Haemorrhage trial (MASH-II)

    NARCIS (Netherlands)

    Leijenaar, Jolien F.; Mees, Sanne M. Dorhout; Algra, Ale; van den Bergh, Walter M.; Rinkel, Gabriel J. E.

    2015-01-01

    BackgroundMagnesium treatment did not improve outcome in patients with aneurysmal subarachnoid haemorrhage in the Magnesium in Aneurysmal Subarachnoid Haemorrhage II trial. We hypothesized that high glucose levels may have offset a potential beneficial effect to prevent delayed cerebral ischemia. We

  9. Novel model of neuronal bioenergetics: postsynaptic utilization of glucose but not lactate correlates positively with Ca2+ signalling in cultured mouse glutamatergic neurons

    Directory of Open Access Journals (Sweden)

    Sevan A.A. Faek

    2012-04-01

    Full Text Available We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N-methyl-d-aspartate-induced synaptic activity and that lactate alone is not able to support neurotransmitter glutamate homoeostasis. Subsequently, a model was proposed to explain these results at the cellular level. In brief, the intermittent rises in intracellular Ca2+ during activation cause influx of Ca2+ into the mitochondrial matrix thus activating the tricarboxylic acid cycle dehydrogenases. This will lead to a lower activity of the MASH (malate–aspartate shuttle, which in turn will result in anaerobic glycolysis and lactate production rather than lactate utilization. In the present work, we have investigated the effect of an ionomycin-induced increase in intracellular Ca2+ (i.e. independent of synaptic activity on neuronal energy metabolism employing 13C-labelled glucose and lactate and subsequent mass spectrometric analysis of labelling in glutamate, alanine and lactate. The results demonstrate that glucose utilization is positively correlated with intracellular Ca2+ whereas lactate utilization is not. This result lends further support for a significant role of glucose in neuronal bioenergetics and that Ca2+ signalling may control the switch between glucose and lactate utilization during synaptic activity. Based on the results, we propose a compartmentalized CiMASH (Ca2+-induced limitation of the MASH model that includes intracellular compartmentation of glucose and lactate metabolism. We define pre- and post-synaptic compartments metabolizing glucose and glucose plus lactate respectively in which the latter displays a positive correlation between oxidative metabolism of glucose and Ca2+ signalling.

  10. Pattern of cerebral glucose metabolism on F-18 FDG brain PET during vomiting and symptom free periods in cyclic vomiting syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyeong; Lee, Dong Soo; Kang, Eun Joo; Seo, Jeong Kee; Yeo, Jeong Seok; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2001-06-01

    Cyclic Vomiting Syndrome (CVS) is characterized by recurrent, periodic, self-limiting vomiting. However, its pathogenesis is not yet established. We investigated the changes of the cerebral glucose metabolism using F-18 FDG during the vomiting attack and symptom free period in two children with CVS. FDG PET study showed the markedly increased metabolism in both temporal lobes and also in the medulla and cerebellum during the vomiting period. Also, FDG PET showed the decreased metabolism in the parieto-occipital and occipital areas during the in vomiting period. The area with decreased metabolism seemed to be related with the region showing abnormalities in EEG and perfusion SPECT studies. We expect that what we observed would be a helpful finding in clarifying the pathogenesis of the CVS.

  11. Mobilization and removing of cadmium from kidney by GMDTC utilizing renal glucose reabsorption pathway.

    Science.gov (United States)

    Tang, Xiaojiang; Zhu, Jinqiu; Zhong, Zhiyong; Luo, Minhui; Li, Guangxian; Gong, Zhihong; Zhang, Chenzi; Fei, Fan; Ruan, Xiaolin; Zhou, Jinlin; Liu, Gaofeng; Li, Guoding; Olson, James; Ren, Xuefeng

    2016-08-15

    Chronic exposure to cadmium compounds (Cd(2+)) is one of the major public health problems facing humans in the 21st century. Cd(2+) in the human body accumulates primarily in the kidneys which leads to renal dysfunction and other adverse health effects. Efforts to find a safe and effective drug for removing Cd(2+) from the kidneys have largely failed. We developed and synthesized a new chemical, sodium (S)-2-(dithiocarboxylato((2S,3R,4R,5R)-2,3,4,5,6 pentahydroxyhexyl)amino)-4-(methylthio) butanoate (GMDTC). Here we report that GMDTC has a very low toxicity with an acute lethal dose (LD50) of more than 10,000mg/kg or 5000mg/kg body weight, respectively, via oral or intraperitoneal injection in mice and rats. In in vivo settings, up to 94% of Cd(2+) deposited in the kidneys of Cd(2+)-laden rabbits was removed and excreted via urine following a safe dose of GMDTC treatment for four weeks, and renal Cd(2+) level was reduced from 12.9μg/g to 1.3μg/g kidney weight. We observed similar results in the mouse and rat studies. Further, we demonstrated both in in vitro and in animal studies that the mechanism of transporting GMDTC and GMDTC-Cd complex into and out of renal tubular cells is likely assisted by two glucose transporters, sodium glucose cotransporter 2 (SGLT2) and glucose transporter 2 (GLUT2). Collectively, our study reports that GMDTC is safe and highly efficient in removing deposited Cd(2+) from kidneys assisted by renal glucose reabsorption system, suggesting that GMDTC may be the long-pursued agent used for preventive and therapeutic purposes for both acute and chronic Cd(2+) exposure. PMID:27282297

  12. A study on the cerebral glucose metabolism in progressive supranuclear palsy%进行性核上性麻痹的脑葡萄糖代谢研究

    Institute of Scientific and Technical Information of China (English)

    马爱军; 郭晓军; 李大成; 张本恕; 潘旭东

    2012-01-01

    Objective To study the regional cerebral glucose utilization with 18 F-fluorodeoxyglucose (FDG) PET and to investigate the correlation between cerebral glucose metabolism and the clinical characteristic of progressive supranuclear palsy (PSP).Methods A total of 13 patients with PSP and 30 matched healthy controls were performed 18F-FDG PET imaging at rest state.Visual inspection and statistical parametric mapping (SPM) were used to investigate regional cerebral metabolic rate of glucose (rCMRglc).Results Based on the visual inspection,PET imaging in the PSP patients showed that the focal hypometabolic areas mainly included the bilateral frontal cortex,midbrain and subcortical structures.Compared to the controls,voxel-based analysis showed that the regional glucose metabolism decreased in bilateral superior,middle frontal gyrus,cingulate gyrus,midbrain and subcortical structures including basal ganglion and thalamus,which were consisted with the clinical characteristics,such as vertical gaze palsy,pseudobulbar palsy,postural instability,axial rigidity,dementia and so on.Conclusion 18 F-FDG PET imaging is helpful for the early diagnosis of PSP.%目的 探讨进行性核上性麻痹(PSP)患者18F-脱氧葡萄糖正电子发射体层(18F-FDG PET)脑显像特点及与临床特征的相关性.方法 对13例PSP患者和30例相匹配的健康对照者进行脑18F-FDG PET检查,应用视觉分析法与统计参数图(SPM)分析法比较2组脑葡萄糖代谢的差异.结果 与对照组相比,PSP患者脑18F-FDG PET显像视觉分析法显示双侧额叶皮质、中脑、皮质下核团如基底节、丘脑示踪剂摄取减少,SPM分析显示双侧双侧额上、中回、额叶内侧部皮质、扣带回、中脑及皮质下结构,基底节、丘脑葡萄糖代谢减低,与患者眼球垂直运动障碍、姿势障碍、肌张力增高及认知功能障碍等临床症状相一致.结论 结合临床症状,应用18F-FDG PET脑显像有助于PSP的早期诊断.

  13. Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo

    OpenAIRE

    Itoh, Yoshiaki; Esaki, Takanori; Shimoji, Kazuaki; Cook, Michelle; Law, Mona J.; Kaufman, Elaine; Sokoloff, Louis

    2003-01-01

    Neuronal cultures in vitro readily oxidized both D-[14C]glucose and l-[14C]lactate to 14CO2, whereas astroglial cultures oxidized both substrates sparingly and metabolized glucose predominantly to lactate and released it into the medium. [14C]Glucose oxidation to 14CO2 varied inversely with unlabeled lactate concentration in the medium, particularly in neurons, and increased progressively with decreasing lactate concentration. Adding unlabeled glucose to the medium inhibited [14C]lactate oxid...

  14. Glucose utilization and anti-oxidative mechanisms of the aqueous hunteria umbellata seed extract in alloxan-induced diabetic rats.

    Science.gov (United States)

    Adeneye, A A; Adenekan, S O; Adeyemi, O O; Agbaje, E O

    2014-01-01

    In South-west Nigeria, water decoctions of Hunteria umbellata seeds are highly valued by traditional healers in the local management of diabetes mellitus, obesity and hyperlipidemia. Previous studies hypothesized one of the antihyperglycemic mechanisms of the aqueous seed extract of Hunteria umbellata (HU) to be mediated probably via increased peripheral glucose utilization. The present study, therefore, was designed at evaluating the peripheral glucose utilization and anti-oxidative mechanisms of 50 mg/kg, 100 mg/kg and 200 mg/kg of HU in alloxan-induced diabetic rats in Groups IV-VI rats as well as in the control groups (Groups I-III). Experimental type 1 DM was induced in male Wistar rats through intraperitoneal injection of 150 mg/kg of alloxan monohydrate in cold 0.9% normal saline after which the diabetic rats were orally treated with 50-200 mg/kg of HU for 14 days. Effects of HU on the rat body weight, percentage body weight changes and fasting blood glucose (FBG) were determined on days 1 and 15 of the experiment. Also, on day 15 of the experiment, HU effect on serum insulin, liver enzyme markers, proteins, albumin, triglyceride, total cholesterol and lactate dehydrogenase as well as on hepatic tissue oxidative stress markers, liver glycogen and glucose-6-phosphatase were determined after sacrificing the rats under diethyl ether anesthesia. Results showed that oral treatments with 50-200 mg/kg of HU caused significant (pdiabetes, while causing significant (p0.05) alterations in the serum INS levels in the treated rats. Also, repeated oral treatment with HU caused significant (pdiabetes. Similar significant (plactate dehydrogenase as well as on hepatic tissue oxidative stress markers such as superoxidase dismutase (SOD), catalase (CAT), malonialdehyde (MDA) and reduced glutathione (GSH) of HU-treated rats when compared to that of untreated alloxan-induced diabetic rats. In conclusion, results of this study showed HU treatment to significantly ameliorate the

  15. Insulin as the main regulator of cellular glucose utilization--aetiological aspects of insulin resistance.

    Science.gov (United States)

    Tatoń, Jan; Czech, Anna; Piatkiewicz, Paweł

    2010-01-01

    This review presents the advances in the molecular biology and the pathophysiology of insulin resistance with emphasis on disturbances in cellular glucose transport. New scientific information about the structure and function of glucotransporters from the GLUT4 and SLGT families underline their significance in endocrinopathies and metabolic disease pathogenesis as related to insulin resistance. The new discoveries in this area also contribute to a better understanding of the regulation of insulin receptor and post-receptor reactivity by hormones and by drugs. They refer to the regulation of glycaemia and to its disturbances in diabetes mellitus, particularly of type 2, to metabolic syndrome, and, in general, to the pathogenesis of many syndromes and clinical disturbances caused by insulin resistance. Impairment of cellular glucose transport may be one of the primary aetiological factors in this respect. Therefore, studies of cellular glucotransporters expression and function promise new clinical and pharmacotherapeutic developments. Progress in this area has already been transformed into many practical proposals which are improving clinical practice. PMID:20806184

  16. Shift to Fatty Substrate Utilization in Response to Sodium-Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes.

    Science.gov (United States)

    Ferrannini, Ele; Baldi, Simona; Frascerra, Silvia; Astiarraga, Brenno; Heise, Tim; Bizzotto, Roberto; Mari, Andrea; Pieber, Thomas R; Muscelli, Elza

    2016-05-01

    Pharmacologically induced glycosuria elicits adaptive responses in glucose homeostasis and hormone release. In type 2 diabetes (T2D), along with decrements in plasma glucose and insulin levels and increments in glucagon release, sodium-glucose cotransporter 2 (SGLT2) inhibitors induce stimulation of endogenous glucose production (EGP) and a suppression of tissue glucose disposal (TGD). We measured fasting and postmeal glucose fluxes in 25 subjects without diabetes using a double glucose tracer technique; in these subjects and in 66 previously reported patients with T2D, we also estimated lipolysis (from [(2)H5]glycerol turnover rate and circulating free fatty acids, glycerol, and triglycerides), lipid oxidation (LOx; by indirect calorimetry), and ketogenesis (from circulating β-hydroxybutyrate concentrations). In both groups, empagliflozin administration raised EGP, lowered TGD, and stimulated lipolysis, LOx, and ketogenesis. The pattern of glycosuria-induced changes was similar in subjects without diabetes and in those with T2D but quantitatively smaller in the former. With chronic (4 weeks) versus acute (first dose) drug administration, glucose flux responses were attenuated, whereas lipid responses were enhanced; in patients with T2D, fasting β-hydroxybutyrate levels rose from 246 ± 288 to 561 ± 596 µmol/L (P < 0.01). We conclude that by shunting substantial amounts of carbohydrate into urine, SGLT2-mediated glycosuria results in a progressive shift in fuel utilization toward fatty substrates. The associated hormonal milieu (lower insulin-to-glucagon ratio) favors glucose release and ketogenesis. PMID:26861783

  17. JNK deficiency enhances fatty acid utilization and diverts glucose from oxidation to glycogen storage in cultured myotubes.

    Science.gov (United States)

    Vijayvargia, Ravi; Mann, Kara; Weiss, Harvey R; Pownall, Henry J; Ruan, Hong

    2010-09-01

    Although germ-line deletion of c-Jun NH(2)-terminal kinase (JNK) improves overall insulin sensitivity in mice, those studies could not reveal the underlying molecular mechanism and the tissue site(s) in which reduced JNK activity elicits the observed phenotype. Given its importance in nonesterified fatty acids (NEFA) and glucose utilization, we hypothesized that the insulin-sensitive phenotype associated with Jnk deletion originates from loss of JNK function in skeletal muscle. Short hairpin RNA (shRNA)-mediated gene silencing was used to identify the functions of JNK subtypes in regulating energy metabolism and metabolic responses to elevated concentrations of NEFA in C2C12 myotubes, a cellular model of skeletal muscle. We show for the first time that cellular JNK2- and JNK1/JNK2-deficiency divert glucose from oxidation to glycogenesis due to increased glycogen synthase (GS) activity and induction of Pdk4. We further show that JNK2- and JNK1/JNK2-deficiency profoundly increase cellular NEFA oxidation, and their conversion to phospholipids and triglyceride. The increased NEFA utilization was coupled to increased expressions of selective NEFA handling genes including Cd36, Acsl4, and Chka, and enhanced palmitic acid (PA)-dependent suppression of acetyl-CoA carboxylase (Acc). In JNK-intact cells, PA inhibited insulin signaling and glycogenesis. Although silencing Jnk1 and/or Jnk2 prevented PA-induced inhibition of insulin signaling, it did not completely block decreased insulin-mediated glycogenesis, thus indicating JNK-independent pathways in the suppression of glycogenesis by PA. Muscle-specific inhibition of JNK2 (or total JNK) improves the capacity of NEFA utilization and glycogenesis, and is a potential therapeutic target for improving systemic insulin sensitivity in type 2 diabetes (T2D). PMID:20094041

  18. ''Ecstasy''-induced changes of cerebral glucose metabolism and their correlation to acute psychopathology. A 18-FDG PET study

    Energy Technology Data Exchange (ETDEWEB)

    Schreckenberger, M.; Sabri, O.; Arning, C.; Zimny, M.; Zeggel, T.; Wagenknecht, G.; Kaiser, H.J.; Buell, U. [Technische Hochschule Aachen (Germany). Klinik fuer Nuklearmedizin; Gouzoulis-Mayfrank, E.; Sass, H. [Technische Hochschule Aachen (Germany). Dept. of Psychiatry

    1999-12-01

    The aim of this study was to determine the acute effects of the 'Ecstasy' analogue MDE (3,4-methylene dioxyethamphetamine) on cerebral glucose metabolism (rMRGlu) of healthy volunteers and to correlate neurometabolism with acute psychopathology. In a radomized double-blind trial, 15 healthy volunteers without a history of drug abuse were examined with fluorine-18-deoxyglucose ({sup 18}FDG) positron emission tomography (PET) 110-120 min after oral administration of 2 mg/kg MDE (n=7) or placebo (n=8). Two minutes prior to radiotracer injection, constant cognitive stimulation was started and maintained for 32 min using a word repetition paradigm to ensure constant and comparable mental conditions during cerebral glucose uptake. Individual brain anatomy was represented using T1-weighted 3D flash magnetic resonance imaging (MRI), followed by manual regionalization into 108 regions of interest and PET/MRI overlay. After absolute quantification of rMR-Glu and normalization to global metabolism, normalized rMRGlu under MDE was compared to placebo using the Mann-Whitney U-test. Acute psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS) and rMRGlu was correlated to PANSS scores according to Spearman. MDE subjects showed significantly decreased rMRGlu in the bilateral frontal cortex: left frontal posterior (-7.1%, P<0.05) and right prefrontal superior (-4.6%, P<0.05). On the other hand, rMR-Glu was significantly increased in the bilateral cerebellum (right: +10.1%, P<0.05; left: +7.6%, P<0.05) and in the right putamen (+6.2%, P<0.05). There were positive correlations between rMRGlu in the middle right cingulate and grandiosity (r=0.87; P<0.05), both the right amygadala (r=0.90, P<0.01) and the left posterior cingulate (r=0.90, P<0.01) to difficulties in abstract thinking, and the right frontal inferior (r=0.85, P<0.05), right anterior cingulate (r=0.93, P<0.01), and left anterior cingulate (r=0.85, P<0.05) to attentional deficits. A

  19. Brain glucose utilization in systemic lupus erythematosus with neuropsychiatric symptoms: a controlled positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Otte, A. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland)]|[Department of Nuclear Medicine, University Hospital Freiburg (Germany); Weiner, S.M. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Peter, H.H. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Mueller-Brand, J. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland); Goetze, M. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland); Moser, E. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Gutfleisch, J. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Hoegerle, S. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Juengling, F.D. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Nitzsche, E.U. [Department of Nuclear Medicine, University Hospital Freiburg (Germany)

    1997-07-01

    In contrast to morphological imaging [such as magnetic resonance imaging (MRI) or computed tomography], functional imaging may be of advantage in the detection of brain abnormalities in cases of neuropsychiatric systemic lupus erythematosus (SLE). Therefore, we studied 13 patients (aged 40{+-}14 years, 11 female, 2 male) with neuropsychiatric SLE who met four of the American Rheumatism Association criteria for the classification of SLE. Ten clinically and neurologically healthy volunteers served as controls (aged 40{+-}12 years, 5 female, 5 male). Both groups were investigated using fluorine-18-labelled fluorodeoxyglucose brain positron emission tomography (PET) and cranial MRI. The normal controls and 11 of the 13 patients showed normal MRI scans. However, PET scan was abnormal in all 13 SLE patients. Significant group-to-group differences in the glucose metabolic index (GMI=region of interest uptake/global uptake at the level of the basal ganglia and thalamus) were found in the parieto-occipital region on both sides: the GMI of the parieto-occipital region on the right side was 0.922{+-}0.045 in patients and 1.066{+-}0.081 in controls (P<0.0001, Mann Whitney U test), while on the left side it was 0.892{+-}0.060 in patients and 1.034{+-}0.051 in controls (P=0.0002). Parieto-occipital hypometabolism is a conspicuous finding in mainly MRI-negative neuropsychiatric SLE. As the parieto-occipital region is located at the boundary of blood supply of all three major arteries, it could be the most vulnerable zone of the cerebrum and may be affected at an early stage of the cerebrovascular disease. (orig.). With 1 fig., 1 tab.

  20. Regional cerebral glucose metabolism differentiates danger- and non-danger-based traumas in post-traumatic stress disorder.

    Science.gov (United States)

    Ramage, Amy E; Litz, Brett T; Resick, Patricia A; Woolsey, Mary D; Dondanville, Katherine A; Young-McCaughan, Stacey; Borah, Adam M; Borah, Elisa V; Peterson, Alan L; Fox, Peter T

    2016-02-01

    Post-traumatic stress disorder (PTSD) is presumably the result of life threats and conditioned fear. However, the neurobiology of fear fails to explain the impact of traumas that do not entail threats. Neuronal function, assessed as glucose metabolism with (18)fluoro-deoxyglucose positron emission tomography, was contrasted in active duty, treatment-seeking US Army Soldiers with PTSD endorsing either danger- (n = 19) or non-danger-based (n = 26) traumas, and was compared with soldiers without PTSD (Combat Controls, n = 26) and Civilian Controls (n = 24). Prior meta-analyses of regions associated with fear or trauma script imagery in PTSD were used to compare glucose metabolism across groups. Danger-based traumas were associated with higher metabolism in the right amygdala than the control groups, while non-danger-based traumas associated with heightened precuneus metabolism relative to the danger group. In the danger group, PTSD severity was associated with higher metabolism in precuneus and dorsal anterior cingulate and lower metabolism in left amygdala (R(2 )= 0.61). In the non-danger group, PTSD symptom severity was associated with higher precuneus metabolism and lower right amygdala metabolism (R(2 )= 0.64). These findings suggest a biological basis to consider subtyping PTSD according to the nature of the traumatic context.

  1. Determination of cerebral metabolic patterns in dementia using positron emission tomography

    International Nuclear Information System (INIS)

    With the introduction of the Kety-Schmidt method whole brain measurements of blood flow and metabolism were first applied to normal aged and demented patients. Chronically demented patients were consistently found to have marked reductions in cerebral blood flow, oxygen utilization, and glucose utilization when dementia was severe, and lesser reductions when it was mild. Others found that cerebral blood flow, oxygen utilization, and glucose utilization were decreased in parallel in late stages of Alzheimer's disease (AD) and multiple infarct dementia (MID). The intraarterial /sup 133/Xe method has been used to determine abnormalities in regional cerebral blood flow that correlate with cognitive deficits in patients with organic dementia, mostly Alzheimer's cases. Positron emission tomography (PET) and the /sup 18/F fluorodeoxyglycose (FDG) method have been applied to small numbers of demented patients with advanced AD. In general, decreases were found in global cerebral glucose utilization, but especially in temporal and parietal cortex. Others, using PET and the /sup 15/O/sub 2/ steady-state method, found a coupled decline in global cerebral blood flow and oxygen utilization that was correlated with increasing severity of dementia in both AD and MID, but there was no increase in oxygen extraction ratio, and therefore no evidence to support the existence of a chronic ischemic brain process. In this chapter, the author reviews some of the recent findings at UCLA using PET and the method in the study of normal aging and dementing disorders

  2. Voxel-based statistical analysis of regional cerebral glucose metabolism in children with attention-deficit hyperactivity disorder

    Institute of Scientific and Technical Information of China (English)

    Ji-Hoon Kim; Young-In Chung; Jung Sub Lee; In-Joo Kim; Yong-Ki Kim; Seong-Jang Kim

    2011-01-01

    The technique of region of interest-based positron emission tomography is limited by its poor reliability and relatively few examined brain regions. In the present study, we compared brain metabolism assessed using fluorine-18-fluorodeoxyglucose positron emission tomography between 14 attention-deficit hyperactivity disorder (ADHD) patients and 15 normal controls with scoliosis at resting state by statistical parametric mapping. Glucose metabolism was decreased in the left parahippocampal gyrus, left hippocampus, left anterior cingulate gyrus, right anterior and posterior lobes of the cerebellum, left superior temporal gyrus, left insula, left medial and middle frontal gyri, right medial frontal gyrus, and left basal ganglia (putamen, amygdala, and caudate nucleus) in children with ADHD. These data suggest that children with ADHD exhibit hypometabolism in various brain regions compared to controls, indicating that ADHD symptoms are unlikely the result of abnormalities in specific areas.

  3. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Foster, N.L.; Gilman, S.; Berent, S.; Morin, E.M.; Brown, M.B.; Koeppe, R.A.

    1988-09-01

    Progressive supranuclear palsy (PSP) is characterized by supranuclear palsy of gaze, axial dystonia, bradykinesia, rigidity, and a progressive dementia. Pathological changes in this disorder are generally restricted to subcortical structures, yet the type and range of cognitive deficits suggest the involvement of many cerebral regions. We examined the extent of functional impairment to cerebral cortical and subcortical structures as measured by the level of glucose metabolic activity at rest. Fourteen patients with PSP were compared to 21 normal volunteers of similar age using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose metabolism was reduced in the caudate nucleus, putamen, thalamus, pons, and cerebral cortex, but not in the cerebellum in the patients with PSP as compared to the normal subjects. Analysis of individual brain regions revealed significant declines in cerebral glucose utilization in most regions throughout the cerebral cortex, particularly those in the superior half of the frontal lobe. Declines in the most affected regions of cerebral cortex were greater than those in any single subcortical structure. Although using conventional neuropathological techniques the cerebral cortex appears to be unaffected in PSP, significant and pervasive functional impairments in both cortical and subcortical structures are present. These observations help to account for the constellation of cognitive symptoms in individual patients with PSP and the difficulty encountered in identifying a characteristic psychometric profile for this group of patients.

  4. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography

    International Nuclear Information System (INIS)

    Progressive supranuclear palsy (PSP) is characterized by supranuclear palsy of gaze, axial dystonia, bradykinesia, rigidity, and a progressive dementia. Pathological changes in this disorder are generally restricted to subcortical structures, yet the type and range of cognitive deficits suggest the involvement of many cerebral regions. We examined the extent of functional impairment to cerebral cortical and subcortical structures as measured by the level of glucose metabolic activity at rest. Fourteen patients with PSP were compared to 21 normal volunteers of similar age using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose metabolism was reduced in the caudate nucleus, putamen, thalamus, pons, and cerebral cortex, but not in the cerebellum in the patients with PSP as compared to the normal subjects. Analysis of individual brain regions revealed significant declines in cerebral glucose utilization in most regions throughout the cerebral cortex, particularly those in the superior half of the frontal lobe. Declines in the most affected regions of cerebral cortex were greater than those in any single subcortical structure. Although using conventional neuropathological techniques the cerebral cortex appears to be unaffected in PSP, significant and pervasive functional impairments in both cortical and subcortical structures are present. These observations help to account for the constellation of cognitive symptoms in individual patients with PSP and the difficulty encountered in identifying a characteristic psychometric profile for this group of patients

  5. Induction of PDK4 in the heart muscle of JVS mice, an animal model of systemic carnitine deficiency, does not appear to reduce glucose utilization by the heart.

    Science.gov (United States)

    Ushikai, Miharu; Horiuchi, Masahisa; Kobayashi, Keiko; Matuda, Sadayuki; Inui, Akio; Takeuchi, Toru; Saheki, Takeyori

    2011-03-01

    Pyruvate dehydrogenase kinase 4 (PDK4) mRNA has been reported as an up-regulated gene in the heart and skeletal muscle of carnitine-deficient juvenile visceral steatosis (JVS) mice under fed conditions. PDK4 plays an important role in the inhibition of glucose oxidation via the phosphorylation of pyruvate dehydrogenase complex (PDC). This study evaluated the meaning of increased PDK4 mRNA in glucose metabolism by investigating PDK4 protein levels, PDC activity and glucose uptake by the heart and skeletal muscle of JVS mice. PDK4 protein levels in the heart and skeletal muscle of fed JVS mice were increased in accordance with mRNA levels, and protein was enriched in the mitochondria. PDK4 protein was co-fractionated with PDC in sucrose density gradient centrifugation, like PDK2 protein; however, the activities of the pyruvate dehydrogenase complex (PDC) active form in the heart and skeletal muscle of fed JVS mice were similar to those in fed control mice. Fed JVS mice showed significantly higher glucose uptake in the heart and similar uptake in the skeletal muscle compared with fed control mice. Thus, in carnitine deficiency under fed conditions, glucose was preferentially utilized in the heart as an energy source despite increased PDK4 protein levels in the mitochondria. The preferred glucose utilization may be involved in developing cardiac hypertrophy from carnitine deficiency in fatty acid oxidation abnormality. PMID:21190881

  6. SUPPLY AND DEMAND IN CEREBRAL ENERGY METABOLISM: THE ROLE OF NUTRIENT TRANSPORTERS

    Science.gov (United States)

    Simpson, Ian A.; Carruthers, Anthony; Vannucci, Susan J.

    2007-01-01

    Glucose is the obligate energetic fuel for the mammalian brain and most studies of cerebral energy metabolism assume that the vast majority of cerebral glucose utilization fuels neuronal activity via oxidative metabolism, both in the basal and activated state. Glucose transporter proteins (GLUTs) deliver glucose from the circulation to the brain: GLUT1 in the microvascular endothelial cells of the blood brain barrier (BBB) and glia; GLUT3 in neurons. Lactate, the glycolytic product of glucose metabolism, is transported into and out of neural cells by the monocarboxylate transporters: MCT1 in the BBB and astrocytes and MCT2 in neurons. The proposal of the astrocyte-neuron lactate shuttle hypothesis (Pellerin and Magistretti, 1994) suggested that astrocytes play the primary role in cerebral glucose utilization and generate lactate for neuronal energetics, especially during activation. Since the identification of the GLUTs and MCTs in brain, much has been learned about their transport properties, i.e. capacity and affinity for substrate, which must be considered in any model of cerebral glucose uptake and utilization. Using concentrations and kinetic parameters of GLUT1 and GLUT3 in BBB endothelial cells, astrocytes and neurons, along with the corresponding kinetic properties of the monocarboxylate transporters, we have successfully modeled brain glucose and lactate levels as well as lactate transients in response to neuronal stimulation. Simulations based on these parameters suggest that glucose readily diffuses through the basal lamina and interstitium to neurons, which are primarily responsible for glucose uptake, metabolism, and the generation of the lactate transients observed upon neuronal activation. PMID:17579656

  7. Co-utilization of glucose and xylose by evolved Thermus thermophilus LC113 strain elucidated by (13)C metabolic flux analysis and whole genome sequencing.

    Science.gov (United States)

    Cordova, Lauren T; Lu, Jing; Cipolla, Robert M; Sandoval, Nicholas R; Long, Christopher P; Antoniewicz, Maciek R

    2016-09-01

    We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and (13)C-metabolic flux analysis ((13)C-MFA) with [1,6-(13)C]glucose, [5-(13)C]xylose, and [1,6-(13)C]glucose+[5-(13)C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90°C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81°C, the maximum growth rate on glucose and xylose was 0.44 and 0.46h(-1), respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. (13)C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, (13)C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, (13)C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain. PMID:27164561

  8. Differential regional cerebral glucose metabolism in clinical syndromes of frontotemporal lobar degeneration: a study with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. M.; Cho, S. S.; Na, D. L.; Lee, K. H.; Choi, Y.; Choe, Y. S.; Kim, B. T.; Kim, S. E. [College of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2001-07-01

    Frontotemporal lobar degeneration( FTLD) is the third most common dementia, following Alzheimer's disease and Lewy body disease. Four prototypic neurobehavioral syndromes can be produced by FTLD: frontotemporal dementia (FTD), frontotemporal dementia with motor neuron disease (MND), semantic dementia (SD), and progressive aphasia (PA). We investigated patterns of metabolic impairment in patient with FTLD presented with four different clinical syndromes. We analysed glucose metabolic patterns on FDG PET images obtained from 34 patients with a clinical diagnosis of FTLD (19 FTD, 6 MND, 6 SD, and 3 PA, according to a consensus criteria for clinical syndromes associated with FTLD) and 7 age-matched healthy controls using SPM99. Patients with FTD had metabolic deficit in the left frontal cortex and bilateral anterior temporal cortex. Hypometabolism in the bilateral premotor are was shown in patients with MND. Patients with SD had metabolic deficit in the left posterior temporal cortex including Wernicke's area, while hypometabolism in the bilateral inferior frontal gyrus including Broca's area and left angular gyrus was seen in patients with PA. These metabolic patterns were well correlated with clinical features of FTLD syndromes. These data provide a biochemical basis of clinical classification of FTLD. FDG PET may help evaluate and classify patients with FTLD.

  9. Diurnal variation in insulin-stimulated systemic glucose and amino acid utilization in pigs fed with identical meals at 12-hour intervals

    NARCIS (Netherlands)

    Koopmans, S.J.; Meulen, van der J.; Dekker, R.A.; Corbijn, H.; Mroz, Z.

    2006-01-01

    The diurnal variation in insulin-stimulated systemic glucose and amino acid utilization was investigated in eleven pigs of similar to 40 kg. Pigs were fed isoenergetic/isoproteinic diets (366kj/kg BW0.75 per meal) in two daily rations (06:00 and 18:00h). After a 3-week habituation period, hyperinsul

  10. [The effect of various types of dry starch syrup on the rate of glucose utilization in lipid, carbohydrate, and protein components of rat liver].

    Science.gov (United States)

    Antonova, Zh V; Virovets, O A; Gapparov, M M

    1994-01-01

    Effect of a diet, containing dextran maltose and dry starch syrup, on some patterns of liver tissue metabolism were studied in young Wistar rats within 30 days. The animals of Control Group 1 were kept on a diet containing corn starch as a source of carbohydrates; in Group 2 the starch was replaced by the dry starch syrup enriched with disaccharides and especially with maltose; the dry starch syrup added into the Group 3 diet containing mainly oligosaccharides and polymers with high levels of glucose residues. The label mixtures of 6-3N- and 6-14C-glucose as well as of 6-3H- and I-14C-glucose were administered into the animals on the day of death. Analysis of the findings has shown that the products of starch hydrolysis may the specific parameters of glucose metabolism. Incorporation of the label into liver tissue lipids was similar to the control values in the group of animals kept on a diet enriched with maltose as compared with group 3. The glycolytic pathway of glucose utilization was more activated than the pentosephosphate pathway after substituting starch for dry starch syrup as shown by differences in the rates of carbon incorporation at positions 1 and 6 of a glucose molecule.

  11. Regional cerebral glucose metabolism associated with ataxic gait. An FDG-PET activation study in patients with olivo-pontocerebellar atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mishina, Masahiro; Ohyama, Masashi; Kitamura, Shin; Terashi, Akirou [Nippon Medical School, Tokyo (Japan); Senda, Michio; Ishii, Kenji

    1995-11-01

    In 7 patients with olivo-pontocerebellar atrophy (OPCA), regional cerebral glucose metabolism was evaluated using {sup 18}F-FDG PET under two different conditions; 30 minutes` treadmill walking, and supine resting. The two sets of PET images were three-dimensionally registered to the MRI. Then, the PET images were normalized by the global value. Regions of interest (ROIs) were drawn on the cerebellar vermis, cerebellar hemispheres, pons, and thalamus, and FDG uptake was obtained to calculate the activation ratio (=[FDG uptake under walking]/ [FDG uptake under resting]) for each region. Normalized resting FDG uptake had no significant difference between controls and OPCA patients in any region. Activation ratio of OPCA patients was significantly decreased in the cerebellar vermis compared with the controls. In the controls, FDG uptake had little difference between resting and walking in the cerebellar hemisphere, pons and thalamus. On the other hand, the FDG uptake of OPCA patients was moderately increased by walking in these regions. The reduction of activation ratio in the cerebellar vermis reflects the dysfunction caused by degeneration. The result suggests that the PET activation study can demonstrate cerebellar dysfunction in the early phase of OPCA, in which other neuro-imaging methods cannot detect the tissue atrophy, hypometabolism or hypoperfusion in the resting state. In the cerebellar hemisphere, pons and thalamus, the activation ratio was nearly equal to one in control subjects, while it was larger in OPCA patients. The instability during the ataxic gait increases the inputs from the vestibular, somatosensory and visual systems to these regions and outputs from these regions to the other neural systems. In conclusion, PET activation study is a useful and noninvasive technique for investigating the brain function associated with human gait. (H.O.).

  12. Measurement of glucose utilization by Pseudomonas fluorescens that are free-living and that are attached to surfaces

    International Nuclear Information System (INIS)

    The assimilation and respiration of glucose by attached and free-living Pseudomonas fluorescens were compared. The attachment surfaces were polyvinylidene fluoride, polyethylene, and glass. Specific uptake of [1C]glucose was determined after bacterial biomass was measured by (1) microscopic counts or (2) prelabelling of cells by providing [3H]leucine as substrate, followed by dual-labelling scintillation counting. The glucose concentration was 1.4, 3.5, 5.5, 7.6, or 9.7 μM. Glucose assimilation by cells which became detached from the surfaces during incubation with glucose was also measured after the detached cells were collected by filtration. The composition of the substratum had no effect on the amount of glucose assimilated by attached cells. Glucose assimilation by attached cells exceeded that by free-living cells by a factor of between 2 and 5 or more, and respiration of glucose by surface-associated cells was greater than that by free-living bacteria. Glucose assimilation by detached cells was greater than that by attached bacteria. Measurements of biomass by microscopic counts gave more consistent results than those obtained with dual-labelling, but in general, results obtained by both methods were corroborative

  13. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance

    Directory of Open Access Journals (Sweden)

    Su Gao

    2015-04-01

    Conclusions: Adropin treatment of DIO mice enhances glucose tolerance, ameliorates insulin resistance and promotes preferential use of carbohydrate over fat in fuel selection. Skeletal muscle is a key organ in mediating adropin's whole-body effects, sensitizing insulin signaling pathways and altering fuel selection preference to favor glucose while suppressing fat oxidation.

  14. Prevalence of diabetes mellitus and impaired glucose tolerance in patients with decompensated cirrhosis being evaluated for liver transplantation: the utility of oral glucose tolerance test

    Directory of Open Access Journals (Sweden)

    Ana Carolina Costa Bragança

    2010-03-01

    Full Text Available CONTEXT: Cirrhosis, diabetes mellitus, impaired glucose tolerance, insulin resistance, and protein calorie malnutrition are important issues in cirrhotic patients because they can increase the progression of liver disease and worsen its prognosis. OBJECTIVE:To determine the prevalence of diabetes mellitus, impaired glucose tolerance and insulin resistance in cirrhotic patients being evaluated for liver transplantation and their impacts on a 3-month follow-up, and to compare fasting glycemia and oral glucose tolerance test. METHODS: A cross-sectional study was performed in consecutively included adult patients. Diabetes mellitus was established through fasting glycemia and oral glucose tolerance test in diagnosing diabetes mellitus in this population. HOMA-IR and HOMA-β indexes were calculated, and nutritional assessment was performed by subjective global assessment, anthropometry and handgrip strength through dynamometry. RESULTS: Diabetes mellitus was found in 40 patients (64.5%, 9 (22.5% of them by fasting glycemia and 31 (77.5% of them by oral glucose tolerance test. Insulin resistance was found in 40 (69% of the patients. There was no relationship between diabetes mellitus and the etiology of cirrhosis. Protein calorie malnutrition was diagnosed in a range from 3.22% to 45.2% by anthropometry, 58.1% by subjective global assessment and 88.7% by handgrip strength. Diabetes mellitus identified by oral glucose tolerance test was related significantly to a higher prevalence of infectious complications and deaths in a 3-month period (P = 0.017. CONCLUSION: The prevalence of diabetes mellitus, impaired glucose tolerance, insulin resistance and protein calorie malnutrition is high in cirrhotic patients on the waiting list for liver transplantation. There were more infectious complications and/or deaths in a 3-month follow-up period in patients with diabetes mellitus diagnosed by oral glucose tolerance test. Oral glucose tolerance test seems to be

  15. PS2-17: Diabetes Social Support Feasibility Pilot Study: Utilizing Mobile Technology and Self-Identified Supporters to Enhance Self-Monitoring of Blood Glucose

    OpenAIRE

    Robinson, Brandi; Roblin, Douglas; Hipkens, James; Vupputuri, Suma; McMahon, Kevin

    2010-01-01

    Background and Aims: Self-monitoring of blood glucose (SMBG) is associated with improved glycemic control among patients with type 2 diabetes, however, the practice of daily self-monitoring is not optimal. Telecommunications technology may improve adherence to recommended self-management practices by remotely transmitting automated reminders to motivate patients, and utilizing social networking for peer support. The purpose of this pilot study is to demonstrate the feasibility and usability o...

  16. Effects of Acute Caffeinated Coffee Consumption on Energy Utilization Related to Glucose and Lipid Oxidation from Short Submaximal Treadmill Exercise in Sedentary Men

    OpenAIRE

    Donrawee Leelarungrayub; Maliwan Sallepan; Sukanya Charoenwattana

    2011-01-01

    Objective: Aim of this study was to evaluate the short term effect of coffee drinking on energy utilization in sedentary men. Methods: This study was performed in healthy sedentary men, who were randomized into three groups, control (n = 6), decaffeinated (n = 10), and caffeine (n = 10). The caffeine dose in coffee was rechecked and calculated for individual volunteers at 5 mg/kg. Baseline before drinking, complete blood count (CBC), glucose, antioxidant capacity, lipid peroxide, and caffeine...

  17. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Beck, T.; Krieglstein, J.

    1987-03-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O/sub 2/. Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded (/sup 14/C)2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur.

  18. Studies on the nutrition of marine flatfish. The metabolism of glucose by plaice (Pleuronectes platessa) and the effect of dietary energy source on protein utilization in plaice.

    Science.gov (United States)

    Cowey, C B; Adron, J W; Brown, D A

    1975-03-01

    1. The effects of dietary energy level and dietary energy source on protein utilization by plaice (Pleuronectes platessa) were examined by giving diets containing 400 g crude protein/kg to nine groups of fish. Five of these diets contained only lipid as a source of energy (in addition to protein) and their energy contents were varied by increasing the lipid level in a step-wise manner from 56 to 176 g/kg. The remaining four diets contained both lipid and carbohydrate (glucose plus dextrin) together as energy sources: two levels of carbohydrate (100 and 200 g/kg) being used at each of two (56 and 86 g/kg) lipid levels. 2. Weight gains of plaice given the diets containing only lipid as an energy source did not differ significantly from each other. Weight gains of plaice given diets containing carbohydrate as well as protein and lipid were superior to those given diets lacking carbohydrate. 3. Values obtained for protein efficiency ratio (PER) and net protein utilization (NPU) increased with increasing dietary energy level in both those fish given the diets containing carbohydrate and those given diets lacking it. Both PER and NPU values were greater for plaice given diets containing carbohydrate than for fish diets without carbohydrate even when the total energy content of the diets was approximately the same. 4. Liver glycogen levels were significantly higher in plaice given diets containing 200 g carbohydrate/kg than in plaice given diets without carbohydrate. Blood glucose levels and hepatic hexokinase (EC 2-7-1-1) levels were not significantly different in plaice given these diets. No glucokinase (EC 2-7-2-2) was detected in plaice given either diet. 5. The metabolic fate of glucose carbon in plaice was investigated by injecting the fish intraperitoneally with [U-14C] glucose and examining, 18 h afterwards the distribution of radioactivity in different biochemical fractions from the fish. 6. Glucose was respired much less rapidly in the carnivorous plaice

  19. Clinical Analysis of the Blood Glucose level and Prognosis in Patients with Acute Cerebral Hemorrhage%脑出血急性患者血糖水平与预后临床分析

    Institute of Scientific and Technical Information of China (English)

    张新慧

    2014-01-01

    目的:探究急性脑出血患者的血糖水平与预后的关系。方法选取我院近三年收治的急性脑出血患者82例,根据患者入院时空腹血糖水平,将患者分为血糖正常组28例、高血糖组27例和重度高血糖组27例,采用美国国立卫生研究所卒中量表(niHss)和 BartHel(Bi)指数对患者入院时及入院三周后进行评价,并作数据分析。结果入院时三组脑出血急性患者的 niHss 评分与 Bi 指数均无明显差异,入院三周后血糖正常组和高血糖组的 niHss 评分明显低于重度高血糖组,Bi 指数明显高于重度血糖组,组间差异具有显著性(p<0.05);入院三周后,血糖正常组和高血糖组的 niHss 评分较入院时均明显降低,Bi 指数明显升高,组间差异具有统计学意义(p<0.05);而重度高血糖组的niHss 评分与 Bi 指数均较入院时无明显改变。结论急性脑出血患者的早期血糖水平越高,患者预后越差,故患者早期血糖水平对于估计预后具有一定参考价值。%Objective to investigate the relationship between blood glucose level and prognosis in patients with acute cerebral hemorrhage. Methods eighty-two patients with acute cerebral hemorrhage were chosen who were treated in our hospital in the last three years. all patients were divided into normal blood glucose group(n=28), high blood glucose group(n=27) and severe high blood glucose group(n=27) according to the fasting blood glucose concentration on admission. and the scores of national institute of Health stroke scale(niHss) and Barthel(Bi)index on admission and at three weeks were assessed and also were statistically analyzed. Results There were no significant differences in NIHSS scores and BI index among three groups on admission, but after three weeks, the NIHSS scores in the first two groups were significantly lower than the severe high blood glucose group and the BI index in these two groups were

  20. Cerebral amobarbital sodium distribution during Wada testing: utility of digital subtraction angiography and single-photon emission tomography

    International Nuclear Information System (INIS)

    We aimed to determine if the cerebral distribution of anesthetic during Wada testing is reflected by findings on digital subtraction angiography (DSA) and single-photon emission computed tomography (SPECT) and if the findings on these studies are relevant to the outcome of the Wada test. We carried out selective internal carotid artery (ICA) DSA on 29 patients underwent studies prior to a Wada test. In patients without angiographic cross-filling, amobarbital and a radiotracer were injected into each ICA, beginning with the epileptogenic side. In patients with cross-filling, the ICA ipsilateral to the epileptogenic focus was injected with amobarbital and radiotracer while other was injected with amobarbital alone. We analyzed the DSA studies for cross-filling and filling of the posterior cerebral arteries (PCA). We reviewed the SPECT for activity in the territories of the anterior, middle cerebral, and posterior cerebral arteries. We compared the results of both studies with the success or failure of the neuropsychological portion of the Wada test. In 20 patients without cross-filling, the results of DSA and SPECT were comparable: symmetrical hemisphere activity was seen. In nine patients with cross-filling, SPECT showed bilateral, almost symmetrical activity. Filling or nonfilling of the PCA correlated with activity (or lack of it) in the medial temporal and occipital regions in all patients. The Wada test was considered successful in all patients. The findings on SPECT did not alter interpretation of the Wada test and we suggest that it may not be needed in all patients undergoing Wada testing. (orig.)

  1. Cerebral amobarbital sodium distribution during Wada testing: utility of digital subtraction angiography and single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, M.; Mukherji, S.K.; McCartney, W.H. [Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC (United States)

    2000-11-01

    We aimed to determine if the cerebral distribution of anesthetic during Wada testing is reflected by findings on digital subtraction angiography (DSA) and single-photon emission computed tomography (SPECT) and if the findings on these studies are relevant to the outcome of the Wada test. We carried out selective internal carotid artery (ICA) DSA on 29 patients underwent studies prior to a Wada test. In patients without angiographic cross-filling, amobarbital and a radiotracer were injected into each ICA, beginning with the epileptogenic side. In patients with cross-filling, the ICA ipsilateral to the epileptogenic focus was injected with amobarbital and radiotracer while other was injected with amobarbital alone. We analyzed the DSA studies for cross-filling and filling of the posterior cerebral arteries (PCA). We reviewed the SPECT for activity in the territories of the anterior, middle cerebral, and posterior cerebral arteries. We compared the results of both studies with the success or failure of the neuropsychological portion of the Wada test. In 20 patients without cross-filling, the results of DSA and SPECT were comparable: symmetrical hemisphere activity was seen. In nine patients with cross-filling, SPECT showed bilateral, almost symmetrical activity. Filling or nonfilling of the PCA correlated with activity (or lack of it) in the medial temporal and occipital regions in all patients. The Wada test was considered successful in all patients. The findings on SPECT did not alter interpretation of the Wada test and we suggest that it may not be needed in all patients undergoing Wada testing. (orig.)

  2. Regulation of glucose utilization and lipogenesis in adipose tissue of diabetic and fat fed animals: Effects of insulin and manganese

    Indian Academy of Sciences (India)

    Najma Z Baquer; M Sinclair; S Kunjara; Umesh C S Yadav; P McLean

    2003-03-01

    In order to evaluate the modulatory effects of manganese, high fat diet fed and alloxan diabetic rats were taken and the changes in the glucose oxidation, glycerol release and effects of manganese on these parameters were measured from adipose tissue. An insulin-mimetic effect of manganese was observed in the adipose tissue in the controls and an additive effect of insulin and manganese on glucose oxidation was seen when Mn2+ was added in vitro. The flux of glucose through the pentose phosphate pathway and glycolysis was significantly decreased in high fat fed animals. Although the in vitro addition of Mn2+ was additive with insulin when 14CO2 was measured from control animals, it was found neither in young diabetic animals (6–8 weeks old) nor in the old (16 weeks old). Both insulin and manganese caused an increased oxidation of carbon-1 of glucose and an increase of its incorporation into 14C-lipids in the young control animals; the additive effect of insulin and manganese suggests separate site of action. This effect was decreased in fat fed animals, diabetic animals and old animals. Manganese alone was found to decrease glycerol in both the control and diabetic adipose tissue in in vitro incubations. The results of the effects of glucose oxidation, lipogenesis, and glycerol release in adipose tissue of control and diabetic animals of different ages are presented together with the effect of manganese on adipose tissue from high fat milk diet fed animals.

  3. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Vemuri, G. N.; Bao, X. M.;

    2009-01-01

    During growth of Saccharomyces cerevisiae on glucose, the redox cofactors NADH and NADPH are predominantly involved in catabolism and biosynthesis, respectively. A deviation from the optimal level of these cofactors often results in major changes in the substrate uptake and biomass formation....... However, the metabolism of xylose by recombinant S. cerevisiae carrying xylose reductase and xylitol dehydrogenase from the fungal pathway requires both NADH and NADPH and creates cofactor imbalance during growth on xylose. As one possible solution to overcoming this imbalance, the effect...... in the cytosol redirected carbon flow from CO2 to ethanol during aerobic growth on glucose and to ethanol and acetate during anaerobic growth on glucose. However, cytosolic NADH kinase has an opposite effect during anaerobic metabolism of xylose consumption by channeling carbon flow from ethanol to xylitol...

  4. PET Demonstrates Functional Recovery after Treatment by Danhong Injection in a Rat Model of Cerebral Ischemic-Reperfusion Injury.

    Science.gov (United States)

    Wang, Zefeng; Song, Fahuan; Li, Jinhui; Zhang, Yuyan; He, Yu; Yang, Jiehong; Zhou, Huifen; Zhao, Tao; Fu, Wei; Xing, Panke; Wan, Haitong; Tian, Mei; Zhang, Hong

    2014-01-01

    This study aimed to investigate neuroprotection of Danhong injection (DHI) in a rat model of cerebral ischemia using (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET). Method. Rats were divided into 5 groups: sham group, ischemia-reperfusion untreated (IRU) group, DHI-1 group (DHI 1 mL/kg/d), DHI-2 group (DHI 2 mL/kg/d), and DHI-4 group (DHI 4 mL/kg/d). AII the treated groups were intraperitoneally injected with DHI daily for 14 days. The therapeutic effects in terms of cerebral infarct volume, neurological function, and cerebral glucose metabolism were evaluated. Expression of TNF-α and IL-1β was detected with enzyme-linked immunosorbent assay (ELISA). Levels of mature neuronal marker (NeuN), glial marker (GFAP), vascular density factor (vWF), and glucose transporter 1 (GLUT1) were assessed by immunohistochemistry. Results. Compared with the IRU group, rats treated with DHI showed dose dependent reductions in cerebral infarct volume and levels of proinflammatory cytokines, improvement of neurological function, and recovery of cerebral glucose metabolism. Meanwhile, the significantly increased numbers of neurons, gliocytes, and vessels and the recovery of glucose utilization were found in the peri-infarct region after DHI treatment using immunohistochemical analysis. Conclusion. This study demonstrated the metabolic recovery after DHI treatment by micro-PET imaging with (18)F-FDG and the neuroprotective effects of DHI in a rat model of cerebral ischemic-reperfusion injury.

  5. PET Demonstrates Functional Recovery after Treatment by Danhong Injection in a Rat Model of Cerebral Ischemic-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Zefeng Wang

    2014-01-01

    Full Text Available This study aimed to investigate neuroprotection of Danhong injection (DHI in a rat model of cerebral ischemia using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET. Method. Rats were divided into 5 groups: sham group, ischemia-reperfusion untreated (IRU group, DHI-1 group (DHI 1 mL/kg/d, DHI-2 group (DHI 2 mL/kg/d, and DHI-4 group (DHI 4 mL/kg/d. AII the treated groups were intraperitoneally injected with DHI daily for 14 days. The therapeutic effects in terms of cerebral infarct volume, neurological function, and cerebral glucose metabolism were evaluated. Expression of TNF-α and IL-1β was detected with enzyme-linked immunosorbent assay (ELISA. Levels of mature neuronal marker (NeuN, glial marker (GFAP, vascular density factor (vWF, and glucose transporter 1 (GLUT1 were assessed by immunohistochemistry. Results. Compared with the IRU group, rats treated with DHI showed dose dependent reductions in cerebral infarct volume and levels of proinflammatory cytokines, improvement of neurological function, and recovery of cerebral glucose metabolism. Meanwhile, the significantly increased numbers of neurons, gliocytes, and vessels and the recovery of glucose utilization were found in the peri-infarct region after DHI treatment using immunohistochemical analysis. Conclusion. This study demonstrated the metabolic recovery after DHI treatment by micro-PET imaging with 18F-FDG and the neuroprotective effects of DHI in a rat model of cerebral ischemic-reperfusion injury.

  6. Effect of blood glucose level on cerebral ischemia-reperfusion injury of rats%血糖水平对缺血再灌注脑组织过氧化损伤的影响

    Institute of Scientific and Technical Information of China (English)

    任歆; 黄蕊; 成学恭; 李光来

    2014-01-01

    目的:探讨在缺血再灌注脑损伤动物模型中血糖水平对氧化应激反应的影响。方法采用结扎大鼠两侧颈总动脉的急性脑缺血再灌注模型,Wistar雄性大鼠随机分为4组:假手术组(A组)、生理盐水对照组(B组)、胰岛素组(2.1 U/kg,C组)、胰岛素(2.1 U/kg)+50%葡萄糖(2 g/kg)组(D组)。术后取标本切片观察脑组织超微结构的变化,并检测脑组织中丙二醛(MDA,脂质过氧化产物)、超氧化物歧化酶(SOD)含量及ATP酶活性。结果①A、D组血糖正常(4.6~10 mmol/L),与之相比,B组血糖升高明显(P0.05),同B组相比,D组血糖水平在正常值的高限可以降低脑组织中MDA含量(P0.05);compared with the group B, MDA was reduced (P<0.05), SOD was elevated (P< 0.05), and ATP-ase activity was increased (P< 0.05) in group D. Conclusion ①Cerebral ischemia-reperfusion can increase blood glucose, and cause oxidative stress in cerebral tissue. ②During ischemia reperfusion, if blood glucose level is too low, can aggravate oxidative stress. ③Control blood glucose to upper limit of normal range can reduce oxidative stress.

  7. 健康成年人脑葡萄糖代谢性别差异的SPM分析%Analysis of sex differences in cerebral glucose metabolism in normal adults using statistical parametric mapping

    Institute of Scientific and Technical Information of China (English)

    徐卫平; 徐浩; 李金花; 王淑侠; 朱林波

    2012-01-01

    目的:采用统计参数图(SPM)法分析健康成年人安静状态下大脑葡萄糖代谢水平的性别差异.方法:对306例健康成年人进行静息状态下的18氟-脱氧葡萄糖(18F-FDG) 正电子发射型计算机断层(PET) 脑显像.采用SPM 5软件将男性组(n=218)和女性组(n=88)PET脑显像数据进行基于体素水平的图像分析.男、女性之间脑代谢水平进行两独立样本t检验,获得有差异区域的Talairach坐标值,并查出各坐标所对应的脑功能区.结果:女性组总体脑葡萄糖代谢水平较男性组高.男性组脑葡萄糖代谢水平较女性组增高的脑区为右额叶旁中央小叶,而较女性组减低的脑区为左扣带后回、右颞叶中央后回、左额叶中央前回和右额叶上回.结论:安静状态下健康成年人脑葡萄糖代谢水平存在明显的性别差异.%AIM; To invesligale lhe sex differences in regional cerebral glucose melabolism in normal adulls under lhe resling slale by slalislical paramelric mapping (SPM). METHODS; Cerebral glucose melabolic images were ob-Lained by posilron emission lomography (PET) wilh F - fluorodeoxy glucose ( F - FDG) in 306 normal subjects (218 males and 88 females). All individual dala were transferred Lo slandard space. The dala belween male group and female group were compared by SPM (P <0. 01). The coordinal.es of regions of sex difference were obtained, and lhen lhe brain funclion locations of lhese regions were checked by Talairach software. RESULTS; The lolal cerebral glucose melabolism in male group was lower lhan lhal in female group. The glucose melabolism in righl paracenlral lobule gyrus in male group was higher lhan lhal in female group. However, in male group, lhe glucose melabolism in some regional corlexes including left posterior cingulale, left fronlal precenlral gyrus, righl lemporal poslcenlral gyrus and righl superior fronlal gyrus was lower lhan lhal in female group. CONCLUSION; There is sex difference of glucose

  8. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance

    OpenAIRE

    Su Gao; McMillan, Ryan P.; Qingzhang Zhu; Lopaschuk, Gary D.; Hulver, Matthew W.; Butler, Andrew A

    2015-01-01

    Objective: The peptide hormone adropin regulates fuel selection preferences in skeletal muscle under fed and fasted conditions. Here, we investigated whether adropin treatment can ameliorate the dysregulation of fuel substrate metabolism, and improve aspects of glucose homeostasis in diet-induced obesity (DIO) with insulin resistance. Methods: DIO C57BL/6 mice maintained on a 60% kcal fat diet received five intraperitoneal (i.p.) injections of the bioactive peptide adropin34-76 (450 nmol/k...

  9. Retrograde Cerebral Perfusion Results in Better Perfusion to the Striatum Than the Cerebral Cortex During Deep Hypothermic Circulatory Arrest: A Microdialysis Study.

    Science.gov (United States)

    Liang, Meng-Ya; Chen, Guang-Xian; Tang, Zhi-Xian; Rong, Jian; Yao, Jian-ping; Wu, Zhong-Kai

    2016-03-01

    It remains controversial whether contemporary cerebral perfusion techniques, utilized during deep hypothermic circulatory arrest (DHCA), establish adequate perfusion to deep structures in the brain. This study aimed to investigate whether selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion (RCP) can provide perfusion equally to various anatomical positions in the brain using metabolic evidence obtained from microdialysis. Eighteen piglets were randomly assigned to 40 min of circulatory arrest (CA) at 18°C without cerebral perfusion (DHCA group, n = 6) or with SACP (SACP group, n = 6) or RCP (RCP group, n = 6). Microdialysis parameters (glucose, lactate, pyruvate, and glutamate) were measured every 30 min in cortex and striatum. After 3 h of reperfusion, brain tissue was harvested for Western blot measurement of α-spectrin. After 40 min of CA, the DHCA group showed marked elevations of lactate and glycerol and a reduction in glucose in the microdialysis perfusate (all P spectrin expression in brain tissue were similar between cortex and striatum in the SACP group (all P > 0.05). In the RCP group, the cortex exhibited lower glucose, higher lactate, and higher glycerol in the perfusate and higher α-spectrin expression in brain tissue compared with the striatum (all P 0.05). In summary, SACP provided uniform and continuous cerebral perfusion to most anatomical sites in the brain, whereas RCP resulted in less sufficient perfusion to the cortex but better perfusion to the striatum. PMID:26333187

  10. Cerebral Hypoxia

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Cerebral Hypoxia Information Page Synonym(s): Hypoxia, Anoxia Table of Contents ( ... Trials Organizations Publicaciones en Español What is Cerebral Hypoxia? Cerebral hypoxia refers to a condition in which ...

  11. Utility of FDG-PETCT and magnetic resonance spectroscopy in differentiating between cerebral lymphoma and non-malignant CNS lesions in HIV-infected patients

    Energy Technology Data Exchange (ETDEWEB)

    Westwood, Thomas D., E-mail: tdwestwood@googlemail.com [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Hogan, Celia, E-mail: celiahogan@hotmail.com [Monsall Unit, Department of Infectious Diseases and Tropical Medicine, North Manchester General Hospital, Pennine Acute Hospitals NHS Trust (United Kingdom); Julyan, Peter J., E-mail: Peter.Julyan@christie.nhs.uk [Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Coutts, Glyn, E-mail: Glyn.Coutts@christie.nhs.uk [Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Bonington, Suzie, E-mail: suzi.bonington@christie.nhs.uk [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Carrington, Bernadette, E-mail: Bernadette.Carrington@christie.nhs.uk [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Taylor, Ben, E-mail: Ben.taylor@christie.nhs.uk [Department of Radiology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester (United Kingdom); Khoo, Saye, E-mail: S.H.Khoo@liverpool.ac.uk [Department of Infectious Diseases and Tropical Medicine, Royal Liverpool Hospital, Liverpool (United Kingdom); Bonington, Alec, E-mail: Alec.Bonington@pat.nhs.uk [Monsall Unit, Department of Infectious Diseases and Tropical Medicine, North Manchester General Hospital, Pennine Acute Hospitals NHS Trust (United Kingdom)

    2013-08-15

    Background and purpose: In HIV infected patients, MRI cannot reliably differentiate between central nervous system (CNS) lymphoma and non-malignant CNS lesions, particularly cerebral toxoplasmosis (CTOX). This study prospectively investigates the utility of FDG PET-CT and magnetic resonance spectroscopy (MRS) in discriminating CNS lymphoma from non-malignant CNS lesions in HIV infected patients, and assesses the ability of FDG PET-CT to guide the use of early brain biopsy. Methods: 10 HIV patients with neurological symptoms and contrast enhancing lesions on MRI were commenced on anti-toxoplasmosis therapy before undergoing FDG PET-CT and MRS. Brain biopsies were sought in those with FDG PET-CT suggestive of CNS lymphoma, and in those with a negative FDG PET-CT scan who failed to respond to therapy. Final diagnosis was based on histology or treatment response. Results: Two patients were confirmed to have CNS lymphoma and FDG PET-CT was consistent with this diagnosis in both. Six patients had cerebral toxoplasmosis in all of whom FDG PET-CT was consistent with non-malignant disease. One patient had progressive multifocal leukoencephalopathy (PML), FDG PET-CT was equivocal. One patient had a haemorrhagic brain metastasis and FDG PET-CT wrongly suggested non-malignant disease. MRS was performed successfully in eight subjects: three results were suggestive of CNS lymphoma (one true positive, two false positive), four suggested CTOX (two false negative, two true negative), one scan was equivocal. Conclusion: FDG PET-CT correctly identified all cases of CNS lymphoma and CTOX, supporting its use in this situation. MRS was unhelpful in our cohort.

  12. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils

    DEFF Research Database (Denmark)

    Montero, Maria; Nielsen, Marianne; Rønn, Lars Christian B;

    2007-01-01

    PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD) and in tr...

  13. Anterior-posterior and lateral hemispheric alterations in cortical glucose utilization in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Friedland, T.F.; Budinger, T.F.; Jaqust, W.J.; Yano, Y.; Huesman, R.H.; Knittel, B.; Koss, E.; Ober, B.A.

    1984-01-01

    The anatomical and chemical features of Alzheimer's disease (AD) are not distributed evenly throughout the brain. However, the nature of this focality has not been well established in vivo. Dynamic studies using the Donner 280-Crystal Positron Tomograph with (F-18)2-fluorodeoxyglucose were performed in 17 subjects meeting current research criteria for AD, and in 7 healthy age-matched control subjects. Glucose metabolic rates in the temporal-parietal cortex are 27% lower in AD than in controls. Ratios of activity density reveal consistently lower metabolic rates in temporal-parietal than frontal cortex in the AD group, while healthy aged subjects have equal metabolic rates in the two areas. Similar findings have been reported by other laboratories. A major finding is a striking lateral asymmetry of cortical metabolism in AD which does not favor either hemisphere. (The asymmetry is 13% in the AD group, 3% in controls, p<.005.) This has not been previously reported in AD. The consistency with which anterior-posterior metabolic differences are found in AD suggests that the focality of the metabolic changes may be used to develop a noninvasive diagnostic test for the disorder. The metabolic asymmetry in AD may be compared to the clinical and pathological asymmetry found in Creutzfeldt-Jakob disease, and may represent an additional link between AD and the subacute spongiform encephalopathies.

  14. Substrate specificity of glucose dehydrogenase and carbon source utilization pattern of pantoea dispersa strain P2 and its radiation induced mutants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Murugesan, Senthilkumar [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Mineral phosphate solubilizing pantoea dispersa strain P2 produced 5.5 mM and 42.6 mM of gluconic acid on 24 h and 72 h incubation, respectively. Strain P2 exhibited glucose dehydrogenase (GDH) specific activity of 0.32 IU mg{sup -1} protein. We have studied the substrate specificity of GDH as well as carbon source utilization pattern of strain P2. GDH of strain P2 did not use ribose as substrate. Utilization of lactose with specific activity of 0.65 IU mg{sup -1} protein indicated that the enzyme belongs to GDH type B isozyme. Arabinose, galactose, ribose, sucrose and xylose did not induce the synthesis of GDH enzyme while mannose induced the synthesis of GDH with highest specific activity of 0.58 IU mg{sup -1} protein. Through radiation mutagenesis, the substrate specificity of GDH was modified in order to utilize side range of sugars available in root exudates. Ribose, originally not a substrate for GDH of strain P2 was utilized as substrate by mutants P2-M5 with specific activity of 0.44 and 0.57 IU mg{sup -1} protein, respectively. Specific activity of GDH on the media containing lactose and galactose was also improved to 1.2 and 0.52 IU mg{sup -1} protein in P2-M5 and P2-M6 respectively. Based on the carbon source availability in root exudate, the mutants can be selected and utilized as efficient biofertilizer under P-deficient soil conditions.

  15. Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles.

    Science.gov (United States)

    Enes, P; Panserat, S; Kaushik, S; Oliva-Teles, A

    2006-01-01

    We determined the effect of dietary starch on growth performance and feed utilization in European sea bass juveniles. Data on the dietary regulation of key hepatic enzymes of the glycolytic, gluconeogenic, lipogenic and amino acid metabolic pathways (hexokinase, HK; glucokinase, GK; pyruvate kinase, PK; fructose-1,6-bisphosphatase, FBPase; glucose-6-phosphatase, G6Pase; glucose-6-phosphate dehydrogenase, G6PD; alanine aminotransferase, ALAT; aspartate aminotransferase, ASAT and glutamate dehydrogenase, GDH) were also measured. Five isonitrogenous (48% crude protein) and isolipidic (14% crude lipids) diets were formulated to contain 10% normal starch (diet NS10), 10% waxy starch (diet WS10), 20% normal starch (diet NS20), 20% waxy starch (diet WS20) or no starch (control diet). Another diet was formulated with no carbohydrate, and contained 68% crude protein and 14% crude lipids (diet HP). Each experimental diet was fed to triplicate groups of 30 fish (initial weight: 23.3 g) on an equivalent feeding scheme for 12 weeks. The best growth performance and feed efficiency were achieved with fish fed the HP diet. Neither the level nor the nature of starch had measurable effects on growth performance of sea bass juveniles. Digestibility of starch was higher with waxy starch and decreased with increasing levels of starch in the diet. Whole-body composition and plasma metabolites, mainly glycemia, were not affected by the level and nature of the dietary starch. Data on enzyme activities suggest that dietary carbohydrates significantly improve protein utilization associated with increased glycolytic enzyme activities (GK and PK), as well as decreased gluconeogenic (FBPase) and amino acid catabolic (GDH) enzyme activities. The nature of dietary carbohydrates tested had little influence on performance criteria.

  16. The Cerebral Glucose Metabolic Response to Combined Total Sleep Deprivation and Antidepressant Treatment in Geriatric Depression: A Randomized, Placebo Controlled Study

    OpenAIRE

    Smith, Gwenn S.; Reynolds, Charles F; Houck, Patricia R.; Dew, Mary Amanda; Ginsberg, Joshua; Ma, Yilong; Mulsant, Benoit H.; Bruce G Pollock

    2008-01-01

    A randomized, placebo controlled study was performed to evaluate whether the onset of the glucose metabolic effects of a selective serotonin reuptake inhibitor (paroxetine) would be accelerated by total sleep deprivation (TSD). Patients were randomly assigned to one of three groups: TSD and paroxetine treatment, TSD and two weeks of placebo followed by paroxetine treatment, or two weeks of paroxetine treatment. Sixteen elderly depressed patients who met DSM-IV criteria for major depressive di...

  17. Tuberculoma cerebral Cerebral tuberculoma

    OpenAIRE

    ELIZABETH CLARA BARROSO; TÂNIA REGINA BRÍGIDO DE OLIVEIRA; ANA MARIA DANTAS DO AMARAL; VALÉRIA GÓES FERREIRA PINHEIRO; ANA LÚCIA DE OLIVEIRA SOUSA

    2002-01-01

    Relata-se o caso de paciente com crises convulsivas de início recente. A tomografia computadorizada cerebral evidenciou imagem sugestiva de lesão expansiva metastática frontoparietal direita. A investigação de tumor primário ou outra doença foi negativa e o exame histopatológico do tecido cerebral diagnosticou tuberculoma. As convulsões foram controladas com a associação de hidantoína 300mg/dia ao esquema específico, utilizado por 18 meses. A tuberculose do sistema nervoso central representa ...

  18. One-year follow-up of neuropsychology, MRI, rCBF and glucose metabolism (rMRGlu) in cerebral microangiopathy

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, O.; Hellwig, D.; Schreckenberger, M.; Kaiser, H.-J.; Wagenknecht, G.; Setani, K.; Reinartz, P.; Zimny, M.; Buell, U. [Department of Nuclear Medicine, Technische Univ. Aachen (Germany); Schneider, R. [Department of Neurology, Technische Univ. Aachen (Germany); Mull, M. [Department of Neuroradiology, Technische Univ. Aachen (Germany); Ringelstein, E.-B. [Department of Neurology, Muenster Univ. (Germany)

    2000-07-01

    Background: MRI shows lacunar infarctions (LI), deep white matter lesions (DWML) and atrophy in cerebral microangiopathy, which is said to lead to vascular dementia. In a first trial series on 57 patients with confirmed pure cerebral microangiopathy (without concomitant macroangiopathy), neuropsychological impairment and (where present) brain atrophy correlated with decreased rCBF and rMRGlu. LI and DWML did not correlate with either neuropsychological impairment or decreased rCBF/rMRGlu. This study was done one year later to detect changes in any of the study parameters. Methods: 26 patients were re-examined for rCBF, rMRGlu, LI, DWML, atrophy and neuropsychological performance (7 cognitive, 3 mnestic, 4 attentiveness tests). Using a special head holder for exact repositioning, rCBF (SPECT) and rMRGlu (PET) were measured and imaged slice by slice. White matter/cortex were quantified using MRI-defined ROIs. Results: After one year the patients did not show significant decreases in rCBF or rMRGlu either in cortex or in white matter (p>0.05), nor did any patient show LI, DWML or atrophy changes on MRI. There were no significant neuropsychological decreases (p>0.05). (orig.) [German] Ziel: In der MRT zeigen sich bei zerebraler Mikroangiopathie (ZMA) lakunaere Infarkte (LI), Deep White Matter Lesions (DWML) und Atrophie (Atr). Die sogenannte vaskulaere Demenz wurde dabei hauptsaechlich auf die Laesionen der weissen Substanz zurueckgefuehrt. In einer ersten Untersuchungsreihe waren bei 57 Patienten mit gesicherter ZMA nur neuropsychologische Defizite (Nps) und, falls vorhanden, Atr als Grundlage fuer erniedrigte rCBF/rMRGlu-Werte zu eruieren, jedoch nicht LI/DWML. Es sollte geklaert werden, ob sich im Verlauf der Erkrankung nach einem Jahr Veraenderungen dieser Parameter ergeben. Methode: 26 Patienten wurden nach einem Jahr erneut neuropsychologisch untersucht (7 kognitive, 3 mnestrische, 4 Aufmerksamkeitstests). Mittels eines speziellen Kopfhalterungssystems wurden in

  19. Cerebral Palsy

    Science.gov (United States)

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  20. Malaria cerebral Cerebral malaria

    Directory of Open Access Journals (Sweden)

    Carlos Hugo Zapata Zapata

    2003-03-01

    Full Text Available La malaria Cerebral (MC es la complicación más frecuente de la malaria por P. falciparum; aproximadamente el 90% de las personas que la han padecido se recuperan completamente sin secuelas neurológicas. Aún no se conoce con claridad su patogénesis pero se han postulado cuatro hipótesis o mecanismos posibles: 1 citoadherencia y secuestro de glóbulos rojos parasitados en la microvasculatura cerebral; 2 formación de rosetas y aglutinación de glóbulos rojos parasitados; 3 producción de citoquinas y activación de segundos mensajeros y, 4 apertura de la barrera hematoencefálica. Sin embargo, queda un interrogante sin resolver aún: ¿qué proceso se lleva a cabo para que el parásito, desde el espacio microvascular, pueda interferir transitoriamente con la función cerebral? Recientemente se ha utilizado el precursor de la proteína b-Amiloide como un marcador de daño neuronal en MC; este precursor será de gran ayuda en futuras investigaciones realizadas en nuestro medio que aporten información para comprender la patogénesis de la MC. Is the most common complication of P. falciparum malaria; nearly 90% of people who have suffered CM can recover without neurological problems. Currently there are four hypotheses that explain pathogenesis of CM: cytoadherence and sequestering of parasitized red blood cells to cerebral capillaries; rosette formation and parasitized red blood cells agglutination; production of cytokines and activation of second messengers and opening of the blood-brain barrier. However the main question remains to be answered; how the host-parasite interaction in the vascular space interferes transiently with cerebral function? Recently, the beta amyloid precursor peptide has been employed as marker of neural injury in CM. It is expected that the beta amyloid precursor peptide will help to understand the pathogenesis of CM in complicated patients of endemic areas of Colombia.

  1. Glucose Tests

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Glucose Tests Share this page: Was this page helpful? ... the meaning of other test results. Fasting Blood Glucose Glucose Level Indication From 70 to 99 mg/ ...

  2. INTRACEREBROVENTRICULAR APPLICATION OF COMPETITIVE AND NONCOMPETITIVE NMDA ANTAGONISTS INDUCE SIMILAR EFFECTS UPON RAT HIPPOCAMPAL ELECTROENCEPHALOGRAM AND LOCAL CEREBRAL GLUCOSE-UTILIZATION

    NARCIS (Netherlands)

    BODDEKE, HWGM; WIEDERHOLD, KH; PALACIOS, JM

    1992-01-01

    In this study we have used electrophysiological and metabolic markers to investigate the effects of competitive and non-competitive NMDA antagonists in rats after central or peripheral administration. The non-competitive antagonist, MK-801, induced dose-dependent suppression of rat hippocampal EEG e

  3. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    Science.gov (United States)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  4. Investigations on the effects of ``Ecstasy`` on cerebral glucose metabolism: an 18-FDG PET study; Untersuchungen zum Einfluss von ``Ecstasy`` auf den zerebralen Glukosemetabolismus: eine 18-FDG-PET-Studie

    Energy Technology Data Exchange (ETDEWEB)

    Schreckenberger, M.; Sabri, O.; Arning, C.; Tuttass, T.; Schulz, G.; Kaiser, H.J.; Wagenknecht, G.; Buell, U. [Klinik fuer Nuklearmedizin, Universitaetsklinik, RWTH Aachen (Germany); Gouzoulis-Mayfrank, E.; Sass, H. [Klinik fuer Psychiatrie, Universitaetsklinikum, RWTH Aachen (Germany)

    1998-12-31

    Purpose: The aim of the present study was to determine the acute effects of the `Ecstasy` analogue MDE (3,4-methylendioxyethamphetamine) on the cerebral glucose metabolism (rMRGlu) of healthy volunteers. Method: In a randomised double-blind trial, 16 healthy volunteers without a history of drug abuse were examined with 18-FDG PET 110-120 minutes after oral administration of 2 mg/kg MDE (n=8) or placebo (n=8). Beginning two minutes prior to radiotracer injection, a constant cognitive stimulation was maintained for 32 minutes using a word repetition paradigm in order to ensure constant and comparable mental conditions during cerebral 18-FDG uptake. Individual brain anatomy was represented using T1-weighted 3D flash MRI, followed by manual regionalisation into 108 regions-of-interest and PET/MRI overlay. Absolute quantification of rMRGlu and comparison of glucose metabolism under MDE versus placebo were performed using Mann-Whitney U-test. Results: Absolute global MRGlu was not significantly changed under MDE versus placebo (MDE: 41,8{+-}11,1 {mu}mol/min/100 g, placebo: 50,1{+-}18,1 {mu}mol/min/100 g, p=0,298). The normalised regional metabolic data showed a significantly decreased rMRGlu in the bilateral frontal cortex: Left frontal posterior (-7.1%, p<0.05) and right prefrontal superior (-4.6%, p<0.05). On the other hand, rMRGlu was significantly increased in the bilateral cerebellum (right: +10.1%, p<0.05; left: +7.6%, p<0.05) and in the right putamen (+6.2%, p<0.05). Conclusions: The present study revealed acute neurometabolic changes under the `Ecstasy` analogon MDE indicating a fronto-striato-cerebellar dysbalance with parallels to other psychotropic substances and various endogenous psychoses respectively. (orig.) [Deutsch] Ziel: In der vorliegenden Studie sollte die Akutwirkung des `Ecstasy`-Analogons MDE (3,4-Methylendioxyethamphetamin) auf den zentralen Glukosemetabolismus (rMRGlu) gesunder Probanden untersucht werden. Methode: In einer randomisierten

  5. Early evaluation of cerebral metabolic rate of glucose (CMRglu) with {sup 18}F-FDG PET/CT and clinical assessment in idiopathic normal pressure hydrocephalus (INPH) patients before and after ventricular shunt placement: preliminary experience

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Maria Lucia; Lavalle, Mariadea; Leccisotti, Lucia; Giordano, Alessandro [Universita Cattolica del Sacro Cuore, Institute of Nuclear Medicine, Rome (Italy); Mangiola, Annunziato; De Bonis, Pasquale; Anile, Carmelo [Universita Cattolica del Sacro Cuore, Institute of Neurosurgery, Rome (Italy); Indovina, Luca [Universita Cattolica del Sacro Cuore, Institute of Physics, Rome (Italy); Marra, Camillo [Universita Cattolica del Sacro Cuore, Institute of Neurology, Rome (Italy); Pelliccioni, Armando [Istituto Nazionale per l' Assicurazione contro gli Infortuni sul Lavoro (INAIL), Rome (Italy)

    2012-02-15

    We evaluated the relationships between the cerebral metabolic rate of glucose (CMRglu) measured by dynamic {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and the clinical and neuropsychological assessment before and after the surgical procedure in idiopathic normal pressure hydrocephalus (INPH) patients. Eleven selected INPH patients underwent clinical assessment (modified Rankin scale, Krauss scale, Larsson categorization system and Stein-Langfitt scale), cognitive evaluation (Mini-Mental State Examination, MMSE) and dynamic {sup 18}F-FDG PET/CT scan 3 days before and 1 week after ventricular shunt placement. After shunting, the global CMRglu significantly increased (2.95 {+-} 0.44 vs 4.38 {+-} 0.68, p = 10{sup -7}) in all INPH patients with a mean percentage value of 48.7%. After shunting, no significant change was found in the Evans ratio whereas a significant decrease in all clinical scale scores was observed. Only a slight reduction in the MMSE was found. After shunting, a significant correlation between the global CMRglu value and clinical assessment was found (R {sup 2} = 0.75, p = 0.024); indeed all clinical scale scores varied (decreasing) and the CMRglu value also varied (increasing) in all INPH patients. Our preliminary data show that changes in the CMRglu are promptly reversible after surgery and that there is a relationship between the early metabolic changes and clinical symptoms, independently from the simultaneous changes in the ventricular size. The remarkable and prompt improvement in the global CMRglu and in symptoms may also have important implications for the current concept of ''neuronal plasticity'' and for the cells' reactivity in order to recover their metabolic function. (orig.)

  6. Rat Models of Diet-Induced Obesity and High Fat/Low Dose Streptozotocin Type 2 Diabetes: Effect of Reversal of High Fat Diet Compared to Treatment with Enalapril or Menhaden Oil on Glucose Utilization and Neuropathic Endpoints

    OpenAIRE

    Amey Holmes; Coppey, Lawrence J.; Eric P. Davidson; Yorek, Mark A.

    2015-01-01

    We examined whether reversal of high fat diet, stimulating weight loss, compared to two treatments previously shown to have beneficial effects, could improve glucose utilization and peripheral neuropathy in animal models of obesity and type 2 diabetes. Rats were fed a high fat diet and treated with a low dose of streptozotocin to create models of diet induced obesity or type 2 diabetes, respectively. Afterwards, rats were transferred to a normal diet or treated with enalapril or dietary enric...

  7. Tuberculoma cerebral Cerebral tuberculoma

    Directory of Open Access Journals (Sweden)

    ELIZABETH CLARA BARROSO

    2002-01-01

    Full Text Available Relata-se o caso de paciente com crises convulsivas de início recente. A tomografia computadorizada cerebral evidenciou imagem sugestiva de lesão expansiva metastática frontoparietal direita. A investigação de tumor primário ou outra doença foi negativa e o exame histopatológico do tecido cerebral diagnosticou tuberculoma. As convulsões foram controladas com a associação de hidantoína 300mg/dia ao esquema específico, utilizado por 18 meses. A tuberculose do sistema nervoso central representa 5-15% das formas extrapulmonares e é reconhecida como de alta letalidade. Apresentação tumoral como a relatada é rara, particularmente em imunocompetentes. Quando tratada, pode ter bom prognóstico e deve entrar sempre no diagnóstico diferencial de massas cerebrais.It is reported a case of a previously healthy man with seizures of sudden onset. A contrast head computerized tomogram (CT showed a right frontoparietal expanding lesion suggesting to be metastatic. No prior disease was found on investigation. The histologic exam of the brain revealed tuberculoma. The seizures were controlled with Hidantoin 300 mg/day and antituberculosis chemotherapy for 18 months. Central nervous system tuberculosis (5-15% of the extrapulmonary forms is highly lethal. The case reported herein is specially rare in immunocompetent patients. It may have good prognosis and should be considered in the differential diagnosis of brain tumours.

  8. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  9. Rat Models of Diet-Induced Obesity and High Fat/Low Dose Streptozotocin Type 2 Diabetes: Effect of Reversal of High Fat Diet Compared to Treatment with Enalapril or Menhaden Oil on Glucose Utilization and Neuropathic Endpoints.

    Science.gov (United States)

    Holmes, Amey; Coppey, Lawrence J; Davidson, Eric P; Yorek, Mark A

    2015-01-01

    We examined whether reversal of high fat diet, stimulating weight loss, compared to two treatments previously shown to have beneficial effects, could improve glucose utilization and peripheral neuropathy in animal models of obesity and type 2 diabetes. Rats were fed a high fat diet and treated with a low dose of streptozotocin to create models of diet induced obesity or type 2 diabetes, respectively. Afterwards, rats were transferred to a normal diet or treated with enalapril or dietary enrichment with menhaden oil for 12 weeks. Obesity and to a greater extent type 2 diabetes were associated with impaired glucose utilization and peripheral neuropathy. Placing obese rats on a normal diet improved glucose utilization. Steatosis but not peripheral neuropathy was improved after placing obese or diabetic rats on a normal diet. Treating obese and diabetic rats with enalapril or a menhaden oil enriched diet generally improved peripheral neuropathy endpoints. In summary, dietary improvement with weight loss in obese or type 2 diabetic rats was not sufficient to correct peripheral neuropathy. These results further stress the need for discovery of a comprehensive treatment for peripheral neuropathy.

  10. Glucose Monitoring During Pregnancy

    OpenAIRE

    HAWKINS, J. SETH

    2010-01-01

    Self-monitoring of blood glucose in women with mild gestational diabetes has recently been proven to be useful in reducing the rates of fetal overgrowth and gestational weight gain. However, uncertainty remains with respect to the optimal frequency and timing of self-monitoring. A continuous glucose monitoring system may have utility in pregnant women with insulin-treated diabetes, especially for those women with blood sugars that are difficult to control or who experience nocturnal hypoglyce...

  11. Cerebral Palsy

    Science.gov (United States)

    ... 1 • 2 • 3 For Teens For Kids For Parents MORE ON THIS TOPIC Cerebral Palsy: Keith's Story Physical Therapy I Have Cerebral Palsy. Can I Babysit? Body Image and Self-Esteem Contact Us Print Resources Send to a friend ...

  12. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    International Nuclear Information System (INIS)

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media

  13. Cerebral palsy.

    Science.gov (United States)

    Graham, H Kerr; Rosenbaum, Peter; Paneth, Nigel; Dan, Bernard; Lin, Jean-Pierre; Damiano, Diane L; Becher, Jules G; Gaebler-Spira, Deborah; Colver, Allan; Reddihough, Dinah S; Crompton, Kylie E; Lieber, Richard L

    2016-01-01

    Cerebral palsy is the most common cause of childhood-onset, lifelong physical disability in most countries, affecting about 1 in 500 neonates with an estimated prevalence of 17 million people worldwide. Cerebral palsy is not a disease entity in the traditional sense but a clinical description of children who share features of a non-progressive brain injury or lesion acquired during the antenatal, perinatal or early postnatal period. The clinical manifestations of cerebral palsy vary greatly in the type of movement disorder, the degree of functional ability and limitation and the affected parts of the body. There is currently no cure, but progress is being made in both the prevention and the amelioration of the brain injury. For example, administration of magnesium sulfate during premature labour and cooling of high-risk infants can reduce the rate and severity of cerebral palsy. Although the disorder affects individuals throughout their lifetime, most cerebral palsy research efforts and management strategies currently focus on the needs of children. Clinical management of children with cerebral palsy is directed towards maximizing function and participation in activities and minimizing the effects of the factors that can make the condition worse, such as epilepsy, feeding challenges, hip dislocation and scoliosis. These management strategies include enhancing neurological function during early development; managing medical co-morbidities, weakness and hypertonia; using rehabilitation technologies to enhance motor function; and preventing secondary musculoskeletal problems. Meeting the needs of people with cerebral palsy in resource-poor settings is particularly challenging. PMID:27188686

  14. Relationship Between HbAlc Levels and Cerebral Arterial Lesions in Patients With Ischemic Stroke With Different Glucose Metabolism%不同糖代谢状况缺血性脑卒中患者HbAlc水平与脑动脉病变程度的关系

    Institute of Scientific and Technical Information of China (English)

    詹红艳; 杨红英; 袁莉; 牛春华; 王丽英; 陈丽丽

    2015-01-01

    ObjectiveTo study the relationship between the level of glycosylated hemoglobin and cerebral arterial lesions in patients with ischemic stroke with different glucose metabolism.Methods 120 cases of ischemic stroke patients were chosen from June 2013 to June 2015 in Tangshan workers hospital, according to glucose metabolism is divided into normal group (n=20) and abnormal group (n=65), diabetes group (n=35). To analysis of HbA1c level, risk factors for cerebral artery disease, cerebral artery lesion sites and count of the three groups were compared. ResultsThere were no significant differences in gender, hypertension, smoking, TG, Hcy among the three groups (P>0.05), the differences were statistically signiifcant with alcohol, coronary heart disease, TC, HDL-C, HbAlc, LDL-C In the three groups of patients (P<0.05). In the patients with abnormal glucose metabolism and diabetes mellitus, cerebral blood vessel stenosis was dominated by moderate and severe cerebral artery stenosis, and the main was the main and the most affected (P<0.05).Conclusion Different levels of glucose metabolism affect cerebral vascular lesions and HbAlc level of cerebral artery stenosis, the location of the lesion and lesion count is affect brain artery disease are important risk factors.%目的研究不同糖代谢状况缺血性脑卒中患者的糖化血红蛋白水平与脑动脉病变程度的关系。方法选取2013年6月~2015年6月唐山市工人医院收治的缺血性脑卒中患者120例,根据糖代谢情况分为正常组(n=20)、异常组(n=65)、糖尿病组(n=35),比较三组的一般资料、分析HbAlc水平、脑动脉病变危险因素、脑动脉病变部位及支数。结果三组患者性别、高血压、吸烟、TG、Hcy等方面比较,差异无统计学意义(P>0.05),三组患者中饮酒、冠心病、HbAlc、TC、HDL-C、LDL-C比较,差异有统计学意义(P<0.05);三组患者中,正常组脑血管狭窄以轻度为主,

  15. Neuronal glucose but not lactate utilization is positively correlated with NMDA-induced neurotransmission and fluctuations in cytosolic Ca2+ levels

    DEFF Research Database (Denmark)

    Bak, Lasse K; Walls, Anne B; Schousboe, Arne;

    2009-01-01

    release in cultured cerebellar neurons from mice. Pulses of NMDA at 30, 100, and 300 microM, leading to a progressive increase in both cytosolic [Ca2+] and release of glutamate, increased uptake and metabolism of glucose but not that of lactate as evidenced by mass spectrometric measurement of 13C...

  16. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis.

    Science.gov (United States)

    Schatschneider, Sarah; Huber, Claudia; Neuweger, Heiko; Watt, Tony Francis; Pühler, Alfred; Eisenreich, Wolfgang; Wittmann, Christoph; Niehaus, Karsten; Vorhölter, Frank-Jörg

    2014-10-01

    The well-studied plant pathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) synthesizes the biotechnologically important polysaccharide xanthan gum, which is also regarded as a virulence factor in plant interactions. In Xcc, sugars like glucose are utilized as a source to generate energy and biomass for growth and pathogenicity. In this study, we used [1-(13)C]glucose as a tracer to analyze the fluxes in the central metabolism of the bacterium growing in a minimal medium. (13)C-Metabolic flux analysis based on gas chromatography-mass spectrometry (GC-MS) confirmed the prevalent catabolic role of the Entner-Doudoroff pathway. Comparative nuclear magnetic resonance (NMR)-based isotopologue profiling of a mutant deficient in glycolysis gave evidence for a moderate flux via glycolysis in the wild-type. In addition to reconfirming the Entner-Doudoroff pathway as a catabolic main route, this approach affirmed a numerically minor but important flux via the pentose phosphate pathway.

  17. Cerebral hypoxia

    Science.gov (United States)

    ... the veins ( deep vein thrombosis ) Lung infections (pneumonia) Malnutrition When to Contact a Medical Professional Cerebral hypoxia ... References Bernat JL. Coma, vegetative state, and brain death. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  18. Cerebral Paragonimiasis.

    Science.gov (United States)

    Miyazaki, I

    1975-01-01

    The first case of cerebral paragonimiasis was reported by Otani in Japan in 1887. This was nine years after Kerbert's discovery of the fluke in the lungs of Bengal tigers and seven years after a human pulmonary infection by the fluke was demonstrated by Baelz and Manson. The first case was a 26-year-old man who had been suffering from cough and hemosputum for one year. The patient developed convulsive seizures with subsequent coma and died. The postmortem examination showed cystic lesions in the right frontal and occipital lobes. An adult fluke was found in the occipital lesion and another was seen in a gross specimen of normal brain tissue around the affected occipital lobe. Two years after Otani's discovery, at autopsy a 29-year-old man with a history of Jacksonian seizure was reported as having cerebral paragonimiasis. Some time later, however, it was confirmed that the case was actually cerebral schistosomiasis japonica. Subsequently, cases of cerebral paragonimiasis were reported. However, the majority of these cases were not confirmed histologically. It was pointed out that some of these early cases were probably not Paragonimus infection. After World War II, reviews as well as case reports were published. Recently, investigations have been reported from Korea, with a clinicla study on 62 cases of cerebral paragonimiasis seen at the Neurology Department of the National Medical Center, Seoul, between 1958 and 1964. In 1971 Higashi described a statistical study on 105 cases of cerebral paragonimiasis that had been treated surgically in Japan.

  19. Cerebral palsy - resources

    Science.gov (United States)

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/disorders/cerebral_palsy/cerebral_palsy. ...

  20. Cerebral Palsy (For Parents)

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Cerebral Palsy KidsHealth > For Parents > Cerebral Palsy Print A A ... kids who are living with the condition. About Cerebral Palsy Cerebral palsy is one of the most common ...

  1. Utility of fasting plasma glucose test as screening tool for gestational diabetes mellitus based on International Association of the Diabetes and Pregnancy Study Group criteria

    OpenAIRE

    Amita Sharma; Alpana Agrawal; Manisha Goel; Manisha Gupta

    2016-01-01

    Background: The International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria have recently been endorsed by various bodies for screening and diagnosing Gestational Diabetes (GDM). The present study was done to diagnose gestational diabetes (GDM) by the International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria in a North Indian Population and to evaluate the performance of fasting plasma glucose (FPG) in screening and diagnosis of GDM. Methods:...

  2. Simultaneous measurement of blood flow and glucose metabolism by autoradiographic techniques

    International Nuclear Information System (INIS)

    A double tracer autoradiographic technique using 131I-iodo-antipyrine and 14C-deoxyglucose is presented for the simultaneous measurement of blood flow and cerebral glucose utilization in the same animal. 131I is a gamma emitting isotope with a half life of 8.06 days and can be detected with adequate resolution on standard autoradiographic films. Autoradiograms are made before and after decay of 131I; the time interval between the 2 exposures and the concentration of the 2 tracers is adjusted to avoid significant cross-contamination. In this way, 2 film exposures are obtained which can be processed quantitatively like single tracer autoradiograms. The validity of the method for the investigation of local coupling of flow and metabolism was tested under various physiological and pathophysiological conditions. Coupling was tight in barbiturate-anesthetized healthy animals, but not under halothane anesthesia where uncoupling occurred in various subcortical structures. Focal seizures induced by topical application of penicillin on the cortical surface led to a coupled increase of metabolism and flow in thalamic relay nuclei but not at the site of penicillin administration where increased glucose utilization was not accompanied by similar increase in blood flow. Both coupled and uncoupled increases in local glucose utilization were observed in spreading depression and in circumscribed areas of experimental brain tumors. The results obtained demonstrate that double tracer autoradiography allows allows the very precise local assessment of cerebral blood flow and glucose utilization, and, therefore, is particularly suited to the study of regional coupling processes under various experimental conditions

  3. Utilization of highly purified single wall carbon nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Goornavar, Virupaxi [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States); Jeffers, Robert [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Luna Innovations, Inc., 706 Forest St., Suite A, Charlottesville, VA 22902 (United States); Biradar, Santoshkumar [RICE University, 6100 Main St, Houston, TX 77251 (United States); Ramesh, Govindarajan T., E-mail: gtramesh@nsu.edu [Molecular Toxicology Laboratory, Center for Biotechnology and Biomedical Sciences, Norfolk State University, 700 Park Avenue, Norfolk, VA 23504 (United States); Center for Materials Research, Norfolk State University, 555 Park Avenue, Norfolk, VA 23504 (United States)

    2014-07-01

    In this work we report the improved performance an electrochemical glucose sensor based on a glassy carbon electrode (GCE) that has been modified with highly purified single wall carbon nanotubes (SWCNTs) dispersed in polyethyleneimine (PEI), polyethylene glycol (PEG) and polypyrrole (PPy). The single wall carbon nanotubes were purified by both thermal and chemical oxidation to achieve maximum purity of ∼ 98% with no damage to the tubes. The SWCNTs were then dispersed by sonication in three different organic polymers (1.0 mg/ml SWCNT in 1.0 mg/ml of organic polymer). The stable suspension was coated onto the GCE and electrochemical characterization was performed by Cyclic Voltammetry (CV) and Amperometry. The electroactive enzyme glucose oxidase (GOx) was immobilized on the surface of the GCE/(organic polymer–SWCNT) electrode. The amperometric detection of glucose was carried out at 0.7 V versus Ag/AgCl. The GCE/(SWCNT–PEI, PEG, PPY) gave a detection limit of 0.2633 μM, 0.434 μM, and 0.9617 μM, and sensitivities of 0.2411 ± 0.0033 μA mM{sup −1}, r{sup 2} = 0.9984, 0.08164 ± 0.001129 μA mM{sup −1}, r{sup 2} = 0.9975, 0.04189 ± 0.00087 μA mM{sup −1}, and r{sup 2} = 0.9944 respectively and a response time of less than 5 s. The use of purified SWCNTs has several advantages, including fast electron transfer rate and stability in the immobilized enzyme. The significant enhancement of the SWCNT modified electrode as a glucose sensor can be attributed to the superior conductivity and large surface area of the well dispersed purified SWCNTs. - Highlights: • Purification method employed here use cheap and green oxidants. • The method does not disrupt the electronic structure of nanotubes. • This method removes nearly < 2% metallic impurities. • Increases the sensitivity and performance of glassy carbon electrode • This system can detect as low as 0.066 μM of H{sub 2}O{sub 2} and 0.2633 μM of glucose.

  4. Cerebral perfusion, oxygenation and metabolism during exercise in young and elderly individuals

    DEFF Research Database (Denmark)

    Fisher, James P; Hartwich, Doreen; Seifert, Thomas;

    2013-01-01

    )), glucose and lactate across the brain. The molar ratio between the cerebral uptake of O(2) versus carbohydrate (O(2)-carbohydrate index; O(2) / [glucose + 0.5 lactate]; OCI), the cerebral metabolic rate of O(2) (CMRO(2)) and changes in mitochondrial O(2) tension (P(mito)O(2)) were calculated. W...

  5. Sinus thrombectomy for purulent cerebral venous sinus thrombosis utilizing a novel combination of the Trevo stent retriever and the Penumbra ACE aspiration catheter: the stent anchor with mobile aspiration technique.

    Science.gov (United States)

    Mascitelli, Justin R; Pain, Margaret; Zarzour, Hekmat K; Baxter, Peter; Ghatan, Saadi; Mocco, J

    2016-06-01

    Intracranial complications of sinusitis are rare but life threatening. We present a case of a 17-year-old woman with sinusitis who deteriorated over the course of 12 days from subdural empyema and global purulent cerebral venous sinus thrombosis. The patient was managed with surgery and mechanical thrombectomy utilizing a novel 'stent anchor with mobile aspiration technique', in which a Trevo stent retriever (Stryker) was anchored in the superior sagittal sinus (SSS) while a 5 MAX ACE reperfusion catheter (Penumbra) was passed back and forth from the SSS to the sigmoid sinus with resultant dramatic improvement in venous outflow. The patient was extubated on postoperative day 3 and was discharged with minimal lower extremity weakness on postoperative day 11. This is the first report using the Trevo stent retriever for sinus thrombosis. It is important to keep these rare complications in mind when evaluating patients with oral and facial infections. PMID:26019186

  6. Tuberculoma cerebral

    OpenAIRE

    BARROSO ELIZABETH CLARA; OLIVEIRA TÂNIA REGINA BRÍGIDO DE; AMARAL ANA MARIA DANTAS DO; PINHEIRO VALÉRIA GÓES FERREIRA; SOUSA ANA LÚCIA DE OLIVEIRA

    2002-01-01

    Relata-se o caso de paciente com crises convulsivas de início recente. A tomografia computadorizada cerebral evidenciou imagem sugestiva de lesão expansiva metastática frontoparietal direita. A investigação de tumor primário ou outra doença foi negativa e o exame histopatológico do tecido cerebral diagnosticou tuberculoma. As convulsões foram controladas com a associação de hidantoína 300mg/dia ao esquema específico, utilizado por 18 meses. A tuberculose do sistema nervoso central representa ...

  7. 帕金森病合并轻度认知障碍的危险因素和脑葡萄糖代谢模式%Risk factors and cerebral glucose metabolism of mild cognitive impairment in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    张璇; 冯涛; 刘萍; 王雪梅; 陈彪

    2010-01-01

    目的 研究帕金森病(PD)合并轻度认知障碍的危险因素和脑葡萄糖代谢模式.方法 对101例非痴呆PD患者应用蒙特利尔认知评测量表进行认知评测并分类为轻度认知障碍组(PD-MCI组)和非认知障碍组(PD-NC组),分别用统一PD评定量表(UPDRS)、Hoher-Yahr分期、汉密尔顿抑郁量表(HAMD)等对2组患者进行比较.对2组中Hohen-Yahr Ⅰ期患者应用18F-脱氧葡萄糖(18F-FDG)正电子发射断层扫描(PET)进行脑部代谢检测,以皮层各感兴趣区与小脑半球FDG摄取强度比值作为指标进行分析和比较.结果 受试者中有77例(76.2%)合并轻度认知障碍.PD-MCI组的UPDRS第一(精神、行为和情绪)、二(日常生活活动能力)、三(运动检查)部分评分[(2.48±1.51)分,(10.71±4.88)分,(22.31±12.70)分]均高于PD-NC组[(1.65±1.29)分,(8.15±2.20)分,(15.92±7.56)分](P均<0.05).PD-MCI组的抑郁评分[(11.16±7.67)分与(6.50±4.02)分]均高于PD-NC组(P均<0.05),但教育程度低于PD-NC组(P<0.05).PD-MCI组在额叶、顶叶和枕叶的FDG摄取指数均低于PD-NC组(P均<0.05).结论 PD合并轻度认知障碍与运动障碍和抑郁等因素相关.脑皮层广泛代谢障碍可能是其病理生理基础.%Objective To investigate the risk factors of Parkinson's disease(PD)with mild cognitive impairment and mode of cerebral glucose metabolism. Methods One hundred and one non-dementia PD patients were assessed with Montreal Cognitive Assessment(MoCA)and divided into the PD with mild cognitive impairment (PD-MCI)group and the PD non-cognitive impairment(PD-NC)group. The demographic details, clinical features,Unified Pakinson's Disease Rating Scale(UPDRS), Hohen-Yahr rank and Hamilton Depression Scale(HAMD)were compared between the two groups. Patients in Hohen-Yahr stage 1 underwent positron emission tomography(PET)with 18F-fluorodeoxyglucose(18F-FDG)to show glucose metabolism. Results Seventy-seven(74. 3%)PD patients had mild cognitive

  8. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and...... gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression...... on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression....

  9. Cerebral Arteriosclerosis

    Science.gov (United States)

    ... the brain can cause a hemorrhagic stroke. Both types of stroke can be fatal. Cerebral arteriosclerosis is also related to a condition known as vascular dementia, in which small, symptom-free strokes cause cumulative damage and death to neurons (nerve cells) in the brain. Personality changes in ...

  10. Effects of Temperature on Fructose and Glucose Utilization during Ethanol Fermentation by S. cerevisiae GJ2008%温度对酒精酵母GJ2008果糖与葡萄糖利用的影响

    Institute of Scientific and Technical Information of China (English)

    左松; 伍时华; 张健; 赵东玲; 黄翠姬

    2014-01-01

    up drastically due to the competitive inhibition released by glucose. The main reason why fructose utilization stuck we could explain is the competitive inhibition produced by the presence of glucose during the late stage of fructose and glucose co-fermentation. Meanwhile, fructose was less strongly affected by temperature decrease and lower temperature could relieve sluggish phenomenon. The optimum temperature for maximum ethanol production in YPDF medium was at 28℃ (fermenting time was 28 h) with ethanol yield of 3.89 g/L•h. Those data are important for industrial assessment of sugarcane fermentation.

  11. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats

    Energy Technology Data Exchange (ETDEWEB)

    Porrino, L.J.; Domer, F.R.; Crane, A.M.; Sokoloff, L.

    1988-05-01

    The 2-(/sup 14/C)deoxyglucose method was used to examine the effects of acute intravenous administration of cocaine on local cerebral glucose utilization in rats. These effects were correlated with the effects of cocaine on locomotor activity assessed simultaneously in the same animals. At the lowest dose of cocaine, 0.5 mg/kg (1.47 mumol/kg), alterations in glucose utilization were restricted to the medial prefrontal cortex and nucleus accumbens. Metabolic activity at 1.0 mg/kg (2.9 mumol/kg) was altered in these structures, but in the substantia nigra reticulata and lateral habenula as well. The selectivity of cocaine's effects at low doses demonstrates the particular sensitivity of these structures to cocaine's actions in the brain. In contrast, 5.0 mg/kg (14.7 mumol/kg) produced widespread changes in glucose utilization, particularly in the extrapyramidal system. Only this dose significantly increased locomotor activity above levels in vehicle-treated controls. Rates of glucose utilization were positively correlated with locomotor activity in the globus pallidus, substantia nigra reticulata, and subthalamic nucleus, and negatively correlated in the lateral habenula.

  12. Cerebral carbohydrate cost of physical exertion in humans

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Ogoh, Shigehiko; Dawson, Ellen A;

    2004-01-01

    Above a certain level of cerebral activation the brain increases its uptake of glucose more than that of O(2), i.e., the cerebral metabolic ratio of O(2)/(glucose + 12 lactate) decreases. This study quantified such surplus brain uptake of carbohydrate relative to O(2) in eight healthy males who...... to exhaustion (15.8 +/- 1.7 min; P metabolic ratio decreased to an equally low level (3.2 +/- 0.3) and the surplus uptake of glucose equivalents was not significantly different (7 +/- 1 mmol; P = 0.08). A time-dependent cerebral surplus uptake of carbohydrate was not substantiated...... with beta(1)-adrenergic blockade by metoprolol. Exhaustive exercise (24.8 +/- 6.1 min; mean +/- SE) decreased the cerebral metabolic ratio from a resting value of 5.6 +/- 0.2 to 3.0 +/- 0.4 (P

  13. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Fisher, James P; Young, Colin N;

    2010-01-01

    Brain blood vessels contain muscarinic receptors that are important for cerebral blood flow (CBF) regulation, but whether a cholinergic receptor mechanism is involved in the exercise-induced increase in cerebral perfusion or affects cerebral metabolism remains unknown. We evaluated CBF and cerebral...... metabolism (from arterial and internal jugular venous O(2), glucose and lactate differences), as well as the middle cerebral artery mean blood velocity (MCA V(mean); transcranial Doppler ultrasound) during a sustained static handgrip contraction at 40% of maximal voluntary contraction (n = 9) and the MCA V...... abolished by glycopyrrolate (P perfusion without affecting the cerebral metabolic rate for oxygen....

  14. 草鱼对葡萄糖和淀粉作为能源的利用研究%Studies on the Utilization of Glucose and Starch as an Energy Source of Grass Carp

    Institute of Scientific and Technical Information of China (English)

    田丽霞; 刘永坚; 刘栋辉; 梁桂英; 赵小奎

    2001-01-01

    A 10-week growth trial and an isotope experiment were conducted to study the carbohydarte utilization by grass carp. The outcomings showed that fish fed glucose diet had significantly (P<0.05) higher relative growth rate, feed efficiency and protein efficiency ratio than those fed starch diet and fish fed 14C-glucose exhaled extraordinarily more 14CO2 every 2 hours winthin 24 hours than those fed 14C-starch. The results suggested that glucose appear to be a more excellent energy source than starch in grass carp.%通过10周生长实验和同位素示踪实验探讨草鱼对不同结构糖的利用.生长实验结果显示,草鱼摄食以葡萄糖作为糖源的饲料后其相对生长率、饲料效率、蛋白质效率均显著高于摄食以淀粉作为糖源的饲料组.同位素示踪实验结果显示,草鱼灌喂14C-标记葡萄糖饲料后24 h内每2小时间隔内呼出的14CO2放射活度比均高于灌喂14C-标记淀粉饲料组.说明草鱼对于葡萄糖作为能源的利用优于对淀粉作为能源的利用.

  15. Perioperative Glucose Control in Neurosurgical Patients

    Directory of Open Access Journals (Sweden)

    Daniel Agustín Godoy

    2012-01-01

    Full Text Available Many neurosurgery patients may have unrecognized diabetes or may develop stress-related hyperglycemia in the perioperative period. Diabetes patients have a higher perioperative risk of complications and have longer hospital stays than individuals without diabetes. Maintenance of euglycemia using intensive insulin therapy (IIT continues to be investigated as a therapeutic tool to decrease morbidity and mortality associated with derangements in glucose metabolism due to surgery. Suboptimal perioperative glucose control may contribute to increased morbidity, mortality, and aggravate concomitant illnesses. The challenge is to minimize the effects of metabolic derangements on surgical outcomes, reduce blood glucose excursions, and prevent hypoglycemia. Differences in cerebral versus systemic glucose metabolism, time course of cerebral response to injury, and heterogeneity of pathophysiology in the neurosurgical patient populations are important to consider in evaluating the risks and benefits of IIT. While extremes of glucose levels are to be avoided, there are little data to support an optimal blood glucose level or recommend a specific use of IIT for euglycemia maintenance in the perioperative management of neurosurgical patients. Individualized treatment should be based on the local level of blood glucose control, outpatient treatment regimen, presence of complications, nature of the surgical procedure, and type of anesthesia administered.

  16. 糖耐量异常对急性脑梗死患者血浆Hcy和血清hs-CRP水平的影响%The Influence of Abnormal Glucose Tolerance on the Levels of Plasma Homocysteine and Serum High-sensitivity C-reactive Protein in Patients with Acute Cerebral Infarction(ACI)

    Institute of Scientific and Technical Information of China (English)

    赵红东; 陆敏; 唐冰

    2012-01-01

    Objective To observe the influence of abnormal glucose tolerance on the levels of homocysteine and high-sensitivity C-reactive protein in patients with acute cerebral infarction( AGI). Methods 756 patients with AGI were divided into normal glucose tolerance group (NGT, 33 leases) , abnormal glucose tolerance group(IGT,142cases) ,and diabetes mellitus group (DM,283 scase) ac-cording to the result of oral glucose tolerance test( OGTT). The serum levels of Hcy and hs-GRP were measured in 24 hours after ad-mission. Result The both levels of Hey and hs-GRP in IGT group(19.17 9.35juno]/L,20.46 10.56μmol/L) and DM group (8.0 2.9 mg/L,7.7 2.3 mg/L) were higher than the NGT group with no difference between each other. Conclusion The levels of Hey and hs-GRP in patients with AGI and abnormal glucose tolerance rise significantly,which indicate the presence of chronic low-grade inflammation and atherosclerosis in the stage of abnormal glucose tolerance. The results showed abnormal glucose tolerance is the risk factor of atherosclerosis as diabetes mellitus,and the OGTT test is valuable in screening risk factors of AGI and stroke prevention.%目的:观察糖耐量异常对急性脑梗死(acute cerebral infarction,ACI)患者的同型半胱氨酸(Hcy)、超敏C反应蛋白(hs-CRP)水平的影响.方法:756例ACI患者按葡萄糖耐量试验(OGTT)结果分为糖耐量正常组(NGT,331例)、单纯性糖耐量异常组(IGT,142例)、2型糖尿病组(DM2,283例).在入院24h之内测定血清Hcy、hs-CRP水平并进行组间比较.结果:IGT组及DM2组的Hcy水平(19.17±9.35)μmol/L、(20.46±10.56)μmol/L以及hs-CRP水平(8.0±2.9)mg/L、(7.7±2.3)mg/L明显高于NGT组(16.17±7.35)μmol/L、(3.5±1.2)mg/L.IGT组及DM2组两组之间的Hcy、hs-CRP水平差异均无统计学意义(P>0.05、P>0.05).结论:单纯性糖耐量异常的ACI患者血清Hcy、hs-CRP水平明显升高,表明在糖耐量异常阶段,已经出现了慢性低水平炎症和动脉粥样硬化的发生.提

  17. Employees with Cerebral Palsy

    Science.gov (United States)

    ... Resources Home | Accommodation and Compliance Series: Employees with Cerebral Palsy (CP) By Eddie Whidden, MA Preface Introduction Information ... SOAR) at http://AskJAN.org/soar. Information about Cerebral Palsy (CP) What is CP? Cerebral palsy is a ...

  18. Cerebral trypanosomiasis and AIDS

    Directory of Open Access Journals (Sweden)

    Antunes Apio Claudio Martins

    2002-01-01

    Full Text Available A 36 year-old black female, complaining of headache of one month's duration presented with nausea, vomiting, somnolence, short memory problems, loss of weight, and no fever history. Smoker, intravenous drugs abuser, promiscuous lifestyle. Physical examination: left homonimous hemianopsia, left hemiparesis, no papilledema, diffuse hyperreflexia, slowness of movements. Brain CT scan: tumor-like lesion in the splenium of the corpus calosum, measuring 3.5 x 1.4 cm, with heterogeneous enhancing pattern, sugesting a primary CNS tumor. Due to the possibility of CNS infection, a lumbar puncture disclosed an opening pressure of 380 mmH(20; 11 white cells (lymphocytes; glucose 18 mg/dl (serum glucose 73 mg/dl; proteins 139 mg/dl; presence of Trypanosoma parasites. Serum Elisa-HIV tests turned out to be positive. Treatment with benznidazole dramatically improved clinical and radiographic picture, but the patient died 6 weeks later because of respiratory failure. T. cruzi infection of the CNS is a rare disease, but we have an increasing number of cases in HIV immunecompromised patients. Diagnosis by direct observation of CSF is uncommon, and most of the cases are diagnosed by pathological examination. It is a highly lethal disease, even when properly diagnosed and treated. This article intends to include cerebral trypanosomiasis in the differential diagnosis of intracranial space-occupying lesions, especially in immunecompromised patients from endemic regions.

  19. Glucose allostasis

    DEFF Research Database (Denmark)

    Stumvoll, Michael; Tataranni, P Antonio; Stefan, Norbert;

    2003-01-01

    concentration assumed to remain constant along the hyperbola. Conceivably, glucose is one of the signals stimulating AIR in response to decreasing M. Hypothetically, as with any normally functioning feed-forward system, AIR should not fully compensate for worsening M, since this would remove the stimulus...... (insulin resistance), we propose to use the term "glucose allostasis." Allostasis (stability through change) ensures the continued homeostatic response (stability through staying the same) to acute stress at some cumulative costs to the system. With increasing severity and over time, the allostatic load...

  20. Is cerebral glucose metabolism related to blood-brain barrier dysfunction and intrathecal IgG synthesis in Alzheimer disease?: A 18F-FDG PET/CT study.

    Science.gov (United States)

    Chiaravalloti, Agostino; Fiorentini, Alessandro; Francesco, Ursini; Martorana, Alessandro; Koch, Giacomo; Belli, Lorena; Torniolo, Sofia; Di Pietro, Barbara; Motta, Caterina; Schillaci, Orazio

    2016-09-01

    The aim of this study was to investigate the relationships between blood-brain barrier (BBB) dysfunction, intrathecal IgG synthesis, and brain glucose consumption as detectable by means of serum/cerebrospinal fluid (CSF) albumin index (Qalb) and IgG index [(CSF IgG/serum IgG) × Serum albumin/CSF albumin)] and 2-deoxy-2-(F) fluoro-D-glucose (F-FDG) positron emission tomography/computed tomography (PET/CT) in a selected population affected by Alzheimer disease (AD). The study included 134 newly diagnosed AD patients according to the NINCDS-ADRDA criteria. The mean (±SD) age of the patients was 70 (±6) years; 60 were male and 64 were female. Mini mental State Examination was equal to 18.9 (±7.2). All patients underwent a CSF assay and magnetic resonance before F-FDG PET scanning. The relationships were evaluated by means of statistical parametric mapping (SPM8). We found a significant negative correlation between the increase of Qalb and F-FDG uptake in the Brodmann Area 42 and 22 that corresponds to the left superior temporal gyrus, with higher Qalb values being related to a reduced glucose consumption in these areas. No significant relationships have been found between brain glucose consumption and IgG index. The results of our study suggest that BBB dysfunction is related to reduction of cortical activity in the left temporal cortex in AD subjects. PMID:27631200

  1. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.;

    2002-01-01

    . Global cerebral blood flow at rest and during exercise on a bicycle ergometer was measured by the Kety-Schmidt technique. Cerebral metabolic rates of oxygen, glucose, and lactate were calculated by the Fick principle. Cerebral function was assessed by a computer-based measurement of reaction time...... and cerebral metabolic rates of oxygen and glucose also remained unchanged, whereas cerebral metabolic rates of lactate increased slightly but nonsignificantly at high altitude during exercise compared with high altitude at rest. Reaction time was unchanged. The data indicate that cerebral blood flow......The authors investigated the effect of acclimatization to high altitude on cerebral blood flow and oxidative metabolism at rest and during exercise. Nine healthy, native sea-level residents were studied 3 weeks after arrival at Chacaltaya, Bolivia (5,260 m) and after reacclimatization to sea level...

  2. Rapid fluctuations in extracellular brain glucose levels induced by natural arousing stimuli and intravenous cocaine: fueling the brain during neural activation

    Science.gov (United States)

    Lenoir, Magalie

    2012-01-01

    Glucose, a primary energetic substrate for neural activity, is continuously influenced by two opposing forces that tend to either decrease its extracellular levels due to enhanced utilization in neural cells or increase its levels due to entry from peripheral circulation via enhanced cerebral blood flow. How this balance is maintained under physiological conditions and changed during neural activation remains unclear. To clarify this issue, enzyme-based glucose sensors coupled with high-speed amperometry were used in freely moving rats to evaluate fluctuations in extracellular glucose levels induced by brief audio stimulus, tail pinch (TP), social interaction with another rat (SI), and intravenous cocaine (1 mg/kg). Measurements were performed in nucleus accumbens (NAcc) and substantia nigra pars reticulata (SNr), which drastically differ in neuronal activity. In NAcc, where most cells are powerfully excited after salient stimulation, glucose levels rapidly (latency 2–6 s) increased (30–70 μM or 6–14% over baseline) by all stimuli; the increase differed in magnitude and duration for each stimulus. In SNr, where most cells are transiently inhibited by salient stimuli, TP, SI, and cocaine induced a biphasic glucose response, with the initial decrease (−20–40 μM or 5–10% below baseline) followed by a reboundlike increase. The critical role of neuronal activity in mediating the initial glucose response was confirmed by monitoring glucose currents after local microinjections of glutamate (GLU) or procaine (PRO). While intra-NAcc injection of GLU transiently increased glucose levels in this structure, intra-SNr PRO injection resulted in rapid, transient decreases in SNr glucose. Therefore, extracellular glucose levels in the brain change very rapidly after physiological and pharmacological stimulation, the response is structure specific, and the pattern of neuronal activity appears to be a critical factor determining direction and magnitude of physiological

  3. Cerebral palsy

    International Nuclear Information System (INIS)

    This paper reviews cranial MR findings in patients with cerebral palsy (CP) to clarify and categorize this disorder. The MR images of 40 patients with clinical CP were retrospectively reviewed. All patients suffered either varying spastic plegias, hypotonicity, or choreoathetosis. Concomitantly, the patients suffered from static encephalopathy, developmental delay, and/or microcephaly. Twenty-four patients were born at or near term, 10 were premature, and incomplete birth histories were available in six. The MR images revealed mild to severe degrees of white matter damage in 24 patients (12 term, nine premature, three unknown)

  4. Association between fatigue and failure to preserve cerebral energy turnover during prolonged exercise

    DEFF Research Database (Denmark)

    Nybo, Lars; Møller, Kirsten; Pedersen, Bente Klarlund;

    2003-01-01

    AIM: This study evaluated if the fatigue and apathy arising during exercise with hypoglycaemia could relate to a lowering of the cerebral metabolic rates of glucose and oxygen. METHODS AND RESULTS: Six males completed 3 h of cycling with or without glucose supplementation in random order. Cerebral...... was accompanied by a lowering of the cerebral metabolic rate of oxygen from 1.84 +/- 0.19 mmol g(-1) min(-)1 during exercise with glucose supplementation to 1.60 +/- 0.16 mmol g(-1) min(-1) during hypoglycaemia (P

  5. Cerebral malaria.

    Science.gov (United States)

    Postels, Douglas G; Birbeck, Gretchen L

    2013-01-01

    Malaria, the most significant parasitic disease of man, kills approximately one million people per year. Half of these deaths occur in those with cerebral malaria (CM). The World Health Organization (WHO) defines CM as an otherwise unexplained coma in a patient with malarial parasitemia. Worldwide, CM occurs primarily in African children and Asian adults, with the vast majority (greater than 90%) of cases occurring in children 5 years old or younger in sub-Saharan Africa. The pathophysiology of the disease is complex and involves infected erythrocyte sequestration, cerebral inflammation, and breakdown of the blood-brain barrier. A recently characterized malarial retinopathy is visual evidence of Plasmodium falciparum's pathophysiological processes occurring in the affected patient. Treatment consists of supportive care and antimalarial administration. Thus far, adjuvant therapies have not been shown to improve mortality rates or neurological outcomes in children with CM. For those who survive CM, residual neurological abnormalities are common. Epilepsy, cognitive impairment, behavioral disorders, and gross neurological deficits which include motor, sensory, and language impairments are frequent sequelae. Primary prevention strategies, including bed nets, vaccine development, and chemoprophylaxis, are in varied states of development and implementation. Continuing efforts to find successful primary prevention options and strategies to decrease neurological sequelae are needed. PMID:23829902

  6. Parálisis cerebral Cerebral palsy

    Directory of Open Access Journals (Sweden)

    Jorge Malagon Valdez

    2007-01-01

    Full Text Available El término parálisis cerebral (PC engloba a un gran número de síndromes neurológicos clínicos, de etiología diversa. Estos síndromes se caracterizan por tener una sintomatología común: los trastornos motores. Algunos autores prefieren manejar términos como "encefalopatía fija", "encefalopatías no evolutivas". Se mencionan la utilidad de programas de intervención temprana y métodos especiales de rehabilitación, así como el manejo de las deficiencias asociadas como la epilepsia, deficiencia mental, trastornos del lenguaje, audición, visión, déficit de la atención que mejoran el pronóstico de manera significativa. El pronóstico también depende de la gravedad del padecimiento y de las manifestaciones asociadas.The term cerebral palsy (CP, is used for a great number of clinical neurological syndromes. The syndromes are characterized by having a common cause, motor defects. It is important, because they can cause a brain damage by presenting motor defects and some associated deficiencies, such as mental deficiency, epilepsy, language and visual defects and pseudobulbar paralysis, with the nonevolving fact. Some authors prefer using terms such as "non-evolving encephalopathies". In the treatment the utility of prevention programs of early stimulation and special rehabilitation methods, and treatment of associated deficiencies such as epilepsy, mental deficiency, language, audition and visual problems, and the attention deficit improve the prognosis in an important way. The prognosis depends on the severity of the disease and the associated manifestations.

  7. Cerebral cysticercosis

    International Nuclear Information System (INIS)

    Two cases of histologically proven cerebral cysticercosis are presented. In both cases subcutaneous tissue nodules, a rare feature, were present. Several disease patterns are apparent - meningeal, parenchymatous and ventricular, spinal cord lesions and mixed patterns. Epilepsy is by far the major presenting symptom of cysticercosis, which in turn plays a significant role in the causation of adult-onset epilepsy in Blacks. Despite its drawbacks, the haemag-glutination inhibition test remains the most satisfactory serological method at present available for the diagnosis of cysticercosis; it is positive in up to 85% of cases of proven cysticercosis. With the advent of computed tomography many cases of unsuspected cysticercosis (symptomatic or asymptomatic) are being discovered

  8. Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii.

    OpenAIRE

    Takahashi, N.; Kalfas, S; Yamada, T.

    1995-01-01

    Enzymatic activities involved in glucose fermentation of Actinomyces naeslundii were studied with glucose-grown cells from batch cultures. Glucose could be phosphorylated to glucose 6-phosphate by a glucokinase that utilized polyphosphate and GTP instead of ATP as a phosphoryl donor. Glucose 6-phosphate was further metabolized to the end products lactate, formate, acetate, and succinate through the Embden-Meyerhof-Parnas pathway. The phosphoryl donor for phosphofructokinase was only PPi. Phos...

  9. Depressed glucose consumption at reperfusion following brain ischemia does not correlate with mitochondrial dysfunction and development of infarction: an in vivo positron emission tomography study.

    Science.gov (United States)

    Martín, Abraham; Rojas, Santiago; Pareto, Deborah; Santalucia, Tomàs; Millán, Olga; Abasolo, Ibane; Gómez, Vanessa; Llop, Jordi; Gispert, Joan D; Falcon, Carles; Bargalló, Núria; Planas, Anna M

    2009-05-01

    Glucose consumption is severely depressed in the ischemic core, whereas it is maintained or even increased in penumbral regions during ischemia. Conversely, glucose utilization is severely reduced early after reperfusion in spite that glucose and oxygen are available. Experimental studies suggest that glucose hypometabolism might be an early predictor of brain infarction. However, the relationship between early glucose hypometabolism with later development of infarction remains to be further studied in the same subjects. Here, glucose consumption was assessed in vivo by positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) in a rat model of ischemia/reperfusion. Perfusion was evaluated by PET with (13)NH(3) during and after 2-hour (h) middle cerebral artery occlusion, and (18)F-FDG was given after 2h of reperfusion. Brain infarction was evaluated at 24h. Mitochondrial oxygen consumption was examined ex vivo using a biochemical method. Cortical (18)F-FDG uptake was reduced by 45% and 25% in the ischemic core and periphery, respectively. However, substantial alteration of mitochondrial respiration was not apparent until 24h, suggesting that mitochondria retained the ability to consume oxygen early after reperfusion. These results show reduced glucose use at early reperfusion in regions that will later develop infarction and, to a lesser extent, in adjacent regions. Depressed glucose metabolism in the ischemic core might be attributable to reduced metabolic requirement due to irreversible cellular injury. However, reduced glucose metabolism in peripheral regions suggests either an impairment of glycolysis or reduced glucose demand. Thus, our study supports that glycolytic depression early after reperfusion is not always related to subsequent development of infarction.

  10. Dyslipidaemias and Physical Activity in Children with Cerebral Palsy

    OpenAIRE

    Maciste Habacuc Macías-Cervantes; Martha Susana Arriola-Nuñez; Francisco J. Díaz-Cisneros; Antonio E. Rivera-Cisneros; José María de la Roca-Chiapas; Victoriano Pérez-Vázquez

    2014-01-01

    Cerebral palsy people present movement difficulty and are liable to develop disorders associated with sedentary lifestyles such as dyslipidaemias and cardiovascular diseases. This study aimed to assess physical activity and the prevalence of lipid abnormalities in 29 children with cerebral palsy who were being treated in two care centers in the state of Guanajuato, Mexico. Physical activity was calculated using a survey. Blood glucose, total cholesterol, HDL-C, LDL-C, and triglycerides were d...

  11. Phospholipase D1 Mediates AMP-Activated Protein Kinase Signaling for Glucose Uptake

    OpenAIRE

    Jong Hyun Kim; Ji-Man Park; Kyungmoo Yea; Hyun Wook Kim; Pann-Ghill Suh; Sung Ho Ryu

    2010-01-01

    BACKGROUND: Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK) is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glu...

  12. Correlation between levels of blood glucose, protein, and blood lipid and disability degree of primary cerebral infarction%血清检验指标血糖、蛋白、血脂与初发脑梗死病残程度的相关性研究

    Institute of Scientific and Technical Information of China (English)

    尹娟

    2015-01-01

    目的 观察血清检验指标血糖、蛋白、血脂与初发脑梗死病残程度的相关性.方法 临床纳入初发脑梗死患者120例,根据改良爱丁堡-斯堪的纳维亚神经病学卒中量表(SNSS)对初发脑梗死进行分类,分别分为轻型、中型、重型,采集患者静脉血,检测空腹血糖(FBG)、血清白蛋白(Alb)、血清球蛋白(GLO)、血清总胆固醇(TC)、血清甘油三酯(TC)等水平,采用Spearman相关分析对各指标与初发脑梗死病残程度进行分析.结果 轻型、中型、重型初发脑梗死患者FBG水平分别为(7.18±0.79) mmol/L、(8.32 ± 2.32) mmol/L、(11.85±2.56) mmol/L,GLO水平分别为(28.58 ± 5.71)g/L、(31.52±4.56)g/L、(36.43±5.11)g/L,TC水平分别为(6.20±2.33)mmol/L、(8.32±3.02) mmol/L、(9.84±2.68) mmol/L,随着脑梗死程度的加重,患者的FBG、GLO以及TC均呈现逐渐升高的趋势,差异均有统计学意义(P<0.05);Spearman相关分析显示,脑梗死病残的程度与患者的FBG(r=0.189,P<0.001)、GLO (r=0.142,P<0.001)、TC(r=0.086,P< 0.05)存在明显的正相关,与AlB、TG水平无相关关系.结论 临床治疗初发脑梗死患者,应该重点控制FBG、GLO以及TC水平,对于促进病人早期康复、减轻病残程度有临床意义.%Objective To observe the correlation between the levels of blood glucose,protein,and blood lipid and the disability degree of primary cerebral infarction.Methods 120 patients with primary cerebral infarction were chosen.According to the modified Edinburgh Scandinavia Neurological Stroke Scale (SNSS),the patients were divided into slight,medium,and serious types.Venous blood were collected from all patients to test fasting blood glucose (FBG),serum albumin (Alb),globulin (GLO),total cholesterol (TC),and triglyceride (TC) levels.Spearman correlation analysis was adopted to analyze each index and primary cerebral infarction disability degree.Results The FBG levels of the patients with slight,medium,and serious type

  13. Cerebral ammonia uptake and accumulation during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Dalsgaard, Mads K.; Steensberg, Adam;

    2005-01-01

    We evaluated whether peripheral ammonia production during prolonged exercise enhances the uptake and subsequent accumulation of ammonia within the brain. Two studies determined the cerebral uptake of ammonia (arterial and jugular venous blood sampling combined with Kety-Schmidt-determined cerebral...... blood flow; n = 5) and the ammonia concentration in the cerebrospinal fluid (CSF; n = 8) at rest and immediately following prolonged exercise either with or without glucose supplementation. There was a net balance of ammonia across the brain at rest and at 30 min of exercise, whereas 3 h of exercise...... exercise with glucose, and further to 16.1 ± 3.3 µM after the placebo trial (P

  14. Subcortical cerebral blood flow and metabolic changes elicited by cortical spreading depression in rat

    Energy Technology Data Exchange (ETDEWEB)

    Mraovitch, S.; Calando, Y.; Goadsby, P.J.; Seylaz, J. (Laboratoire de Recherches Cerebrovasculaire, Paris (France))

    1992-06-01

    Changes in cerebral cortical perfusion (CBF{sub LDF}), local cerebral blood flow (lCBF) and local cerebral glucose utilization (lCGU) elicited by unilateral cortical spreading depression (SD) were monitored and measured in separate groups of rats anesthetized with {alpha}-chloralose. CBF{sub LDF} was recorded with laser Doppler flowmetry, while lCBF and lCGU were measured by the quantitative autoradiographic ({sup 14}C)iodoantipyrine and ({sup 14}C)-2-deoxyglucose methods, respectively. SD elicited a wave of hyperemia after a latency of 2 to 3 min followed by an oligemic phase. Ninety minutes following the onset of SD cortical lCBF and lCGU were essentially the same as on the contralateral side and in sham-treated rats. However, alteration in the lCBF and lCGU in upper and lower brainstem persisted. The present results demonstrate that long-lasting cerebrovascular and metabolic alterations take place within the subcortical regions following SD. These regions provide an attractive site to integrate observations in man concerning spreading depression and the aura of migraine with the other features of the syndrome. 19 refs., 2 figs., 1 tab.

  15. Influence of spinal cord injury on cerebral sensorimotor systems : A PET study

    NARCIS (Netherlands)

    Roelcke, U; Curt, A; Otte, A; Missimer, J; Maguire, RP; Dietz, [No Value; Leenders, KL

    1997-01-01

    Objectives-To assess the effect of a transverse spinal cord lesion on cerebral energy metabolism in view of sensorimotor reorganisation. Methods-PET and F-18-fluorodeoxyglucose were used to study resting cerebral glucose metabolism in 11 patients with complete paraplegia or tetraplegia after spinal

  16. Changes in cerebral oxidative metabolism in patients with acute liver failure

    DEFF Research Database (Denmark)

    Bjerring, P N; Larsen, F S

    2013-01-01

    concentration, as well as to some of the adenosine triphosphate degradation products. However, clinical observations of cerebral exchange rates of oxygen, glucose, lactate and amino acids challenge the interpretation of these findings. In this review the conflicting data of cerebral metabolism during acute...

  17. Diagnostic Analysis on Blood Glucose Control for Patients with Diabetes Complicated with Cerebral Infarction Base on Behavior Changes and Systematic Health Education%行为改变与传统健康教育模式对糖尿病合并脑梗塞患者血糖控制的诊疗分析

    Institute of Scientific and Technical Information of China (English)

    罗寿君; 蓝希堂; 肖建荣

    2015-01-01

    -management,FBG,blood glucose 2 hours later after each meal ,glycosylated hemoglobin and weight were all better than that in control group.Conclusion:After receiving behavior changes and traditional health education ,patients’self-management ability can become obviously better than before,the indicators of FBG ,blood glucose 2 hours later after each meal,glycosylated hemoglobin and weight can become lower than before,behavior changes and systematic health education can effectively improve the self-manage-ment ability for patients with diabetes complicated with cerebral infarction and their quality of life as well.

  18. United Cerebral Palsy

    Science.gov (United States)

    ... be sure to follow us on Twitter . United Cerebral Palsy UCP educates, advocates and provides support services to ... Partners Merz Logo Sprint Relay Copyright © 2015 United Cerebral Palsy 1825 K Street NW Suite 600 Washington, DC ...

  19. Systemic, cerebral and skeletal muscle ketone body and energy metabolism during acute hyper-D-β-hydroxybutyratemia in post-absorptive healthy males

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Seifert, Thomas; Secher, Niels H;

    2015-01-01

    CONTEXT: Ketone bodies are substrates during fasting and when on a ketogenic diet not the least for the brain and implicated in the management of epileptic seizures and dementia. Moreover, D-β-hydroxybutyrate (HOB) is suggested to reduce blood glucose and fatty acid levels. OBJECTIVES......: The objectives of this study were to quantitate systemic, cerebral, and skeletal muscle HOB utilization and its effect on energy metabolism. DESIGN: Single trial. SETTING: Hospital. PARTICIPANT: Healthy post-absorptive males (n = 6). INTERVENTIONS: Subjects were studied under basal condition and three...

  20. Cerebral palsy and epilepsy

    OpenAIRE

    Knežević-Pogančev Marija

    2010-01-01

    Introduction. Cerebral palsy is the most common cause of physical disability in early childhood. Epilepsy is known to have a high association with cerebral palsy. All types of epileptic seizures can be seen in patients with cerebral palsy. Complex partial and secondary generalized ones are the most frequent seizure types. In persons with cerebral palsy and mental retardation, the diagnosis of epilepsy presents unique difficulties. Generally they are not able to describe the epileptic ev...

  1. Glucose test (image)

    Science.gov (United States)

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. If glucose levels ...

  2. Low Blood Glucose (Hypoglycemia)

    Science.gov (United States)

    ... Other Dental Problems Diabetic Eye Disease Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  3. Cerebral microangiopathies; Zerebrale Mikroangiopathien

    Energy Technology Data Exchange (ETDEWEB)

    Linn, Jennifer [Klinikum der Universitaet Muenchen (Germany). Abt. fuer Neuroradiologie

    2011-03-15

    Cerebral microangiopathies are a very heterogenous group of diseases characterized by pathological changes of the small cerebral vessels. They account for 20 - 30 % of all ischemic strokes. Degenerative microangiopathy and sporadic cerebral amyloid angiography represent the typical acquired cerebral microangiopathies, which are found in over 90 % of cases. Besides, a wide variety of rare, hereditary microangiopathy exists, as e.g. CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), Fabrys disease and MELAS syndrome (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes). (orig.)

  4. Regulation of cerebral blood flow during exercise.

    Science.gov (United States)

    Querido, Jordan S; Sheel, A William

    2007-01-01

    Constant cerebral blood flow (CBF) is vital to human survival. Originally thought to receive steady blood flow, the brain has shown to experience increases in blood flow during exercise. Although increases have not consistently been documented, the overwhelming evidence supporting an increase may be a result of an increase in brain metabolism. While an increase in metabolism may be the underlying causative factor for the increase in CBF during exercise, there are many modulating variables. Arterial blood gas tensions, most specifically the partial pressure of carbon dioxide, strongly regulate CBF by affecting cerebral vessel diameter through changes in pH, while carbon dioxide reactivity increases from rest to exercise. Muscle mechanoreceptors may contribute to the initial increase in CBF at the onset of exercise, after which exercise-induced hyperventilation tends to decrease flow by pial vessel vasoconstriction. Although elite athletes may benefit from hyperoxia during intense exercise, cerebral tissue is well protected during exercise, and cerebral oxygenation does not appear to pose a limiting factor to exercise performance. The role of arterial blood pressure is important to the increase in CBF during exercise; however, during times of acute hypotension such as during diastole at high-intensity exercise or post-exercise hypotension, cerebral autoregulation may be impaired. The impairment of an increase in cardiac output during exercise with a large muscle mass similarly impairs the increase in CBF velocity, suggesting that cardiac output may play a key role in the CBF response to exercise. Glucose uptake and CBF do not appear to be related; however, there is growing evidence to suggest that lactate is used as a substrate when glucose levels are low. Traditionally thought to have no influence, neural innervation appears to be a protective mechanism to large increases in cardiac output. Changes in middle cerebral arterial velocity are independent of changes in

  5. Methylphenidate decreased the amount of glucose needed by the brain to perform a cognitive task.

    Directory of Open Access Journals (Sweden)

    Nora D Volkow

    Full Text Available The use of stimulants (methylphenidate and amphetamine as cognitive enhancers by the general public is increasing and is controversial. It is still unclear how they work or why they improve performance in some individuals but impair it in others. To test the hypothesis that stimulants enhance signal to noise ratio of neuronal activity and thereby reduce cerebral activity by increasing efficiency, we measured the effects of methylphenidate on brain glucose utilization in healthy adults. We measured brain glucose metabolism (using Positron Emission Tomography and 2-deoxy-2[18F]fluoro-D-glucose in 23 healthy adults who were tested at baseline and while performing an accuracy-controlled cognitive task (numerical calculations given with and without methylphenidate (20 mg, oral. Sixteen subjects underwent a fourth scan with methylphenidate but without cognitive stimulation. Compared to placebo methylphenidate significantly reduced the amount of glucose utilized by the brain when performing the cognitive task but methylphenidate did not affect brain metabolism when given without cognitive stimulation. Whole brain metabolism when the cognitive task was given with placebo increased 21% whereas with methylphenidate it increased 11% (50% less. This reflected both a decrease in magnitude of activation and in the regions activated by the task. Methylphenidate's reduction of the metabolic increases in regions from the default network (implicated in mind-wandering was associated with improvement in performance only in subjects who activated these regions when the cognitive task was given with placebo. These results corroborate prior findings that stimulant medications reduced the magnitude of regional activation to a task and in addition document a "focusing" of the activation. This effect may be beneficial when neuronal resources are diverted (i.e., mind-wandering or impaired (i.e., attention deficit hyperactivity disorder, but it could be detrimental when

  6. The subcellular distribution and properties of hexokinases in the guinea-pig cerebral cortex.

    Science.gov (United States)

    Bachelard, H S

    1967-07-01

    1. Hexokinase activities were estimated in primary subcellular fractions from guinea-pig cerebral cortex and in sucrose-density-gradient subfractions of the mitochondrial and microsomal fractions. 2. Appreciable activities were observed in mitochondrial, microsomal and soluble fractions. The activity in the mitochondrial fraction was associated with the mitochondria rather than with myelin or nerve endings and that in the microsomal fraction was associated with membrane fragments. 3. Most of the mitochondrial activity was extracted in soluble form by osmotic ;shock'. The activity of the mitochondrial extract differed from the soluble activity in kinetic properties and in electrophoretic behaviour. 4. No evidence was obtained for the presence of a high-K(m) glucokinase in the brain. 5. The results are discussed in terms of relevance to considerations of glucose utilization by the brain.

  7. 脑深部电刺激对帕金森病患者基底节环路的影响及其作用机制%The Effect of Deep Brain Stimulation(DBS) on Resting- state Cerebral Glucose Metabolism of Advanced Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    赵永波; 李殿友; 孙伯民; 王乔树

    2003-01-01

    目的研究双侧丘脑底核(STN)慢性电刺激术(DBS)对晚期帕金森病(PD)患者静止期脑局部糖代谢的影响,并探讨DBS的作用机制.方法对7例进行双侧STNDBS的晚期PD患者,在术前和术后1个月电刺激条件下,分别进行18F-脱氧葡萄糖(FDG)/PET检查和UPDRS评分,并通过SPM99统计学软件进行数据分析,研究双侧STNDBS对PD患者脑内代谢的影响.结果双侧STN DBS使PD患者临床症状明显改善,同时脑局部糖代谢也发生了明显变化:双侧豆状核、脑干(中脑、脑桥)、双侧顶枕部、运动前区(BA6)及扣带回的脑代谢增加;前额叶底部、海马的脑代谢减少(P<0.05).结论双侧STN DBS可能通过兴奋STN轴突的方式,使轴突投射区域的基底节上行和下行通路代谢改善,并增加相应的额叶高级运动中枢的代谢,使PD患者临床症状改善.%Objective To study the effects of bilateral subthalamic nucleus (STN) stimulation onresting-state cerebral glucose metabolism of advanced Parkinson's disease, and investigate the mecha-nism of deep brain stimulation (DBS). Methods Seven consecutive advanced Parkinson' s diseasepatients (4 men, 3 women; mean age 64±4; mean H-Y disability scale 4.4±0. 65) with bilateral STNDBS underwent 2 times 18F-FDG/PET examinations at rest preoperatively and one month postopera-tively with STN stimulation on respectively. The unified Parkinson' s disease rating scale was used toevaluate the clinical state under each condition. Statistical parametric mapping (SPM) was used to inves-tigate regional cerebral metabolic rate of glucose (rCMRGlu) during STN stimulation in comparison withr CMRGlu preoperatively. Results STN stimulation improved the clinical symptoms obviously for eachpatient. The significant increase of rCMRGlu was found in bilateral lentiform nucleus, brainstem (mid-brain and pon), bilateral premotor area (BA6), parietal-occipital cortex and anterior cingulated cortex,and the marked decrease of it was

  8. Blood Test: Glucose

    Science.gov (United States)

    ... Things to Know About Zika & Pregnancy Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose Print A A A Text Size What's in ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  9. Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Thomsen, Gerda;

    2002-01-01

    BACKGROUND: The optimal arterial carbon dioxide tension (P(a)CO(2)) in patients with acute bacterial meningitis (ABM) is unknown and controversial. The objective of this study was to measure global cerebral blood flow (CBF), cerebrovascular CO(2) reactivity (CO(2)R), and cerebral metabolic rates...... to baseline ventilation, whereas CMR(glu) increased. CONCLUSION: In patients with acute bacterial meningitis, we found variable levels of CBF and cerebrovascular CO(2) reactivity, a low a-v DO(2), low cerebral metabolic rates of oxygen and glucose, and a cerebral lactate efflux. In these patients...

  10. Cerebral angiography in leptomeningitis and cerebritis

    International Nuclear Information System (INIS)

    This is a report of the cerebral angiographic findings in cases of meningitis and cerebritis. Fifty-nine patients, 38 of whom were under 1 year of age, underwent cerebral angiography by means of femoral catheterization. All the patients had signs of increased intracranial pressure, seizures, focal cerebral signs, positive transillumination of the head, and or abnormal brain scan findings. A few patients who did not respond to systemic antibiotics as was expected were also evaluated by means of cerebral angiography. The following characteristic angiographic findings were observed in 18 cases of active meningitis: (1) A hasy appearance around the arteries (halo formation) between the late arterial and capillary phases. (2) Narrowing of the arteries in the basal cistern. This sometimes extended to the peripheral arteries. (3) Irregular caliber following the narrowing of arteries (in few cases). (4) Circulation time so slow that veins could be seen in the late arterial phase. (5) Halo formation around the anterior chroidal artery and the clear appearance of the choroid plexus in the venous phase (when the infectious process reached the choroid plexus). Cerebritis could be identified on the angiograms by two signs: (1) local swelling of the brain (mainly the temporal lobe) and (2) staining around the veins without any abnormal signs in the arterial phase (laminar staining). In conclusion, angiography is a meaningful test by which to determine the phase of meningitis and cerebritis. These two conditions should be treated based on valid information obtained by means of CSF examinations and neuroradiological tests, especially CT scan and cerebral angiography. (author)

  11. Effects of MDMA on blood glucose levels and brain glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M. [Hospital General Universitario Gregorio Maranon, Laboratorio de Imagen, Medicina Experimental, Madrid (Spain); Arango, C. [Hospital General Gregorio Maranon, Departamento de Psiquiatria, Madrid (Spain); Ricaurte, G. [Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD (United States)

    2007-06-15

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  12. Statins and cerebral hemodynamics

    Science.gov (United States)

    Giannopoulos, Sotirios; Katsanos, Aristeidis H; Tsivgoulis, Georgios; Marshall, Randolph S

    2012-01-01

    HMG-CoA reductase inhibitors (statins) are associated with improved stroke outcome. This observation has been attributed in part to the palliative effect of statins on cerebral hemodynamics and cerebral autoregulation (CA), which are mediated mainly through the upregulation of endothelium nitric oxide synthase (eNOS). Several animal studies indicate that statin pretreatment enhances cerebral blood flow after ischemic stroke, although this finding is not further supported in clinical settings. Cerebral vasomotor reactivity, however, is significantly improved after long-term statin administration in most patients with severe small vessel disease, aneurysmal subarachnoid hemorrhage, or impaired baseline CA. PMID:22929438

  13. Enhanced muscle glucose metabolism after exercise in the rat

    DEFF Research Database (Denmark)

    Garetto, L P; Richter, Erik; Goodman, M N;

    1984-01-01

    Thirty minutes after a treadmill run, glucose utilization and glycogen synthesis in perfused rat skeletal muscle are enhanced due to an increase in insulin sensitivity (Richter et al., J. Clin. Invest. 69: 785-793, 1982). The exercise used in these studies was of moderate intensity, and muscle...... was still observed in perfused muscle; however, glucose utilization was also increased in the absence of added insulin (1.5 vs. 4.2 mumol X g-1 X h-1). In contrast 2.5 h after the run, muscle glycogen had returned to near preexercise values, and only the insulin-induced increase in glucose utilization...... was evident. The data suggest that the restoration of muscle glycogen after exercise occurs in two phases. In phase I, muscle glycogen is depleted and insulin-stimulated glucose utilization and glucose utilization in the absence of added insulin may both be enhanced. In phase II glycogen levels have returned...

  14. Intracerebral hypoglycemia and its clinical relevance as a prognostic indicator in severe traumatic brain injury: A cerebral microdialysis study from India

    Directory of Open Access Journals (Sweden)

    Deepak K Gupta

    2016-01-01

    Conclusions: After decompressive craniectomy in severe TBI, there was a poor correlation between the plasma and CMD glucose concentration. A higher degree of variation was seen in the correlations for individual patients. Neither the mean blood glucose values nor the mean cerebral glucose values predicted the outcome at 3 months. The good outcome group had fewer episodes of both hyperglycemia and hypoglycemia.

  15. Epileptic patterns of local cerebral metabolism and perfusion in man determined by emission computed tomography of 18FDG and 13NH3

    International Nuclear Information System (INIS)

    Seventeen patients with partial epilepsy had EEG monitoring concurrent with cerebral emission computed tomography (ECT) after 18F-fluorodeoxyglucose (18FDG) and 13N-ammonia were given intravenously as indicators of local cerebral glucose utilization (LCMR/sub glc/) and relative perfusion, respectively. In 12 of 15 patients who had unilateral or focal electrical abnormalities, interictal 18FDG scan patterns clearly showed localized regions of decreased (20% to 50%) LCMR/sub glc/, which correlated anatomically with the eventual EEG localization. These hypometabolic zones appeared normal on x-ray computed tomography in all but three patients and were unchanged on scans repeated on different days. In 5 of 6 patients who underwent temporal lobectomy, the interictal 18FDG scan correctly detected the pathologically confirmed lesion as a hypometabolic zone, and removal of the lesion site resulted in marked clinical improvement. In contrast, the ictal 18FDG scan patterns clearly showed foci of increased (82% to 130%) LCMR/sub glc/, which correlated temporally and anatomically with ictal EEG spike foci and were within the zones of interictal hypometabolism (3 studies in 2 patients). 13NH3 distributions paralleled 18FDG increases and decreases in abnormal zones, but 13NH3 differences were of lesser magnitude. When the relationship of 13NH3 uptake to local blood flow found in dog brain was applied as a correction to the patients' 13NH3 scan data, local alterations in perfusion and glucose utilization were usually matched, both in the interictal and ictal states

  16. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    International Nuclear Information System (INIS)

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [18F]fluorodeoxyglucose (FDG) and [14C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum

  17. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva.

    Science.gov (United States)

    Liu, Chengcheng; Sheng, Yongjie; Sun, Yanhong; Feng, Junkui; Wang, Shijin; Zhang, Jin; Xu, Jiacui; Jiang, Dazhi

    2015-08-15

    Biosensors have been widely investigated and utilized in a variety of fields ranging from environmental monitoring to clinical diagnostics. Glucose biosensors have triggered great interest and have been widely exploited since glucose determination is essential for diabetes diagnosis. In here, we designed a novel dual-enzyme biosensor composed of glucose oxidase (GOx) and pistol-like DNAzyme (PLDz) to detect glucose levels in tears and saliva. First, GOx, as a molecular recognition element, catalyzes the oxidation of glucose forming H2O2; then PLDz recognizes the produced H2O2 as a secondary signal and performs a self-cleavage reaction promoted by Mn(2+), Co(2+) and Cu(2+). Thus, detection of glucose could be realized by monitoring the cleavage rate of PLDz. The slope of the cleavage rate of PLDz versus glucose concentration curve was fitted with a Double Boltzmann equation, with a range of glucose from 100 nM to 10mM and a detection limit of 5 μM. We further applied the GOx-PLDz 1.0 biosensor for glucose detection in tears and saliva, glucose levels in which are 720±81 μM and 405±56 μM respectively. Therefore, the GOx-PLDz 1.0 biosensor is able to determine glucose levels in tears and saliva as a noninvasive glucose biosensor, which is important for diabetic patients with frequent/continuous glucose monitoring requirements. In addition, induction of DNAzyme provides a new approach in the development of glucose biosensors. PMID:25863343

  18. Four grams of glucose

    OpenAIRE

    Wasserman, David H.

    2008-01-01

    Four grams of glucose circulates in the blood of a person weighing 70 kg. This glucose is critical for normal function in many cell types. In accordance with the importance of these 4 g of glucose, a sophisticated control system is in place to maintain blood glucose constant. Our focus has been on the mechanisms by which the flux of glucose from liver to blood and from blood to skeletal muscle is regulated. The body has a remarkable capacity to satisfy the nutritional need for glucose, while ...

  19. Cerebral Palsy (CP) Quiz

    Science.gov (United States)

    ... Submit Button Past Emails CDC Features Pop Quiz: Cerebral Palsy Language: English Español (Spanish) Recommend on Facebook Tweet ... Sandy is the parent of a child with cerebral palsy and the Board President of Gio’s Garden , a ...

  20. Effect of curcumin on diabetic rat model of cerebral ischemia.

    Science.gov (United States)

    Miao, Mingsan; Cheng, Bolin; Li, Min

    2015-01-01

    To investigate the effect of curcumin on cerebral ischemia in diabetic rats the effects and features. intravenous injection alloxan diabetes model, to give alloxan first seven days the tail measured blood glucose value, the election successful model rats were fed with large, medium and small doses of curcumin suspension, Shenqijiangtang suspension and the same volume of saline, administered once daily. The first 10 days after administration 2h (fasting 12h) rat tail vein blood glucose values measured in the first 20 days after administration of 2h (fasting 12h), do cerebral ischemia surgery; rapid carotid artery blood after 30min rats were decapitated, blood serum, blood glucose and glycated serum protein levels; take part of the brain homogenates plus nine times the amount of normal saline, made 10 percent of brain homogenates. Another part of the brain tissue, in the light microscope observation of pathological tissue. Compared with model group, large, medium and small doses of curcumin can significantly lower blood sugar and glycated serum protein levels, significantly reduced brain homogenates lactic acid content and lactate dehydrogenase activity; large, medium-dose curcumin can significantly increase brain homogenates Na(+)-K(+)-ATP activity, dose curcumin can significantly improve brain homogenates Ca(+)-Mg(+)- ATP activity. Curcumin can reduce blood sugar in diabetic rat model of cerebral ischemia and improve brain energy metabolism, improve their brain tissue resistance to ischemia and hypoxia, cerebral ischemia in diabetic rats have a good drop the role of sugar and protect brain tissue. PMID:25631517

  1. Optimal glucose management in the perioperative period.

    Science.gov (United States)

    Evans, Charity H; Lee, Jane; Ruhlman, Melissa K

    2015-04-01

    Hyperglycemia is a common finding in surgical patients during the perioperative period. Factors contributing to poor glycemic control include counterregulatory hormones, hepatic insulin resistance, decreased insulin-stimulated glucose uptake, use of dextrose-containing intravenous fluids, and enteral and parenteral nutrition. Hyperglycemia in the perioperative period is associated with increased morbidity, decreased survival, and increased resource utilization. Optimal glucose management in the perioperative period contributes to reduced morbidity and mortality. To readily identify hyperglycemia, blood glucose monitoring should be instituted for all hospitalized patients. PMID:25814110

  2. Effects of alcohol on focal cerebral ischemia Reperfusion and expression of glucose transporter-1 in rats%一次性酒精对缺血-再灌注大鼠神经功能及海马区GLUT-1表达的影响

    Institute of Scientific and Technical Information of China (English)

    张培; 刘志辉; 王彬; 李健

    2012-01-01

    目的 探讨一次性给予酒精对缺血-再灌注大鼠神经功能及海马区葡萄糖转运蛋白-1(GLUT-1)表达的影响.方法 将40只健康雄性Wistar大鼠随机分为酒精组24例(C组)、对照组8例(B组)、假手术组8例(A组);酒精组分为1.0g/kg组(C1)、1.5g/kg组(C2)、2.0g/kg组(C3)3个亚组,制作大脑中动脉闭塞缺血大鼠模型,缺血后行Longa 5分评分.C组于缺血-再灌注后即刻、1h、2h、3h一次性腹腔注射不同剂量(1.0g/kg、1.5g/kg、2.0g/kg)的酒精;B组一次性腹腔注射等剂量的生理盐水,缺血-再灌注后24h再行Longa 5分评分,取脑后采用免疫组化法测定大鼠缺血-再灌注脑组织海马区GLUT-1表达阳性细胞数.结果 缺血-再灌注后24h与对照组比较,C组大鼠Longa评分明显减小(P<0.01),C1、C2、C3组间比较,C3组Longa评分减小最明显(均P<0.05).C组大鼠海马区GLUT-1表达阳性细胞数明显高于B组(均P<0.01);C1、C2、C3组间比较,C2组与C3组均较C1组阳性细胞表达增多(均P<0.01);而C2组与C3组比较,GLU-1表达阳性细胞数无明显差别(P>0.05).C组在缺血-再灌注后即刻、1h、2h、3h给予酒精,海马区GLUT-1表达阳性细胞数无明显差异(均P>0.05),但C组比B组GLUT-1表达阳性细胞数表达明显增多(P<0.01).结论 一次性给予酒精治疗可减轻缺血-再灌注大鼠神经功能缺损程度,酒精可能是通过促进神经保护因子GLUT-1的表达起到神经保护作用的.%Objective To investigate the effects of alcohol on focal cerebral ischemia and on expression of glucose transporter 1 ( GLUT-1 ). Methods Forty healthy adult male wistar rats were randomly divided into sham-operate group (A) ,vehiele group( B) and alcohol therapy group (C) which were respectively treated with dose of 1.0 g/kg, 1. 5g/kg or 2.0g/kg(C1 ,C2,C3). Focal cerebral ischemia-reperfusion injury rats model was induced by reversible middle cerebral artery occlusion. The rats were

  3. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  4. Your Glucose Meter

    Science.gov (United States)

    ... by Audience For Women Women's Health Topics Your Glucose Meter Share Tweet Linkedin Pin it More sharing ... Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter Glucose meters test ...

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day ... DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ...

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and eAG Hypoglycemia (Low blood glucose) Hyperglycemia (High blood glucose) Dawn Phenomenon Checking for Ketones Tight Diabetes Control donate en -- Diabetes Must Be Stopped - 2016-06-donation- ...

  7. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ... you should check and what your blood glucose levels should be. Checking your blood and then treating ...

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women ... Living With Diabetes > Treatment and Care > Blood Glucose Testing Share: Print Page Text Size: A A A ...

  9. Time-varying modeling of cerebral hemodynamics.

    Science.gov (United States)

    Marmarelis, Vasilis Z; Shin, Dae C; Orme, Melissa; Rong Zhang

    2014-03-01

    The scientific and clinical importance of cerebral hemodynamics has generated considerable interest in their quantitative understanding via computational modeling. In particular, two aspects of cerebral hemodynamics, cerebral flow autoregulation (CFA) and CO2 vasomotor reactivity (CVR), have attracted much attention because they are implicated in many important clinical conditions and pathologies (orthostatic intolerance, syncope, hypertension, stroke, vascular dementia, mild cognitive impairment, Alzheimer's disease, and other neurodegenerative diseases with cerebrovascular components). Both CFA and CVR are dynamic physiological processes by which cerebral blood flow is regulated in response to fluctuations in cerebral perfusion pressure and blood CO2 tension. Several modeling studies to date have analyzed beat-to-beat hemodynamic data in order to advance our quantitative understanding of CFA-CVR dynamics. A confounding factor in these studies is the fact that the dynamics of the CFA-CVR processes appear to vary with time (i.e., changes in cerebrovascular characteristics) due to neural, endocrine, and metabolic effects. This paper seeks to address this issue by tracking the changes in linear time-invariant models obtained from short successive segments of data from ten healthy human subjects. The results suggest that systemic variations exist but have stationary statistics and, therefore, the use of time-invariant modeling yields "time-averaged models" of physiological and clinical utility.

  10. Propofol Compared to Isoflurane Inhibits Mitochondrial Metabolism in Immature Swine Cerebral Cortex

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Atkinson, D. B.; Ledee, Dolena R.; Kayser, Ernst-Bernhard; Morgan, Phil G.; Sedensky, Margaret M.; Isern, Nancy G.; Des Rosiers, Christine; Portman, Michael A.

    2014-01-08

    Anesthetics used in infants and children are implicated in development of neurocognitive disorders. Although propofol induces neuroapoptosis in developing brain, the underlying mechanisms require elucidation and may have an energetic basis. We studied substrate utilization in an immature swine model anesthetized with either propofol or isoflurane for 4 hours. Piglets were infused with 13-Carbon labeled glucose and leucine in the common carotid artery in order to assess citric acid cycle (CAC) metabolism in the parietal cortex. The anesthetics produced similar systemic hemodynamics and cerebral oxygen saturation by near-infrared-spectroscopy. Compared to isoflurane, propofol depleted ATP and glycogen stores. Propofol also decreased pools of the CAC intermediates, citrate and α-ketoglutarate, while markedly increasing succinate along with decreasing mitochondrial complex II activity. Propofol also inhibited acetyl-CoA entry into the CAC through pyruvate dehydrogenase, while promoting glycolytic flux with marked accumulation of lactate. Although oxygen supply appeared similar between the anesthetic groups, propofol yielded a metabolic phenotype which resembled a hypoxic state. Propofol impairs substrate flux through the CAC in the immature cerebral cortex. These impairments occurred without systemic metabolic perturbations which typically accompany propofol infusion syndrome. These metabolic abnormalities may play a role in neurotoxity observed with propofol in the vulnerable immature brain.

  11. CSF glucose test

    Science.gov (United States)

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 of the blood sugar level). Note: Normal value ranges may vary slightly ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... how often you should check and what your blood glucose levels should be. Checking your blood and then treating ... I Treat Hyperglycemia? You can often lower your blood glucose level by exercising. However, if your blood glucose is ...

  13. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... by Mail Close www.diabetes.org > Living With Diabetes > Treatment and Care > Blood Glucose Testing Share: Print Page Text Size: ... and-how-tos, In this section Living With Diabetes Treatment and Care Blood Glucose Testing Checking Your Blood Glucose A1C ...

  14. Neuroprotective effect of an angiotensin receptor type 2 agonist following cerebral ischemia in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Lee Seyoung

    2012-08-01

    Full Text Available Abstract Background Intracerebral administration of the angiotensin II type 2 receptor (AT2R agonist, CGP42112, is neuroprotective in a rat model of ischemic stroke. To explore further its possible cellular target(s and therapeutic utility, we firstly examined whether CGP42112 may exert direct protective effects on primary neurons following glucose deprivation in vitro. Secondly, we tested whether CGP42112 is effective when administered systemically in a mouse model of cerebral ischemia. Methods Primary cortical neurons were cultured from E17 C57Bl6 mouse embryos for 9 d, exposed to glucose deprivation for 24 h alone or with drug treatments, and percent cell survival assessed using trypan blue exclusion. Ischemic stroke was induced in adult male C57Bl6 mice by middle cerebral artery occlusion for 30 min, followed by reperfusion for 23.5 h. Neurological assessment was performed and then mice were euthanized and infarct and edema volume were analysed. Results During glucose deprivation, CGP42112 (1x10-8 M and 1x10-7 M reduced cell death by ~30%, an effect that was prevented by the AT2R antagonist, PD123319 (1x10-6 M. Neuroprotection by CGP42112 was lost at a higher concentration (1x10-6 M but was unmasked by co-application with the AT1R antagonist, candesartan (1x10-7 M. By contrast, Compound 21 (1x10-8 M to 1x10-6 M, a second AT2R agonist, had no effect on neuronal survival. Mice treated with CGP42112 (1 mg/kg i.p. after cerebral ischemia had improved functional outcomes over vehicle-treated mice as well as reduced total and cortical infarct volumes. Conclusions These results indicate that CGP42112 can directly protect neurons from ischemia-like injury in vitro via activation of AT2Rs, an effect opposed by AT1R activation at high concentrations. Furthermore, systemic administration of CGP42112 can reduce functional deficits and infarct volume following cerebral ischemia in vivo.

  15. The measurement of the nigrostriatal dopaminergic function and glucose metabolism in patients with movement disorders

    International Nuclear Information System (INIS)

    The nigrostriatal dopaminergic function and glucose metabolism were evaluated in 34 patients with various movement disorders by using positron emission tomography with 18F-Dopa and 18F-FDG respectively. The 18F-Dopa uptake in the striatum (the caudate head and the putamen) decreased in patients with Parkinson's disease but was relatively unaffected in the caudate. The cerebral glucose metabolism was normal in patients with Parkinson's disease. The 18F-Dopa uptake in the striatum also decreased in cases of atypical parkinsonism and in cases of progressive supranuclear palsy, but there was no difference in the uptake between the caudate and the putamen. The glucose metabolism decreased in the cerebral hemisphere including the striatum; this finding was also different from those of Parkinson's disease. A normal 18F-Dopa uptake in the striatum with a markedly decreased striatal glucose metabolism and a mildly decreased cortical glucose metabolism was observed in cases of Huntington's disease and Wilson's disease. The 18F-Dopa uptake in the striatum increased and the glucose metabolism was normal in cases of idiopathic dystonia. Various patterns of 18F-Dopa uptake and glucose metabolism were thus observed in the various movement disorders. These results suggest that the measurements of the 18F-Dopa uptake and the cerebral glucose metabolism would be useful for the evaluation of the striatal function in various movement disorders. (author)

  16. Hemodynamic and metabolic effects of cerebral revascularization.

    Science.gov (United States)

    Leblanc, R; Tyler, J L; Mohr, G; Meyer, E; Diksic, M; Yamamoto, L; Taylor, L; Gauthier, S; Hakim, A

    1987-04-01

    Pre- and postoperative positron emission tomography (PET) was performed in six patients undergoing extracranial to intracranial bypass procedures for the treatment of symptomatic extracranial carotid occlusion. The six patients were all men, aged 52 to 68 years. Their symptoms included transient ischemic attacks (five cases), amaurosis fugax (two cases), and completed stroke with good recovery (one case). Positron emission tomography was performed within 4 weeks prior to surgery and between 3 to 6 months postoperatively, using oxygen-15-labeled CO, O2, and CO2 and fluorine-18-labeled fluorodeoxyglucose. Cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rates for oxygen and glucose (CMRO2 and CMRGlu), and the oxygen extraction fraction (OEF) were measured in both hemispheres. Preoperatively, compared to five elderly control subjects, patients had increased CBV, a decreased CBF/CBV ratio, and decreased CMRO2, indicating reduced cerebral perfusion pressure and depressed oxygen metabolism. The CBF was decreased in only one patient who had bilateral carotid occlusions; the OEF, CMRGlu, and CMRO2/CMRGlu and CMRGlu/CBF ratios were not significantly different from control measurements. All bypasses were patent and all patients were asymptomatic following surgery. Postoperative PET revealed decreased CBV and an increased CBF/CBV ratio, indicating improved hemodynamic function and oxygen hypometabolism. This was associated with increased CMRO2 in two patients in whom the postoperative OEF was also increased. The CMRGlu and CMRGlu/CBF ratio were increased in five patients. Changes in CBF and the CMRO2/CMRGlu ratio were variable. One patient with preoperative progressive mental deterioration, documented by serial neuropsychological testing and decreasing CBF and CMRO2, had improved postoperative CBF and CMRO2 concomitant with improved neuropsychological functioning. It is concluded that symptomatic carotid occlusion is associated with altered

  17. Insulin Signaling in the Control of Glucose and Lipid Homeostasis.

    Science.gov (United States)

    Saltiel, Alan R

    2016-01-01

    A continuous supply of glucose is necessary to ensure proper function and survival of all organs. Plasma glucose levels are thus maintained in a narrow range around 5 mM, which is considered the physiological set point. Glucose homeostasis is controlled primarily by the liver, fat, and skeletal muscle. Following a meal, most glucose disposals occur in the skeletal muscle, whereas fasting plasma glucose levels are determined primarily by glucose output from the liver. The balance between the utilization and production of glucose is primarily maintained at equilibrium by two opposing hormones, insulin and glucagon. In response to an elevation in plasma glucose and amino acids (after consumption of a meal), insulin is released from the beta cells of the islets of Langerhans in the pancreas. When plasma glucose falls (during fasting or exercise), glucagon is secreted by α cells, which surround the beta cells in the pancreas. Both cell types are extremely sensitive to glucose concentrations, can regulate hormone synthesis, and are released in response to small changes in plasma glucose levels. At the same time, insulin serves as the major physiological anabolic agent, promoting the synthesis and storage of glucose, lipids, and proteins and inhibiting their degradation and release back into the circulation. This chapter will focus mainly on signal transduction mechanisms by which insulin exerts its plethora of effects in liver, muscle, and fat cells, focusing on those pathways that are crucial in the control of glucose and lipid homeostasis. PMID:26721672

  18. Glucose challenge test (50-g GCT) in detection of glucose metabolism disorders in peritoneal dialysis patients: preliminary study

    OpenAIRE

    Madziarska, Katarzyna; Zmonarski, Slawomir; Penar, Jozef; Krajewska, Magdalena; Mazanowska, Oktawia; Augustyniak-Bartosik, Hanna; Gołebiowski, Tomasz; Klak, Renata; Weyde, Waclaw; Klinger, Marian

    2014-01-01

    Background The aim was to evaluate the clinical utility of the oral glucose tolerance screening test (50-g GCT—glucose challenge test) for the detection of glucose metabolism disorders (GMD) in peritoneal dialysis (PD) patients with normal fasting glucose levels. Methods The 50-g GCT was performed in 20 prevalent patients without history of diabetes before PD treatment onset, who had been on dialysis for a median time of 15.34 months. In addition, other indicators of glucose metabolism were m...

  19. Unilateral cerebral polymicrogyria with ipsilateral cerebral hemiatrophy

    International Nuclear Information System (INIS)

    We evaluated six children in whom MR imaging showed unilateral cerebral polymicrogyria associated with ipsilateral cerebral atrophy and ipsilateral brain stem atrophy. The aim of this study was to clarify whether this disorder based on neuroimaging constitutes a new homogeneous clinical entity. The subjects were six children whose ages at the time of MR imaging ranged from 8 months to 11 years. Their clinical and MR features were analyzed. All of the children were born between 38 and 42 weeks gestation, without any significant perinatal events. Spastic hemiplegia and epilepsy were observed in all of the patients, and mental retardation was observed in four. The MR findings included unilateral cerebral polymicrogyria associated with ipsilateral cerebral hemiatrophy and ipsilateral brain stem atrophy in all patients. The ipsilateral sylvian fissure was hypoplastic in four patients. These patients showed relatively homogeneous clinical and neuroimaging features. Although the additional clinical features varied according to the site and the extent affected by the polymicrogyria, this disorder could constitute a new relatively homogeneous clinical entity. (orig.)

  20. Unilateral cerebral polymicrogyria with ipsilateral cerebral hemiatrophy

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Katsumi [Department of Radiology, Kyoto City Hospital, 1-2 Higashi-Takada-cho, Mibu, Nakagyo-ku, 604-8845 Kyoto (Japan); Kanda, Toyoko; Yamori, Yuriko [Department of Pediatric Neurology, St. Joseph Hospital for Handicapped Children, 603-8323 Kyoto (Japan)

    2002-10-01

    We evaluated six children in whom MR imaging showed unilateral cerebral polymicrogyria associated with ipsilateral cerebral atrophy and ipsilateral brain stem atrophy. The aim of this study was to clarify whether this disorder based on neuroimaging constitutes a new homogeneous clinical entity. The subjects were six children whose ages at the time of MR imaging ranged from 8 months to 11 years. Their clinical and MR features were analyzed. All of the children were born between 38 and 42 weeks gestation, without any significant perinatal events. Spastic hemiplegia and epilepsy were observed in all of the patients, and mental retardation was observed in four. The MR findings included unilateral cerebral polymicrogyria associated with ipsilateral cerebral hemiatrophy and ipsilateral brain stem atrophy in all patients. The ipsilateral sylvian fissure was hypoplastic in four patients. These patients showed relatively homogeneous clinical and neuroimaging features. Although the additional clinical features varied according to the site and the extent affected by the polymicrogyria, this disorder could constitute a new relatively homogeneous clinical entity. (orig.)

  1. Sexual dimorphisms in swimming behavior, cerebral metabolic activity and adrenoceptors in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Ampatzis, Konstantinos; Dermon, Catherine R

    2016-10-01

    Sexually dimorphic behaviors and brain sex differences, not only restricted to reproduction, are considered to be evolutionary preserved. Specifically, anxiety related behavioral repertoire is suggested to exhibit sex-specific characteristics in rodents and primates. The present study investigated whether behavioral responses to novelty, have sex-specific characteristics in the neurogenetic model organism zebrafish (Danio rerio), lacking chromosomal sex determination. For this, aspects of anxiety-like behavior (including reduced exploration, increased freezing behavior and erratic movement) of male and female adult zebrafish were tested in a novel tank paradigm and after habituation. Male and female zebrafish showed significant differences in their swimming activity in response to novelty, with females showing less anxiety spending more time in the upper tank level. When fish have habituated, regional cerebral glucose uptake, an index of neuronal activity, and brain adrenoceptors' (ARs) expression (α2-ARs and β-ARs) were determined using in vivo 2-[(14)C]-deoxyglucose methodology and in vitro neurotransmitter receptors quantitative autoradiography, respectively. Intriguingly, females exhibited higher glucose utilization than males in hypothalamic brain areas. Adrenoceptor's expression pattern was dimorphic in zebrafish telencephalic, preoptic, hypothalamic nuclei, central gray, and cerebellum, similarly to birds and mammals. Specifically, the lateral zone of dorsal telencephalon (Dl), an area related to spatial cognition, homologous to the mammalian hippocampus, showed higher α2-AR densities in females. In contrast, male cerebellum included higher densities of β-ARs in comparison to female. Taken together, our data demonstrate a well-defined sex discriminant cerebral metabolic activity and ARs' pattern in zebrafish, possibly contributing to male-female differences in the swimming behavior. PMID:27363927

  2. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    Science.gov (United States)

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia.

  3. In vivo evaluation of amyloid deposition and brain glucose metabolism of 5XFAD mice using positron emission tomography.

    Science.gov (United States)

    Rojas, Santiago; Herance, José Raúl; Gispert, Juan Domingo; Abad, Sergio; Torrent, Elia; Jiménez, Xavier; Pareto, Deborah; Perpiña, Unai; Sarroca, Sara; Rodríguez, Elisenda; Ortega-Aznar, Arantxa; Sanfeliu, Coral

    2013-07-01

    Positron emission tomography (PET) has been used extensively to evaluate the neuropathology of Alzheimer's disease (AD) in vivo. Radiotracers directed toward the amyloid deposition such as [(18)F]-FDDNP (2-(1-{6-[(2-[F]Fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile) and [(11)C]-PIB (Pittsburg compound B) have shown exceptional value in animal models and AD patients. Previously, the glucose analogue [(18)F]-FDG (2-[(18)F]fluorodeoxyglucose) allowed researchers and clinicians to evaluate the brain glucose consumption and proved its utility for the early diagnosis and the monitoring of the progression of AD. Animal models of AD are based on the transgenic expression of different human mutant genes linked to familial AD. The novel transgenic 5XFAD mouse containing 5 mutated genes in its genome has been proposed as an AD model with rapid and massive cerebral amyloid deposition. PET studies performed with animal-dedicated scanners indicate that PET with amyloid-targeted radiotracers can detect the pathological amyloid deposition in transgenic mice and rats. However, in other studies no differences were found between transgenic mice and their wild type littermates. We sought to investigate in 5XFAD mice if the radiotracers [(11)C]-PIB, and [(18)F]-Florbetapir could quantify the amyloid deposition in vivo and if [(18)F]-FDG could do so with regard to glucose consumption. We found that 5XFAD animals presented higher cerebral binding of [(18)F]-Florbetapir, [(11)C]-PIB, and [(18)F]-FDG. These results support the use of amyloid PET radiotracers for the evaluation of AD animal models. Probably, the increased uptake observed with [(18)F]-FDG is a consequence of glial activation that occurs in 5XFAD mice.

  4. Impaired cerebral blood flow and oxygenation during exercise in type 2 diabetic patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Seifert, Thomas; Brassard, Patrice;

    2015-01-01

    Endothelial vascular function and capacity to increase cardiac output during exercise are impaired in patients with type 2 diabetes (T2DM). We tested the hypothesis that the increase in cerebral blood flow (CBF) during exercise is also blunted and, therefore, that cerebral oxygenation becomes...... cerebral artery blood flow velocity. Cerebral oxygenation and metabolism were evaluated from the arterial-to-venous differences for oxygen, glucose, and lactate. Blood pressure was comparable during exercise between the two groups. However, the partial pressure of arterial carbon dioxide was lower.......05). In contrast, CBF increased ~20% during exercise in the control group while the brain uptake of lactate and glucose was similar in the two groups. In conclusion, these results suggest that impaired CBF and oxygenation responses to exercise in T2DM patients may relate to limited ability to increase cardiac...

  5. Neuroprotective effect of penehyclidine hydrochloride on focal cerebral ischemiareperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Cuicui Yu; Junke Wang

    2013-01-01

    Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochloride in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of Bcl-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect.

  6. Effects of electroacupuncture on microcirculatory blood flow and glucose transporter function in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Yan Lu; Bingbing Han; Shijun Wang

    2011-01-01

    Nerve cell metabolism in post brain ischemia depends on increased microcirculation perfusion and transport function of microvascular endothelial cells. In the present study, a rat model of middle cerebral artery occlusion was established to investigate the influence of electroacupuncture(EA)on hippocampal CA1 cerebral blood flow and glucose transporter 1(GLUT1)expression in the microvascular endothelial cp.lls. Following EA at Neiguan(PC 6), the cerebral blood flow in the ischemic hippocampal CA1 region was significantly elevated, the number and microvascular integrated absorbance of the GLUTl-positive cells were significantly increased, nerve cell damage was ameliorated, and GLUT1 protein expression in the ischemic hippocampus was significantly increased. Results demonstrate that EA increased the cerebral blood flow of the hippocampal CA1 region and improved the glucose transport function, thereby attenuating neuronal injuries.

  7. Effectiveness of different ways of lowering blood glucose on patients with hyperglycemia associated acute cere-bral stroke%不同降糖方式对伴高血糖的急性脑卒中患者的治疗作用

    Institute of Scientific and Technical Information of China (English)

    徐志伟; 黄云旗; 钟盛武

    2014-01-01

    目的:分析不同降糖方式对伴发高血糖的急性脑卒中患者临床效果,为伴发高血糖的急性脑卒中患者寻取科学合理的降糖方式。方法将2006-06-2012-06我院收治的169例患者按照降糖方式不同分为3组:持续皮下胰岛素治疗组(CSII组)57例,每日多次皮下胰岛素治疗组(MDII组)56例,口服降糖药物组(OHA组)56例,3组分别给予不同降糖治疗方法治疗,对比3组治疗效果、血糖值、低血糖发生率并进行神经功能缺损评分。结果(1)CSII组到达靶血糖值时间较 MDII 组和OHA组明显缩短(P<0.01),血糖波动CSII组及OHA组均较MDII组小(P<0.05),CSII组住院时间较MDII组(P<0.05)和OHA组缩短(P<0.01);(2)CSII组、MDII组、OHA组神经功能缺损评分在经过治疗2周后出现明显改善(P<0.01、P<0.05);治疗4周后,3组患者神经功能缺损评分较治疗前有所改善,其中以CSII组改善最为明显,CSII组数据与MDII组、OHA组比较差异有统计学意义(P<0.05);(3)3组疗效比较以CSII组最好,与MDII组OHA组相比差异均有统计学意义(P<0.05),MDII组与OHA组相比差异有统计学意义(P<0.05);(4)3组低血糖发生率比较:CSII组和OHA组低血糖发生率分别为3.51%(2/57)、3.57%(2/56),MDII组低血糖发生率为17.85%(10/56),与CSII组和OHA组比较有显著性差异(P<0.01),3组均未出现严重低血糖。结论不管患者既往是否有糖尿病,对伴发高血糖的急性脑卒中患者宜采用胰岛素治疗,给药方式以CSII为优,能有效控制高血糖,提高患者治疗预期。%Objective To study and analyze the clinical effects of different blood sugar-lowering methods on acute cerebral stroke patients with hyperglycemia ,and to explore scientific blood sugar lowering approach for acute cerebral stroke patients with hyperglycemia .Methods One

  8. Increased T cell glucose uptake reflects acute rejection in lung grafts

    OpenAIRE

    Chen, Delphine L.; Wang, Xingan; Yamamoto, Sumiharu; Carpenter, Danielle; Engle, Jacquelyn T.; Li, Wenjun; Lin, Xue; Kreisel, Daniel; Krupnick, Alexander S.; Huang, Howard J.; Gelman, Andrew E.

    2013-01-01

    Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [18F]fluorodeoxyglucose ([18F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the graft...

  9. Cerebral Aneurysms Fact Sheet

    Science.gov (United States)

    ... cerebral aneurysm from forming. People with a diagnosed brain aneurysm should carefully control high blood pressure, stop smoking, and avoid cocaine use or other stimulant drugs. They should also ...

  10. Cerebral amyloid angiopathy

    Science.gov (United States)

    ... Fenichel GM, Jankovic J, Mazziotta JC, eds. Bradley's Neurology in Clinical Practice . 6th ed. Philadelphia, PA: Elsevier ... al. Course of cerebral amyloid angiopathy-related inflammation. Neurology. 2007;68:1411-1416. PMID: 17452586 www.ncbi. ...

  11. Acute ischemic cerebral attack

    OpenAIRE

    Franco-Garcia Samir; Barreiro-Pinto Belis

    2010-01-01

    The decrease of the cerebral blood flow below the threshold of autoregulation led to changes of cerebral ischemia and necrosis that traduce in signs and symtoms of focal neurologic dysfunction called acute cerebrovascular symdrome (ACS) or stroke. Two big groups according to its etiology are included in this category the hemorragic that constitue a 20% and the ischemic a 80% of cases. Great interest has wom the ischemic ACS because of its high social burden, being the third cause of no violen...

  12. Cerebral Palsy Litigation

    OpenAIRE

    Sartwelle, Thomas P.; Johnston, James C.

    2015-01-01

    The cardinal driver of cerebral palsy litigation is electronic fetal monitoring, which has continued unabated for 40 years. Electronic fetal monitoring, however, is based on 19th-century childbirth myths, a virtually nonexistent scientific foundation, and has a false positive rate exceeding 99%. It has not affected the incidence of cerebral palsy. Electronic fetal monitoring has, however, increased the cesarian section rate, with the expected increase in mortality and morbidity risks to mothe...

  13. Rehabilitation in cerebral palsy.

    OpenAIRE

    Molnar, G. E.

    1991-01-01

    Cerebral palsy is the most frequent physical disability of childhood onset. Over the past four decades, prevalence has remained remarkably constant at 2 to 3 per 1,000 live births in industrialized countries. In this article I concentrate on the rehabilitation and outcome of patients with cerebral palsy. The epidemiologic, pathogenetic, and diagnostic aspects are highlighted briefly as they pertain to the planning and implementation of the rehabilitation process.

  14. Critical Care Glucose Point-of-Care Testing.

    Science.gov (United States)

    Narla, S N; Jones, M; Hermayer, K L; Zhu, Y

    2016-01-01

    Maintaining blood glucose concentration within an acceptable range is a goal for patients with diabetes mellitus. Point-of-care glucose meters initially designed for home self-monitoring in patients with diabetes have been widely used in the hospital settings because of ease of use and quick reporting of blood glucose information. They are not only utilized for the general inpatient population but also for critically ill patients. Many factors affect the accuracy of point-of-care glucose testing, particularly in critical care settings. Inaccurate blood glucose information can result in unsafe insulin delivery which causes poor glucose control and can be fatal. Healthcare professionals should be aware of the limitations of point-of-care glucose testing. This chapter will first introduce glucose regulation in diabetes mellitus, hyperglycemia/hypoglycemia in the intensive care unit, importance of glucose control in critical care patients, and pathophysiological variables of critically ill patients that affect the accuracy of point-of-care glucose testing. Then, we will discuss currently available point-of-care glucose meters and preanalytical, analytical, and postanalytical sources of variation and error in point-of-care glucose testing. PMID:27645817

  15. Cerebral palsy and congenital malformations

    DEFF Research Database (Denmark)

    Garne, Ester; Dolk, Helen; Krägeloh-Mann, Inge;

    2007-01-01

    AIM: To determine the proportion of children with cerebral palsy (CP) who have cerebral and non-cerebral congenital malformations. METHODS: Data from 11 CP registries contributing to the European Cerebral Palsy Database (SCPE), for children born in the period 1976-1996. The malformations were...... classified as recognized syndromes, chromosomal anomalies, cerebral malformations or non-cerebral malformations. Prevalence of malformations was compared to published data on livebirths from a European database of congenital malformations (EUROCAT). RESULTS: Overall 547 out of 4584 children (11.9%) with CP...... were reported to have a congenital malformation. The majority (8.6% of all children) were diagnosed with a cerebral malformation. The most frequent types of cerebral malformations were microcephaly and hydrocephaly. Non-cerebral malformations were present in 97 CP children and in further 14 CP children...

  16. Low potential stable glucose detection at dendrimers modified polyaniline nanotubes

    OpenAIRE

    Alessandra Nogueira Santos; Demétrio Artur Werner Soares; Alvaro Antonio Alencar de Queiroz

    2010-01-01

    The utilization of nanostructured materials for development of biosensors is a growing field in medical diagnostics. In this work a glucose biosensor based on bioactive polyglycerol (PGLD) and chitosan dendrimers (CHD) was developed. PGLD and CHD were bioconjugated with the enzyme glucose oxidase (GOx) to obtain dendrimers with glucose sensing properties. Polyaniline nanotubes (PANINT´s) were used as electron mediator due to their high ability to promote electron-transfer reactions involving ...

  17. Glucose phosphorylation rate in rat rarietal cortex during normoglycemia, hypoglycemia, acute hyperglycemia, and in diabetes-prone rats

    International Nuclear Information System (INIS)

    Cerebral metabolic rate for glucose (CMRglc) was studied in rats using [6-14C]glucose. After intravenous injection the radioactivity of the parietal cortex was corrected for loss of labeled CO2 and divided by the integral of the arterial plasma glucose concentration, determined during tracer circulation. Treatment with insulin, resulting in plasma glucose concentrations less than 2.6 mmol/l, reduced CMRglc to 64% of the values found in control animals. CMRglc did not change in animals with acute hyper-glycemia produced by intraperiotoneal injection of a glucose solution or in diabetes-prone rats with or withour insulin treatment. (author)

  18. Glucose phosphorylation rate in rat parietal cortex during normoglycemia, hypoglycemia, acute hyperglycemia, and in diabetes-prone rats

    Energy Technology Data Exchange (ETDEWEB)

    Broendsted, H.E.; Gjedde, A. (Department of General Physiology and Biophysics, Panum Institute, University of Copenhagen (Denmark))

    1990-01-01

    Cerebral metabolic rate for glucose (CMRglc) was studied in rats using (6-{sup 14}C)glucose. After intravenous injection the radioactivity of the parietal cortex was corrected for loss of labeled CO{sub 2} and divided by the integral of the arterial plasma glucose concentration, determined during tracer circulation. Treatment with insulin, resulting in plasma glucose concentrations less than 2.6 mmol/l, reduced CMRglc to 64% of the values found in control animals. CMRglc did not change in animals with acute hyper-glycemia produced by intraperiotoneal injection of a glucose solution or in diabetes-prone rats with or withour insulin treatment. (author).

  19. Development of an Amperometric-Based Glucose Biosensor to Measure the Glucose Content of Fruit

    OpenAIRE

    Lee Fung Ang; Lip Yee Por; Mun Fei Yam

    2015-01-01

    An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. T...

  20. Glucose as substrate and signal in priming: Results from experiments with non-metabolizable glucose analogues

    Science.gov (United States)

    Mason-Jones, Kyle; Kuzyakov, Yakov

    2016-04-01

    Priming of soil organic matter remains the subject of intense research, but a mechanistic explanation of the phenomenon remains to be demonstrated. This is largely due to the multiple effects of easily available carbon on the soil microbial community, and the challenge of separating these influences from one another. Several glucose analogues can be taken up by microbial glucose transporters and have similar regulatory effects on metabolism. These substances are, however, not easily catabolized by the common glycolytic pathway, limiting their energy value. Therefore, they can be used to distinguish between the action of glucose as a metabolic signal, and its influence as an energy source. We incubated an agricultural Haplic Luvisol under controlled conditions for 24 days after addition of: 1) glucose, 2) 3-O-methyl-glucose, 3) α-methylglucoside or 4) 2-deoxyglucose, at three concentration levels, along with a control treatment of water addition. CO2 efflux from soil was monitored by trapping evolved CO2 in NaOH and back-titration with HCl. On the first day after amendment, CO2 efflux from soil increased strongly for glucose and much less for the analogues, relative to the control. Only glucose caused a peak in efflux within the first two days. Peak mineralization of 2-deoxyglucose and α-methylglucoside was delayed until the third day, while CO2 from 3-O-methyl-glucose increased gradually, with a peak delayed by approximately a week. For glucose, the immediate increase in respiration was strongly dependent on the amount of glucose added, but this was not the case for the analogues, indicating that the catabolic potential for these substances was saturated. This is consistent with only a small part of the microbial community being capable of utilizing these carbon sources. In a subsequent experiment, 14C-labelled glucose or 14C-labelled 3-O-methyl-glucose were added to the same soil, enabling quantification of the priming effect. For 3-O-methyl-glucose, priming was

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy ...

  2. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin ...

  3. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Fisher, James P; Young, Colin N;

    2010-01-01

    Brain blood vessels contain muscarinic receptors that are important for cerebral blood flow (CBF) regulation, but whether a cholinergic receptor mechanism is involved in the exercise-induced increase in cerebral perfusion or affects cerebral metabolism remains unknown. We evaluated CBF and cerebral...... metabolism (from arterial and internal jugular venous O(2), glucose and lactate differences), as well as the middle cerebral artery mean blood velocity (MCA V(mean); transcranial Doppler ultrasound) during a sustained static handgrip contraction at 40% of maximal voluntary contraction (n = 9) and the MCA V......(mean) during ergometer cycling (n = 8). Separate, randomized and counterbalanced trials were performed in control (no drug) conditions and following muscarinic cholinergic receptor blockade by glycopyrrolate. Glycopyrrolate increased resting heart rate from approximately 60 to approximately 110 beats min(-1...

  4. Nanomedicine in cerebral palsy

    Directory of Open Access Journals (Sweden)

    Balakrishnan B

    2013-11-01

    Full Text Available Bindu Balakrishnan,1 Elizabeth Nance,1 Michael V Johnston,2 Rangaramanujam Kannan,3 Sujatha Kannan1 1Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University; Baltimore, MD, USA; 2Department of Neurology and Pediatrics, Kennedy Krieger Institute, Baltimore, MD, USA; 3Department of Ophthalmology, Center for Nanomedicine, Johns Hopkins University, Baltimore, MD, USA Abstract: Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the developing brain that occurs either in utero or soon after birth can result in the motor, sensory, and cognitive deficits seen in cerebral palsy. Although the etiologies for cerebral palsy are variable, neuroinflammation plays a key role in the pathophysiology of the brain injury irrespective of the etiology. Currently, there is no effective cure for cerebral palsy. Nanomedicine offers a new frontier in the development of therapies for prevention and treatment of brain injury resulting in cerebral palsy. Nanomaterials such as dendrimers provide opportunities for the targeted delivery of multiple drugs that can mitigate several pathways involved in injury and can be delivered specifically to the cells that are responsible for neuroinflammation and injury. These materials also offer the opportunity to deliver agents that would promote repair and regeneration in the brain, resulting not only in attenuation of injury, but also enabling normal growth. In this review, the current advances in nanotechnology for treatment of brain injury are discussed with specific relevance to cerebral palsy. Future directions that would facilitate clinical translation in neonates and children are also addressed. Keywords: dendrimer, cerebral palsy, neuroinflammation, nanoparticle, neonatal brain injury, G4OH-PAMAM

  5. Positive Correlation between Severity of Blepharospasm and Thalamic Glucose Metabolism

    OpenAIRE

    Murai, Hideki; Suzuki, Yukihisa; Kiyosawa, Motohiro; Wakakura, Masato; Mochizuki, Manabu; Ishiwata, Kiichi; Ishii, Kenji

    2011-01-01

    A 43-year-old woman with drug-related blepharospasm was followed up for 22 months. She had undergone etizolam treatment for 19 years for indefinite complaints. We examined her cerebral glucose metabolism 5 times (between days 149 and 688 since presentation), using positron emission tomography, and identified regions of interest in the thalamus, caudate nucleus, putamen, and primary somatosensory area on both sides. The severity of the blepharospasm was evaluated by PET scanning using the Waka...

  6. Glucose-6-phosphate dehydrogenase deficiency. WHO Working Group.

    OpenAIRE

    1989-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the commonest enzyme disorder of human beings and a globally important cause of neonatal jaundice, which can lead to kernicterus and death or spastic cerebral palsy. It can also lead to life-threatening haemolytic crises in childhood and at later ages, by interacting with specific drugs and with fava beans in the diet. The complications of G6PD deficiency can largely be prevented by education and information, and neonatal jaundice can be ...

  7. Enhanced muscle glucose metabolism after exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Garetto, L P; Goodman, M N;

    1984-01-01

    Studies in the rat suggest that after voluntary exercise there are two phases of glycogen repletion in skeletal muscle (preceding study). In phase I glucose utilization and glycogen synthesis are enhanced both in the presence and absence of insulin, whereas in phase II only the increase in the pr...

  8. Clinical Neuroimaging of cerebral ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawara, Jyoji [Nakamura Memorial Hospital, Sapporo (Japan)

    1999-06-01

    Notice points in clinical imaging of cerebral ischemia are reviewed. When cerebral blood flow is determined in acute stage of cerebral embolism (cerebral blood flow SPECT), it is important to find area of ischemic core and ischemic penumbra. When large cortex area is assigned to ischemic penumbra, thrombolytic therapy is positively adapted, but cautious correspondence is necessary when ischemic core is recognized. DWI is superior in the detection of area equivalent to ischemic core of early stage, but, in imaging of area equivalent to ischemic penumbra, perfusion image or distribution image of cerebral blood volume (CBV) by MRI need to be combined. Luxury perfusion detected by cerebral blood flow SPECT in the cases of acute cerebral embolism suggests vascular recanalization, but a comparison with CT/MRI and continuous assessment of cerebral circulation dynamics were necessary in order to predict brain tissue disease (metabolic abnormality). In hemodynamic cerebral ischemia, it is important to find stage 2 equivalent to misery perfusion by quantification of cerebral blood flow SPECT. Degree of diaschisis can indicate seriousness of brain dysfunction for lacuna infarct. Because cerebral circulation reserve ability (perfusion pressure) is normal in all areas of the low cerebral blood flow by diaschisis mechanism, their areas are easily distinguished from those of hemodynamic cerebral ischemia. (K.H.)

  9. Muscle glucose metabolism following exercise in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Garetto, L P; Goodman, M N;

    1982-01-01

    Muscle glycogen stores are depleted during exercise and are rapidly repleted during the recovery period. To investigate the mechanism for this phenomenon, untrained male rats were run for 45 min on a motor-driven treadmill and the ability of their muscles to utilize glucose was then assessed during...... perfusion of their isolated hindquarters. Glucose utilization by the hindquarter was the same in exercised and control rats perfused in the absence of added insulin; however, when insulin (30-40,000 muU/ml) was added to the perfusate, glucose utilization was greater after exercise. Prior exercise lowered...... both, the concentration of insulin that half-maximally stimulated glucose utilization (exercise, 150 muU/ml; control, 480 muU/ml) and modestly increased its maximum effect. The increase in insulin sensitivity persisted for 4 h following exercise, but was not present after 24 h. The rate-limiting step...

  10. Closed-Loop Dynamic Modeling of Cerebral Hemodynamics

    Science.gov (United States)

    Marmarelis, V. Z.; Shin, D. C.; Orme, M. E.; Zhang, R.

    2013-01-01

    The dynamics of cerebral hemodynamics have been studied extensively because of their fundamental physiological and clinical importance. In particular, the dynamic processes of cerebral flow autoregulation and CO2 vasomotor reactivity have attracted broad attention because of their involvement in a host of pathologies and clinical conditions (e.g. hypertension, syncope, stroke, traumatic brain injury, vascular dementia, Alzheimer’s disease, mild cognitive impairment etc.). This raises the prospect of useful diagnostic methods being developed on the basis of quantitative models of cerebral hemodynamics, if cerebral vascular dysfunction can be quantified reliably from data collected within practical clinical constraints. This paper presents a modeling method that utilizes beat-to-beat measurements of mean arterial blood pressure, cerebral blood flow velocity and end-tidal CO2 (collected non-invasively under resting conditions) to quantify the dynamics of cerebral flow autoregulation (CFA) and cerebral vasomotor reactivity (CVMR). The unique and novel aspect of this dynamic model is that it is nonlinear and operates in a closed-loop configuration. PMID:23292615

  11. Monitor blood glucose - slideshow

    Science.gov (United States)

    ... medlineplus.gov/ency/presentations/100220.htm Monitoring blood glucose - Series—Monitoring blood glucose: Using a self-test meter To use the ... A.M. Editorial team. Related MedlinePlus Health Topics Blood Sugar A.D.A.M., Inc. is accredited by ...

  12. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    OpenAIRE

    Lam, Tony K.T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  13. Cerebral abscess in children

    International Nuclear Information System (INIS)

    A cerebral abscess (CA) is a focal, infectious process only or multiple, located in the cerebral parenchyma that produces tisular lysis and it behaves like a lesion of space occupative, being a suppurative illness, who origin is a distant infection, or for continuity that studies initially as an area of focal cerebritis and it is developed to a collection surrounded purulent. At the moment they are perfecting technical and protocols diagnoses and therapeutic and measures for allow to control the natural history of the illness, making from the confrontation to this pathology a necessarily interdisciplinary complicated art, stiller in the infantile population, due to their difficulty in the diagnosis and the relevance of the same one. The paper includes epidemiology, etiology, risk factors, localization, pathology, clinic, diagnoses, treatment and diagnostic images

  14. Cerebral hemodynamics in migraine

    DEFF Research Database (Denmark)

    Hachinski, V C; Olesen, Jes; Norris, J W;

    1977-01-01

    Clinical and angiographic findings in migraine are briefly reviewed in relation to cerebral hemodynamic changes shown by regional cerebral blood flow (rCBF) studies. Three cases of migraine studied by the intracarotid xenon 133 method during attacks are reported. In classic migraine, with typical...... prodromal symptoms, a decrease in cerebral blood flow has been demonstrated during the aura. Occasionally, this flow decrease persists during the headache phase. In common migraine, where such prodromata are not seen, a flow decrease has not been demonstrated. During the headache phase of both types...... of migraine, rCBF has usually been found to be normal or in the high range of normal values. The high values may represent postischemic hyperemia, but are probably more frequently secondary to arousal caused by pain. Thus, during the headache phase rCBF may be subnormal, normal or high. These findings do...

  15. Tentative longterm effects of a noradrenergic antidepressant; affecting the number of glucose transporters

    OpenAIRE

    Fonnes, Vera Linn Synnevåg

    2008-01-01

    Major depressive disorder is an affective disorder affecting millions of people worldwide. Only in Europe at least 21 million are thought to be affected. Several theories have been developed during the years trying to explain the cause of depression. This study is based on the theory where major depressive disorder is believed to be caused by impaired cerebral glucose metabolism, proposed by Hundal in 2006.The astroglia are thought to be the primary affected cells. The glucose transporter...

  16. Neuronal LRP1 Regulates Glucose Metabolism and Insulin Signaling in the Brain

    OpenAIRE

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L.; Kanekiyo, Takahisa; Bu, Guojun

    2015-01-01

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes durin...

  17. Cerebral fat embolism

    International Nuclear Information System (INIS)

    A case of cerebral fat embolism is reported. A 18-year-old patient with multiple bone fractures was in semiconma immediately after an injury. Brain CT showed no brain swelling or intracranial hematoma. Hypoxemia and alcoholemia were noted on admission, which returned to normal without improvement of consciousness level. In addition, respiratory symptoms with positive radiographic changes, tachycardia, pyrexia, sudden drop in hemoglobin level, and sudden thrombocytopenia developed. These symptoms were compatible with Gurd's criteria of systemic fat embolism. Eight days after injury, multiple low density areas appeared on CT and disappeared within the subsequent two weeks, and subdural effusion with cerebral atrophy developed. These CT findings were not considered due to cerebral trauma. Diagnosis of cerebral fat embolism was made. The subdural effusion was drained. Neurologic and pulmonary recoveries took place slowly and one month following the injury the patient became alert and exhibited fully coordinated limb movement. The CT scans of the present case well corresponded with hitherto reported pathological findings. Petechiae in the white matter must have developed on the day of injury, which could not be detected by CT examination. It is suggested that some petechial regions fused to purpuras and then gradually resolved when they were detected as multiple low density areas on CT. CT in the purpuras phase would have shown these lesions as high density areas. These lesions must have healed with formation of tiny scars and blood pigment which were demonstrated as the disappearance of multiple low density areas by CT examination. Cerebral atrophy and subsequent subdural effusion developed as a result of demyelination. The patient took the typical clinical course of cerebral fat embolism and serial CT scans served for its assessment. (author)

  18. Experimental Focal Cerebral Ischemia

    DEFF Research Database (Denmark)

    Christensen, Thomas

    2007-01-01

    Focal cerebral ischemia due to occlusion of a major cerebral artery is the cause of ischemic stroke which is a major reason of mortality, morbidity and disability in the populations of the developed countries. In the seven studies summarized in the thesis focal ischemia in rats induced by occlusion......-PBN on the periinfarct depolarizations and infarct volume was investigated. In study number six, the activity of the mitochondrial electron transport complexes I, II and IV was evaluated histochemically during reperfusion after MCAO in order to assess the possible role of mitochondrial dysfunction in focal ischemic...

  19. Resolving futile glucose cycling and glycogenolytic contributions to plasma glucose levels following a glucose load

    NARCIS (Netherlands)

    Nunes, P.M.; Jarak, I.; Heerschap, A.; Jones, J.G.

    2014-01-01

    PURPOSE: After a glucose load, futile glucose/glucose-6-phosphate (G6P) cycling (FGC) generates [2-(2) H]glucose from (2) H2 O thereby mimicking a paradoxical glycogenolytic contribution to plasma glucose levels. Contributions of load and G6P derived from gluconeogenesis, FGC, and glycogenolysis to

  20. Cerebral atrophic and degenerative changes following various cerebral diseases, (1)

    International Nuclear Information System (INIS)

    Patients having cerebral atrophic and degenerative changes following hypoglycemia, cerebral contusion, or cerebral hypoxia including cerebrovascular disorders were reported. Description was made as to cerebral changes visualized on CT images and clinical courses of a patient who revived 10 minutes after heart stoppage during neurosurgery, a newborn with asphyxia, a patient with hypoglycemia, a patient who suffered from asphyxia by an accident 10 years before, a patient with carbon monoxide poisoning at an acute stage, a patient who had carbon monoxide poisoning 10 years before, a patient with diffuse cerebral ischemic changes, a patient with cerebral edema around metastatic tumor, a patient with respiration brain, a patient with neurological sequelae after cerebral contusion, a patient who had an operation to excise right parietal lobe artery malformation, and a patient who was shooted by a machine gun and had a lead in the brain for 34 years. (Tsunoda, M.)

  1. Bedside Evaluation of Cerebral Energy Metabolism in Severe Community-Acquired Bacterial Meningitis

    DEFF Research Database (Denmark)

    Rom Poulsen, Frantz; Schulz, Mette; Jacobsen, Anne;

    2015-01-01

    BACKGROUND: Mortality and morbidity have remained high in bacterial meningitis. Impairment of cerebral energy metabolism probably contributes to unfavorable outcome. Intracerebral microdialysis is routinely used to monitor cerebral energy metabolism, and recent experimental studies indicate...... that this technique may separate ischemia and non-ischemic mitochondrial dysfunction. The present study is a retrospective interpretation of biochemical data obtained in a series of patients with severe community-acquired meningitis. METHODS: Cerebral energy metabolism was monitored in 15 patients with severe...... community-acquired meningitis utilizing intracerebral microdialysis and bedside biochemical analysis. According to previous studies, cerebral ischemia was defined as lactate/pyruvate (LP) ratio >30 with intracerebral pyruvate level

  2. Magnetic Resonance Features of Cerebral Malaria

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P.; Sharma, R.; Kumar, S.; Kumar, U. (Dept. of Radiodiagnosis and Dept. of Medicine, All India Institute of Medical Sciences, New Delhi (India))

    2008-06-15

    Background: Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. Purpose: To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. Material and Methods: We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm2, and apparent diffusion coefficient (ADC) maps were obtained. Results: Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. Conclusion: MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients

  3. Clinical studies of cerebral arteriosclerosis in diabetic subjects. Analysis with brain MRI study

    International Nuclear Information System (INIS)

    In order to investigate the clinical characteristics of cerebral arteriosclerosis in diabetic subjects, brain MRI studies were conducted in diabetic patients and healthy subjects. The subjects were 93 diabetic patients without symptoms and signs of cerebral infarction (49 males and 44 females) with a mean age of 59 years and 73 healthy subjects (43 males and 30 females) with a mean age of 57 years. The MRI studies were performed on a General Electric 1.5-T signa system. The spin-echo technique (T2-weighted image) was used with a pulse repetition time (TR) of 2,500 msec and echo time (TE) of 80 msec. The quantitative evaluation of cerebral infarction was assessed using personal computer and image-scanner. By MRI, the incidence of cerebral infarction in diabetic patients was significantly higher than that in healthy subjects (30.1% vs. 13.7%, respectively, p<0.05). The mean age of the diabetic patients with cerebral infarctions was higher than that of those without cerebral infarctions. Hypertension and diabetic nephropathy were present more frequently in the subjects with cerebral infarctions. These data suggest that it is important to delay the onset and slow the progression of cerebral infarction in diabetic patients by strict blood glucose control and management of blood pressure. (author)

  4. 脑梗死患者病前智力的估计方法及其应用%Premorbid intelligence of patients with cerebral infarction:estimation and utilization

    Institute of Scientific and Technical Information of China (English)

    唐细容; 曾慧; 姚树桥

    2014-01-01

    目的 探讨脑梗死患者的病前智力估计方法.方法 使用10个回归公式估计74名脑梗死患者及其健康配对者的智商,选出脑梗死病人的智商估计方法.将优选出的估计智商转换为标准分,考察它们与“不保持”分测验的标准分的差距.结果 健康组的估计智商与实测智商均数差距都小于1,相关系数为0.755~ 0.956;脑梗死组估计智商平均高于实测智商3.20~10.67.脑梗死组估计智商低于健康组0.83~8.28,但其中单用人口统计变量、联合人口统计变量与常识测验或图形推理的测验成绩的估计智商只有0.26、0.24、0.38等小的组间效应.病人组采用后两种方法估计的标准分形式的病前智力水平分别高于数字符号标准分0.70、0.63分,高于积木构图0.67、0.61分,而对照组的对应值为0.21、0.21、0.12、0.12,差值的组间差异有统计学意义.结论 建议联合人口统计变量与常识测验或图形推论的测验成绩估计脑梗死患者的病前智力水平.%Objective To explore the methods for estimating premorbid intelligence of patients with cerebral infarction.Methods Ten regression equations were employed to estimate intelligence quotients (IQs) of 74 patients and 74 demographically matched,healthy adults.Those valid estimated IQs were transformed into standard scores and adopted to evaluate the difference with don' t hold' subtests.Results In the healthy group,there were trivial difference between the estimated IQs and obtained IQs with mean discrepancy less than one and the correlation coefficients between them ranged from 0.755 to 0.956.However in the patients group,the estimated IQs were significantly higher than obtained IQs with mean discrepancy of 3.20-10.67.Mean estimated IQs of the patient group were lower than those of healthy group to varing degrees with mean discrepancy of 0.83-8.28,in which the mean IQs estimated just with demographic variables showed small between group

  5. Positive Correlation between Severity of Blepharospasm and Thalamic Glucose Metabolism.

    Science.gov (United States)

    Murai, Hideki; Suzuki, Yukihisa; Kiyosawa, Motohiro; Wakakura, Masato; Mochizuki, Manabu; Ishiwata, Kiichi; Ishii, Kenji

    2011-01-01

    A 43-year-old woman with drug-related blepharospasm was followed up for 22 months. She had undergone etizolam treatment for 19 years for indefinite complaints. We examined her cerebral glucose metabolism 5 times (between days 149 and 688 since presentation), using positron emission tomography, and identified regions of interest in the thalamus, caudate nucleus, putamen, and primary somatosensory area on both sides. The severity of the blepharospasm was evaluated by PET scanning using the Wakakura classification. Sixteen women (mean age 42.4 ± 11.7 years) were examined as normal controls. The thalamic glucose metabolism in our patient was significantly increased on days 149, 212, and 688. The severity of the blepharospasm was positively correlated with the thalamic glucose metabolism, suggesting that the severity of blepharospasms reflects thalamic activity. PMID:22110436

  6. Glucose uptake and its effect on gene expression in prochlorococcus.

    Directory of Open Access Journals (Sweden)

    Guadalupe Gómez-Baena

    Full Text Available The marine cyanobacteria Prochlorococcus have been considered photoautotrophic microorganisms, although the utilization of exogenous sugars has never been specifically addressed in them. We studied glucose uptake in different high irradiance- and low irradiance-adapted Prochlorococcus strains, as well as the effect of glucose addition on the expression of several glucose-related genes. Glucose uptake was measured by adding radiolabelled glucose to Prochlorococcus cultures, followed by flow cytometry coupled with cell sorting in order to separate Prochlorococcus cells from bacterial contaminants. Sorted cells were recovered by filtration and their radioactivity measured. The expression, after glucose addition, of several genes (involved in glucose metabolism, and in nitrogen assimilation and its regulation was determined in the low irradiance-adapted Prochlorococcus SS120 strain by semi-quantitative real time RT-PCR, using the rnpB gene as internal control. Our results demonstrate for the first time that the Prochlorococcus strains studied in this work take up glucose at significant rates even at concentrations close to those found in the oceans, and also exclude the possibility of this uptake being carried out by eventual bacterial contaminants, since only Prochlorococcus cells were used for radioactivity measurements. Besides, we show that the expression of a number of genes involved in glucose utilization (namely zwf, gnd and dld, encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and lactate dehydrogenase, respectively is strongly increased upon glucose addition to cultures of the SS120 strain. This fact, taken together with the magnitude of the glucose uptake, clearly indicates the physiological importance of the phenomenon. Given the significant contribution of Prochlorococcus to the global primary production, these findings have strong implications for the understanding of the phytoplankton role in the carbon

  7. Recurrent cerebral thrombosis

    International Nuclear Information System (INIS)

    Neuroradiological techniques were used to elucidate pathophysiology of recurrent cerebral thrombosis. Twenty-two patients with cerebral thrombosis who suffered a second attack under stable conditions more than 22 days after the initial stroke were studied. Hypertension, diabetes mellitus, and hypercholesterolemia were also seen in 20, 8, and 12 patients, respectively. The patients were divided into three groups according to their symptoms: (I) symptoms differed between the first and second strokes (n=12); (II) initial symptoms were suddenly deteriorated (n=6); and (III) symptoms occurring in groups I and II were seen (n=4). In group I, contralateral hemiparesis or suprabulbar palsy was often associated with the initial hemiparesis. The time of recurrent stroke varied from 4 months to 9 years. CT and MRI showed not only lacunae in both hemispheres, but also deep white-matter ischemia of the centrum semi-ovale. In group II, hemiparesis or visual field defect was deteriorated early after the initial stroke. In addition, neuroimaging revealed that infarction in the posterior cerebral artery was progressed on the contralateral side, or that white matter lesion in the middle artery was enlarged in spite of small lesion in the left cerebral hemisphere. All patients in group III had deterioration of right hemiparesis associated with aphasia. CT, MRI, SPECT, and angiography indicated deep white-matter ischemia caused by main trunk lesions in the left hemisphere. Group III seemed to be equivalent to group II, except for laterality of the lesion. Neuroradiological assessment of the initial stroke may help to predict the mode of recurrence, although pathophysiology of cerebral thrombosis is complicated and varies from patient to patient. (N.K.)

  8. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism

    Directory of Open Access Journals (Sweden)

    Semmler Alexander

    2008-09-01

    Full Text Available Abstract Background Septic encephalopathy is a severe brain dysfunction caused by systemic inflammation in the absence of direct brain infection. Changes in cerebral blood flow, release of inflammatory molecules and metabolic alterations contribute to neuronal dysfunction and cell death. Methods To investigate the relation of electrophysiological, metabolic and morphological changes caused by SE, we simultaneously assessed systemic circulation, regional cerebral blood flow and cortical electroencephalography in rats exposed to bacterial lipopolysaccharide. Additionally, cerebral glucose uptake, astro- and microglial activation as well as changes of inflammatory gene transcription were examined by small animal PET using [18F]FDG, immunohistochemistry, and real time PCR. Results While the systemic hemodynamic did not change significantly, regional cerebral blood flow was decreased in the cortex paralleled by a decrease of alpha activity of the electroencephalography. Cerebral glucose uptake was reduced in all analyzed neocortical areas, but preserved in the caudate nucleus, the hippocampus and the thalamus. Sepsis enhanced the transcription of several pro- and anti-inflammatory cytokines and chemokines including tumor necrosis factor alpha, interleukin-1 beta, transforming growth factor beta, and monocot chemoattractant protein 1 in the cerebrum. Regional analysis of different brain regions revealed an increase in ED1-positive microglia in the cortex, while total and neuronal cell counts decreased in the cortex and the hippocampus. Conclusion Together, the present study highlights the complexity of sepsis induced early impairment of neuronal metabolism and activity. Since our model uses techniques that determine parameters relevant to the clinical setting, it might be a useful tool to develop brain specific therapeutic strategies for human septic encephalopathy.

  9. Nocturnal continuous glucose monitoring

    DEFF Research Database (Denmark)

    Bay, Christiane; Kristensen, Peter Lommer; Pedersen-Bjergaard, Ulrik;

    2013-01-01

    Abstract Background: A reliable method to detect biochemical nocturnal hypoglycemia is highly needed, especially in patients with recurrent severe hypoglycemia. We evaluated reliability of nocturnal continuous glucose monitoring (CGM) in patients with type 1 diabetes at high risk of severe...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for Caregivers Health Insurance Health ... glucose happens when the body has too little insulin or when the body can't use insulin ...

  11. Blood Glucose Monitoring Devices

    Science.gov (United States)

    ... Glucose NIH Medline Plus - Diabetes Spotlight FDA permits marketing of first system of mobile medical apps for ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... avoid problems associated with hyperglycemia. How Do I Treat Hyperglycemia? You can often lower your blood glucose ... be a serious problem if you don't treat it, so it's important to treat as soon ...

  13. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ...

  14. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral ... 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For Lawyers Food & ...

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type 1 Type 2 Facts About Type 2 Enroll ...

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose ... Find Your Local Office Find your local diabetes education program Calendar of Events Wellness Lives Here Drive ...

  17. Hyperglycemia (High Blood Glucose)

    Science.gov (United States)

    ... Text Size: A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term ... body can't use insulin properly. What Causes Hyperglycemia? A number of things can cause hyperglycemia: If ...

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... critical diabetes research and support vital diabetes education services that improve the lives of those with diabetes. $ ... glucose level. Cutting down on the amount of food you eat might also help. Work with your ...

  19. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... the urine Frequent urination Increased thirst Part of managing your diabetes is checking your blood glucose often. ... Blog Online Community Site Menu Are You at Risk? Diagnosis Lower Your Risk Risk Test Alert Day ...

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More ... us get closer to curing diabetes and better treatments for those living with diabetes. Other Ways to ...

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Hispanic Heritage Month African American Programs Latino Programs Asian Americans, Native Hawaiians and Pacific Islanders American Indian/ ... High blood glucose happens when the body has too little insulin or when the body can't ...

  2. Neurometabolic coupling between neural activity, glucose, and lactate in activated visual cortex.

    Science.gov (United States)

    Li, Baowang; Freeman, Ralph D

    2015-11-01

    Neural activity is closely coupled with energy metabolism but details of the association remain to be identified. One basic area involves the relationships between neural activity and the main supportive substrates of glucose and lactate. This is of fundamental significance for the interpretation of non-invasive neural imaging. Here, we use microelectrodes with high spatial and temporal resolution to determine simultaneous co-localized changes in glucose, lactate, and neural activity during visual activation of the cerebral cortex in the cat. Tissue glucose and lactate concentration levels are measured with electrochemical microelectrodes while neural spiking activity and local field potentials are sampled by a microelectrode. These measurements are performed simultaneously while neurons are activated by visual stimuli of different contrast levels, orientations, and sizes. We find immediate decreases in tissue glucose concentration and simultaneous increases in lactate during neural activation. Both glucose and lactate signals return to their baseline levels instantly as neurons cease firing. No sustained changes or initial dips in glucose or lactate signals are elicited by visual stimulation. However, co-localized measurements of cerebral blood flow and neural activity demonstrate a clear delay in the cerebral blood flow signal such that it does not correlate temporally with the neural response. These results provide direct real-time evidence regarding the coupling between co-localized energy metabolism and neural activity during physiological stimulation. They are also relevant to a current question regarding the role of lactate in energy metabolism in the brain during neural activation. Dynamic changes in energy metabolites can be measured directly with high spatial and temporal resolution by use of enzyme-based microelectrodes. Here, to examine neuro-metabolic coupling during brain activation, we use combined microelectrodes to simultaneously measure

  3. Cerebral metabolic changes (F-18-FDG PET) during selective anterior temporal lobe amobarbital test

    NARCIS (Netherlands)

    Khan, N; Hajek, M; Antonini, A; Maguire, P; Muller, S; Valavanis, A; Leenders, KL; Regard, M; Schiess, R; Wieser, HG

    1997-01-01

    Cerebral glucose utilisation using F-18-fluorodeoxyglucose positron emission tomography (F-18-FDG PET) was measured in 4 patients with temporal lobe epilepsy during a selective anterior temporal lobe (TL) amobarbital test (ATLAT) and compared with their baseline values. F-18-FDG was injected intrave

  4. Cerebral metabolism in streptozotocin-diabetic rats: an in vivo magnetic resonance spectroscopy study

    NARCIS (Netherlands)

    Gispen, W.H.; Biessels, G.J.; Braun, K.P.; Graaf, R.A. de; Eijsden, P. van; Nicolay, K.

    2001-01-01

    Aims/hypothesis. It is increasingly evident that the brain is another site of diabetic end-organ damage. The pathogenesis has not been fully explained, but seems to involve an interplay between aberrant glucose metabolism and vascular changes. Vascular changes, such as deficits in cerebral blood flo

  5. Hemispherical dominance of glucose metabolic rate in the brain of the 'normal' ageing population

    NARCIS (Netherlands)

    Cutts, DA; Maguire, RP; Leenders, KL; Spyrou, NM

    2004-01-01

    In the 'normal' ageing brain a decrease in the cerebral metabolic rate has been determined across many brain regions. This study determines whether age differences would affect metabolic rates in regions and different hemispheres of the brain. The regional metabolic rate of glucose (rCMRGlu) was exa

  6. Relation of EEG alpha background to cognitive fuction, brain atrophy, and cerebral metabolism in Down's syndrome. Age-specific changes

    International Nuclear Information System (INIS)

    We studied 19 young adults (19 to 37 years old) and 9 older patients (42 to 66 years old) with Down's syndrome (DS) and a control group of 13 healthy adults (22 to 38 years old) to investigate the relation of electroencephalographic (EEG) alpha background to cognitive function and cerebral metabolism. Four of the older patients with DS had a history of mental deterioration, disorientation, and memory loss and were demented. Patients and control subjects had EEGs, psychometric testing, quantitative computed tomography, and positron emission tomography with fludeoxyglucose F 18. A blinded reader classified the EEGs into two groups--those with normal alpha background or those with abnormal background. All the control subjects, the 13 young adult patients with DS, and the 5 older patients with DS had normal EEG backgrounds. In comparison with the age-matched patients with DS with normal alpha background, older patients with DS with decreased alpha background had dementia, fewer visuospatial skills, decreased attention span, larger third ventricles, and a global decrease in cerebral glucose utilization with parietal hypometabolism. In the young patients with DS, the EEG background did not correlate with psychometric or positron emission tomographic findings, but the third ventricles were significantly larger in those with abnormal EEG background. The young patients with DS, with or without normal EEG background, had positron emission tomographic findings similar to those of the control subjects. The mechanism underlying the abnormal EEG background may be the neuropathologic changes of Alzheimer's disease in older patients with DS and may be cerebral immaturity in younger patients with DS

  7. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears.

    Science.gov (United States)

    Hu, Yumei; Jiang, Xiaomei; Zhang, Laiying; Fan, Jiao; Wu, Weitai

    2013-10-15

    Noninvasive monitoring of glucose in tears is highly desirable in tight glucose control. The polymerized crystalline colloidal array (PCCA) that can be incorporated into contact lens represents one of the most promising materials for noninvasive monitoring of glucose in tears. However, low sensitivity and slow time response of the PCCA reported in previous arts has limited its clinical utility. This paper presents a new PCCA, denoted as NIR-PCCA, comprising a CCA of glucose-responsive sub-micrometered poly(styrene-co-acrylamide-co-3-acrylamidophenylboronic acid) microgels embedded within a slightly positive charged hydrogel matrix of poly(acrylamide-co-2-(dimethylamino)ethyl acrylate). This newly designed NIR-PCCA can reflect near-infrared (NIR) light, whose intensity (at 1722 nm) would decrease evidently with increasing glucose concentration over the physiologically relevant range in tears. The lowest glucose concentration reliably detectable was as low as ca. 6.1 μg/dL. The characteristic response time τ(sensing) was 22.1±0.2s when adding glucose to 7.5 mg/dL, and the higher the glucose concentration is, the faster the time response. Such a rationally designed NIR-PCCA is well suited for ratiometric NIR sensing of tear glucose under physiological conditions, thereby likely to bring this promising glucose-sensing material to the forefront of analytical devices for diabetes. PMID:23651573

  8. Maintained cerebral metabolic ratio during exercise in patients with beta-adrenergic blockade

    DEFF Research Database (Denmark)

    Gam, Christiane M B; Rasmussen, Peter; Secher, Niels H;

    2009-01-01

    BACKGROUND: Decreased cerebral metabolic ratio (CMR) [molar uptake of O(2) versus molar uptake of (glucose + (1/2) lactate)] during exercise is attenuated by intravenous administration of the non-selective beta-adrenergic receptor antagonist propranolol. We evaluated to what extent cirrhotic pati......-selective beta-adrenergic receptor antagonist attenuates cerebral non-oxidative metabolism Udgivelsesdato: 2009/11......BACKGROUND: Decreased cerebral metabolic ratio (CMR) [molar uptake of O(2) versus molar uptake of (glucose + (1/2) lactate)] during exercise is attenuated by intravenous administration of the non-selective beta-adrenergic receptor antagonist propranolol. We evaluated to what extent cirrhotic...... patients in oral treatment with propranolol are able to mobilize brain non-oxidative carbohydrate metabolism. METHODS: Incremental cycle ergometry to exhaustion (86 +/- 4.2 W; mean +/- SD) was performed in eight cirrhotic patients instrumented with a catheter in the brachial artery and one retrograde...

  9. Amperometric Biosensor for estimation of Glucose-6-phosphate Using Prussian Blue Nanoparticles.

    OpenAIRE

    Banerjee, S.; Sarkar, Priya; Turner, Anthony

    2013-01-01

    Glucose-6-phosphateplays an important role in carbohydrate metabolism of all living organisms.Compared to the conventional analytical methods available for estimation of glucose-6-phosphate,the biosensors having relative simplicity, specificity, low-cost and fastresponse time are a promising alternative. We have reported a glucose-6-phosphatesensor based on screen-printed electrode utilizing Prussian blue nanoparticlesand enzymes, glucose-6-phosphate dehydrogenase and glutathione reductase. T...

  10. Assessment of Self-Monitored Blood Glucose Results Using a Reflectance Meter with Memory and Microcomputer

    OpenAIRE

    Kuykendall, V.G.; Michaels, D W; Hartmann, K.G.

    1985-01-01

    A microcomputer software package for diabetes patient care utilizing self-monitoring of blood glucose (SMBG) has been developed. The software facilitates the collection, storage, analysis, and presentation of blood glucose/time information. Data entry is accomplished automatically via interface to hand held blood glucose reflectance instruments which retain up to 339 glucose/time results in internal RAM. The times of other significant clinical events may also be stored in the meter and upload...

  11. Regional cerebral blood flow in diabetic patients

    International Nuclear Information System (INIS)

    N-isopropyl-p-123I-iodoamphetamine (IMP) was used to quantify the regional cerebral blood flow (r-CBF) in 11 diabetic patients (average age; 67.9 years) and 12 non-diabetic subjects (average age; 67.4 years), none of whom had (cerebrovascular disease (CVD) on CT studies. A reference sampling method by continuous arterial blood sampling was used to quantify r-CBF. There were no significant differences in physiological or laboratory data between diabetic and non-diabetic groups except for fasting plasma glucose and HbA1c levels. The average of r-CBF in each region of cerebrum and cerebellum was significantly lower in diabetic group than that in the control group (p<0.01). These observations show that r-CBF of diabetic patients is reduced, even in the absence of findings of CVD on a CT study. (author)

  12. Regional cerebral blood flow in diabetic patients

    Energy Technology Data Exchange (ETDEWEB)

    Nagamachi, Shigeki; Ono, Shinnichi; Nishikawa, Takushi (Nichinan Hospital of Miyazaki Prefecture (Japan)) (and others)

    1993-02-01

    N-isopropyl-p-[sup 123]I-iodoamphetamine (IMP) was used to quantify the regional cerebral blood flow (r-CBF) in 11 diabetic patients (average age; 67.9 years) and 12 non-diabetic subjects (average age; 67.4 years), none of whom had (cerebrovascular disease (CVD) on CT studies). A reference sampling method by continuous arterial blood sampling was used to quantify r-CBF. There were no significant differences in physiological or laboratory data between diabetic and non-diabetic groups except for fasting plasma glucose and HbA[sub 1c] levels. The average of r-CBF in each region of cerebrum and cerebellum was significantly lower in diabetic group than that in the control group (p<0.01). These observations show that r-CBF of diabetic patients is reduced, even in the absence of findings of CVD on a CT study. (author).

  13. Monitoring and management of lung cancer patients following curative-intent treatment: clinical utility of 2-deoxy-2-[fluorine-18]fluoro-d-glucose positron emission tomography/computed tomography

    Directory of Open Access Journals (Sweden)

    Sawada S

    2016-04-01

    Full Text Available Shigeki Sawada, Hiroshi Suehisa, Tsuyoshi Ueno, Ryujiro Sugimoto, Motohiro Yamashita Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan Abstract: A large number of studies have demonstrated that 2-deoxy-2-[fluorine-18]fluoro-d-glucose positron emission tomography/computed tomography (FDG-PET/CT is superior to conventional modalities for the diagnosis of lung cancer and the evaluation of the extent of the disease. However, the efficacy of PET/CT in a follow-up surveillance setting following curative-intent treatments for lung cancer has not yet been established. We reviewed previous papers and evaluated the potential efficacy of PET-CT in the setting of follow-up surveillance. The following are our findings: 1 PET/CT is considered to be superior or equivalent to conventional modalities for the detection of local recurrence. However, inflammatory changes and fibrosis after treatments in local areas often result in false-positive findings; 2 the detection of asymptomatic distant metastasis is considered to be an advantage of PET/CT in a follow-up setting. However, it should be noted that detection of brain metastasis with PET/CT has some limitation, similar to its use in pretreatment staging; 3 additional radiation exposure and higher medical cost arising from the use of PET/CT should be taken into consideration, particularly in patients who might not have cancer after curative-intent treatment and are expected to have a long lifespan. The absence of any data regarding survival benefits and/or improvements in quality of life is another critical issue. In summary, PET/CT is considered to be more accurate and sensitive than conventional modalities for the detection of asymptomatic recurrence after curative-intent treatments. These advantages could modify subsequent management in patients with suspected recurrence and might contribute to the selection of appropriate treatments for recurrence

  14. Dynamic FDG PET for assessing early effects of cerebral hypoxia and resuscitation in new-born pigs

    International Nuclear Information System (INIS)

    Changes in cerebral glucose metabolism may be an early prognostic indicator of perinatal hypoxic-ischaemic injury. In this study dynamic 18F-FDG PET was used to evaluate cerebral glucose metabolism in piglets after global perinatal hypoxia and the impact of the resuscitation strategy using room air or hyperoxia. New-born piglets (n = 16) underwent 60 min of global hypoxia followed by 30 min of resuscitation with a fraction of inspired oxygen (FiO2) of 0.21 or 1.0. Dynamic FDG PET, using a microPET system, was performed at baseline and repeated at the end of resuscitation under stabilized haemodynamic conditions. MRI at 3 T was performed for anatomic correlation. Global and regional cerebral metabolic rates of glucose (CMRgl) were assessed by Patlak analysis for the two time-points and resuscitation groups. Global hypoxia was found to cause an immediate decrease in cerebral glucose metabolism from a baseline level (mean ± SD) of 21.2 ± 7.9 to 12.6 ± 4.7 μmol/min/100 g (p gl but no significant differences in global or regional CMRgl between the resuscitation groups were found. Dynamic FDG PET detected decreased cerebral glucose metabolism early after perinatal hypoxia in piglets. The decrease in CMRgl may indicate early changes of mild cerebral hypoxia-ischaemia. No significant effect of hyperoxic resuscitation on the degree of hypometabolism was found in this early phase after hypoxia. Cerebral FDG PET can provide new insights into mechanisms of perinatal hypoxic-ischaemic injury where early detection plays an important role in instituting therapy. (orig.)

  15. Glucose metabolism in cultured trophoblasts from human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Moe, A.J.; Farmer, D.R.; Nelson, D.M.; Smith, C.H. (Washington Univ., St. Louis, MO (United States))

    1990-02-26

    The development of appropriate placental trophoblast isolation and culture techniques enables the study of pathways of glucose utilization by this important cell layer in vitro. Trophoblasts from normal term placentas were isolated and cultured 24 hours and 72 hours in uncoated polystyrene culture tubes or tubes previously coated with a fibrin matrix. Trophoblasts cultured on fibrin are morphologically distinct from those cultured on plastic or other matrices and generally resemble in vivo syncytium. Cells were incubated up to 3 hours with {sup 14}C-labeled glucose and reactions were stopped by addition of perchloric acid. {sup 14}CO{sub 2} production by trophoblasts increased linearly with time however the largest accumulation of label was in organic acids. Trophoblasts cultured in absence of fibrin utilized more glucose and accumulated more {sup 14}C in metabolic products compared to cells cultured on fibrin. Glucose oxidation to CO{sub 2} by the phosphogluconate (PG) pathway was estimated from specific yields of {sup 14}CO{sub 2} from (1-{sup 14}C)-D-glucose and (6-{sup 14}C)-D-glucose. Approximately 6% of glucose oxidation was by the PG pathway when cells were cultured on fibrin compared to approximately 1% by cells cultured in the absence of fibrin. The presence of a fibrin growth matrix appears to modulate the metabolism of glucose by trophoblast from human placenta in vitro.

  16. Absence of apolipoprotein E protects mice from cerebral malaria

    Science.gov (United States)

    Kassa, Fikregabrail Aberra; Van Den Ham, Kristin; Rainone, Anthony; Fournier, Sylvie; Boilard, Eric; Olivier, Martin

    2016-01-01

    Cerebral malaria claims the life of millions of people each year, particularly those of children, and is a major global public health problem. Thus, the identification of novel malaria biomarkers that could be utilized as diagnostic or therapeutic targets is becoming increasingly important. Using a proteomic approach, we previously identified unique biomarkers in the sera of malaria-infected individuals, including apolipoprotein E (ApoE). ApoE is the dominant apolipoprotein in the brain and has been implicated in several neurological disorders; therefore, we were interested in the potential role of ApoE in cerebral malaria. Here we report the first demonstration that cerebral malaria is markedly attenuated in ApoE−/− mice. The protection provided by the absence of ApoE was associated with decreased sequestration of parasites and T cells within the brain, and was determined to be independent from the involvement of ApoE receptors and from the altered lipid metabolism associated with the knock-out mice. Importantly, we demonstrated that treatment of mice with the ApoE antagonist heparin octasaccharide significantly decreased the incidence of cerebral malaria. Overall, our study indicates that the reduction of ApoE could be utilized in the development of therapeutic treatments aimed at mitigating the neuropathology of cerebral malaria. PMID:27647324

  17. Glucose Supply and Insulin Demand Dynamics of Antidiabetic Agents

    Science.gov (United States)

    Monte, Scott V.; Schentag, Jerome J.; Adelman, Martin H.; Paladino, Joseph A.

    2010-01-01

    Background For microvascular outcomes, there is compelling historical and contemporary evidence for intensive blood glucose reduction in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). There is also strong evidence to support macrovascular benefit with intensive blood glucose reduction in T1DM. Similar evidence remains elusive for T2DM. Because cardiovascular outcome trials utilizing conventional algorithms to attain intensive blood glucose reduction have not demonstrated superiority to less aggressive blood glucose reduction (Action to Control Cardiovascular Risk in Diabetes; Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; and Veterans Affairs Diabetes Trial), it should be considered that the means by which the blood glucose is reduced may be as important as the actual blood glucose. Methods By identifying quantitative differences between antidiabetic agents on carbohydrate exposure (CE), hepatic glucose uptake (HGU), hepatic gluconeogenesis (GNG), insulin resistance (IR), peripheral glucose uptake (PGU), and peripheral insulin exposure (PIE), we created a pharmacokinetic/pharmacodynamic model to characterize the effect of the agents on the glucose supply and insulin demand dynamic. Glucose supply was defined as the cumulative percentage decrease in CE, increase in HGU, decrease in GNG, and decrease in IR, while insulin demand was defined as the cumulative percentage increase in PIE and PGU. With the glucose supply and insulin demand effects of each antidiabetic agent summated, the glucose supply (numerator) was divided by the insulin demand (denominator) to create a value representative of the glucose supply and insulin demand dynamic (SD ratio). Results Alpha-glucosidase inhibitors (1.25), metformin (2.20), and thiazolidinediones (TZDs; 1.25–1.32) demonstrate a greater effect on glucose supply (SD ratio >1), while secretagogues (0.69–0.81), basal insulins (0.77

  18. Cerebral localization in antiquity.

    Science.gov (United States)

    Rose, F Clifford

    2009-07-01

    Fragments of neurology can be found in the oldest medical writings in antiquity. Recognizable cerebral localization is seen in Egyptian medical papyri. Most notably, the Edwin Smith papyrus describes hemiplegia after a head injury. Similar echoes can be seen in Homer, the Bible, and the pre-Hippocratic writer Alcmaeon of Croton. While Biblical writers thought that the heart was the seat of the soul, Hippocratic writers located it in the head. Alexandrian anatomists described the nerves, and Galen developed the ventricular theory of cognition whereby mental functions are classified and localized in one of the cerebral ventricles. Medieval scholars, including the early Church Fathers, modified Galenic ventricular theory so as to make it a dynamic model of cognition. Physicians in antiquity subdivided the brain into separate areas and attributed to them different functions, a phenomenon that connects them with modern neurologists. PMID:20183203

  19. Music and cerebral hemodynamics.

    Science.gov (United States)

    Marinoni, M; Grassi, E; Latorraca, S; Caruso, A; Sorbi, S

    2000-09-01

    Previous studies performed by positron emission tomography and Transcranial Doppler (TCD) found a different cerebral activation during musical stimuli in musicians compared to non-musicians. The aim of our study is to evaluate by means of TCD, possible different pattern of cerebral activation during the performance of different musical tasks in musicians, non-musicians and lyrical singers. Our findings show a left hemispheric activation in musicians and a right one in non-musicians. Preliminary data on lyrical singers' activation patterns need further confirmation with a larger population. These data could be related to a different approach to music listening in musicians (analytical) and non-musicians who are supposed to have an emotional approach to music. PMID:10942664

  20. Epileptic patterns of local cerebral metabolism and perfusion in man determined by emission computed tomography of /sup 18/FDG and /sup 13/NH/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, D.E.; Engel, J. Jr.; Phelps, M.E.; Selin, C.

    1979-01-01

    Seventeen patients with partial epilepsy had EEG monitoring concurrent with cerebral emission computed tomography (ECT) after /sup 18/F-fluorodeoxyglucose (/sup 18/FDG) and /sup 13/N-ammonia were given intravenously as indicators of local cerebral glucose utilization (LCMR/sub glc/) and relative perfusion, respectively. In 12 of 15 patients who had unilateral or focal electrical abnormalities, interictal /sup 18/FDG scan patterns clearly showed localized regions of decreased (20% to 50%) LCMR/sub glc/, which correlated anatomically with the eventual EEG localization. These hypometabolic zones appeared normal on x-ray computed tomography in all but three patients and were unchanged on scans repeated on different days. In 5 of 6 patients who underwent temporal lobectomy, the interictal /sup 18/FDG scan correctly detected the pathologically confirmed lesion as a hypometabolic zone, and removal of the lesion site resulted in marked clinical improvement. In contrast, the ictal /sup 18/FDG scan patterns clearly showed foci of increased (82% to 130%) LCMR/sub glc/, which correlated temporally and anatomically with ictal EEG spike foci and were within the zones of interictal hypometabolism (3 studies in 2 patients). /sup 13/NH/sub 3/ distributions paralleled /sup 18/FDG increases and decreases in abnormal zones, but /sup 13/NH/sub 3/ differences were of lesser magnitude. When the relationship of /sup 13/NH/sub 3/ uptake to local blood flow found in dog brain was applied as a correction to the patients' /sup 13/NH/sub 3/ scan data, local alterations in perfusion and glucose utilization were usually matched, both in the interictal and ictal states.

  1. Glucose metabolism and effect of acetate in ovine adipocytes.

    Science.gov (United States)

    Yang, Y T; White, L S; Muir, L A

    1982-08-01

    Isolated ovine adipocytes were incubated in vitro with specifically labeled 14C-glucose in the presence or absence of acetate. The flux patterns of glucose carbon through major metabolic pathways were estimated. When glucose was added as the sole substrate, approximately equal portions of glucose carbon (10%) were oxidized to CO2 in the pentose phosphate pathway, in the pyruvate dehydrogenase reaction and in the citrate cycle. Fifteen percent of the glucose carbon was incorporated into fatty acids and 43% was released as lactate and pyruvate. Addition of acetate to the medium increased glucose carbon uptake by 1.5-fold. Most of this increase was accounted for by a sevenfold increase in the activity of the pentose phosphate pathway. Acetate increased glucose carbon fluxes via pentose phosphate pathway to triose phosphates, from triose phosphate to pyruvate, into glyceride glycerol, into lactate and pyruvate and into pyruvate dehydrogenase and citrate cycle CO2. Glucose carbon incorporated into fatty acids was decreased 50% by acetate while, carbon fluxes through the phosphofructokinase-aldolase reactions were not significantly increased. Results of this study suggest that, when glucose is the sole substrate, the conversion of glucose to fatty acids in ovine adipocytes may not be limited by the maximum capacity of hexokinase, the pentose phosphate pathway or enzymes involved in the conversion of triose phosphates to pyruvate and of pyruvate to fatty acid. Acetate increased glucose utilization apparently by increasing activity of the pentose phosphate pathway as a result of enhanced NADPH utilization for fatty acid synthesis. PMID:7142048

  2. Dysphagia in cerebral palsy

    OpenAIRE

    Salghetti, Annamaria; Martinuzzi, Andrea

    2013-01-01

    Abstract. Feeding problemsare often present in children with neuromotor impairment: dysphagia is usuallyseen in the most severe form of cerebral palsy and it’s defined as thedifficulty with any of the four phases of swallowing. Clinical consequences aremalnutrition and recurrent chest infections that reduce expected duration andquality of life. In order to prevent these consequences it’s important todetect with clinical and instrumental examinations dysphagia symptoms and totreat them. Clinic...

  3. Nanomedicine in cerebral palsy

    OpenAIRE

    Balakrishnan B; Nance E; Johnston MV; Kannan R; Kannan S

    2013-01-01

    Bindu Balakrishnan,1 Elizabeth Nance,1 Michael V Johnston,2 Rangaramanujam Kannan,3 Sujatha Kannan1 1Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University; Baltimore, MD, USA; 2Department of Neurology and Pediatrics, Kennedy Krieger Institute, Baltimore, MD, USA; 3Department of Ophthalmology, Center for Nanomedicine, Johns Hopkins University, Baltimore, MD, USA Abstract: Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the...

  4. Phenylpropanolamine and cerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, J.R.; LeBlanc, H.J.

    1985-05-01

    Computerized tomography, carotid angiograms, and arteriography were used to diagnose several cases of cerebral hemorrhage following the use of phenylpropanolamine. The angiographic picture in one of the three cases was similar to that previously described in association with amphetamine abuse and pseudoephedrine overdose, both substances being chemically and pharmacologically similar to phenylpropanolamine. The study suggests that the arterial change responsible for symptoms may be due to spasm rather than arteriopathy. 14 references, 5 figures.

  5. Radiopharmaceuticals for cerebral studies

    International Nuclear Information System (INIS)

    For obtain good brain scintillation images in nuclear medicine must be used several radiopharmaceuticals. Cerebral studies give a tumors visual image as well as brain anomalities detection and are helpful in the diagnostic diseases . Are described in this work: a cerebrum radiopharmaceuticals classification,labelled compounds proceeding and Tc 99m good properties in for your fast caption, post administration and blood purification for renal way

  6. Phenylpropanolamine and cerebral hemorrhage

    International Nuclear Information System (INIS)

    Computerized tomography, carotid angiograms, and arteriography were used to diagnose several cases of cerebral hemorrhage following the use of phenylpropanolamine. The angiographic picture in one of the three cases was similar to that previously described in association with amphetamine abuse and pseudoephedrine overdose, both substances being chemically and pharmacologically similar to phenylpropanolamine. The study suggests that the arterial change responsible for symptoms may be due to spasm rather than arteriopathy. 14 references, 5 figures

  7. Cerebral energy metabolism during mitochondrial dysfunction induced by cyanide in piglets

    DEFF Research Database (Denmark)

    Nielsen, Troels Halfeld; Olsen, N.V.; Toft, P;

    2013-01-01

    variables related to energy metabolism. METHODS: Mitochondrial dysfunction was induced in piglets and evaluated by monitoring brain tissue oxygen tension (PbtO2 ) and cerebral levels of glucose, lactate, pyruvate, glutamate, and glycerol bilaterally. The biochemical variables were obtained by microdialysis...... metabolism and degradation of cellular membranes, respectively. CONCLUSION: Mitochondrial dysfunction is characterised by an increased LP ratio signifying a shift in cytoplasmatic redox state at normal or elevated PbtO2 . The condition is biochemically characterised by a marked increase in cerebral lactate...... with a normal or elevated pyruvate level. The metabolic pattern is different from cerebral ischemia, which is characterised by simultaneous decreases in intracerebral pyruvate and PbtO2 . The study supports the hypothesis that cerebral ischemia and mitochondrial dysfunction may be identified and separated...

  8. Neuroprotective Effect of Phosphocreatine on Focal Cerebral Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Tiegang Li

    2012-01-01

    Full Text Available Phosphocreatine (PCr is a natural compound, which can donate high-energy phosphate group to ADP to synthesize ATP, even in the absence of oxygen and glucose. At present, it is widely used in cardiac and renal ischemia-reperfusion (IR disease. In this study, to examine the protective efficacy of PCr against cerebral IR, disodium creatine phosphate was injected intravenously into rats before focal cerebral IR. Intracranial pressure (ICP, neurological score, cerebral infarction volume, and apoptotic neurons were observed. Expression of caspase-3 and aquaporin-4 (AQP4 was analyzed. Compared with IR group, rats pretreated with PCr had better neurologic score, less infarction volume, fewer ultrastructural histopathologic changes, reduced apoptosis, and lower aquaporin-4 level. In conclusion, PCr is neuroprotective after transient focal cerebral IR injury. Such a protection might be associated with apoptosis regulating proteins.

  9. [Insomnia and cerebral hypoperfusion].

    Science.gov (United States)

    Káposzta, Zoltán; Rácz, Klára

    2007-11-18

    Insomnia is defined as difficulty with the initiation, maintenance, duration, or quality of sleep that results in the impairment of daytime functioning, despite adequate opportunity and circumstances for sleep. In most countries approximately every third inhabitant has insomnia. Insomnia can be classified as primary and secondary. The pathogenesis of primary insomnia is unknown, but available evidence suggests a state of hyperarousal. Insomnia secondary to other causes is more common than primary insomnia. Cerebral hypoperfusion can be the cause of insomnia in some cases. In such patients the cerebral blood flow should be improved using parenteral vascular therapy. If insomnia persists despite treatment, then therapy for primary insomnia should be instituted using benzodiazepine-receptor agonists such as Zolpidem, Zopiclone, or Zaleplon. In those cases Midazolam cannot be used for the treatment of insomnia due to its marked negative effect on cerebral blood flow. In Hungary there is a need to organize multidisciplinary Insomnia Clinics because insomnia is more than a disease, it is a public health problem in this century. PMID:17988972

  10. Cerebral oxygenation and hyperthermia

    Directory of Open Access Journals (Sweden)

    Anthony Richard Bain

    2014-03-01

    Full Text Available Hyperthermia is associated with marked reductions in cerebral blood flow (CBF. Increased distribution of cardiac output to the periphery, increases in alveolar ventilation and resultant hypocapnia each contribute to the fall in CBF during passive hyperthermia; however, their relative contribution remains a point of contention, and probably depends on the experimental condition (e.g. posture and degree of hyperthermia. The hyperthermia-induced hyperventilatory response reduces arterial CO2 pressure (PaCO2 causing cerebral vasoconstriction and subsequent reductions in flow. During supine passive hyperthermia, the majority of recent data indicate that reductions in PaCO2 may be the primary, if not sole, culprit for reduced CBF. On the other hand, during more dynamic conditions (e.g. hemorrhage or orthostatic challenges, an inability to appropriately decrease peripheral vascular conductance presents a condition whereby adequate cerebral perfusion pressure may be compromised secondary to reductions in systemic blood pressure. Although studies have reported maintenance of pre-frontal cortex oxygenation (assessed by near-infrared spectroscopy during exercise and severe heat stress, the influence of cutaneous blood flow is known to contaminate this measure. This review discusses the governing mechanisms associated with changes in CBF and oxygenation during moderate to severe (i.e. 1.0°C to 2.0°C increase in body core temperature levels of hyperthermia. Future research directions are provided.

  11. Cerebral malformations without antenatal diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Nadine J. [Diagnostic Neuroradiology, Hopital Timone, Marseille (France)

    2010-06-15

    Cerebral malformations are usually described following the different steps in development. Disorders of neurulation (dysraphisms), or diverticulation (holoprosencephalies and posterior fossa cysts), and total commissural agenesis are usually diagnosed in utero. In contrast, disorders of histogenesis (proliferation-differentiation, migration, organization) are usually discovered in infants and children. The principal clinical symptoms that may be a clue to cerebral malformation include congenital hemiparesis, epilepsy and mental or psychomotor retardation. MRI is the imaging method of choice to assess cerebral malformations. (orig.)

  12. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    Science.gov (United States)

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  13. Cerebral Autoregulation in Normal Pregnancy and Preeclampsia

    NARCIS (Netherlands)

    van Veen, Teelkien R.; Panerai, Ronney B.; Haeri, Sina; Griffioen, Annemiek C.; Zeeman, Gerda; Belfort, Michael A.

    2013-01-01

    OBJECTIVE: To test the hypothesis that preeclampsia is associated with impaired dynamic cerebral autoregulation. METHODS: In a prospective cohort analysis, cerebral blood flow velocity of the middle cerebral artery (determined by transcranial Doppler), blood pressure (determined by noninvasive arter

  14. Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia.

    Science.gov (United States)

    Ainslie, Philip N; Shaw, Andrew D; Smith, Kurt J; Willie, Christopher K; Ikeda, Keita; Graham, Joseph; Macleod, David B

    2014-05-01

    Characterization of the influence of oxygen availability on brain metabolism is an essential step toward a better understanding of brain energy homoeostasis and has obvious clinical implications. However, how brain metabolism depends on oxygen availability has not been clearly examined in humans. We therefore assessed the influence of oxygen on CBF (cerebral blood flow) and CMRO2 (cerebral metabolic rates for oxygen) and carbohydrates. PaO2 (arterial partial pressure of oxygen) was decreased for 15 min to ~60, ~44 and ~35 mmHg [to target a SaO2 (arterial oxygen saturation) of 90, 80 and 70% respectively], and elevated to ~320 and ~430 mmHg. Isocapnia was maintained during each trial. At the end of each stage, arterial-jugular venous differences and volumetric CBF were measured to directly calculate cerebral metabolic rates. During progressive hypoxaemia, elevations in CBF were correlated with the reductions in both SaO2 (R2=0.54, Poxygen content) (R2=0.57, Poxygen delivery was maintained by increased CBF. Cerebral metabolic rates for oxygen, glucose and lactate remained unaltered during progressive hypoxia. Consequently, cerebral glucose delivery was in excess of that required, and net lactate efflux increased slightly in severe hypoxia, as reflected by a small increase in jugular venous lactate. Progressive hyperoxia did not alter CBF, CaO2, substrate delivery or cerebral metabolism. In conclusion, marked elevations in CBF with progressive hypoxaemia and related reductions in CaO2 resulted in a well-maintained cerebral oxygen delivery. As such, cerebral metabolism is still supported almost exclusively by carbohydrate oxidation during severe levels of hypoxaemia. PMID:24117382

  15. What constitutes cerebral palsy in the twenty-first century?

    DEFF Research Database (Denmark)

    Smithers-Sheedy, Hayley; Badawi, Nadia; Blair, Eve;

    2014-01-01

    AIM: Determining inclusion/exclusion criteria for cerebral palsy (CP) surveillance is challenging. The aims of this paper were to (1) define inclusion/exclusion criteria that have been adopted uniformly by surveillance programmes and identify where consensus is still elusive, and (2) provide...... (SCPE; 1976-1998). An expert panel used a consensus building technique, which utilized the SCPE 'decision tree' and the original 'What constitutes cerebral palsy?' paper as frameworks. RESULTS: CP surveillance programmes agree on key clinical criteria pertaining to the type, severity, and origin...

  16. Glucose effectiveness in nondiabetic relatives

    DEFF Research Database (Denmark)

    Egede, M B; Henriksen, J-E; Durck, T T;

    2014-01-01

    AIMS: Reduced glucose effectiveness is a predictor of future glucose tolerance in individuals with a family history of type 2 diabetes. We examined retrospectively at 10 years in normoglycemic relatives of diabetic subjects (RELs) the pathophysiological role of glucose effectiveness...... in the development of isolated impaired fasting glucose, glucose intolerance, and acute insulin release. METHODS: At 0 years, 19 RELs and 18 matched control subjects had glucose effectiveness (GE), insulin sensitivity, acute insulin release (AIR)IVGTT, and disposition index measured during an iv glucose tolerance...... test (IVGTT), using the minimal model analysis. At 0 and 10 years, oral glucose tolerance (OGTT) and AIROGTT were determined. RESULTS: At 0 years, fasting glucose (FG) and GE were raised in RELs, but insulin sensitivity and AIROGTT were reduced (P ≤ .05) compared with controls. At 10 years, RELs...

  17. SY 10-1 RENAL GLUCOSE HANDLING AND SGLT2.

    Science.gov (United States)

    Poudel, Resham

    2016-09-01

    The kidneys maintain glucose homeostasis through its utilization, gluconeogenesis, and reabsorption. Glucose is freely filtered and reabsorbed in order to retain energy essential between meals. The amount of glucose reabsorbed by the kidneys is equivalent to the amount entering the filtration system. With a daily glomerular filtration rate of 180 L, approximately 180 g (180 L/day × 100 mg/dL) of glucose must be reabsorbed each day to maintain an average fasting plasma glucose concentration of 5.6 mmol/L (100 mg/dL). The reabsorption increases with increase in plasma glucose concentration up to approximately 11 mmol/L (198 mg/dL). At this threshold level, the system becomes saturated and the maximal resabsorption rate-the glucose transport maximum (Tm G ) is reached. No more glucose can be absorbed, and the kidneys begin excreting it in the urine-the beginning of glycosuria. Reabsorption of glucose occurs mainly in the proximal tubule and is mediated by 2 different transport proteins, Sodium Glucose Cotransporter (SGLT)1 and SGLT2. SGLT1, which are found in the straight section of the proximal tubule (S3), are responsible for approximately 10% of glucose reabsorption. The other 90% of filtered glucose is reabsorbed through by SGLT2, which are located in the convoluted section on the proximal tubule (S1). The SGLT2 are located on the luminal side of the early proximal tubule S1 segment. Absorption of sodium across the cell membrane creates an energy gradient that in turn allows glucose to be absorbed. On the other side of the cell, sodium is reabsorbed through sodium-potassium ATPase pump into the bloodstream. The concentration gradient within the cell, resulting from this exchange drives glucose reabsorption into the bloodstream via the Glucose transporter (GLUT) 2. The role of kidneys in glucose regulation has been well recognized in the recent years, and inhibition of glucose reabsorption by SGLT2 inhibitors has evolved as a promising target for

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical ...

  19. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Size: A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for ... diabetes. Learn More: Stories of Courage, Love and Resilience - 2016-08-blog.html Learn More Stories of ...

  20. Hyperventilation, cerebral perfusion, and syncope

    DEFF Research Database (Denmark)

    Immink, R V; Pott, F C; Secher, N H;

    2014-01-01

    This review summarizes evidence in humans for an association between hyperventilation (HV)-induced hypocapnia and a reduction in cerebral perfusion leading to syncope defined as transient loss of consciousness (TLOC). The cerebral vasculature is sensitive to changes in both the arterial carbon di...

  1. Multivariate image processing technique for noninvasive glucose sensing

    Science.gov (United States)

    Webb, Anthony J.; Cameron, Brent D.

    2010-02-01

    A potential noninvasive glucose sensing technique was investigated for application towards in vivo glucose monitoring for individuals afflicted with diabetes mellitus. Three dimensional ray tracing simulations using a realistic iris pattern integrated into an advanced human eye model are reported for physiological glucose concentrations ranging between 0 to 500 mg/dL. The anterior chamber of the human eye contains a clear fluid known as the aqueous humor. The optical refractive index of the aqueous humor varies on the order of 1.5x10-4 for a change in glucose concentration of 100 mg/dL. The simulation data was analyzed with a developed multivariate chemometrics procedure that utilizes iris-based images to form a calibration model. Results from these simulations show considerable potential for use of the developed method in the prediction of glucose. For further demonstration, an in vitro eye model was developed to validate the computer based modeling technique. In these experiments, a realistic iris pattern was placed in an analog eye model in which the glucose concentration within the fluid representing the aqueous humor was varied. A series of high resolution digital images were acquired using an optical imaging system. These images were then used to form an in vitro calibration model utilizing the same multivariate chemometric technique demonstrated in the 3-D optical simulations. In general, the developed method exhibits considerable applicability towards its use as an in vivo platform for the noninvasive monitoring of physiological glucose concentration.

  2. Cerebral Hemorrhage and APOE genotype

    Institute of Scientific and Technical Information of China (English)

    Sun xiaojiang; Wu ping; Zhang jing; Lu shanqing; Li bing

    2000-01-01

    Background and Purpose: Current evidence Suggests that the apolipoprotein E (APOE)ε 4 allele predisposes to cerebral amyloid angiopathy (CAA) whereas ε 2 is associated with CAA-zelated hemorrhage. In this study we examined potential clinical risk factors inpatients with cerebral hemorrhage and assessed these with respect to APOE genotype. Methoeds: 146 patinas with cerebral hemorrhage and 70 normal controls were investigated. APOE genotypes were determined with use of polymerase Chain reaction techniques.Results: The frequency of allele gene ( 0.180 ) and the percentage of the APOE ε 4 genotype in the cerebral hemorrhage group were Significantly higher as compared with the e 4 prequency ( O.O72 ) in the control group respectively ( p=O.O389 ) .Conelusious: APOE ε 4 :allele is a risk gene for cerebral hemorrhage.

  3. Therapeutic interventions in cerebral palsy.

    Science.gov (United States)

    Patel, Dilip R

    2005-11-01

    Various therapeutic interventions have been used in the management of children with cerebral palsy. Traditional physiotherapy and occupational therapy are widely used interventions and have been shown to be of benefit in the treatment of cerebral palsy. Evidence in support of the effectiveness of the neurodevelopmental treatment is equivocal at best. There is evidence to support the use and effectiveness of neuromuscular electrical stimulation in children with cerebral palsy. The effectiveness of many other interventions used in the treatment of cerebral palsy has not been clearly established based on well-controlled trials. These include: sensory integration, body-weight support treadmill training, conductive education, constraint-induced therapy, hyperbaric oxygen therapy, and the Vojta method. This article provides an overview of salient aspects of popular interventions used in the management of children with cerebral palsy. PMID:16391455

  4. Cerebral hemodynamics in moyamoya disease

    International Nuclear Information System (INIS)

    Rebuild-up phenomenon, an electroencephalographic pathological finding in moyamoya disease, was evaluated in the context of dynamic changes in cerebral circulation after hyperventilation. Sequential functional angiography after hyperventilation, measurement of cerebral blood flow (CBF) by the outflow method, and Kr-81m single photon emission tomography were employed for clarification of the sequential dynamic changes in cerebral circulation after hyperventilation. In most cases there was a persistent decrease in CBF even after arterial carbon dioxide tension (PaCO2) had been normalized, which suggests that the response of the cerebral circulation to the changes in PaCO2 is delayed. Moreover, this feature was most prominent in the superficial layer of the cerebrum. For the most part, coincidence and synchronization were documented between rebuild-up and the delayed response of the cerebral circulation. These findings indicate that the delayed CBF response to hyperventilation contributes pathogenetically to rebuild-up in moyamoya disease. (author)

  5. Visualizing Sweetness: Increasingly Diverse Applications for Fluorescent-Tagged Glucose Bioprobes and Their Recent Structural Modifications

    Directory of Open Access Journals (Sweden)

    Darren R. Williams

    2012-04-01

    Full Text Available Glucose homeostasis is a fundamental aspect of life and its dysregulation is associated with important diseases, such as cancer and diabetes. Traditionally, glucose radioisotopes have been used to monitor glucose utilization in biological systems. Fluorescent-tagged glucose analogues were initially developed in the 1980s, but it is only in the past decade that their use as a glucose sensor has increased significantly. These analogues were developed for monitoring glucose uptake in blood cells, but their recent applications include tracking glucose uptake by tumor cells and imaging brain cell metabolism. This review outlines the development of fluorescent-tagged glucose analogues, describes their recent structural modifications and discusses their increasingly diverse biological applications.

  6. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition ...

  7. Electrochemical Glucose Biosensor Based on Glucose Oxidase Displayed on Yeast Surface.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Liang, Bo; Liu, Aihua

    2015-01-01

    The conventional enzyme-based biosensor requires chemical or physical immobilization of purified enzymes on electrode surface, which often results in loss of enzyme activity and/or fractions immobilized over time. It is also costly. A major advantage of yeast surface display is that it enables the direct utilization of whole cell catalysts with eukaryote-produced proteins being displayed on the cell surface, providing an economic alternative to traditional production of purified enzymes. Herein, we describe the details of the display of glucose oxidase (GOx) on yeast cell surface and its application in the development of electrochemical glucose sensor. In order to achieve a direct electrochemistry of GOx, the entire cell catalyst (yeast-GOx) was immobilized together with multiwalled carbon nanotubes on the electrode, which allowed sensitive and selective glucose detection. PMID:26060079

  8. Multivariate modelling with 1H NMR of pleural effusion in murine cerebral malaria

    Directory of Open Access Journals (Sweden)

    Ghosh Soumita

    2011-11-01

    Full Text Available Abstract Background Cerebral malaria is a clinical manifestation of Plasmodium falciparum infection. Although brain damage is the predominant pathophysiological complication of cerebral malaria (CM, respiratory distress, acute lung injury, hydrothorax/pleural effusion are also observed in several cases. Immunological parameters have been assessed in pleural fluid in murine models; however there are no reports of characterization of metabolites present in pleural effusion. Methods 1H NMR of the sera and the pleural effusion of cerebral malaria infected mice were analyzed using principal component analysis, orthogonal partial least square analysis, multiway principal component analysis, and multivariate curve resolution. Results It has been observed that there was 100% occurrence of pleural effusion (PE in the mice affected with CM, as opposed to those are non-cerebral and succumbing to hyperparasitaemia (NCM/HP. An analysis of 1H NMR and SDS-PAGE profile of PE and serum samples of each of the CM mice exhibited a similar profile in terms of constituents. Multivariate analysis on these two classes of biofluids was performed and significant differences were detected in concentrations of metabolites. Glucose, creatine and glutamine contents were high in the PE and lipids being high in the sera. Multivariate curve resolution between sera and pleural effusion showed that changes in PE co-varied with that of serum in CM mice. The increase of glucose in PE is negatively correlated to the glucose in serum in CM as obtained from the result of multiway principal component analysis. Conclusions This study reports for the first time, the characterization of metabolites in pleural effusion formed during murine cerebral malaria. The study indicates that the origin of PE metabolites in murine CM may be the serum. The loss of the components like glucose, glutamine and creatine into the PE may worsen the situation of patients, in conjunction with the enhanced

  9. Metabolic pathways for glucose in astrocytes.

    Science.gov (United States)

    Wiesinger, H; Hamprecht, B; Dringen, R

    1997-09-01

    Cultured astroglial cells are able to utilize the monosaccharides glucose, mannose, or fructose as well as the sugar alcohol sorbitol as energy fuel. Astroglial uptake of the aldoses is carrier-mediated, whereas a non-saturable transport mechanism is operating for fructose and sorbitol. The first metabolic step for all sugars, including fructose being generated by enzymatic oxidation of sorbitol, is phosphorylation by hexokinase. Besides glucose only mannose may serve as substrate for build-up of astroglial glycogen. Whereas glycogen synthase appears to be present in astrocytes as well as neurons, the exclusive localization of glycogen phosphorylase in astrocytes and ependymal cells of central nervous tissue correlates well with the occurrence of glycogen in these cells. The identification of lactic acid rather than glucose as degradation product of astroglial glycogen appears to render the presence of glucose-6-phosphatase in cultured astrocytes an enigma. The colocalization of pyruvate carboxylase, phosphenolpyruvate carboxykinase and fructose-1,6-bisphosphatase points to astrocytes as being the gluconeogenic cell type of the CNS. PMID:9298844

  10. Cerebral imaging in pediatrics

    International Nuclear Information System (INIS)

    Radioisotope brain imaging has focused mainly on regional cerebral blood flow (rCBF). However the use of ligand which go to specific receptor sites is being introduced in pediatrics, mainly psychiatry. rCBF is potentially available in many institutions, especially with the availability of multi-headed gamma cameras. The use of this technique in pediatrics requires special attention to detail in the manner of data acquisition and handling the child. The interpretation of the rCBF study in a child requires knowledge of normal brain maturation. The major clinical use in pediatrics is epilepsy because of the advances in surgery and the frequency of complex partial seizures. Other indications in pediatric neurology include brain death, acute neurological loss including stroke, language disorders, cerebral palsy, hypertension due to renovascular disease, traumatic brain injury and migraine. There are pediatric physiological conditions in which rCBF has been undertaken, these include anorexia nervosa, autism, Gilles de la Tourette syndrome (GTS) and attention deficit disorder-hyperactivity (ADHD). Research using different ligands to specific receptor sites will also be reviewed in pediatrics

  11. Cerebral cartography and connectomics.

    Science.gov (United States)

    Sporns, Olaf

    2015-05-19

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics.

  12. Cerebral sinus venous thrombosis

    Directory of Open Access Journals (Sweden)

    Hernando Raphael Alvis-Miranda

    2013-01-01

    Full Text Available Cerebral sinus venous thrombosis (CSVT is a rare phenomenon that can be seen with some frequency in young patients. CSVT is a multifactorial condition with gender-related specific causes, with a wide clinical presentation, the leading causes differ between developed and developing countries, converting CSVT in a condition characterized by a highly variable clinical spectra, difficult diagnosis, variable etiologies and prognosis that requires fine medical skills and a high suspicious index. Patients who presents with CSVT should underwent to CT-scan venography (CVT and to the proper inquiry of the generating cause. This disease can affect the cerebral venous drainage and related anatomical structure. The symptoms may appear in relation to increased intracranial pressure imitating a pseudotumorcerebri. Prognosis depends on the early detection. Correcting the cause, generally the complications can be prevented. Mortality trends have diminished, and with the new technologies, surely it will continue. This work aims to review current knowledge about CSVT including its pathogenesis, etiology, clinical manifestations, diagnosis, and treatment.

  13. Cerebral imaging in pediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, I. [London, Great Ormond Street Hospital for Children (United Kingdom)

    1998-06-01

    Radioisotope brain imaging has focused mainly on regional cerebral blood flow (rCBF). However the use of ligand which go to specific receptor sites is being introduced in pediatrics, mainly psychiatry. rCBF is potentially available in many institutions, especially with the availability of multi-headed gamma cameras. The use of this technique in pediatrics requires special attention to detail in the manner of data acquisition and handling the child. The interpretation of the rCBF study in a child requires knowledge of normal brain maturation. The major clinical use in pediatrics is epilepsy because of the advances in surgery and the frequency of complex partial seizures. Other indications in pediatric neurology include brain death, acute neurological loss including stroke, language disorders, cerebral palsy, hypertension due to renovascular disease, traumatic brain injury and migraine. There are pediatric physiological conditions in which rCBF has been undertaken, these include anorexia nervosa, autism, Gilles de la Tourette syndrome (GTS) and attention deficit disorder-hyperactivity (ADHD). Research using different ligands to specific receptor sites will also be reviewed in pediatrics.

  14. Fabrication of functionalized carbon nanotube buckypaper electrodes for application in glucose biosensors.

    Science.gov (United States)

    Papa, Henry; Gaillard, Melissa; Gonzalez, Leon; Chatterjee, Jhunu

    2014-12-01

    A highly sensitive glucose detection method was developed using functionalized carbon nanotube buckypaper as a free standing electrode in an electrochemical biosensor. Glucose oxidase was immobilized onto various buckypaper samples in order to oxidize glucose resulting in a measureable current/voltage signal output of the biosensor. Cyclic voltammetry (CV) and amperometry were utilized to determine the sensitivity of these buckypaper electrodes. Sensors of three different types of buckypaper were prepared and compared. These modified buckypaper electrode-based sensors showed much higher sensitivity to glucose compared to other electrochemical glucose sensors. PMID:25587433

  15. Fabrication of Functionalized Carbon Nanotube Buckypaper Electrodes for Application in Glucose Biosensors

    Directory of Open Access Journals (Sweden)

    Henry Papa

    2014-11-01

    Full Text Available A highly sensitive glucose detection method was developed using functionalized carbon nanotube buckypaper as a free standing electrode in an electrochemical biosensor. Glucose oxidase was immobilized onto various buckypaper samples in order to oxidize glucose resulting in a measureable current/voltage signal output of the biosensor. Cyclic voltammetry (CV and amperometry were utilized to determine the sensitivity of these buckypaper electrodes. Sensors of three different types of buckypaper were prepared and compared. These modified buckypaper electrode-based sensors showed much higher sensitivity to glucose compared to other electrochemical glucose sensors.

  16. Evidence that glucose metabolism is decreased in the cerebrum of aged female senescence-accelerated mouse; possible involvement of a low hexokinase activity.

    Science.gov (United States)

    Kurokawa, T; Sato, E; Inoue, A; Ishibashi, S

    1996-08-16

    d-Glucose metabolism in cerebral cells prepared from aged senescence-accelerated mouse (SAM), was investigated in consideration of a sex difference. The production of 14CO2 from 6-[14C]D-glucose was reduced in female senescence-accelerated-prone mouse (SAMP) 8, a prone substrain, in comparison with that in female senescence-accelerated-resistant mouse (SAMR) 2, a control substrain, whereas there was no difference in males. The 2-deoxy-D-glucose uptake into cerebral cells from female SAMP8 was also lower than that of control mice. But, the 3-O-methyl-D-glucose uptake in SAMP8 was higher than that of SAMR2, suggesting that the low hexokinase activity was involved in the decreased glucose metabolism in cerebrum of SAMP8 females irrespective of glucose transporter. This possibility was supported by the finding that the contents of glucose 6-phosphate produced from glucose added to cerebral cells from SAMP8 was lower than that in ICR mice. PMID:8873128

  17. Cerebrovascular hemodynamics in patients with cerebral arteriosclerosis

    Institute of Scientific and Technical Information of China (English)

    Jianbo Yang; Changcong Cui; Chengbin Wu

    2011-01-01

    The present study observed hemodynamic changes in 26 patients with cerebral arteriosclerosis using a cerebral circulation dynamics detector and transcranial Doppler.In patients with cerebral arteriosclerosis the blood supply and flow rate in the bilateral carotid arteries and the blood flow rate in the anterior cerebral and middle cerebral arteries were similar to normal controls, but the cerebral vascular resistance, critical pressure and pulsatility index were increased, and cerebral arterial elasticity and cerebral blood flow autoregulation were decreased.Compared with the lesioned hemisphere of patients with cerebral infarction, the total blood supply and blood flow rate of patients with cerebral arteriosclerosis were higher.Compared with normal subjects, patients with cerebral arteriosclerosis exhibited cognitive disturbances, mainly in short-term memory, attention, abstract capability, and spatial and executive dysfunction.Results showed that cerebral arteriosclerosis does not directly affect the blood supply of a cerebral hemisphere, but affects cognitive function.The increased cerebral vascular resistance and reduced autoregulation of cerebral blood vessels may be important hemodynamic mechanisms of arteriosclerosis-induced cerebral infarction.

  18. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Subtil Thorsten

    2012-03-01

    Full Text Available Abstract Background In mixed sugar fermentations with recombinant Saccharomyces cerevisiae strains able to ferment D-xylose and L-arabinose the pentose sugars are normally only utilized after depletion of D-glucose. This has been attributed to competitive inhibition of pentose uptake by D-glucose as pentose sugars are taken up into yeast cells by individual members of the yeast hexose transporter family. We wanted to investigate whether D-glucose inhibits pentose utilization only by blocking its uptake or also by interfering with its further metabolism. Results To distinguish between inhibitory effects of D-glucose on pentose uptake and pentose catabolism, maltose was used as an alternative carbon source in maltose-pentose co-consumption experiments. Maltose is taken up by a specific maltose transport system and hydrolyzed only intracellularly into two D-glucose molecules. Pentose consumption decreased by about 20 - 30% during the simultaneous utilization of maltose indicating that hexose catabolism can impede pentose utilization. To test whether intracellular D-glucose might impair pentose utilization, hexo-/glucokinase deletion mutants were constructed. Those mutants are known to accumulate intracellular D-glucose when incubated with maltose. However, pentose utilization was not effected in the presence of maltose. Addition of increasing concentrations of D-glucose to the hexo-/glucokinase mutants finally completely blocked D-xylose as well as L-arabinose consumption, indicating a pronounced inhibitory effect of D-glucose on pentose uptake. Nevertheless, constitutive overexpression of pentose-transporting hexose transporters like Hxt7 and Gal2 could improve pentose consumption in the presence of D-glucose. Conclusion Our results confirm that D-glucose impairs the simultaneous utilization of pentoses mainly due to inhibition of pentose uptake. Whereas intracellular D-glucose does not seem to have an inhibitory effect on pentose utilization

  19. Glucose and Aging

    Science.gov (United States)

    Ely, John T. A.

    2008-04-01

    When a human's enzymes attach glucose to proteins they do so at specific sites on a specific molecule for a specific purpose that also can include ascorbic acid (AA) at a high level such as 1 gram per hour during exposure. In an AA synthesizing animal the manifold increase of AA produced in response to illness is automatic. In contrast, the human non-enzymatic process adds glucose haphazardly to any number of sites along available peptide chains. As Cerami clarified decades ago, extensive crosslinking of proteins contributes to loss of elasticity in aging tissues. Ascorbic acid reduces the random non-enyzmatic glycation of proteins. Moreover, AA is a cofactor for hydroxylase enzymes that are necessary for the production and replacement of collagen and other structural proteins. We will discuss the relevance of ``aging is scurvy'' to the biochemistry of human aging.

  20. Development of an amperometric-based glucose biosensor to measure the glucose content of fruit.

    Science.gov (United States)

    Ang, Lee Fung; Por, Lip Yee; Yam, Mun Fei

    2015-01-01

    An amperometric enzyme-electrode was introduced where glucose oxidase (GOD) was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0) were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant ([Formula: see text]) of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable. PMID:25789757

  1. Development of an amperometric-based glucose biosensor to measure the glucose content of fruit.

    Directory of Open Access Journals (Sweden)

    Lee Fung Ang

    Full Text Available An amperometric enzyme-electrode was introduced where glucose oxidase (GOD was immobilized on chitosan membrane via crosslinking, and then fastened on a platinum working electrode. The immobilized enzyme showed relatively high retention activity. The activity of the immobilized enzyme was influenced by its loading, being suppressed when more than 0.6 mg enzyme was used in the immobilization. The biosensor showing the highest response to glucose utilized 0.21 ml/cm2 thick chitosan membrane. The optimum experimental conditions for the biosensors in analysing glucose dissolved in 0.1 M phosphate buffer (pH 6.0 were found to be 35°C and 0.6 V applied potential. The introduced biosensor reached a steady-state current at 60 s. The apparent Michaelis-Menten constant ([Formula: see text] of the biosensor was 14.2350 mM, and its detection limit was 0.05 mM at s/n > 3, determined experimentally. The RSD of repeatability and reproducibility of the biosensor were 2.30% and 3.70%, respectively. The biosensor was showed good stability; it retained ~36% of initial activity after two months of investigation. The performance of the biosensors was evaluated by determining the glucose content in fruit homogenates. Their accuracy was compared to that of a commercial glucose assay kit. There was no significance different between two methods, indicating the introduced biosensor is reliable.

  2. CEREBRAL PALSY AND MUSIC ACHIEVEMENT

    Directory of Open Access Journals (Sweden)

    Miodrag L. STOSHLJEVIKJ

    2008-12-01

    Full Text Available Pupils with cerebral palsy attend elementary education accordind to a regular and special teaching plan and program. Regular school curriculum was reformed in 1992, while special plan and program has not been changed and adapted according to pupil’s needs and capacities. Music is one of the best means of expressing oneself and plays a very important role in the development of every child, the child with cerebral palsy in particular.In order to test the possibility of pupils with cerebral palsy, with and without mental retardation, to apprehend the actual program content, we have conducted research on musical achievement of children with cerebral palsy. During 2007 a research was carried out, on the sample of 27 pupils with cerebral palsy and mild mental retardation who attended classes in the school “Miodrag Matikj”, and a sample of16 students with cerebral palsy without mental retardation who attended the school “Dr. Dragan Hercog” in Belgrade.Results of the research, as well as analysis of music curriculum content, indicated that the capacities of students with cerebral palsy to carry out the curriculum tasks require special approach and methodology. Therefore, we introduced some proposals to overcome the difficulties in fulfilling music curriculum demands of those pupils. We made special emphasis on the use of computer based Assistive technology which facilitates the whole process to a large extent.

  3. Glucose tolerance test - non-pregnant

    Science.gov (United States)

    Oral glucose tolerance test - non-pregnant; OGTT - non-pregnant; Diabetes - glucose tolerance test ... The most common glucose tolerance test is the oral glucose tolerance test (OGTT). Before the test begins, a sample of blood will be ...

  4. CEREBRAL PALSY : ANTENATAL RISK FACTORS

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao

    2015-05-01

    Full Text Available INTRODUCTION: Cerebral palsy (CP is a group of permanent movement disorders that appear in early childhood. Cerebral palsy is caused by abnormal development or damage to the parts of the brain that control movement, balance, and posture. Most often the problems occur during pregnancy; however, they may also occur during childbirth, or shortly after birth. Often the cause is unknown. AIM: To study the different antenatal maternal risk factors associated with cerebral palsy in the study group. MATERIA LS AND METHODS: Retrospective study was done to assess possible associated antenatal risk factors for cerebral palsy. Mothers of 100 cerebral palsy children were selected who are treated in Rani Chandramani Devi Hospital, a Government hospital in Visakhapa tn am, Andhra Pradesh State, India , from 2012 to 2014 and 100 controls, mothers of normal children were studied. Detailed antenatal history was obtained from the mothers of the children in both affected and control group. RESULTS: From the data, we conclude that the association of maternal anaemia with cerebral palsy is 7.3 times higher; association of maternal hypertension with cerebral palsy is 6.6 time higher, association with Pre - eclampsia is 6 times higher; association with Eclampsia is 8.6 times higher ; with antepartum haemorrhage, the association is 8.6 times higher and association of multiple pregnancy with cerebral palsy is 4.8 times higher than with controls. CONCLUSION: From this study of the role of antenatal risk factors, in the occurrence of cer ebral palsy in children it is concluded that the most common risk factor associated with cerebral palsy is the maternal anaemia and the other important risk factors associated being hypertension, pre eclampsia, eclampsia, antepartum haemorrhage and multipl e births.

  5. CEREBRAL PALSY AND MUSIC ACHIEVEMENT

    OpenAIRE

    Miodrag L. STOSHLJEVIKJ; EMINOVIKJ Fadilj N.; NIKIKJ Radmila M.; Gordana I. ACHIKJ; Sanela R. PACIKJ

    2015-01-01

    Pupils with cerebral palsy attend elementary education accordind to a regular and special teaching plan and program. Regular school curriculum was reformed in 1992, while special plan and program has not been changed and adapted according to pupil’s needs and capacities. Music is one of the best means of expressing oneself and plays a very important role in the development of every child, the child with cerebral palsy in particular.In order to test the possibility of pupils with cerebral pal...

  6. Cerebral toxoplasmosis in AIDS

    Energy Technology Data Exchange (ETDEWEB)

    Christ, F.; Steudel, H.; Klotz, D.

    1986-02-01

    Since 1982 (Hauser and co-workers), literature has reported focal cerebral tissue charges in AIDS patients whose diagnosis was unclear at first but which could be identified finally as florid toxoplasmosis encephalitis by biopsy and autopsy. It was found that the value of otherwise reliable serological tests (KBR, Sabin-Feldmann tests, etc.) is questionable in patients with severely impaired or incompetent immune systems, and, in particular, that a negative or uncharacteristic test result may not preclude any opportunistic infection process. Furthermore, isolation of Toxoplasma gondii or specific antibodies from the cerebrospinal fluid will be successful in exceptional cases only. In patients with AIDS or lymphadenopathy syndrome, the differential diagnosis will have to include - first and foremost - reactivated toxoplasma infection (not newly acquired, as a rule) if central neurological symptoms occur.

  7. Cerebral white matter hypoplasia

    International Nuclear Information System (INIS)

    This paper demonstrates the MR imaging findings in children with cerebral white matter hypoplasia (CWMH). The MR studies of four children, aged 3-7 y (mean age, 2.3 y) with a diagnosis of CWMH were reviewed. In all cases multiplanar T1-weighted and T2-weighted spin-echo images were obtained. All children had similar histories of severe developmental delay and nonprogressive neurologic deficits despite normal gestational and birth histories. In two cases there was a history of maternal cocaine abuse. Autopsy correlation was available in one child. The MR images of all four children demonstrated diffuse lack of white matter and enlarged ventricles but normal-appearing gray matter. The corpus callosum, although completely formed, was severely thinned. There was no evidence of gliosis or porencephaly, and the distribution of myelin deposition was normal for age in all cases. Autopsy finding in one child correlated exactly with the MR finding

  8. Cerebral oxygenation after birth

    DEFF Research Database (Denmark)

    Hessel, Trine W; Hyttel-Sorensen, Simon; Greisen, Gorm

    2014-01-01

    AIM: To compare absolute values of regional cerebral tissue oxygenation (cStO2 ) during haemodynamic transition after birth and repeatability during steady state for two commercial near-infrared spectroscopy (NIRS) devices. METHODS: In a prospective observational study, the INVOS 5100C and FORE......-SIGHT were compared on 12 term newborns delivered by elective caesarean section. During the 10 min following umbilical cord clamping, cStO2 was measured simultaneously with the neonatal sensors from each device. Repeated measurements were taken the following day. RESULTS: Three and 8 min after clamping......: The INVOS and FORE-SIGHT cStO2 estimates showed oxygenation-level-dependent difference during birth transition. The better repeatability of FORE-SIGHT could be due to the lower response to change in saturation....

  9. Acute ischemic cerebral attack

    Directory of Open Access Journals (Sweden)

    Franco-Garcia Samir

    2010-12-01

    Full Text Available The decrease of the cerebral blood flow below the threshold of autoregulation led to changes of cerebral ischemia and necrosis that traduce in signs and symtoms of focal neurologic dysfunction called acute cerebrovascular symdrome (ACS or stroke. Two big groups according to its etiology are included in this category the hemorragic that constitue a 20% and the ischemic a 80% of cases. Great interest has wom the ischemic ACS because of its high social burden, being the third cause of no violent death in the world and the first of disability. Many risk factors favor the presentation of these events and some of them are susceptible of modification and therfore are objetives of primary prevention just as the control of diabetes, hypertension and the practice of healthy habits of life. The advances in the knowledge of the physiopatology, had taken to sustantial change in the nomenclature and management of ischemic ACS. Within these changes it was substituted the term cerebrovascular accident fo acute stroke, making emphasis in the key rol of a timely management with goals of time similiar to the acute coronary syndrome. It was redefined the time of acute ischemic attack to a one hour. Once stablished the cerebrovascular attack the semiology of symtoms with frecuency will led us make a topographic diagnosis of the in injury that joined to the cerebral TAC will allow us to exclude an hemorragic event and to start the treatment. In the management of these patients its essential the coordination of the differents teams of work, from the early recognition of symtoms on the part of patients andthe family, the rapid activation and response of emergency systems and the gearing of health care institutions. Are pillars of treatment: the abcde of reanimatiion, to avoid the hiperpirexis, the seizures, the hipoglicemy, the hiperglicemy, to achieve the thrombolysis in the first three hours of the begining of symtoms, to use antiplatelets, antithrombotic profilaxis

  10. Relationship of impaired brain glucose metabolism to learning deficit in the senescence-accelerated mouse.

    Science.gov (United States)

    Ohta, H; Nishikawa, H; Hirai, K; Kato, K; Miyamoto, M

    1996-10-11

    The relationship between brain glucose metabolism and learning deficit was examined in the senescence-accelerated-prone mouse (SAMP) 8, which has been proven to be a useful murine model of age-related behavioral disorders. SAMP8, 7 months old, exhibited marked learning impairment in the passive avoidance task, as compared with the control strain, senescence-accelerated-resistant mice (SAMR) 1. SAMP8 also exhibited a reduction in brain glucose metabolism, as indicated by a reduction in [14C]2-deoxyglucose accumulation in the brain following the intravenous injection impaired glucose metabolism correlated significantly with the learning impairment in all brain regions in SAMR1 and SAMP8. In the SAMP8, a significant correlation was observed in the posterior half of the cerebral cortex. These results suggest that the SAMP8 strain is a useful model of not only age-related behavioral disorders, but also glucose hypometabolism observed in aging and dementias. PMID:8905734

  11. Assessment of regional glucose metabolism in aging brain and dementia with positron-emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Reivich, M.; Alavi, A.; Ferris, S.; Christman, D.; Fowler, J.; MacGregor, R.; Farkas, T.; Greenberg, J.; Dann, R.; Wolf, A.

    1981-01-01

    This paper explores the alterations in regional glucose metabolism that occur in elderly subjects and those with senile dementia compared to normal young volunteers. Results showed a tendency for the frontal regions to have a lower metabolic rate in patients with dementia although this did not reach the level of significance when compared to the elderly control subjects. The changes in glucose metabolism were symmetrical in both the left and right hemispheres. There was a lack of correlation between the mean cortical metabolic rates for glucose and the global mental function in the patients with senile dementia. This is at variance with most of the regional cerebral blood flow data that has been collected. This may be partly related to the use of substrates other than glucose by the brain in elderly and demented subjects. (PSB)

  12. Anestesia e paralisia cerebral Anestesia y parálisis cerebral Anesthesia and cerebral palsy

    OpenAIRE

    Március Vinícius M Maranhão

    2005-01-01

    JUSTIFICATIVA E OBJETIVOS: A paralisia cerebral (PC) é uma doença não progressiva decorrente de lesão no sistema nervoso central, levando a um comprometimento motor do paciente. O portador de PC freqüentemente é submetido a procedimentos cirúrgicos devido a doenças usuais e situações particulares decorrentes da paralisia cerebral. Foi objetivo deste artigo revisar aspectos da paralisia cerebral de interesse para o anestesiologista, permitindo um adequado manuseio pré, intra e pós-operatório n...

  13. Learn More About Cerebral Palsy

    Centers for Disease Control (CDC) Podcasts

    2008-03-30

    This podcast describes the causes, preventions, types, and signs and symptoms of cerebral palsy.  Created: 3/30/2008 by National Center on Birth Defects and Developmental Disabilities.   Date Released: 3/21/2008.

  14. Burr Utility

    NARCIS (Netherlands)

    Ikefuji, M.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.H.M.

    2010-01-01

    This note proposes the Burr utility function. Burr utility is a flexible two-parameter family that behaves approximately power-like (CRRA) remote from the origin, while exhibiting exponential-like (CARA) features near the origin. It thus avoids the extreme behavior of the power family near the origi

  15. 高血糖对急性脑梗死的影响%Effects of hyperglycemia on acute cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    李静; 张芳芳; 韩玉华

    2012-01-01

      Objective To study the effect of hyperglycemia on acute cerebral infarction. Methods Detection of 93 cases of acute cerebral infarction patients following the onset of impaired fasting glucose. According to the history of diabetes, blood glucose level, divided into diabetic group, stress hyperglycemia group and the normal blood glucose group. Observed three groups of cerebral infarction exacerbation and prognosis. Results The progression incidence of Cerebral infarction diabetes group was higher than that of stress hyperglycemia group and the normal blood glucose group. Three was significantly different (P<0.01 )among three groups .Conclusion Cerebral infarction progression is related with hyperglycemia and with poor prognosis. So we should avoid hyperglycemia factors to reduce cerebral infarction exacerbation.%  目的探讨高血糖对急性脑梗死的影响.方法检测93例急性脑梗死患者发病后空腹血糖,根据糖尿病史、血糖值高低,分为糖尿病组、应激性高血糖组和血糖正常组,观察3组脑梗死进展发生率和预后.结果糖尿病组脑梗死进展发生率高于应激性高血糖组和血糖正常组,且3组预后有显著性差异(P<0.01).结论脑梗死加重与高血糖有明显关系,且预后不良,故应尽量避免引起血糖增高的因素,以减少脑梗死加重.

  16. Cerebral palsy: classification and etiology

    OpenAIRE

    Bialik, Gad M.; Givon, Uri

    2004-01-01

    Cerebral palsy (CP), a common condition of abnormalities in the brain, arises early in life. Since the term was first introduced in 1843, many authors have tried to define and classify CP. The most recent definition was released by the American Academy for Cerebral Palsy and Developmental Medicine (AACPDM) in 2005. This article summarizes the latest and familiar classifications of, and etiologies associated with CP.

  17. CEREBRAL PALSY : ANTENATAL RISK FACTORS

    OpenAIRE

    Srinivasa Rao; Vidyullatha; Subbalakshmi

    2015-01-01

    INTRODUCTION: Cerebral palsy (CP) is a group of permanent movement disorders that appear in early childhood. Cerebral palsy is caused by abnormal development or damage to the parts of the brain that control movement, balance, and posture. Most often the problems occur during pregnancy; however, they may also occur during childbirth, or shortly after birth. Often the cause is unknown. AIM: To study the different antenatal maternal risk factors associated with cere...

  18. Bone age in cerebral palsy

    OpenAIRE

    Miranda, Eduardo Régis de Alencar Bona; Palmieri, Maurício D'arc; de Assumpção, Rodrigo Montezuma César; Yamada, Helder Henzo; Rancan, Daniela Regina; Fucs, Patrícia Maria de Moraes Barros

    2013-01-01

    Objective To compare the chronological age and bone age among cerebral palsy patients in the outpatient clinic and its correlation with the type of neurological involvement, gender and functional status. Methods 401 patients with spastic cerebral palsy, and ages ranging from three months to 20 years old, submitted to radiological examination for bone age and analyzed by two independent observers according Greulich & Pyle. Results In the topographic distribution, there was a significant delay (p

  19. Sirt1 in cerebral ischemia

    OpenAIRE

    Koronowski, Kevin B.; Perez-Pinzon, Miguel A.

    2015-01-01

    Cerebral ischemia is among the leading causes of death worldwide. It is characterized by a lack of blood flow to the brain that results in cell death and damage, ultimately causing motor, sensory, and cognitive impairments. Today, clinical treatment of cerebral ischemia, mostly stroke and cardiac arrest, is limited and new neuroprotective therapies are desperately needed. The Sirtuin family of oxidized nicotinamide adenine dinucleotide (NAD+)-dependent deacylases has been shown to govern seve...

  20. Cerebral candidiasis. Computed tomography appearance

    Energy Technology Data Exchange (ETDEWEB)

    Chaabane, M.; Ladeb, M.F.; Bouhaouala, M.H.; Ben Hammouda, M.; Ataalah, R.; Gannouni, A.; Krifa, H.

    1989-07-01

    A three year old child who had been suffering from oral candidiasis since the age of 1 year presented with osteitis of the clavicle, 2 cerebral frontal abscesses and an occipital abscess which extended across the calvaria and was associated with osteolysis. Histological and microbiological studies following surgery confirmed the diagnosis of candidiasis in this girl who was found to have IgA immunodefinciency. The authors report the computed tomographic appearance of the cerebral lesions and review the literature. (orig.).

  1. Cerebral candidiasis. Computed tomography appearance

    International Nuclear Information System (INIS)

    A three year old child who had been suffering from oral candidiasis since the age of 1 year presented with osteitis of the clavicle, 2 cerebral frontal abscesses and an occipital abscess which extended across the calvaria and was associated with osteolysis. Histological and microbiological studies following surgery confirmed the diagnosis of candidiasis in this girl who was found to have IgA immunodefinciency. The authors report the computed tomographic appearance of the cerebral lesions and review the literature. (orig.)

  2. Microorganism Utilization for Synthetic Milk

    Science.gov (United States)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  3. Intrathecal treatment of cerebral vasospasm.

    Science.gov (United States)

    Zhang, Yi Ping; Shields, Lisa B E; Yao, Tom L; Dashti, Shervin R; Shields, Christopher B

    2013-11-01

    Treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) remains a major therapeutic challenge. Systemic drug administration is the current treatment of choice, but patients often do not respond beneficially to this approach. Intrathecal (IT) drug administration has several anatomic and pharmacodynamic advantages over conventional systemic treatment of cerebral vasospasm. We reviewed the most recent literature describing IT administration of several drugs to treat aneurysm-induced SAH and cerebral vasospasm, including 16 clinical trials using IT fibrinolytic agents and 10 trials using several IT vasodilators. We evaluated the safety and effectiveness of these trials but made no attempt to perform a meta-analysis using these data. IT drug administration of fibrinolytic agents and vasodilators caused lysis of the subarachnoid clot burden and diminished cerebral vasospasm, respectively. The studies reviewed reported a wide range of drug doses, intervals between aneurysm hemorrhage and initiation of treatment, success of clot dissolution, and degree of vasodilation of vessels in vasospasm. Treatment of vasospasm by IT drug administration is safe and largely effective after the aneurysm has been secured. Our findings indicate that IT treatment effectively delivers a higher drug concentration to vessels in vasospasm with minimal systemic effects. Drugs administered by this route are reported to lyse subarachnoid clots, attenuate cerebral vasospasm, improve clinical outcomes, and decrease the incidence of hydrocephalus. With greater understanding of drug pharmacodynamics, the IT route of drug administration may provide a rational, alternative approach to treating aneurysm-induced cerebral vasospasm. PMID:22651990

  4. Silicon nanowires for high-sensitivity glucose detection

    Science.gov (United States)

    Chen, Weiwei; Yao, Hui; Tzang, Chi Hung; Zhu, Junjie; Yang, Mengsu; Lee, Shuit-Tong

    2006-05-01

    Silicon nanowires (SiNWs) were investigated as supporting matrices for enzyme immobilization to construct glucose biosensors. Glucose oxidase was adsorbed onto SiNWs after different treatments, either as grown, HF etched, or carboxylic acid (COOH) functionalized. The amperometric biosensor with COOH-functionalized SiNWs performed the best with a detection limit of 0.01mM glucose (signal-to-noise ratio=3). For real-time detection of glucose, SiNW biosensor showed a linear response in the range of 0.1-15mM. This work demonstrates the utility of SiNWs as a biosensor component and provides a general method to modify the surface of semiconducting nanomaterials for potential biomedical applications.

  5. Prediction methods for blood glucose concentration design, use and evaluation

    CERN Document Server

    Jørgensen, John; Renard, Eric; Re, Luigi

    2016-01-01

    This book tackles the problem of overshoot and undershoot in blood glucose levels caused by delay in the effects of carbohydrate consumption and insulin administration. The ideas presented here will be very important in maintaining the welfare of insulin-dependent diabetics and avoiding the damaging effects of unpredicted swings in blood glucose – accurate prediction enables the implementation of counter-measures. The glucose prediction algorithms described are also a key and critical ingredient of automated insulin delivery systems, the so-called “artificial pancreas”. The authors address the topic of blood-glucose prediction from medical, scientific and technological points of view. Simulation studies are utilized for complementary analysis but the primary focus of this book is on real applications, using clinical data from diabetic subjects. The text details the current state of the art by surveying prediction algorithms, and then moves beyond it with the most recent advances in data-based modeling o...

  6. Gestational diabetes mellitus: Screening with fasting plasma glucose.

    Science.gov (United States)

    Agarwal, Mukesh M

    2016-07-25

    Fasting plasma glucose (FPG) as a screening test for gestational diabetes mellitus (GDM) has had a checkered history. During the last three decades, a few initial anecdotal reports have given way to the recent well-conducted studies. This review: (1) traces the history; (2) weighs the advantages and disadvantages; (3) addresses the significance in early pregnancy; (4) underscores the benefits after delivery; and (5) emphasizes the cost savings of using the FPG in the screening of GDM. It also highlights the utility of fasting capillary glucose and stresses the value of the FPG in circumventing the cumbersome oral glucose tolerance test. An understanding of all the caveats is crucial to be able to use the FPG for investigating glucose intolerance in pregnancy. Thus, all health professionals can use the patient-friendly FPG to simplify the onerous algorithms available for the screening and diagnosis of GDM - thereby helping each and every pregnant woman. PMID:27525055

  7. Gestational diabetes mellitus: Screening with fasting plasma glucose

    Science.gov (United States)

    Agarwal, Mukesh M

    2016-01-01

    Fasting plasma glucose (FPG) as a screening test for gestational diabetes mellitus (GDM) has had a checkered history. During the last three decades, a few initial anecdotal reports have given way to the recent well-conducted studies. This review: (1) traces the history; (2) weighs the advantages and disadvantages; (3) addresses the significance in early pregnancy; (4) underscores the benefits after delivery; and (5) emphasizes the cost savings of using the FPG in the screening of GDM. It also highlights the utility of fasting capillary glucose and stresses the value of the FPG in circumventing the cumbersome oral glucose tolerance test. An understanding of all the caveats is crucial to be able to use the FPG for investigating glucose intolerance in pregnancy. Thus, all health professionals can use the patient-friendly FPG to simplify the onerous algorithms available for the screening and diagnosis of GDM - thereby helping each and every pregnant woman. PMID:27525055

  8. Hypothalamic sensing of ketone bodies after prolonged cerebral exposure leads to metabolic control dysregulation

    Science.gov (United States)

    Carneiro, Lionel; Geller, Sarah; Hébert, Audrey; Repond, Cendrine; Fioramonti, Xavier; Leloup, Corinne; Pellerin, Luc

    2016-01-01

    Ketone bodies have been shown to transiently stimulate food intake and modify energy homeostasis regulatory systems following cerebral infusion for a moderate period of time (neuropeptides. Moreover, insulinemia was increased and caused a decrease in glucose production despite an increased resistance to insulin. The present study confirms that ketone bodies reaching the brain stimulates food intake. Moreover, we provide evidence that a prolonged hyperketonemia leads to a dysregulation of energy homeostasis control mechanisms. Finally, this study shows that brain exposure to ketone bodies alters insulin signaling and consequently glucose homeostasis. PMID:27708432

  9. Growth and Nutrition Disorders in Children with Cerebral Palsy

    OpenAIRE

    KUPERMINC, MICHELLE N; Stevenson, Richard D.

    2008-01-01

    Growth and nutrition disorders are common secondary health conditions in children with cerebral palsy (CP). Poor growth and malnutrition in CP merit study because of their impact on health, including psychological and physiological function, healthcare utilization, societal participation, motor function, and survival. Understanding the etiology of poor growth has led to a variety of interventions to improve growth. One of the major causes of poor growth, malnutrition, is the best-studied cont...

  10. Monitoring of cerebral haemodynamics in newborn infants

    DEFF Research Database (Denmark)

    Liem, K Djien; Greisen, Gorm

    2010-01-01

    The most important cerebrovascular injuries in newborn infants, particularly in preterm infants, are cerebral haemorrhage and ischemic injury. The typical cerebral vascular anatomy and the disturbance of cerebral haemodynamics play important roles in the pathophysiology. The term 'cerebral...... haemodynamics' includes cerebral blood flow (CBF), cerebral blood flow velocity, and cerebral blood volume (CBV). Therapy aimed at changing vascular anatomy is not available. Therefore, prevention of disturbances in CBF and CBV is pivotal. However, continuous monitoring of CBF and CBV is still unavailable for....... Using it even without knowing the exact level of CBF and CBV, it is possible to aim to keep CBF and CBV stable. Futureresearch should focus on development of monitoring tools, gaining more insight in neonatal cerebral autoregulation, and demonstrating clinical benefits of a 'cerebral perfusion...

  11. Fabrication of Functionalized Carbon Nanotube Buckypaper Electrodes for Application in Glucose Biosensors

    OpenAIRE

    Henry Papa; Melissa Gaillard; Leon Gonzalez; Jhunu Chatterjee

    2014-01-01

    A highly sensitive glucose detection method was developed using functionalized carbon nanotube buckypaper as a free standing electrode in an electrochemical biosensor. Glucose oxidase was immobilized onto various buckypaper samples in order to oxidize glucose resulting in a measureable current/voltage signal output of the biosensor. Cyclic voltammetry (CV) and amperometry were utilized to determine the sensitivity of these buckypaper electrodes. Sensors of three different types of buckypaper ...

  12. Detection of glucose with room-temperature phosphorescent quantum dots without conjugation

    OpenAIRE

    Yanming Miao

    2015-01-01

    A superior method was constructed for rapid and sensitive detection of glucose by utilization of room-temperature phosphorescent (RTP) quantum dots (QDs) without sophisticated conjugation between QDs and glucose oxidase (GOD) nor complex pretreatments, such as oxygen removal, and free from the interference of autofluorescence and scattering light, which can be used to detect glucose in biological fluids. This kind of principle is based on the quenching effect of H2O2 on MPA-capped Mn-doped Zn...

  13. Hepatocyte Growth Factor Is a Novel Stimulator of Glucose Uptake and Metabolism in Skeletal Muscle Cells*

    OpenAIRE

    Perdomo, German; Martinez-Brocca, Maria A.; Bhatt, Bankim A.; Brown, Nicholas F.; O'Doherty, Robert M.; Garcia-Ocaña, Adolfo

    2008-01-01

    Skeletal muscle plays a major role in glucose and lipid metabolism. Active hepatocyte growth factor (HGF) is present in the extracellular matrix in skeletal muscle. However, the effects of HGF on glucose and lipid metabolism in skeletal muscle are completely unknown. We therefore examined the effects of HGF on deoxyglucose uptake (DOGU), glucose utilization, and fatty acid oxidation (FAO) in skeletal muscle cells. HGF significantly enhanced DOGU in mouse soleus muscles in vitro. Furthermore, ...

  14. Effects of erythropoietin administration on cerebral metabolism and exercise capacity in men

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Foged, Eva M; Krogh-Madsen, Rikke;

    2010-01-01

    on cognition, voluntary activation or exercise capacity but ratings of perceived exertion increased (Padministration of EPO increases exercise capacity, but the improvement could not be accounted for by other mechanisms than enhanced oxygen delivery. In conclusion, EPO does...... administration of EPO. We recorded exercise capacity, transcranial ultrasonography-derived middle cerebral artery blood velocity, and arterial-internal jugular venous concentration differences of glucose and lactate. In addition, cognitive function, ratings of perceived exertion, ventilation and voluntary...... activation by transcranial magnetic stimulation-induced twitch force were evaluated. Although EPO in a high dose increased cerebrospinal fluid EPO concentration ~20-fold and affected ventilation and cerebral glucose and lactate metabolism (Padministration had no effect...

  15. Reduced cerebral oxygen–carbohydrate index during endotracheal intubation in vascular surgical patients

    DEFF Research Database (Denmark)

    Fabricius-Bjerre, Andreas; Overgaard, Anders; Winther-Olesen, Marie;

    2015-01-01

    aortic surgery, arterial to internal jugular venous (a-v) concentration differences for oxygen versus lactate and glucose were determined from before anaesthesia to when the patient left the recovery room. Intravenous anaesthesia was supplemented with thoracic epidural anaesthesia for open aortic surgery......Brain activation reduces balance between cerebral consumption of oxygen versus carbohydrate as expressed by the so-called cerebral oxygen-carbohydrate-index (OCI). We evaluated whether preparation for surgery, anaesthesia including tracheal intubation and surgery affect OCI. In patients undergoing...... (n = 5) and infiltration with bupivacaine for endovascular procedures (n = 14). The a-v difference for O2 decreased throughout anaesthesia and in the recovery room (1.6 ± 1.9 versus 3.2 ± 0.8 mmol l(-1), mean ± SD), and while a-v glucose decreased during surgery and into the recovery (0.4 ± 0...

  16. Deoxyandrographolide promotes glucose uptake through glucose transporter-4 translocation to plasma membrane in L6 myotubes and exerts antihyperglycemic effect in vivo.

    Science.gov (United States)

    Arha, Deepti; Pandeti, Sukanya; Mishra, Akansha; Srivastava, Swayam Prakash; Srivastava, Arvind Kumar; Narender, Tadigoppula; Tamrakar, Akhilesh Kumar

    2015-12-01

    Skeletal muscle is the principal site for postprandial glucose utilization and augmenting the rate of glucose utilization in this tissue may help to control hyperglycemia associated with diabetes mellitus. Here, we explored the effect of Deoxyandrographolide (DeoAn) isolated from the Andrographis paniculata Nees on glucose utilization in skeletal muscle and investigated its antihyperglycemic effect in vivo in streptozotocin-induced diabetic rats and genetically diabetic db/db mice. In L6 myotubes, DeoAn dose-dependently stimulated glucose uptake by enhancing the translocation of glucose transporter 4 (GLUT4) to cell surface, without affecting the total cellular GLUT4 and GLUT1 content. These effects of DeoAn were additive to insulin. Further analysis revealed that DeoAn activated PI-3-K- and AMPK-dependent signaling pathways, account for the augmented glucose transport in L6 myotubes. Furthermore, DeoAn lowered postprandial blood glucose levels in streptozotocin-induced diabetic rats and also suppressed the rises in the fasting blood glucose, serum insulin, triglycerides and LDL-Cholesterol levels of db/db mice. These findings suggest the therapeutic efficacy of the DeoAn for type 2 diabetes mellitus and can be potential phytochemical for its management. PMID:26528798

  17. Intraoperative blood glucose levels in neurosurgical patients : an evaluation of two fluid regimens.

    Directory of Open Access Journals (Sweden)

    Swamy M

    2001-10-01

    Full Text Available Based on the evidence that hyperglycaemia aggravates ischaemic cerebral injury, it has been suggested that blood glucose levels be kept within 200 mg/dL during intracranial neurosurgery. Hypoglycaemia, however, can be a serious problem if glucose-containing solutions are avoided during the first four hours, as suggested in some studies. In order to explore the possibility of administering glucose in moderation so that the blood glucose levels are within acceptable limits, but at the same time the risk of hyoglycaemia is eliminated, we compared two intraoperative fluid regimens. Of the 52 neurosurgical patients studied, 32 patients received alternately 500 ml of 5% dextrose in normal saline and Ringer′s lactate (DNS/RL Group and 18 patients received alternately 500 ml of Ringer′s lactate and normal saline (RL/NS Group. Blood glucose concentrations were determined at the end of each unit of fluid, until the patient received 4 units of fluid. In the DNS/RL group, blood glucose values peaked with the administration of each unit of DNS and tended to return towards the baseline with the subsequent RL, but remained higher than the previous control value. In the RL/NS group, there was a progressive increase in blood glucose values throughout the study period, but the increase was not statistically significant. The blood glucose levels were significantly different between the two groups after each unit of fluid except at the end of the fourth unit. Two patients in the RL/NS group had hypoglycaemia. In conclusion, the DNS/RL regimen maintains blood glucose levels within acceptable limits while avoiding the risk of hyperglycaemia. Withholding glucose completely, lowers blood glucose levels, but carries a risk of hypoglycaemia in some patients.

  18. Estimating Utility

    DEFF Research Database (Denmark)

    Arndt, Channing; Simler, Kenneth R.

    2010-01-01

    A fundamental premise of absolute poverty lines is that they represent the same level of utility through time and space. Disturbingly, a series of recent studies in middle- and low-income economies show that even carefully derived poverty lines rarely satisfy this premise. This article proposes...... an information-theoretic approach to estimating cost-of-basic-needs (CBN) poverty lines that are utility consistent. Applications to date illustrate that utility-consistent poverty measurements derived from the proposed approach and those derived from current CBN best practices often differ substantially...

  19. Thermoresponsive amperometric glucose biosensor.

    Science.gov (United States)

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Barwe, Stefan; Nebel, Michaela; Alburquerque, Natalia Guerrero; Wischerhoff, Erik; Laschewsky, André; Schmaderer, Sebastian; Szeponik, Jan; Plumeré, Nicolas; Schuhmann, Wolfgang

    2016-03-01

    The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-ω-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 °C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol)methacrylate-co-butyl acrylate-co-2-(dimethylamino)ethyl methacrylate)-[Os(bpy)2(4-(((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on- to an off-state without heating of the surrounding analyte solution. PMID:26702635

  20. Effects of Hyperglycemia and Effects of Ketosis on Cerebral Perfusion, Cerebral Water Distribution, and Cerebral Metabolism

    OpenAIRE

    Glaser, Nicole; Ngo, Catherine; Anderson, Steven; Yuen, Natalie; Trifu, Alexandra; O’Donnell, Martha

    2012-01-01

    Diabetic ketoacidosis (DKA) may cause brain injuries in children. The mechanisms responsible are difficult to elucidate because DKA involves multiple metabolic derangements. We aimed to determine the independent effects of hyperglycemia and ketosis on cerebral metabolism, blood flow, and water distribution. We used magnetic resonance spectroscopy to measure ratios of cerebral metabolites (ATP to inorganic phosphate [Pi], phosphocreatine [PCr] to Pi, N-acetyl aspartate [NAA] to creatine [Cr], ...

  1. Dynamic changes in proprotein convertase 2 activity in cortical neurons after ischemia/reperfusion and oxygen-glucose deprivation

    Institute of Scientific and Technical Information of China (English)

    Shuqin Zhan; An Zhou; Chelsea Piper; Tao Yang

    2013-01-01

    In this study, a rat model of transient focal cerebral ischemia was established by performing 100 minutes of middle cerebral artery occlusion, and an in vitro model of experimental oxygen-glucose deprivation using cultured rat cortical neurons was established. Proprotein convertase 2 activity gradually decreased in the ischemic cortex with increasing duration of reperfusion. In cultured rat cortical neurons, the number of terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling-positive neurons significantly increased and proprotein convertase 2 activity also decreased gradually with increasing duration of oxygen-glucose deprivation. These experimental findings indicate that proprotein convertase 2 activity decreases in ischemic rat cortex after reperfusion, as well as in cultured rat cortical neurons after oxygen-glucose deprivation. These changes in enzyme activity may play an important pathological role in brain injury.

  2. Cerebral edema associated with acute hepatic failure.

    Directory of Open Access Journals (Sweden)

    Fujiwara,Masachika

    1985-02-01

    Full Text Available The clinicopathological findings of cerebral edema were investigated in patients with acute hepatic failure autopsied at Okayama University Hospital between 1970 and 1980 retrospectively. Nine (64% of 14 hepatic failure cases were found to have cerebral edema during a post-mortem examination of the brain. Clinical features of the patients with cerebral edema were not significantly different from those of the patients without cerebral edema. However, general convulsions were observed more frequently in patients later found to have cerebral edema. Moreover, the length of time from deep coma to death was much shorter in the brain edema cases with cerebral herniation than without herniation.

  3. Study on the Relationship between Plasma Homocysteine and Acute Cerebral Vascular Disease

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The levels of plasma homocysteine were determined by using high-performance liquid chromatographic method. It was found that plasma homocysteine levels were significantly higher in the patients with stroke than that in the controls. There was no correlation between plasma homocysteine levels and hypertension, smoking, concentrations of blood glucose or hypertriglyceridesemia. It was suggested that hyperhomocysteinemia may be an independent risk factor for acute cerebral vascular disease.

  4. Resting cerebral metabolism correlates with skin conductance and functional brain activation during fear conditioning

    OpenAIRE

    Linnman, Clas; Zeidan, Mohamed A.; Pitman, Roger K.; Milad, Mohammed R.

    2011-01-01

    We investigated whether resting brain metabolism can be used to predict autonomic and neuronal responses during fear conditioning in 20 healthy humans. Regional cerebral metabolic rate for glucose was measured via positron emission tomography at rest. During conditioning, autonomic responses were measured via skin conductance, and blood oxygen level dependent signal was measured via functional magnetic resonance imaging. Resting dorsal anterior cingulate metabolism positively predicted differ...

  5. Lower arterial glucose concentrations in lambs with aortopulmonary shunts after an 18-hour fast

    NARCIS (Netherlands)

    Beaufort-Krol, GCM; Takens, J; Smid, GB; Molenkamp, MC; Zijlstra, WG; Kuipers, JRG

    1999-01-01

    Spontaneously occurring hypoglycemia has been described in children with severe acute congestive heart failure. Hypoglycemia may he the result of an increase in glucose utilization in tissues, a decrease in glucose production, or a decrease in the dietary intake of nutrients. To determine whether hy

  6. Cyclic Correlation of Diffuse Reflected Signal with Glucose Concentration and scatterer size

    CERN Document Server

    Solanki, Jitendra; Andrews, Joseph Thomas; Thareja, Kamal Kishore; 10.4236/jmp.2012.31009

    2012-01-01

    The utility of optical coherence tomography signal intensity for measurement of glucose concentration has been analysed in tissue phantom and blood samples from human subjects. The diffusion equation based calculations as well as in-vivo OCT signal measurements confirms the cyclic correlation of signal intensity with glucose concentration and scatterer size.

  7. Asymptomatic ischemic cerebral lesions

    International Nuclear Information System (INIS)

    For the purpose of studying the incidence, pathomorphology and etiology of asymptomatic ischemic cerebral lesions, we carried out a brain MRI study on 65 patients with diabetes mellitus accompanied with hypertension who are thought to belong to a high risk group of ischemic cerebrovascular diseases. Excluding the abnormality of tendon reflex due to diabetic neuropathy, sixty percent of the total patients had some mild neurological signs and symptoms, most of them was discrepancy in tendon reflex. The percentage of the patients in whom MRI disclosed some abnormalities was as high as 70%, they were lacunar stroke, multiple lacunar state, cortical infarct, and patchy high signal lesions visible only in the T2 weighted image. Lacunes or these patchy high signal lesions (considered to be the dilatation of the perivascular space or true lacunes) tended to be found along the border zone or the terminal zone. These results indicate that asymptomatic patients in whom MRI discloses the abnormalities should be considered as candidates for the future onset of multi-infarct. (author)

  8. [Plasma osmolarity and cerebral volume].

    Science.gov (United States)

    Boulard, G

    2001-02-01

    Under normal physiological conditions, the osmolarity of extracellular fluids (ECFs) and natremia are controlled by two regulatory mechanisms modulating the water balance and sodium outflow from information collected by the osmoreceptors and baroreceptors, respectively. As well, under normal physiological conditions, water and electrolytes of brain ECFs are secreted by the endothelial cells of brain capillaries. Furthermore, isotonicity is present on both sides of the blood-brain barrier. In the event of systemic osmolarity disorders, water transport subject to osmosis laws occurs at the level of the blood-brain barrier. In the case of plasmatic hyperosmolarity cerebral dehydration is observed, while cerebral edema occurs in the contrary case. However, plasmatic osmolarity disorders have less effect on the cerebral volume when their introduction is slow. Experimentation in acute conditions shows that measured variations of the cerebral water content are lower than calculated variations, thus suggesting the existence of an adaptive mechanism, that is, the cerebral osmoregulation which limits the variation of the volume of brain cells by modulating their osmoactive molecule content. These osmoactive molecules are, on the one hand, the electrolytes, which are early and rapidly mobilized, and, on the other hand, the organic osmoles (amino acids, etc.), whose secretion is slower and delayed. This phenomenon should be taken into account in the treatment of osmolarity disorders. Thus, the related-risk of treatment for natremia disorders is therapeutic reversal of the osmotic gradient at the level of the blood-brain barrier. This reversal, which corresponds to a second osmotic stress, requires the implementation of a new procedure of cerebral osmoregulation in the opposite direction of the preceding one. As successive osmotic stresses decrease the effectiveness of brain osmoregulation, the risk for cerebral dehydration and pontine myelinolysis increases when the treatment

  9. Dietary fructose and glucose differentially affect lipid and glucose homeostasis

    Science.gov (United States)

    Absorbed glucose and fructose differ in that glucose largely escapes first pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these two monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial trig...

  10. Renal glucose handling in diabetes and sodium glucose cotransporter 2 inhibition

    Directory of Open Access Journals (Sweden)

    Resham Raj Poudel

    2013-01-01

    Full Text Available The kidneys play a major role in glucose homeostasis through its utilization, gluconeogenesis, and reabsorption via sodium glucose cotransporters (SGLTs. The defective renal glucose handling from upregulation of SGLTs, mainly the SGLT2, plays a fundamental role in the pathogenesis of type 2 diabetes mellitus. Genetic mutations in a SGLT2 isoform that results in benign renal glycosuria, as well as clinical studies with SGLT2 inhibitors in type 2 diabetes support the potential of this approach. These studies indicate that inducing glycosuria by suppressing SGLT2 can reduce plasma glucose and A1c levels, as well as decrease weight, resulting in improved β-cell function and enhanced insulin sensitivity in liver and muscle. Because the mechanism of SGLT2 inhibition is independent of insulin secretion and sensitivity, these agents can be combined with other antidiabetic agents, including exogenous insulin. This class represents a novel therapeutic approach with potential for the treatment of both type 2 and type 1 diabetes.

  11. Endogenous protease nexin-1 protects against cerebral ischemia.

    Science.gov (United States)

    Mirante, Osvaldo; Price, Melanie; Puentes, Wilfredo; Castillo, Ximena; Benakis, Corinne; Thevenet, Jonathan; Monard, Denis; Hirt, Lorenz

    2013-01-01

    The serine protease thrombin plays a role in signalling ischemic neuronal death in the brain. Paradoxically, endogenous neuroprotective mechanisms can be triggered by preconditioning with thrombin (thrombin preconditioning, TPC), leading to tolerance to cerebral ischemia. Here we studied the role of thrombin's endogenous potent inhibitor, protease nexin-1 (PN-1), in ischemia and in tolerance to cerebral ischemia induced by TPC. Cerebral ischemia was modelled in vitro in organotypic hippocampal slice cultures from rats or genetically engineered mice lacking PN-1 or with the reporter gene lacZ knocked into the PN-1 locus PN-1HAPN-1-lacZ/HAPN-1-lacZ (PN-1 KI) exposed to oxygen and glucose deprivation (OGD). We observed increased thrombin enzyme activity in culture homogenates 24 h after OGD. Lack of PN-1 increased neuronal death in the CA1, suggesting that endogenous PN-1 inhibits thrombin-induced neuronal damage after ischemia. OGD enhanced β-galactosidase activity, reflecting PN-1 expression, at one and 24 h, most strikingly in the stratum radiatum, a glial cell layer adjacent to the CA1 layer of ischemia sensitive neurons. TPC, 24 h before OGD, additionally increased PN-1 expression 1 h after OGD, compared to OGD alone. TPC failed to induce tolerance in cultures from PN-1(-/-) mice confirming PN-1 as an important TPC target. PN-1 upregulation after TPC was blocked by the c-Jun N-terminal kinase (JNK) inhibitor, L-JNKI1, known to block TPC. This work suggests that PN-1 is an endogenous neuroprotectant in cerebral ischemia and a potential target for neuroprotection. PMID:23949634

  12. What You Should Know about Cerebral Aneurysms

    Science.gov (United States)

    ... T. Quiz 5 Things to Know About Stroke What You Should Know About Cerebral Aneurysms Updated:Jun ... Damage Treatments Click image to view an animation What is a cerebral aneurysm? An aneurysm is a ...

  13. Middle cerebral artery blood velocity during rowing

    DEFF Research Database (Denmark)

    Secher, Niels Henry; Pott, F; Knudsen, L.;

    1997-01-01

    original,arterial blood pressure,central venous pressure,cerebral blood flow, exercise, transcranial Doppler......original,arterial blood pressure,central venous pressure,cerebral blood flow, exercise, transcranial Doppler...

  14. Dynamic Cerebral Autoregulation after Cardiopulmonary Bypass

    DEFF Research Database (Denmark)

    Christiansen, Claus Behrend; Berg, Ronan M G; Plovsing, Ronni;

    2016-01-01

    Background Cerebral hemodynamic disturbances in the peri- or postoperative period may contribute to postoperative cognitive dysfunction (POCD) in patients undergoing coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB). We therefore examined dynamic cerebral autoregulation (d...

  15. Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington’s disease mice

    International Nuclear Information System (INIS)

    Highlights: ► Primary Huntington’s disease neurons are impaired in taking up glucose. ► Rab11 modulates glucose uptake in neurons. ► Increasing Rab11 activity attenuates the glucose uptake defect in disease neurons. ► We provide a novel mechanism for glucose hypometabolism in Huntington’s disease. -- Abstract: Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Positron emission tomography studies have revealed a decline in glucose metabolism in the brain of patients with HD by a mechanism that has not been established. We examined glucose utilization in embryonic primary cortical neurons of wild-type (WT) and HD knock-in mice, which have 140 CAG repeats inserted in the endogenous mouse huntingtin gene (HD140Q/140Q). Primary HD140Q/140Q cortical neurons took up significantly less glucose than did WT neurons. Expression of permanently inactive and permanently active forms of Rab11 correspondingly altered glucose uptake in WT neurons, suggesting that normal activity of Rab11 is needed for neuronal uptake of glucose. It is known that Rab11 activity is diminished in HD140Q/140Q neurons. Expression of dominant active Rab11 to enhance the activity of Rab11 normalized glucose uptake in HD140Q/140Q neurons. These results suggest that deficient activity of Rab11 is a novel mechanism for glucose hypometabolism in HD.

  16. Metabolic Engineering for Substrate Co-utilization

    Science.gov (United States)

    Gawand, Pratish

    Production of biofuels and bio-based chemicals is being increasingly pursued by chemical industry to reduce its dependence on petroleum. Lignocellulosic biomass (LCB) is an abundant source of sugars that can be used for producing biofuels and bio-based chemicals using fermentation. Hydrolysis of LCB results in a mixture of sugars mainly composed of glucose and xylose. Fermentation of such a sugar mixture presents multiple technical challenges at industrial scale. Most industrial microorganisms utilize sugars in a sequential manner due to the regulatory phenomenon of carbon catabolite repression (CCR). Due to sequential utilization of sugars, the LCB-based fermentation processes suffer low productivities and complicated operation. Performance of fermentation processes can be improved by metabolic engineering of microorganisms to obtain superior characteristics such as high product yield. With increased computational power and availability of complete genomes of microorganisms, use of model-based metabolic engineering is now a common practice. The problem of sequential sugar utilization, however, is a regulatory problem, and metabolic models have never been used to solve such regulatory problems. The focus of this thesis is to use model-guided metabolic engineering to construct industrial strains capable of co-utilizing sugars. First, we develop a novel bilevel optimization algorithm SimUp, that uses metabolic models to identify reaction deletion strategies to force co-utilization of two sugars. We then use SimUp to identify reaction deletion strategies to force glucose-xylose co-utilization in Escherichia coli. To validate SimUp predictions, we construct three mutants with multiple gene knockouts and test them for glucose-xylose utilization characteristics. Two mutants, designated as LMSE2 and LMSE5, are shown to co-utilize glucose and xylose in agreement with SimUp predictions. To understand the molecular mechanism involved in glucose-xylose co-utilization of the

  17. Antihypertensive drugs and glucose metabolism

    Institute of Scientific and Technical Information of China (English)

    Christos; V; Rizos; Moses; S; Elisaf

    2014-01-01

    Hypertension plays a major role in the development and progression of micro-and macrovascular disease.Moreover,increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance.As a result the need for a comprehensive management of hypertensive patients is critical.However,the various antihypertensive drug categories have different effects on glucose metabolism.Indeed,angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis.Calcium channel blockers(CCBs)have an overall neutral effect on glucose metabolism.However,some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis.On the other hand,diuretics andβ-blockers have an overall disadvantageous effect on glucose metabolism.Of note,carvedilol as well as nebivolol seem to differentiate themselves from the rest of theβ-blockers class,being more attractive options regarding their effect on glucose homeostasis.The adverse effects of some blood pressure lowering drugs on glucose metabolism may,to an extent,compromise their cardiovascular protective role.As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment,especially in patients which are at high risk for developing diabetes.

  18. Sex differences in glucose levels

    DEFF Research Database (Denmark)

    Faerch, K; Borch-Johnsen, Knut; Vaag, A;

    2010-01-01

    We aimed to examine whether sex differences in fasting plasma glucose (FPG), 2 h post-OGTT plasma glucose (2hPG) and HbA(1c) could be explained by differences in body size and/or body composition between men and women in a general non-diabetic Danish population. Moreover, we aimed to study to what...

  19. Alginate cryogel based glucose biosensor

    Science.gov (United States)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  20. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    Full Text Available BACKGROUND: Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation. CONCLUSIONS/SIGNIFICANCE: These results

  1. Primary cerebral lymphoma

    International Nuclear Information System (INIS)

    The aim of this study is to compare the survival of the patients treated with radiotherapy alone vs. patients treated with a combined schedule of radio-chemotherapy. Our results will be compared with currently published data and main prognostic factors will be briefly discussed. Patients and methods: Between 1974 and 1990, 27 cases of primary cerebral lymphoma were diagnosed at our institution. All patients had biopsy-proven disease, the pathology of which was reviewed for this study. Results: The overall median survival time was 24 months and one-, two- and three-year overall survival was 59, 46 and 29% respectively. The median radiation dose was 46 Gy, ranging from 19.5 to 60 Gy. The median dose per fraction was 2 Gy (ranging from 1.61 to 3 Gy). The median elapsed treatment time was 32 days (ranging from three to 45 days). We were not able to demonstrate any statistically significant difference between patients who received radiotherapy alone (n = 14, median survival time = 24 months) and those who received a combination of chemotherapy and radiotherapy (n = 11, median survival time = 30 months), (p = 0.4). Prognostic factors of survival were tested using a univariate analysis (Wilcoxon test). Parameters such as mass appearance (unilobular, p = 0.048), performance status at the time of the diagnosis (0 to 1, p = 0.014), and CT imaging (hypodense, p = 0.043) influenced positively survival. Centroblastic histology (Kiel) was found associated with a negative prognosis (p = 0.043). (orig./MG)

  2. Cerebritis: an unusual complication of Klebsiella pneumoniae.

    Science.gov (United States)

    Majumdar, Mainak; Simes, David C; Prabha, Ramesh D

    2009-01-01

    Cerebritis is part of a continuum of brain infection and is difficult to diagnose. Cerebritis caused by Klebsiella in immunocompetent adults without predisposing factors such as neurosurgery or penetrating brain injury has not been reported before. We report a case of Klebsiella cerebritis in an adult patient with a proven extracranial focus of infection. We suggest considering cerebritis as a differential diagnosis for altered level of consciousness in patients of severe sepsis, even if an extracranial source of infection is proven. PMID:19881180

  3. Cerebritis: An unusual complication of Klebsiella pneumoniae

    OpenAIRE

    Majumdar, Mainak; Simes1, David C.; Prabha1, Ramesh D.

    2009-01-01

    Cerebritis is part of a continuum of brain infection and is difficult to diagnose. Cerebritis caused by Klebsiella in immunocompetent adults without predisposing factors such as neurosurgery or penetrating brain injury has not been reported before. We report a case of Klebsiella cerebritis in an adult patient with a proven extracranial focus of infection. We suggest considering cerebritis as a differential diagnosis for altered level of consciousness in patients of severe sepsis, even if an e...

  4. Cerebritis: An unusual complication of Klebsiella pneumoniae

    Science.gov (United States)

    Majumdar, Mainak; Simes1, David C.; Prabha1, Ramesh D.

    2009-01-01

    Cerebritis is part of a continuum of brain infection and is difficult to diagnose. Cerebritis caused by Klebsiella in immunocompetent adults without predisposing factors such as neurosurgery or penetrating brain injury has not been reported before. We report a case of Klebsiella cerebritis in an adult patient with a proven extracranial focus of infection. We suggest considering cerebritis as a differential diagnosis for altered level of consciousness in patients of severe sepsis, even if an extracranial source of infection is proven. PMID:19881180

  5. Cerebral edema associated with acute hepatic failure.

    OpenAIRE

    Fujiwara, Masachika; Watanabe,Akiharu; Yamauchi,Yasuhiko; Hashimoto, Makoto; Nakatsukasa, Harushige; Kobayashi, Michio; Higashi,Toshihiro; Nagashima,Hideo

    1985-01-01

    The clinicopathological findings of cerebral edema were investigated in patients with acute hepatic failure autopsied at Okayama University Hospital between 1970 and 1980 retrospectively. Nine (64%) of 14 hepatic failure cases were found to have cerebral edema during a post-mortem examination of the brain. Clinical features of the patients with cerebral edema were not significantly different from those of the patients without cerebral edema. However, general convulsions were observed more fre...

  6. Blood glucose in acute stroke

    DEFF Research Database (Denmark)

    Olsen, Tom Skyhøj

    2009-01-01

    Blood glucose is often elevated in acute stroke, and higher admission glucose levels are associated with larger lesions, greater mortality and poorer functional outcome. In patients treated with thrombolysis, hyperglycemia is associated with an increased risk of hemorrhagic transformation...... of infarcts. For a number of years, tight glycemic control has been regarded as beneficial in critically illness, but recent research has been unable to support this notion. The only completed randomized study on glucose-lowering therapy in stroke has failed to demonstrate effect, and concerns relating...... to the risk of inducing potentially harmful hypoglycemia has been raised. Still, basic and observational research is overwhelmingly in support of a causal relationship between blood glucose and stroke outcome and further research on glucose-lowering therapy in acute stroke is highly warranted....

  7. Effects of smoking on cerebral and ventricular volumes in healthy males

    Institute of Scientific and Technical Information of China (English)

    Hyun-Jun Kim; Jae-Hoon Jun; Gye-Rae Tack; Soon-Cheol Chung; Mi-Hyun Choi; Beob-Yi Lee; Su-Jeong Lee; Jae-Woong Yang; Ji-Hye Kim; Jin-Seung Choi; Dong-Won Kang; Jang-Yeon Park

    2011-01-01

    Previous studies have reported decreased cerebral volume as a result of smoking.However,little is known about accompanying changes in ventricular volume for healthy subjects who smoke,although ventricular volume is increased in patients with multiple sclerosis who smoke.The present study analyzed whether cerebral volume decreased with smoking through the use of magnetic resonance imaging.In addition,accompanying changes in ventricular volume that resulted from decreased cerebral volume and smoking were analyzed in healthy subjects.When multivariate lysis of covariance was performed by integrating the 2 age groups,aged 20-28 years and 40-49 years,with statistical significance,results showed that cerebral volume of smokers was smaller and ventricular volume was greater compared with the non-smokers.These findings suggest that ventricular volume changes could be utilized to characterize the effects of smoking.

  8. Recent developments in nanostructure based electrochemical glucose sensors.

    Science.gov (United States)

    Zaidi, Shabi Abbas; Shin, Jae Ho

    2016-01-01

    Diabetes is a major health problem causing 4 million deaths each year and 171 million people suffering worldwide. Although there is no cure for diabetes, nevertheless, the blood glucose level of diabetic patients should be monitored tightly to avoid further complications. Thus, monitoring of glucose in blood has become an inevitable need leading to fabrication of accurate and sensitive advanced blood sugar detection devices for clinical diagnosis and personal care. It led to the development of enzymatic glucose sensing approach. Later on, various types of nanostructures have been utilized owing to their high surface area, great stability, and cost effectiveness for the fabrication of enzymatic as well as for nonenzymatic glucose sensing approach. This work reviews on both categories, however it is not intended to discuss all the research reports published regarding nanostructure based enzymatic and nonenzymatic approaches between mid-2010 and mid-2015. We, do, however, focused to describe the details of many substantial articles explaining the design of sensors, and utilities of the prepared sensors, so that readers might get the principles behind such devices and relevant detection strategies. This work also focuses on biocompatibility and toxicity of nanomaterials as well as provides a critical opinion and discussions about misconceptions in glucose sensors.

  9. Cerebral venous thrombosis in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, T.A.G.M.; Martin, E.; Willi, U.V. [Dept. of Diagnostic Imaging and Radiology, University Children' s Hospital Zurich (Switzerland); Holzmann, D. [Dept. of Otorhinolaryngology, University Children' s Hospital Zurich, Zurich (Switzerland)

    2001-09-01

    This was a retrospective study to determine different etiologies of cerebral venous thrombosis (CVT) in childhood and to correlate extent and location of thrombosis with the etiology and the age of the child as well as the final outcome. In addition, the radiologic approach is discussed. This was a retrospective analysis of 19 children with CVT. The children were examined by contrast-enhanced dynamic CT. Radiologic findings were correlated with the etiology of CVT. Cerebral venous thrombosis is not as infrequent in children as has been thought. Cerebral venous thrombosis in children can occur due to trauma (n=9), infections (n=7), or coagulation disorders (n=3). Extent and location of thrombosis, as well as complications, final outcome, and therapy, depend on the etiology. Computed tomography remains a valuable primary imaging modality in the diagnosis of CVT in the acutely injured or diseased child. (orig.)

  10. Cerebral venous thrombosis in childhood

    International Nuclear Information System (INIS)

    This was a retrospective study to determine different etiologies of cerebral venous thrombosis (CVT) in childhood and to correlate extent and location of thrombosis with the etiology and the age of the child as well as the final outcome. In addition, the radiologic approach is discussed. This was a retrospective analysis of 19 children with CVT. The children were examined by contrast-enhanced dynamic CT. Radiologic findings were correlated with the etiology of CVT. Cerebral venous thrombosis is not as infrequent in children as has been thought. Cerebral venous thrombosis in children can occur due to trauma (n=9), infections (n=7), or coagulation disorders (n=3). Extent and location of thrombosis, as well as complications, final outcome, and therapy, depend on the etiology. Computed tomography remains a valuable primary imaging modality in the diagnosis of CVT in the acutely injured or diseased child. (orig.)

  11. Neuronal autophagy in cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Jin-Hua Gu; Zheng-Hong Qin

    2012-01-01

    Autophagy has evolved as a conserved process for the bulk degradation and recycling of cytosolic components,such as long-lived proteins and organelles.In neurons,autophagy is important for homeostasis and protein quality control and is maintained at relatively low levels under normal conditions,while it is upregulated in response to pathophysiological conditions,such as cerebral ischemic injury.However,the role of autophagy is more complex.It depends on age or brain maturity,region,severity of insult,and the stage of ischemia.Whether autophagy plays a beneficial or a detrimental role in cerebral ischemia depends on various pathological conditions.In this review,we elucidate the role of neuronal autophagy in cerebral ischemia.

  12. Glucose-stat, a glucose-controlled continuous culture.

    Science.gov (United States)

    Kleman, G L; Chalmers, J J; Luli, G W; Strohl, W R

    1991-04-01

    A predictive and feedback proportional control algorithm, developed for fed-batch fermentations and described in a companion paper (G. L. Kleman, J. J. Chalmers, G. W. Luli, and W. R. Strohl, Appl. Environ. Microbiol. 57:910-917, 1991), was used in this work to control a continuous culture on the basis of the soluble-glucose concentration (called the glucose-stat). This glucose-controlled continuous-culture system was found to reach and maintain steady state for 11 to 24 residence times when four different background glucose concentrations (0.27, 0.50, 0.7, and 1.5 g/liter) were used. The predictive-plus-feedback control system yielded very tight control of the continuous nutristat cultures; glucose concentrations were maintained at the set points with less than 0.003 standard error. Acetate production by Escherichia coli B in glucose-stats was found not to be correlated with the level of steady-state soluble-glucose concentration. PMID:2059050

  13. Multiattribute Utility Theory without Expected Utility Foundations

    NARCIS (Netherlands)

    A.M. Stiggelbout; P.P. Wakker

    1995-01-01

    Methods for determining the form of utilities are needed for the implementation of utility theory in specific decisions. An important step forward was achieved when utility theorists characterized useful parametric families of utilities, and simplifying decompositions of multiattribute utilities. Th

  14. Multiattribute utility theory without expected utility foundations

    NARCIS (Netherlands)

    P.P. Wakker; J. Miyamoto

    1996-01-01

    Methods for determining the form of utilities are needed for the implementation of utility theory in specific decisions. An important step forward was achieved when utility theorists characterized useful parametric families of utilities, and simplifying decompositions of multiattribute utilities. Th

  15. Cerebral state index during propofol anesthesia

    NARCIS (Netherlands)

    Jensen, EW; Litvan, H; Revuelta, M; Rodriguez, BE; Caminal, P; Martinez, P; Vereecke, H; Struys, MMRF

    2006-01-01

    Background: The objective of this study was to prospectively test the Cerebral State Index designed for measuring the depth of anesthesia. The Cerebral State Index is calculated using a fuzzy logic combination of four subparameters of the electroencephalographic signal. The performance of the Cerebr

  16. Cerebral toksoplasmose primaert diagnosticeret som tumor

    DEFF Research Database (Denmark)

    Cortsen, M E; Skøt, J; Skriver, E B

    1992-01-01

    Three cases of cerebral toxoplasmosis as the presenting manifestation of AIDS are reported. The initial diagnoses were brain tumors because of the cerebral mass lesions which resembled glioblastoma. In the light of the increasing occurrence of AIDS, attention is drawn to cerebral toxoplasmosis...

  17. Neuroevolutional Approach to Cerebral Palsy and Speech.

    Science.gov (United States)

    Mysak, Edward D.

    Intended for cerebral palsy specialists, the book emphasizes the contribution that a neuroevolutional approach to therapy can make to habilitation goals of the child with cerebral palsy and applies the basic principles of the Bobath approach to therapy. The first section discusses cerebral palsy as a reflection of disturbed neuro-ontogenisis and…

  18. Cerebral vasculitis associated with cocaine abuse

    International Nuclear Information System (INIS)

    A case of cerebral vasculitis in a previously healthy 22-year-old man with a history of cocaine abuse is described. Cerebral angiograms showed evidence of vasculitis. A search for possible causes other than cocaine produced no results. The authors include cocaine with methamphetamines, heroin, and ephedrine as illicit drugs that can cause cerebral vasculitis

  19. Plasma pH does not influence the cerebral metabolic ratio during maximal whole body exercise

    DEFF Research Database (Denmark)

    Volianitis, Stefanos; Rasmussen, Peter; Seifert, Thomas;

    2011-01-01

    bicarbonate (Bicarb, 1 m; 350–500 ml) or an equal volume of normal saline (Sal) was infused intravenously at a constant rate during a ‘2000 m' maximal ergometer row in six male oarsmen (23 ± 2 years; mean ± s.d.). During the Sal trial, pH decreased from 7.41 ± 0.01 at rest to 7.02 ± 0.02 but only to 7.36 ± 0.......05) following the Sal and Bicarb trials, respectively. Accordingly, the cerebral metabolic ratio decreased equally during the Sal and Bicarb trials: from 5.8 ± 0.6 at rest to 1.7 ± 0.1 and 1.8 ± 0.2, respectively. The enlarged blood-buffering capacity after infusion of Bicarb eliminated metabolic acidosis......Exercise lowers the cerebral metabolic ratio of O2 to carbohydrate (glucose + 1/2 lactate) and metabolic acidosis appears to promote cerebral lactate uptake. However, the influence of pH on cerebral lactate uptake and, in turn, on the cerebral metabolic ratio during exercise is not known. Sodium...

  20. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease.

    Science.gov (United States)

    Toda, Noboru; Okamura, Tomio

    2016-08-01

    Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic) nerves and nitric oxide (NO) liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS)/neuronal NOS (nNOS) inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD). Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD. PMID:27530818