WorldWideScience

Sample records for cerebral cortical folding

  1. Developing guinea pig brain as a model for cortical folding.

    Science.gov (United States)

    Hatakeyama, Jun; Sato, Haruka; Shimamura, Kenji

    2017-05-01

    The cerebral cortex in mammals, the neocortex specifically, is highly diverse among species with respect to its size and morphology, likely reflecting the immense adaptiveness of this lineage. In particular, the pattern and number of convoluted ridges and fissures, called gyri and sulci, respectively, on the surface of the cortex are variable among species and even individuals. However, little is known about the mechanism of cortical folding, although there have been several hypotheses proposed. Recent studies on embryonic neurogenesis revealed the differences in cortical progenitors as a critical factor of the process of gyrification. Here, we investigated the gyrification processes using developing guinea pig brains that form a simple but fundamental pattern of gyri. In addition, we established an electroporation-mediated gene transfer method for guinea pig embryos. We introduce the guinea pig brain as a useful model system to understand the mechanisms and basic principle of cortical folding. © 2017 Japanese Society of Developmental Biologists.

  2. Effect of growth hormone on glycogenesis in rat cerebral cortical slices

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Azad, V.S.S.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    Incubation of cerebral cortical slices of growth hormone treated diabetic and normal rats with U- 14 C glucose showed a two-fold increase in glycogenesis in diabetic rats. Glucose-6-phosphatase activity was lowered while the activities of phosphoglucomutase and phosphorylase were elevated in the cerebral cortex of diabetic rats treated with growth hormone. However, glycogen synthetase activity was slightly depressed. (author). 13 refs., 2 tabs

  3. Axons Pull on the Brain, But Tension Does Not Drive Cortical Folding

    Science.gov (United States)

    Xu, Gang; Knutsen, Andrew K.; Dikranian, Krikor; Kroenke, Christopher D.; Bayly, Philip V.; Taber, Larry A.

    2011-01-01

    During human brain development, the cerebral cortex undergoes substantial folding, leading to its characteristic highly convoluted form. Folding is necessary to accommodate the expansion of the cerbral cortex; abnormal cortical folding is linked to various neurological disorders, including schizophrenia, epilepsy, autism and mental retardation. Although this process requires mechanical forces, the specific force-generating mechanisms that drive folding remain unclear. The two most widely accepted hypotheses are (1) folding is caused by differential growth of the cortex and (2) folding is caused by mechanical tension generated in axons. Direct evidence supporting either theory, however, is lacking. Here we show that axons are indeed under considerable tension in the developing ferret brain, but the patterns of tissue stress are not consistent with a causal role for axonal tension. In particular, microdissection assays reveal that significant tension exists along axons aligned circumferentially in subcortical white matter tracts, as well as those aligned radially inside developing gyri (outward folds). Contrary to previous speculation, however, axonal tension is not directed across developing gyri, suggesting that axon tension does not drive folding. On the other hand, using computational (finite element) models, we show that differential cortical growth accompanied by remodeling of the subplate leads to outward folds and stress fields that are consistent with our microdissection experiments, supporting a mechanism involving differential growth. Local perturbations, such as temporal differences in the initiation of cortical growth, can ensure consistent folding patterns. This study shows that a combination of experimental and computational mechanics can be used to evaluate competing hypotheses of morphogenesis, and illuminate the biomechanics of cortical folding. PMID:20590291

  4. The human cerebral cortex is neither one nor many: Neuronal distribution reveals two quantitatively different zones in the grey matter, three in the white matter, and explains local variations in cortical folding

    Directory of Open Access Journals (Sweden)

    Pedro F. M. Ribeiro

    2013-09-01

    Full Text Available The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital that differ in how neurons distributed across their grey matter volume and in three zones (prefrontal, occipital, and non-occipital that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non

  5. Assessment of MRI-Based Automated Fetal Cerebral Cortical Folding Measures in Prediction of Gestational Age in the Third Trimester.

    Science.gov (United States)

    Wu, J; Awate, S P; Licht, D J; Clouchoux, C; du Plessis, A J; Avants, B B; Vossough, A; Gee, J C; Limperopoulos, C

    2015-07-01

    Traditional methods of dating a pregnancy based on history or sonographic assessment have a large variation in the third trimester. We aimed to assess the ability of various quantitative measures of brain cortical folding on MR imaging in determining fetal gestational age in the third trimester. We evaluated 8 different quantitative cortical folding measures to predict gestational age in 33 healthy fetuses by using T2-weighted fetal MR imaging. We compared the accuracy of the prediction of gestational age by these cortical folding measures with the accuracy of prediction by brain volume measurement and by a previously reported semiquantitative visual scale of brain maturity. Regression models were constructed, and measurement biases and variances were determined via a cross-validation procedure. The cortical folding measures are accurate in the estimation and prediction of gestational age (mean of the absolute error, 0.43 ± 0.45 weeks) and perform better than (P = .024) brain volume (mean of the absolute error, 0.72 ± 0.61 weeks) or sonography measures (SDs approximately 1.5 weeks, as reported in literature). Prediction accuracy is comparable with that of the semiquantitative visual assessment score (mean, 0.57 ± 0.41 weeks). Quantitative cortical folding measures such as global average curvedness can be an accurate and reliable estimator of gestational age and brain maturity for healthy fetuses in the third trimester and have the potential to be an indicator of brain-growth delays for at-risk fetuses and preterm neonates. © 2015 by American Journal of Neuroradiology.

  6. APC sets the Wnt tone necessary for cerebral cortical progenitor development.

    Science.gov (United States)

    Nakagawa, Naoki; Li, Jingjun; Yabuno-Nakagawa, Keiko; Eom, Tae-Yeon; Cowles, Martis; Mapp, Tavien; Taylor, Robin; Anton, E S

    2017-08-15

    Adenomatous polyposis coli (APC) regulates the activity of β-catenin, an integral component of Wnt signaling. However, the selective role of the APC-β-catenin pathway in cerebral cortical development is unknown. Here we genetically dissected the relative contributions of APC-regulated β-catenin signaling in cortical progenitor development, a necessary early step in cerebral cortical formation. Radial progenitor-specific inactivation of the APC-β-catenin pathway indicates that the maintenance of appropriate β-catenin-mediated Wnt tone is necessary for the orderly differentiation of cortical progenitors and the resultant formation of the cerebral cortex. APC deletion deregulates β-catenin, leads to high Wnt tone, and disrupts Notch1 signaling and primary cilium maintenance necessary for radial progenitor functions. β-Catenin deregulation directly disrupts cilium maintenance and signaling via Tulp3, essential for intraflagellar transport of ciliary signaling receptors. Surprisingly, deletion of β-catenin or inhibition of β-catenin activity in APC-null progenitors rescues the APC-null phenotype. These results reveal that APC-regulated β-catenin activity in cortical progenitors sets the appropriate Wnt tone necessary for normal cerebral cortical development. © 2017 Nakagawa et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL

    International Nuclear Information System (INIS)

    Jouvent, E.; Bousser, M.G.; Chabriat, H.; Jouvent, E.; Bousser, M.G.; Chabriat, H.; Porcher, R.; Viswanathan, A.; Viswanathan, A.; Viswanathan, A.; O'Sullivan, M.; Dichgans, M.; Guichard, J.P.

    2008-01-01

    Brain atrophy represents a key marker of disease progression in cerebrovascular disorders. The 3D changes of cortex morphology occurring during the course of small vessel diseases of the brain (SVDB) remain poorly understood. The objective of this study was to assess the changes affecting depth and surface area of cortical sulci and their clinical and radiological correlates in a cohort of patients with cerebral autosomal dominant arteriolopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic SVDB. Data were obtained from a series of 69 CADASIL patients. Validated methods were used to determine depth and surface area of four cortical sulci. The ratio of brain to intracranial cavity volumes (brain parenchymal fraction-BPF), volume of lacunar lesions (LL) and of white matter hyper-intensities, number of cerebral micro-haemorrhages, and mean apparent diffusion coefficient were also measured. Association between depth and surface area of the cortical sulci and BPF, clinical status and subcortical MRI lesions were tested. Depth and surface area of cortical sulci obtained in 54 patients were strongly correlated with both cognitive score and disability scales. Depth was related to the extent of subcortical lesions, surface area was related only to age. In additional analyses, the depth of the cingular sulcus was independently associated with the volume of LL (P 0.001), and that of the superior frontal sulcus with the mean apparent diffusion coefficient (P 0.003). In CADASIL, important morphological changes of cortical sulci occur in association with clinical worsening,extension of subcortical tissue damage and progression of global cerebral atrophy. These results suggest that the examination of cortical morphology may be of high clinical relevance in SVDB. (authors)

  8. Widespread cortical morphologic changes in juvenile myoclonic epilepsy: evidence from structural MRI.

    LENUS (Irish Health Repository)

    Ronan, Lisa

    2012-04-01

    Atypical morphology of the surface of the cerebral cortex may be related to abnormal cortical folding (gyrification) and therefore may indicate underlying malformations of cortical development (MCDs). Using magnetic resonance imaging (MRI)-based analysis, we examined cortical morphology in patients with juvenile myoclonic epilepsy (JME).

  9. Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life.

    Science.gov (United States)

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-08-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, longitudinal MR images of 73 healthy subjects from birth to 2 year old are used. For each subject at each time point, its measures of cortical thickness, cortical folding, and fiber density are projected to its cortical surface that has been partitioned into 78 cortical regions. Then, the correlation matrices for cortical thickness, cortical folding, and fiber density at each time point can be constructed, respectively, by computing the inter-regional Pearson correlation coefficient (of any pair of ROIs) across all 73 subjects. Finally, the presence/absence pattern (i.e., binary pattern) of the connection network is constructed from each inter-regional correlation matrix, and its statistical and anatomical properties are adopted to analyze the longitudinal development of anatomical networks. The results show that the development of anatomical network could be characterized differently by using different anatomical properties (i.e., using cortical thickness, cortical folding, or fiber density). Copyright © 2013 Wiley Periodicals, Inc.

  10. Crossed cerebellar and cerebral cortical diaschisis in basal ganglia hemorrhage

    International Nuclear Information System (INIS)

    Lim, Joon Seok; Ryu, Young Hoon; Kim, Hee Joung; Kim, Byung Moon; Lee, Jong Doo; Lee, Byung Hee

    1998-01-01

    The purpose of this study was to evaluate the phenomenon of diaschisis in the cerebellum and cerebral cortex in patients with pure basal ganglia hemorrhage using cerebral blood flow SPECT. Twelve patients with pure basal ganglia hemorrhage were studied with Tc-99m ECD brain SPECT. Asymmetric index (AI) was calculated in the cerebellum and cerebral cortical regions as | C R -C L |/ (C R -C L ) x 200, where C R and C L are the mean reconstructed counts for the right and left ROIs, respectively. Hypoperfusion was considered to be present when AI was greater than mean + 2 SD of 20 control subjects. Mean AI of the cerebellum and cerebral cortical regions in patients with pure basal ganglia hemorrhage was significantly higher than normal controls (p<0.05): Cerebellum (18.68±8.94 vs 4.35±0.94, mean ±SD), thalamus (31.91±10.61 vs 2.57±1.45), basal ganglia (35.94±16.15 vs 4.34±2.08), parietal (18.94±10.69 vs 3.24±0.87), frontal (13.60±10.8 vs 4.02±2.04) and temporal cortex (18.92±11.95 vs 5.13±1.69). Ten of the 12 patients had significant hypoperfusion in the contralateral cerebellum. Hypoperfusion was also shown in the ipsilateral thalamus (n=12), ipsilateral parietal (n=12), frontal (n=6) and temporal cortex (n=10). Crossed cerebellar diaschisis (CCD) and cortical diaschisis may frequently occur in patients with pure basal ganglia hemorrhage, suggesting that CCD can develop without the interruption of corticopontocerebellar pathway

  11. Primary cortical folding in the human newborn: an early marker of later functional development

    Science.gov (United States)

    Benders, M.; Borradori-Tolsa, C.; Cachia, A.; Lazeyras, F.; Ha-Vinh Leuchter, R.; Sizonenko, S. V.; Warfield, S. K.; Mangin, J. F.; Hüppi, P. S.

    2008-01-01

    In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be present long before the appearance of functional symptoms. So far, the precise mechanisms responsible for such alteration in the convolution pattern during intra-uterine or post-natal development are still poorly understood. Here we compared anatomical and functional brain development in vivo among 45 premature newborns who experienced different intra-uterine environments: 22 normal singletons, 12 twins and 11 newborns with intrauterine growth restriction (IUGR). Using magnetic resonance imaging (MRI) and dedicated post-processing tools, we investigated early disturbances in cortical formation at birth, over the developmental period critical for the emergence of convolutions (26–36 weeks of gestational age), and defined early ‘endophenotypes’ of sulcal development. We demonstrated that twins have a delayed but harmonious maturation, with reduced surface and sulcation index compared to singletons, whereas the gyrification of IUGR newborns is discordant to the normal developmental trajectory, with a more pronounced reduction of surface in relation to the sulcation index compared to normal newborns. Furthermore, we showed that these structural measurements of the brain at birth are predictors of infants’ outcome at term equivalent age, for MRI-based cerebral volumes and neurobehavioural development evaluated with the assessment of preterm infant's behaviour (APIB). PMID:18587151

  12. Relation between hippocampal damage and cerebral cortical function in Alzheimer's disease

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Asano, Tetsuichi; Kogure, Daiji; Sakurai, Hirofumi; Iwamoto, Toshihiko; Takasaki, Masaru

    2000-01-01

    We investigated the relation between hippocampal damage and cerebral cortical dysfunction in Alzheimer's disease (AD) using MRI and SPECT. Nineteen patients with AD and 10 control subjects were studied. Hippocampal damage (including hippocampal formation, entorhinal cortex, and parahippocampal white matter) was assessed to evaluate the severity of atrophy and the magnetization transfer ratio (MTR) and cerebral cortical dysfunction was evaluated by quantitative cerebral blood flow (CBF) measurements using SPECT with 99mTc-ECD. Compared with controls, patients with AD had significantly more atrophy of the medial temporal lobe and a decrease in MTRs of the hippocampus and parahippocampus. There were significant correlations between the severity of hippocampal damage and regional CBF in temporoparietal lobes. Mini-Mental State Examination scores significantly correlated with the severity of hippocampal damage and regional CBFs in temporoparietal lobes. These results suggest that the functional effect of hippocampal damage occurs in temporoparietal lobes in AD, probably due to neuronal disconnections between hippocampal areas (including the entorhinal cortex) and temporoparietal lobes. (author)

  13. Effect of caffeine on preterm infants' cerebral cortical activity: an observational study.

    Science.gov (United States)

    Hassanein, Sahar M A; Gad, Ghada I; Ismail, Rania I H; Diab, Mohamed

    2015-01-01

    Our first aim was to investigate the effects of caffeine on preterm infants' respiratory functions and brain cortical activity (conventional and amplitude-integrated electroencephalography (cEEG and aEEG)). Secondary aim was to study its long-term effects on respiratory system and electroencephalographic maturation by 36 weeks post-menstrual age. Prospective observational study on 33 consecutively admitted preterm infants less than 34-weeks-gestation. cEEG and aEEG, cardiopulmonary and sleep state were recorded in 20 preterm infants, before, during and 2-hours after intravenous (IV) caffeine (caffeine Group), and for 13 preterms (control group). Both groups were subjected to assessment of cerebral cortical maturation by cEEG and aEEG at 36-weeks post-menstrual age as an outcome measure. IV caffeine administration significantly increased heart rate (p = 0.000), mean arterial blood pressure (p = 0.000), capillary oxygen saturation (p = 0.003), arousability (p = 0.000) and aEEG continuity (p = 0.002) after half an hour. No clinical seizures were recorded and non-significant difference was found in electrographic seizures activity in cEEG. At 36-weeks post-conceptional age, NICU stay was significantly longer in controls (p = 0.022). aEEG score was significantly higher in caffeine group than the control group, (p = 0.000). Caffeine increases preterm infants' cerebral cortical activity during infusion and results in cerebral cortical maturation at 36weeks, without increase in seizure activity.

  14. Effect of anxiety on cortical cerebral blood flow and metabolism

    International Nuclear Information System (INIS)

    Gur, R.C.; Gur, R.E.; Resnick, S.M.; Skolnick, B.E.; Alavi, A.; Reivich, M.

    1987-01-01

    The relation between anxiety and cortical activity was compared in two samples of normal volunteers. One group was studied with the noninvasive xenon-133 inhalation technique for measuring cerebral blood flow (CBF) and the other with positron emission tomography (PET) using 18 Flurodeoxyglucose ( 18 FDG) for measuring cerebral metabolic rates (CMR) for glucose. The inhalation technique produced less anxiety than the PET procedure, and for low anxiety subjects, there was a linear increase in CBF with anxiety. For higher anxiety subjects, however, there was a linear decrease in CBF with increased anxiety. The PET group manifested a linear decrease in CMR with increased anxiety. The results indicate that anxiety can have systematic effects on cortical activity, and this should be taken into consideration when comparing data from different procedures. They also suggest a physiologic explanation of a fundamental behavioral law that stipulates a curvilinear, inverted-U relationship between anxiety and performance

  15. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous-unemotional traits.

    Science.gov (United States)

    Fairchild, Graeme; Toschi, Nicola; Hagan, Cindy C; Goodyer, Ian M; Calder, Andrew J; Passamonti, Luca

    2015-01-01

    Previous studies have reported changes in gray matter volume in youths with conduct disorder (CD), although these differences are difficult to interpret as they may have been driven by alterations in cortical thickness, surface area (SA), or folding. The objective of this study was to use surface-based morphometry (SBM) methods to compare male youths with CD and age and sex-matched healthy controls (HCs) in cortical thickness, SA, and folding. We also tested for structural differences between the childhood-onset and adolescence-onset subtypes of CD and performed regression analyses to assess for relationships between CD symptoms and callous-unemotional (CU) traits and SBM-derived measures. We acquired structural neuroimaging data from 20 HCs and 36 CD participants (18 with childhood-onset CD and 18 with adolescence-onset CD) and analyzed the data using FreeSurfer. Relative to HCs, youths with CD showed reduced cortical thickness in the superior temporal gyrus, reduced SA in the orbitofrontal cortex (OFC), and increased cortical folding in the insula. There were no significant differences between the childhood-onset and adolescence-onset CD subgroups in cortical thickness or SA, but several frontal and temporal regions showed increased cortical folding in childhood-onset relative to adolescence-onset CD participants. Both CD subgroups also showed increased cortical folding relative to HCs. CD symptoms were negatively correlated with OFC SA whereas CU traits were positively correlated with insula folding. Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and

  16. A computational growth model for measuring dynamic cortical development in the first year of life.

    Science.gov (United States)

    Nie, Jingxin; Li, Gang; Wang, Li; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2012-10-01

    Human cerebral cortex develops extremely fast in the first year of life. Quantitative measurement of cortical development during this early stage plays an important role in revealing the relationship between cortical structural and high-level functional development. This paper presents a computational growth model to simulate the dynamic development of the cerebral cortex from birth to 1 year old by modeling the cerebral cortex as a deformable elastoplasticity surface driven via a growth model. To achieve a high accuracy, a guidance model is also incorporated to estimate the growth parameters and cortical shapes at later developmental stages. The proposed growth model has been applied to 10 healthy subjects with longitudinal brain MR images acquired at every 3 months from birth to 1 year old. The experimental results show that our proposed method can capture the dynamic developmental process of the cortex, with the average surface distance error smaller than 0.6 mm compared with the ground truth surfaces, and the results also show that 1) the curvedness and sharpness decrease from 2 weeks to 12 months and 2) the frontal lobe shows rapidly increasing cortical folding during this period, with relatively slower increase of the cortical folding in the occipital and parietal lobes.

  17. Subcortical cerebral blood flow and metabolic changes elicited by cortical spreading depression in rat

    Energy Technology Data Exchange (ETDEWEB)

    Mraovitch, S.; Calando, Y.; Goadsby, P.J.; Seylaz, J. (Laboratoire de Recherches Cerebrovasculaire, Paris (France))

    1992-06-01

    Changes in cerebral cortical perfusion (CBF{sub LDF}), local cerebral blood flow (lCBF) and local cerebral glucose utilization (lCGU) elicited by unilateral cortical spreading depression (SD) were monitored and measured in separate groups of rats anesthetized with {alpha}-chloralose. CBF{sub LDF} was recorded with laser Doppler flowmetry, while lCBF and lCGU were measured by the quantitative autoradiographic ({sup 14}C)iodoantipyrine and ({sup 14}C)-2-deoxyglucose methods, respectively. SD elicited a wave of hyperemia after a latency of 2 to 3 min followed by an oligemic phase. Ninety minutes following the onset of SD cortical lCBF and lCGU were essentially the same as on the contralateral side and in sham-treated rats. However, alteration in the lCBF and lCGU in upper and lower brainstem persisted. The present results demonstrate that long-lasting cerebrovascular and metabolic alterations take place within the subcortical regions following SD. These regions provide an attractive site to integrate observations in man concerning spreading depression and the aura of migraine with the other features of the syndrome. 19 refs., 2 figs., 1 tab.

  18. Spreading depression and focal venous cerebral ischemia enhance cortical neurogenesis

    Directory of Open Access Journals (Sweden)

    Ryo Tamaki

    2017-01-01

    Full Text Available Endogenous neurogenesis can arise from a variety of physiological stimuli including exercise, learning, or “enriched environment” as well as pathological conditions such as ischemia, epilepsy or cortical spreading depression. Whether all these conditions use a common trigger to set off endogenous neurogenesis is yet unclear. We hypothesized that cortical spreading depression (CSD induces neurogenesis in the cerebral cortex and dentate gyrus after cerebral venous ischemia. Forty-two Wistar rats alternatively underwent sham operation (Sham, induction of ten CSDs or venous ischemia provoked via occlusion of two adjacent superficial cortical vein followed by ten induced CSDs (CSD + 2-VO. As an additional control, 15 naïve rats received no intervention except 5-bromo-2′-deoxyuridine (BrdU treatment for 7 days. Sagittal brain slices (40 μm thick were co-stained for BrdU and doublecortin (DCX; new immature neuronal cells on day 9 or NeuN (new mature neuronal cells on day 28. On day 9 after sham operation, cell proliferation and neurogenesis occurred in the cortex in rats. The sole induction of CSD had no effect. But on days 9 and 28, more proliferating cells and newly formed neurons in the ipsilateral cortex were observed in rats subjected to CSD + 2VO than in rats subjected to sham operation. On days 9 and 28, cell proliferation and neurogenesis in the ipsilateral dentate gyrus was increased in sham-operated rats than in naïve rats. Our data supports the hypothesis that induced cortical neurogenesis after CSD + 2-VO is a direct effect of ischemia, rather than of CSD alone.

  19. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Asao, Chiaki [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical Sciences, Department of Diagnostic Radiology, Kumamoto (Japan); Yoshimatsu, Shunji [National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Matsukawa, Tetsuya; Imuta, Masanori [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); Sagara, Katsuro [Kumamoto Regional Medical Center, Department of Internal Medicine, Kumamoto (Japan)

    2008-03-15

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  20. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Asao, Chiaki; Hirai, Toshinori; Yamashita, Yasuyuki; Yoshimatsu, Shunji; Matsukawa, Tetsuya; Imuta, Masanori; Sagara, Katsuro

    2008-01-01

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  1. Regional cerebral blood flow in focal cortical epilepsy

    DEFF Research Database (Denmark)

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were....... This finding accords with earlier studies. All nine patients studied in the interictal phase showed, either spontaneously or during activation by intermittent light, focal flow increases in areas presumed to comprise the epileptic focus. These interictal hyperemic foci probably reflect subictal neuronal...

  2. Longitudinal Development of Cortical Thickness, Folding, and Fiber Density Networks in the First 2 Years of Life

    OpenAIRE

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H.; Shen, Dinggang

    2013-01-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, ...

  3. Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes

    Science.gov (United States)

    Tiryaki, Volkan Mujdat; Ayres, Virginia M; Khan, Adeel A; Ahmed, Ijaz; Shreiber, David I; Meiners, Sally

    2012-01-01

    Cerebral cortical astrocyte responses to polyamide nanofibrillar scaffolds versus poly-L-lysine (PLL)-functionalized planar glass, unfunctionalized planar Aclar coverslips, and PLL-functionalized planar Aclar surfaces were investigated by atomic force microscopy and immunocytochemistry. The physical properties of the cell culture environments were evaluated using contact angle and surface roughness measurements and compared. Astrocyte morphological responses, including filopodia, lamellipodia, and stress fiber formation, and stellation were imaged using atomic force microscopy and phalloidin staining for F-actin. Activation of the corresponding Rho GTPase regulators was investigated using immunolabeling with Cdc42, Rac1, and RhoA. Astrocytes cultured on the nanofibrillar scaffolds showed a unique response that included stellation, cell–cell interactions by stellate processes, and evidence of depression of RhoA. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family, with demonstrable morphological consequences for cerebral cortical astrocytes. PMID:22915841

  4. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice

    Science.gov (United States)

    Ju, Xiang-Chun; Hou, Qiong-Qiong; Sheng, Ai-Li; Wu, Kong-Yan; Zhou, Yang; Jin, Ying; Wen, Tieqiao; Yang, Zhengang; Wang, Xiaoqun; Luo, Zhen-Ge

    2016-01-01

    Cortical expansion and folding are often linked to the evolution of higher intelligence, but molecular and cellular mechanisms underlying cortical folding remain poorly understood. The hominoid-specific gene TBC1D3 undergoes segmental duplications during hominoid evolution, but its role in brain development has not been explored. Here, we found that expression of TBC1D3 in ventricular cortical progenitors of mice via in utero electroporation caused delamination of ventricular radial glia cells (vRGs) and promoted generation of self-renewing basal progenitors with typical morphology of outer radial glia (oRG), which are most abundant in primates. Furthermore, down-regulation of TBC1D3 in cultured human brain slices decreased generation of oRGs. Interestingly, localized oRG proliferation resulting from either in utero electroporation or transgenic expression of TBC1D3, was often found to underlie cortical regions exhibiting folding. Thus, we have identified a hominoid gene that is required for oRG generation in regulating the cortical expansion and folding. DOI: http://dx.doi.org/10.7554/eLife.18197.001 PMID:27504805

  5. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction.

    Science.gov (United States)

    Okabe, Tetsuhiko; Aida, Noriko; Niwa, Tetsu; Nozawa, Kumiko; Shibasaki, Jun; Osaka, Hitoshi

    2014-05-01

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one.

  6. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Jinping Xu

    2017-06-01

    Full Text Available Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I, 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm2. Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.

  7. Cortical thickness, surface area, and folding alterations in male youths with conduct disorder and varying levels of callous–unemotional traits

    Directory of Open Access Journals (Sweden)

    Graeme Fairchild

    2015-01-01

    Conclusions: Cortical thinning in the superior temporal gyrus may contribute to the social cognitive impairments displayed by youths with CD, whereas reduced OFC SA may lead to impairments in emotion regulation and reward processing in youths with CD. The increased cortical folding observed in the insula may reflect a maturational delay in this region and could mediate the link between CU traits and empathy deficits. Altered cortical folding was observed in childhood-onset and adolescence-onset forms of CD.

  8. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, Tetsuhiko; Aida, Noriko; Nozawa, Kumiko [Kanagawa Children' s Medical Center, Department of Radiology, Yokohama (Japan); Niwa, Tetsu [Kanagawa Children' s Medical Center, Department of Radiology, Yokohama (Japan); Tokai University School of Medicine, Department of Radiology, Isehara (Japan); Shibasaki, Jun [Kanagawa Children' s Medical Center, Department of Neonatology, Yokohama (Japan); Osaka, Hitoshi [Kanagawa Children' s Medical Center, Department of Neurology, Yokohama (Japan)

    2014-05-15

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [<1 month], n=5; infants [1 month-12 months], n=3; others [≥1 year], n=4) with acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one. (orig.)

  9. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction

    International Nuclear Information System (INIS)

    Okabe, Tetsuhiko; Aida, Noriko; Nozawa, Kumiko; Niwa, Tetsu; Shibasaki, Jun; Osaka, Hitoshi

    2014-01-01

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [<1 month], n=5; infants [1 month-12 months], n=3; others [≥1 year], n=4) with acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one. (orig.)

  10. Functional MRI study of cerebral cortical activation during volitional swallowing

    International Nuclear Information System (INIS)

    Wakasa, Toru; Aiga, Hideki; Yanagi, Yoshinobu; Kawai, Noriko; Sugimoto, Tomosada; Kuboki, Takuo; Kishi, Kanji

    2002-01-01

    The purpose of this study was to investigate the somatotropic distribution and lateralization of motor and sensory cortical activity during swallowing in healthy adult human subjects using functional MR imaging. Nine healthy right-handed adult volunteers (6 men, 3 women; ages 22-38) were examined. Their cortical activities were evoked by having them swallow, five times, a small bolus of water (3 ml) supplied through a plastic catheter. As a positive control, the subjects performed five repetitions of right-handed grasping tasks. Blood oxygenation level-dependent images were obtained using a 1.5 Tesla MR system (Magnetom Vision, Siemens Germany; repetition time/echo time (TR/TE)=0.96/0.66, flip angle (FA)=90 deg). T1 weighted anatomical images were obtained for the same slices in each subject. Cerebral activity was observed most notably in the primary motor cortex and primary somatosensory cortex, followed by the premotor cortex, anterior cingulate cortex, frontal operculum, and insula. The hand-grasping task activated relatively superior parts of the primary motor and somatosensory cortices. The swallowing task, on the other hand, activated the inferior parts of the pre- and postcentral gyri. The hand-grasping activation of motor and sensory cortices was localized absolutely on the contralateral side, whereas swallowing activated the motor cortex either bilaterally or unilaterally. Swallowing activated the sensory cortex almost always bilaterally. This study suggested that fMRI could be used to identify the specific areas of cortical activation caused by various tasks, and to differentiate the locations of cortical activation between tasks. (author)

  11. Functional MRI study of cerebral cortical activation during volitional swallowing

    Energy Technology Data Exchange (ETDEWEB)

    Wakasa, Toru; Aiga, Hideki; Yanagi, Yoshinobu; Kawai, Noriko; Sugimoto, Tomosada; Kuboki, Takuo; Kishi, Kanji [Okayama Univ. (Japan). Graduate School of Medicine and Dentistry

    2002-12-01

    The purpose of this study was to investigate the somatotropic distribution and lateralization of motor and sensory cortical activity during swallowing in healthy adult human subjects using functional MR imaging. Nine healthy right-handed adult volunteers (6 men, 3 women; ages 22-38) were examined. Their cortical activities were evoked by having them swallow, five times, a small bolus of water (3 ml) supplied through a plastic catheter. As a positive control, the subjects performed five repetitions of right-handed grasping tasks. Blood oxygenation level-dependent images were obtained using a 1.5 Tesla MR system (Magnetom Vision, Siemens Germany; repetition time/echo time (TR/TE)=0.96/0.66, flip angle (FA)=90 deg). T1 weighted anatomical images were obtained for the same slices in each subject. Cerebral activity was observed most notably in the primary motor cortex and primary somatosensory cortex, followed by the premotor cortex, anterior cingulate cortex, frontal operculum, and insula. The hand-grasping task activated relatively superior parts of the primary motor and somatosensory cortices. The swallowing task, on the other hand, activated the inferior parts of the pre- and postcentral gyri. The hand-grasping activation of motor and sensory cortices was localized absolutely on the contralateral side, whereas swallowing activated the motor cortex either bilaterally or unilaterally. Swallowing activated the sensory cortex almost always bilaterally. This study suggested that fMRI could be used to identify the specific areas of cortical activation caused by various tasks, and to differentiate the locations of cortical activation between tasks. (author)

  12. Effect of superfused insulin on cerebral cortical glucose utilization in awake goats

    International Nuclear Information System (INIS)

    Pelligrino, D.A.; Miletich, D.J.; Albrecht, R.F.

    1987-01-01

    The effect on cortical cerebral glucose utilization (CMR glu ) of intracerebral insulin administration in awake goats was studied. The insulin was superfused in a mock cerebrospinal fluid (CSF) employing chronically implanted cranial windows. Two windows were implanted bilaterally: one window over an equivalent portion of each parietal cortex. With one window used to deliver insulin/CSF and the other used to simultaneously deliver CSF alone (control), changes in CMR glu were assessed using a modification of a sequential 2-[ 3 H]- then 2[ 14 C]deoxy-D-glucose (2DG) technique originally described by Altenau and Agranoff. Initial experiments employing 125 I-insulin demonstrated that the superfusion procedure increased insulin levels only in the outer 1 mm of cortical tissue exposed to insulin containing perfusate. Additional preliminary evaluations, using conditions known to alter CMR glu , generally established that present methods were adequate to induce and detect CMR glu changes. However, it was also shown experimentally and using a mathematical model that 2-[ 3 H]DG test/control tissue ratios could be influenced by subsequent changes in CMR glu and the dephosphorylation rate. Thus 3 H ratios could not be used to establish preexperimental test/control CMR glu relationships as the originally devised model assumed but could be employed to indicate changes in dephosphorylation. The mathematical model allowed for improved estimates of CMR glu changes from 2[ 14 C]DG/2-[ 3 H]DG test over control tissue ratios. Even with these corrections, insulin was estimated to cause no more than an 8-15% increase in cortical CMR glu . A very limited role for insulin, at least in cerebral cortical metabolic regulation, is thus indicated

  13. Delayed cerebral infarction due to stent folding deformation following carotid artery stenting

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwon Duk; Lee, Kyung Yul; Suh, Sang Hyun [Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Byung Moon [Dept. of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-12-15

    We report a case of delayed cerebral infarction due to stent longitudinal folding deformation following carotid artery stenting using a self-expandable stent with an open-cell design. The stented segment of the left common carotid artery was divided into two different lumens by this folding deformation, and the separated lumens became restricted with in-stent thrombosis. Although no established method of managing this rare complication exists, a conservative approach was taken with administration of anticoagulant and dual antiplatelet therapy. No neurological symptoms were observed during several months of clinical follow-up after discharge.

  14. Increased 20-HETE synthesis explains reduced cerebral blood flow but not impaired neurovascular coupling after cortical spreading depression in rat cerebral cortex

    DEFF Research Database (Denmark)

    Fordsmann, Jonas Christoffer; ko, Rebecca; Choi, Hyun B

    2013-01-01

    Cortical spreading depression (CSD) is associated with release of arachidonic acid (AA), impaired neurovascular coupling, and reduced cerebral blood flow (CBF), caused by cortical vasoconstriction. We tested the hypothesis that the released AA is metabolized by the cytochrome P450 enzyme to produce...... neurovascular coupling after CSD. These findings suggest that CSD-induced increments in 20-HETE cause the reduction in CBF after CSD, and that the attenuation of stimulation-induced CBF responses after CSD has a different mechanism. We suggest that blockade of 20-HETE synthesis may be clinically relevant...

  15. The correlation of the thalamic lesions on MRI with cerebral cortical blood flow in patients with lacunar infarction

    International Nuclear Information System (INIS)

    Nabatame, Hidehiko; Nakamura, Kazuo; Matsuda, Minoru; Fujimoto, Naoki; Fukuyama, Hidenao.

    1995-01-01

    We performed MRI and measured cerebral blood flow (CBF) using 123 I-IMP SPECT microsphere model in twenty three right-handed patients with lacunar infarction. Twelve of 23 patients showed chronic deterioration of dysarthria and gait disturbance. The mental function of the patients was evaluated by the Mini-Mental State (MMS) examination. The area of high intensity on T2-weighted images was quantitatively analyzed in the cerebral white matter (WM), lenticular nucleus (LN) and thalamus (THA). The score of MMS was positively correlated with the local CBF in the bilateral frontal, parietal, temporal and occipital cortices (p<0.05). Also, the area of high intensity in the left THA showed a significant negative correlation with local CBF of the bilateral frontal, parietal, temporal and occipital cortices (p<0.001). The high intensity areas of the bilateral LN, right WM and right THA had a significant but weaker negative correlation with local CBF of some cortices. These findings suggest that thalamic lesions on the dominant side play an important role in the reduction of cortical blood flow and the deterioration of mental functions in patients with lacunar infarction. (author)

  16. MDMA ‘ecstasy’ increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI

    Science.gov (United States)

    Rouine, J; Gobbo, O L; Campbell, M; Gigliucci, V; Ogden, I; McHugh Smith, K; Duffy, P; Behan, B; Byrne, D; Kelly, M E; Blau, C W; Kerskens, C M; Harkin, A

    2013-01-01

    Background and Purpose The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA ‘ecstasy’) to rats. Experimental Approach Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg−1; i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg−1; i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg−1; i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. Key Results MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg−1; i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. Conclusions and Implications MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use. PMID:23517012

  17. Alterations in behaviour, cerebral cortical morphology and cerebral oxidative stress markers following aspartame ingestion.

    Science.gov (United States)

    Onaolapo, Adejoke Y; Onaolapo, Olakunle J; Nwoha, Polycarp U

    2016-12-01

    The study evaluated changes in open field behaviours, cerebral cortical histomorphology and biochemical markers of oxidative stress following repeated administration of aspartame in mice. Adult mice were assigned into five groups of twelve each. Vehicle (distilled water), or aspartame (20, 40, 80 and 160mg/kg body weight) were administered orally for 28days. Horizontal locomotion, rearing and grooming were assessed after the first and last dose of aspartame. Sections of the cerebral cortex were processed and stained for general histology, and also examined for neuritic plaques using the Bielschwosky's protocol. Glial fibrillary acidic protein (GFAP) and neuron specific enolase (NSE) immunoreactivity were assessed using appropriate antibodies. Aspartate and antioxidant levels were also assayed from cerebral cortex homogenates. Data obtained were analysed using descriptive and inferential statistics. Body weight and food consumption decreased significantly with aspartame consumption. Locomotion, rearing and grooming increased significantly after first dose, and with repeated administration of aspartame. Histological changes consistent with neuronal damage were seen at 40, 80 and 160mg/kg. Neuritic plaque formation was not evident; while GFAP-reactive astrocytes and NSE-reactive neurons increased at 40 and 80mg/kg but decreased at 160mg/kg. Superoxide dismutase and nitric oxide increased with increasing doses of aspartame, while aspartate levels showed no significant difference. The study showed morphological alterations consistent with neuronal injury and biochemical changes of oxidative stress. These data therefore supports the need for caution in the indiscriminate use of aspartame as a non-nutritive sweetener. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree

    OpenAIRE

    Atkinson, Elizabeth G.; Rogers, Jeffrey; Cheverud, James M.

    2016-01-01

    Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a pop...

  19. CT and MRI findings of cerebral ischemic lesions in the cortical and perforating arterial system

    Energy Technology Data Exchange (ETDEWEB)

    Kameyama, Masakuni; Udaka, Fukashi; Nishinaka, Kazuto; Kodama, Mitsuo; Urushidani, Makoto; Kawamura, Kazuyuki; Inoue, Haruhisa; Kageyama, Taku [Sumitomo Hospital, Osaka (Japan)

    1995-07-01

    It is clinically useful to divide the location of infarction into the cortical and perforating arterial system. Computerized tomography (CT) and magnetic resonance imaging (MRI) now make the point of infarction a simple and useful task in daily practice. The diagnostic modality has also demonstrated that risk factors and clinical manifestations are different for infarction in the cortical as opposed to the perforating system. In this paper, we present various aspects of images of cerebral ischemia according to CT and/or MRI findings. With the advance of imaging mechanics, diagnostic capability of CT or/and MRI for cerebral infarction has markedly been improved. We must consider these points on evaluating the previously reported results. In addition, we always consider the pathological background of these image-findings for the precise interpretation of their clinical significance. In some instances, dynamic study such as PET or SPECT is needed for real interpretations of CT and/or MRI images. We paid special reference to lacunar stroke and striatocapsular infarct. In addition, `branch atheromatous disease (Caplan)` was considered, in particular, for their specific clinical significances. Large striatocapsular infarcts frequently show cortical signs and symptoms such as aphasia or agnosia in spite of their subcortical localization. These facts, although have previously been known, should be re-considered for their pathoanatomical mechanism. (author).

  20. CT and MRI findings of cerebral ischemic lesions in the cortical and perforating arterial system

    International Nuclear Information System (INIS)

    Kameyama, Masakuni; Udaka, Fukashi; Nishinaka, Kazuto; Kodama, Mitsuo; Urushidani, Makoto; Kawamura, Kazuyuki; Inoue, Haruhisa; Kageyama, Taku

    1995-01-01

    It is clinically useful to divide the location of infarction into the cortical and perforating arterial system. Computerized tomography (CT) and magnetic resonance imaging (MRI) now make the point of infarction a simple and useful task in daily practice. The diagnostic modality has also demonstrated that risk factors and clinical manifestations are different for infarction in the cortical as opposed to the perforating system. In this paper, we present various aspects of images of cerebral ischemia according to CT and/or MRI findings. With the advance of imaging mechanics, diagnostic capability of CT or/and MRI for cerebral infarction has markedly been improved. We must consider these points on evaluating the previously reported results. In addition, we always consider the pathological background of these image-findings for the precise interpretation of their clinical significance. In some instances, dynamic study such as PET or SPECT is needed for real interpretations of CT and/or MRI images. We paid special reference to lacunar stroke and striatocapsular infarct. In addition, 'branch atheromatous disease (Caplan)' was considered, in particular, for their specific clinical significances. Large striatocapsular infarcts frequently show cortical signs and symptoms such as aphasia or agnosia in spite of their subcortical localization. These facts, although have previously been known, should be re-considered for their pathoanatomical mechanism. (author)

  1. The circadian oscillator of the cerebral cortex: molecular, biochemical and behavioral effects of deleting the Arntl clock gene in cortical neurons

    DEFF Research Database (Denmark)

    Bering, Tenna; Carstensen, Mikkel Bloss; Wörtwein, Gitta

    2018-01-01

    for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly...... prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect...... that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry....

  2. Novel assessment of cortical response to somatosensory stimuli in children with hemiparetic cerebral palsy.

    Science.gov (United States)

    Maitre, Nathalie L; Barnett, Zachary P; Key, Alexandra P F

    2012-10-01

    The brain's response to somatosensory stimuli is essential to experience-driven learning in children. It was hypothesized that advances in event-related potential technology could quantify the response to touch in somatosensory cortices and characterize the responses of hemiparetic children. In this prospective study of 8 children (5-8 years old) with hemiparetic cerebral palsy, both event-related potential responses to sham or air puff trials and standard functional assessments were used. Event-related potential technology consistently measured signals reflecting activity in the primary and secondary somatosensory cortices as well as complex cognitive processing of touch. Participants showed typical early responses but less efficient perceptual processes. Significant differences between affected and unaffected extremities correlated with sensorimotor testing, stereognosis, and 2-point discrimination (r > 0.800 and P = .001 for all). For the first time, a novel event-related potential paradigm shows that hemiparetic children have slower and less efficient tactile cortical perception in their affected extremities.

  3. An autopsied case of MV2K + C-type sporadic Creutzfeldt-Jakob disease presenting with widespread cerebral cortical involvement and Kuru plaques.

    Science.gov (United States)

    Iwasaki, Yasushi; Saito, Yufuko; Aiba, Ikuko; Kobayashi, Atsushi; Mimuro, Maya; Kitamoto, Tetsuyuki; Yoshida, Mari

    2017-06-01

    MV2-type sporadic Creutzfeldt-Jakob disease (sCJD), which was previously called "Kuru-plaque variant", was gradually revealed to have a wide spectrum and has been classified into three pathological subtypes: MV2K, MV2C and MV2K + C. We herein describe the detailed clinical findings and neuropathologic observations from an autopsied MV2K + C-type Japanese sCJD case with widespread cerebral cortical pathology and Kuru plaques. In the early stages of the disease, the patient exhibited gait disturbance with ataxia and dysarthria as well as gradual appearance of cognitive dysfunction. Diffusion-weighted images (DWI) on MRI revealed extensive cerebral cortical hyperintensity. Pathologic investigation revealed extensive spongiform change in the cerebral cortex, particularly in the deeper layers. Vacuole size varied, and some were confluent. Prion protein (PrP) immunostaining revealed extensive PrP deposition in the cerebral cortex, basal ganglia, thalamus, cerebellum, brainstem and spinal cord. In the cerebral cortex, synaptic-type, Kuru plaque-like, and coarse plaque-type PrP depositions were mainly observed, along with some perivacuolar-type PrP depositions. Kuru plaques and coarse plaque-type PrP depositions also were observed in the cerebellar cortex. PrP gene analysis revealed no mutations, and polymorphic codon 129 exhibited Met/Val heterozygosity. Western blot analysis revealed a mixture of intermediate-type PrP Sc and type 2 PrP Sc . Based on previous reports regarding MV2-type sCJD and the clinicopathologic findings of the present case, we speculated that it may be possible to clinically distinguish each MV2 subtype. Clinical presentation of the MV2K + C subtype includes predominant cerebral cortical involvement signs with ataxia and DWI hyperintensity of the cerebral cortex on MRI. © 2016 Japanese Society of Neuropathology.

  4. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy.

    Science.gov (United States)

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with

  5. Characterization of rat cerebral cortical beta adrenoceptor subtypes using (-)-[125I]-iodocyanopindolol

    International Nuclear Information System (INIS)

    Tiong, A.H.; Richardson, J.S.

    1990-01-01

    (-)-[125I]-Iodocyanopindolol [-(ICYP)], used to characterize beta adrenoceptors on membrane preparations from rat cerebral cortex, was shown to have affinity for both beta adrenoceptors and serotonin receptors. Therefore, 10 microM serotonin was added to the assays to prevent (-)ICYP binding to serotonin receptors. Under these conditions, (-)ICYP binding to the cortical membrane preparation was reversible and saturable, and the association reaction was very slow. The dissociation reaction was also very slow, and revealed two affinity states corresponding to a high and a low affinity state. Scatchard analysis showed a single class of binding sites with an equilibrium dissociation constant (KD) of 20.7 pM, and a maximal density of binding sites (Bmax) of 95.1 fmol/mg membrane protein. Displacement binding analyses revealed a potency series of (-) isoproterenol greater than (-) epinephrine equal to (-) norepinephrine, suggesting a predominance of the beta 1 adrenoceptor subtype. Detailed competition ligand binding studies with the selective beta 1 adrenoceptor antagonist ICI-89406 and the selective beta 2 adrenoceptor antagonist ICI-118551, showed that about 70% of the beta adrenoceptor population in the rat cortex is of the beta 1 subtype with the remainder being of the beta 2 subtype. We conclude that since (-)ICYP binds to both beta adrenoceptors and serotonin receptors, it is important to prevent the binding of (-)ICYP to serotonin receptors by adding a suppressing ligand like excess cold serotonin when assaying beta adrenoceptors. We have presented the first such characterization of rat cerebral cortical beta adrenoceptors with (-)ICYP in this study

  6. The Unique Brain Anatomy of Meditation Practitioners: Alterations in Cortical Gyrification

    Directory of Open Access Journals (Sweden)

    Eileen eLuders

    2012-02-01

    Full Text Available Several cortical regions are reported to vary in meditation practitioners. However, since prior analyses were focused on examining gray matter or cortical thickness, additional effects with respect to other cortical features might have remained undetected. Gyrification (the pattern and degree of cortical folding is an important cerebral characteristic related to the geometry of the brain’s surface. Cortical folding occurs early in development and might be linked to behavioral traits. Thus, exploring cortical gyrification in long-term meditators may provide additional clues with respect to the underlying anatomical correlates of meditation. This study examined cortical gyrification in a large sample (n=100 of meditators and controls, carefully matched for sex and age. Cortical gyrification was established via calculating mean curvature across thousands of vertices on individual cortical surface models. Pronounced group differences indicating larger gyrification in meditators were evident within the left precentral gyrus, right fusiform gyrus, right cuneus, as well as left and right anterior dorsal insula (the latter representing the global significance maximum. Although the exact functional implications of larger cortical gyrification remain to be established, these findings suggest the insula to be a key structure involved in aspects of meditation. For example, variations in insular complexity could affect the regulation of well-known distractions in the process of meditation, such as daydreaming, mind-wandering, and projections into past or future. Moreover, given that meditators are masters in introspection, awareness, and emotional control, increased insular gyrification may reflect an ideal integration of autonomic, affective, and cognitive processes. Due to the cross-sectional nature of this study, further research is necessary determine the relative contribution of nature and nurture to links between cortical gyrification and meditation.

  7. The somatotopic localisation of the descending cortical tract in the cerebral peduncle: a study using MRI of changes following Wallerian degeneration in the cerebral peduncle after a supratentorial vascular lesion

    International Nuclear Information System (INIS)

    Waragai, M.; Watanabe, H.; Iwabuchi, S.

    1994-01-01

    We studied the effects of Wallerian degeneration in the cerebral peduncle shown by magnetic resonance imaging (MRI) following a supratentorial vascular lesion, to identify the somatotopic localisation of the descending cortical tracts. Patients with a lesion involving a large area of a cerebral hemisphere has an area of abnormal signal intensity in the whole cerebral peduncle, suggesting Wallerian degeneration of all the whole descending cortical tracts. With a small lesion confined to the precentral gyrus, corona radiata, or posterior limb of the internal capsule there was an abnormal signal at the centre of the peduncle, suggesting degeneration of the precentrospinal tract. Those with a small lesion confined to the paracentral gyrus had an abnormal area slightly lateral to the centre of the peduncle, suggesting degeneration of the parietospinal tract. Patients with a lesion of the parietal or temporal lobes, not including the paracentral or precentral gyri, corona radiata, or the posterior limb of the internal capsule, had an abnormal area laterally in the peduncle, suggesting degeneration of the parietopontine or temporopontine tract. (orig.)

  8. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.

    Science.gov (United States)

    Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki

    2011-05-01

    We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.

  9. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... parameters of the whisker/infraorbital nerve etwork (IO) targeting the same cortical area. We tested the hypothesis that the relation between increases in CBF and CMRO2 evoked by stimulation and synaptic activity differed for the two activated networks and that activation of two distinct networks activate...

  10. Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

    Science.gov (United States)

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2017-04-01

    Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.

  11. Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia

    Directory of Open Access Journals (Sweden)

    Robert Sweet

    2010-06-01

    Full Text Available Converging lines of evidence indicate that schizophrenia is characterized by impairments of synaptic machinery within cerebral cortical circuits. Efforts to localize these alterations in brain tissue from subjects with schizophrenia have frequently been limited to the quantification of structures that are non-selectively identified (e.g. dendritic spines labeled in Golgi preparations, axon boutons labeled with synaptophysin, or to quantification of proteins using methods unable to resolve relevant cellular compartments. Multiple label fluorescence confocal microscopy represents a means to circumvent many of these limitations, by concurrently extracting information regarding the number, morphology, and relative protein content of synaptic structures. An important adaptation required for studies of human disease is coupling this approach to stereologic methods for systematic random sampling of relevant brain regions. In this review article we consider the application of multiple label fluorescence confocal microscopy to the mapping of synaptic alterations in subjects with schizophrenia and describe the application of a novel, readily automated, iterative intensity/morphological segmentation algorithm for the extraction of information regarding synaptic structure number, size, and relative protein level from tissue sections obtained using unbiased stereological principles of sampling. In this context, we provide examples of the examination of pre- and post-synaptic structures within excitatory and inhibitory circuits of the cerebral cortex.

  12. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates.

    Science.gov (United States)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B; Andersen, Jens V; Aldana, Blanca I; Nissen, Jakob D; Schousboe, Arne; Waagepetersen, Helle S

    2017-03-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U- 13 C]glucose or [1,2- 13 C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13 C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13 C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13 C-labeling observed with [U- 13 C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2- 13 C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13 C-labeling (%) data obtained from

  13. Reye's syndrome with cortical laminar necrosis: MRI

    International Nuclear Information System (INIS)

    Kinoshita, T.; Takahashi, S.; Ishii, K.; Higano, S.; Matsumoto, K.; Sakamoto, K.; Haginoya, K.; Iinuma, K.

    1996-01-01

    Serial MRI findings are described in two patients with Reye's syndrome, demonstrating diffuse cortical and white matter changes. In the acute stage, T2-weighted images showed subtle but definite laminar high signal and contrast-enhanced T1-weighted images laminar enhancement, along the entire cerebral cortex bilaterally. In the chronic stage, unenhanced T1-weighted images showed diffuse cortical laminar high signal. These characteristic MRI features seemed very similar to those of laminar cortical necrosis in hypoxic brain damage. MRI also displayed delayed white matter changes with cerebral atrophy. (orig.)

  14. Evaluation of the cerebral ventricular system and cortical sulci associated with aging on CT

    International Nuclear Information System (INIS)

    Akimoto, Hiroshi; Maki, Yutaka; Ono, Yukio; Nose, Tadao; Yoshizawa, Takashi

    1983-01-01

    This study was attempted to establish a relationship between normal values and aging process of cerebral ventricular size and cortical sulci on computed tomography. A total of two hundred and fifty-eight cases of 126 males and 132 females was selected. The width of the fourth ventricle increased significantly in the fourth decade comparing with in the third decade. The width of the third ventricle increased significantly in the fourth decade compaing with in the third decade at the hypothalamic level and also in the sixth decade comparing with in the fifth decade at the thalamic level. The width of the anterior horn and the body of the lateral ventricles increased gradually with age, and showed a significant increase in the sixth decade comparing with in the fifth decade. The number of cortical sulci increased gradually with age, and increased significantly in the seventh decade comparing with in the sixth decade, especially in the occipital areas. The cortical sulci started to appear initially in the frontal areas during the second decade, subsequently in the central during the third decade and finally in both the parietal and occipital areas during the fourth decade. The width of the cortical sulci was less than 4.5 mm under the fifth decade. It did not exeed 6.2 mm in all of the cases, though widening gradually with age over the fifth decade. (J.P.N.)

  15. Alterations in Cerebral Cortical Glucose and Glutamine Metabolism Precedes Amyloid Plaques in the APPswe/PSEN1dE9 Mouse Model of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Andersen, Jens V; Christensen, Sofie K; Aldana, Blanca I

    2017-01-01

    slices of APPswe/PSEN1dE9 mice incubated in media containing [U-(13)C]glucose. No changes in glial [1,2-(13)C]acetate metabolism were observed. Cerebral cortical slices from APPswe/PSEN1dE9 mice exhibited a reduced capacity for uptake and oxidative metabolism of glutamine. Furthermore, the ATP synthesis......Alterations in brain energy metabolism have been suggested to be of fundamental importance for the development of Alzheimer's disease (AD). However, specific changes in brain energetics in the early stages of AD are poorly known. The aim of this study was to investigate cerebral energy metabolism...... in the APPswe/PSEN1dE9 mouse prior to amyloid plaque formation. Acutely isolated cerebral cortical and hippocampal slices of 3-month-old APPswe/PSEN1dE9 and wild-type control mice were incubated in media containing [U-(13)C]glucose, [1,2-(13)C]acetate or [U-(13)C]glutamine, and tissue extracts were analyzed...

  16. Cortical enhancement in chronic subdural hematoma

    International Nuclear Information System (INIS)

    Taguchi, Yoshio; Sato, Jun; Makita, Tadatoshi; Hayashi, Shigetoshi; Nakamura, Norio.

    1981-01-01

    In the CT findings of chronic subdural hematoma, brain enhancement adjacent to a subdural hematoma was seen occasionally after the injection of a contrast material. The authors called this finding ''cortical enhancement'', and 35 cases of chronic subdural hematoma were studied concerning cortical enhancement in relation to age, clinical signs and symptoms, hematoma density, and volume of the hematoma. Eight cases out of the 35 were subjected to measurements of the regional cerebral blood flow preoperatively by the method of the carotid injection of Xe-133. Cortical enhancement was apt to be seen in the cases which revealed intracranial hypertension or disturbance of consciousness, in isodensity or mixed-density hematomas, and in huge subdural hematomas. There was no specific correlation with age distribution. The pathogenesis of cortical enhancement seemed to be the result of cerebral compression with an increase in the contrast material per unit of volume and a prolonged venous outflow from the hemisphere, but no characteristic feature was detected in the average regional cerebral blood flow in our cases. (author)

  17. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    Science.gov (United States)

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  18. Valor localizador y lateralizador de la manifestación motora facial unilateral en epilepsias focales, utilizando VEEG y/o estimulación cortical directa cerebral

    Directory of Open Access Journals (Sweden)

    Natalia Paoli

    2014-07-01

    Full Text Available Las manifestaciones motoras faciales unilaterales (MMFU se describen clásicamente en crisis que inician en la región central inferior contralateral. Para evaluar el valor localizador y lateralizador de MMFU en crisis espontáneas registradas en videoelectroencefalografía (VEEG y de MMFU obtenidas por estimulación cortical directa cerebral, analizamos 83 crisis con MMFU durante VEEG y 8 pacientes que presentaron MMFU durante estimulación cortical directa cerebral. Correlacionamos localización y lateralidad de la hipótesis de zona epileptógena con el tiempo de aparición  de MMFU, y la zona de estimulación cortical directa cerebral que desencadenó MMFU con su lateralidad. En 61 crisis con MMFU (73.4% la hipótesis de zona epileptógena no correspondió a la región central contralateral, por corresponder a la región central ipsilateral o a otras regiones tanto homolaterales como contralaterales. La MMFU se registró en forma precoz en 51.1% de las crisis con hipótesis de zona epileptógena en la región frontal, en  56% de las crisis con hipótesis de zona epileptógena en la región central y en 80% de las crisis con hipótesis de zona epileptógena en el lóbulo temporal. No registramos MMFU precoz  en las crisis con hipótesis de zona epileptógena en la región posterior. En 2 (25% de 8 pacientes con MMFU provocada por estimulación cortical directa cerebral, la zona de la estimulación no fue la región central inferior contralateral. Concluimos que las MMFU pueden deberse a descargas alejadas de la región central inferior, tanto ipsilaterales como contralaterales.

  19. Relation between clinical findings and progression of cerebral cortical pathology in MM1-type sporadic Creutzfeldt-Jakob disease: proposed staging of cerebral cortical pathology.

    Science.gov (United States)

    Iwasaki, Yasushi; Tatsumi, Shinsui; Mimuro, Maya; Kitamoto, Tetsuyuki; Hashizume, Yoshio; Yoshida, Mari

    2014-06-15

    In our pathologic observation of the cerebral cortex including the neocortex, hippocampus, and limbic cortex in 43 Japanese patients with MM1-type sporadic Creutzfeldt-Jakob disease, the earliest pathologic finding was spongiform change and next was gliosis. Subsequently, neuropil rarefaction appeared, followed by neuron loss. On the basis of these observations, we propose the following cortical pathologic staging: Stage I, spongiform change; Stage II, hypertrophic astrocytosis; Stage III, neuropil rarefaction; Stage IV, neuron loss; Stage V, status spongiosus; and Stage VI, large cavity formation. We also suggest a more simple staging classification: Stages I and II, mild; Stages III and IV, moderate; and Stages V and VI, severe involvement. Based on statistical analysis of the cases, strong correlation coefficients were obtained between the neocortical and limbic pathologic stage and both total disease duration and brain weight. We estimated that the first observation times of cortical hyperintensity on diffusion-weighted images of magnetic resonance imaging, myoclonus, and periodic sharp wave complexes on the electroencephalogram approximately correspond to the early phase of Stage II of the neocortex. The time to reach the akinetic mutism state approximately corresponds to the middle phase of Stage II of the neocortex. Therefore, we think that approximate clinical manifestations at death, total disease duration, and brain weight can be estimated according to the pathologic stage of the neocortex or limbic cortex. Panencephalopathic-type pathology appeared approximately 12 months after disease onset, and this time approximately corresponds to the middle phase of Stage III of the neocortex. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  1. Effects of intermittent theta burst stimulation on cerebral blood flow and cerebral vasomotor reactivity.

    Science.gov (United States)

    Pichiorri, Floriana; Vicenzini, Edoardo; Gilio, Francesca; Giacomelli, Elena; Frasca, Vittorio; Cambieri, Chiara; Ceccanti, Marco; Di Piero, Vittorio; Inghilleri, Maurizio

    2012-08-01

    To determine whether intermittent theta burst stimulation influences cerebral hemodynamics, we investigated changes induced by intermittent theta burst stimulation on the middle cerebral artery cerebral blood flow velocity and vasomotor reactivity to carbon dioxide (CO(2)) in healthy participants. The middle cerebral artery flow velocity and vasomotor reactivity were monitored by continuous transcranial Doppler sonography. Changes in cortical excitability were tested by transcranial magnetic stimulation. In 11 healthy participants, before and immediately after delivering intermittent theta burst stimulation, we tested cortical excitability measured by the resting motor threshold and motor evoked potential amplitude over the stimulated hemisphere and vasomotor reactivity to CO(2) bilaterally. The blood flow velocity was monitored in both middle cerebral arteries throughout the experimental session. In a separate session, we tested the effects of sham stimulation under the same experimental conditions. Whereas the resting motor threshold remained unchanged before and after stimulation, motor evoked potential amplitudes increased significantly (P = .04). During and after stimulation, middle cerebral artery blood flow velocities also remained bilaterally unchanged, whereas vasomotor reactivity to CO(2) increased bilaterally (P = .04). The sham stimulation left all variables unchanged. The expected intermittent theta burst stimulation-induced changes in cortical excitability were not accompanied by changes in cerebral blood flow velocities; however, the bilateral increased vasomotor reactivity suggests that intermittent theta burst stimulation influences the cerebral microcirculation, possibly involving subcortical structures. These findings provide useful information on hemodynamic phenomena accompanying intermittent theta burst stimulation, which should be considered in research aimed at developing this noninvasive, low-intensity stimulation technique for safe

  2. Monoclonal antibody identification of subpopulations of cerebral cortical neurons affected in Alzheimer's disease

    International Nuclear Information System (INIS)

    Miller, C.A.; Rudnicka, M.; Hinton, D.R.; Blanks, J.C.; Kozlowski, M.

    1987-01-01

    Neuronal degeneration is one of the hallmarks of Alzheimer's disease (AD). Given the paucity of molecular markers available for the identification of neuronal subtypes, the specificity of neuronal loss within the cerebral cortex has been difficult to evaluate. With a panel of four monoclonal antibodies (mAbs) applied to central nervous system tissues from AD patients, the authors have immunocytochemically identified a population of vulnerable cortical neurons; a subpopulation of pyramidal neurons is recognized by mAbs 3F12 and 44.1 in the hippocampus and neocortex, and clusters of multipolar neurons in the entorhinal cortex reactive with mAb 44.1 show selective degeneration. Closely adjacent stellate-like neurons in these regions, identified by mAb 6A2, show striking preservation in AD. The neurons recognized by mAbs 3F12 and 44.1 do not comprise a single known neurotransmitter system. mAb 3A4 identifies a phosphorylated antigen that is undetectable in normal brain but accumulates early in the course of AD in somas of vulnerable neurons. Antigen 3A4 is distinct from material reactive with thioflavin S or antibody generated against paired helical filaments. Initially, antigen 3A4 is localized to neurons in the entorhinal cortex and subiculum, later in the association neocortex, and, ultimately in cases of long duration, in primary sensory cortical regions. mAb 3F12 recognizes multiple bands of immunoblots of homogenates of normal and AD cortical tissues, whereas mAb 3A4 does not bind to immunoblots containing neurofilament proteins or brain homogenates from AD patients. Ultrastructurally, antigen 3A4 is localized to paired-helical filaments. Using these mAbs, further molecular characterization of the affected cortical neurons is now possible

  3. Cerebral blood flow in migraine and cortical spreading depression

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, M.

    1987-01-01

    In a series of migraine patients, carotid arteriography was carried out as part of the clinical evalution. Nine patients developed a migrainous attack with focal neurological symptoms and headache after the angiography and during the subsequent, ongoing regional cerebral blood flow rCBF study. rCBF was measured by bolus injection of Xenon/sup 133/ into the internal carotid artery and a gamma camera with 254 collimated scintillation detectors covering the lateral aspect of the hemisphere. This technique depicts rCBF mainly at the level of the superficial cortex, with no depth resolution. The resolution is 1 cm/sup 2/ providing detailed spatial information of the cortical blood flow. Other methods for measuring local blood flow in animal and man employ a radioactive, freely diffusible tracer, in combination with an autoradiographic technique for the assessment of the tissue concentration, the so-called autoradiographic methods. In the series of patients with spontaneous migraine, rCBF was estimated using an in-vivo application of the autoradiographic principle. Xenon/sup 133/ was administered by inhalation and the time course of the arterial concentration curve was assessed by a scintillation detector over the upper right lung, since the arterial curve has been found to follow the shape of the lung curve. The rCBF was studied accompanying cortical spreading depression in rat experiments to evaluate wheter this phenomenon could explain the blood flow changes in migraine. (/sup 14/C) iodoantipyrine was given as an intravenous bolus injection and the brain content of indicator was determined by tissue sample or autoradiography after 10 or 20 seconds of isotope circulation. The conditions of the autoradiographic methods are that the flow remains constant within the period of measuring, and that the region under study is homogenous with regard to flow and lambda. (EG).

  4. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy.

    Science.gov (United States)

    Whitney, Daniel G; Singh, Harshvardhan; Miller, Freeman; Barbe, Mary F; Slade, Jill M; Pohlig, Ryan T; Modlesky, Christopher M

    2017-01-01

    Nonambulatory children with severe cerebral palsy (CP) have underdeveloped bone architecture, low bone strength and a high degree of fat infiltration in the lower extremity musculature. The present study aims to determine if such a profile exists in ambulatory children with mild CP and if excess fat infiltration extends into the bone marrow. Ambulatory children with mild spastic CP and typically developing children (4 to 11years; 12/group) were compared. Magnetic resonance imaging was used to estimate cortical bone, bone marrow and total bone volume and width, bone strength [i.e., section modulus (Z) and polar moment of inertia (J)], and bone marrow fat concentration in the midtibia, and muscle volume, intermuscular, subfascial, and subcutaneous adipose tissue (AT) volume and intramuscular fat concentration in the midleg. Accelerometer-based activity monitors worn on the ankle were used to assess physical activity. There were no group differences in age, height, body mass, body mass percentile, BMI, BMI percentile or tibia length, but children with CP had lower height percentile (19th vs. 50th percentile) and total physical activity counts (44%) than controls (both pChildren with CP also had lower cortical bone volume (30%), cortical bone width in the posterior (16%) and medial (32%) portions of the shaft, total bone width in the medial-lateral direction (15%), Z in the medial-lateral direction (34%), J (39%) and muscle volume (39%), and higher bone marrow fat concentration (82.1±1.8% vs. 80.5±1.9%), subfascial AT volume (3.3 fold) and intramuscular fat concentration (25.0±8.0% vs. 16.1±3.3%) than controls (all pfat infiltration estimates, except posterior cortical bone width, were still present (all pchildren with CP compared to controls emerged (pchildren with mild spastic CP exhibit an underdeveloped bone architecture and low bone strength in the midtibia and a greater infiltration of fat in the bone marrow and surrounding musculature compared to typically

  5. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-(13)C]Glucose and [1,2-(13)C]Acetate as Substrates

    DEFF Research Database (Denmark)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B

    2017-01-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few...

  6. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression

    Science.gov (United States)

    Sakadžić, Sava; Yuan, Shuai; Dilekoz, Ergin; Ruvinskaya, Svetlana; Vinogradov, Sergei A.; Ayata, Cenk; Boas, David A.

    2009-01-01

    We developed a novel imaging technique that provides real-time two-dimensional maps of the absolute partial pressure of oxygen and relative cerebral blood flow in rats by combining phosphorescence lifetime imaging with laser speckle contrast imaging. Direct measurement of blood oxygenation based on phosphorescence lifetime is not significantly affected by changes in the optical parameters of the tissue during the experiment. The potential of the system as a novel tool for quantitative analysis of the dynamic delivery of oxygen to support brain metabolism was demonstrated in rats by imaging cortical responses to forepaw stimulation and the propagation of cortical spreading depression waves. This new instrument will enable further study of neurovascular coupling in normal and diseased brain. PMID:19340106

  7. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  8. In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease

    DEFF Research Database (Denmark)

    Fennema-Notestine, C; Archibald, S.L.; Jacobsen, M.W.

    2004-01-01

    and education. Primary analyses defined six subcortical regions, the gray and white matter of primary cortical lobes and cerebellum, and abnormal signal in the cerebral white matter. RESULTS: As expected, basal ganglia and cerebral cortical gray matter volumes were significantly smaller in HD. The HD group also...... demonstrated significant cerebral white matter loss and an increase in the amount of abnormal signal in the white matter; occipital white matter appeared more affected than other cerebral white matter regions. Cortical gray and white matter measures were significantly related to caudate volume. Cerebellar gray...

  9. SPECT in patients with cortical visual loss.

    Science.gov (United States)

    Silverman, I E; Galetta, S L; Gray, L G; Moster, M; Atlas, S W; Maurer, A H; Alavi, A

    1993-09-01

    Single-photon emission computed tomography (SPECT) with 99mTc-hexamethylpropyleneamine oxime (HMPAO) was used to investigate changes in cerebral blood flow in seven patients with cortical visual impairment. Traumatic brain injury (TBI) was the cause of cortical damage in two patients, cerebral ischemia in two patients and carbon monoxide (CO) poisoning, status epilepticus and Alzheimer's Disease (AD) each in three separate patients. The SPECT scans of the seven patients were compared to T2-weighted magnetic resonance image (MRI) scans of the brain to determine the correlation between functional and anatomical findings. In six of the seven patients, the qualitative interpretation of the SPECT studies supported the clinical findings (i.e., the visual field defect) by revealing altered regional cerebral blood flow (rCBF) in the appropriate regions of the visual pathway. MR scans in all of the patients, on the other hand, were either normal or disclosed smaller lesions than those detected by SPECT. We conclude that SPECT may reveal altered rCBF in patients with cortical visual impairment of various etiologies, even when MRI studies are normal or nondiagnostic.

  10. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway

    Science.gov (United States)

    CHEN, BIN; TAO, JING; LIN, YUKUN; LIN, RUHUI; LIU, WEILIN; CHEN, LIDIAN

    2015-01-01

    Electro-acupuncture (EA) is a novel therapy based on combining traditional acupuncture with modern electrotherapy, and it is currently being investigated as a treatment for ischemic stroke. In the present study, we aimed to investigate the mechanisms through which EA regulates the proliferation of neural progenitor cells (NPCs) in the cortical peri-infarct area after stroke. The neuroprotective effects of EA on ischemic rats were evaluated by determining the neurological deficit scores and cerebral infarct volumes. The proliferation of the NPCs and the activation of the Wnt/β-catenin signaling pathway in the cortical peri-infarct area were examined. Our results revealed that EA significantly alleviated neurological deficits, reduced the infarct volume and enhanced NPC proliferation [nestin/glial fibrillary acidic protein (GFAP)-double positive] in the cortex of rats subjected to middle cerebral artery occlusion (MCAO). Moreover, the Wnt1 and β-catenin mRNA and protein levels were increased, while glycogen synthase kinase-3 (GSK3) transcription was suppressed by EA. These results suggest that the upregulatory effects of EA on the Wnt/β-catenin signaling pathway may promote NPC proliferation in the cortical peri-infarct area after stroke, consequently providing a therapeutic effect against cerebral ischemia. PMID:26329606

  11. CT findings of early acute cerebral infarction

    International Nuclear Information System (INIS)

    Kim, Tae Hoon; Choi, Woo Suk; Ryu, Kyung Nam

    1992-01-01

    The CT findings of the acute cerebral infarction are well known. However the CT findings of early stroke within 24 hours of the onset have not been sufficiently reported. The purpose of this study is to evaluate early acute cerebral infarction on CT within 24 hours after ictus. The early and accurate CT diagnosis could lead to the appropriate therapy and improved outcome of the patients. Authors retrospectively analyzed 16 patients with early acute cerebral infarction. Acute cerebral infarction was confirmed by follow-up CT in 11 patients, SPECT in 4 patients, and MRI in 1 patient. The CT findings of early acute cerebral infarction include effacement of cortical sulci or cistern (n = 16, 100%), hyperattenuation of MCA (n = 3), obscuration of lentiform nucleus (n = 6), loss of insular ribbon (n = 6) and subtle low density in hemisphere (n = 5). The most frequent finding was effacement of cortical sulci in our study, and it was thought to be the most important sign of early acute cerebral infarction

  12. CT findings of early acute cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hoon; Choi, Woo Suk; Ryu, Kyung Nam [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1992-11-15

    The CT findings of the acute cerebral infarction are well known. However the CT findings of early stroke within 24 hours of the onset have not been sufficiently reported. The purpose of this study is to evaluate early acute cerebral infarction on CT within 24 hours after ictus. The early and accurate CT diagnosis could lead to the appropriate therapy and improved outcome of the patients. Authors retrospectively analyzed 16 patients with early acute cerebral infarction. Acute cerebral infarction was confirmed by follow-up CT in 11 patients, SPECT in 4 patients, and MRI in 1 patient. The CT findings of early acute cerebral infarction include effacement of cortical sulci or cistern (n = 16, 100%), hyperattenuation of MCA (n = 3), obscuration of lentiform nucleus (n = 6), loss of insular ribbon (n = 6) and subtle low density in hemisphere (n = 5). The most frequent finding was effacement of cortical sulci in our study, and it was thought to be the most important sign of early acute cerebral infarction.

  13. CT and MR Studies of Giant Dermoid Cyst Associated to Fat Dissemination at the Cortical and Cisternal Cerebral Spaces

    Directory of Open Access Journals (Sweden)

    Alessandro D'Amore

    2013-01-01

    Full Text Available This study focuses on CT and MR studies of adult patient with giant lesion of the posterior cranial fossa associated with micro- and macroaccumulations with density and signal like “fat” at the level of the cortical and cisternal cerebral spaces. This condition is compatible with previous asymptomatic ruptured dermoid cyst. Histological findings confirm the hypothesis formulated using the imaging. We also integrate elements of differential diagnosis by another giant lesion of the posterior cranial fossa.

  14. Homocysteine Aggravates Cortical Neural Cell Injury through Neuronal Autophagy Overactivation following Rat Cerebral Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Yaqian Zhao

    2016-07-01

    Full Text Available Elevated homocysteine (Hcy levels have been reported to be involved in neurotoxicity after ischemic stroke. However, the underlying mechanisms remain incompletely understood to date. In the current study, we hypothesized that neuronal autophagy activation may be involved in the toxic effect of Hcy on cortical neurons following cerebral ischemia. Brain cell injury was determined by hematoxylin-eosin (HE staining and TdT-mediated dUTP Nick-End Labeling (TUNEL staining. The level and localization of autophagy were detected by transmission electron microscopy, western blot and immunofluorescence double labeling. The oxidative DNA damage was revealed by immunofluorescence of 8-Hydroxy-2′-deoxyguanosine (8-OHdG. Hcy treatment aggravated neuronal cell death, significantly increased the formation of autophagosomes and the expression of LC3B and Beclin-1 in the brain cortex after middle cerebral artery occlusion-reperfusion (MCAO. Immunofluorescence analysis of LC3B and Beclin-1 distribution indicated that their expression occurred mainly in neurons (NeuN-positive and hardly in astrocytes (GFAP-positive. 8-OHdG expression was also increased in the ischemic cortex of Hcy-treated animals. Conversely, LC3B and Beclin-1 overexpression and autophagosome accumulation caused by Hcy were partially blocked by the autophagy inhibitor 3-methyladenine (3-MA. Hcy administration enhanced neuronal autophagy, which contributes to cell death following cerebral ischemia. The oxidative damage-mediated autophagy may be a molecular mechanism underlying neuronal cell toxicity of elevated Hcy level.

  15. Cortical injury in multiple sclerosis; the role of the immune system

    Directory of Open Access Journals (Sweden)

    Walker Caroline A

    2011-12-01

    Full Text Available Abstract The easily identifiable, ubiquitous demyelination and neuronal damage that occurs within the cerebral white matter of patients with multiple sclerosis (MS has been the subject of extensive study. Accordingly, MS has historically been described as a disease of the white matter. Recently, the cerebral cortex (gray matter of patients with MS has been recognized as an additional and major site of disease pathogenesis. This acknowledgement of cortical tissue damage is due, in part, to more powerful MRI that allows detection of such injury and to focused neuropathology-based investigations. Cortical tissue damage has been associated with inflammation that is less pronounced to that which is associated with damage in the white matter. There is, however, emerging evidence that suggests cortical damage can be closely associated with robust inflammation not only in the parenchyma, but also in the neighboring meninges. This manuscript will highlight the current knowledge of inflammation associated with cortical tissue injury. Historical literature along with contemporary work that focuses on both the absence and presence of inflammation in the cerebral cortex and in the cerebral meninges will be reviewed.

  16. The Unique Brain Anatomy of Meditation Practitioners: Alterations in Cortical Gyrification

    Science.gov (United States)

    Luders, Eileen; Kurth, Florian; Mayer, Emeran A.; Toga, Arthur W.; Narr, Katherine L.; Gaser, Christian

    2012-01-01

    Several cortical regions are reported to vary in meditation practitioners. However, prior analyses have focused primarily on examining gray matter or cortical thickness. Thus, additional effects with respect to other cortical features might have remained undetected. Gyrification (the pattern and degree of cortical folding) is an important cerebral characteristic related to the geometry of the brain’s surface. Thus, exploring cortical gyrification in long-term meditators may provide additional clues with respect to the underlying anatomical correlates of meditation. This study examined cortical gyrification in a large sample (n = 100) of meditators and controls, carefully matched for sex and age. Cortical gyrification was established by calculating mean curvature across thousands of vertices on individual cortical surface models. Pronounced group differences indicating larger gyrification in meditators were evident within the left precentral gyrus, right fusiform gyrus, right cuneus, as well as left and right anterior dorsal insula (the latter representing the global significance maximum). Positive correlations between gyrification and the number of meditation years were similarly pronounced in the right anterior dorsal insula. Although the exact functional implications of larger cortical gyrification remain to be established, these findings suggest the insula to be a key structure involved in aspects of meditation. For example, variations in insular complexity could affect the regulation of well-known distractions in the process of meditation, such as daydreaming, mind-wandering, and projections into past or future. Moreover, given that meditators are masters in introspection, awareness, and emotional control, increased insular gyrification may reflect an integration of autonomic, affective, and cognitive processes. Due to the cross-sectional nature of this study, further research is necessary to determine the relative contribution of nature and nurture to

  17. Effects of electroacupuncture on the cortical extracellular signal regulated kinase pathway in rats with cerebral ischaemia/reperfusion.

    Science.gov (United States)

    Wu, Chunxiao; Li, Chun; Zhou, Guoping; Yang, Lu; Jiang, Guimei; Chen, Jing; Li, Qiushi; Zhan, Zhulian; Xu, Xiuhong; Zhang, Xin

    2017-12-01

    To explore the effects of electroacupuncture (EA) on the phosphorylated extracellular signal regulated kinase (p-ERK) pathway of the cerebral cortex in a rat model of focal cerebral ischaemia/reperfusion (I/R). 160 adult Sprague-Dawley rats underwent middle carotid artery occlusion (MCAO) to establish I/R injury and were randomly divided into four groups (n=40 each) that remained untreated (I/R group) or received EA at LU5, LI4, ST36 and SP6 (I/R+EA group), the ERK inhibitor PD98059 (I/R+PD group), or both interventions (I/R+PD+EA groups). An additional 40 rats undergoing sham surgery formed a healthy control group. Eight rats from each group were sacrificed at the following time points: 2 hours, 6 hours, 1 day, 3 days and 1 week. Neurological function was assessed using neurological deficit scores, morphological examination was performed following haematoxylin-eosin staining of cortical tissues, and apoptotic indices were calculated after terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labelling. Cortical protein and mRNA expression of p-ERK and ERK were measured by immunohistochemistry and real-time quantitative PCR, respectively. Compared with the I/R group, neurological deficit scores and apoptotic indices were lower in the I/R+EA group at 1 and 3 days, whereas mRNA/protein expression of ERK/p-ERK was higher in the EA group at all time points studied. Our results suggest that EA can alleviate neurological deficits and reduce cortical apoptosis in rats with I/R injury. These anti-apoptotic effects may be due to upregulation of p-ERK. Moreover, apoptosis appeared to peak at 1 day after I/R injury, which might therefore represent the optimal time point for targeting of EA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Contrast MR imaging of acute cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kogame, Saeko; Syakudo, Miyuki; Inoue, Yuichi (Osaka City Univ. (Japan). Faculty of Medicine) (and others)

    1992-04-01

    Thirty patients with acute and subacute cerebral infarction (13 and 17 deep cerebral infarction) were studied with 0.5 T MR unit before and after intravenous injection of Gd-DTPA. Thirteen patients were studied within 7 days after neurological ictus, 17 patients were studied between 7 and 14 days. Two types of abnormal enhancement, cortical arterial and parenchymal enhancement, were noted. The former was seen in 3 of 4 cases of very acute cortical infarction within 4 days after clinical ictus. The latter was detected in all 7 cases of cortical infarction after the 6th day of the ictus, and one patient with deep cerebral infarction at the 12th day of the ictus. Gd-DTPA enhanced MR imaging seems to detect gyral enhancement earlier compared with contrast CT, and depict intra-arterial sluggish flow which was not expected to see on contrast CT scans. (author).

  19. Sodium transport through the cerebral sodium-glucose transporter exacerbates neuron damage during cerebral ischaemia.

    Science.gov (United States)

    Yamazaki, Yui; Harada, Shinichi; Wada, Tetsuyuki; Yoshida, Shigeru; Tokuyama, Shogo

    2016-07-01

    We recently demonstrated that the cerebral sodium-glucose transporter (SGLT) is involved in postischaemic hyperglycaemia-induced exacerbation of cerebral ischaemia. However, the associated SGLT-mediated mechanisms remain unclear. Thus, we examined the involvement of cerebral SGLT-induced excessive sodium ion influx in the development of cerebral ischaemic neuronal damage. [Na+]i was estimated according to sodium-binding benzofuran isophthalate fluorescence. In the in vitro study, primary cortical neurons were prepared from fetuses of ddY mice. Primary cortical neurons were cultured for 5 days before each treatment with reagents, and these survival rates were assessed using biochemical assays. In in vivo study, a mouse model of focal ischaemia was generated using middle cerebral artery occlusion (MCAO). In these experiments, treatment with high concentrations of glucose induced increment in [Na+]i, and this phenomenon was suppressed by the SGLT-specific inhibitor phlorizin. SGLT-specific sodium ion influx was induced using a-methyl-D-glucopyranoside (a-MG) treatments, which led to significant concentration-dependent declines in neuronal survival rates and exacerbated hydrogen peroxide-induced neuronal cell death. Moreover, phlorizin ameliorated these effects. Finally, intracerebroventricular administration of a-MG exacerbated the development of neuronal damage induced by MCAO, and these effects were ameliorated by the administration of phlorizin. Hence, excessive influx of sodium ions into neuronal cells through cerebral SGLT may exacerbate the development of cerebral ischaemic neuronal damage. © 2016 Royal Pharmaceutical Society.

  20. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    Energy Technology Data Exchange (ETDEWEB)

    Fogliarini, Celine [Faculte Timone, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Chaumoitre, Katia [Hopital Nord, Department of Radiology, Marseille (France); Chapon, Frederique; Levrier, Olivier; Girard, Nadine [Hopital Timone, Department of Neuroradiology, Marseille Cedex 5 (France); Fernandez, Carla; Figarella-Branger, Dominique [Hopital Timone, Department of Pathology, Marseille (France)

    2005-08-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  1. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    International Nuclear Information System (INIS)

    Fogliarini, Celine; Chaumoitre, Katia; Chapon, Frederique; Levrier, Olivier; Girard, Nadine; Fernandez, Carla; Figarella-Branger, Dominique

    2005-01-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  2. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, Kwang Suk [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea); Seoul National University College of Medicine, Department of Biomedical Engineering, Seoul (Korea); Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul [Seoul National University College of Medicine, Department of Otolaryngology, Head and Neck Surgery, Seoul (Korea); Lee, Dong Soo; Jeong, Jae Min [Seoul National University College of Medicine, Department of Nuclear Medicine, 28 Yungun-Dong, Chongno-Ku, Seoul (Korea)

    2005-06-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1-{sup 14}C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in

  3. Voxel-based statistical analysis of cerebral glucose metabolism in the rat cortical deafness model by 3D reconstruction of brain from autoradiographic images

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Park, Kwang Suk; Ahn, Soon-Hyun; Oh, Seung Ha; Kim, Chong Sun; Chung, June-Key; Lee, Myung Chul; Lee, Dong Soo; Jeong, Jae Min

    2005-01-01

    Animal models of cortical deafness are essential for investigation of the cerebral glucose metabolism in congenital or prelingual deafness. Autoradiographic imaging is mainly used to assess the cerebral glucose metabolism in rodents. In this study, procedures for the 3D voxel-based statistical analysis of autoradiographic data were established to enable investigations of the within-modal and cross-modal plasticity through entire areas of the brain of sensory-deprived animals without lumping together heterogeneous subregions within each brain structure into a large region of interest. Thirteen 2-[1- 14 C]-deoxy-D-glucose autoradiographic images were acquired from six deaf and seven age-matched normal rats (age 6-10 weeks). The deafness was induced by surgical ablation. For the 3D voxel-based statistical analysis, brain slices were extracted semiautomatically from the autoradiographic images, which contained the coronal sections of the brain, and were stacked into 3D volume data. Using principal axes matching and mutual information maximization algorithms, the adjacent coronal sections were co-registered using a rigid body transformation, and all sections were realigned to the first section. A study-specific template was composed and the realigned images were spatially normalized onto the template. Following count normalization, voxel-wise t tests were performed to reveal the areas with significant differences in cerebral glucose metabolism between the deaf and the control rats. Continuous and clear edges were detected in each image after registration between the coronal sections, and the internal and external landmarks extracted from the spatially normalized images were well matched, demonstrating the reliability of the spatial processing procedures. Voxel-wise t tests showed that the glucose metabolism in the bilateral auditory cortices of the deaf rats was significantly (P<0.001) lower than that in the controls. There was no significantly reduced metabolism in any

  4. Communication and Wiring in the Cortical Connectome

    Directory of Open Access Journals (Sweden)

    Julian eBudd

    2012-10-01

    Full Text Available In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimise communication there is a trade-off between spatial (construction and temporal (routing costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fibre tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for

  5. The cytokine temporal profile in rat cortex after controlled cortical impact.

    Science.gov (United States)

    Dalgard, Clifton L; Cole, Jeffrey T; Kean, William S; Lucky, Jessica J; Sukumar, Gauthaman; McMullen, David C; Pollard, Harvey B; Watson, William D

    2012-01-01

    Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury (TBI). Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact (CCI) on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12, and 24 hours) and extended (3 and 7 days) time points post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemiluminescence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFN-γ, TNF-α levels significantly peaked at four hours post-injury compared to levels found in naïve or contralateral tissue. CXCL1, IFN-γ, and TNF-α levels were then observed to decrease at least 3-fold by 12 hours post-injury. IL-1β, IL-4, and IL-13 levels were also significantly elevated at four hours post-injury although their expression did not decrease more than 3-fold for up to 24 hours post-injury. Additionally, IL-1β and IL-4 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in adaptive immune responses. Interestingly, peak levels of CCL2 and CCL20 were not observed until after four hours post-injury. CCL2 levels in injured cortical tissue were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may

  6. Dissecting human cerebral organoids and fetal neocortex using single-cell RNAseq

    Science.gov (United States)

    Treutlein, Barbara

    Cerebral organoids - three-dimensional cultures of human cerebral tissue derived from pluripotent stem cells - have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and novel interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages, and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue in order to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.

  7. Evoked potentials in pediatric cerebral malaria

    Directory of Open Access Journals (Sweden)

    Minal Bhanushali

    2011-12-01

    Full Text Available Cortical evoked potentials (EP provide localized data regarding brain function and may offer prognostic information and insights into the pathologic mechanisms of malariamediated cerebral injury. As part of a prospective cohort study, we obtained somatosensory evoked potentials (SSEPs and brainstem auditory EPs (AEPs within 24 hours of admission on 27 consecutive children admitted with cerebral malaria (CM. Children underwent follow-up for 12 months to determine if they had any long term neurologic sequelae. EPs were obtained in 27 pediatric CM admissions. Two children died. Among survivors followed an average of 514 days, 7/25 (28.0% had at least one adverse neurologic outcome. Only a single subject had absent cortical EPs on admission and this child had a good neurologic outcome. Among pediatric CM survivors, cortical EPs are generally intact and do not predict adverse neurologic outcomes. Further study is needed to determine if alterations in cortical EPs can be used to predict a fatal outcome in CM.

  8. Regional cerebral blood flow and periventricular hyperintensity in silent cerebral infarction. Comparison with multi-infarct dementia

    International Nuclear Information System (INIS)

    Koshi, Yasuhiko; Kitamura, Shin; Nagazumi, Atushi; Tsuganesawa, Toshikazu; Terashi, Akiro

    1996-01-01

    In order to investigate relationship between regional cerebral blood flow (rCBF) and the white matter lesions on MRI in silent cerebral infarction, we quantitatively measured rCBF by 123 I-IMP autoradiography method (IMP ARG method) and single photon emission tomography (SPECT) in 36 patients with silent cerebral infarction (SCI group), 22 patients with multi-infarct dementia (MID group), and 16 control subjects without periventricular hyperintensity (PVH) and lacunar infarction on MRI (CL group). Regions of interest (ROIs) on rCBF images were set in the frontal (F), temporal (T), parietal (P), occipital (O) cortex, and the cerebral white matter (W). The severity of PVH on MRI T 2 -weighted image was divided into four grades (grade 0-3). Though the frequency of hypertension was significantly higher in SCI group and MID group compared with CL group, no significant difference was seen in the mean age among these three groups. rCBF in the white matter and cerebral cortices except the occipital cortex in SCI group was significantly low compared with CL group (rCBF SCI /rCBF CL : W 0.87, F 0.87, T 0.87, P 0.88, O 0.92). rCBF in the white matter and cerebral cortices, especially in the white matter and frontal cortex, in MID group was significantly low compared with SCI group (rCBF MID /rCBF CL : W 0.69, F 0.71, T 0.74, P 0.75, O 0.81). The mean grade of PVH in MID group was significantly higher than that in SCI group (SCI 1.1 vs MID 2.5). The severity of PVH was significantly correlated with each rCBF in the white matter and cerebral cortices, especially in the white matter and frontal cortex. Our findings suggest that the quantitative measurement of rCBF by IMP ARG method is useful for the follow-up study in the patients with silent cerebral infarction as well as the evaluation of the severity of PVH on MRI. (author)

  9. Analysing coupling architecture in the cortical EEG of a patient with unilateral cerebral palsy

    Science.gov (United States)

    Kornilov, Maksim V.; Baas, C. Marjolein; van Rijn, Clementina M.; Sysoev, Ilya V.

    2016-04-01

    The detection of coupling presence and direction between cortical areas from the EEG is a popular approach in neuroscience. Granger causality method is promising for this task, since it allows to operate with short time series and to detect nonlinear coupling or coupling between nonlinear systems. In this study EEG multichannel data from adolescent children, suffering from unilateral cerebral palsy were investigated. Signals, obtained in rest and during motor activity of affected and less affected hand, were analysed. The changes in inter-hemispheric and intra-hemispheric interactions were studied over time with an interval of two months. The obtained results of coupling were tested for significance using surrogate times series. In the present proceeding paper we report the data of one patient. The modified nonlinear Granger causality is indeed able to reveal couplings within the human brain.

  10. Computational model of cerebral blood flow redistribution during cortical spreading depression

    Science.gov (United States)

    Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.

    2016-04-01

    In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.

  11. Applications of brain blood flow imaging in behavioral neurophysiology: cortical field activation hypothesis

    International Nuclear Information System (INIS)

    Roland, P.E.

    1985-01-01

    The 133 xenon intracarotid method for rCBF measurements has been a very useful method for functional mapping and functional dissection of the cerebral cortex in humans. With this method it has been shown that different types of cortical information treatment activate different cortical areas and furthermore that sensory and motor functions of the cerebral cortex could be dissected into anatomical and informational subcomponents by behavioral manipulations. The brain organizes its own activity. One of the principles of organization was that the brain could recruit in advance cortical fields that were expected to participate in a certain type of information operation. During brain work in awake human beings the cerebral cortex was activated in fields that, projected on the cerebral surface, most often had a size greater than 3 CM 2 . Such activated fields appeared no matter which type of information processing was going on in the brain: during planning and execution of voluntary movements, during preparation for sensory information processing, and during sensory information processing, as well as during cognitive brain work and retrieval of specific memories. Therefore, it was hypothesized that cortical field activation was the physiological manifestation of normal brain work in awake humans

  12. Applications of brain blood flow imaging in behavioral neurophysiology: cortical field activation hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Roland, P.E.

    1985-01-01

    The /sup 133/xenon intracarotid method for rCBF measurements has been a very useful method for functional mapping and functional dissection of the cerebral cortex in humans. With this method it has been shown that different types of cortical information treatment activate different cortical areas and furthermore that sensory and motor functions of the cerebral cortex could be dissected into anatomical and informational subcomponents by behavioral manipulations. The brain organizes its own activity. One of the principles of organization was that the brain could recruit in advance cortical fields that were expected to participate in a certain type of information operation. During brain work in awake human beings the cerebral cortex was activated in fields that, projected on the cerebral surface, most often had a size greater than 3 CM/sup 2/. Such activated fields appeared no matter which type of information processing was going on in the brain: during planning and execution of voluntary movements, during preparation for sensory information processing, and during sensory information processing, as well as during cognitive brain work and retrieval of specific memories. Therefore, it was hypothesized that cortical field activation was the physiological manifestation of normal brain work in awake humans.

  13. Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development

    Directory of Open Access Journals (Sweden)

    Eric eLewitus

    2013-08-01

    Full Text Available There is a basic rule to mammalian neocortical expansion: as it expands, so does it fold. The degree to which it folds, however, cannot strictly be attributed to its expansion. Across species, cortical volume does not keep pace with cortical surface area, but rather folds appear more rapidly than expected. As a result, larger brains quickly become disproportionately more convoluted than smaller brains. Both the absence (lissencephaly and presence (gyrencephaly of cortical folds is observed in all mammalian orders and, while there is likely some phylogenetic signature to the evolutionary appearance of gyri and sulci, there are undoubtedly universal trends to the acquisition of folds in an expanding neocortex. Whether these trends are governed by conical expansion of neocortical germinal zones, the distribution of cortical connectivity, or a combination of growth- and connectivity-driven forces remains an open question. But the importance of cortical folding for evolution of the uniquely mammalian neocortex, as well as for the incidence of neuropathologies in humans, is undisputed. In this hypothesis and theory article, we will summarize the development of cortical folds in the neocortex, consider the relative influence of growth- versus connectivity-driven forces for the acquisition of cortical folds between and within species, assess the genetic, cell-biological, and mechanistic implications for neocortical expansion, and discuss the significance of these implications for human evolution, development, and disease. We will argue that evolutionary increases in the density of neuron production, achieved via maintenance of a basal proliferative niche in the neocortical germinal zones, drive the conical migration of neurons towards the cortical surface and ultimately lead to the establishment of cortical folds in large-brained mammal species.

  14. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia.

    Science.gov (United States)

    Moraga, Ana; Pradillo, Jesús M; García-Culebras, Alicia; Palma-Tortosa, Sara; Ballesteros, Ivan; Hernández-Jiménez, Macarena; Moro, María A; Lizasoain, Ignacio

    2015-05-10

    Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in

  15. TDCS modulates cortical excitability in patients with disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2017-01-01

    Full Text Available Transcranial direct current stimulation (tDCS has been reported to be a promising technique for consciousness improvement for patients with disorders of consciousness (DOC. However, there has been no direct electrophysiological evidence to demonstrate the efficacy of tDCS on patients with DOC. Therefore, we aim to measure the cortical excitability changes induced by tDCS in patients with DOC, to find electrophysiological evidence supporting the therapeutic efficacy of tDCS on patients with DOC. In this study, we enrolled sixteen patients with DOC, including nine vegetative state (VS and seven minimally conscious state (MCS (six females and ten males. TMS-EEG was applied to assess cortical excitability changes after twenty minutes of anodal tDCS of the left dorsolateral prefrontal cortex. Global cerebral excitability were calculated to quantify cortical excitability in the temporal domain: four time intervals (0–100, 100–200, 200–300, 300-400 ms. Then local cerebral excitability in the significantly altered time windows were investigated (frontal, left/right hemispheres, central, and posterior. Compared to baseline and sham stimulation, we found that global cerebral excitability increased in early time windows (0–100 and 100-200 ms for patients with MCS; for the patients with VS, global cerebral excitability increased in the 0-100 ms interval but decreased in the 300-400 ms interval. The local cerebral excitability was significantly different between MCS and VS. The results indicated that tDCS can effectively modulate the cortical excitability of patients with DOC; and the changes in excitability in temporal and spatial domains are different between patients with MCS and those with VS.

  16. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    International Nuclear Information System (INIS)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S.; Lee, Kyung Han; Lee, Myung Chul

    1996-01-01

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p 0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  17. Hyperfixation of Tc-99m ECD in subacute cortical infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Seung; Kweon, Sun Uck; Ryu, Jin Sook; Moon, Dae Hyuk; Lee, Hee Kyung [College of Medicine, Ulsan Univ., Seoul (Korea, Republic of)

    2001-07-01

    It has been known that hyperfixation of Tc-99m ECD (HF) is not shown in subacute cerebral infarction because the brain distribution of Tc-99m ECD reflects not only perfusion but also the metabolic status of brain tissue. However, we observed several cases with HF in the subacute pure cortical infarction. To find out the cause of HF in subacute cortical infarction. We assessed the difference in associated cerebral hemodynamics and clinical findings between the subacute cortical infarctions with and without HF. We reviewed 16 patients (63.8{+-}8.6 yr, M/F: 15/1) with pure cortical infarction not involving adjacent subcortical white matter on MRI. All patients underwent acetazolamide stress brain perfusion SPECT using Tc-99m ECD and MRI at subacute period (7.3{+-}4.4 days from ictus). Uptake of Tc-99m ECD in infarcted cortex was assessed visually comparing the contralateral side. To assess the difference in associate clinical findings between the infarctions with and without HF, rCVR of the cerebral territory including infarcted cortex, extent of Gd-enhancement on MRI. Intervals between SPECT and ictus, and the presence of associated ICA stenosis were evaluated. Infarctions were focal (n=8) or multifocal (n=8) and located in frontoparietal cortices on MRI. Twelve patients were accompanied with ipsilateral ICA stenosis. Resting SPECT showed increased cortical uptake (=HF) in 7 patients and decreased in 9. rCVR of the MCA territory was preserved in all of the 7 patients with HF, compared with 4 of the 9 patients without HF (p=0.03). Gd-enhancement was minimal in all of the 7 patients with HF, compared with of the 0 patients without HF (p=0.03). Presence of ipsilateral ICA stenosis and intervals from ictus were not different (p>0.1) Subacute cerebral cortical infarction with HF was more frequently associated with preserved rCVR and minimal destruction of the blood-brain barrier than that without HF. Our findings suggest that HF may result from luxury perfusion of

  18. Hiperactivacion cortical y deterioro cognitivo en esquizofrenia

    OpenAIRE

    Suazo Bonnelly, Vanessa Johanna

    2014-01-01

    [ES] En este trabajo se estudió la actividad cerebral desorganizada y el deterioro cognitivo adjudicado a pacientes con esquizofrenia. Para estudiar la actividad cerebral se empleó una medida electroencefalográfica de ruido cortical (actividad promediada de fondo no ligada a la tarea) durante el desarrollo de una tarea sencilla (P300) en dos de las bandas oscilatorias (gamma y theta) más asociadas a la organización de la actividad cerebral según la literatura. Se utilizó una medida estructura...

  19. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S. [Samsung Medical Center, Seoul (Korea, Republic of); Lee, Kyung Han; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-03-15

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  20. Normal cerebral FDG uptake during childhood

    International Nuclear Information System (INIS)

    London, Kevin; Howman-Giles, Robert

    2014-01-01

    Current understanding of cerebral FDG uptake during childhood originates from a small number of studies in patients with neurological abnormalities. Our aim was to describe cerebral FDG uptake in a dataset of FDG PET scans in children more likely to represent a normal population. We reviewed cerebral FDG PET scans in children up to 16 years of age with suspected/proven extracranial malignancies and the following exclusions: central nervous system metastases, previous malignancies, previous chemotherapy or radiotherapy, development of cerebral metastases during therapy, neurological conditions, taking antiepileptic medication or medications likely to interfere with cerebral metabolism, and general anaesthesia within 24 h. White matter, basal ganglia, thalamus and the cerebellar cortex were analysed using regional SUV max , and the cerebral cortex, basal ganglia, thalamus and cerebellum were analysed using a regional relative uptake analysis in comparison to maximal cortical uptake. Scans from 30 patients (age range 11 months to 16 years, mean age 10 years 5 months) were included. All regions showed increasing SUV max with age. The parietal, occipital, lateral temporal and medial temporal lobes showed lower rates of increasing FDG uptake causing changing patterns of regional FDG uptake during childhood. The cortical regions showing the most intense uptake in early childhood were the parietal and occipital lobes. At approximately 7 years of age these regions had relatively less uptake than the frontal lobes and at approximately 10 years of age these regions had relatively less uptake than the thalamus. Relative FDG uptake in the brain has not reached an adult pattern by 1 year of age, but continues to change up to 16 years of age. The changing pattern is due to different regional rates of increasing cortical FDG uptake, which is less rapid in the parietal, occipital and temporal lobes than in the frontal lobes. (orig.)

  1. Normal cerebral FDG uptake during childhood

    Energy Technology Data Exchange (ETDEWEB)

    London, Kevin [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Discipline of Paediatrics and Child Health, Sydney Medical School, Sydney, NSW (Australia); Howman-Giles, Robert [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Disciplines of Imaging and Paediatrics and Child Health, Sydney Medical School, Sydney, NSW (Australia)

    2014-04-15

    Current understanding of cerebral FDG uptake during childhood originates from a small number of studies in patients with neurological abnormalities. Our aim was to describe cerebral FDG uptake in a dataset of FDG PET scans in children more likely to represent a normal population. We reviewed cerebral FDG PET scans in children up to 16 years of age with suspected/proven extracranial malignancies and the following exclusions: central nervous system metastases, previous malignancies, previous chemotherapy or radiotherapy, development of cerebral metastases during therapy, neurological conditions, taking antiepileptic medication or medications likely to interfere with cerebral metabolism, and general anaesthesia within 24 h. White matter, basal ganglia, thalamus and the cerebellar cortex were analysed using regional SUV{sub max}, and the cerebral cortex, basal ganglia, thalamus and cerebellum were analysed using a regional relative uptake analysis in comparison to maximal cortical uptake. Scans from 30 patients (age range 11 months to 16 years, mean age 10 years 5 months) were included. All regions showed increasing SUV{sub max} with age. The parietal, occipital, lateral temporal and medial temporal lobes showed lower rates of increasing FDG uptake causing changing patterns of regional FDG uptake during childhood. The cortical regions showing the most intense uptake in early childhood were the parietal and occipital lobes. At approximately 7 years of age these regions had relatively less uptake than the frontal lobes and at approximately 10 years of age these regions had relatively less uptake than the thalamus. Relative FDG uptake in the brain has not reached an adult pattern by 1 year of age, but continues to change up to 16 years of age. The changing pattern is due to different regional rates of increasing cortical FDG uptake, which is less rapid in the parietal, occipital and temporal lobes than in the frontal lobes. (orig.)

  2. Recovery of activity of daily living in cases of cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Kimihiro (St. Marianna Univ. School of Medicine, Kawasaki, Kanagawa (Japan))

    1983-11-01

    In 96 patients with supratentorial cerebral infarction, the recovery of activity of daily living (ADL) was studied in relation to computerized tomography (CT) findings in the acute stage. The average age was 64 and 78 out of 96 were first attack cases. The cases were divided into 3 groups on the basis of the CT findings. The N group had no low density area on CT. The S group had a small deep infarct around the basal ganglia and the L group showed a large infarct with a damaged cerebral cortex. Dilatation of the ventricles was measured by the methods of Meese and Huckman. Cortical atrophy estimated by summation of width of Sylvian fissures or parietal cortical sulci, expressed in percentages. Measurements for CT were performed in the subacute stage to exclude the effects of cerebral edema. ADL was categorized in five stages using Rankin's criteria in the first week and after the eighth week. Among the 3 groups, the L group had the worst ADL when examined eight weeks later. On the contrary, the N group showed the greatest improvement. Patients under 60 years old showed better recovery at the eight week, while in most patients aged 70 or more the improvement was less evident. Dilatation of ventricles and severity of cortical atrophy increased in proportion to age, especially in cases of cerebral infarcts. In patients with ventricular dilatation or severe cerebral atrophy. ADL improvement was lower. Recovery was low in cases with narrow cortical sulci. Recovery of ADL in reattack patients was lowest and larger dilatation of the ventricles than first attack cases was recognized. The size of cerebral infarction, ADL in the first week, the dilatation of lateral ventricles, the severity of cortical atrophy and age were found to be important factors in functional recovery.

  3. The Bat as a New Model of Cortical Development.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Ariza, Jeanelle; Rogers, Hailee; Horton-Sparks, Kayla; Kreutz, Anna; Behringer, Richard; Rasweiler, John J; Noctor, Stephen C

    2017-11-09

    The organization of the mammalian cerebral cortex shares fundamental features across species. However, while the radial thickness of grey matter varies within one order of magnitude, the tangential spread of the cortical sheet varies by orders of magnitude across species. A broader sample of model species may provide additional clues for understanding mechanisms that drive cortical expansion. Here, we introduce the bat Carollia perspicillata as a new model species. The brain of C. perspicillata is similar in size to that of mouse but has a cortical neurogenic period at least 5 times longer than mouse, and nearly as long as that of the rhesus macaque, whose brain is 100 times larger. We describe the development of laminar and regional structures, neural precursor cell identity and distribution, immune cell distribution, and a novel population of Tbr2+ cells in the caudal ganglionic eminence of the developing neocortex of C. perspicillata. Our data indicate that unique mechanisms guide bat cortical development, particularly concerning cell cycle length. The bat model provides new perspective on the evolution of developmental programs that regulate neurogenesis in mammalian cerebral cortex, and offers insight into mechanisms that contribute to tangential expansion and gyri formation in the cerebral cortex. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Relating neuronal firing patterns to functional differentiation of cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Shigeru Shinomoto

    2009-07-01

    Full Text Available It has been empirically established that the cerebral cortical areas defined by Brodmann one hundred years ago solely on the basis of cellular organization are closely correlated to their function, such as sensation, association, and motion. Cytoarchitectonically distinct cortical areas have different densities and types of neurons. Thus, signaling patterns may also vary among cytoarchitectonically unique cortical areas. To examine how neuronal signaling patterns are related to innate cortical functions, we detected intrinsic features of cortical firing by devising a metric that efficiently isolates non-Poisson irregular characteristics, independent of spike rate fluctuations that are caused extrinsically by ever-changing behavioral conditions. Using the new metric, we analyzed spike trains from over 1,000 neurons in 15 cortical areas sampled by eight independent neurophysiological laboratories. Analysis of firing-pattern dissimilarities across cortical areas revealed a gradient of firing regularity that corresponded closely to the functional category of the cortical area; neuronal spiking patterns are regular in motor areas, random in the visual areas, and bursty in the prefrontal area. Thus, signaling patterns may play an important role in function-specific cerebral cortical computation.

  5. Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants.

    Science.gov (United States)

    Meng, Yu; Li, Gang; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-10-15

    Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral cortex, are found to be spatially consistent across human adult individuals. It is suggested that sulcal pits are genetically controlled and have close relationships with functional areas. To date, the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits during this period would greatly enrich our limited understandings of the origins and developmental trajectories of sulcal pits, and would also provide important insights into many neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using surface-based morphometry, for the first time, we systemically investigated the spatial distribution and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with three longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the spatially consistent distributions of sulcal pits in major sulci across individuals have already existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases considerably during this period. Specially, the depth of sulcal pits increases regionally heterogeneously, with more rapid growth in the high-order association cortex, including the prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial distributions of sulcal pits in several cortical regions, such as the central, superior temporal and postcentral sulci, consistently from birth to 2 years of age

  6. Studies of cerebral atrophy and regional cerebral blood flow in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Kitamura, Shin

    1983-01-01

    Cerebral atrophy and regional cerebral blood flow (rCBF) of 25 patients with Parkinson's disease were studied. The rCBF was measured with the intra-arterial Xe-133 injection method. The results obtained were as follows: 1) Sixty four % of Parkinson's disease patients showed ventricular dilation, and 76% of Parkinson's disease patients showed cortical atrophy on the CT scan, but we had to allow for the effects of the natural aging process on these results. 2) No correlation was recognized either between cerebral atrophy and the severity of Parkinson's disease, or between cerebral atrophy and the duration of Parkinson's disease. 3) In Parkinson's disease patients, the mean rCBF was lower than that of normal control subjects. The difference was even more remarkable in older patients. Only 40% of Parkinson's disease patients showed hyperfrontal pattern. 4) There was no correlation either between the mean rCBF and the severity of Parkinson's disease, or between the mean rCBF and the duration of Parkinson's disease. There was no significant difference between the mean rCBF of Parkinson's disease patients receiving levodopa and that of untreated patients. 5) The mean rCBF decreased in patients with cerebral atrophy on the CT scan. 6) Parkinson's disease patients with intellectual impairment showed cerebral atrophy and a remarkable decrease of the mean rCBF. 7) The effect of aging on cerebral atrophy on the CT scan had to be allowed for, but judging from the decrease of the mean rCBF, the cerebral cortex is evidently involved in Parkinson's disease. 8) The rCBF decline in Parkinson's disease patients may be related with the diminished cortical metabolic rate due to a remote effect of striatal dysfunction and a disturbance of mesocortical dopaminergic pathways. (J.P.N.)

  7. Studies of cerebral atrophy and regional cerebral blood flow in patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin [Nippon Medical School, Tokyo

    1983-04-01

    Cerebral atrophy and regional cerebral blood flow (rCBF) of 25 patients with Parkinson's disease were studied. The rCBF was measured with the intra-arterial Xe-133 injection method. The results obtained were as follows: 1) Sixty four % of Parkinson's disease patients showed ventricular dilation, and 76% of Parkinson's disease patients showed cortical atrophy on the CT scan, but we had to allow for the effects of the natural aging process on these results. 2) No correlation was recognized either between cerebral atrophy and the severity of Parkinson's disease, or between cerebral atrophy and the duration of Parkinson's disease. 3) In Parkinson's disease patients, the mean rCBF was lower than that of normal control subjects. The difference was even more remarkable in older patients. Only 40% of Parkinson's disease patients showed hyperfrontal pattern. 4) There was no correlation either between the mean rCBF and the severity of Parkinson's disease, or between the mean rCBF and the duration of Parkinson's disease. There was no significant difference between the mean rCBF of Parkinson's disease patients receiving levodopa and that of untreated patients. 5) The mean rCBF decreased in patients with cerebral atrophy on the CT scan. 6) Parkinson's disease patients with intellectual impairment showed cerebral atrophy and a remarkable decrease of the mean rCBF. 7) The effect of aging on cerebral atrophy on the CT scan had to be allowed for, but judging from the decrease of the mean rCBF, the cerebral cortex is evidently involved in Parkinson's disease. 8) The rCBF decline in Parkinson's disease patients may be related with the diminished cortical metabolic rate due to a remote effect of striatal dysfunction and a disturbance of mesocortical dopaminergic pathways.

  8. Proton magnetic resonance spectroscopy in disturbances of cortical development

    International Nuclear Information System (INIS)

    Kaminaga, T.; Kobayashi, M.; Abe, T.

    2001-01-01

    Proton magnetic resonance spectroscopy( 1 H-MRS) can be used for looking at cerebral metabolites in vivo. However, measurement of concentrations of cerebral metabolites in patients with disturbances of cerebral development have not been successful. Our purpose was to measure the concentrations of cerebral metabolites in such patients. We carried out quantitative 1 H-MRS in eight patients with cortical dysplasia, four with lissencephaly and three with heterotopic grey matter and six age-matched normal controls. Regions of interest for 1 H-MRS were set over the affected cortex in the patients and the occipital cortex in controls. The calculated concentration of N-acetylaspartate (NAA) was significantly lower in the affected cortex in patients with cortical dysplasia (P < 0.05), lissencephaly (P < 0.01), and heterotopia (P < 0.05) than in controls, idnicating a decreased number and/or immaturity or dysfunction of neurones in the affected cortex. The concentration of choline (Cho) was significantly lower in patients with lissencephaly (P < 0.01) than in controls, indicating glial proliferation and/or membrane abnormality. (orig.)

  9. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons.

    Science.gov (United States)

    Marosi, Krisztina; Kim, Sang Woo; Moehl, Keelin; Scheibye-Knudsen, Morten; Cheng, Aiwu; Cutler, Roy; Camandola, Simonetta; Mattson, Mark P

    2016-12-01

    During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD + /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  10. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

    Directory of Open Access Journals (Sweden)

    Rodrigo eSiqueira Kazu

    2014-11-01

    Full Text Available Quantitative analysis of the cellular composition of rodent, primate, insectivore and afrotherian brains has shown that nonneuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share nonneuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are however distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex.

  11. Cerebral hemorrhage caused by amyloid angiopathy

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Tomonaga, Masanori; Yoshimura, Masahiro; Yamanouchi, Hiroshi; Shimada, Hiroyuki.

    1985-01-01

    Cerebral hemorrhage caused by amyloid angiopathy was studied clinicopathologically, with special attention given to the CT images. Cerebral hemorrhage caused by amyloid angiopathy is characterized, by a lobar-type hemorrhage involving the cortex, with direct extension into the subarachnoid space. Multiple hemorrhages are frequent, and cortical infarctions are present as complications in elderly patients without risk factors. CT scans taken in 5 cases demonstrated lobar hemorrhages in superficial locations, frequently in multiple sites or recurrently, with surrounding edema and mass effect. A subarachnoid extension of the hemorrhage through the superficial cortex, proven pathologically in all cases, was noted by CT in 4 of the 5 cases. However, cortical infarction was not detected by CT in any case. Therefore, CT is of value in the diagnosis of cerebral hemorrhage due to amyloid angiopathy based on distinctive findings such as a lobar hemorrhage in superficial regions, with extension into the subarachnoid space, frequently in multiple sites or recurrently. (author)

  12. The selective value of computed tomography of the brain in Cerebritis due to systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Gaylis, N.B.; Altman, R.D.; Ostrov, S.; Quencer, R.

    1982-01-01

    Systemic lupus erythematosus (SLE) and steroid effects on the brain were measured by computed tomography (CT). Of 14 patients with SLE cerebritis, 10 (71%) had marked cortical atrophy and 4 (29%) minimal atrophy. None were normal by CT. Controls included 22 patients with SLE without cerebritis receiving cortiocosteroids; this group had normal CT scans in 16 (73%) and minimal cortical atrophy in the remaining 6 (27%). Follow-up CT on 5 patients with cerebritis was unchanged. CT of the brain is a minimally invasive technique for documenting SLE cerebritis. CT may also help differentiate cerebritis from the neuropsychiatric side effects of corticosteroids

  13. Trigeminal nociception-induced, cerebral Fos expression in the conscious rat

    NARCIS (Netherlands)

    Ter Horst, GJ; Meijler, WJ; Korf, J; Kemper, RHA

    2001-01-01

    Little is known about trigeminal nociception-induced cerebral activity and involvement of cerebral structures in pathogenesis of trigeminovascular headaches such as migraine. Neuroimaging has demonstrated cortical, hypothalamic and brainstem activation during the attack and after abolition with

  14. Magnetic Resonance Perfusion Imaging in Malformations of Cortical Development

    International Nuclear Information System (INIS)

    Widjaja, ED.; Wilkinson, I.D.; Griffiths, P.D.

    2007-01-01

    Background: Malformations of cortical development vary in neuronal maturity and level of functioning. Purpose: To characterize regional relative cerebral blood volume (rCBV) and difference in first moment transit time (TTfm) in polymicrogyria and cortical tubers using magnetic resonance (MR) perfusion imaging. Material and Methods: MR imaging and dynamic T2*-weighted MR perfusion imaging were performed in 13 patients with tuberous sclerosis complex, 10 with polymicrogyria, and 18 controls with developmental delay but no macroscopic brain abnormality. Regions of interest were placed in cortical tubers or polymicrogyric cortex and in the contralateral normal-appearing side in patients with malformations. In 'control' subjects, regions of interest were placed in the frontal and parietal lobes in both hemispheres. The rCBV and TTfm of the tuber/contralateral side (rCBVRTSC and TTFMTSC) as well as those of the polymicrogyria/contralateral side (rCBVRPMG and TTFMPMG) were assessed. The right-to-left asymmetry of rCBV and TTfm in the control group was also assessed (rCBVRControls and TTFMControls). Results: There was no significant asymmetry between right and left rCBV or TTfm (P>0.05) in controls. There was significant reduction in rCBVRTSC compared to rCBVRControls (P 0.05). There were no significant differences between rCBVRPMG and rCBVRControls (P>0.05) or TTFMPMG and TTFMControls (P>0.05). Conclusion: Our findings imply that cerebral blood volume of polymicrogyria is similar to normal cortex, but there is reduced cerebral blood volume in cortical tubers. The lower rCBV ratio of cortical tubers may be related to known differences in pathogenetic timing of the underlying abnormalities during brain development or the presence of gliosis

  15. Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis.

    Science.gov (United States)

    Yang, J-J; Yoon, U; Yun, H J; Im, K; Choi, Y Y; Lee, K H; Park, H; Hough, M G; Lee, J-M

    2013-08-29

    A number of imaging studies have reported neuroanatomical correlates of human intelligence with various morphological characteristics of the cerebral cortex. However, it is not yet clear whether these morphological properties of the cerebral cortex account for human intelligence. We assumed that the complex structure of the cerebral cortex could be explained effectively considering cortical thickness, surface area, sulcal depth and absolute mean curvature together. In 78 young healthy adults (age range: 17-27, male/female: 39/39), we used the full-scale intelligence quotient (FSIQ) and the cortical measurements calculated in native space from each subject to determine how much combining various cortical measures explained human intelligence. Since each cortical measure is thought to be not independent but highly inter-related, we applied partial least square (PLS) regression, which is one of the most promising multivariate analysis approaches, to overcome multicollinearity among cortical measures. Our results showed that 30% of FSIQ was explained by the first latent variable extracted from PLS regression analysis. Although it is difficult to relate the first derived latent variable with specific anatomy, we found that cortical thickness measures had a substantial impact on the PLS model supporting the most significant factor accounting for FSIQ. Our results presented here strongly suggest that the new predictor combining different morphometric properties of complex cortical structure is well suited for predicting human intelligence. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps.

    Directory of Open Access Journals (Sweden)

    Piotr Bogorodzki

    Full Text Available PURPOSE: To estimate and compare cerebral cortex thickness in patients with unilateral end-stage glaucoma with that of age-matched individuals with unaffected vision. METHODS: 14 patients with unilateral end-stage primary open angle glaucoma (POAG and 12 age-matched control individuals with no problems with vision were selected for the study based on detailed ophthalmic examination. For each participant 3D high-resolution structural brain T1-weighted magnetization prepared MR images were acquired on a 3.0 T scanner. Brain cortex thickness was estimated using the FreeSurfer image analysis environment. After warping of subjects' cortical surfaces to FreeSurfer common space, differences between POAG and control groups were inferred at the group analysis level with the General Linear Model. RESULTS: The analysis performed revealed local thinning in the visual cortex areas in the POAG group. Statistically significant differences form 600 mm2 clusters located in the Brodmann area BA19 in the left and right hemisphere. CONCLUSION: Unilateral vision loss due to end-stage neuropathy from POAG is associated with significant thinning of cortical areas employed in vision.

  17. A compact and realistic cerebral cortical layout derived from prewhitened resting-state fMRI time series: Cherniak's adjacency rule, size law, and metamodule grouping upheld.

    Science.gov (United States)

    Lewis, Scott M; Christova, Peka; Jerde, Trenton A; Georgopoulos, Apostolos P

    2012-01-01

    We used hierarchical tree clustering to derive a functional organizational chart of 52 human cortical areas (26 per hemisphere) from zero-lag correlations calculated between single-voxel, prewhitened, resting-state BOLD fMRI time series in 18 subjects. No special "resting-state networks" were identified. There were four major features in the resulting tree (dendrogram). First, there was a strong clustering of homotopic, left-right hemispheric areas. Second, cortical areas were concatenated in multiple, partially overlapping clusters. Third, the arrangement of the areas revealed a layout that closely resembled the actual layout of the cerebral cortex, namely an orderly progression from anterior to posterior. And fourth, the layout of the cortical areas in the tree conformed to principles of efficient, compact layout of components proposed by Cherniak. Since the tree was derived on the basis of the strength of neural correlations, these results document an orderly relation between functional interactions and layout, i.e., between structure and function.

  18. A compact and realistic cerebral cortical layout derived from prewhitened resting-state fMRI time series: Cherniak's adjacency rule, size law, and metamodule grouping upheld

    Science.gov (United States)

    Lewis, Scott M.; Christova, Peka; Jerde, Trenton A.; Georgopoulos, Apostolos P.

    2012-01-01

    We used hierarchical tree clustering to derive a functional organizational chart of 52 human cortical areas (26 per hemisphere) from zero-lag correlations calculated between single-voxel, prewhitened, resting-state BOLD fMRI time series in 18 subjects. No special “resting-state networks” were identified. There were four major features in the resulting tree (dendrogram). First, there was a strong clustering of homotopic, left-right hemispheric areas. Second, cortical areas were concatenated in multiple, partially overlapping clusters. Third, the arrangement of the areas revealed a layout that closely resembled the actual layout of the cerebral cortex, namely an orderly progression from anterior to posterior. And fourth, the layout of the cortical areas in the tree conformed to principles of efficient, compact layout of components proposed by Cherniak. Since the tree was derived on the basis of the strength of neural correlations, these results document an orderly relation between functional interactions and layout, i.e., between structure and function. PMID:22973198

  19. Regional vulnerability of longitudinal cortical association connectivity

    Directory of Open Access Journals (Sweden)

    Rafael Ceschin

    2015-01-01

    Full Text Available Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL, are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4 and 75 healthy controls (mean age 5.7 ± 3.4. Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS and voxel-based morphometry (VBM demonstrating diffusely reduced fractional anisotropy (FA reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1 reduced regional posterior–anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation correlated with reduced posterior–anterior gradient of intra-regional (nodal efficiency metrics with relative sparing of frontal and temporal regions; and (2 reduced regional FA within frontal–thalamic–striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract

  20. [Focal cerebral ischemia in rats with estrogen deficiency and endothelial dysfunction].

    Science.gov (United States)

    Litvinov, A A; Volotova, E V; Kurkin, D V; Logvinova, E O; Darmanyan, A P; Tyurenkov, I N

    2017-01-01

    To assess an effect of ovariectomy (OE) on the cerebral blood flow, endothelium-dependent vasodilation, neurological, cognitive and locomotor deficit as markers of brain damage after focal ischemia in rats. The study was conducted in 48 female Wistar rats. Ovariectomy was performed with ovaries and uterine body extirpation, cerebral ischemia was performed by middle cerebral artery occlusion (MCAO) in rats. To assess brain damage, Combs and Garcia scores, 'open field' test (OFT), 'extrapolatory escape test' (EET), 'passive avoidance test' (PAT), 'beam-walking test' were used. Cerebral blood flow was measured using ultrasonic flowmetry. After 7 days of MCAO, the cerebral blood flow in ovarioectomized animals was reduced by 20% compared to sham-ovariectomized animals. Ovariectomized animals with MCAO showed a three-fold endothelium-dependent vasodilation reduction (the reaction of cerebral vessels to the introduction of acetylcholine and N-L-arginine), indicating the presence of severe endothelial dysfunction. In ovarioectomized animals, the cerebral blood flow was reduced by 34% compared to sham-operated animals. MCAO and OE taken together resulted in more than 2-fold increase in neurological, motor disturbances, 3-fold decrease in motor activity of the animals in the OP test. Focal ischemia in ovarioectomized animals with endothelial dysfunction led to memory decrease by 1/5 fold in PAT and by 2-fold in EET.

  1. Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: implications for the neural substrates of emotion regulation.

    Science.gov (United States)

    Albaugh, Matthew D; Ducharme, Simon; Collins, D Louis; Botteron, Kelly N; Althoff, Robert R; Evans, Alan C; Karama, Sherif; Hudziak, James J

    2013-05-01

    Recent functional connectivity studies have demonstrated that, in resting humans, activity in a dorsally-situated neocortical network is inversely associated with activity in the amygdalae. Similarly, in human neuroimaging studies, aspects of emotion regulation have been associated with increased activity in dorsolateral, dorsomedial, orbital and ventromedial prefrontal regions, as well as concomitant decreases in amygdalar activity. These findings indicate the presence of two countervailing systems in the human brain that are reciprocally related: a dorsally-situated cognitive control network, and a ventrally-situated limbic network. We investigated the extent to which this functional reciprocity between limbic and dorsal neocortical regions is recapitulated from a purely structural standpoint. Specifically, we hypothesized that amygdalar volume would be related to cerebral cortical thickness in cortical regions implicated in aspects of emotion regulation. In 297 typically developing youths (162 females, 135 males; 572 MRIs), the relationship between cortical thickness and amygdalar volume was characterized. Amygdalar volume was found to be inversely associated with thickness in bilateral dorsolateral and dorsomedial prefrontal, inferior parietal, as well as bilateral orbital and ventromedial prefrontal cortices. Our findings are in line with previous work demonstrating that a predominantly dorsally-centered neocortical network is reciprocally related to core limbic structures such as the amygdalae. Future research may benefit from investigating the extent to which such cortical-limbic morphometric relations are qualified by the presence of mood and anxiety psychopathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Radial Structure Scaffolds Convolution Patterns of Developing Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Mir Jalil Razavi

    2017-08-01

    Full Text Available Commonly-preserved radial convolution is a prominent characteristic of the mammalian cerebral cortex. Endeavors from multiple disciplines have been devoted for decades to explore the causes for this enigmatic structure. However, the underlying mechanisms that lead to consistent cortical convolution patterns still remain poorly understood. In this work, inspired by prior studies, we propose and evaluate a plausible theory that radial convolution during the early development of the brain is sculptured by radial structures consisting of radial glial cells (RGCs and maturing axons. Specifically, the regionally heterogeneous development and distribution of RGCs controlled by Trnp1 regulate the convex and concave convolution patterns (gyri and sulci in the radial direction, while the interplay of RGCs' effects on convolution and axons regulates the convex (gyral convolution patterns. This theory is assessed by observations and measurements in literature from multiple disciplines such as neurobiology, genetics, biomechanics, etc., at multiple scales to date. Particularly, this theory is further validated by multimodal imaging data analysis and computational simulations in this study. We offer a versatile and descriptive study model that can provide reasonable explanations of observations, experiments, and simulations of the characteristic mammalian cortical folding.

  3. Decreased cerebral blood flow in renal transplant recipients

    International Nuclear Information System (INIS)

    Kamano, Chisako; Komaba, Yuichi; Sakayori, Osamu; Iino, Yasuhiko; Katayama, Yasuo

    2002-01-01

    We performed single-photon emission computed tomography (SPECT) to investigate the influence of renal transplantation on cerebral blood flow (CBF). Fifteen renal transplant recipients and twelve normal subjects underwent cerebral SPECT with N-isopropyl-p-[ 123 I] iodoamphetamine ( 123 I-IMP). All transplant recipients received prednisolone and cyclosporine (CyA). Regional CBF (rCBF) was measured by defining regions of interest in the cerebral cortex, deep white matter, striatum, thalamus, and cerebellum. In transplant recipients, correlations to the mean overall cortical CBF were assessed using the interval from transplantation to measurement of SPECT, as well as the serum creatinine concentration. Moreover, to investigate the influence of CyA on CBF, the correlation between mean overall cortical CBF and CyA trough concentrations was assessed. In all regions, CBF in renal transplant recipients was significantly lower than in normal subjects. No significant correlation was seen between serum creatinine, interval from transplantation, or CyA trough concentrations and mean overall cortical CBF. Renal transplant recipients demonstrated a decrease in CBF, that can have an associated secondary pathology. Therefore, renal transplant recipients may benefit from post-operative MRI or CT. (author)

  4. Magnetic Resonance Perfusion Imaging in Malformations of Cortical Development

    Energy Technology Data Exchange (ETDEWEB)

    Widjaja, ED.; Wilkinson, I.D.; Griffiths, P.D. [Academic Section of Radiolog y, Univ. of Sheffield, Sheffield (United Kingdom)

    2007-10-15

    Background: Malformations of cortical development vary in neuronal maturity and level of functioning. Purpose: To characterize regional relative cerebral blood volume (rCBV) and difference in first moment transit time (TTfm) in polymicrogyria and cortical tubers using magnetic resonance (MR) perfusion imaging. Material and Methods: MR imaging and dynamic T2*-weighted MR perfusion imaging were performed in 13 patients with tuberous sclerosis complex, 10 with polymicrogyria, and 18 controls with developmental delay but no macroscopic brain abnormality. Regions of interest were placed in cortical tubers or polymicrogyric cortex and in the contralateral normal-appearing side in patients with malformations. In 'control' subjects, regions of interest were placed in the frontal and parietal lobes in both hemispheres. The rCBV and TTfm of the tuber/contralateral side (rCBVRTSC and TTFMTSC) as well as those of the polymicrogyria/contralateral side (rCBVRPMG and TTFMPMG) were assessed. The right-to-left asymmetry of rCBV and TTfm in the control group was also assessed (rCBVRControls and TTFMControls). Results: There was no significant asymmetry between right and left rCBV or TTfm (P>0.05) in controls. There was significant reduction in rCBVRTSC compared to rCBVRControls (P<0.05), but no significant difference in TTFMTSC compared to TTFMControls (P>0.05). There were no significant differences between rCBVRPMG and rCBVRControls (P>0.05) or TTFMPMG and TTFMControls (P>0.05). Conclusion: Our findings imply that cerebral blood volume of polymicrogyria is similar to normal cortex, but there is reduced cerebral blood volume in cortical tubers. The lower rCBV ratio of cortical tubers may be related to known differences in pathogenetic timing of the underlying abnormalities during brain development or the presence of gliosis.

  5. Pathophysiology of cerebral circulatory disorders in idiopathic normal pressure hydrocephalus

    International Nuclear Information System (INIS)

    Takeuchi, Totaro; Goto, Hiromi; Izaki, Kenji

    2007-01-01

    This study was conducted to elucidate the pathologic conditions of cerebral circulatory disorders in idiopathic normal pressure hydrocephalus (iNPH). Among 44 possible iNPH patients, 40 patients underwent shunt surgery based on diagnostic flow charts plotted by the Southern Tohoku method and were evaluated to be shunt-effective at the end of the first post-surgical month. The cerebral blood flow (CBF) was measured by N-isopropyl-( 123 I)-P-iodo-amphetamine single photon emission computed tomography (mean, mCBF; cortical region, cCBF; thalamus-basal ganglia region, tbCBF on autoradiography [ARG] method) and the perfusion patterns of the cerebral cortex were measured based on three-dimensional stereotactic surface projection (3D-SSP) Z-score images, before and 1 month after the surgery in all 40 subjects. The mCBF rose significantly from 32.1±2.74 ml/100 g/min before surgery to 39.8±3.02 ml/100 g/min after surgery (p<0.03). Investigation of the change of CBF revealed reductions in the cCBF (3 cases), tbCBF (9 cases), and cCBF+tbCBF (28 cases), with the reduced-cCBF group totaling 31 cases and the reduced-tbCBF group totaling 37 cases. Investigation of cerebral cortex hypoperfusion by 3D-SSP Z-score revealed 31 cases with hypoperfusion (frontal lobe type [19 cases], occipitotemporal lobe type [5 cases], mixed type [7 cases]) and nine cases with cortical normoperfusion (N). The pattern of reduction of the cortical blood flow on ARG method was favorably correlated with the pattern of hypoperfusion of the cerebral cortex on 3D-SSP Z-score images before surgery. A reduction of blood flow was found in the thalamus-basal ganglia region of all N type cases. The blood flow improved in 19 of 31 (61.3%) cases of the reduced-cCBF group and in 32 of 37 (86.5%) cases of the reduced-tbCBF group. All of the cases without detectable improvement exhibited increased blood flow in non-reduction areas. Investigation of the hypoperfusion patterns of the cerebral cortex on 3D-SSP Z

  6. Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity.

    Science.gov (United States)

    Miller, Lee M; Recanzone, Gregg H

    2009-04-07

    The auditory cortex is critical for perceiving a sound's location. However, there is no topographic representation of acoustic space, and individual auditory cortical neurons are often broadly tuned to stimulus location. It thus remains unclear how acoustic space is represented in the mammalian cerebral cortex and how it could contribute to sound localization. This report tests whether the firing rates of populations of neurons in different auditory cortical fields in the macaque monkey carry sufficient information to account for horizontal sound localization ability. We applied an optimal neural decoding technique, based on maximum likelihood estimation, to populations of neurons from 6 different cortical fields encompassing core and belt areas. We found that the firing rate of neurons in the caudolateral area contain enough information to account for sound localization ability, but neurons in other tested core and belt cortical areas do not. These results provide a detailed and plausible population model of how acoustic space could be represented in the primate cerebral cortex and support a dual stream processing model of auditory cortical processing.

  7. Profiles of cortical tissue depolarization in cat focal cerebral ischemia in relation to calcium ion homeostasis and nitric oxide production.

    Science.gov (United States)

    Ohta, K; Graf, R; Rosner, G; Heiss, W D

    1997-11-01

    Cortical depolarization was investigated in a topographic gradient of ischemic density after 1-hour transient middle cerebral artery occlusion in halothane-anesthetized cats. A laser Doppler flow probe, an ion-selective microelectrode, and a nitric oxide (NO) electrode measured regional CBF (rCBF), direct current (DC) potential, extracellular Ca2+ concentration ([Ca2+]o), and NO concentration in ectosylvian and suprasylvian gyri of nine animals. Recordings revealed 12 of 18 sites with persistent negative shifts of the DC potential, severe rCBF reduction, and a drop of [Ca2+]o characteristic for core regions of focal ischemia. Among these sites, two types were distinguished by further analysis. In Type 1 (n = 5), rapid, negative DC shifts resembled anoxic depolarization as described for complete global ischemia. In this type, ischemia was most severe (8.9 +/- 2.5% of control rCBF), [Ca2+]o dropped fast and deepest (0.48 +/- 0.20 mmol/L), and NO concentration increased transiently (36.1 +/- 24.0 nmol/L at 2.5 minutes), and decreased thereafter. In Type 2 (n = 7), the DC potential fell gradually over the first half of the ischemic episode, rCBF and [Ca2+]o reductions were smaller than in Type 1 (16.2 +/- 8.2%; 0.77 +/- 0.41 mmol/L), and NO increased continuously during ischemia (53.1 +/- 60.4 nmol/L at 60 minutes) suggesting that in this type NO most likely exerts its diverse actions on ischemia-threatened tissue. In the remaining six recording sites, a third type (Type 3) attributable to the ischemic periphery was characterized by minimal DC shifts, mild ischemia (37.2 +/- 13.3%), nonsignificant alterations of [Ca2+]o, but decreased NO concentrations during middle cerebral artery occlusion. Reperfusion returned the various parameters to baseline levels within 1 hour, the recovery of [Ca2+]o and NO concentration being delayed in Type 1. An NO synthase inhibitor (N(G)-nitro-L-arginine, 50 mg/kg intravenously; four animals) abolished NO elevation during ischemia. In

  8. Cortical thickness difference across the central sulcus visualized in the presence of vasogenic edema

    Energy Technology Data Exchange (ETDEWEB)

    Togao, Osamu [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582 (Japan)], E-mail: togao@dr.hosp.kyushu-u.ac.jp; Yoshiura, Takashi; Mihara, Futoshi; Noguchi, Tomoyuki; Hiwatashi, Akio; Yamashita, Koji; Yoshitake, Tadamasa; Honda, Hiroshi [Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582 (Japan)

    2008-05-15

    Purpose: To confirm the cortical thickness difference across the central sulcus (CS) visualized in the presence of vasogenic edema on MRI. Materials and methods: T2-weighted images of 70 cerebral hemispheres showing vasogenic edema infiltrating into subcortical white matter around the CS were studied retrospectively. Two neuroradiologists measured the cortical thickness of the anterior and posterior banks of the CS, precentral sulci (PrCS), and postcentral sulci (PoCS). Additionally, we compared the cortical thickness of the anterior and posterior banks of each sulcus visually using a grading scale. Results: On T2-weighted images, the cerebral cortex was highlighted by a high signal-intensity vasogenic edema in the adjacent white matter, and its thickness was readily measurable. The unique cortical thickness difference between the anterior and posterior banks of the CS were confirmed with measurements of 2.67 and 1.48 mm (p < 0.0001). The cortical measurements across other cerebral sulci were 2.04 and 1.95 mm (NS) for the PrCS, and 1.67 and 1.77 mm (NS) for the PoCS. The cortical thickness ratios were 1.86 for the CS, 1.05 for the PrCS, and 0.96 for the PoCS. On visual evaluation, the anterior bank of the CS was thicker than the posterior bank in 93% (65/70). For the PrCS and PoCS, the thickness of the anterior and posterior banks appeared to be equal in over 70% of the patients. Conclusion: A prominent cortical thickness difference across the CS in the presence of vasogenic edema was confirmed. This finding is considered to facilitate the identification of the CS in patients with brain tumors.

  9. Cortical thickness difference across the central sulcus visualized in the presence of vasogenic edema

    International Nuclear Information System (INIS)

    Togao, Osamu; Yoshiura, Takashi; Mihara, Futoshi; Noguchi, Tomoyuki; Hiwatashi, Akio; Yamashita, Koji; Yoshitake, Tadamasa; Honda, Hiroshi

    2008-01-01

    Purpose: To confirm the cortical thickness difference across the central sulcus (CS) visualized in the presence of vasogenic edema on MRI. Materials and methods: T2-weighted images of 70 cerebral hemispheres showing vasogenic edema infiltrating into subcortical white matter around the CS were studied retrospectively. Two neuroradiologists measured the cortical thickness of the anterior and posterior banks of the CS, precentral sulci (PrCS), and postcentral sulci (PoCS). Additionally, we compared the cortical thickness of the anterior and posterior banks of each sulcus visually using a grading scale. Results: On T2-weighted images, the cerebral cortex was highlighted by a high signal-intensity vasogenic edema in the adjacent white matter, and its thickness was readily measurable. The unique cortical thickness difference between the anterior and posterior banks of the CS were confirmed with measurements of 2.67 and 1.48 mm (p < 0.0001). The cortical measurements across other cerebral sulci were 2.04 and 1.95 mm (NS) for the PrCS, and 1.67 and 1.77 mm (NS) for the PoCS. The cortical thickness ratios were 1.86 for the CS, 1.05 for the PrCS, and 0.96 for the PoCS. On visual evaluation, the anterior bank of the CS was thicker than the posterior bank in 93% (65/70). For the PrCS and PoCS, the thickness of the anterior and posterior banks appeared to be equal in over 70% of the patients. Conclusion: A prominent cortical thickness difference across the CS in the presence of vasogenic edema was confirmed. This finding is considered to facilitate the identification of the CS in patients with brain tumors

  10. Coordinated scaling of cortical and cerebellar numbers of neurons

    Directory of Open Access Journals (Sweden)

    Suzana Herculano-Houzel

    2010-03-01

    Full Text Available While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of 4 different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora, Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble.

  11. Analysis of preplate splitting and early cortical development illuminates the biology of neurological disease.

    Directory of Open Access Journals (Sweden)

    Eric C Olson

    2014-11-01

    Full Text Available The development of the layered cerebral cortex starts with a process called preplate splitting. Preplate splitting involves the establishment of prospective cortical layer 6 (L6 neurons within a plexus of pioneer neurons called the preplate. The forming layer 6 splits the preplate into a superficial layer of pioneer neurons called the marginal zone and a deeper layer of pioneer neurons called the subplate. Disruptions of this early developmental event by toxin exposure or mutation are associated with neurological disease including severe intellectual disability. This review explores recent findings that reveal the dynamism of gene expression and morphological differentiation during this early developmental period. Over 1000 genes show expression increases of ≥ 2 fold during this period in differentiating mouse L6 neurons. Surprisingly, 88% of previously identified non-syndromic intellectual disability (NS-ID genes are expressed at this time and show an average expression increase of 1.6 fold in these differentiating L6 neurons. This changing genetic program must, in part, support the dramatic cellular reorganizations that occur during preplate splitting. While different models have been proposed for the formation of a layer of L6 cortical neurons within the preplate, original histological studies and more recent work exploiting transgenic mice suggest that the process is largely driven by the coordinated polarization and coalescence of L6 neurons rather than by cellular translocation or migration. The observation that genes associated with forms of NS-ID are expressed during very early cortical development raises the possibility of studying the relevant biological events at a time point when the cortex is small, contains relatively few cell types, and few functional circuits. This review then outlines how explant models may prove particularly useful in studying the consequence of toxin and mutation on the etiology of some forms of NS-ID.

  12. The continuum of spreading depolarizations in acute cortical lesion development

    DEFF Research Database (Denmark)

    Hartings, Jed A; Shuttleworth, C William; Kirov, Sergei A

    2017-01-01

    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum....... The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion...

  13. Psychiatric and subjective symptoms and cerebral blood flow in patients with chronic cerebral infarction after treatment with Ca antagonist (nilvadipine). Quantitative measurement of cerebral blood flow by the 123IMP-SPECT ARG method

    International Nuclear Information System (INIS)

    Sakayori, Osamu; Kitamura, Shin; Mishina, Masahiro; Yamazaki, Mineo; Terashi, Akirou

    1997-01-01

    Psychiatric and subjective symptoms such as headache, dizziness, lack of spontaneity, anxiety, and a depressive state are often found in patients with chronic cerebral infarction. Some Ca antagonists are reported to relieve such symptoms. The purpose of the present study was to investigate the relationship between psychiatric and subjective symptoms and cerebral blood flow (CBF) in cerebral infarction and to evaluate the clinical effects of Ca antagonists from the standpoint of the cerebral circulation. Nilvadipine was administered to is patients with chronic cerebral infarction and their CBF was measured by the 123 IMP-SPECT ARG method before and at 8 weeks after the nilvadipine treatment. The CBF in patients with hypertension was increased by 11% after giving nilvadipine. Patients without hypertension showed no tendency for elevation of their CBF. Patients who were relieved from some psychiatric symptoms revealed a 14% increase of CBF in all cortical regions, and a significant increase was noted in the frontal and temporal regions. In other patients without changes in psychiatric symptoms, the CBF did not increase in any of the cortical regions. No relationship between symptoms and CBF was observed in any of the patients with subjective symptoms. Our study demonstrated a close correlation between psychiatric symptoms and CBF. We speculate that psychiatric symptoms in chronic cerebral infarction may reflect diffuse brain dysfunctions. We also conclude that nilvadipine is more effective in relieving psychiatric symptoms in patients with hypertensive cerebral infarction. It is inferred that nilvadipine may be more effective in relieving psychiatric symptoms in patients with hypertension. (author)

  14. Characterization of α2-adrenergic receptors in rat cerebral cortex

    International Nuclear Information System (INIS)

    Nasseri, A.

    1987-01-01

    The properties of 3 H-RX 781094 binding sites and the receptors inhibiting norepinephrine (NE) release and cyclic AMP accumulation in rat cerebral cortex were compared. 3 H-RX 781094, a new α 2 -adrenergic receptor antagonist radioligand, labelled a homogeneous population of binding sites at 37 0 C with the pharmacological specificity expected of α 2 -adrenergic receptors. Gpp(NH)p and NaCl decreased the potencies of agonists at 3 H-RX 781094 binding sites 3-22 fold. Antagonists blocked the inhibition of potassium-evoked tritium release from cortical slices preloaded with 3 H-NE by exogenous NE with potencies similar to those observed in competition for specific 3 H-RX 781094 binding sites. EEDQ, an irreversible α 2 -adrenergic receptors and determine whether there was a receptor reserve for the inhibition of tritium release

  15. CT findings in patients with cerebral palsy

    International Nuclear Information System (INIS)

    Konno, Kimiichi

    1982-01-01

    Clinical findings and CT findings in 73 cases of cerebral palsy were studied. The causes of cerebral palsy were presumed to be as follows: abnormal cerebral development (36%), asphyxial delivery (34%), and immature delivery (19%), etc. CT findings were abnormal in 58% of the 73 cases, 83% of the spastic tetraplegia patients and all of the spastic hemiplegia patients showed abnormal CT findings. All the patients with spastic monoplegia presented normal CT findings. In 75% of the spastic hemiplegia cases, the CT abnormalities were due to cerebral parenchymal abnormality such as porencephaly and regional low absorption. In cases of spastic tetraplegia, cerebral parenchymal abnormality was found only in 10%. Cortical atrophy was found only in 15 of the 73 cases, whereas central atrophy was found in 36 cases. (Ueda, J.)

  16. The effects of whole body vibration combined computerized postural control training on the lower extremity muscle activity and cerebral cortex activity in stroke patients.

    Science.gov (United States)

    Uhm, Yo-Han; Yang, Dae-Jung

    2018-02-01

    [Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.

  17. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies

    Directory of Open Access Journals (Sweden)

    Roberta eAzzarelli

    2015-01-01

    Full Text Available The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations.

  18. Cortical Cerebral Microinfarcts on 3 Tesla MRI in Patients with Vascular Cognitive Impairment.

    Science.gov (United States)

    Ferro, Doeschka A; van Veluw, Susanne J; Koek, Huiberdina L; Exalto, Lieza G; Biessels, Geert Jan

    2017-01-01

    Cerebral microinfarcts (CMIs) are small ischemic lesions that are a common neuropathological finding in patients with stroke or dementia. CMIs in the cortex can now be detected in vivo on 3 Tesla MRI. To determine the occurrence of CMIs and associated clinical features in patients with possible vascular cognitive impairment (VCI). 182 memory-clinic patients (mean age 71.4±10.6, 55% male) with vascular injury on brain MRI (i.e., possible VCI) underwent a standardized work-up including 3 Tesla MRI and cognitive assessment. A control group consisted of 70 cognitively normal subjects (mean age 70.6±4.7, 60% male). Cortical CMIs and other neuroimaging markers of vascular brain injury were rated according to established criteria. Occurrence of CMIs was higher (20%) in patients compared to controls (10%). Among patients, the presence of CMIs was associated with male sex, history of stroke, infarcts, and white matter hyperintensities. CMI presence was also associated with a diagnosis of vascular dementia and reduced performance in multiple cognitive domains. CMIs on 3 Tesla MRI are common in patients with possible VCI and co-occur with imaging markers of small and large vessel disease, likely reflecting a heterogeneous etiology. CMIs are associated with worse cognitive performance, independent of other markers of vascular brain injury.

  19. Actions of the pyrethroid insecticide bifenthrin on sodium channels expressed in rat cerebral cortical neurons.

    Science.gov (United States)

    Yang, Lin; Li, Li

    2015-01-01

    Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. Here, we studied the mode of action of bifenthrin on the native sodium channels in cerebral cortical neurons prepared from newborn rat brain, where the toxic effects are largely generated. Bifenthrin caused a pronounced late current that persisted at the end of a depolarizing pulse, a slowly-decaying tail current following repolarization and significant resting modification (25.3% modification at 10 μM). No significant bifenthrin-induced effect was observed at the peak current. Bifenthrin also caused a concentration-dependent hyperpolarizing shift in steady-state activation and inactivation as well as slowed recovery from channel inactivation. Repetitive depolarization increased the potency of bifenthrin with high frequency. There was approximately 64% inhibition of modification upon repetitive activation by 10-Hz trains of depolarizing pulses. These results suggest that bifenthrin binds to and modifies sodium channels in both the closed and open states and exhibits the behavior between type I and type II.

  20. Quantitative comparison of cortical and deep grey matter in pathological subtypes of unilateral cerebral palsy.

    Science.gov (United States)

    Scheck, Simon M; Pannek, Kerstin; Fiori, Simona; Boyd, Roslyn N; Rose, Stephen E

    2014-10-01

    The aim of this study was to quantify grey matter changes in children with unilateral cerebral palsy (UCP), differentiating between cortical or deep grey matter (CDGM) lesions, periventricular white matter (PWM) lesions, and unilateral and bilateral lesions. In a cross-sectional study we obtained high resolution structural magnetic resonance images from 72 children (41 males, 31 females, mean age 10y 9mo [SD 3y 1mo], range 5y 1mo-17y 1mo) with UCP (33 left, 39 right hemiplegia; Manual Ability Classification System level I n=29, II n=43; Gross Motor Function Classification System level I n=46, II n=26), and 19 children with typical development (CTD; eight males, 11 females, mean age 11y 2mo [SD 2y 7mo], range 7y 8mo-16y 4mo). Images were classified by lesion type and analyzed using voxel-based morphometry (VBM) and subcortical volumetric analysis. Deep grey matter volumes were not significantly different between children with CDGM and PWM lesions, with the thalamus, putamen, and globus pallidus being reduced unilaterally in both groups compared with CTD (p≤0.001). Children with CDGM lesions additionally showed widespread cortical changes involving all lobes using VBM (p<0.01). Children with bilateral lesions had reduced thalamus and putamen volumes bilaterally (p<0.001). The thalamic volume was reduced bilaterally in children with unilateral lesions (p=0.004). Lesions to the PWM cause secondary changes to the deep grey matter structures similar to primary changes seen in CDGM lesions. Despite having a unilateral phenotype, grey matter changes are observed bilaterally, even in children with unilateral lesions. © 2014 Mac Keith Press.

  1. Cerebral blood flow and cerebral oxygen metabolism in thalamic hemorrhage

    International Nuclear Information System (INIS)

    Yasui, Nobuyuki; Asakura, Ken

    1987-01-01

    Cerebral blood flow (CBF), cerebral oxygen consumption (CMRO 2 ), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were studied in 20 cases of thalamic hemorrhage using positron CT and 15 O labeled gas steady-state inhalation method. CBF reduction was limited around the thalamus in the small sized hematoma. CBF were significantly diminished in the mean cortical, parietal, temporal, basal ganglia and thalamic area ipsilateral and cerebellar cortex contralateral to the medium sized hematoma. There was bilateral and diffuse CBF reduction in the large sized hematoma which was caused by increased intracranial pressure. CMRO 2 value were similary changed as CBF. OEF change showed within normal limit. Diffuse CBV reduction was observed in the large sized hematoma. This reduction was the result of decreased vascular bed caused by mass effect of the hematoma and hydrocephalus. Effect of surgical treatment such as ventricular drainage and hematoma evacuation were also discussed in correlation to CBF in some case using positron and single photon ECT. (author)

  2. Effect of fasting and different diets on 14C incorporation from U-14C glucose into glycogen and carbon dioxide by cerebral cortical slices of rats

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Sinha, A.P.; Suraiya, A.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    There are some reports regarding change in the glycogen level due to fasting. Here an attempt is made by keeping the albino rats under fasting or feeding different diets on the rate of 14 C incorporation into glycogen and carbon dioxide from U- 14 C glucose. Our study reveals that the above conditions do not alter any significant change in the glycogen and carbon dioxide in the cerebral cortical slices of albino rats. (author). 8 refs., 1 tab

  3. Adenomatous polyposis coli is required for early events in the normal growth and differentiation of the developing cerebral cortex

    Directory of Open Access Journals (Sweden)

    Price David J

    2009-01-01

    Full Text Available Abstract Background Adenomatous polyposis coli (Apc is a large multifunctional protein known to be important for Wnt/β-catenin signalling, cytoskeletal dynamics, and cell polarity. In the developing cerebral cortex, Apc is expressed in proliferating cells and its expression increases as cells migrate to the cortical plate. We examined the consequences of loss of Apc function for the early development of the cerebral cortex. Results We used Emx1Cre to inactivate Apc specifically in proliferating cerebral cortical cells and their descendents starting from embryonic day 9.5. We observed reduction in the size of the mutant cerebral cortex, disruption to its organisation, and changes in the molecular identity of its cells. Loss of Apc leads to a decrease in the size of the proliferative pool, disrupted interkinetic nuclear migration, and increased apoptosis. β-Catenin, pericentrin, and N-cadherin proteins no longer adopt their normal high concentration at the apical surface of the cerebral cortical ventricular zone, indicating that cell polarity is disrupted. Consistent with enhanced Wnt/β-catenin signalling resulting from loss of Apc we found increased levels of TCF/LEF-dependent transcription and expression of endogenous Wnt/β-catenin target genes (Axin2 (conductin, Lef1, and c-myc in the mutant cerebral cortex. In the Apc mutant cerebral cortex the expression of transcription factors Foxg1, Pax6, Tbr1, and Tbr2 is drastically reduced compared to normal and many cells ectopically express Pax3, Wnt1, and Wt1 (but not Wnt2b, Wnt8b, Ptc, Gli1, Mash1, Olig2, or Islet1. This indicates that loss of Apc function causes cerebral cortical cells to lose their normal identity and redirect to fates normally found in more posterior-dorsal regions of the central nervous system. Conclusion Apc is required for multiple aspects of early cerebral cortical development, including the regulation of cell number, interkinetic nuclear migration, cell polarity, and

  4. Preliminary studies of regional cerebral blood flow changes in patients with leukoaraiosis

    International Nuclear Information System (INIS)

    Li Yaming; Ren Yan; He Qiu

    1997-01-01

    PURPOSE: To investigate changes of regional cerebral blood flow (rCBF) in leukoaraiosis (LA) lesion and cortical regions and analyse the relation between rCBF changes and dementia. METHODS: Regional cerebral blood flow perfusion imaging with SPECT was performed in 49 patients with subcortical multiple cerebral infarction, including 24 cases company LA [LA(+)], 25 cases not company LA[LA(-)] and 10 normal subjects. The relative analysis was made between rCBF changes and cognitive scores. RESULTS: Compared the LA(+) with control, the rCBFs in frontal, parietal, temporal cortexes and LA lesion significantly decreased (P<0.05). The rCBF of frontal, parietal cortexes and LA lesions was also significantly decreased (P<0.05) compared with LA(-) groups. The cognitive scores were significantly related with rCBF changes in frontal cortex and LA lesion (r = 0.765, P<0.01 and r = 0.439, P<0.05). CONCLUSION: In patients with subcortical multiple cerebral infarction company LA lesion, there were extensive ischemic hypoperfusion changes in the cortical regions and LA lesion, which may response to decreased cerebral function and had certain relationship with dementia. The examination with SPECT cerebral blood flow perfusion imaging had unique advantage and value

  5. Bilateral Cerebellar Cortical Dysplasia without Other Malformations: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Seok; Ahn Kook Jin; Kim, Jee Young; Lee, Sun Jin; Park, Jeong Mi [Catholic University Yeouido St. Mary' s Hospital, College of Medicine, Seoul (Korea, Republic of)

    2010-06-15

    Recent advances in MRI have revealed congenital brain malformations and subtle developmental abnormalities of the cerebral and cerebellar cortical architecture. Typical cerebellar cortical dysplasia as a newly categorized cerebellar malformation, has been seen in patients with Fukuyama congenital muscular dystrophy. Cerebellar cortical dysplasia occurs at the embryonic stage and is often observed in healthy newborns. It is also incidentally and initially detected in adults without symptoms. To the best of our knowledge, cerebellar dysplasia without any related disorders is very rare. We describe the MRI findings in one patient with disorganized foliation of both cerebellar hemispheres without a related disorder or syndrome

  6. Detection of viable cortical neurons using benzodiazepine receptor imaging after reversible focal ischaemia in rats: comparison with regional cerebral blood flow

    International Nuclear Information System (INIS)

    Watanabe, Yoshiyuki; Nakano, Takayuki; Yutani, Kenji; Nishimura, Hiroshi; Nishimura, Tsunehiko; Kusuoka, Hideo; Nakamura, Hironobu

    2000-01-01

    To elucidate the utility of benzodiazepine receptor imaging for the detection of viable cortical neurons, dual-tracer autoradiography using iodine-125 iomazenil (IMZ) and iodine-123 N-isopropyl-4-iodoamphetamine (IMP) was performed in a model of reversible focal ischaemia during the acute and subacute phases. The right middle cerebral artery of anaesthetized rats was occluded for 60 min using an intraluminal filament and reperfused. In the acute phase study, 125 I-IMZ (370 kBq) was injected via the femoral vein at 2 h after reperfusion, and 123 I-IMP (37 MBq) was injected at 50 min post-injection. Rats were sacrificed 10 min after the injection of 123 I-IMP. In the subacute phase study, the same procedure was performed at 5 days after reperfusion. In the acute phase, the IMP uptake was significantly decreased in almost all areas of the lesioned hemisphere, an exception being the cerebellum; however, the IMZ uptake was significantly decreased only in ischaemic cores. The discrepancy between IMZ and IMP uptake was observed in the lateral neocortex and the lateral caudate putamen (CPu), which were most frequently damaged in this ischaemic model. In the subacute phase, the IMZ uptake in lesioned rats was significantly decreased only in the parietal lobe and hippocampus, though the IMP uptake was decreased in many regions of lesioned hemispheres (the frontal, parietal cortex, CPu, hippocampus and thalamus). Histopathological findings indicated that both the IMP and the IMZ uptake was markedly decreased in necrotic areas. Although the IMP uptake was significantly decreased in the ischaemic areas, the IMZ uptake was maintained in these areas. These results suggest that benzodiazepine receptor imaging is superior to regional cerebral blood flow imaging for the detection of viable cortical neurons in both the acute and subacute phases of ischaemia. (orig.)

  7. Detection of viable cortical neurons using benzodiazepine receptor imaging after reversible focal ischaemia in rats: comparison with regional cerebral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshiyuki [Dept. of Radiology, Osaka National Hospital (Japan); Nakano, Takayuki; Yutani, Kenji; Nishimura, Hiroshi; Nishimura, Tsunehiko [Div. of Tracer Kinetics, Osaka University Medical School (Japan); Kusuoka, Hideo [Clinical Research Institute, Osaka National Hospital (Japan); Nakamura, Hironobu [Dept. of Radiology, Osaka University Medical School (Japan)

    2000-03-01

    To elucidate the utility of benzodiazepine receptor imaging for the detection of viable cortical neurons, dual-tracer autoradiography using iodine-125 iomazenil (IMZ) and iodine-123 N-isopropyl-4-iodoamphetamine (IMP) was performed in a model of reversible focal ischaemia during the acute and subacute phases. The right middle cerebral artery of anaesthetized rats was occluded for 60 min using an intraluminal filament and reperfused. In the acute phase study, {sup 125}I-IMZ (370 kBq) was injected via the femoral vein at 2 h after reperfusion, and {sup 123}I-IMP (37 MBq) was injected at 50 min post-injection. Rats were sacrificed 10 min after the injection of {sup 123}I-IMP. In the subacute phase study, the same procedure was performed at 5 days after reperfusion. In the acute phase, the IMP uptake was significantly decreased in almost all areas of the lesioned hemisphere, an exception being the cerebellum; however, the IMZ uptake was significantly decreased only in ischaemic cores. The discrepancy between IMZ and IMP uptake was observed in the lateral neocortex and the lateral caudate putamen (CPu), which were most frequently damaged in this ischaemic model. In the subacute phase, the IMZ uptake in lesioned rats was significantly decreased only in the parietal lobe and hippocampus, though the IMP uptake was decreased in many regions of lesioned hemispheres (the frontal, parietal cortex, CPu, hippocampus and thalamus). Histopathological findings indicated that both the IMP and the IMZ uptake was markedly decreased in necrotic areas. Although the IMP uptake was significantly decreased in the ischaemic areas, the IMZ uptake was maintained in these areas. These results suggest that benzodiazepine receptor imaging is superior to regional cerebral blood flow imaging for the detection of viable cortical neurons in both the acute and subacute phases of ischaemia. (orig.)

  8. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography

    International Nuclear Information System (INIS)

    Foster, N.L.; Gilman, S.; Berent, S.; Morin, E.M.; Brown, M.B.; Koeppe, R.A.

    1988-01-01

    Progressive supranuclear palsy (PSP) is characterized by supranuclear palsy of gaze, axial dystonia, bradykinesia, rigidity, and a progressive dementia. Pathological changes in this disorder are generally restricted to subcortical structures, yet the type and range of cognitive deficits suggest the involvement of many cerebral regions. We examined the extent of functional impairment to cerebral cortical and subcortical structures as measured by the level of glucose metabolic activity at rest. Fourteen patients with PSP were compared to 21 normal volunteers of similar age using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose metabolism was reduced in the caudate nucleus, putamen, thalamus, pons, and cerebral cortex, but not in the cerebellum in the patients with PSP as compared to the normal subjects. Analysis of individual brain regions revealed significant declines in cerebral glucose utilization in most regions throughout the cerebral cortex, particularly those in the superior half of the frontal lobe. Declines in the most affected regions of cerebral cortex were greater than those in any single subcortical structure. Although using conventional neuropathological techniques the cerebral cortex appears to be unaffected in PSP, significant and pervasive functional impairments in both cortical and subcortical structures are present. These observations help to account for the constellation of cognitive symptoms in individual patients with PSP and the difficulty encountered in identifying a characteristic psychometric profile for this group of patients

  9. Syllabic discrimination in premature human infants prior to complete formation of cortical layers

    OpenAIRE

    Mahmoudzadeh, Mahdi; Dehaene-Lambertz, Ghislaine; Fournier, Marc; Kongolo, Guy; Goudjil, Sabrina; Dubois, Jessica; Grebe, Reinhard; Wallois, Fabrice

    2013-01-01

    The ontogeny of linguistic functions in the human brain remains elusive. Although some auditory capacities are described before term, whether and how such immature cortical circuits might process speech are unknown. Here we used functional optical imaging to evaluate the cerebral responses to syllables at the earliest age at which cortical responses to external stimuli can be recorded in humans (28- to 32-wk gestational age). At this age, the cortical organization in layers is not completed. ...

  10. Cerebral CT appearances of toxic encephalopathy of tetramine

    International Nuclear Information System (INIS)

    Zheng Wenlong; Wu Aiqin; Xu Chongyong; Ying Binyu; Hong Ruizhen

    2003-01-01

    Objective: To investigate the cerebral CT appearances of toxic encephalopathy of tetramine and improve the recognition on this disease. Methods: Four cases of toxic encephalopathy of tetramine were collected and their cerebral CT appearances were retrospectively analyzed. Results: Cerebral CT appearances in acute phase (within 8 days): (1) cerebral edema in different degree. CT abnormalities consisted of cortical hypodensities and complete loss of gray-white matter differentiation. The CT value were in 11-13 HU, and to be watery density in serious case, (2) subarachnoid hemorrhage. It demonstrated the signs of poisoning hypoxic ischemic encephalopathy in chronic phase. Conclusion: The cerebral CT appearances of toxic encephalopathy of tetramine had some character in acute phase and it can predict the serious degree of intoxication, but there was no characteristic findings in chronic phase

  11. Cerebral small-resistance artery structure and cerebral blood flow in normotensive subjects and hypertensive patients

    Energy Technology Data Exchange (ETDEWEB)

    De Ciuceis, Carolina; Porteri, Enzo; Rizzoni, Damiano; Boari, Gianluca E.M.; Rosei, Enrico Agabiti [University of Brescia, Clinica Medica, Department of Clinical and Experimental Sciences, Brescia (Italy); Cornali, Claudio; Mardighian, Dikran; Fontanella, Marco M. [University of Brescia, Section of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); Pinardi, Chiara [Spedali Civili, Medical Physics Unit, Brescia (Italy); University of Brescia, Section of Neuroradiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); Rodella, Luigi F.; Rezzani, Rita [University of Brescia, Section of Anatomy, Department of Clinical and Experimental Sciences, Brescia (Italy); Gasparotti, Roberto [University of Brescia, Section of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); University of Brescia, Section of Neuroradiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy)

    2014-12-15

    The aim of this study was to prospectively investigate whether the structure of cerebral small-resistance arteries is related to cerebral perfusion parameters as measured with dynamic susceptibility-weighted contrast magnetic resonance imaging (DSC-MRI) in a selected cohort of hypertensive and normotensive patients. Ten hypertensive and 10 normotensive patients were included in the study. All patients underwent neurosurgical intervention for an intracranial tumor and were investigated with DSC-MRI at 1.5 T. Cerebral small-resistance arteries were dissected from a small portion of morphologically normal cerebral tissue and mounted on an isometric myograph for the measurement of the media-to-lumen (M/L) ratio. A quantitative assessment of cerebral blood flow (CBF) and volume (CBV) was performed with a region-of-interest approach. Correlation coefficients were calculated for normally distributed variables. The institutional review board approved the study, and informed consent was obtained from all patients. Compared with normotensive subjects, hypertensive patients had significantly lower regional CBF (mL/100 g/min) in the cortical grey matter (55.63 ± 1.90 vs 58.37 ± 2.19, p < 0.05), basal ganglia (53.34 ± 4.39 vs 58.22. ± 4.33, p < 0.05), thalami (50.65 ± 3.23 vs 57.56 ± 4.45, p < 0.01), subcortical white matter (19.32 ± 2.54 vs 22.24 ± 1.9, p < 0.05), greater M/L ratio (0.099 ± 0.013 vs 0.085 ± 0.012, p < 0.05), and lower microvessel density (1.66 ± 0.67 vs 2.52 ± 1.28, p < 0.05). A statistically significant negative correlation was observed between M/L ratio of cerebral arteries and CBF in the cortical grey matter (r = -0.516, p < 0.05), basal ganglia (r = -0.521, p < 0.05), thalami (r = -0.527 p < 0.05), and subcortical white matter (r = -0.612, p < 0.01). Our results indicate that microvascular structure might play a role in controlling CBF, with possible clinical consequences. (orig.)

  12. Altered low frequency oscillations of cortical vessels in patients with cerebrovascular occlusive disease – a NIRS study

    DEFF Research Database (Denmark)

    Phillip, Dorte; Iversen, Helle K; Schytz, Henrik W

    2013-01-01

    Analysis of cerebral autoregulation by measuring spontaneous oscillations in the low frequency spectrum of cerebral cortical vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease and stroke. Near infrared spectroscopy (NIRS...

  13. Preserved regional cerebral blood flow in the occipital cortices, brainstem, and cerebellum of patients with V180I-129M genetic Creutzfeldt-Jakob disease in serial SPECT studies.

    Science.gov (United States)

    Hayashi, Yuichi; Yoshikura, Nobuaki; Takekoshi, Akira; Yamada, Megumi; Asano, Takahiko; Kimura, Akio; Satoh, Katsuya; Kitamoto, Tetsuyuki; Inuzuka, Takashi

    2016-11-15

    Creutzfeldt-Jakob disease (CJD) with a causative point mutation of valine to isoleucine at codon 180 (V180I) is one of the major types of genetic CJD (gCJD) in Japan. V180I gCJD is rarely accompanied by a family history, and its clinical characteristics include late-onset, long disease duration, and edematous cortical hyperintensity in diffusion, fluid attenuate inversion and T2-weighted MRI. We performed serial imaging with single-photon emission computed tomography (SPECT) and MRI in three V180I gCJD cases over long-term observation. All cases were characterized by progressive dementia, parkinsonism, and the absence of cerebellar signs or cortical visual dysfunction in their clinical courses. Moreover, during the end-stage, SPECT findings showed preserved regional cerebral blood flow (rCBF) in the occipital cortices, brainstem, and cerebellum. Similarly, no apparent atrophy or increased signal intensities were observed in MRI images of the occipital and cerebellar regions. In conclusion, we report a decrease in rCBF predominantly in the frontal and temporal cortices during the early-stage, which became more widespread as the disease progressed. Importantly, rCBF was preserved in the occipital cortices, brainstem, and cerebellar regions until the end-stage, which may be distinct to V180I gCJD cases. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cerebral cortices of East african early hominids.

    Science.gov (United States)

    Falk, D

    1983-09-09

    An endocast of the frontal lobe of a reconstructed skull, which is approximately 2 million years old, from the Koobi Fora region of Kenya appears to represent the oldest human-like cortical sulcal pattern in the fossil record, while the endocast from another skull from the same region produces an endocast that appears apelike in its frontal lobe and similar to endocasts from earlier South African australopithecines. New analysis of paleoanatomical evidence thus indicates that at least two taxa of early hominids coexisted in East Africa.

  15. APP Mutations in Cerebral Amyloid Angiopathy with or without Cortical Calcifications: Report of Three Families and a Literature Review.

    Science.gov (United States)

    Sellal, François; Wallon, David; Martinez-Almoyna, Laurent; Marelli, Cecilia; Dhar, Abhinav; Oesterlé, Héléne; Rovelet-Lecrux, Anne; Rousseau, Stéphane; Kourkoulis, Christina E; Rosand, Jon; DiPucchio, Zora Y; Frosch, Matthew; Gombert, Claudine; Audoin, Bertrand; Miné, Manuèle; Riant, Florence; Frebourg, Thierry; Hannequin, Didier; Campion, Dominique; Greenberg, Steven M; Tournier-Lasserve, Elisabeth; Nicolas, Gaël

    2017-01-01

    Specific APP mutations cause cerebral amyloid angiopathy (CAA) with or without Alzheimer's disease (AD). We aimed at reporting APP mutations associated with CAA, describe the clinical, cerebrospinal fluid AD biomarkers, and neuroimaging features, and compare them with the data from the literature. We performed a retrospective study in two French genetics laboratories by gathering all clinical and neuroimaging data from patients referred for a genetic diagnosis of CAA with an age of onset before 66 years and fulfilling the other Boston revised criteria. We studied the segregation of mutations in families and performed a comprehensive literature review of all cases reported with the same APP mutation. We screened APP in 61 unrelated French patients. Three mutations, located in the Aβ coding region, were detected in five patients from three families: p.Ala692Gly (Flemish), p.Glu693Lys (Italian), and p.Asp694Asn (Iowa). Patients exhibited CAA and progressive cognitive impairment associated with cortical calcifications in the Iowa and Italian mutation carriers, but not the patient carrying the Flemish mutation. This is the first evidence of cortical calcification in patients with an APP mutation other than the Iowa mutation. We discuss the radiological, cerebrospinal fluid, and clinical phenotype of patients carrying these mutations in the literature.

  16. Abnormality of cerebral cortical glucose metabolism in temporal lobe epilepsy with cognitive function impairment

    International Nuclear Information System (INIS)

    Bang-Hung Yang; Tsung-Szu Yeh; Tung-Ping Su; Jyh-Cheng Chen; Ren-Shyan Liu

    2004-01-01

    Objective: People with epilepsy commonly report having problems with their memory. Many indicate that memory difficulties significantly hinder their functioning at work, in school, and at home. Besides, some studies have reported that memory performance as a prognostic factor is of most value in patients with risk of refractory epilepsy and when used in a multidisciplinary setting. However, the cerebral cortical areas involving memory impairment in epilepsy is still unknown. The purpose of this study was to access changes of cerebral glucose metabolism of epilepsy patients using [F-18] fluorodeoxyglucose positron emission tomography (FDG PET). Method: Nine temporal lobe epilepsy patients were studied. Each patient was confirmed with lesions in right mesial temporal lobe by MRI, PET and EEG. Serial cognition function tests were performed. Regional cerebral glucose metabolism (rCMRglc) was measured by PET at 45 minutes after injection of 370 MBq of FDG. Parametric images were generated by grand mean scaling each scan to 50. The images were then transformed into standard stereotactic space. Statistical parametric mapping (SPM2) was applied to find the correlations between verbal memory, figure memory, perception intelligent quotation (PIQ) and rCMRglc in epilepsy patients. The changes of rCMRglc were significant if corrected p value was less than 0.05. Results: There was no significant relationship between figure memory score and verbal memory score. FDG-PET scan showed changes of rCMRglc positive related with verbal memory score in precentral gyms of right frontal lobe (Brodmann area 4, corrected p < 0.001, voxel size 240) and cingulated gyms of right limbic lobe (Brodmann area 32, corrected p=0.002, voxel size 143). No negative relationship was demonstrable between verbal memory and rCMRglc in this study. Besides, significanfiy positive correlation between figure memory was shown in cuneus of right occipital lobe (Brodmann area 18, corrected p < 0.001, voxel size

  17. Public health issues related to infection in pregnancy and cerebral palsy

    DEFF Research Database (Denmark)

    Schendel, Diana E.; Schuchat, Anne; Thorsen, Poul

    2002-01-01

    Cerebral palsy is the most common neuromotor developmental disability of childhood, affecting as many as 8,000 to 12,000 children born in the U.S. each year (corresponding to a prevalence rate of between 2 and 3 per 1000 children). Recent improvements in neonatal care have not resulted in a decline...... in the overall prevalence of cerebral palsy and, in fact, greater numbers of very preterm/very low birth weight infants are surviving with cerebral palsy and other developmental problems. Infection in pregnancy may be an important cause of the disorder. In preterm infants, there appears to be about a 2-fold...... increased risk for cerebral palsy from chorioamnionitis, and in term infants the estimated increased risk is about 4-fold. Provisionally, chorioamnionitis might account for 12% of spastic cerebral palsy in term infants and 28% of cerebral palsy in preterm infants. Studies of biochemical markers of fetal...

  18. Comparative study of muscular tonus in spastic tetra paretic cerebral palsy in children with predominantly cortical and subcortical lesions in computerized tomography of the skull

    International Nuclear Information System (INIS)

    Iwabe, Cristina; Piovesana, Ana Maria Sedrez Gonzaga

    2003-01-01

    The objective was to compare distribution and intensity of muscular tonus in spastic tetra paretic cerebral palsy (CP), correlating the clinical data with lesion location in the central nervous system. Twelve children aged two to four years old with predominantly cortical lesions (six children) and subcortical lesions (six children) were included. The tonus was analyzed in the upper (UULL) and lower limbs (LLLL) based on Durigon and Piemonte protocol. The result showed that there was no significant difference regarding tonus intensity and distribution in the UULL and LLLL in both groups. Comparing the upper and lower limbs of subjects in the same group, the LLLL presented more asymmetry and higher tonus intensity than the UULL. It was concluded that in this study children with CP as a result of predominantly cortical or subcortical lesions present a similar deficit in tonus modulation, causing a symmetric and homogeneous distribution of hypertonicity, which is predominant in the LLLL. (author)

  19. Pathogenesis of lober intracerebral hemorrhage related to cerebral amyloid angiopathy

    International Nuclear Information System (INIS)

    Sakai, Naoto; Namba, Hiroki; Miura, Katsutoshi; Baba, Satoshi; Isoda, Haruo; Yokoyama, Tetsuo

    2010-01-01

    Cerebral amyloid angiopathy (CAA) is an important cause of lober intracerebral hemorrhage in the elderly. Although leptomeningeal and cortical arteries with the deposition of the amyloid β-protein (Aβ) have been thought to rupture in CAA, the pathogenesis of CAA-related hemorrhage still remains obscure. We studied 10 cases of CAA according to the Boston criteria from April 2006 to July 2009 in Omaezaki Municipal Hospital. Based on clinical data, we examined the primary site of hemorrhage and hypothesized the mechanisms of bleeding. Intracerebral hematoma evacuation was performed to alleviate neurological deteriolation in 2 patients and to make diagnosis in 3 patients. The surgical specimens were pathologically examined. The characteristic MR images of CAA related hemorrhage were characterized by microbleeds, superficial siderosis, subpial or subarachnoid hemorrhage, subcortical hemorrhage and lober intracerebral hemorrhage. Chronological images obtained in 1 patient revealed that lober intracerebral hemorrhage developed from microbleed with subpial hemorrhage without subarachnoid hemorrhage in one side of the cortex in the affected facing cerebral sulci. Operative findings showed subpial and subarachnoid hemorrhages around the cortical veins on the affected cerebral sulci in all cases. Abnormal fragile vessels existed in one side of the cortex of the affected sulci but not in the other side of the cortex. Complete hamatoma evacuation was performed in 4 cases. The surgical specimens of the hematoma and the adjacent brain parenchyma were pathologically examined by tissue staining with hematoxylin-eosin and Congo red. Many vessels in subpial, subcortical and subarachnoid space along the cerebral sulci were deposited with Aβ. From these findings, we speculated that the primary hemorrhage related to CAA occurred from the cortical arteries with Aβ deposition in the subpial space along the cerebral sulci and formed a lober intracerebral hematoma. Subarachnoid

  20. Therapeutic potential of the novel hybrid molecule JM-20 against focal cortical ischemia in rats

    Directory of Open Access Journals (Sweden)

    Yanier Núñez Figueredo

    2016-08-01

    Full Text Available Context: Despite the great mortality and morbidity of stroke, treatment options remain limited. We previously showed that JM-20, a novel synthetic molecule, possessed a strong neuroprotective effect in rats subjected to transient middle cerebral artery occlusion. However, to verify the robustness of the pre-clinical neuroprotective effects of JM-20 to get good prognosis in the translation to the clinic, it is necessary to use other experimental models of brain ischemia. Aims: To evaluate the neuroprotective effects of JM-20 following the onset of permanent focal cerebral ischemia induced in rats by thermocoagulation of blood into pial blood vessels of cerebral cortices. Methods: Ischemic lesion was induced by thermocoagulation of blood into pial blood vessels of primary motor and somatosensory cortices. Behavioral performance was evaluated by the cylinder testing for a period of 2, 3 and 7 days after surgery, and was followed by histopathological study in brain cortex stained with hematoxylin- eosin. Results: Ischemic injury resulted in impaired function of the forelimb evidenced by high asymmetry punctuation, and caused histopathological alterations indicative of tissue damage at cerebral cortex. JM-20 treatment (4 and 8 mg/kg significantly decreased asymmetry scores and histological alterations with a marked preservation of cortical neurons. Conclusions: The effects of permanent brain ischemia were strongly attenuated by JM-20 administration, which expands and improves the current preclinical data of JM-20 as neuroprotector against cerebral ischemia, and strongly support the examination of its translation to the clinic to treat acute ischemic stroke.

  1. Changes in Cerebral Cortex of Children Treated for Medulloblastoma

    International Nuclear Information System (INIS)

    Liu, Arthur K.; Marcus, Karen J.; Fischl, Bruce; Grant, P. Ellen; Young Poussaint, Tina; Rivkin, Michael J.; Davis, Peter; Tarbell, Nancy J.; Yock, Torunn I.

    2007-01-01

    Purpose: Children with medulloblastoma undergo surgery, radiotherapy, and chemotherapy. After treatment, these children have numerous structural abnormalities. Using high-resolution magnetic resonance imaging, we measured the thickness of the cerebral cortex in a group of medulloblastoma patients and a group of normally developing children. Methods and Materials: We obtained magnetic resonance imaging scans and measured the cortical thickness in 9 children after treatment of medulloblastoma. The measurements from these children were compared with the measurements from age- and gender-matched normally developing children previously scanned. For additional comparison, the pattern of thickness change was compared with the cortical thickness maps from a larger group of 65 normally developing children. Results: In the left hemisphere, relatively thinner cortex was found in the perirolandic region and the parieto-occipital lobe. In the right hemisphere, relatively thinner cortex was found in the parietal lobe, posterior superior temporal gyrus, and lateral temporal lobe. These regions of cortical thinning overlapped with the regions of cortex that undergo normal age-related thinning. Conclusion: The spatial distribution of cortical thinning suggested that the areas of cortex that are undergoing development are more sensitive to the effects of treatment of medulloblastoma. Such quantitative methods may improve our understanding of the biologic effects that treatment has on the cerebral development and their neuropsychological implications

  2. PET in malformations of cortical development

    International Nuclear Information System (INIS)

    Bouilleret, V.; O'Brien, T.J.; Bouilleret, V.; Bouilleret, V.; Chiron, C.; Chiron, C.

    2009-01-01

    Within the group of malformations of cortical development, focal cortical dysplasia (FCD) are an increasingly recognized cause of intractable epilepsy that can be cured by surgery. The success of cortical resection for intractable epilepsy is highly dependent on the accurate pre-surgical delineation of the regions responsible for generating seizures. [ 18 F]-FDG PET, which images cerebral metabolism studying brain glucose uptake, is the most established functional imaging modality in the evaluation of patients with epilepsy. The aim of this article is to review [ 18 F]-FDG PET usefulness as a pre-surgical tool in the evaluation of medically refractory partial epilepsy. It has an established place in assisting in the localisation and definition of FCD in patients with no lesion, or only a subtle abnormality, on MRI. The role of FDG-PET in defining the extent of the surgical resection is still uncertain and needs to be the focus of future research. (authors)

  3. High spatial resolution magnetic resonance imaging of experimental cerebral venous thrombosis with a blood pool contrast agent

    International Nuclear Information System (INIS)

    Spuentrup, E.; Wiethoff, A.J.; Parsons, E.C.; Spangenberg, P.; Stracke, C.P.

    2010-01-01

    Purpose: The purpose of this study was to investigate the feasibility of clot visualization in small sinus and cortical veins with contrast enhanced MRA in a cerebral venous thrombosis animal model using a blood pool contrast agent, Gadofosveset, and high spatial resolution imaging. Material and methods: For induction of cerebral venous thrombosis a recently developed combined interventional and microsurgical model was used. Cerebral sinus and cortical vein thrombosis was induced in six pigs. Two further pigs died during the procedure. Standard structural, time-of-flight- and phase contrast-angiograms were followed by fast time resolved high resolution 3D MRA (4D MRA) and subsequent high spatial resolution 3D MRA in the equilibrium phase with and without addition of parallel imaging. Visualization of the clots using the different sequences was subjectively compared and contrast-to-noise ratio (CNR) was assessed. Results: In the remaining six animals the procedure and MR-imaging protocol including administration of Gadofosveset was successfully completed. The 3D high resolution MRA in the equilibrium phase without the addition of parallel imaging was superior to all the other applied MR measurement techniques in terms of visualization of the clots. Only applying this sequence bridging vein thromboses were also seen as a small filling defect with a high CNR of >18. Conclusion: Only the non-accelerated high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset allows for high-contrast visualization of very small clots in the cerebral sinus and cortical veins. Statement clinical impact: Detection of cortical vein thrombosis is of high clinical impact. Conventional MRI sequences often fail to visualize the clot. We could demonstrate that, in contrast to conventional sequences, with high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset very small clots in the cerebral sinus and

  4. Cerebral computed tomography in men with acquired immunodeficiency syndrome

    International Nuclear Information System (INIS)

    Brun, B.; Boesen, F.; Gerstoft, J.; Nielsen, J.O.; Praestholm, J.; Rigshospitalet, Copenhagen; Hvidovre Hospital; Hvidovre Hospital; Hvidovre Hospital

    1986-01-01

    Cerebral CT scannings were performed in 19 homosexual men with the acquired immunodeficiency syndrome (AIDS). Nearly half of them (9 patients) had cortical atrophy. Three patients with toxoplasmosis had cerebral pathology, in two of them with ring enhancement while the third had an ill-defined nonspecific lesion with slight heterogeneous enhancement without ring formation. Two patients with multifocal leucoencephalopathy and non-Hodgkin's lymphoma, respectively, presented non-enhancing, low attenuating lesions at CT. (orig.)

  5. Lhermitte-Duclos disease with neurofibrillary tangles in heterotopic cerebral grey matter

    Directory of Open Access Journals (Sweden)

    Daniel Rusiecki

    2016-06-01

    Full Text Available Lhermitte-Duclos disease (LDD, a disorder first described by French physicians Lhermitte and Duclos in 1920 [25], is a benign, slow growing dysplastic gangliocytoma of the cerebellum, characterized by replacement of the granule cell layer by abnormal granule and Purkinje like cells. The most frequent presenting signs and symptoms are megalocephaly, increased intracranial pressure, nausea, hydrocephalus, ataxia, gait abnormalities, and intermittent headaches, all of which are attributed to the mass effect [6,11,25]. Many cases are associated with a mutation in the phosphatase and tensin homolog or PTEN gene which is also involved in numerous otherwise unrelated central nervous system abnormalities, namely Cowden syndrome [1,6,11], autism spectrum disorder [18], cerebral cortical dysplasia [11,30] and Bannayan-Riley-Ruvalcaba syndrome [30]. The presence of cortical heterotopia has been reported in a small number of LDD cases [3,5,17,32]. We describe a unique case of LDD with cerebral cortical heterotopic grey matter containing neurofibrillary tangles.

  6. Technetium-99m HM-PAO-SPECT study of regional cerebral perfusion in early Alzheimer's disease

    International Nuclear Information System (INIS)

    Perani, D.; Di Piero, V.; Vallar, G.

    1988-01-01

    Regional cerebral perfusion was evaluated by single photon emission computed tomography (SPECT) using technetium-99m hexamethylpropyleneamine oxime ([/sup 99m/Tc]HM-PAO) in sixteen patients with Alzheimer's disease (AD) in early clinical phase and in 16 healthy elderly controls. In all patients transmission computed tomography (TCT) and/or magnetic resonance imaging (MRI) did not show focal brain abnormalities. Relative to normal subjects, AD patients showed significant reductions in cortical/cerebellar activity ratio: cortical perfusion was globally depressed with the largest reductions in frontal and posterior temporo-parietal cortices. Asymmetries of relative perfusion between cerebral hemispheres were also demonstrated when language was affected or visuospatial functions were unevenly impaired. In patients with early AD, SPECT provides functional information to be compared with clinical and psychometric data

  7. Role of hypotension in decreasing cerebral blood flow in porcine endotoxemia

    International Nuclear Information System (INIS)

    Miller, C.F.; Breslow, M.J.; Shapiro, R.M.; Traystman, R.J.

    1987-01-01

    The role of reduced arterial blood pressure (MAP) in decreasing cerebral blood flow (CBF) during endotoxemia was studied in pentobarbital-anesthetized pigs. Microspheres were used to measure regional CBF changes during MAP manipulations in animals with and without endotoxin. Endotoxin decreased MAP to 50 mmHg and decreased blood flow to the cortex and cerebellum without affecting cerebral cortical oxygen consumption (CMRo 2 ). Elevating MAP from 50 to 70 mmHg during endotoxemia with norepinephrine did not change cortical blood flow or CMRo 2 but increased cerebellar blood flow. Brain stem blood flow was not affected by endotoxin or norepinephrine. When MAP was decreased to 50 mmHg by hemorrhage without endotoxin, no change in blood flow to cortex, cerebellum, or brain stem was observed from base-line levels. These results suggest that decreased MAP below a lower limit for cerebral autoregulation does not account for the decreased CBF observed after endotoxin

  8. Transient cortical blindness following vertebral angiography in a young adult with cerebellar haemangioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Till, Viktor; Stojanovic, Sanja; Avramov, Predrag [Clinical Centre of Vojvodina, Centre of Radiology, Novi Sad (RS); Koprivsek, Katarina [Institute of Oncology, Diagnostic Imaging Department, Sremska Kamenica (RS); Vulekovic, Petar [Clinical Centre of Vojvodina, Neurosurgery Clinic, Novi Sad (RS)

    2009-11-15

    Transient cortical blindness is reported to occur in 0.3% to 1% of cerebral angiography procedures. It develops within minutes of contrast medium injection and lasts for up to several days. We report a long episode of transient cortical blindness in a 17-year-old boy with cerebellar haemangioblastoma, which started during the preoperative vertebral angiography and lasted for 5 days. CT performed 2 days after the sudden onset of bilateral visual loss showed multiple asymmetrical lesions within the brain parenchyma in the distribution of the posterior cerebral circulation. Even though the patient's vision was completely restored 5 days after angiography, repeat MRI performed 2 months after angiography showed improvement but with residual lesions in the thalami, cerebellum and occipital lobe. (orig.)

  9. Pronounced prefronto-temporal cortical thinning in schizophrenia: Neuroanatomical correlate of suicidal behavior?

    Science.gov (United States)

    Besteher, Bianca; Wagner, Gerd; Koch, Kathrin; Schachtzabel, Claudia; Reichenbach, Jürgen R; Schlösser, Ralf; Sauer, Heinrich; Schultz, C Christoph

    2016-10-01

    Schizophrenia is characterized by increased mortality for which suicidality is the decisive factor. An analysis of cortical thickness and folding to further elucidate neuroanatomical correlates of suicidality in schizophrenia has not yet been performed. We searched for relevant brain regions with such differences between patients with suicide-attempts, patients without any suicidal thoughts and healthy controls. 37 schizophrenia patients (14 suicide-attempters and 23 non-suicidal) and 50 age- and gender-matched healthy controls were included. Suicidality was documented through clinical interview and chart review. All participants underwent T1-weighted MRI scans. Whole brain node-by-node cortical thickness and folding were estimated (FreeSurfer Software) and compared. Additionally a three group comparison for prefrontal regions-of-interest was performed in SPSS using a multifactorial GLM. Compared with the healthy controls patients showed a typical pattern of cortical thinning in prefronto-temporal regions and altered cortical folding in the right medial temporal cortex. Patients with suicidal behavior compared with non-suicidal patients demonstrated pronounced (psuicidal patients with non-suicidal patients significant (psuicidal behaviour in schizophrenia. We identified cortical thinning in a network strongly involved in regulation of impulsivity, emotions and planning of behaviour in suicide attempters, which might lead to neuronal dysregulation in this network and consequently to a higher risk of suicidal behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cortical Amyloid Beta in Cognitively Normal Elderly Adults is Associated with Decreased Network Efficiency within the Cerebro-Cerebellar System.

    Science.gov (United States)

    Steininger, Stefanie C; Liu, Xinyang; Gietl, Anton; Wyss, Michael; Schreiner, Simon; Gruber, Esmeralda; Treyer, Valerie; Kälin, Andrea; Leh, Sandra; Buck, Alfred; Nitsch, Roger M; Prüssmann, Klaas P; Hock, Christoph; Unschuld, Paul G

    2014-01-01

    Deposition of cortical amyloid beta (Aβ) is a correlate of aging and a risk factor for Alzheimer disease (AD). While several higher order cognitive processes involve functional interactions between cortex and cerebellum, this study aims to investigate effects of cortical Aβ deposition on coupling within the cerebro-cerebellar system. We included 15 healthy elderly subjects with normal cognitive performance as assessed by neuropsychological testing. Cortical Aβ was quantified using (11)carbon-labeled Pittsburgh compound B positron-emission-tomography late frame signals. Volumes of brain structures were assessed by applying an automated parcelation algorithm to three dimensional magnetization-prepared rapid gradient-echo T1-weighted images. Basal functional network activity within the cerebro-cerebellar system was assessed using blood-oxygen-level dependent resting state functional magnetic resonance imaging at the high field strength of 7 T for measuring coupling between cerebellar seeds and cerebral gray matter. A bivariate regression approach was applied for identification of brain regions with significant effects of individual cortical Aβ load on coupling. Consistent with earlier reports, a significant degree of positive and negative coupling could be observed between cerebellar seeds and cerebral voxels. Significant positive effects of cortical Aβ load on cerebro-cerebellar coupling resulted for cerebral brain regions located in inferior temporal lobe, prefrontal cortex, hippocampus, parahippocampal gyrus, and thalamus. Our findings indicate that brain amyloidosis in cognitively normal elderly subjects is associated with decreased network efficiency within the cerebro-cerebellar system. While the identified cerebral regions are consistent with established patterns of increased sensitivity for Aβ-associated neurodegeneration, additional studies are needed to elucidate the relationship between dysfunction of the cerebro-cerebellar system and risk for AD.

  11. Abnormalities of cortical structures in adolescent-onset conduct disorder.

    Science.gov (United States)

    Jiang, Y; Guo, X; Zhang, J; Gao, J; Wang, X; Situ, W; Yi, J; Zhang, X; Zhu, X; Yao, S; Huang, B

    2015-12-01

    Converging evidence has revealed both functional and structural abnormalities in adolescents with early-onset conduct disorder (EO-CD). The neurological abnormalities underlying EO-CD may be different from that of adolescent-onset conduct disorder (AO-CD) patients. However, the cortical structure in AO-CD patients remains largely unknown. The aim of the present study was to investigate the cortical alterations in AO-CD patients. We investigated T1-weighted brain images from AO-CD patients and age-, gender- and intelligence quotient-matched controls. Cortical structures including thickness, folding and surface area were measured using the surface-based morphometric method. Furthermore, we assessed impulsivity and antisocial symptoms using the Barratt Impulsiveness Scale (BIS) and the Antisocial Process Screening Device (APSD). Compared with the controls, we found significant cortical thinning in the paralimbic system in AO-CD patients. For the first time, we observed cortical thinning in the precuneus/posterior cingulate cortex (PCC) in AO-CD patients which has not been reported in EO-CD patients. Prominent folding abnormalities were found in the paralimbic structures and frontal cortex while diminished surface areas were shown in the precentral and inferior temporal cortex. Furthermore, cortical thickness of the paralimbic structures was found to be negatively correlated with impulsivity and antisocial behaviors measured by the BIS and APSD, respectively. The present study indicates that AO-CD is characterized by cortical structural abnormalities in the paralimbic system, and, in particular, we highlight the potential role of deficient structures including the precuneus and PCC in the etiology of AO-CD.

  12. Neuregulin 3 Mediates Cortical Plate Invasion and Laminar Allocation of GABAergic Interneurons

    Directory of Open Access Journals (Sweden)

    Giorgia Bartolini

    2017-01-01

    Full Text Available Neural circuits in the cerebral cortex consist of excitatory pyramidal cells and inhibitory interneurons. These two main classes of cortical neurons follow largely different genetic programs, yet they assemble into highly specialized circuits during development following a very precise choreography. Previous studies have shown that signals produced by pyramidal cells influence the migration of cortical interneurons, but the molecular nature of these factors has remained elusive. Here, we identified Neuregulin 3 (Nrg3 as a chemoattractive factor expressed by developing pyramidal cells that guides the allocation of cortical interneurons in the developing cortical plate. Gain- and loss-of-function approaches reveal that Nrg3 modulates the migration of interneurons into the cortical plate in a process that is dependent on the tyrosine kinase receptor ErbB4. Perturbation of Nrg3 signaling in conditional mutants leads to abnormal lamination of cortical interneurons. Nrg3 is therefore a critical mediator in the assembly of cortical inhibitory circuits.

  13. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    International Nuclear Information System (INIS)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona; Husain, Nuzhat; Srivastava, Savita; Rathore, Ram K.S.; Sarma, Manoj K.; Malik, Gyanendra K.; Das, Vinita; Pradhan, Mandakini; Pandey, Chandra M.; Narayana, Ponnada A.

    2009-01-01

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA ≤ 28 weeks for frontal cortical region and GA≤22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  14. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  15. Subcortical aphasia and cerebral blood flow using SPECT

    International Nuclear Information System (INIS)

    Celsis, P.; Puel, M.; Demonet, J.P.; Bonafe, A.; Cardebat, D.; Viallard, G.; Pujol, T.; Marc-Vergnes, J.P.; Rascol, A.

    1985-01-01

    Possible cerebral blood flow (CBF) alteration in subcortical aphasia was investigated by single-photon emission tomography (SPECT). The results confirm the capsulo-striatal lesions and also point to the high rate of ipsilateral thalamic and cortical dysfunction. (author). 8 refs.; 1 fig.; 1 tab

  16. Visuospatial Functioning in Cerebral Amyloid Angiopathy : A Pilot Study

    NARCIS (Netherlands)

    Valenti, Raffaella; Charidimou, Andreas; Xiong, Li; Boulouis, Gregoire; Fotiadis, Panagiotis; Ayres, Alison; Riley, Grace; Kuijf, Hugo J.; Reijmer, Yael D.; Pantoni, Leonardo; Gurol, M. Edip; Davidsdottir, Sigurros; Greenberg, Steven M.; Viswanathan, Anand

    2017-01-01

    Cerebral amyloid angiopathy (CAA) is a contributor to cognitive impairment in the elderly. We hypothesized that the posterior cortical predilection of CAA would cause visual-processing impairment. We systematically evaluated visuospatial abilities in 22 non-demented CAA patients. Neurocognitive

  17. Aging and Cortical Mechanisms of Speech Perception in Noise

    Science.gov (United States)

    Wong, Patrick C. M.; Jin, James Xumin; Gunasekera, Geshri M.; Abel, Rebekah; Lee, Edward R.; Dhar, Sumitrajit

    2009-01-01

    Spoken language processing in noisy environments, a hallmark of the human brain, is subject to age-related decline, even when peripheral hearing might be intact. The present study examines the cortical cerebral hemodynamics (measured by fMRI) associated with such processing in the aging brain. Younger and older subjects identified single words in…

  18. The association of cognitive impairment with gray matter atrophy and cortical lesion load in clinically isolated syndrome.

    Science.gov (United States)

    Diker, Sevda; Has, Arzu Ceylan; Kurne, Aslı; Göçmen, Rahşan; Oğuz, Kader Karlı; Karabudak, Rana

    2016-11-01

    Multiple sclerosis can impair cognition from the early stages and has been shown to be associated with gray matter damage in addition to white matter pathology. To investigate the profile of cognitive impairment in clinically isolated syndrome (CIS), and the contribution of cortical inflammation, cortical and deep gray matter atrophy, and white matter lesions to cognitive decline. Thirty patients with clinically isolated syndrome and twenty demographically- matched healthy controls underwent neuropsychologic assessment through the Rao Brief Repeatable Battery, and brain magnetic resonance imaging with double inversion recovery using a 3T scanner. Patients with clinically isolated syndrome performed significantly worse than healthy controls on tests that evaluated verbal memory, visuospatial learning and memory, and verbal fluency. Significant deep gray matter atrophy was found in the patients but cortical volume was not lower than the controls. Visual memory tests correlated with the volume of the hippocampus, cerebral white matter and deep gray matter structures and with cerebellar cortical atrophy. Cortical or white matter lesion load did not affect cognitive test results. In our patients with CIS, it was shown that cognitive impairment was mainly related to cerebral white matter, cerebellar cortical and deep gray matter atrophy, but not with cortical inflammation, at least in the early stage of disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Murine model of acute myocarditis and cerebral cortical neuron edema induced by coxsackievirus B4

    Directory of Open Access Journals (Sweden)

    Zhao-Peng Dong

    2018-01-01

    Full Text Available Globally, coxsackievirus B4 (CV-B4 has been continuously isolated and evidence suggests an association with the development of pancreatitis and type I diabetes. In addition, CV-B4 is also associated with myocarditis and severe central nervous system (CNS complications, which remain poorly studied and understood. In the present study, we established an ICR mouse model of CV-B4 infection and examined whether CV-B4 infection resulted in a predisposition to myocarditis and CNS infection. We found high survival in both the treatment and control group, with no significant differences in clinical outcomes observed. However, pathological lesions were evident in both brain and heart tissue of the CV-B4-infected mice. In addition, high viral loads were found in the neural and cardiac tissues as early as 2 d postinfection. Expressions of IFN-γ and IL-6 in sera were significantly higher in CV-B4-infected mice compared to uninfected negative controls, suggesting the involvement of these cytokines in the development of histopathological lesions. Our murine model successfully reproduced the acute myocarditis and cerebral cortical neuron edema induced by CV-B4, and may be useful for the evaluation of vaccine candidates and potential antivirals against CV-B4 infection.

  20. Precuneus proportions and cortical folding: A morphometric evaluation on a racially diverse human sample.

    Science.gov (United States)

    Bruner, Emiliano; Pereira-Pedro, Ana Sofia; Chen, Xu; Rilling, James K

    2017-05-01

    Recent analyses have suggested that the size and proportions of the precuneus are remarkably variable among adult humans, representing a major source of geometrical difference in midsagittal brain morphology. The same area also represents the main midsagittal brain difference between humans and chimpanzees, being more expanded in our species. Enlargement of the upper parietal surface is a specific feature of Homo sapiens, when compared with other fossil hominids, suggesting the involvement of these cortical areas in recent modern human evolution. Here, we provide a survey on midsagittal brain morphology by investigating whether precuneus size represents the largest component of variance within a larger and racially diverse sample of 265 adult humans. Additionally, we investigate the relationship between precuneus shape variation and folding patterns. Precuneus proportions are confirmed to be a major source of human brain variation even when racial variability is considered. Larger precuneus size is associated with additional precuneal gyri, generally in its anterior district. Spatial variation is most pronounced in the dorsal areas, with no apparent differences between hemispheres, between sexes, or among different racial groups. These dorsal areas integrate somatic and visual information together with the lateral elements of the parietal cortex, representing a crucial node for self-centered mental imagery. The histological basis and functional significance of this intra-specific variation in the upper precuneus remains to be evaluated. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Cortical hypometabolism and its recovery following nucleus basalis lesions in baboons: a PET study

    International Nuclear Information System (INIS)

    Kiyosawa, M.; Pappata, S.; Duverger, D.

    1987-01-01

    The cerebral metabolic rate for glucose was measured serially with positron emission tomography and [ 18 F]fluorodeoxyglucose in five baboons with stereotactic electrocoagulation of the left nucleus basalis of Meynert (NbM). Four days after lesion, a significant metabolic depression was present in the ipsilateral cerebral cortex, most marked in the frontotemporal region, and which recovered progressively within 6-13 weeks. These data demonstrate that adaptive mechanisms efficiently compensate for the cortical metabolic effects of NbM-lesion-induced cholinergic deafferentation. Moreover, unilateral NbM lesions also induced a transient reduction in contralateral cortical metabolic rate, the mechanisms of which are discussed. Explanation of these effects of cholinergic deafferentation in the primate could further our understanding of the metabolic deficits observed in dementia of the Alzheimer's type

  2. Critical Roles of the Direct GABAergic Pallido-cortical Pathway in Controlling Absence Seizures

    Science.gov (United States)

    Li, Min; Ma, Tao; Wu, Shengdun; Ma, Jingling; Cui, Yan; Xia, Yang; Xu, Peng; Yao, Dezhong

    2015-01-01

    The basal ganglia (BG), serving as an intermediate bridge between the cerebral cortex and thalamus, are believed to play crucial roles in controlling absence seizure activities generated by the pathological corticothalamic system. Inspired by recent experiments, here we systematically investigate the contribution of a novel identified GABAergic pallido-cortical pathway, projecting from the globus pallidus externa (GPe) in the BG to the cerebral cortex, to the control of absence seizures. By computational modelling, we find that both increasing the activation of GPe neurons and enhancing the coupling strength of the inhibitory pallido-cortical pathway can suppress the bilaterally synchronous 2–4 Hz spike and wave discharges (SWDs) during absence seizures. Appropriate tuning of several GPe-related pathways may also trigger the SWD suppression, through modulating the activation level of GPe neurons. Furthermore, we show that the previously discovered bidirectional control of absence seizures due to the competition between other two BG output pathways also exists in our established model. Importantly, such bidirectional control is shaped by the coupling strength of this direct GABAergic pallido-cortical pathway. Our work suggests that the novel identified pallido-cortical pathway has a functional role in controlling absence seizures and the presented results might provide testable hypotheses for future experimental studies. PMID:26496656

  3. Altered low frequency oscillations of cortical vessels in patients with cerebrovascular occlusive disease – a NIRS study

    Directory of Open Access Journals (Sweden)

    Dorte ePhillip

    2013-12-01

    Full Text Available Analysis of cerebral autoregulation by measuring spontaneous oscillations in the low frequency spectrum of cerebral cortical vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease (CAD and stroke. Near infrared spectroscopy (NIRS is a non-invasive optical method to investigate regional changes in oxygenated (oxyHb and deoxygenated hemoglobin (deoxyHb in the outermost layers of the cerebral cortex. In the present study we examined oxyHb low frequency oscillations (LFOs, believed to reflect cortical cerebral autoregulation, in 16 patients with both symptomatic carotid occlusive disease and cerebral hypoperfusion in comparison to healthy controls. Each hemisphere was examined with 2 NIRS channels using a 3 cm source detector distance. Arterial blood pressure (ABP was measured via a finger plethysmograph. Using transfer function analysis ABP-oxyHb phase shift and gain as well as inter-hemispheric phase shift and amplitude ratio were assessed. We found that inter-hemispheric amplitude ratio was significantly altered in hypoperfusion patients compared to healthy controls (P= 0.010, because of relatively lower amplitude on the hypoperfusion side. The inter-hemispheric phase shift showed a trend (P = 0.061 towards increased phase shift in hypoperfusion patients compared to controls. We found no statistical difference between hemispheres in hypoperfusion patients for phase shift or gain values. There were no differences between the hypoperfusion side and controls for phase shift or gain values. These preliminary results suggest an impairment of autoregulation in hypoperfusion patients at the cortical level using NIRS.

  4. Utility of the cerebral SPECT in schizophrenia

    International Nuclear Information System (INIS)

    Heuguerot, C.H.; Lopez-Lerena, J.J.; Quagliata, A.; Hermida, J.C.; Oliveira, M.C.; Anastasia, H.

    2002-01-01

    Objective: To compare cortical and subcortical cerebral perfusion in schizophrenics patients with normal controls, and analyze the relation to clinical patterns and neuroleptic treatment. Method: 18 patients meeting DSM-IV criteria for schizophrenia under neuroleptic treatment (except 3 cases), evaluated with clinical scales (BPRS and PANSS). The control group included 5 subjects in good health. All subjects were studied with single photon emission computed tomography (SPECT) using technetium-99 etilencisteinato (99mTc-ECD) as a tracer. Region of interest (ROI) were defined in cerebral cortex and thalamus-basal ganglia areas. The cortical cerebral blood flow was measured with a quantitative analysis, expressed as a ratio of regional tracer uptake to occipital cortex uptake. In basal ganglia and thalamus, regional blood flow was evaluated with a semiquantitative methodology, defining categories. Results: Schizophrenics patients showed a significant reduction of perfusion on a left anterior frontal cortex ('hipofrontality') and global decrease of perfusion on left hemisphere. The interhemispheric (left/right) ratio of perfusion was incremented respect control group. In thalamic-basal ganglia complex, a significant hypoperfusion was found in neuroleptic-free patients and control group. On the other hand, neuroleptic-treated patients revealed normal or increased regional blood flow in thalamus and basal ganglia. Only the clinical item 'thought disorder' had significant high correlation with perfusion on left structures (left anterior frontal, left lateral frontal, left temporo-parietal); the other items correlated with right structures. Conclusions: The findings suggest a pattern o left cerebral hypoperfusion in patients with an incremented interhemispheric ratio of cerebral blood flow. The pivotal role of thalamic and basal ganglia areas in the pathophysiology of schizophrenia and neuroleptic action was reaffirmed; apparently, perfusion in thalamic-basal ganglia

  5. The role of cerebral resonance behavior in the control of music performance : an fMRI study

    NARCIS (Netherlands)

    Harris, Robert; de Jong, Bauke M.

    2011-01-01

    Mirror neurons in the cerebral cortex have been shown to fire not only during performance but also during visual and auditory observation of activity. This phenomenon is commonly called cerebral resonance behavior. This would mean that cortical motor regions would not only be activated while

  6. Mapping human brain networks with cortico-cortical evoked potentials

    Science.gov (United States)

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  7. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth.

    Directory of Open Access Journals (Sweden)

    Olga Kapellou

    2006-08-01

    Full Text Available We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25-1.33, which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001 independent of intrauterine or postnatal somatic growth.Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.

  8. Sex differences of human cortical blood flow and energy metabolism.

    Science.gov (United States)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders; Jónsdottir, Kristjana Y; Gjedde, Albert

    2017-07-01

    Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO 2 ) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.

  9. Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).

    Science.gov (United States)

    Uga, Minako; Saito, Toshiyuki; Sano, Toshifumi; Yokota, Hidenori; Oguro, Keiji; Rizki, Edmi Edison; Mizutani, Tsutomu; Katura, Takusige; Dan, Ippeita; Watanabe, Eiju

    2014-05-01

    Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains. Copyright © 2014. Published by Elsevier Inc.

  10. I-123 hydroxyiodobenzyl propanediamine (HIPDM) cerebral blood flow imaging demonstrating transtentorial diaschisis

    Energy Technology Data Exchange (ETDEWEB)

    Shih, W.J.; Dekosky, S.T.; Coupal, J.J.; Simmons, G.; Pulmano, C.; Kung, H.F.; Ryo, U.Y.; Clark, D.B. (Veterans Affairs Medical Center, Lexington, KY (USA))

    1990-09-01

    To assess the clinical significance of transtentorial diaschisis (TTD) as demonstrated by I-123 HIPDM brain imaging, SPECT and/or planar images of 35 patients with stroke, 26 patients with Alzheimer's disease (AD), 2 patients with Creutzfeldt-Jakob disease (CJD), and 1 patient with a schizoaffective disorder were analyzed. TTD was observed in 21 of the 35 patients with strokes. In 13 stroke patients, TTD was associated with large infarcts in the middle cerebral artery (MCA) territory; in the remaining 8 stroke patients, TTD was associated with internal capsule and/or basal ganglia infarcts. TTD was not associated with small occipital or parietal infarcts. Despite cortical perfusion decrements, TTD was not seen in the AD patients, the CJD patients, or the patient with schizoaffective disorder. It is concluded that (1) TTD frequently occurs following cerebral infarct of the MCA territory (60% of the patients in this sample); (2) absence of TTD in the presence of a large cerebral perfusion abnormality may represent neuronal dysfunction of the cerebral cortex; and (3) the presence of TTD without a significant cortical perfusion abnormality may indicate basal ganglia and/or internal capsule infarct.

  11. The effects of healthy aging on cerebral hemodynamic responses to posture change

    International Nuclear Information System (INIS)

    Edlow, Brian L; Greenberg, Joel H; Detre, John A; Kim, Meeri N; Durduran, Turgut; Zhou, Chao; Yodh, Arjun G; Putt, Mary E

    2010-01-01

    Aging is associated with an increased incidence of orthostatic hypotension, impairment of the baroreceptor reflex and lower baseline cerebral blood flow. The effect of aging on cerebrovascular autoregulation, however, remains to be fully elucidated. We used a novel optical instrument to assess microvascular cerebral hemodynamics in the frontal lobe cortex of 60 healthy subjects ranging from ages 20–78. Diffuse correlation spectroscopy (DCS) and near-infrared spectroscopy (NIRS) were used to measure relative cerebral blood flow (rCBF), total hemoglobin concentration (THC), oxyhemoglobin concentration (HbO 2 ) and deoxyhemoglobin concentration (Hb). Cerebral hemodynamics were monitored for 5 min at each of the following postures: head-of-bed 30°, supine, standing and supine. Supine-to-standing posture change caused significant declines in rCBF, THC and HbO 2 , and an increase in Hb, across the age continuum (p < 0.01). Healthy aging did not alter postural changes in frontal cortical rCBF (p = 0.23) and was associated with a smaller magnitude of decline in HbO 2 (p < 0.05) during supine-to-standing posture change. We conclude that healthy aging does not alter postural changes in frontal cortical perfusion

  12. I-123 hydroxyiodobenzyl propanediamine (HIPDM) cerebral blood flow imaging demonstrating transtentorial diaschisis

    International Nuclear Information System (INIS)

    Shih, W.J.; Dekosky, S.T.; Coupal, J.J.; Simmons, G.; Pulmano, C.; Kung, H.F.; Ryo, U.Y.; Clark, D.B.

    1990-01-01

    To assess the clinical significance of transtentorial diaschisis (TTD) as demonstrated by I-123 HIPDM brain imaging, SPECT and/or planar images of 35 patients with stroke, 26 patients with Alzheimer's disease (AD), 2 patients with Creutzfeldt-Jakob disease (CJD), and 1 patient with a schizoaffective disorder were analyzed. TTD was observed in 21 of the 35 patients with strokes. In 13 stroke patients, TTD was associated with large infarcts in the middle cerebral artery (MCA) territory; in the remaining 8 stroke patients, TTD was associated with internal capsule and/or basal ganglia infarcts. TTD was not associated with small occipital or parietal infarcts. Despite cortical perfusion decrements, TTD was not seen in the AD patients, the CJD patients, or the patient with schizoaffective disorder. It is concluded that (1) TTD frequently occurs following cerebral infarct of the MCA territory (60% of the patients in this sample); (2) absence of TTD in the presence of a large cerebral perfusion abnormality may represent neuronal dysfunction of the cerebral cortex; and (3) the presence of TTD without a significant cortical perfusion abnormality may indicate basal ganglia and/or internal capsule infarct

  13. Apolipoprotein E Mimetic Peptide Increases Cerebral Glucose Uptake by Reducing Blood-Brain Barrier Disruption after Controlled Cortical Impact in Mice: An 18F-Fluorodeoxyglucose PET/CT Study.

    Science.gov (United States)

    Qin, Xinghu; You, Hong; Cao, Fang; Wu, Yue; Peng, Jianhua; Pang, Jinwei; Xu, Hong; Chen, Yue; Chen, Ligang; Vitek, Michael P; Li, Fengqiao; Sun, Xiaochuan; Jiang, Yong

    2017-02-15

    Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB) and reduces cerebral glucose uptake. Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI, and COG1410 has demonstrated neuroprotective activity in several models of TBI. However, the effects of COG1410 on VEGF and glucose metabolism following TBI are unknown. The current study aimed to investigate the expression of VEGF and glucose metabolism effects in C57BL/6J male mice subjected to experimental TBI. The results showed that controlled cortical impact (CCI)-induced vestibulomotor deficits were accompanied by increases in brain edema and the expression of VEGF, with a decrease in cerebral glucose uptake. COG1410 treatment significantly improved vestibulomotor deficits and glucose uptake and produced decreases in VEGF in the pericontusion and ipsilateral hemisphere of injury, as well as in brain edema and neuronal degeneration compared with the control group. These data support that COG1410 may have potential as an effective drug therapy for TBI.

  14. The complexity of the calretinin-expressing progenitors in the human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Nevena V Radonjic

    2014-08-01

    Full Text Available The complex structure and function of the cerebral cortex critically depend on the balance of excitation and inhibition provided by the pyramidal projection neurons and GABAergic interneurons, respectively. The calretinin-expressing (CalR+ cell is a subtype of GABAergic cortical interneurons that is more prevalent in humans than in rodents. In rodents, CalR+ interneurons originate in the caudal ganglionic eminence (CGE from Gsx2+ progenitors, but in humans it has been suggested that a subpopulation of CalR+ cells can also be generated in the cortical ventricular/subventricular zone (VZ/SVZ. The progenitors for cortically generated CalR+ subpopulation in primates are not yet characterized. Hence, the aim of this study was to identify patterns of expression of the transcription factors (TFs that commit cortical stem cells to the CalR fate, with a focus on Gsx2. First, we studied the expression of Gsx2 and its downstream effectors, Ascl1 and Sp8 in the cortical regions of the fetal human forebrain at midgestation. Next, we established that a subpopulation of cells expressing these TFs are proliferating in the cortical SVZ, and can be co-labeled with CalR. The presence and proliferation of Gsx2+ cells, not only in the ventral telencephalon (GE as previously reported, but also in the cerebral cortex suggests cortical origin of a subpopulation of CalR+ neurons in humans. In vitro treatment of human cortical progenitors with Sonic hedgehog (Shh, an important morphogen in the specification of interneurons, decreased levels of Ascl1 and Sp8 proteins, but did not affect Gsx2 levels. Taken together, our ex-vivo and in vitro results on human fetal brain suggest complex endogenous and exogenous regulation of TFs implied in the specification of different subtypes of CalR+ cortical interneurons.

  15. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    International Nuclear Information System (INIS)

    Zohar, J.; Insel, T.R.; Berman, K.F.; Foa, E.B.; Hill, J.L.; Weinberger, D.R.

    1989-01-01

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO 2 did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during in vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow

  16. Cerebral magnetic resonance imaging of compressed air divers in diving accidents.

    Science.gov (United States)

    Gao, G K; Wu, D; Yang, Y; Yu, T; Xue, J; Wang, X; Jiang, Y P

    2009-01-01

    To investigate the characteristics of the cerebral magnetic resonance imaging (MRI) of compressed air divers in diving accidents, we conducted an observational case series study. MRI of brain were examined and analysed on seven cases compressed air divers complicated with cerebral arterial gas embolism CAGE. There were some characteristics of cerebral injury: (1) Multiple lesions; (2) larger size; (3) Susceptible to parietal and frontal lobe; (4) Both cortical grey matter and subcortical white matter can be affected; (5) Cerebellum is also the target of air embolism. The MRI of brain is an sensitive method for detecting cerebral lesions in compressed air divers in diving accidents. The MRI should be finished on divers in diving accidents within 5 days.

  17. Depth-dependent flow and pressure characteristics in cortical microvascular networks.

    Directory of Open Access Journals (Sweden)

    Franca Schmid

    2017-02-01

    Full Text Available A better knowledge of the flow and pressure distribution in realistic microvascular networks is needed for improving our understanding of neurovascular coupling mechanisms and the related measurement techniques. Here, numerical simulations with discrete tracking of red blood cells (RBCs are performed in three realistic microvascular networks from the mouse cerebral cortex. Our analysis is based on trajectories of individual RBCs and focuses on layer-specific flow phenomena until a cortical depth of 1 mm. The individual RBC trajectories reveal that in the capillary bed RBCs preferentially move in plane. Hence, the capillary flow field shows laminar patterns and a layer-specific analysis is valid. We demonstrate that for RBCs entering the capillary bed close to the cortical surface (< 400 μm the largest pressure drop takes place in the capillaries (37%, while for deeper regions arterioles are responsible for 61% of the total pressure drop. Further flow characteristics, such as capillary transit time or RBC velocity, also vary significantly over cortical depth. Comparison of purely topological characteristics with flow-based ones shows that a combined interpretation of topology and flow is indispensable. Our results provide evidence that it is crucial to consider layer-specific differences for all investigations related to the flow and pressure distribution in the cortical vasculature. These findings support the hypothesis that for an efficient oxygen up-regulation at least two regulation mechanisms must be playing hand in hand, namely cerebral blood flow increase and microvascular flow homogenization. However, the contribution of both regulation mechanisms to oxygen up-regulation likely varies over depth.

  18. Regional cerebral blood volume (rCBV) in the cerebral and cerebellar hemispheres in nomal 52 healthy adults. Measurement with contrast-enhanced dynamic echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Muroi, Kenzo; Kurihara, Hiroaki; Amauchi, Hiroshi; Nozawa, Takeo; Matsubara, Sho; Yamamoto, Isao [Yokohama City Univ. (Japan). Hospital; Iwasawa, Tae

    2001-05-01

    The aim of this study was to investigate the possibility of absolute quantification of mean transit time (MTT) and rCBV in normal 52 healthy adults using contrast-enhanced dynamic echo-planar imaging, changes in signals in the middle cerebral arteries (MCAs) in the Sylvian fissures as AIF. MR was performed with a 1.5 T magnet (Horizon, GE Medical System, Milwaukee, WI). Dynamic susceptibility contrast-enhanced imaging was obtained every 1.8 second using echo-planar imaging (EPI) sequence (TE=42 msec, matrices=128 x 128) in six slices (6 mm slice thickness with 10 mm gap) including the cerebellar hemisphere at the level of middle cerebellar peduncles. The regional cerebral blood volume (rCBV) was calculated based on dilution theory. We calculated rCBV of the cerebral white matter (WM), cortical gray matter (GM), and cerebellar hemispheres (CH), and the effect of age on MTT and rCBV were evaluated linear regression analyses. The MTT of MCAs did not change with age, and the area under the curve of MCAs declined slightly with age. The mean rCBV of cortical GM, cerebral WM and cerebellar hemispheres were 8.2{+-}2.8, 2.0{+-}0.8 and 8.8{+-}2.1 respectively. The rCBV of cortical GM and the CH decreased slightly with age, however, that of WM remained to be a greater extent than those in GM. From these results, the method using AIF determined in bilateral MCAs was considered as an practical approach for the quantification of rCBV. Further clinical and/or comparative studies with other modalities will be necessary for the application of this method for patients with atherosclerosis and/or major vessel occlusion. (author)

  19. Electroacupuncture preconditioning reduces cerebral ischemic injury via BDNF and SDF-1α in mice

    Directory of Open Access Journals (Sweden)

    Kim Ji Hyun

    2013-01-01

    Full Text Available Abstract Background This study was designed to determine if electroacupuncture (EA preconditioning improves tissue outcome and functional outcome following experimentally induced cerebral ischemia in mice. In addition, we investigated whether the expression of brain-derived neurotrophic factor (BDNF and stromal cell derived factor-1α (SDF-1α and infarct volume were related with improvement in neurological and motor function by interventions in this study. Methods After treatment with EA at the acupoints ‘Baihui (GV20’ and ‘Dazhui (GV14’ for 20 min, BDNF was assessed in the cortical tissues based on Western blot and the SDF-1α and vascular endothelial growth factor (VEGF levels in the plasma determined by ELISA. To assess the protective effects of EA against ischemic injury, the mice received once a day 20 min EA preconditioning for three days prior to the ischemic event. Focal cerebral ischemia was then induced by photothrombotic cortical ischemia. Infarct volumes, neurobehavioral deficit and motor deficit were evaluated 24 h after focal cerebral ischemia. Results The expression of BDNF protein increased significantly from 6 h, reaching a plateau at 12 h after the end of EA treatment in the cerebral cortex. Furthermore, SDF-1α, not VEGF, increased singnificantly from 12 h to 48 h after EA stimulation in the plasma. Moreover, EA preconditioning reduced the infarct volume by 43.5% when compared to control mice at 24 h after photothrombotic cortical ischemia. Consistent with a smaller infarct size, EA preconditioning showed prominent improvement of neurological function and motor function such as vestibule-motor function, sensori-motor function and asymmetric forelimb use. The expression of BDNF colocalized within neurons and SDF-1α colocalized within the cerebral vascular endothelium was observed throughout the ischemic cortex by EA. Conclusions Pretreatment with EA increased the production of BDNF and SDF-1α, which elicited

  20. Genetic influences on thinning of the cerebral cortex during development

    NARCIS (Netherlands)

    van Soelen, I.L.C.; Brouwer, R.M.; van Baal, G.C.M.; Schnack, H.G.; Peper, J.S.; Collins, D.L.; Evans, A.C.; Kahn, R.S.; Boomsma, D.I.; Hulshoff Pol, H.E.

    2012-01-01

    During development from childhood to adulthood the human brain undergoes considerable thinning of the cerebral cortex. Whether developmental cortical thinning is influenced by genes and if independent genetic factors influence different parts of the cortex is not known. Magnetic resonance brain

  1. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    Science.gov (United States)

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Innovative Magnetic Resonance Imaging Markers of Hereditary Cerebral Amyloid Angiopathy at 7 Tesla.

    Science.gov (United States)

    Koemans, Emma A; van Etten, Ellis S; van Opstal, Anna M; Labadie, Gerda; Terwindt, Gisela M; Wermer, Marieke J H; Webb, Andrew G; Gurol, Edip M; Greenberg, Steven M; van Buchem, Mark A; van der Grond, Jeroen; van Rooden, Sanneke

    2018-06-01

    The aim of the present study is to explore whether using 7 Tesla magnetic resonance imaging, additional brain changes can be observed in hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) patients as compared with the established magnetic resonance imaging features of sporadic cerebral amyloid angiopathy. The local institutional review board approved this prospective cohort study. In all cases, informed consent was obtained. This prospective parallel cohort study was conducted between 2012 and 2014. We performed T 2 *-weighted magnetic resonance imaging performed at 7 Tesla in presymptomatic mutation carriers (n=11, mean age 35±12 years), symptomatic HCHWA-D patients (n=15, mean age 45±14 years), and in control subjects (n=29, mean age 45±14 years). Images were analyzed for the presence of changes that have not been reported before in sporadic cerebral amyloid angiopathy and HCHWA-D. Innovative observations comprised intragyral hemorrhaging and cortical changes. The presence of these changes was systematically assessed in all participants of the study. Symptomatic HCHWA-D-patients had a higher incidence of intragyral hemorrhage (47% [7/15], controls 0% [0/29], P <0.001), and a higher incidence of specific cortical changes (40% [6/15] versus 0% [0/29], P <0.005). In presymptomatic HCHWA-D-mutation carriers, the prevalence of none of these markers was increased compared with control subjects. The presence of cortical changes and intragyral hemorrhage are imaging features of HCHWA-D that may help recognizing sporadic cerebral amyloid angiopathy in living patients. © 2018 American Heart Association, Inc.

  3. MR imaging and positron emission tomography of cortical heterotopia

    Energy Technology Data Exchange (ETDEWEB)

    Bairamian, D.; Di Chiro, G.; Theodore, W.H.; Holmes, M.D.; Dorwart, R.H.; Larson, S.M.

    1985-11-01

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using YF-2-deoxyglucose.

  4. MR imaging and positron emission tomography of cortical heterotopia

    International Nuclear Information System (INIS)

    Bairamian, D.; Di Chiro, G.; Theodore, W.H.; Holmes, M.D.; Dorwart, R.H.; Larson, S.M.

    1985-01-01

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using 18 F-2-deoxyglucose

  5. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role?

    Directory of Open Access Journals (Sweden)

    Matthew C. S. Denley

    2018-05-01

    Full Text Available The cerebral cortex undergoes rapid folding in an “inside-outside” manner during embryonic development resulting in the establishment of six discrete cortical layers. This unique cytoarchitecture occurs via the coordinated processes of neurogenesis and cell migration. In addition, these processes are fine-tuned by a number of extracellular cues, which exert their effects by regulating intracellular signaling pathways. Interestingly, multiple brain regions have been shown to develop in a sexually dimorphic manner. In many cases, estrogens have been demonstrated to play an integral role in mediating these sexual dimorphisms in both males and females. Indeed, 17β-estradiol, the main biologically active estrogen, plays a critical organizational role during early brain development and has been shown to be pivotal in the sexually dimorphic development and regulation of the neural circuitry underlying sex-typical and socio-aggressive behaviors in males and females. However, whether and how estrogens, and 17β-estradiol in particular, regulate the development of the cerebral cortex is less well understood. In this review, we outline the evidence that estrogens are not only present but are engaged and regulate molecular machinery required for the fine-tuning of processes central to the cortex. We discuss how estrogens are thought to regulate the function of key molecular players and signaling pathways involved in corticogenesis, and where possible, highlight if these processes are sexually dimorphic. Collectively, we hope this review highlights the need to consider how estrogens may influence the development of brain regions directly involved in the sex-typical and socio-aggressive behaviors as well as development of sexually dimorphic regions such as the cerebral cortex.

  6. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning

    Science.gov (United States)

    Krukowski, A. E.; Miller, K. D.

    2001-01-01

    Cells in cerebral cortex fail to respond to fast-moving stimuli that evoke strong responses in the thalamic nuclei innervating the cortex. The reason for this behavior has remained a mystery. We study an experimentally motivated model of the thalamic input-recipient layer of cat primary visual cortex that accounts for many aspects of cortical orientation tuning. In this circuit, inhibition dominates over excitation, but temporal modulations of excitation and inhibition occur out of phase with one another, allowing excitation to transiently drive cells. We show that this circuit provides a natural explanation of cortical low-pass temporal frequency tuning, provided N-methyl-D-aspartate (NMDA) receptors are present in thalamocortical synapses in proportions measured experimentally. This suggests a new and unanticipated role for NMDA conductances in shaping the temporal response properties of cortical cells, and suggests that common cortical circuit mechanisms underlie both spatial and temporal response tuning.

  7. Impact of prenatal environmental stress on cortical development

    Directory of Open Access Journals (Sweden)

    Seiji eIshii

    2015-05-01

    Full Text Available Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS cells to demonstrate: 1. molecular mechanisms shared by various types of environmental stressors, 2. the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and 3. interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders.

  8. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    International Nuclear Information System (INIS)

    Beck, T.; Krieglstein, J.

    1987-01-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O 2 . Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded [ 14 C]2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur

  9. Functional MR imaging using sensory and motor task in brain tumors and other focal cerebral lesions

    International Nuclear Information System (INIS)

    Ok, Chul Su; Lim, Myung Kwan; Yu, Ki Bong; Kim, Hyung Jin; Suh, Chang Hae

    2002-01-01

    To determine the usefulness of the functional MRI (fMRI) using motor and sensory stimuli in patients with brain tumors of focal cerebral lesions. This study involved five patients with brain tumors (n=2) or cerebral lesions (cysticercosis (n=1), arteriovenous malformation (n=1), focal infarction (n=1) and seven normal controls. For MR examinations a 1.5T scanner was used, and during motor or sensory stimulation, the EPI BOLD technique was employed. For image postprocessing an SPM program was utilized. In volunteers, contralateral sensori-motor cortices were activated by both motor and sensory stimuli, while supplementary motor cortices were activated by motor stimuli and other sensory cortices by sensory stimuli. Preoperative evaluation of the relationship between lesions and important sensory and motor areas was possible, and subsequent surgery was thus successful, involving no severe complications. Activation of ipsilateral or other areas occurred in patients with destruction of a major sensory and/or motor area, suggesting compensatory reorganization. fMRI could be a useful supportive method for determining the best approach to surgery treatment in patients with brain tumors or focal cerebral lesions

  10. Localization of cortical areas activated by thinking

    DEFF Research Database (Denmark)

    Roland, P E; Friberg, L

    1985-01-01

    midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and posterior superior parietal cortex, increased their rCBF exclusively during route-finding thinking. We observed no decreases in rCBF. All r......These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work...... communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined...

  11. Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.

    Science.gov (United States)

    Gilmore, John H; Lin, Weili; Prastawa, Marcel W; Looney, Christopher B; Vetsa, Y Sampath K; Knickmeyer, Rebecca C; Evans, Dianne D; Smith, J Keith; Hamer, Robert M; Lieberman, Jeffrey A; Gerig, Guido

    2007-02-07

    Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth.

  12. A Developmental and Genetic Classification for Malformations of Cortical Development: Update 2012

    Science.gov (United States)

    Barkovich, A. James; Guerrini, Renzo; Kuzniecky, Ruben I.; Jackson, Graeme D.; Dobyns, William B.

    2012-01-01

    Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics…

  13. Heritability analysis of surface-based cortical thickness estimation on a large twin cohort

    Science.gov (United States)

    Shen, Kaikai; Doré, Vincent; Rose, Stephen; Fripp, Jurgen; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Thompson, Paul M.; Wright, Margaret J.; Salvado, Olivier

    2015-03-01

    The aim of this paper is to assess the heritability of cerebral cortex, based on measurements of grey matter (GM) thickness derived from structural MR images (sMRI). With data acquired from a large twin cohort (328 subjects), an automated method was used to estimate the cortical thickness, and EM-ICP surface registration algorithm was used to establish the correspondence of cortex across the population. An ACE model was then employed to compute the heritability of cortical thickness. Heritable cortical thickness measures various cortical regions, especially in frontal and parietal lobes, such as bilateral postcentral gyri, superior occipital gyri, superior parietal gyri, precuneus, the orbital part of the right frontal gyrus, right medial superior frontal gyrus, right middle occipital gyrus, right paracentral lobule, left precentral gyrus, and left dorsolateral superior frontal gyrus.

  14. Unusual cortical bone features in a patient with gorlin-goltz syndrome: a case report.

    Science.gov (United States)

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-12-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment.

  15. Unusual Cortical Bone Features in a Patient with Gorlin-Goltz Syndrome: A Case Report

    International Nuclear Information System (INIS)

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-01-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment

  16. Relationship between higher cortical dysfunction and the findings of magnetic resonance imaging in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Maeshima, Etsuko; Maeshima, Shinichiro; Yamada, Yoichi; Yukawa, Susumu [Wakayama Medical Coll. (Japan)

    1996-04-01

    The relationship between systemic lupus erythematosus (SLE) and organic lesions was investigated by magnetic resonance imaging (MRI) to clarify the etiology of higher cortical dysfunction in SLE. The subjects were 10 patients with SLE, and higher cortical dysfunction was observed in 8 (80%) of the 10 patients. Five (82.5%) of the 8 patients showed abnormal MRI findings. The findings of higher cortical dysfunction were consistent with the MRI findings in 1 of the 5 patients, but not in the remaining four. MRI revealed no lesion despite the presence of higher cortical dysfunction in three patients. These results suggest that the association of organic changes and functional changes in cerebral nerve cells is important for etiology of higher cortical dysfunction in SLE. (author).

  17. Relationship between higher cortical dysfunction and the findings of magnetic resonance imaging in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Maeshima, Etsuko; Maeshima, Shinichiro; Yamada, Yoichi; Yukawa, Susumu

    1996-01-01

    The relationship between systemic lupus erythematosus (SLE) and organic lesions was investigated by magnetic resonance imaging (MRI) to clarify the etiology of higher cortical dysfunction in SLE. The subjects were 10 patients with SLE, and higher cortical dysfunction was observed in 8 (80%) of the 10 patients. Five (82.5%) of the 8 patients showed abnormal MRI findings. The findings of higher cortical dysfunction were consistent with the MRI findings in 1 of the 5 patients, but not in the remaining four. MRI revealed no lesion despite the presence of higher cortical dysfunction in three patients. These results suggest that the association of organic changes and functional changes in cerebral nerve cells is important for etiology of higher cortical dysfunction in SLE. (author)

  18. Longitudinal MRI study of cortical thickness, perfusion, and metabolite levels in major depressive disorder

    DEFF Research Database (Denmark)

    Järnum, Hanna; Eskildsen, Simon Fristed; Steffensen, Elena G

    2011-01-01

    OBJECTIVE: To determine whether patients with major depressive disorder (MDD) display morphologic, functional, and metabolic brain abnormalities in limbic-cortical regions at a baseline magnetic resonance (MR) scan and whether these changes are normalized in MDD patients in remission at a follow......-acetylaspartate, myo-inositol, and glutamate levels in MDD patients compared with healthy controls at baseline. CONCLUSION: Using novel MRI techniques, we have found abnormalities in cerebral regions related to cortical-limbic pathways in MDD patients....

  19. Reorganization and stability for motor and language areas using cortical stimulation: case example and review of the literature.

    Science.gov (United States)

    Serafini, Sandra; Komisarow, Jordan M; Gallentine, William; Mikati, Mohamad A; Bonner, Melanie J; Kranz, Peter G; Haglund, Michael M; Grant, Gerald

    2013-11-26

    The cerebral organization of language in epilepsy patients has been studied with invasive procedures such as Wada testing and electrical cortical stimulation mapping and more recently with noninvasive neuroimaging techniques, such as functional MRI. In the setting of a chronic seizure disorder, clinical variables have been shown to contribute to cerebral language reorganization underscoring the need for language lateralization and localization procedures. We present a 14-year-old pediatric patient with a refractory epilepsy disorder who underwent two neurosurgical resections of a left frontal epileptic focus separated by a year. He was mapped extraoperatively through a subdural grid using cortical stimulation to preserve motor and language functions. The clinical history and extensive workup prior to surgery is discussed as well as the opportunity to compare the cortical maps for language, motor, and sensory function before each resection. Reorganization in cortical tongue sensory areas was seen concomitant with a new zone of ictal and interictal activity in the previous tongue sensory area. Detailed neuropsychological data is presented before and after any surgical intervention to hypothesize about the extent of reorganization between epochs. We conclude that intrahemispheric cortical plasticity does occur following frontal lobe resective surgery in a teenager with medically refractory seizures.

  20. Reorganization and Stability for Motor and Language Areas Using Cortical Stimulation: Case Example and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sandra Serafini

    2013-11-01

    Full Text Available The cerebral organization of language in epilepsy patients has been studied with invasive procedures such as Wada testing and electrical cortical stimulation mapping and more recently with noninvasive neuroimaging techniques, such as functional MRI. In the setting of a chronic seizure disorder, clinical variables have been shown to contribute to cerebral language reorganization underscoring the need for language lateralization and localization procedures. We present a 14-year-old pediatric patient with a refractory epilepsy disorder who underwent two neurosurgical resections of a left frontal epileptic focus separated by a year. He was mapped extraoperatively through a subdural grid using cortical stimulation to preserve motor and language functions. The clinical history and extensive workup prior to surgery is discussed as well as the opportunity to compare the cortical maps for language, motor, and sensory function before each resection. Reorganization in cortical tongue sensory areas was seen concomitant with a new zone of ictal and interictal activity in the previous tongue sensory area. Detailed neuropsychological data is presented before and after any surgical intervention to hypothesize about the extent of reorganization between epochs. We conclude that intrahemispheric cortical plasticity does occur following frontal lobe resective surgery in a teenager with medically refractory seizures.

  1. Effects of dexmedetomidine on microregional O2 balance during reperfusion after focal cerebral ischemia.

    Science.gov (United States)

    Chi, Oak Z; Grayson, Jeremy; Barsoum, Sylviana; Liu, Xia; Dinani, Aliraza; Weiss, Harvey R

    2015-01-01

    This study was performed to determine whether there is an association between microregional O2 balance and neuronal survival in cerebral ischemia-reperfusion using dexmedetomidine, an α2-adrenoreceptor agonist and a sedative. Rats were subjected to 1 hour middle cerebral artery occlusion and a 2-hour reperfusion. During reperfusion, normal saline (n = 14) or dexmedetomidine 1 μg/kg/minute (n = 14) was infused intravenously. At 2 hours of reperfusion, regional cerebral blood flow using (14)C-iodoantipyrine autoradiography, microregional arterial and venous (20-60 μm in diameter) O2 saturation (SvO2) using cryomicrospectrophotometry, and the size of cortical infarction were determined. Ischemia-reperfusion decreased microregional SvO2 (52.9 ± 3.7% vs. 61.1 ± .6%, P < .005) with increased variation or heterogeneity (P < .0001) with similar regional cerebral blood flow and O2 consumption. Dexmedetomidine during reperfusion decreased the heterogeneity of SvO2 that was analyzed with an analysis of variance (P < .01) and reported as coefficient of variation (100 × standard deviation/Mean) (11.8 vs. 16.4). The number of veins with O2 saturation less than 50% decreased with dexmedetomidine (13/80 vs. 27/81, P < .01). The percentage of cortical infarct in total cortex was smaller with dexmedetomidine (8.3 ± 2.2% vs. 12.6 ± 1.5%, P < .005). In the cerebral ischemic reperfused cortex, dexmedetomidine decreased the heterogeneity of SvO2 and the number of small veins with low O2 saturation suggesting improved microregional O2 supply/consumption balance. The improvement was accompanied by the reduced size of cortical infarction. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Examining the volume efficiency of the cortical architecture in a multi-processor network model.

    Science.gov (United States)

    Ruppin, E; Schwartz, E L; Yeshurun, Y

    1993-01-01

    The convoluted form of the sheet-like mammalian cortex naturally raises the question whether there is a simple geometrical reason for the prevalence of cortical architecture in the brains of higher vertebrates. Addressing this question, we present a formal analysis of the volume occupied by a massively connected network or processors (neurons) and then consider the pertaining cortical data. Three gross macroscopic features of cortical organization are examined: the segregation of white and gray matter, the circumferential organization of the gray matter around the white matter, and the folded cortical structure. Our results testify to the efficiency of cortical architecture.

  3. Sex differences in thickness, and folding developments throughout the cortex.

    Science.gov (United States)

    Mutlu, A Kadir; Schneider, Maude; Debbané, Martin; Badoud, Deborah; Eliez, Stephan; Schaer, Marie

    2013-11-15

    While significant differences in male and female brain structures have commonly been reported, only a few studies have focused on the sex differences in the way the cortex matures over time. Here, we investigated cortical thickness maturation between the age of 6 to 30 years, using 209 longitudinally-acquired brain MRI scans. Significant sex differences in the trajectories of cortical thickness change with age were evidenced using non-linear mixed effects models. Similar statistical analyses were computed to quantify the differences between cortical gyrification changes with age in males and females. During adolescence, we observed a statistically significant higher rate of cortical thinning in females compared to males in the right temporal regions, the left temporoparietal junction and the left orbitofrontal cortex. This finding is interpreted as a faster maturation of the social brain areas in females. Concomitantly, statistically significant sex differences in cortical folding changes with age were observed only in one cluster of the right prefrontal regions, suggesting that the mechanisms underlying cortical thickness and gyrification changes with age are quite distinct. Sexual dimorphism in the developmental course of the cortical maturation may be associated with the different age of onset and clinical presentation of many psychiatric disorders between males and females. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Development of cortical morphology evaluated with longitudinal MR brain images of preterm infants

    NARCIS (Netherlands)

    Moeskops, P.; Benders, M.J.N.L.; Kersbergen, K.J.; Groenendaal, F.; de Vries, L.S.; Viergever, M.A.; Išgum, I.

    2015-01-01

    INTRODUCTION: The cerebral cortex develops rapidly in the last trimester of pregnancy. In preterm infants, brain development is very vulnerable because of their often complicated extra-uterine conditions. The aim of this study was to quantitatively describe cortical development in a cohort of 85

  5. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  6. Cerebral venous outflow and cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Clive B. Beggs

    2014-12-01

    Full Text Available In this review, the impact of restricted cerebral venous outflow on the biomechanics of the intracranial fluid system is investigated. The cerebral venous drainage system is often viewed simply as a series of collecting vessels channeling blood back to the heart. However there is growing evidence that it plays an important role in regulating the intracranial fluid system. In particular, there appears to be a link between increased cerebrospinal fluid (CSF pulsatility in the Aqueduct of Sylvius and constricted venous outflow. Constricted venous outflow also appears to inhibit absorption of CSF into the superior sagittal sinus. The compliance of the cortical bridging veins appears to be critical to the behaviour of the intracranial fluid system, with abnormalities at this location implicated in normal pressure hydrocephalus. The compliance associated with these vessels appears to be functional in nature and dependent on the free egress of blood out of the cranium via the extracranial venous drainage pathways. Because constricted venous outflow appears to be linked with increased aqueductal CSF pulsatility, it suggests that inhibited venous blood outflow may be altering the compliance of the cortical bridging veins.

  7. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Murzin, Vyacheslav [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Nguyen, Tanya T. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Dale, Anders M. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-04-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  8. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    International Nuclear Information System (INIS)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael; Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke; Murzin, Vyacheslav; Nguyen, Tanya T.; Moiseenko, Vitali; Brewer, James B.; McDonald, Carrie R.; Dale, Anders M.; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  9. Non-traumatic cortical subarachnoid haemorrhage: diagnostic work-up and aetiological background

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, C.; Kosinski, C.M. [University Hospital of RWTH Aachen, Department of Neurology, Aachen (Germany); Mull, M. [University Hospital of RWTH Aachen, Department of Neuroradiology, Aachen (Germany); Rohde, V. [University Hospital of RWTH Aachen, Department of Neurosurgery, Aachen (Germany)

    2005-07-01

    Only 15% of all subarachnoid haemorrhages (SAHs) are not of aneurysmal origin. Among those, circumscribed SAHs along the cortical convexity are rare and have only been described in singular case reports so far. Here, we present a collection of 12 cases of SAH along the convexity, of non-traumatic origin. Over a period of 10 years, 12 cases of circumscribed SAH along the convexity were identified at our clinic. The clinical presentations, neuroradiological SAH characteristics, further diagnostic work-up to identify the underlying aetiologies, the therapy and clinical outcome were analysed. The patients' chief complaints were unspecific cephalgia, focal or generalised seizures and focal neurological deficits. Typical signs of basal SAH, such as nuchal rigidity, thunderclap-headache or alteration of consciousness, were rare. Magnetic resonance imaging (MRI) and digital subtraction angiography (DSA) revealed different aetiologies, namely postpartal posterior encephalopathy (three), cerebral vasculitis (two), dural sinus thrombosis (two), cortical venous thrombosis (one), intracerebral abscesses (one) and cerebral cavernoma (one). Two cases remained unresolved. Treatment of the underlying disease and symptomatic medication led to good clinical outcome in almost all cases. On the basis of these findings, we demonstrate that the clinical presentation, localisation and aetiology of cortical SAH differ clearly from other SAHs. A diagnostic work-up with MRI and eventually DSA is essential. Mostly, the causative disease can be identified, and specific treatment allows a favourable outcome. (orig.)

  10. Significance of non-specific complaints in asymptomatic cerebral infarction. Approach based on the cerebral circulation

    Energy Technology Data Exchange (ETDEWEB)

    Sakayori, Osamu; Kitamura, Shin; Nagazumi, Atsushi; Terashi, Akirou [Nippon Medical School, Tokyo (Japan)

    1997-10-01

    Seventy-three cases with asymptomatic cerebral infarction detected by MR scanning and 80 cases of past stroke patients were evaluated. The regional cerebral blood flow (CBF) using the SPECT, idoine-123-IMP autoradiography (ARG) method was measured. Twenty-two patients with non-specific complaints (dizziness, numbness of the extremities, headache, etc.) without cerebrovascular risk factors were also examined as controls. Fifty-two percent of the asymptomatic infarction cases had non-specific complaints. The regional CBF in all cerebral non-specific complaints showed significantly lower values as compared to the controls. There was no difference in CBF values between the asymptomatic infarction cases with non-specific complaints and the past stroke patients. Among the asymptomatic infarction patients, cases with both non-specific complaints and hypertension displayed significantly lower CBF values, especially in the frontal and temporal cortical regions, than did cases without non-specific complaints or hypertension. These findings suggest that the patient`s complaints should be taken into consideration when determining the clinical treatment of asymptomatic infarction. (author)

  11. Cerebral blood flow and metabolism in multi-infarct dementia

    International Nuclear Information System (INIS)

    Ujike, Takashi; Terashi, Akiro; Soeda, Toshiyuki; Kitamura, Shin; Kato, Toshiaki; Iio, Masaaki.

    1985-01-01

    Cerebral blood flow and oxygen metabolism were studied in three aged normal volunteers and 10 patients with multi-infarct dementia (MID) by Positron Emission Tomography using O-15. The diagnosis of MID was done according to the Loeb's modified ischemic score and X-ray CT findings. The MID patients, whose X-ray CT showed localized low density areas in the subcortical white matter and basal ganglia and thalamus, were studied. No occulusion was observed at anterior cerebral artery and/or middle cerebral artery on cerebral angiography. All cases of MID were mild dementias. Regional CBF, rOEF and rCMRO 2 were measured by the steady state technique described by Terry Jones et al. The values of rCBF in MID patients were significantly low compared with those of aged normal subjects in frontal, temporal, occipital, parietal cortices and thalamus. The values of CMRO 2 in MID were significantly low in frontal, temporal, occipital cortices and thalamus compared with normal subjects'. The OEF was 0.46 in aged normal subjects, and 0.52 in MID patients. The MID patients in the early stage of dementia showed the increased oxygen extraction fraction, and this fact suggests that ischemia is a significant pathogenic mechanism in the production and progression of multi-infarct dementia. The decrease of CBF and CMRO 2 in MID compared from normal subjects' were most remarkable in frontal cortex. The impairment of mental functions in MID should be caused by the decreased neuronal activities in frontal association cortex. (author)

  12. Reduced vascular amyloid burden at microhemorrhage sites in cerebral amyloid angiopathy

    NARCIS (Netherlands)

    van Veluw, Susanne J.; Kuijf, Hugo J.; Charidimou, Andreas; Viswanathan, Anand; Biessels, Geert Jan; Rozemuller, Annemieke J M; Frosch, Matthew P.; Greenberg, Steven M.

    Microhemorrhages are strongly associated with advanced cerebral amyloid angiopathy (CAA). Although it has been frequently proposed that the deposition of Aβ in the walls of cortical vessels directly causes microhemorrhages, this has not been studied in great detail, mainly because the ruptured

  13. PSD-95 uncoupling from NMDA receptors by Tat-N-dimer ameliorates neuronal depolarisation in cortical spreading depression

    DEFF Research Database (Denmark)

    Kucharz, Krzysztof; Søndergaard Rasmussen, Ida; Bach, Anders

    2017-01-01

    during the first hour after i.v. injection. The Tat-N-dimer suppressed stimulation-evoked synaptic activity by 2-20%, while cortical blood flow and cerebral oxygen metabolic (CMRO2) responses were preserved. During cortical spreading depression, the Tat-N-dimer reduced the average amplitude...... depression on cortical blood flow and CMRO2 We suggest that uncoupling of PSD-95 from NMDA receptors reduces overall neuronal excitability and the amplitude of the spreading depolarisation wave. These findings may be of interest for understanding the neuroprotective effects of the nNOS/PSD-95 uncoupling...

  14. Effect of NMDA Receptor Antagonist on Local Cerebral Glucose Metabolic Rate in Focal Cerebral Ischemia

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Hong, Seung Bong; Yoon, Byung Woo

    1995-01-01

    There has recently been increasing interest in the use of NMDA receptor antagonists as potential neuroprotective agents for the treatment of ischemic stroke. To evaluate the neuroprotective effect of the selective non-competitive NMDA receptor antagonist MK-801 in focal cerebral ischemia, local cerebral glucose utilization (1CGU) was examined in 15 neuroanatomically discrete regions of the conscious rat brain using the 2-deoxy-D[14C]glucose quantitative autoradiographic technique 24 hr after left middle cerebral artery occlusion (MCAO). Animals received MK-801 (5 mg/kg i.v.) or saline vehicle before (20-30 min) or after (30 min) MCAO. Both pretreatment and posttreatment of MK-801 increased occluded/non-occluded 1CGU ratio in 7 and 5 of the 15 regions measured, respectively(most notably in cortical structures). Following MK-801 pretreatment, there was evidence of widespread increases in 1CCPU not only in the non-occluded hemisphere (12 of the 15 areas studied) but also in the occluded hemisphere (13 of the 15 areas studied), while MK-801 posttreatment did not significantly increase 1CGU both in the normal and occluded hemispheres. These data indicate that MK-801 has a neuroprotective effect in focal cerebral ischemia and demonstrate that MK-801 provides widespread alterations of glucose utilization in conscious animals.

  15. Demonstration of cerebral abnormalities in cocaine abusers with SPECT perfusion brain scans

    International Nuclear Information System (INIS)

    Nagel, J.S.; Tumeh, S.S.; English, R.J.; Moore, M.; Lee, V.W.; Holman, L.B.

    1989-01-01

    This paper reports I-123 isopropyl iodoamphetamine (IMP) single-photon emission CT (SPECT) brain scans performed on cocaine users to investigate the effects of cocaine on the cerebral perfusion in a manner similar to previous CT, angiographic and positron-emission tomographic (PET) studies. Ten asymptomatic or mildly symptomatic cocaine users, two users with major neurovascular complications, and five normal subjects were studied with IMP SPECT. Rotating-brain images of the cerebral IMP uptake were displayed by using a distance-weighted surface-projection technique and were visually analyzed for focal cortical perfusion deficits. Eleven cocaine users had multiple scattered cortical IMP defects. Frontal lobe defects were most prominent. One user had confluent defects resembling swiss cheese. Concurrent CT scans available in nine patients were negative in seven and showed infarcts in two. No similar focal findings were visible in normals

  16. Cerebral Palsy: Comprehensive Review and Update

    International Nuclear Information System (INIS)

    Jan, Mohammed M.S.

    2006-01-01

    Cerebral palsy (CP) is a common pediatric disorder occurring in about 2 to 2.5 per 1000 live births. It is a chronic motor disorder resulting from a nonprogressive (static) insult to the developing brain. CP is the clinical presentation of a wide variety of cerebral cortical or sub-cortical insults occurring during the first year of life. The commonest cause of CP remains unknown in 50% of the cases; prematurity remains the commonest risk factor. Children with CP suffer multiple problems and potential disabilities such as mental retardation, epilepsy, feeding difficulties, and ophthalmologic and hearing impairments. Screening for those conditions should be part of the initial assessment. The child with CP is best cared for with an individualized treatment plan that provides a combination of interventions. This requires the provision of a number of family-centered services that make a difference in the lives of these children and their families. Management of spasticity can be challenging with a wide variety of possible therapeutic interventions. The treatment must be goal oriented, such as to assist with mobility, reduce or prevent contractures, improve positioning and hygiene, and provide comfort. Each member of the child's multidisciplinary team, including the child and both parents, should participate in the serial evaluations and treatment planning. (author)

  17. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

    Science.gov (United States)

    Linninger, A. A.; Gould, I. G.; Marinnan, T.; Hsu, C.-Y.; Chojecki, M.; Alaraj, A.

    2013-01-01

    The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty. PMID:23842693

  18. Identification of proteins regulated by curcumin in cerebral ischemia.

    Science.gov (United States)

    Shah, Fawad-Ali; Gim, Sang-Ah; Sung, Jin-Hee; Jeon, Seong-Jun; Kim, Myeong-Ok; Koh, Phil-Ok

    2016-03-01

    Curcumin is known to have a neuroprotective effect against cerebral ischemia. The objective of this study was to identify various proteins that are differentially expressed by curcumin treatment in focal cerebral ischemia using a proteomic approach. Adult male rats were treated with vehicle or curcumin 1 h after middle cerebral artery occlusion. Brain tissues were collected 24 h after the onset of middle cerebral artery occlusion, and cerebral cortices proteins were identified by two-dimensional gel electrophoresis and mass spectrometry. We detected several proteins with altered expression levels between vehicle- and curcumin-treated animals. Among these proteins, ubiquitin carboxy-terminal hydrolase L1, isocitrate dehydrogenase, adenosylhomocysteinase, and eukaryotic initiation factor 4A were decreased in the vehicle-treated animal, and curcumin treatment attenuated the injury-induced decreases of these proteins. Conversely, pyridoxal phosphate phosphatase was increased in the vehicle-treated animal, and curcumin treatment prevented decreases in this protein. The identified altered proteins are associated with cellular metabolism and differentiation. The results of this study suggest that curcumin exerts a neuroprotective effect by regulating the expression of various proteins in focal cerebral ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Methomyl poisoning presenting with decorticate posture and cortical blindness.

    Science.gov (United States)

    Lin, Chih-Ming

    2014-01-17

    Methomyl is a potent pesticide that is widely used in the field of agriculture. The systemic toxic effects of methomyl have been well described. However, the neurological effects of methomyl intoxication are not well understood. In this study, we report a 61-year-old Taiwanese man sent to our emergency department because of altered mental status. His family stated that he had consumed liquid methomyl in a suicide attempt. He was provided cardiopulmonary resuscitation because of unstable vital signs. He was then sent to an intensive care unit for close observation. On the second day of admission, he regained consciousness but exhibited irregular limb and torso posture. On the sixth day, he started to complain of blurred vision. An ophthalmologist was consulted but no obvious abnormalities could be identified. On suspicion of cerebral disease, a neurologist was consulted. Further examination revealed cortical blindness and decorticate posture. Cerebral magnetic resonance imaging (MRI) was arranged, which identified bilateral occipital regions lesions. The patient was administered normal saline and treated with aspirin and piracetam for 3 weeks in hospital. During the treatment period, his symptom of cortical blindness resolved, whereas his decorticate posture was refractory. Follow-up brain MRI results supported our clinical observations by indicating the disappearance of the bilateral occipital lesions and symmetrical putaminal high signal abnormalities. In this article, we briefly discuss the possible mechanisms underlying the cerebral effects of methomyl poisoning. Our study can provide clinicians with information on the manifestations of methomyl intoxication and an appropriate treatment direction.

  20. Methomyl poisoning presenting with decorticate posture and cortical blindness

    Directory of Open Access Journals (Sweden)

    Chih-Ming Lin

    2014-02-01

    Full Text Available Methomyl is a potent pesticide that is widely used in the field of agriculture. The systemic toxic effects of methomyl have been well described. However, the neurological effects of methomyl intoxication are not well understood. In this study, we report a 61-year-old Taiwanese man sent to our emergency department because of altered mental status. His family stated that he had consumed liquid methomyl in a suicide attempt. He was provided cardiopulmonary resuscitation because of unstable vital signs. He was then sent to an intensive care unit for close observation. On the second day of admission, he regained consciousness but exhibited irregular limb and torso posture. On the sixth day, he started to complain of blurred vision. An ophthalmologist was consulted but no obvious abnormalities could be identified. On suspicion of cerebral disease, a neurologist was consulted. Further examination revealed cortical blindness and decorticate posture. Cerebral magnetic resonance imaging (MRI was arranged, which identified bilateral occipital regions lesions. The patient was administered normal saline and treated with aspirin and piracetam for 3 weeks in hospital. During the treatment period, his symptom of cortical blindness resolved, whereas his decorticate posture was refractory. Follow-up brain MRI results supported our clinical observations by indicating the disappearance of the bilateral occipital lesions and symmetrical putaminal high signal abnormalities. In this article, we briefly discuss the possible mechanisms underlying the cerebral effects of methomyl poisoning. Our study can provide clinicians with information on the manifestations of methomyl intoxication and an appropriate treatment direction.

  1. Cerebral somatic pain modulation during autogenic training in fMRI.

    Science.gov (United States)

    Naglatzki, R P; Schlamann, M; Gasser, T; Ladd, M E; Sure, U; Forsting, M; Gizewski, E R

    2012-10-01

    Functional magnetic resonance imaging (fMRI) studies are increasingly employed in different conscious states. Autogenic training (AT) is a common clinically used relaxation method. The purpose of this study was to investigate the cerebral modulation of pain activity patterns due to AT and to correlate the effects to the degree of experience with AT and strength of stimuli. Thirteen volunteers familiar with AT were studied with fMRI during painful electrical stimulation in a block design alternating between resting state and electrical stimulation, both without AT and while employing the same paradigm when utilizing their AT abilities. The subjective rating of painful stimulation and success in modulation during AT was assessed. During painful electrical stimulation without AT, fMRI revealed activation of midcingulate, right secondary sensory, right supplementary motor, and insular cortices, the right thalamus and left caudate nucleus. In contrast, utilizing AT only activation of left insular and supplementary motor cortices was revealed. The paired t-test revealed pain-related activation in the midcingulate, posterior cingulate and left anterior insular cortices for the condition without AT, and activation in the left ventrolateral prefrontal cortex under AT. Activation of the posterior cingulate cortex and thalamus correlated with the amplitude of electrical stimulation. This study revealed an effect on cerebral pain processing while performing AT. This might represent the cerebral correlate of different painful stimulus processing by subjects who are trained in performing relaxation techniques. However, due to the absence of a control group, further studies are needed to confirm this theory. © 2012 European Federation of International Association for the Study of Pain Chapters.

  2. Effects of Preweaning Polysensorial Enrichment upon Development of the Parietal Cortical Plate of Undernourished Rats: A Stereological Study

    OpenAIRE

    González, Héctor; Adaro, Luis; Hernández, Alejandro; Fernández, Víctor

    2014-01-01

    This investigation was undertaken in order to quantify the effects of early polysensorial enrichment on the development of cortical pyramids, located in the parietal cortex of rats simultaneously submitted to protein-energy undernutrition. A short period of stimulation during suckling significantly decreases the cellular density in the cortical plate (phylogenetic-ontogenetic evolutionary index). Results suggest that the cerebral cortex develops according to a sophisticated neuronal network, ...

  3. 4D segmentation of brain MR images with constrained cortical thickness variation.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Segmentation of brain MR images plays an important role in longitudinal investigation of developmental, aging, disease progression changes in the cerebral cortex. However, most existing brain segmentation methods consider multiple time-point images individually and thus cannot achieve longitudinal consistency. For example, cortical thickness measured from the segmented image will contain unnecessary temporal variations, which will affect the time related change pattern and eventually reduce the statistical power of analysis. In this paper, we propose a 4D segmentation framework for the adult brain MR images with the constraint of cortical thickness variations. Specifically, we utilize local intensity information to address the intensity inhomogeneity, spatial cortical thickness constraint to maintain the cortical thickness being within a reasonable range, and temporal cortical thickness variation constraint in neighboring time-points to suppress the artificial variations. The proposed method has been tested on BLSA dataset and ADNI dataset with promising results. Both qualitative and quantitative experimental results demonstrate the advantage of the proposed method, in comparison to other state-of-the-art 4D segmentation methods.

  4. CT findings of cerebral palsy and behaviour development

    International Nuclear Information System (INIS)

    Sakamoto, Zenji

    1987-01-01

    It is well recognized that CT scan is very useful in the early diagnosis of cerebral palsy. The author has studied this time the CT scan findings of cerebral palsy children in their relations to the type of palsy, cause of palsy, complications in the central nervous system, and prognosis of behaviour development, in order to predict the prognosis of behaviour development. Dilatation of the contralateral cerebral ventricle was found in 82 % of hemiplegic type. Abnormal EEG was found in 73 %, but their behaviour development was satisfactory, with good development of speech regardless to the side of palsy. This might be helped by compensational function of the brain due to plasticity. Diplegia presented bilateral moderate dilatation of ventricles with favorable prognosis. Tetraplegia was caused mostly by asphyxia or congenital anomaly and revealed marked dilatation of ventricles or severe cortical atrophy. Some cases presented diffuse cortical low-density, often associated with abnormal EEG, and their prognosis was worst. Athetosis had normal CT finding or mild ventricular dilatation, but all cases of ataxia presented normal CT findings. Hypotonia had mild ventricular dilatation. Two of three mixed type cases had normal CT findings and another had mild ventricular dilatation. No correlation was found between ventricular dilatation and behaviour development, but statistically significant difference was found in the cases with 30 % or more Evans' ratio (P < 0.05). Prognosis of severe ventricular dilatation cases was poor. (author)

  5. Cortical somatosensory reorganization in children with spastic cerebral palsy: a multimodal neuroimaging study

    Directory of Open Access Journals (Sweden)

    CHRISTOS ePAPADELIS

    2014-09-01

    Full Text Available Although cerebral palsy (CP is among the most common causes of physical disability in early childhood, we know little about the functional and structural changes of this disorder in the developing brain. Here, we investigated with three different neuroimaging modalities (magnetoencephalography (MEG, diffusion tension imaging (DTI, and resting state fMRI whether spastic CP is associated with functional and anatomical abnormalities in the sensorimotor network. Ten children participated in the study: four with diplegic CP (DCP, three with hemiplegic CP (HCP, and three typically-developing (TD children. Somatosensory evoked fields (SEFs were recorded in response to pneumatic stimuli applied to digits D1, D3, and D5 of both hands. Several parameters of water diffusion were calculated from DTI between the thalamus and the precentral and postcentral gyri in both hemispheres. The sensorimotor resting state networks (RSNs were examined by using an independent component analysis method. Tactile stimulation of the fingers elicited the first prominent cortical response at ~50 ms, in all except one child, localized over the primary somatosensory cortex (S1. In five CP children, abnormal somatotopic organization was observed in the affected (or more affected hemisphere. Euclidean distances were markedly different between the two hemispheres in the HCP children, and between DCP and TD children for both hemispheres. DTI analysis revealed decreased fractional anisotropy and increased apparent diffusion coefficient for the thalamocortical pathways in the more affected compared to less affected hemisphere in CP children. Rs-fMRI results indicated absent and/or abnormal sensorimotor RSNs for children with HCP and DCP consistent with the severity and location of their lesions. Our findings suggest an abnormal somatosensory processing mechanism in the sensorimotor network of children with CP possibly as a result of diminished thalamocortical projections.

  6. Effect of canagliflozin and metformin on cortical neurotransmitters in a diabetic rat model.

    Science.gov (United States)

    Arafa, Nadia M S; Marie, Mohamed-Assem S; AlAzimi, Sara Abdullah Mubarak

    2016-10-25

    The rapid economic development in the Arabian Gulf has resulted in lifestyle changes that have increased the prevalence of obesity and type 2 diabetes, with the greatest increases observed in Kuwait. Dyslipidemia and diabetes are risk factors for disruptions in cortical neurotransmitter homeostasis. This study investigated the effect of the antidiabetic medications canagliflozin (CAN) and metformin (MET) on the levels of cortical neurotransmitters in a diabetic rat model. The rats were assigned to the control (C) group, the diabetic group that did not receive treatment (D) or the diabetic group treated with either CAN (10 mg/kg) or MET (100 mg/kg) for 2 or 4 weeks. Blood and urine glucose levels and cortical acetylcholinesterase (AChE) activity were assayed, and amino acid and monoamine levels were measured using HPLC. The diabetic group exhibited a significant increase in AChE activity and a decrease in monoamine and amino acid neurotransmitter levels. In the CAN group, AChE was significantly lower than that in the D and D + MET groups after 2 weeks of treatment. In addition, a significant increase in some cortical monoamines and amino acids was observed in the D + MET and D + CAN groups compared with the D group. Histopathological analysis revealed the presence of severe focal hemorrhage, neuronal degeneration, and cerebral blood vessel congestion, with gliosis in the cerebrum of rats in the D group. The CAN-treated group exhibited severe cerebral blood vessel congestion after 2 weeks of treatment and focal gliosis in the cerebrum after 4 weeks of treatment. Focal gliosis in the cerebrum of rats in the MET-treated group was observed after 2 and 4 weeks of treatment. We conclude that the effect of CAN and MET on neurotransmitters is potentially mediated by their antihyperglycemic and antihyperlipidemic effects. In addition, the effects of CAN on neurotransmitters might be associated with its receptor activity, and the effect of MET on neurotransmitters

  7. Cerebral activation studies by PET and fMRT, clinical relevance?

    International Nuclear Information System (INIS)

    Brandt, T.

    1997-01-01

    Cerebral activation studies by PET and fMRT will gain increasing clinical relevance for functional neuroanatomy (reading, speaking), localisation of largely unknown cortical functions (vestibular cortex), imaging of subjective complaints of functional impairments (pain, smell, memory), and documentation of neurological rehabilitation at neuronal level (regeneration, compensation, substitution, learning). (orig.) [de

  8. Identifying and characterising cerebral visual impairment in children: a review.

    Science.gov (United States)

    Philip, Swetha Sara; Dutton, Gordon N

    2014-05-01

    Cerebral visual impairment (CVI) comprises visual malfunction due to retro-chiasmal visual and visual association pathway pathology. This can be isolated or accompany anterior visual pathway dysfunction. It is a major cause of low vision in children in the developed and developing world due to increasing survival in paediatric and neonatal care. CVI can present in many combinations and degrees. There are multiple causes and it is common in children with cerebral palsy. CVI can be identified easily, if a structured approach to history-taking is employed. This review describes the features of CVI and describes practical management strategies aimed at helping affected children. A literature review was undertaken using 'Medline' and 'Pubmed'. Search terms included cerebral visual impairment, cortical visual impairment, dorsal stream dysfunction and visual function in cerebral palsy. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  9. Regional cerebral glucose consumption measured by positron emission tomography in patients with Wilson's disease

    International Nuclear Information System (INIS)

    Kuwert, T.; Scholz, D.; Milz, M.; Herzog, H.; Feinendegen, L.E.; Hefter, H.; Weiss, P.; Arendt, G.; Loken, M.; Minnesota Univ., Minneapolis, MN; Hennerici, M.

    1992-01-01

    Using positron emission tomography (PET), the regional cerebral metabolic rate of glucose consumption (rCMRGlc) was measured in 14 patients with Wilson's disease (WD) and 23 normal subjects. In WD patients, cerebellar, striatal and - to a lesser extent - cortical and thalamic rCMRGlc were significantly decreased compared with controls. Striatal rCMRGlc was significantly reduced in those 4 patients who had recently started decoppering therapy as compared with striatal rCMRGlc measured in those 10 patients with longer duration of medication. Caudate rCMRGlc correlated significantly with various signs of extrapyramidal dysfunction. Cerebellar, thalamic and cortical rCMRGlc correlated significantly with the severity of pyramidal signs. These data indicate that the PET measurement of rCMRGlc may be a useful tool to evaluate cerebral involvement in WD and to monitor the response to treatment. (orig.)

  10. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL.

    Science.gov (United States)

    De Guio, François; Reyes, Sonia; Vignaud, Alexandre; Duering, Marco; Ropele, Stefan; Duchesnay, Edouard; Chabriat, Hugues; Jouvent, Eric

    2014-01-01

    Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin's scale ≤1 and Mini Mental State Examination (MMSE) ≥24). Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models. MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls. Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.

  11. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL.

    Directory of Open Access Journals (Sweden)

    François De Guio

    Full Text Available Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy, a monogenic model of cerebral small vessel disease (SVD. The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin's scale ≤1 and Mini Mental State Examination (MMSE ≥24.Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male and 24 controls (54.8±11.0 years, 42% male. Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models.MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls.Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.

  12. Comparative study of muscular tonus in spastic tetra paretic cerebral palsy in children with predominantly cortical and subcortical lesions in computerized tomography of the skull; Estudo comparativo do tono muscular na paralisia cerebral tetraparetica em criancas com lesoes predominantemente corticais ou subcorticais na tomografia computadorizada de cranio

    Energy Technology Data Exchange (ETDEWEB)

    Iwabe, Cristina [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Ciencias Medicas. Dept. de Neurologia; Piovesana, Ana Maria Sedrez Gonzaga [Universidade Estadual de Campinas, SP (Brazil). Ambulatorio Multidisciplinar de Paralisia Cerebral e Neurologia Infantil

    2003-09-01

    The objective was to compare distribution and intensity of muscular tonus in spastic tetra paretic cerebral palsy (CP), correlating the clinical data with lesion location in the central nervous system. Twelve children aged two to four years old with predominantly cortical lesions (six children) and subcortical lesions (six children) were included. The tonus was analyzed in the upper (UULL) and lower limbs (LLLL) based on Durigon and Piemonte protocol. The result showed that there was no significant difference regarding tonus intensity and distribution in the UULL and LLLL in both groups. Comparing the upper and lower limbs of subjects in the same group, the LLLL presented more asymmetry and higher tonus intensity than the UULL. It was concluded that in this study children with CP as a result of predominantly cortical or subcortical lesions present a similar deficit in tonus modulation, causing a symmetric and homogeneous distribution of hypertonicity, which is predominant in the LLLL. (author)

  13. Transcranial magnetic stimulation reveals cortical hyperexcitability in episodic cluster headache.

    Science.gov (United States)

    Cosentino, Guiseppe; Brighina, Filippo; Brancato, Sara; Valentino, Francesca; Indovino, Serena; Fierro, Brigida

    2015-01-01

    Evidence shows involvement of the cerebral cortex in the pathophysiology of cluster headache (CH). Here we investigated cortical excitability in episodic CH patients by using transcranial magnetic stimulation. In 25 patients with episodic CH and 13 healthy subjects we evaluated the motor cortical response to single-pulse (ie, motor threshold, input-output curves, cortical silent period) and paired-pulse (ie, intracortical facilitation, short intracortical inhibition) transcranial magnetic stimulation in both hemispheres. Thirteen patients were evaluated outside bout and the remaining 12 patients inside bout. Our results showed increased slope of the input-output curves after stimulation of both hemispheres in patients outside bout and in the hemisphere contralateral to the headache side in patients inside bout. Increased intracortical facilitation was observed in the hemisphere ipsilateral to the headache side in patients evaluated both outside and inside bout; reduced short intracortical inhibition was observed in patients inside bout ipsilateral to the side of pain. In conclusion, we provide evidence of increased cortical excitability in episodic CH both outside and inside bout, especially in the hemisphere ipsilateral to the side of headache attacks. Our results suggest that an abnormal regulation of cortical excitability could be involved in the pathophysiology of CH. We investigated cortical excitability in episodic cluster headache by using transcranial magnetic stimulation, providing evidence of cortical hyperexcitability in patients both inside and outside bout. We suggest that an abnormal state of cortical excitability could be involved in the pathophysiology of the disease. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Nrdp1 Increases Ischemia Induced Primary Rat Cerebral Cortical Neurons and Pheochromocytoma Cells Apoptosis Via Downregulation of HIF-1α Protein

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-09-01

    Full Text Available Neuregulin receptor degradation protein-1 (Nrdp1 is an E3 ubiquitin ligase that targets proteins for degradation and regulates cell growth, apoptosis and oxidative stress in various cell types. We have previously shown that Nrdp1 is implicated in ischemic cardiomyocyte death. In this study, we investigated the change of Nrdp1 expression in ischemic neurons and its role in ischemic neuronal injury. Primary rat cerebral cortical neurons and pheochromocytoma (PC12 cells were infected with adenoviral constructs expressing Nrdp1 gene or its siRNA before exposing to oxygen-glucose deprivation (OGD treatment. Our data showed that Nrdp1 was upregulated in ischemic brain tissue 3 h after middle cerebral artery occlusion (MCAO and in OGD-treated neurons. Of note, Nrdp1 overexpression by Ad-Nrdp1 enhanced OGD-induced neuron apoptosis, while knockdown of Nrdp1 with siRNA attenuated this effect, implicating a role of Nrdp1 in ischemic neuron injury. Moreover, Nrdp1 upregulation is accompanied by increased protein ubiquitylation and decreased protein levels of ubiquitin-specific protease 8 (USP8 in OGD-treated neurons, which led to a suppressed interaction between USP8 and HIF-1α and subsequently a reduction in HIF-1α protein accumulation in neurons under OGD conditions. In conclusion, our data support an important role of Nrdp1 upregulation in ischemic neuronal death, and suppressing the interaction between USP8 and HIF-1α and consequently the hypoxic adaptive response of neurons may account for this detrimental effect.

  15. Diffusion Tensor Imaging of Human Cerebellar Pathways and their Interplay with Cerebral Macrostructure

    Directory of Open Access Journals (Sweden)

    Zafer eKeser

    2015-04-01

    Full Text Available Cerebellar white matter connections to the central nervous system are classified functionally into the spinocerebellar, vestibulocerebellar, and cerebrocerebellar subdivisions. The Spinocerebellar (SC pathways project from spinal cord to cerebellum, whereas the vestibulocerebellar (VC pathways project from vestibular organs of the inner ear. Cerebrocerebellar connections are composed of feed forward and feedback connections between cerebrum and cerebellum including the cortico-ponto-cerebellar (CPC pathways being of cortical origin and the dentate-rubro-thalamo-cortical (DRTC pathway being of cerebellar origin. In this study we systematically quantified the whole cerebellar system connections using diffusion tensor magnetic resonance imaging (DT-MRI. Ten right-handed healthy subjects (7 males and 3 females, age range 20-51 years were studied. DT-MRI data were acquired with a voxel size = 2mm x 2mm x 2 mm at a 3.0 Tesla clinical MRI scanner. The DT-MRI data were prepared and analyzed using anatomically-guided deterministic tractography methods to reconstruct the SC, DRTC, fronto-ponto-cerebellar (FPC, parieto-ponto-cerebellar (PPC, temporo-ponto-cerebellar (TPC and occipito-ponto-cerebellar (OPC. The DTI-attributes or the cerebellar tracts along with their cortical representation (Brodmann areas were presented in standard Montréal Neurological Institute space. All cerebellar tract volumes were quantified and correlated with volumes of cerebral cortical, subcortical gray matter (GM, cerebral white matter (WM and cerebellar GM, and cerebellar WM. On our healthy cohort, the ratio of total cerebellar GM-to-WM was ~ 3.29 ± 0.24, whereas the ratio of cerebral GM-to-WM was approximately 1.10 ± 0.11. The sum of all cerebellar tract volumes is ~ 25.8 ± 7.3 mL, or a percentage of 1.52 ± 0.43 of the total intracranial volume.

  16. Case-control study of six genes asymmetrically expressed in the two cerebral hemispheres: association of BAIAP2 with attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Ribasés, Marta; Bosch, Rosa; Hervás, Amaia

    2009-01-01

    BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neuropsychiatric disease that persists into adulthood in at least 30% of patients. There is evidence suggesting that abnormal left-right brain asymmetries in ADHD patients may be involved in a variety of ADHD......-related cognitive processes, including sustained attention, working memory, response inhibition and planning. Although mechanisms underlying cerebral lateralization are unknown, left-right cortical asymmetry has been associated with transcriptional asymmetry at embryonic stages and several genes differentially...... expressed between hemispheres have been identified. METHODS: We selected six functional candidate genes showing at least 1.9-fold differential expression between hemispheres (BAIAP2, DAPPER1, LMO4, NEUROD6, ATP2B3, and ID2) and performed a case-control association study in an initial Spanish sample of 587...

  17. Regional cerebral blood flow in pure dysarthria. A 3D-SSP study

    International Nuclear Information System (INIS)

    Okamoto, Kensho; Kamogawa, Kenji; Okuda, Bungo; Kawabata, Keita; Tachibana, Hisao

    2007-01-01

    Pure dysarthria from brain infarction is a rare condition, and its pathophysiology remains unclear. To clarify the underlying mechanism of pure dysarthria, we investigated the lesion sites and regional cerebral blood flow in patients with pure dysarthria. We examined 18 consecutive patients with pure dysarthria (9 men and 9 women; mean age, 71 years) who underwent MRI and cerebral blood flow studies. To visualize the regional cerebral blood flow, we generated Z score images using the three-dimensional stereotactic surface projection (3D-SSP) method with single-photon emission computed tomography (SPECT) and N-isopropyl-p [ 123 I]iodoamphetamine. Data on the brain surface perfusion extracted by the 3D-SSP analysis were compared between the pure dysarthria (PD) patients and 9 control subjects. MRI revealed multiple lacunar infarctions involving the internal capsule and/or corona radiata in 11 patients, left internal capsule-corona radiata infarction in 4 patients, and pontine infarction in 3 patients. SPECT with 3D-SSP demonstrated bilateral frontal cortical hypoperfusion in all patients, particularly in the anterior opercular region. Based on intergroup comparisons, the PD group exhibited pronounced cortical hypoperfusion in the opercular and medial frontal regions, left more than right. In conclusion, pure dysarthria is considered to originate from frontal cortical hypoperfusion, mainly in the anterior opercular and medial frontal regions, which is probably due to interruption of the corticosubcortical neural networks relevant to speech expression and articulation. In addition, it is suggested that left hemispheric lesions may make a greater contribution to the development of pure dysarthria than do right ones. (author)

  18. Longitudinal stability of the folding pattern of the anterior cingulate cortex during development

    Directory of Open Access Journals (Sweden)

    A. Cachia

    2016-06-01

    Full Text Available Prenatal processes are likely critical for the differences in cognitive ability and disease risk that unfold in postnatal life. Prenatally established cortical folding patterns are increasingly studied as an adult proxy for earlier development events – under the as yet untested assumption that an individual's folding pattern is developmentally fixed. Here, we provide the first empirical test of this stability assumption using 263 longitudinally-acquired structural MRI brain scans from 75 typically developing individuals spanning ages 7 to 32 years. We focus on the anterior cingulate cortex (ACC – an intensely studied cortical region that presents two qualitatively distinct and reliably classifiable sulcal patterns with links to postnatal behavior. We show – without exception–that individual ACC sulcal patterns are fixed from childhood to adulthood, at the same time that quantitative anatomical ACC metrics are undergoing profound developmental change. Our findings buttress use of folding typology as a postnatally-stable marker for linking variations in early brain development to later neurocognitive outcomes in ex utero life.

  19. Dynamic CT brain scanning in the haemodynamic evaluation of cerebral arterial occlusive disease

    International Nuclear Information System (INIS)

    Davis, S.M.; Melbourne Univ.; Tress, B.M.; Hopper, J.L.; Rossiter, S.C.; Kaye, A.H.

    1987-01-01

    Dynamic cerebral CT scanning (DCT) was used to quantitatively analyse the haemodynamic effects of extracranial and intracranial arterial occlusive lesions in 17 patients with TIA's or minor cerebral infarcts. Using DCT and gamma variate curve fitting, mean transit times were determined for the terminal internal carotid arteries, middle cerebral arteries and middle cerebral-supplied Sylvian cortex at the level of the Circle of Willis. Six patients were studied sequentially, four before and after transcranial bypass surgery. No arterial or tissue delays were found in patients without haemodynamic arterial lesions or cortical infarcts. Seven of nine patients with haemodynamic, extracranial carotid lesions showed ipsilateral delays in arterial or tissue transit times. Tissue delays usually correlated with CT or clinical evidence of infarction. Improved haemodynamics in patients re-studied correlated with the effects of surgery or clinical recovery. DCT has several important limitations but has the potential to provide additional haemodynamic information about the cerebral circulation in selected patients with cerebral arterial occlusive disease. (orig.)

  20. Analysis of cranial CT-scan findings in cerebral palsy

    Energy Technology Data Exchange (ETDEWEB)

    Wada, F.; Andoh, T.; Une, K.; Takamatsu, T. (Kitakyushu Municipal Sogo-Ryoiku Center (Japan))

    1981-06-01

    CT-scan findings of 87 cerebral palsied children were studied. They consist of 23 cases of spastic quadriplegia, 9 cases of diplegia, 12 cases of paraplegia, 24 cases of athetosis and mixed type, and 19 cases of hemiplegia. In the former four types, ventricular dilatation and cortical atrophy were measured and abnormal changes in cerebral substance and cerebellar atrophy were observed. Spastic quadriplegia showed most intense changes in every aspect of the abnormalities, while paraplegia had almost normal appearance. Athetosis and mixed type had moderate changes. Hemiplegia always showed asymmetrical view on CT-scan, dilatation of lateral ventricle or atrophy of hemisphere in contralateral side being observed.

  1. Analysis of cranial CT-scan findings in cerebral palsy

    International Nuclear Information System (INIS)

    Wada, Fumio; Andoh, Tadashi; Une, Koji; Takamatsu, Tsurukichi

    1981-01-01

    CT-scan findings of 87 cerebral palsied children were studied. They consist of 23 cases of spastic quadriplegia, 9 cases of diplegia, 12 cases of paraplegia, 24 cases of athetosis and mixed type, and 19 cases of hemiplegia. In the former four types, ventricular dilatation and cortical atrophy were measured and abnormal changes in cerebral substance and cerebellar atrophy were observed. Spastic quadriplegia showed most intense changes in every aspect of the abnormalities, while paraplegia had almost normal appearance. Athetosis and mixed type had moderate changes. Hemiplegia always showed asymmetrical view on CT-scan, dilatation of lateral ventricle or atrophy of hemisphere in contralateral side being observed. (author)

  2. Mapping Cortical Laminar Structure in the 3D BigBrain.

    Science.gov (United States)

    Wagstyl, Konrad; Lepage, Claude; Bludau, Sebastian; Zilles, Karl; Fletcher, Paul C; Amunts, Katrin; Evans, Alan C

    2018-07-01

    Histological sections offer high spatial resolution to examine laminar architecture of the human cerebral cortex; however, they are restricted by being 2D, hence only regions with sufficiently optimal cutting planes can be analyzed. Conversely, noninvasive neuroimaging approaches are whole brain but have relatively low resolution. Consequently, correct 3D cross-cortical patterns of laminar architecture have never been mapped in histological sections. We developed an automated technique to identify and analyze laminar structure within the high-resolution 3D histological BigBrain. We extracted white matter and pial surfaces, from which we derived histologically verified surfaces at the layer I/II boundary and within layer IV. Layer IV depth was strongly predicted by cortical curvature but varied between areas. This fully automated 3D laminar analysis is an important requirement for bridging high-resolution 2D cytoarchitecture and in vivo 3D neuroimaging. It lays the foundation for in-depth, whole-brain analyses of cortical layering.

  3. Abnormal fetal cerebral laminar organization in cobblestone complex as seen on post-mortem MRI and DTI

    International Nuclear Information System (INIS)

    Widjaja, Elysa; Geibprasert, Sasikhan; Blaser, Susan; Rayner, Tammy; Shannon, Patrick

    2009-01-01

    We report a unique case of cobblestone complex using post-mortem MR and diffusion tensor imaging to assess the laminar organization of the fetal cerebrum. The imaging findings were correlated with autopsy findings. Abnormal cortical development in cobblestone complex resulted in disruption of normal laminar organization of the fetal brain, which was seen as interruption and nodularity of the high-signal T1 cortical band with increased anisotropy and medium diffusivity extending beyond the cortical band into the cerebral mantle on post-mortem MR and diffusion tensor imaging. (orig.)

  4. Abnormal fetal cerebral laminar organization in cobblestone complex as seen on post-mortem MRI and DTI

    Energy Technology Data Exchange (ETDEWEB)

    Widjaja, Elysa; Geibprasert, Sasikhan; Blaser, Susan; Rayner, Tammy [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Shannon, Patrick [University of Toronto, Department of Pathology, Mount Sinai Hospital, Toronto (Canada)

    2009-08-15

    We report a unique case of cobblestone complex using post-mortem MR and diffusion tensor imaging to assess the laminar organization of the fetal cerebrum. The imaging findings were correlated with autopsy findings. Abnormal cortical development in cobblestone complex resulted in disruption of normal laminar organization of the fetal brain, which was seen as interruption and nodularity of the high-signal T1 cortical band with increased anisotropy and medium diffusivity extending beyond the cortical band into the cerebral mantle on post-mortem MR and diffusion tensor imaging. (orig.)

  5. Relationship between relative cerebral blood flow, relative cerebral blood volume, and relative cerebral metabolic rate of oxygen in the preterm neonatal brain.

    Science.gov (United States)

    Nourhashemi, Mina; Kongolo, Guy; Mahmoudzadeh, Mahdi; Goudjil, Sabrina; Wallois, Fabrice

    2017-04-01

    The mechanisms responsible for coupling between relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and relative cerebral metabolic rate of oxygen ([Formula: see text]), an important function of the microcirculation in preterm infants, remain unclear. Identification of a causal relationship between rCBF-rCBV and [Formula: see text] in preterms may, therefore, help to elucidate the principles of cortical hemodynamics during development. We simultaneously recorded rCBF and rCBV and estimated [Formula: see text] by two independent acquisition systems: diffuse correlation spectroscopy and near-infrared spectroscopy, respectively, in 10 preterms aged between 28 and 35 weeks of gestational age. Transfer entropy was calculated in order to determine the directionality between rCBF-rCBV and [Formula: see text]. The surrogate method was applied to determine statistical significance. The results show that rCBV and [Formula: see text] have a predominant driving influence on rCBF at the resting state in the preterm neonatal brain. Statistical analysis robustly detected the correct directionality of rCBV on rCBF and [Formula: see text] on rCBF. This study helps to clarify the early organization of the rCBV-rCBF and [Formula: see text] inter-relationship in the immature cortex.

  6. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex.

    Science.gov (United States)

    Yeo, B T Thomas; Krienen, Fenna M; Chee, Michael W L; Buckner, Randy L

    2014-03-01

    The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. © 2013.

  7. Contrast enhancement pattern in MR imaging of acute cerebral infarction

    International Nuclear Information System (INIS)

    Kim, Jong Deok; Cho, Mee Young; Lee, Chae Guk; Song, Dong Hoon

    1994-01-01

    To present the enhancement pattern of acute cerebral or cerebellar cortical infarctions aged 1-3 days on MR. Contrast-enhanced MR images of 26 patients with acute cerebral or cerebellar ischemic events were retrospectively reviewed. MR was performed within 3 days after ictus. Contrast enhancement in the area of infarction was observed in 61.5% (16/26) on MR. Of these 50% (13/26) showed non-parenchymal enhancement (NPE) representing either vascular or leptomeningeal enhancement, 7.7% (2/26) showed parenchymal enhancement (PE), and 2.8% (1/26) showed both NPE and PE. The earliest enhancement was seen in images obtained 12 hours after the onset of symptoms and appeared as NPE. One patient showed NPE without apparent high signal intensity at the corresponding area on T2-weighted images. In 38.5% (10/26), there was no enhancement. Contrast-enhanced MR imaging may be needed in acute ischemic infarction, because NPE may be seen as the earliest MR finding of acute cortical infraction aged 1-3 days

  8. Contrast enhancement pattern in MR imaging of acute cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Deok; Cho, Mee Young; Lee, Chae Guk; Song, Dong Hoon [Inje University College of Medicine, Pusan (Korea, Republic of)

    1994-08-15

    To present the enhancement pattern of acute cerebral or cerebellar cortical infarctions aged 1-3 days on MR. Contrast-enhanced MR images of 26 patients with acute cerebral or cerebellar ischemic events were retrospectively reviewed. MR was performed within 3 days after ictus. Contrast enhancement in the area of infarction was observed in 61.5% (16/26) on MR. Of these 50% (13/26) showed non-parenchymal enhancement (NPE) representing either vascular or leptomeningeal enhancement, 7.7% (2/26) showed parenchymal enhancement (PE), and 2.8% (1/26) showed both NPE and PE. The earliest enhancement was seen in images obtained 12 hours after the onset of symptoms and appeared as NPE. One patient showed NPE without apparent high signal intensity at the corresponding area on T2-weighted images. In 38.5% (10/26), there was no enhancement. Contrast-enhanced MR imaging may be needed in acute ischemic infarction, because NPE may be seen as the earliest MR finding of acute cortical infraction aged 1-3 days.

  9. Laminar thickness alterations in the fronto-parietal cortical mantle of patients with attention-deficit/hyperactivity disorder.

    Directory of Open Access Journals (Sweden)

    Elseline Hoekzema

    Full Text Available Although Attention-Deficit/Hyperactivity Disorder (ADHD was initially regarded as a disorder exclusive to childhood, nowadays its prevalence in adulthood is well established. The development of novel techniques for quantifying the thickness of the cerebral mantle allows the further exploration of the neuroanatomical profiles underlying the child and adult form of the disorder. To examine the cortical mantle in children and adults with ADHD, we applied a vertex-wise analysis of cortical thickness to anatomical brain MRI scans acquired from children with (n = 43 and without ADHD (n = 41, as well as a group of adult neurotypical individuals (n = 31, adult patients with a history of stimulant treatment (n = 31 and medication-naïve adults with ADHD (n = 24. We observed several clusters of reduced laminar cortical thickness in ADHD patients in comparison to neurotypical individuals. These differences were primarily located in the dorsal attention network, including the bilateral inferior and superior parietal cortex and a section of the frontal cortex (centered on the superior frontal and precentral gyrus bilaterally. Further laminar thickness deficits were observed in the bilateral orbitofrontal cortex and medial occipital cortex. The deficits in the cortical surface were especially pronounced in the child sample, while adult patients showed a more typical laminar thickness across the cerebral mantle. These findings show that the neuroanatomical profile of ADHD, especially the childhood form of the disorder, involves robust alterations in the cortical mantle, which are most prominent in brain regions subserving attentional processing.

  10. Cortical venous thrombosis following exogenous androgen use for bodybuilding.

    Science.gov (United States)

    Sveinsson, Olafur; Herrman, Lars

    2013-02-05

    There are only a few reports of patients developing cerebral venous sinus thrombosis (CVST) after androgen therapy. We present a young man who developed cortical venous thrombosis after using androgens to increase muscle mass. He was hospitalised for parasthesia and dyspraxia in the left hand followed by a generalised tonic-clonic seizure. At admission, he was drowsy, not fully orientated, had sensory inattention, pronation drift and a positive extensor response, all on the left side. The patient had been using anabolic steroids (dainabol 20 mg/day) for the last month for bodybuilding. CT angiography showed a right cortical venous thrombosis. Anticoagulation therapy was started with intravenous heparin for 11 days and oral anticoagulation (warfarin) thereafter. A control CT angiography 4 months later showed resolution of the thrombosis. He recovered fully.

  11. The development of cerebral amyloid angiopathy in cerebral vessels. A review with illustrations based upon own investigated post mortem cases.

    Science.gov (United States)

    Mendel, T A; Wierzba-Bobrowicz, T; Lewandowska, E; Stępień, T; Szpak, G M

    2013-12-01

    The process of β-amyloid accumulation in cerebral vessels is presented. Cerebral amyloid angiopathy (CAA) was confirmed during an autopsy. It was diagnosed according to the Boston criteria. Cerebral amyloid angiopathy can involve all kinds of cerebral vessels (cortical and leptomeningeal arterioles, capillaries and veins). The development of CAA is a progressive process. β-amyloid appears first in the tunica media, surrounding smooth muscle cells, and in the adventitia. β-amyloid is progressively accumulated, causing a gradual loss of smooth muscle cells in the vessel wall and finally replacing them. Then, the detachment and delamination of the outer part of the tunica media results in the "double barrel" appearance, fibrinoid necrosis, and microaneurysm formation. Microbleeding with perivascular deposition of erythrocytes and blood breakdown products can also occur. β-amyloid can also be deposited in the surrounding of the affected vessels of the brain parenchyma, known as "dysphoric CAA". Ultrastructurally, when deposits of amyloid fibers were localized in or outside the arteriolar wall, the degenerating vascular smooth muscle cells were observed. In the Institute of Psychiatry and Neurology the study was carried out in a group of 48 patients who died due to intracerebral hemorrhage caused by sporadic CAA.

  12. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation.

    Science.gov (United States)

    Elvsåshagen, Torbjørn; Zak, Nathalia; Norbom, Linn B; Pedersen, Per Ø; Quraishi, Sophia H; Bjørnerud, Atle; Alnæs, Dag; Doan, Nhat Trung; Malt, Ulrik F; Groote, Inge R; Westlye, Lars T

    2017-08-01

    Sleep is an evolutionarily conserved process required for human health and functioning. Insufficient sleep causes impairments across cognitive domains, and sleep deprivation can have rapid antidepressive effects in mood disorders. However, the neurobiological effects of waking and sleep are not well understood. Recently, animal studies indicated that waking and sleep are associated with substantial cortical structural plasticity. Here, we hypothesized that structural plasticity can be observed after a day of waking and sleep deprivation in the human cerebral cortex. To test this hypothesis, 61 healthy adult males underwent structural magnetic resonance imaging (MRI) at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (N=41) or a night of sleep (N=20). We found significantly increased right prefrontal cortical thickness from morning to evening across all participants. In addition, pairwise comparisons in the deprived group between the two morning scans showed significant thinning of mainly bilateral medial parietal cortices after 23h of sleep deprivation, including the precuneus and posterior cingulate cortex. However, there were no significant group (sleep vs. sleep deprived group) by time interactions and we can therefore not rule out that other mechanisms than sleep deprivation per se underlie the bilateral medial parietal cortical thinning observed in the deprived group. Nonetheless, these cortices are thought to subserve wakefulness, are among the brain regions with highest metabolic rate during wake, and are considered some of the most sensitive cortical regions to a variety of insults. Furthermore, greater thinning within the left medial parietal cluster was associated with increased sleepiness after sleep deprivation. Together, these findings add to a growing body of data showing rapid structural plasticity within the human cerebral cortex detectable with

  13. Probing phase- and frequency-dependent characteristics of cortical interneurons using combined transcranial alternating current stimulation and transcranial magnetic stimulation.

    Science.gov (United States)

    Hussain, Sara J; Thirugnanasambandam, Nivethida

    2017-06-01

    Paired-pulse transcranial magnetic stimulation (TMS) and peripheral stimulation combined with TMS can be used to study cortical interneuronal circuitry. By combining these procedures with concurrent transcranial alternating current stimulation (tACS), Guerra and colleagues recently showed that different cortical interneuronal populations are differentially modulated by the phase and frequency of tACS-imposed oscillations (Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, Brown P. Cerebral Cortex 26: 3977-2990, 2016). This work suggests that different cortical interneuronal populations can be characterized by their phase and frequency dependency. Here we discuss how combining TMS and tACS can reveal the frequency at which cortical interneuronal populations oscillate, the neuronal origins of behaviorally relevant cortical oscillations, and how entraining cortical oscillations could potentially treat brain disorders. Copyright © 2017 the American Physiological Society.

  14. Vascular risk factors, atherosclerosis, cerebral white matter lesions and cerebral perfusion in a population-based study

    International Nuclear Information System (INIS)

    Claus, J.J.; Breteler, M.M.B.; Hasan, D.; Krenning, E.P.; Bots, M.L.; Grobbee, D.E.; Swieten, J.C. van; Harskamp, F. van; Hofman, A.

    1996-01-01

    We studied risk factors for cerebral vascular disease (blood pressure and hypertension, factor VIIc, factor VIIIc, fibrinogen), indicators of atherosclerosis (intima-media thickness and plaques in the carotid artery) and cerebral white matter lesions in relation to regional cerebral blood flow (rCBF) in 60 persons (aged 65-85 years) recruited from a population-based study. rCBF was assessed with single-photon emission tomography using technetium-99m d,l-hexamethylpropylene amine oxime ( 99m Tc-HMPAO). Statistical analysis was performed with multiple linear regression with adjustment for age, sex and ventricle-to-brain ratio. A significant positive association was found between systolic and diastolic blood pressure and temporo-parietal rCBF. In analysis with quartiles of the distribution, we found a threshold effect for the relation of low diastolic blood pressure (≤60 mmHg) and low temporo-parietal rCBF. Levels of plasma fibrinogen were inversely related to parietal rCBF, with a threshold effect of high fibrinogen levels (>3.2 g/l) and low rCBF. Increased atherosclerosis was related to low rCBF in all cortical regions, but these associations were not significant. No consistent relation was observed between severity of cerebral white matter lesions and rCBF. Our results may have implications for blood pressure control in the elderly population. (orig.)

  15. Alterations in the Timing of Huperzine A Cerebral Pharmacodynamics in the Acute Traumatic Brain Injury Setting.

    Science.gov (United States)

    Damar, Ugur; Gersner, Roman; Johnstone, Joshua T; Kapur, Kush; Collins, Stephen; Schachter, Steven; Rotenberg, Alexander

    2018-01-15

    Traumatic brain injury (TBI) may affect the pharmacodynamics of centrally acting drugs. Paired-pulse transcranial magnetic stimulation (ppTMS) is a safe and noninvasive measure of cortical gamma-aminobutyric acid (GABA)-mediated cortical inhibition. Huperzine A (HupA) is a naturally occurring acetylcholinesterase inhibitor with newly discovered potent GABA-mediated antiepileptic capacity, which is reliably detected by ppTMS. To test whether TBI alters cerebral HupA pharmacodynamics, we exposed rats to fluid percussion injury (FPI) and tested whether ppTMS metrics of cortical inhibition differ in magnitude and temporal pattern in injured rats. Anesthetized adult rats were exposed to FPI or sham injury. Ninety minutes post-TBI, rats were injected with HupA or saline (0.6 mg/kg, intraperitoneally). TBI resulted in reduced cortical inhibition 90 min after the injury (N = 18) compared to sham (N = 13) controls (p = 0.03). HupA enhanced cortical inhibition after both sham injury (N = 6; p = 0.002) and TBI (N = 6; p = 0.02). The median time to maximum HupA inhibition in sham and TBI groups were 46.4 and 76.5 min, respectively (p = 0.03). This was consistent with a quadratic trend comparison that projects HupA-mediated cortical inhibition to last longer in injured rats (p = 0.007). We show that 1) cortical GABA-mediated inhibition, as measured by ppTMS, decreases acutely post-TBI, 2) HupA restores lost post-TBI GABA-mediated inhibition, and 3) HupA-mediated enhancement of cortical inhibition is delayed post-TBI. The plausible reasons of the latter include 1) low HupA volume of distribution rendering HupA confined in the intravascular compartment, therefore vulnerable to reduced post-TBI cerebral perfusion, and 2) GABAR dysfunction and increased AChE activity post-TBI.

  16. A longitudinal study of cerebral glucose metabolism, MRI, and disability in patients with MS

    DEFF Research Database (Denmark)

    Blinkenberg, M; Jensen, C.V.; Holm, S

    1999-01-01

    OBJECTIVE: To study the time-related changes in cerebral metabolic rate of glucose (CMRglc) in MS patients and to correlate these with changes in MRI lesion load and disability. BACKGROUND: Measurements of MRI lesion load and neurologic disability are used widely to monitor disease progression...... and parietal cortical areas. There was a statistically significant increase of disability (pmetabolism in MS is decreased significantly during a 2......-year observation period, suggesting a deterioration of cortical activity with disease progression. The time-related changes of cortical CMRglc are statistically stronger than changes in TLA measurements and neurologic disability, and might be a useful secondary measure of treatment efficacy...

  17. Clinical study of correlation of pre-senile and senile depressive stage with silent cerebral infarction

    International Nuclear Information System (INIS)

    Fujikawa, Tokumi; Yamawaki, Shigeto; Fujita, Yasunobu; Shibata, Youko; Touhouda, Yoshikuni.

    1992-01-01

    The relationship between the pre-senile/senile depressive state and silent cerebral infarction was examined by MRI. Consecutive 56 depressive patients aged 50 years or older underwnt MRI. MRI revealed silent cerebral infarction in 60.3% of patients in whom depression occurred at the age of less than 65 years. The complication rate was significantly higher in these patients than the younger patients (60.9% vs 20%). Complications of silent cerebral infarction were found in 53.6% for patients in whom depression occurred at the age of less than 65 years and symptoms were deteriorated at the age of 65 years or older and in 100% for patients in whom it occurred at the age of 65 years or older and hospitalization was simultaneously required. These figures were remarkably higher than the age-related complication rate of silent cerebral infarction in non-depressive normal persons. This suggested that approximately half of depressive patients of pre-senile onset and majority of depressive patients of senile onset might have parenchymal involvement due to silent cerebral infarction. Both perforating-type and cortical-type infarcts were found. This has a implication for the involvement of multiple infarct-related foci in depressive state. For cortical-type infarcts, partial lesions were predominant, followed by frontal and temporal lesions. The incidence of left frontal infarcts was significanly higher than that of right frontal infarcts. Infarcts in both the parietal and left frontal lobes may be responsible for depressive state. (N.K.)

  18. Dose-Dependent Cortical Thinning After Partial Brain Irradiation in High-Grade Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Karunamuni, Roshan [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Bartsch, Hauke; White, Nathan S. [Department of Radiology, University of California San Diego, La Jolla, California (United States); Moiseenko, Vitali; Carmona, Ruben; Marshall, Deborah C.; Seibert, Tyler M. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Psychiatry, University of California San Diego, La Jolla, California (United States); Farid, Nikdokht; Krishnan, Anithapriya; Kuperman, Joshua [Department of Radiology, University of California San Diego, La Jolla, California (United States); Mell, Loren [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Brewer, James B.; Dale, Anders M. [Department of Radiology, University of California San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)

    2016-02-01

    Purpose: Radiation-induced cognitive deficits may be mediated by tissue damage to cortical regions. Volumetric changes in cortex can be reliably measured using high-resolution magnetic resonance imaging (MRI). We used these methods to study the association between radiation therapy (RT) dose and change in cortical thickness in high-grade glioma (HGG) patients. Methods and Materials: We performed a voxel-wise analysis of MRI from 15 HGG patients who underwent fractionated partial brain RT. Three-dimensional MRI was acquired pre- and 1 year post RT. Cortex was parceled with well-validated segmentation software. Surgical cavities were censored. Each cortical voxel was assigned a change in cortical thickness between time points, RT dose value, and neuroanatomic label by lobe. Effects of dose, neuroanatomic location, age, and chemotherapy on cortical thickness were tested using linear mixed effects (LME) modeling. Results: Cortical atrophy was seen after 1 year post RT with greater effects at higher doses. Estimates from LME modeling showed that cortical thickness decreased by −0.0033 mm (P<.001) for every 1-Gy increase in RT dose. Temporal and limbic cortex exhibited the largest changes in cortical thickness per Gy compared to that in other regions (P<.001). Age and chemotherapy were not significantly associated with change in cortical thickness. Conclusions: We found dose-dependent thinning of the cerebral cortex, with varying neuroanatomical regional sensitivity, 1 year after fractionated partial brain RT. The magnitude of thinning parallels 1-year atrophy rates seen in neurodegenerative diseases and may contribute to cognitive decline following high-dose RT.

  19. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo

    1989-01-01

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author)

  20. Measurement of cortical functional activation in awake mice using two-photon microscopy and a novel pO2-sensitive probe(Conference Presentation)

    Science.gov (United States)

    Sencan, Ikbal; Esipova, Tatiana V.; Kilic, Kivilcim; Li, Baoqiang; Desjardins, Michèle; Yaseen, Mohammad A.; Wang, Hui; Jaswal, Rajeshwer S.; Kura, Sreekanth; Fu, Buyin; Boas, David A.; Devor, Anna; Sakadžić, Sava; Vinogradov, Sergei A.

    2017-02-01

    We characterized cortical microvascular PO2 and blood flow changes in response to whisker stimulation in awake mice. The measurements were performed by combining two-photon microscopy imaging of the cortical oxygenation and optical coherence tomography imaging of the cerebral blood flow. In order to perform fast spatio-temporally resolved measurements of PO2, we used a newly-developed oxygen-sensitive probe PtG-2P, which has significantly higher brightness than the established two-photon-enhanced oxygen sensor PtP-C343. We characterized the performance of the new probe in vivo and mapped the amplitudes and shapes (e.g. initial dip, overshoot, and post stimulus undershoot) of the PO2 changes as a function of the vessel type (e.g., arterioles, capillaries, and venules) and a distance from the activation center. The measurements in the awake mice are not affected by the confounding factors of anesthesia on the animal physiology, including the level of cerebral metabolism and the amplitude and speed of neuronal and vascular responses. Our results will help to understand changes in oxygenation and blood flow on the cortical microvascular scale, will lead to improved understanding of the cerebral physiology, pathophysiology and will improve quantitative interpretation of fMRI signals.

  1. Histopathologic study of human vocal fold mucosa unphonated over a decade.

    Science.gov (United States)

    Sato, Kiminori; Umeno, Hirohito; Ono, Takeharu; Nakashima, Tadashi

    2011-12-01

    Mechanotransduction caused by vocal fold vibration could possibly be an important factor in the maintenance of extracellular matrices and layered structure of the human adult vocal fold mucosa as a vibrating tissue after the layered structure has been completed. Vocal fold stellate cells (VFSCs) in the human maculae flavae of the vocal fold mucosa are inferred to be involved in the metabolism of extracellular matrices of the vocal fold mucosa. Maculae flavae are also considered to be an important structure in the growth and development of the human vocal fold mucosa. Tension caused by phonation (vocal fold vibration) is hypothesized to stimulate the VFSCs to accelerate production of extracellular matrices. A human adult vocal fold mucosa unphonated over a decade was investigated histopathologically. Vocal fold mucosa unphonated for 11 years and 2 months of a 64-year-old male with cerebral hemorrhage was investigated by light and electron microscopy. The vocal fold mucosae (including maculae flavae) were atrophic. The vocal fold mucosa did not have a vocal ligament, Reinke's space or a layered structure. The lamina propria appeared as a uniform structure. Morphologically, the VFSCs synthesized fewer extracellular matrices, such as fibrous protein and glycosaminoglycan. Consequently, VFSCs appeared to decrease their level of activity.

  2. Cerebral hematocrit decreases with hemodynamic compromise in carotid artery occlusion: a PET study.

    Science.gov (United States)

    Yamauchi, H; Fukuyama, H; Nagahama, Y; Katsumi, Y; Okazawa, H

    1998-01-01

    This study investigated whether in patients with internal carotid artery occlusion the regional cerebral hematocrit correlates with cerebral hemodynamics or metabolic state and, if so, how the regional cerebral hematocrit changes in the hemodynamically compromised region. We used positron emission tomography to study seven patients with unilateral internal carotid artery occlusion and no cortical infarction in the chronic stage. The distributions of red blood cell and plasma volumes were assessed using oxygen-15-labeled carbon monoxide and copper-62-labeled human serum albumin-dithiosemicarbazone tracers, respectively. The calculated hematocrit value was compared with the hemodynamic and metabolic parameters measured with the oxygen-15 steady-state technique. In the cerebral cortex, the value of the cerebral hematocrit varied but was correlated with the hemodynamic and metabolic status. Stepwise regression analysis revealed that the large vessel hematocrit, the cerebral metabolic rate of oxygen, and the cerebral blood flow or the oxygen extraction fraction accounted for a significant proportion of variance of the cerebral hematocrit. The oxygen extraction fraction and the cerebral metabolic rate of oxygen negatively correlated with the cerebral hematocrit, whereas the cerebral blood flow correlated positively: patients with reduced blood supply relative to metabolic demand (decreased blood flow with increased oxygen extraction fraction) showed low hematocrit values. In carotid artery occlusion in the chronic stage, regional cerebral hematocrit may vary according to cerebral hemodynamics and metabolic status. Regional cerebral hematocrit may decrease with hemodynamic compromise unless oxygen metabolism concomitantly decreases.

  3. Cortical and subcortical hyperfusion during migraine and cluster headache measured by Xe CT-CBF

    International Nuclear Information System (INIS)

    Kobari, M.; Meyer, J.S.; Ichijo, M.; Kawamura, J.; Baylor Univ., Houston, TX

    1990-01-01

    High-resolution, color-coded images of local cerebral blood flow (LCBF) were made utilizing stable xenon-enhanced computed tomography among patients with common migraine (n=18), classic migraine (n=12) and cluster headache (n=5). During spontaneously occurring headache in common and classic migraine patients, LCBF values for cerebral cortex and subcortical gray and white matter were diffusely increased by 20-40% with the exception of the occipital lobes. LCBF increases involved both hemispheres whether the head pain was unilateral or bilateral. No significant differences were noted in the degree or pattern of LCBF increases during headaches of common and classic migraineurs. Similar cerebral hyperperfusion of greater magnitude was observed during cluster headaches but was more prominent on the side of the head pain. Present observations do not support the hypothesis of spreading cortical depression as a cause of classic migraine. From a hemodynamic viewpoint, LCBF increases during headaches of common or classic migraine or cluster appear similar. Evidence is adduced that sympathetic hypofunction with denervation hypersensitivity of cerebral vessels plays a role in the cerebral hyperperfusion of migraine headaches. More pronounced unilateral autonomic derangements appear to account for the symptoms and cerebral hyperperfusion associated with cluster headaches. (orig.)

  4. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  5. DYRK1A-mediated Cyclin D1 Degradation in Neural Stem Cells Contributes to the Neurogenic Cortical Defects in Down Syndrome

    Directory of Open Access Journals (Sweden)

    Sònia Najas

    2015-02-01

    Full Text Available Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated with a deficit in cortical neurons that arises during prenatal development. However, the pathogenic mechanisms that cause this deficit have not yet been defined. Here we show that the human DYRK1A kinase on chromosome 21 tightly regulates the nuclear levels of Cyclin D1 in embryonic cortical stem (radial glia cells, and that a modest increase in DYRK1A protein in transgenic embryos lengthens the G1 phase in these progenitors. These alterations promote asymmetric proliferative divisions at the expense of neurogenic divisions, producing a deficit in cortical projection neurons that persists in postnatal stages. Moreover, radial glial progenitors in the Ts65Dn mouse model of Down syndrome have less Cyclin D1, and Dyrk1a is the triplicated gene that causes both early cortical neurogenic defects and decreased nuclear Cyclin D1 levels in this model. These data provide insights into the mechanisms that couple cell cycle regulation and neuron production in cortical neural stem cells, emphasizing that the deleterious effect of DYRK1A triplication in the formation of the cerebral cortex begins at the onset of neurogenesis, which is relevant to the search for early therapeutic interventions in Down syndrome.

  6. Bihemispheric cerebral FDG PET correlates of cognitive dysfunction as assessed by the CERAD in Alzheimer's disease.

    Science.gov (United States)

    Schönknecht, Oskar Dieter Peter; Hunt, Aoife; Toro, Pablo; Guenther, Thomas; Henze, Marcus; Haberkorn, Uwe; Schröder, Johannes

    2011-04-01

    Alzheimer's disease (AD) is characterized by a variety of cognitive deficits which can be reliably assessed by the neuropsychological test battery of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), but the cerebral changes underlying the respective cognitive deficits are only partly understood. Measures of severity of dementia in AD as well as delayed episodic memory performance in mild cognitive impairment significantly correlated with bihemispheric cerebral glucose hypometabolism. We therefore hypothesized that the CERAD cognitive battery may represent cerebral dysfunction of both hemispheres in patients with AD. In 32 patients with AD, cerebral glucose metabolism was investigated using positron-emission-tomography with 18Fluorodeoxyglucose (FDG PET) and associated with the test scores of the CERAD cognitive battery by statistical parametric mapping. Episodic memory scores significantly correlated with temporopari etal glucose metabolism of both hemispheres while delayed episodic memory significantly was correlated with the right frontotemporal cortices. Verbal fluency and naming scores significantly correlated with glucose metabolism in left temporoparietal and right frontal cortices, whereas constructional praxis predominantly correlated significantly with the bilateral precuneus. In conclusion, the results of our study demonstrate that not only memory function but also functions of language and constructional praxis in AD are associated with glucose metabolism as revealed by FDG PET in subsets of uni- and bilateral brain areas. The findings of our study for the first time demonstrate that in AD neuropsychological deficits as assessed by the CERAD refer to different cerebral sites of both hemispheres.

  7. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH.

    Science.gov (United States)

    Yaseen, Mohammad A; Sakadžić, Sava; Wu, Weicheng; Becker, Wolfgang; Kasischke, Karl A; Boas, David A

    2013-02-01

    Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism.

  8. Improvement in regional CBF by L-serine contributes to its neuroprotective effect in rats after focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Tao-Jie Ren

    Full Text Available To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF. Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1 reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2 improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3 increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca(2+-activated K(+ channels on the cerebral blood vessel endothelium.

  9. [Role of immune-related GTPase M1 in cortical neurons autophagy of mice with sepsis-induced brain injury].

    Science.gov (United States)

    Huang, Qun; Chen, Bin; Li, Yafei; Li, Xihong

    2017-12-28

    To investigate the role of immune-related GTPase M1 (IRGM1) in cortical neurons autophagy in mice with sepsis induced brain injury (SIBI).
 Methods: Sixty wild-type C57BL/6 mice and sixty IRGM1 gene knockout C57BL/6 mice were randomly divided into 4 groups: a sham-operated wild-type (SWT) group, a cecal ligation and puncture (CLP) model wild-type (MWT) group, a sham-operated knockout (SKO) group, and a CLP model knockout (MKO) group. Models of mice with sepsis were established by CLP. Six hours of after CLP, the neurobehavioral scores for mice were recorded. The mice were diagnosed with SIBI and enrolled for the studies in next step if the neurobehavioral score was less than 6 in the MWT and MKO groups. The sham operation group only opened the abdominal cavity without CLP. Pathological changes in mouse cerebral cortex were observed by HE staining. Electron microscope was used to observe the ultrastructure of autophagy in cortical neurons. The expression of IRGM1 and INF-γ mRNA in the cerebral cortex of mice were detected by Real time quantitative PCR. The protein expression of microtubule-associated protein 1 light chain 3 (LC3)-II, LC3-I, sequestosome-1 (SQSTM1) and IRGM1 were measured by Western blot. Immunofluorescence staining was used to examine the expression of IRGM1 in mouse cortical neurons.
 Results: In the MWT group, the cortical neurons showed dilated endoplasmic reticulum, swelling mitochondria, and increased number of autophagosomes after 6 or 24 h of CLP in contrast to the SWT group. At 6 h after CLP, the expression of LC3-II in the cerebral cortex began to up-regulate, and the up-regulation was maintained till 96 h after CLP; on the contrary, SQSTM1 began to decline after 6 h of CLP. Compared with SWT group, IRGM1 was strongly up-regulated in the cerebral cortex of mice at both mRNA and protein levels in the MWT group after 12 h of CLP, and the mRNA expression of IFN-γ was also increased significantly (PSIBI was 90% (27/30) in the MWT group

  10. Usefulness of selective cerebral intra-arterial digital subtraction angiography by transbrachial approach

    International Nuclear Information System (INIS)

    Matsunaga, Naofumi; Hayashi, Kuniaki; Uetani, Masataka; Hirao, Koichi; Fukuda, Toshio; Aikawa, Hisayuki; Iwao, Masaaki; Hombo, Zen-ichiro

    1988-01-01

    Selective cerebral intra-arterial digital subtraction angiography (IA-DSA) by the transbrachial approach was performed on 53 patients (including 34 outpatients) with suspected cerebrovascular diseases or brain tumors. 80-cm-long, 4F modified Simmons catheter was used. Success rates of selective catheterization to the common carotid and vertebral arteries were 86.0 % from right transbrachial approach (35 cases) and 79.6 % from left approach (18 cases). Successful catheterization to the common carotid and ipsilateral vertebral arteries is obtained in 91.3 % from right transbrachial approach, and 78.7 % from left approach. Righ common carotid artery could be catheterized in all 55 cases from right transbrachial approach, but in only 6 of 15 patients (40 %) from left approach. As for contrast material, 4 or 6 ml of Iopamidol 300 mgI/ml were mechanically injected into common carotid artery at a flow rate of 2 - 3 ml/sec, and 9 ml two-fold diluted Iopamidol were injected into the vertebral artery at a flow rate of 6 ml/sec. There was no recoil of the catheter. Visualization of the relatively small vessels such as cortical branches was excellent in most cases. However, smaller vessel such as meningohypophyseal trunk was not well visualized with IA-DSA. Spatial resolution of IA-DSA was generally satisfactory. However, conventional angiography was still required, particularly to clearly delineate small cerebral aneurysms. Major complications were never experienced. It was concluded that this procedure is useful, particularly for the screening and postoperative follow-up studies, and can also be applied to outpatients. (author)

  11. The cranial MRI in severe cerebral palsy

    International Nuclear Information System (INIS)

    Yamada, Kazutaka; Itoh, Masahiro; Fueki, Noboru; Hirasawa, Kyoko; Suzuki, Noriko; Kurata, Kiyoko; Sato, Junichi; Morimatsu, Yoshio; Yagishita, Akira.

    1993-01-01

    The magnetic resonance examination was performed in 38 patients with severe cerebral palsy (CP; 15 males and 23 females) who had both motor delay (unable to move anywhere) and mental retardation (I.Q. or D.Q. below 30). Neuroimaging findings were compared with the CP type, etiology, and grade of understanding of language. Cranial magnetic resonance imagings (MRI) in CP were divided into five types. In type 1, nine predominantly showed cyst-liked ventricles and periventricular hyperintensity on T 2 -weighted imaging (PVH) and only scarred basal ganglia and thalamus were visible. All suffered from neonatal asphyxia and the clinical type was rigospastic tetraplegia (RST). In type 2, eleven predominantly showed PVH and hyperintensity on T 2 -weighted (HT2) in basal ganglia and thalamus. All suffered from neonatal asphyxia and the clinical type was RST or rigospastic diplegia. In type 3, five showed PVH and three had cortical atrophy. All suffered from neonatal asphyxia and the clinical type was spastic diplegia. In type 4, four predominantly showed HT2 in putamen and thalamus. Three had cortical atrophy. All suffered from neonatal asphyxia. The clinical type was athetotic CP (ATH). In type 5, nine predominantly showed HT2 in globus pallidus. Four had cortical atrophy and two had hippocampal atrophy. All suffered from neonatal jaundice and the clinical type was ATH. All patients who suffered from neonatal asphyxia and spastic CP had MRI in PVH. All patients who suffered from neonatal asphyxia and ATH showed HT2 in putamen and thalamus. Almost patients who suffered from neonatal jaundice and ATH showed HT2 in globus pallidus. With athetotic CP, cases with atrophy of the cerebral cortex and/or hippocampus were lower grade of understanding of language than no atrophy of both. The results of studies of MRI are in agreement with neuropathological findings. (author)

  12. Analysis of human cerebral functions using positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Shibasaki, Takashi

    1984-01-01

    Positron emission tomography has two major advantages to analyse human cerebral functions in vivo. First, we can see the distribution of a variety of substance in the living (and doing something) human brain. Positron emitters, 11 C, 13 N, 15 O and 18 F, are made by medical cyclotron and are elements of natural substrates or easily tagged to substrate. Second, the distribution of the tracer is calculated to make a quantitative functional map in a reasonable spatial resolution over the entire brain in the same time. Not only cortical areas but also deeper structures show regional cerebral blood flow (rCBF) or local cerebral metabolic rates (LCMRs). Nowadays, PET is put to practical use for determination of mainly rCBF, LCMR for glucose (LCMRsub(glu)), LCMR for oxygen (LCMRsub(o2)) and regional cerebral blood volume (rCBV). There have been many other pilot studies, such as estimation of distribution of given neurotransmitters or modulators in the brain which also confirms the substances' role in the neuronal function, and observation of protein synthesis relating to memory function. (J.P.N.)

  13. The relationship between cerebral infarction on MR and angiographic findings in moyamoya disease: significance of the posterior circulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ja; Song, Soon Young [College of Medicine, Kwangdong Univ., Koyang (Korea, Republic of); Yu, Won Jong; Jung, So Lyung; Chung, Bong Gak; Kag, Si Won [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of); Kim, Man Deuk [College of Medicine, Pochon CHA Univ., Pochon (Korea, Republic of)

    2002-06-01

    To investigate the relationship between changes in the posterior and anterior circulation, as seen at angiography, and the frequency and extent of cerebral infarction revealed by MR imaging in moyamoya disease. This study involved 34 patients (22 females and 12 males, aged 2-52 years) in whom cerebral angiography revealed the presence of moyamoya disease (bilateral; unilateral= 24:10; total hemispheres=58) and who also underwent brain MR imaging. To evaluate the angiographic findings, we applied each angiographic staging system to the anterior and posterior circulation. Leptomeningeal collateral circulation from the cortical branches of the posterior cerebral artery (PCA) was also assigned one of four grades. At MR imaging, areas of cerebral cortical or subcortical infarction in the hemisphere were divided into six zones. White matter and basal ganglionic infarction, ventricular dilatation, cortical atrophy, and hemorrhagic lesions were also evaluated. To demonstrate the statistical significance of the relationship between the angiographic and the MR findings, both the Mantel-Haenszel chi-square test for trend and the chi-square test were used. The degree of steno-occlusive PCA change correlated significantly with the internal carotid artery (ICA) stage (p<0.0001). As PCA stages advanced, the degree of leptomeningeal collaterals from the PCA decreased significantly (P<0.0001), but ICA stages were not significant (p>0.05). The prevalence of infarction showed significant correlation with the degree of steno-occlusive change in both the ICA and PCA. The degree of cerebral ischemia in moyamoya patients increased proportionally with the severity of PCA stenosis rather than with that of steno-occlusive lesins of the anterior circulation. Infarctions tended to be distributed in the anterior part of the hemisphere at PCA state I or II, while in more advanced PCA lesions, they were also found posteriorly, especially in the territories of the posterior middle cerebral artery

  14. Dogs Have the Most Neurons, Though Not the Largest Brain: Trade-Off between Body Mass and Number of Neurons in the Cerebral Cortex of Large Carnivoran Species

    Directory of Open Access Journals (Sweden)

    Débora Jardim-Messeder

    2017-12-01

    Full Text Available Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex. For a given cortical size, do carnivoran species have more cortical neurons than the herbivorous species they prey upon? We find they do not; carnivorans (cat, mongoose, dog, hyena, lion share with non-primates, including artiodactyls (the typical prey of large carnivorans, roughly the same relationship between cortical mass and number of neurons, which suggests that carnivorans are subject to the same evolutionary scaling rules as other non-primate clades. However, there are a few important exceptions. Carnivorans stand out in that the usual relationship between larger body, larger cortical mass and larger number of cortical neurons only applies to small and medium-sized species, and not beyond dogs: we find that the golden retriever dog has more cortical neurons than the striped hyena, African lion and even brown bear, even though the latter species have up to three times larger cortices than dogs. Remarkably, the brown bear cerebral cortex, the largest examined, only has as many neurons as the ten times smaller cat cerebral cortex, although it does have the expected ten times as many non-neuronal cells in the cerebral cortex compared to the cat. We also find that raccoons have dog-like numbers of neurons in their cat-sized brain, which makes them comparable to primates in neuronal density. Comparison of domestic and wild species suggests that the neuronal

  15. Neurodevelopmental origins of abnormal cortical morphology in dissociative identity disorder.

    Science.gov (United States)

    Reinders, A A T S; Chalavi, S; Schlumpf, Y R; Vissia, E M; Nijenhuis, E R S; Jäncke, L; Veltman, D J; Ecker, C

    2018-02-01

    To examine the two constitutes of cortical volume (CV), that is, cortical thickness (CT) and surface area (SA), in individuals with dissociative identity disorder (DID) with the view of gaining important novel insights into the underlying neurobiological mechanisms mediating DID. This study included 32 female patients with DID and 43 matched healthy controls. Between-group differences in CV, thickness, and SA, the degree of spatial overlap between differences in CT and SA, and their relative contribution to differences in regional CV were assessed using a novel spatially unbiased vertex-wise approach. Whole-brain correlation analyses were performed between measures of cortical anatomy and dissociative symptoms and traumatization. Individuals with DID differed from controls in CV, CT, and SA, with significantly decreased CT in the insula, anterior cingulate, and parietal regions and reduced cortical SA in temporal and orbitofrontal cortices. Abnormalities in CT and SA shared only about 3% of all significantly different cerebral surface locations and involved distinct contributions to the abnormality of CV in DID. Significant negative associations between abnormal brain morphology (SA and CV) and dissociative symptoms and early childhood traumatization (0 and 3 years of age) were found. In DID, neuroanatomical areas with decreased CT and SA are in different locations in the brain. As CT and SA have distinct genetic and developmental origins, our findings may indicate that different neurobiological mechanisms and environmental factors impact on cortical morphology in DID, such as early childhood traumatization. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Ethanol induces cell-cycle activity and reduces stem cell diversity to alter both regenerative capacity and differentiation potential of cerebral cortical neuroepithelial precursors

    Directory of Open Access Journals (Sweden)

    Tingling Joseph D

    2005-09-01

    Full Text Available Abstract Background The fetal cortical neuroepithelium is a mosaic of distinct progenitor populations that elaborate diverse cellular fates. Ethanol induces apoptosis and interferes with the survival of differentiating neurons. However, we know little about ethanol's effects on neuronal progenitors. We therefore exposed neurosphere cultures from fetal rat cerebral cortex, to varying ethanol concentrations, to examine the impact of ethanol on stem cell fate. Results Ethanol promoted cell cycle progression, increased neurosphere number and increased diversity in neurosphere size, without inducing apoptosis. Unlike controls, dissociated cortical progenitors exposed to ethanol exhibited morphological evidence for asymmetric cell division, and cells derived from ethanol pre-treated neurospheres exhibited decreased proliferation capacity. Ethanol significantly reduced the numbers of cells expressing the stem cell markers CD117, CD133, Sca-1 and ABCG2, without decreasing nestin expression. Furthermore, ethanol-induced neurosphere proliferation was not accompanied by a commensurate increase in telomerase activity. Finally, cells derived from ethanol-pretreated neurospheres exhibited decreased differentiation in response to retinoic acid. Conclusion The reduction in stem cell number along with a transient ethanol-driven increase in cell proliferation, suggests that ethanol promotes stem to blast cell maturation, ultimately depleting the reserve proliferation capacity of neuroepithelial cells. However, the lack of a concomitant change in telomerase activity suggests that neuroepithelial maturation is accompanied by an increased potential for genomic instability. Finally, the cellular phenotype that emerges from ethanol pre-treated, stem cell depleted neurospheres is refractory to additional differentiation stimuli, suggesting that ethanol exposure ablates or delays subsequent neuronal differentiation.

  17. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  18. Increase in Prefrontal Cortical Volume following Cognitive Behavioural Therapy in Patients with Chronic Fatigue Syndrome

    Science.gov (United States)

    de Lange, Floris P.; Koers, Anda; Kalkman, Joke S.; Bleijenberg, Gijs; Hagoort, Peter; van der Meer, Jos W. M.; Toni, Ivan

    2008-01-01

    Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an…

  19. Decrease in the cortical intensity on T2-weighted magnetic resonance imaging with aging in normal subjects

    International Nuclear Information System (INIS)

    Imon, Yukari; Murata, Yoshio; Kajima, Toshio; Nakamura, Shigenobu; Yamaguchi, Shinya

    1997-01-01

    We reported previously that Low T 2 intensity areas (LIAs) are more common in patients with central nervous system (CNS) diseases than in those with no such diseases, and that the occurrence of LIAs increases with aging. To determine a relationship between the intensity changes and aging, we investigated the intensity of the cerebral cortex in 26 normal Japanese individuals. Measurements of brain MRIs were performed with a Signa Advantage apparatus at 1.5 tesla. T 2 -weighted images were obtained using the spin-echo pulse sequences. On our laboratory console, we measured signal intensities in the regions of interest in the prefrontal, motor, sensory, parietal, temporal, or occipital cortex, and in the frontal white matter. To remove the effect of the system gain settings on signal intensity, that of cerebrospinal fluid was used as reference according to the method of Pujol et al. The average intensity in the temporal and prefrontal cortices was the highest, followed in order by the parietal, sensory, motor, and occipital cortices. The intensity in the temporal and parietal cortices decreased significantly with aging, and that in the motor and sensory cortices had a tendency to decrease with aging. The intensity in the motor and sensory cortices of the elderly subjects and that in the occipital cortex throughout all ages were lower than that in the prefrontal white matter, which would result in the appearance of LIAs. The average intensity of each cerebral cortex was inversely related to the non-heme iron content previously reported. It is likely that the difference in intensity among the cortices reflects variations of the non-heme iron content, and that the change in intensity with aging could be due to the increase in such cortical senile changes as that of microglia, astroglia, and senile plaques, which contain iron or iron-related proteins. The temporal cortex is most susceptible to senile changes. (K.H.)

  20. Expression of aggrecan components in perineuronal nets in the mouse cerebral cortex

    Directory of Open Access Journals (Sweden)

    Hiroshi Ueno

    2018-06-01

    Full Text Available Specific regions of the cerebral cortex are highly plastic in an organism’s lifetime. It is thought that perineuronal nets (PNNs regulate plasticity, but labeling for Wisteria floribunda agglutinin (WFA, which is widely used to detect PNNs, is observed throughout the cortex. The aggrecan molecule—a PNN component—may regulate plasticity, and may also be involved in determining region-specific vulnerability to stress. To clarify cortical region-specific plasticity and vulnerability, we qualitatively analyzed aggrecan-positive and glycosylated aggrecan-positive PNNs in the mature mouse cerebral cortex. Our findings revealed the selective expression of both aggrecan-positive and glycosylated aggrecan-positive PNNs in the cortex. WFA-positive PNNs expressed aggrecan in a region-specific manner in the cortex. Furthermore, we observed variable distributions of PNNs containing WFA- and aggrecan-positive molecules. Together, our findings suggest that PNN components and their function differ depending on the cortical region, and that aggrecan molecules may be involved in determining region-specific plasticity and vulnerability in the cortex. Keywords: Aggrecan, Brain region-specific, Chondroitin sulfate proteoglycan, Extracellular matrix, Perineuronal nets, Plasticity

  1. Changes of cerebral blood flow during the secondary expansion of a cortical contusion assessed by 14C-iodoantipyrine autoradiography in mice using a non-invasive protocol.

    Science.gov (United States)

    Engel, Doortje C; Mies, Günter; Terpolilli, Nicole A; Trabold, Raimund; Loch, Alexander; De Zeeuw, Chris I; Weber, John T; Maas, Andrew I R; Plesnila, Nikolaus

    2008-07-01

    Although changes of cerebral blood flow (CBF) in and around traumatic contusions are well documented, the role of CBF for the delayed death of neuronal cells in the traumatic penumbra ultimately resulting in secondary contusion expansion remains unclear. The aim of the current study was therefore to investigate the relationship between changes of CBF and progressive peri-contusional cell death following traumatic brain injury (TBI). CBF and contusion size were measured in C57Bl6 mice under continuous on-line monitoring of (ETp)CO2 before, and at 15 min and 24 h following controlled cortical impact by 14C-iodoantipyrine autoradiography (IAP-AR; n = 5-6 per group) and by Nissl staining, respectively. Contused and ischemic (CBF < 10%) tissue volumes were calculated and compared over time. Cortical CBF in not injured mice varied between 69 and 93 mL/100mg/min depending on the anatomical location. Fifteen minutes after trauma, CBF decreased in the whole brain by approximately 50% (39 +/- 18 mL/100mg/min; p < 0.05), except in contused tissue where it fell by more than 90% (3 +/- 2 mL/100mg/min; p < 0.001). Within 24 h after TBI, CBF recovered to normal values in all brain areas except the contusion where it remained reduced by more than 90% (p < 0.001). Contusion volume expanded from 24.9 to 35.5 mm3 (p < 0.01) from 15 min to 24 h after trauma (+43%), whereas the area of severe ischemia (CBF < 10%) showed only a minimal (+13%) and not significant increase (22.3 to 25.1 mm3). The current data therefore suggest that the delayed secondary expansion of a cortical contusion following traumatic brain injury may not be caused by a reduction of CBF alone.

  2. CT and MRI findings of 144 patients with West syndrome. Characterization of the cerebral lesion and its topography

    International Nuclear Information System (INIS)

    Hamano, Shin-ichiro; Tanaka, Manabu; Mochizuki, Mika; Sugiyama, Nobuyoshi; Nara, Takahiro; Oguma, Eiji; Eto, Yoshikatsu

    2002-01-01

    In West syndrome, although classified as a generalized epilepsy, there are some patients reported to have became seizure-free and have good outcomes in the developmental aspect after resections of localized lesions. We reviewed computed tomography and magnetic resonance imaging of 144 patients with West syndrome and classified them into four categories depending on the distribution of lesion: normal group, diffuse group, disseminated group, localized group. Thirty-three patients belong to the normal group after having reviewed images from computed tomography and magnetic resonance imaging. The diffuse group consisted of 83 patients presenting morphologic abnormalities such as, diffuse cerebral atrophy, periventricular leukomalesia or polycystic encephalomalesia; the disseminated group included 17 patients having a diagnosis of tuberoius sclerosis, multiple cortical dysplasia or multiple cortical heterotopias. The lesions of all eleven patients with localized cerebral lesions involved the temporal and/or occipital lobes. Nine of the eleven patients with localized cerebral lesions had the lesions on the right side. These results suggest that the specificity of lesion topography of temporo-occipital regions and the right-side in West syndrome will have a close correlation with normal brain maturation, from the viewpoint of development of myelination and cerebral blood flow, and related with the genesis of West syndrome. (author)

  3. CT and MRI findings of 144 patients with West syndrome. Characterization of the cerebral lesion and its topography

    Energy Technology Data Exchange (ETDEWEB)

    Hamano, Shin-ichiro; Tanaka, Manabu; Mochizuki, Mika; Sugiyama, Nobuyoshi; Nara, Takahiro; Oguma, Eiji [Saitama Children' s Medical Center, Iwatsuki (Japan); Eto, Yoshikatsu [Jikei Univ., Tokyo (Japan). School of Medicine

    2002-09-01

    In West syndrome, although classified as a generalized epilepsy, there are some patients reported to have became seizure-free and have good outcomes in the developmental aspect after resections of localized lesions. We reviewed computed tomography and magnetic resonance imaging of 144 patients with West syndrome and classified them into four categories depending on the distribution of lesion: normal group, diffuse group, disseminated group, localized group. Thirty-three patients belong to the normal group after having reviewed images from computed tomography and magnetic resonance imaging. The diffuse group consisted of 83 patients presenting morphologic abnormalities such as, diffuse cerebral atrophy, periventricular leukomalesia or polycystic encephalomalesia; the disseminated group included 17 patients having a diagnosis of tuberoius sclerosis, multiple cortical dysplasia or multiple cortical heterotopias. The lesions of all eleven patients with localized cerebral lesions involved the temporal and/or occipital lobes. Nine of the eleven patients with localized cerebral lesions had the lesions on the right side. These results suggest that the specificity of lesion topography of temporo-occipital regions and the right-side in West syndrome will have a close correlation with normal brain maturation, from the viewpoint of development of myelination and cerebral blood flow, and related with the genesis of West syndrome. (author)

  4. Antecedents and neuroimaging patterns in cerebral palsy with epilepsy and cognitive impairment: a population-based study in children born at term.

    Science.gov (United States)

    Ahlin, Kristina; Jacobsson, Bo; Nilsson, Staffan; Himmelmann, Kate

    2017-07-01

    Antecedents of accompanying impairments in cerebral palsy and their relation to neuroimaging patterns need to be explored. A population-based study of 309 children with cerebral palsy born at term between 1983 and 1994. Prepartum, intrapartum, and postpartum variables previously studied as antecedents of cerebral palsy type and motor severity were analyzed in children with cerebral palsy and cognitive impairment and/or epilepsy, and in children with cerebral palsy without these accompanying impairments. Neuroimaging patterns and their relation to identified antecedents were analyzed. Data were retrieved from the cerebral palsy register of western Sweden, and from obstetric and neonatal records. Children with cerebral palsy and accompanying impairments more often had low birthweight (kg) (odds ratio 0.5, 95% confidence interval 0.3-0.8), brain maldevelopment known at birth (p = 0.007, odds ratio ∞) and neonatal infection (odds ratio 5.4, 95% confidence interval 1.04-28.4). Moreover, neuroimaging patterns of maldevelopment (odds ratio 7.2, 95% confidence interval 2.9-17.2), cortical/subcortical lesions (odds ratio 5.3, 95% confidence interval 2.3-12.2) and basal ganglia lesions (odds ratio 7.6, 95% confidence interval 1.4-41.3) were more common, wheras white matter injury was found significantly less often (odds ratio 0.2, 95% confidence interval 0.1-0.5). In most children with maldevelopment, the intrapartum and postpartum periods were uneventful (p Cerebral maldevelopment was associated with prepartum antecedents, whereas subcortical/cortical and basal ganglia lesions were associated with intrapartum and postpartum antecedents. No additional factor other than those related to motor impairment was associated with epilepsy and cognitive impairment in cerebral palsy. Timing of antecedents deemed important for the development of cerebral palsy with accompanying impairments were supported by neuroimaging patterns. © 2017 Nordic Federation of Societies of Obstetrics

  5. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    Science.gov (United States)

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  6. Maduración cerebral y desarrollo cognoscitivo

    Directory of Open Access Journals (Sweden)

    Mónica Rosselli

    2003-01-01

    Full Text Available La maduración cerebral se correlaciona con muchos de los cambios cognoscitivos y de comportamiento observados durante la infancia y la adolescencia. En este artículo se revisa el concepto de maduración cerebral y su asociación con el desarrollo de la preferencia manual, del lenguaje verbal y de la función ejecutiva en el niño. Se describe el incremento de las arborizaciones dendríticas como el cambio cortical más importante asociado a la adquisición de funciones cognoscitivas complejas. Se asocia la maduración del hemisferio derecho con la conducta emocional y la maduración del hemisferio izquierdo con el lenguaje. La maduración de las áreas prefrontales se correlaciona con el desarrollo de las funciones ejecutivas. Se presentan ejemplos específicos sobre la existencia de asimetría cerebral motriz desde el nacimiento y sobre la lateralización posterior de funciones visuales, auditivas y táctiles. Se analiza la participación cualitativamente diferente de los hemisferios cerebrales en los procesos cognoscitivos durante las distintas etapas del desarrollo del niño. Finalmente, se presentan algunos ejemplos de las secuelas cognoscitivas secundarias a lesiones cerebrales tempranas como un método más para entender la ontogenia de la asimetría cerebral

  7. Maduración cerebral y desarrollo cognoscitivo

    Directory of Open Access Journals (Sweden)

    Mónica Roselli

    2003-05-01

    Full Text Available La maduración cerebral se correlaciona con muchos de los cambios cognoscitivos y de comportamiento observados durante la infancia y la adolescencia. En este artículo se revisa el concepto de maduración cerebral y su asociación con el desarrollo de la preferencia manual, del lenguaje verbal y de la función ejecutiva en el niño. Se describe el incremento de las arborizaciones dendríticas como el cambio cortical más importante asociado a la adquisición de funciones cognoscitivas complejas. Se asocia la maduración del hemisferio derecho con la conducta emocional y la maduración del hemisferio izquierdo con el lenguaje. La maduración de las áreas prefrontales se correlaciona con el desarrollo de las funciones ejecutivas. Se presentan ejemplos específicos sobre la existencia de asimetría cerebral motriz desde el nacimiento y sobre la lateralización posterior de funciones visuales, auditivas y táctiles. Se analiza la participación cualitativamente diferente de los hemisferios cerebrales en los procesos cognoscitivos durante las distintas etapas del desarrollo del niño. Finalmente, se presentan algunos ejemplos de las secuelas cognoscitivas secundarias a lesiones cerebrales tempranas como un método más para entender la ontogenia de la asimetría cerebral.

  8. An automated tool for cortical feature analysis: Application to differences on 7 Tesla T2* -weighted images between young and older healthy subjects.

    Science.gov (United States)

    Doan, Nhat Trung; van Rooden, Sanneke; Versluis, Maarten J; Buijs, Mathijs; Webb, Andrew G; van der Grond, Jeroen; van Buchem, Mark A; Reiber, Johan H C; Milles, Julien

    2015-07-01

    High field T 2 * -weighted MR images of the cerebral cortex are increasingly used to study tissue susceptibility changes related to aging or pathologies. This paper presents a novel automated method for the computation of quantitative cortical measures and group-wise comparison using 7 Tesla T 2 * -weighted magnitude and phase images. The cerebral cortex was segmented using a combination of T 2 * -weighted magnitude and phase information and subsequently was parcellated based on an anatomical atlas. Local gray matter (GM)/white matter (WM) contrast and cortical profiles, which depict the magnitude or phase variation across the cortex, were computed from the magnitude and phase images in each parcellated region and further used for group-wise comparison. Differences in local GM/WM contrast were assessed using linear regression analysis. Regional cortical profiles were compared both globally and locally using permutation testing. The method was applied to compare a group of 10 young volunteers with a group of 15 older subjects. Using local GM/WM contrast, significant differences were revealed in at least 13 of 17 studied regions. Highly significant differences between cortical profiles were shown in all regions. The proposed method can be a useful tool for studying cortical changes in normal aging and potentially in neurodegenerative diseases. Magn Reson Med 74:240-248, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  9. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    2011-03-01

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  10. Isolated Hand Palsy Due to Small Cortical Infarcts: A Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Meliha Tan

    2009-03-01

    Full Text Available The cortical motor hand area is a knob-like structure of the precentral gyrus, with an inverted omega or horizontal epsilon shape. Isolated hand weakness is infrequently observed and is usually due to small cortical infarcts of this hand knob structure. Isolated hand palsy is sometimes restricted to radial-sided fingers or ulnar sided-fingers. Uniform weakness in all fingers may also occur. We present 2 patients with small cortical infarcts of the cortical hand knob due to different etiologies. A 61-year-old male had right hand weakness restricted to his first and second digits. He had a small cortical infarct on the hand knob area due to emboli from ulcerative plaque of the ipsilateral internal carotid artery. The other patient, a 23-year-old female with sickle cell anemia, had uniform left hand weakness due to an epsilon-shaped infarct on the right precentral gyrus. An obstruction of the small cerebral artery supply to the hand knob area due to sickle cell anemia was the likely pathogenic mechanism. It is suggested that isolated hand weakness due to small cortical infarcts may have different etiologies, most commonly homodynamic or embolic processes. Conditions that rarely cause brain infarction, such as sickle cell anemia, deserve clinical attention. Investigations of strokes must include anemia tests. Patients with predominant weakness of the radial group of fingers due to cortical infarct must be checked for embolism

  11. Decreased chronic-stage cortical C-11-flumazenil binding after focal ischemia-reperfusion in baboons - A marker of selective neuronal loss?

    International Nuclear Information System (INIS)

    Giffard, C.; Landeau, B.; Kerrouche, N.; Young, A.R.; Giffard, C.; Landeau, B.; Kerrouche, N.; Young, A.R.; Giffard, C.; Landeau, B.; Baron, J.C.

    2008-01-01

    Background and Purpose - Although the penumbra can be saved by early reperfusion, in the rat it is consistently affected by selective neuronal loss. Mapping selective neuronal loss in the living primate would be desirable. Methods - Five young adult baboons underwent 15 O positron emission tomography for cerebral blood flow, cerebral oxygen consumption, and oxygen extraction fraction mapping at baseline and serially during and after 20-hours temporary middle cerebral artery occlusion. At approximately day 30, 11 C-flumazenil (FMZ), a potential positron emission tomography marker of selective neuronal loss, and structural magnetic resonance-based infarct mapping were obtained, and the brain was perfused-fixed. Reduced FMZ binding in non-infarcted cortical middle cerebral artery areas was searched voxel-wise, and specific binding was assessed using compartmental modeling of FMZ time-activity curves. Results - Visual inspection revealed reduced late FMZ uptake in the affected cortical territory, extending well beyond the infarct. Accordingly, the incidence of selected voxels was greater than chance, documenting mildly but significantly reduced FMZ uptake and specific binding. Serial 15 O positron emission tomography revealed moderately severe acute ischemia followed by reperfusion. Histopathology documented only mild neuronal changes in or near the affected areas. Conclusions - We document moderate but definite late FMZ binding decrements in non-infarcted cortical areas in the baboon, consistent with previous rat and human studies. These were acutely characterized by moderate ischemia followed by reperfusion, consistent with neuronal damage from ischemic or reperfusion injury in the salvaged at-risk tissue. Only mild histopathological changes subtended these FMZ alterations suggesting subtle processes such as isolated dendrite or synapse loss. Whether these changes impact on clinical outcome deserves studying because they may be targeted by specific neuro

  12. Disodium cromoglycate, a mast-cell stabilizer, alters postradiation regional cerebral blood flow in primates

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Doyle, T.F.; Pautler, E.L.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure, and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with systemic hypotension and a dramatic release of mast-cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomena and the postradiation decrease in cerebral blood flow, primates were given the mast-cell stabilizers disodium cromoglycate (DSCG) or BRL 22321 before exposure to 100 Gy whole-body gamma radiation. Hypothalamic and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. The data indicated that DSCG was successful in diminishing postradiation decrease in cerebral blood flow. Irradiated animals pretreated with DSCG, showed only a 10% decrease in hypothalamic blood flow 60 min postradiation, while untreated, irradiated animals showed a 57% decrease. The cortical blood flow of DSCG treated, irradiated animals showed a triphasic response, with a decrease of 38% at 10 min postradiation, then a rise to 1% below baseline at 20 min, followed by a fall to 42% below baseline by 50 min postradiation. In contrast, the untreated, irradiated animals showed a steady decrease in cortical blood flow to 79% below baseline by 50 min postradiation. There was no significant difference in blood-pressure response between the treated and untreated, irradiated animals. Systemic blood pressure showed a 60% decrease at 10 min postradiation, falling to a 71% decrease by 60 min

  13. Low-frequency oscillations and vasoreactivity of cortical vessels in obstructive sleep apnea during wakefulness

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther; Jensen, Benedicte Ersted; Jennum, Poul

    2013-01-01

    Effective nasal continuous positive airway pressure (CPAP) therapy reduces the cardiovascular outcomes associated with obstructive sleep apnea (OSA), but the mechanism behind this effect is unclear. We investigated if OSA patients during wakefulness showed signs of increased sympathetic activity...... and decreased vasoreactivity in cerebral cortical vessels as measured with near-infrared spectroscopy (NIRS), and if this may be reversed by CPAP treatment....

  14. Cerebral oxygen metabolism in patients with early Parkinson's disease

    DEFF Research Database (Denmark)

    Borghammer, Per; Cumming, Paul; Østergaard, Karen

    2012-01-01

    ) and cerebral blood flow (CBF) PET scans from PD patients and healthy controls. MATERIALS AND METHODS: Nine early-stage PD patients and 15 healthy age-matched controls underwent PET scans for quantitative mapping of CMRO(2) and CBF. Between-group differences were evaluated for absolute data and intensity...... in spatially contiguous cortical regions in early PD, and support the hypothesis that ETC dysfunction could be a primary pathogenic mechanism in early PD....

  15. CT findings of cerebral paragonimiasis in the chronic state

    International Nuclear Information System (INIS)

    Udaka, F.; Okuda, B.; Tsuji, T.; Kameyama, M.; Okada, M.

    1988-01-01

    The CT findings in 5 patients with cerebral paragonimiasis in the chronic state are presented. The findings were: 1) multiple, densely calcified areas with a variety of round or nodular shapes in the brain, 2) a large low density area surrounding or connecting with the calcified areas, and 3) cortical atrophy and ventricular dilatation. The relation between the CT findings and the previously reported plain skull X-ray findings or neuropathological findings are discussed. (orig.)

  16. Clinical study of the relationship between arteriosclerosis obliterans (ASO) and cerebral infarction

    International Nuclear Information System (INIS)

    Iwamoto, Toshihiko; Sasaki, Akinori; Yanagawa, Kiyotaka; Mitsugi, Yasushi

    1991-01-01

    To clarify the relationship between arteriosclerosis obliterans (ASO) and cerebral infarction (CI), brain CT was performed and the risk factors for atherosclerosis were assessed. Thirty-five male and 5 female patients with intermittent claudication and/or leg ulceration were angiographically diagnosed as having ASO. According to CT findings, these patients were divided into three groups [no low-density areas (NLDA), hemorrhage, and infarction (CI)]. CI was subdivided as lacunar, cortical, and watershed infarction. Thirteen patients were in the NLDA group and 26 in the CI group (17 lacunar, 3 cortical and 6 mixed infarcts), indicating a CI incidence of 65%. Comparing the risk factors of the CI group with those of the NLDA group, hypertension (53.8%), diabetes (34.6%), and cigarette smoking (69.2%) was often seen in the CI group, although hypercholesterolemia (53.8%) and ischemic heart disease (42.3%) was the same in both groups. Multivariate analysis revealed that smoking had the strongest effect on the occurrence of CI in ASO patients. Furthermore, the number of combined risk factors (hypertension, diabetes, smoking, hypercholesterolemia) had a significant positive correlation with cortical infarction. As to the chronological relationship between the onset of ASO and CI, CI was present in 14 of 27 ASO patients on CT when the ischemic leg symptoms appeared, while symptomatic cortical infarction preceded ASO in 5 patients. CI patients increased gradually over a decade to 26 out of 40, among whom 16 patients with lacunae had silent infarcts. These findings suggested that ASO is frequently associated with CI, not only due to atherosclerosis of the main trunks of the cerebral vessels, but also due to arteriolosclerosis of the perforating arteries. (author)

  17. Marchiafava-Bignami disease with dementia: severe cerebral metabolic depression revealed by PET. Case report

    International Nuclear Information System (INIS)

    Pappata, S.; Chabriat, H.; Levasseur, M.; Legault-Demare, F.; Baron, J.C.

    1994-01-01

    The Cerebral Metabolic Rate of Glucose (CMRGlu) was measured with positron emission tomography and 18 F-FDG in a patient with Marchiafava-Bignami Disease (MBD)-related dementia. Despite MRI evidence of lesions essentially limited to the corpus callosum (CC), but consistent with the cognitive pattern of cortical dementia, the CMRGlu was markedly reduced in the frontal and temporo-parieto-occipital association cortices. Disruption of cortico-cortical networks crossing the CC presumably contributed to, but may not in and by itself explain, the severity of the clinical-metabolic findings in this patient. An additional role could be played by microscopic white matter lesions and/or neocortical neuronal loss, which have been occasionally observed in post-mortem studies of MBD patients. (authors)

  18. Interlimb coordination during forward walking is largely preserved in backward walking in children with cerebral palsy

    NARCIS (Netherlands)

    Meyns, P.; Molenaers, G.; Desloovere, K.; Duysens, J.E.J.

    2014-01-01

    OBJECTIVE: Limb kinematics in backward walking (BW) are essentially those of forward walking (FW) in reverse. It has been argued that subcortical mechanisms could underlie both walking modes. METHODS: Therefore, we tested whether participants with supraspinal/cortical deficits (i.e. cerebral palsy)

  19. Distribution of catecholamines and serotonin in the rat cerebral cortex:

    International Nuclear Information System (INIS)

    Reader, T.A.

    1981-01-01

    The rat cerebral cortex was dissected in five regions and analyzed for the catecholamines noradrenaline, adrenaline and dopamine, and for the indoleamine seroton in using sensitive radioenzymatic assay methods with thin-layer-chromatography. The noradrenaline concentration was highest in the ventral cortex, lateral to the hypothalamus, had intermediate values for the prefrontal, frontal and parietal cortical areas and was lowest in the occipital cortex. Dopamine levels were also highest in the cortex lateral to the hypothalamus, and moderate in the prefrontal and frontal cortical areas, with the lowest values measured for the occipital cortex. The ratios dopamine/noradrenaline further support the hypothesis that they are independent transmitters. Traces of adrenaline were measured in all regions examined. The serotonin distribution was found to be non-homogeneous, with the highest values for the prefrontal cortex and ventral cortex lateral to the hypothalamus. The functional significance of these amines and their ratios are discussed in relation to their role as putative modulators of cortical neuronal excitability. (author)

  20. Cisternography contribution in the cortical atrophy diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Calegaro, J U.M. [Centro de Analises Clinicas e Medicina Nuclear, Londrina (Brazil); Balallai, N; Suzuki, K [Instituto de Neurologia e Neurocirurgia, Londrina (Brazil)

    1975-01-01

    A 37 years-old woman suffered a car accident. On admission to hospital she presented: torpor, the right pupil greater than the left, both reacting to light, and left hemiparesis with homologous Babinski reflex. She was submitted to carotid arteriogram an air-contrast study without significant findings. Eletroencephalographic examination showed diffuse parenquimatous involvement of left cerebral hemisphery. Scinticisternography demonstrated delayed reabsorption of the radioactive tracer in both frontal areas. A subsequent trepanation made the diagnosis of cortical atrophy in the areas mentioned above. This case shows aditional information concerning anatomic detail provided by isotope cisternography, that eventually can't be detected by air-contrast study.

  1. Cisternography contribution in the cortical atrophy diagnosis

    International Nuclear Information System (INIS)

    Calegaro, J.U.M.; Balallai, N.; Suzuki, K.

    1975-01-01

    A 37 years-old woman suffered a car accident. On admission to hospital she presented: torpor, the right pupil greater than the left, both reacting to light, and left hemiparesis with homologous Babinski reflex. She was submitted to carotid arteriogram an air-contrast study without significant findings. Eletroencephalographic examination showed diffuse parenquimatous involvement of left cerebral hemisphery. Scinticisternography demonstrated delayed reabsorption of the radioactive tracer in both frontal areas. A subsequent trepanation made the diagnosis of cortical atrophy in the areas mentioned above. This case shows aditional information concerning anatomic detail provided by isotope cisternography, that eventually can't be detected by air-contrast study [pt

  2. Behcet's disease with cerebral vasculitis

    International Nuclear Information System (INIS)

    Scardamaglia, L.; Desmond, P.M.; Gonzales, M.F.; Bendrups, A.; Brodtmann, A.

    2001-01-01

    The case presented illustrates the diagnostic dilemma off neurological involvement in Behcet's disease and other inflammatory diseases. 'Psychiatric' symptoms were present for 2 years without abnormalities on SPECT or MRI and without CSF pleocytosis. Even at the time of fitting, no CSF abnormalities were observed. The preceding psychiatric presentations may have been due to cerebral vasculitis that was exacerbated by withdrawal of steroids. Magnetic resonance imaging is currently the most sensitive imaging modality. Lesions are usually in the brainstem, cerebellum, basal ganglia region or periventricular white matter, and the pons and the mesencephalon are commonly affected. In our patient there was no diencephalic or brainstem involvement. The inflammatory process can appear as a very large lesion, with gadolinium enhancement and significant mass effect, as in our patient. Brain magnetic resonance imaging. Postgadolinium-diethylenetriamine pentaacetic acid, axial image shows two large lesions in the right frontal lobe, with the larger, posterior lesion demonstrating vivid ring enhancement. A central nodule is isodense, with the cerebral white matter within the larger lesion. Surrounding low T 1 signal involves the hemispheric white matter without cortical extension and is consistent with vasogenic oedema. Minor mass effect is demonstrated with bowing of the anterior falx cerebri to the left. Biopsy shows prominent fibrinoid necrosis in small calibre postcapillary venules and cerebral white matter. There are surrounding acute and chronic inflammatory cells and nuclear debris, consistent with vasculitis

  3. Studies of cerebral blood flow and metabolism in patients with senile dementia of the Alzheimer's type and diagnostic evaluation of the dementing illnesses by positron emission tomography

    International Nuclear Information System (INIS)

    Sakamoto, Shizuki

    1990-01-01

    This study was designed to determine cerebral dysfunction in senile dementia of the Alzheimer's type (SDAT). Regional cerebral blood flow (rCBF), oxygen extraction fraction and cerebral oxygen consumption (rCMRO 2 ) were studied in SDAT patients (n=16) and age-matched normal elderly people (n=5) by positron emission tomography (PET) using the O-15 labeled CO 2 and O 2 inhalation technique. The SDAT group had a significantly lower values in both rCBF and rCMRO 2 than the normal control. During the early stage of SDAT, rCMRO 2 was restricted to the temporal cortex; and it extended to the parietal and frontal cortices associated with a decreased rCBF as the disease progressed. Posterior temporal and posterior parietal association cortices were considered to be the most damageable part during the early stage. Bilateral differences in oxygen metabolism of the temporal and parietal cortices tended to be in accordance with clinical symptoms for disturbed speech and visuospatial function, suggesting the correlation between rCMRO 2 and rCBF in SDAT. Findings of PET in SDAT differed from those obtained in each patient with multi-infarct dementia or Pick disease, in that both rCBF and rCMRO 2 were inhomogeneously decreased over the whole cerebral cortex for multi-infarct dementia and in that homogeneously decreased rCBF and rCMRO 2 were restricted to the frontal and temporal cortices for Pick disease. PET may have a potential for differentiating various types of dementia. (N.K.)

  4. Aging causes a reorganization of cortical and spinal control of posture

    Directory of Open Access Journals (Sweden)

    Selma ePapegaaij

    2014-03-01

    Full Text Available Classical studies in animal preparations suggest a strong role for spinal control of posture. In young adults it is now established that the cerebral cortex contributes to postural control of unperturbed and perturbed standing. The age-related degeneration and accompanying functional changes in the brain, reported so far mainly in conjunction with simple manual motor tasks, may also affect the mechanisms that control complex motor tasks involving posture. This review outlines the age-related structural and functional changes at spinal and cortical levels and provides a mechanistic analysis of how such changes may be linked to the behaviorally manifest postural deficits in old adults. The emerging picture is that the age-related reorganization in motor control during voluntary tasks, characterized by differential modulation of spinal reflexes, greater cortical activation and cortical disinhibition, is also present during postural tasks. We discuss the possibility that this reorganization underlies the increased coactivation and dual task interference reported in elderly. Finally, we propose a model for future studies to unravel the structure-function-behavior relations in postural control and aging.

  5. Patterns of cortical activity during the observation of Public Service Announcements and commercial advertisings.

    Science.gov (United States)

    Vecchiato, Giovanni; Astolfi, Laura; Cincotti, Febo; De Vico Fallani, Fabrizio; Sorrentino, Domenica M; Mattia, Donatella; Salinari, Serenella; Bianchi, Luigi; Toppi, Jlena; Aloise, Fabio; Babiloni, Fabio

    2010-06-03

    In the present research we were interested to study the cerebral activity of a group of healthy subjects during the observation a documentary intermingled by a series of TV advertisements. In particular, we desired to examine whether Public Service Announcements (PSAs) are able to elicit a different pattern of activity, when compared with a different class of commercials, and correlate it with the memorization of the showed stimuli, as resulted from a following subject's verbal interview. We recorded the EEG signals from a group of 15 healthy subjects and applied the High Resolution EEG techniques in order to estimate and map their Power Spectral Density (PSD) on a realistic cortical model. The single subjects' activities have been z-score transformed and then grouped to define four different datasets, related to subjects who remembered and forgotten the PSAs and to subjects who remembered and forgotten cars commercials (CAR) respectively, which we contrasted to investigate cortical areas involved in this encoding process. The results we here present show that the cortical activity elicited during the observation of the TV commercials that were remembered (RMB) is higher and localized in the left frontal brain areas when compared to the activity elicited during the vision of the TV commercials that were forgotten (FRG) in theta and gamma bands for both categories of advertisements (PSAs and CAR). Moreover, the cortical maps associated with the PSAs also show an increase of activity in the alpha and beta band. In conclusion, the TV advertisements that will be remembered by the experimental population have increased their cerebral activity, mainly in the left hemisphere. These results seem to be congruent with and well inserted in the already existing literature, on this topic, related to the HERA model. The different pattern of activity in different frequency bands elicited by the observation of PSAs may be justified by the existence of additional cortical networks

  6. Differentiation of normal pressure hydrocephalus and cerebral atrophy by computed tomography and spinal infusion test

    Energy Technology Data Exchange (ETDEWEB)

    Tans, J T.J. [Nijverheidsorganisatie TNO, The Hague (Netherlands). Dept. of Neurology and Research Unit TNO for Clinical Neurophysiology

    1979-01-01

    The diagnostic value of computed tomography (CT) and spinal infusion test (SIT) was investigated in 27 patients with normal pressure hydrocephalus (NPH) and 35 patients with cerebral atrophy. The most consistent CT finding of NPH was dilatation of the temporal horns, that of cerebral atrophy widening of the convexity sulci. However, 43% of patients with cerebral atrophy demonstrated no cortical atrophy. The SIT showed an excellent relation with isotope cisternography and continuous intracranial pressure recording. NPH and cerebral atrophy were correctly differentiated in 71% by CT and SIT. A normal SIT and a CT scan without the typical features of NPH exclude impairment of cerebrospinal fluid absorption. An abnormal SIT and a CT scan showing ventricular enlargement without dilatation of convexity sulci, require isotope cisternography and possibly intracranial pressure recording to determine the degree of the absorption deficit.

  7. Normal and abnormal neuronal migration in the developing cerebral cortex

    OpenAIRE

    Sun, Xue-Zhi; Takahashi, Sentaro; Cui, Chun; Zhang, Rui; Sakata-Haga, Hiromi; Sawada, Kazuhiko; Fukui, Yoshihiro

    2002-01-01

    Neuronal migration is the critical cellular process which initiates histogenesis of cerebral cortex. Migration involves a series of complex cell interactions and transformation. After completing their final mitosis, neurons migrate from the ventricular zone into the cortical plate, and then establish neuronal lamina and settle onto the outermost layer, forming an “inside-out” gradient of maturation. This process is guided by radial glial fibers, requires proper receptors, ligands, other unkno...

  8. l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway

    Directory of Open Access Journals (Sweden)

    Yuki Kurauchi

    2017-03-01

    Full Text Available l-Citrulline is a potent precursor of l-arginine, and exerts beneficial effect on cardiovascular system via nitric oxide (NO production. Migraine is one of the most popular neurovascular disorder, and imbalance of cerebral blood flow (CBF observed in cortical spreading depression (CSD contributes to the mechanism of migraine aura. Here, we investigated the effect of l-citrulline on cardiovascular changes to KCl-induced CSD. in rats. Intravenous injection of l-citrulline prevented the decrease in CBF, monitored by laser Doppler flowmetry, without affecting mean arterial pressure and heart rate during CSD. Moreover, l-citrulline attenuated propagation velocity of CSD induced by KCl. The effect of l-citrulline on CBF change was prevented by l-NAME, an inhibitor of NO synthase, but not by indomethacin, an inhibitor of cyclooxygenase. On the other hand, attenuation effect of l-citrulline on CSD propagation velocity was prevented not only by l-NAME but also by indomethacin. In addition, propagation velocity of CSD was attenuated by intravenous injection of NOR3, a NO donor, which was diminished by ODQ, an inhibitor of soluble guanylyl cyclase. These results suggest that NO/cyclic GMP- and prostanoids-mediated pathway differently contribute to the effect of l-citrulline on the maintenance of CBF.

  9. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with {sup 15}O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Department of Nuclear Medicine and Radiology, Division of Brain Sciences, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-Machi, 980-8575, Aoba-Ku, Sendai (Japan); Kanno, Iwao [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Kato, Chietsugu [Department of Nuclear Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Sasaki, Toshiaki [Cyclotoron Research Center, Iwate Medical University, Morioka (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo (Japan); Ouchi, Yasuomi [Positron Medical Center, Hamamatsu Medical Center, Hamakita (Japan); Iida, Akihiko [Nagoya City Rehabilitation Center, Nagoya (Japan); Okazawa, Hidehiko [PET Unit, Research Institute, Shiga Medical Center, Moriyama (Japan); Hayashida, Kohei [Department of Radiology, National Cardiovascular Center, Suita, Osaka (Japan); Tsuyuguchi, Naohiro [Department of Neurosurgery, Osaka City University Medical School, Osaka (Japan); Ishii, Kazunari [Division of Imaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders, Himeji, Hyogo (Japan); Kuwabara, Yasuo [Department of Radiology, Faculty of Medicine, Kyushu University, Fukuoka (Japan); Senda, Michio [Department of Image-based Medicine, Institute of Biomedical Research and Innovation, Kobe (Japan)

    2004-05-01

    Measurement of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) by positron emission tomography (PET) with oxygen-15 labelled carbon dioxide (C{sup 15}O{sub 2}) or {sup 15}O-labelled water (H{sub 2}{sup 15}O), {sup 15}O-labelled carbon monoxide (C{sup 15}O) and {sup 15}O-labelled oxygen ({sup 15}O{sub 2}) is useful for diagnosis and treatment planning in cases of cerebrovascular disease. The measured values theoretically depend on various factors, which may differ between PET centres. This study explored the applicability of a database of {sup 15}O-PET by examining between-centre and within-centre variation in values. Eleven PET centres participated in this multicentre study; seven used the steady-state inhalation method, one used build-up inhalation and three used bolus administration of C{sup 15}O{sub 2} (or H{sub 2}{sup 15}O) and {sup 15}O{sub 2}. All used C{sup 15}O for measurement of CBV. Subjects comprised 70 healthy volunteers (43 men and 27 women; mean age 51.8{+-}15.1 years). Overall mean{+-}SD values for cerebral cortical regions were: CBF=44.4{+-}6.5 ml 100 ml{sup -1} min{sup -1}; CBV=3.8{+-}0.7 ml 100 ml{sup -1}; OEF=0.44{+-}0.06; CMRO{sub 2}=3.3{+-}0.5 ml 100 ml{sup -1} min{sup -1}. Significant between-centre variation was observed in CBV, OEF and CMRO{sub 2} by one-way analysis of variance. However, the overall inter-individual variation in CBF, CBV, OEF and CMRO{sub 2} was acceptably small. Building a database of normal cerebral haemodynamics obtained by the{sup 15}O-PET methods may be practicable. (orig.)

  10. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    International Nuclear Information System (INIS)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P.

    2015-01-01

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [ 11 C]PIB and [ 18 F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [ 11 C]PIB or [ 18 F]FDG PET scans. The [ 11 C]PIB PET scans were quantified using [ 11 C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  11. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Brain Sciences, London (United Kingdom)

    2014-09-30

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [{sup 11}C]PIB and [{sup 18}F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [{sup 11}C]PIB or [{sup 18}F]FDG PET scans. The [{sup 11}C]PIB PET scans were quantified using [{sup 11}C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  12. Localization of cortical areas activated by thinking.

    Science.gov (United States)

    Roland, P E; Friberg, L

    1985-05-01

    These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work in the form of operations on internal information, done by an awake subject. The rCBF was measured in 254 cortical regions in 11 subjects with the intracarotid 133Xe injection technique. In normal man, changes in the regional cortical metabolic rate of O2 leads to proportional changes in rCBF. One control study was taken with the subjects at rest. Then the rCBF was measured during three different simple algorithm tasks, each consisting of retrieval of a specific memory followed by a simple operation on the retrieved information. Once started, the information processing went on in the brain without any communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined that they started at their front door and then walked alternatively to the left or the right each time they reached a corner. The rCBF increased only in homotypical cortical areas during thinking. The areas in the superior prefrontal cortex increased their rCBF equivalently during the three types of thinking. In the remaining parts of the prefrontal cortex there were multifocal increases of rCBF. The localizations and intensities of these rCBF increases depended on the type of internal operation occurring. The rCBF increased bilaterally in the angular cortex during 50-3 thinking. The rCBF increased in the right midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and

  13. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury.

    Science.gov (United States)

    Moro, Nobuhiro; Ghavim, Sima; Harris, Neil G; Hovda, David A; Sutton, Richard L

    2013-10-16

    Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients' remain under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose metabolism and neuronal injury in a rodent model of unilateral controlled cortical impact (CCI) injury. In Experiment 1, a single episode of hyperglycemia (50% glucose at 2 g/kg, i.p.) initiated immediately after CCI was found to significantly attenuate a TBI-induced depression of glucose metabolism in cerebral cortex (4 of 6 regions) and subcortical regions (2 of 7) as well as to significantly reduce the number of dead/dying neurons in cortex and hippocampus at 24 h post-CCI. Experiment 2 examined effects of more prolonged and intermittent hyperglycemia induced by glucose administrations (2 g/kg, i.p.) at 0, 1, 3 and 6h post-CCI. The latter study also found significantly improved cerebral metabolism (in 3 of 6 cortical and 3 of 7 subcortical regions) and significant neuroprotection in cortex and hippocampus 1 day after CCI and glucose administration. These results indicate that acute episodes of post-TBI hyperglycemia can be beneficial and are consistent with other recent studies showing benefits of providing exogenous energy substrates during periods of increased cerebral metabolic demand. © 2013 Elsevier B.V. All rights reserved.

  14. "The mute who can sing": a cortical stimulation study on singing.

    Science.gov (United States)

    Roux, Franck-Emmanuel; Borsa, Stefano; Démonet, Jean-François

    2009-02-01

    In an attempt to identify cortical areas involved in singing in addition to language areas, the authors used a singing task during direct cortical mapping in 5 patients who were amateur singers and had undergone surgery for brain tumors. The organization of the cortical areas involved in language and singing was analyzed in relation with these surgical data. One left-handed and 4 right-handed patients with brain tumors in left (2 cases) and right (3 cases) hemispheres and no significant language or singing deficits underwent surgery with the "awake surgery" technique. All patients had a special interest in singing and were involved in amateur singing activities. They were tested using naming, reading, and singing tasks. Outside primary sensorimotor areas, singing interferences were rare and were exclusively localized in small cortical areas (singing in the Broca region. In the Broca region, no singing interference was found in areas in which interference in naming and reading tasks were detected. Conversely, a specific singing interference was found in nondominant middle frontal gyri in one patient. This interference consisted of abrupt singing arrest without apparent face, mouth, and tongue contraction. Finally, nonspecific singing interferences were found in the right and left precentral gyri in all patients (probably by interference in final articulatory mechanisms of singing). Dissociations between speech and singing found outside primary sensorimotor areas showed that these 2 functions use, in some cortical stages, different cerebral pathways.

  15. Population-Based Study of Cerebral Microbleeds in Stroke-Free Older Adults Living in Rural Ecuador: The Atahualpa Project.

    Science.gov (United States)

    Del Brutto, Victor J; Zambrano, Mauricio; Mera, Robertino M; Del Brutto, Oscar H

    2015-07-01

    Prevalence of cerebral microbleeds (CMB) in white and Asian populations range from 4% to 15%. However, there is no information from indigenous Latin American people. We aimed to assess prevalence and cerebrovascular correlates of CMB in stroke-free older adults living in rural Ecuador. Of 311 Atahualpa residents aged ≥60 years identified during a door-to-door survey, 258 (83%) underwent brain magnetic resonance imaging. Twenty-one were further excluded for a diagnosis of overt stroke. Using multivariate logistic regression models, adjusted for demographics and cardiovascular risk factors, we evaluated whether CMB were independently associated with silent strokes, white matter hyperintensities, and global cortical atrophy. Twenty-six (11%) of 237 participants had CMB, which were single in 54% of cases. CMB were deep in 11 patients, cortical in 9, and located both deep and cortical in 6. In univariate analyses, CMB were associated with age, systolic blood pressure, moderate-to-severe white matter hyperintensities, silent lacunar infarcts, and cortical atrophy. Mean (±SD) values for systolic blood pressure were 155±27 mm Hg in patients who had CMB versus 142±26 mm Hg in those who did not (P=0.017). In the adjusted models, moderate-to-severe white matter hyperintensities (P=0.009), silent lacunar infarcts (P=0.003), and global cortical atrophy (P=0.04) were independently associated with CMB. Prevalence of CMB in stroke-free older adults living in Atahualpa is comparable with those reported from other ethnic groups. There is a strong relationship between CMB and increased age, high systolic blood pressure, silent markers of cerebral small vessel disease, and cortical atrophy. © 2015 American Heart Association, Inc.

  16. Hemiparetic cerebral palsy: clinical data compared with neuroimaging Paralisia cerebral hemiparética: dados clínicos comparados à neuroimagem

    Directory of Open Access Journals (Sweden)

    RC Turolla de Souza

    2006-01-01

    Full Text Available OBJECTIVE: The present study correlated fine motor function (FMF and sensory function (SF performance with magnetic resonance imaging classification, in cases of hemiparetic cerebral palsy. METHOD: Specific protocols were used to evaluate FMF, SF and brain lesion extent and location in the hemisphere. Forty-six patients were assessed: 23 with hemiparetic cerebral palsy (group 1 and 23 normal individuals (group 2. Their ages ranged from 7 to 16 years, with a mean of 12 years and 8 months. RESULTS: FMF and SF performance in group 1 was significantly worse than in group 2. Hemiparetic cerebral palsy cases with lesions in only one brain structure presented better results than those with two or more damaged structures larger than 10 mm. Patients with unilateral or bilateral cortical and subcortical impairment presented worse performance than those with subcortical lesions. CONCLUSION: Motor and sensory dysfunctions need to be identified and understood in order to provide routine training and special care for such children.OBJETIVO: Este estudo correlacionou o desempenho da função motora fina (FMF e Sensorial (FS na paralisia cerebral hemiparética (PC-H à classificação da ressonância magnética (RM. MÉTODO: Utilizaram-se os protocolos específicos para avaliar FMF, FS e lesões encefálicas quanto à sua extensão e localização no hemisfério. Foram avaliados 46 sujeitos sendo 23 com PC-H, grupo 1, e 23 crianças normais, grupo 2. A idade variou entre 07 a 16 anos, idade média de 12 anos e 8 meses. RESULTADOS: O desempenho das FMF e FS demonstrou ser significantemente pior no grupo 1 quando comparado ao grupo controle. PC-H que apresentavam lesões atingindo uma única estrutura encefálica demonstraram melhores resultados que aqueles com comprometimento atingindo duas estruturas maiores que 10 mm. O desempenho dos sujeitos com comprometimento cortical e subcortical, uni ou bilateral, foi inferior quando comparados aos com les

  17. Evidence for adaptive cortical changes in swallowing in Parkinson's disease.

    Science.gov (United States)

    Suntrup, Sonja; Teismann, Inga; Bejer, Joke; Suttrup, Inga; Winkels, Martin; Mehler, David; Pantev, Christo; Dziewas, Rainer; Warnecke, Tobias

    2013-03-01

    Dysphagia is a relevant symptom in Parkinson's disease, whose pathophysiology is poorly understood. It is mainly attributed to degeneration of brainstem nuclei. However, alterations in the cortical contribution to deglutition control in the course of Parkinson's disease have not been investigated. Here, we sought to determine the patterns of cortical swallowing processing in patients with Parkinson's disease with and without dysphagia. Swallowing function in patients was objectively assessed with fiberoptic endoscopic evaluation. Swallow-related cortical activation was measured using whole-head magnetoencephalography in 10 dysphagic and 10 non-dysphagic patients with Parkinson's disease and a healthy control group during self-paced swallowing. Data were analysed applying synthetic aperture magnetometry, and group analyses were done using a permutation test. Compared with healthy subjects, a strong decrease of cortical swallowing activation was found in all patients. It was most prominent in participants with manifest dysphagia. Non-dysphagic patients with Parkinson's disease showed a pronounced shift of peak activation towards lateral parts of the premotor, motor and inferolateral parietal cortex with reduced activation of the supplementary motor area. This pattern was not found in dysphagic patients with Parkinson's disease. We conclude that in Parkinson's disease, not only brainstem and basal ganglia circuits, but also cortical areas modulate swallowing function in a clinically relevant way. Our results point towards adaptive cerebral changes in swallowing to compensate for deficient motor pathways. Recruitment of better preserved parallel motor loops driven by sensory afferent input seems to maintain swallowing function until progressing neurodegeneration exceeds beyond the means of this adaptive strategy, resulting in manifestation of dysphagia.

  18. Statistical image analysis of cerebral blood flow in moyamoya disease

    International Nuclear Information System (INIS)

    Yamada, Masaru; Yuzawa, Izumi; Suzuki, Sachio; Kurata, Akira; Fujii, Kiyotaka; Asano, Yuji

    2007-01-01

    The Summary of this study was to investigate pathophysiology of moyamoya disease, we analyzed brain single photon emission tomography (SPECT) images of patients with this disease by using interface software for a 3-dimensional (3D) data extraction format. Presenting symptoms were transient ischemic attack (TIA) in 21 patients and hemorrhage in 6 patients. All the patients underwent brain SPECT scan of 123 I-iofetamine (IMP) at rest and after acetazolamide challenge (17 mg/kg iv, 2-day method). Cerebral blood flow (CBF) was quantitatively measured using arterial blood sampling and an autoradiography model. The group of the patients who presented with TIAs showed decreased CBF in the frontal lobe at rest compared to that of patients with hemorrhage, but Z-score ((mean-patient data)/ standard deviation (SD)) did not reach statistical significance. Significant CBF decrease after acetazolamide challenge was observed in a wider cerebral cortical area in the TIA group than in the hemorrhagic group. The brain region of hemodynamic ischemia (stage II) correlated well with the responsible cortical area for clinical symptoms of TIA. A hemodynamic ischemia stage image clearly represented recovery of reserve capacity after bypass surgery. Statistical evaluation of SPECT may be useful to understand and clarify the pathophysiology of this disease. (author)

  19. Brain regions associated with cognitive impairment in patients with Parkinson disease: quantitative analysis of cerebral blood flow using 123I iodoamphetamine SPECT.

    Science.gov (United States)

    Hattori, Naoya; Yabe, Ichiro; Hirata, Kenji; Shiga, Tohru; Sakushima, Ken; Tsuji-Akimoto, Sachiko; Sasaki, Hidenao; Tamaki, Nagara

    2013-05-01

    Cognitive impairment is a representative neuropsychiatric presentation that accompanies Parkinson disease (PD). The purpose of this study was to localize the cerebral regions associated with cognitive impairment in patients with PD using quantitative SPECT. Thirty-two patients with PD (mean [SD] age, 75 [8] years; 25 women; Hoehn-Yahr scores from 2 to 5) underwent quantitative brain SPECT using 123I iodoamphetamine. Parametric images of regional cerebral blood flow (rCBF) were spatially normalized to the standard brain atlas. First, voxel-by-voxel comparison between patients with PD with versus without cognitive impairment was performed to visualize overall trend of regional differences. Next, the individual quantitative rCBF values were extracted in representative cortical regions using a standard region-of-interest template to compare the quantitative rCBF values. Patients with cognitive impairment showed trends of lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices in the voxel-by-voxel analyses. Region-of-interest-based analysis demonstrated significantly lower rCBF in the bilateral anterior cingulate cortices (right, 25.8 [5.5] vs 28.9 [5.7] mL per 100 g/min, P left, 25.8 [5.8] vs 29.1 [5.7] mL per 100 g/min, P left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices. The results suggested dysexecutive function as an underlining mechanism of cognitive impairment in patients with PD.

  20. Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [11C]Befloxatone

    International Nuclear Information System (INIS)

    Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch.; Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch.; Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch.; Berlin, I.; Gregoire, M.C.; Bottlaender, M.; Roumenov, D.; Dolle, F.; Bourgeois, S.; Artiges, E.; Trichard, Ch.

    2009-01-01

    The inhibition of cerebral monoamine oxidases (MAOs) by cigarette smoke components could participate to the tobacco addiction. However, the actual extent of this inhibition in vivo in smokers is still poorly known. We investigated cerebral MAO-A availability in 7 tobacco-dependent subjects and 6 healthy nonsmokers, using positron emission tomography (PET) and the MAO-A selective radioligand [ 11 C]befloxatone. In comparison to nonsmokers, smokers showed a significant overall reduction of [ 11 C]befloxatone binding potential (BP) in cortical areas (average reduction, -60%) and a similar trend in caudate and thalamus (-40%). Our findings confirm a widespread inhibition of cerebral MAO-A in smokers. This mechanism may contribute to tobacco addiction and for a possible mood-modulating effect of tobacco. (authors)

  1. The Comparisons of Cerebral Hemodynamics Induced by Obstructive Sleep Apnea with Arousal and Periodic Limb Movement with Arousal: A Pilot NIRS Study.

    Science.gov (United States)

    Zhang, Zhongxing; Schneider, Maja; Laures, Marco; Qi, Ming; Khatami, Ramin

    2016-01-01

    Obstructive sleep apnea syndrome (OSA) and restless legs syndrome (RLS) with periodic limb movement during sleep (PLMS) are two sleep disorders characterized by repetitive respiratory or movement events associated with cortical arousals. We compared the cerebral hemodynamic changes linked to periodic apneas/hypopneas with arousals (AHA) in four OSA-patients with periodic limb movements (PLMA) with arousals in four patients with RLS-PLMS using near-infrared spectroscopy (NIRS). AHA induced homogenous pattern of periodic fluctuations in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin, i.e., the decrease of HbO2 was accompanied by an increase of HHb during the respiratory event and resolved to reverse pattern when cortical arousal started. Blood volume (BV) showed the same pattern as HHb but with relative smaller amplitude in most of the AHA events.These changing patterns were significant as Wilcoxon signed-rank tests gave p Wilcoxon signed-rank tests, p Wilcoxon signed-rank test, p Wilcoxon signed-rank test, p Wilcoxon signed-rank test, p < 0.001) and then decreased. The results of this preliminary study show that both AHA and PLMA induce changes in cerebral hemodynamics. The occurrence of cortical arousal is accompanied by increased HR in both events, but by different BV changes (i.e., decreased/increased BV in AHA/PLMA, respectively). HR changes may partially account for the increased cerebral hemodynamics during PLMA; whereas in AHA probable vasodilatation mediated by hypoxia/hypercapnia is more crucial for the post-arousal hemodynamics. The differences between changes of cerebral hemodynamics and HR may indicate different pathological mechanisms behind these two sleep disorder events.

  2. Math anxiety: Brain cortical network changes in anticipation of doing mathematics.

    Science.gov (United States)

    Klados, Manousos A; Pandria, Niki; Micheloyannis, Sifis; Margulies, Daniel; Bamidis, Panagiotis D

    2017-12-01

    Following our previous work regarding the involvement of math anxiety (MA) in math-oriented tasks, this study tries to explore the differences in the cerebral networks' topology between self-reported low math-anxious (LMA) and high math-anxious (HMA) individuals, during the anticipation phase prior to a mathematical related experiment. For this reason, multichannel EEG recordings were adopted, while the solution of the inverse problem was applied in a generic head model, in order to obtain the cortical signals. The cortical networks have been computed for each band separately, using the magnitude square coherence metric. The main graph theoretical parameters, showed differences in segregation and integration in almost all EEG bands of the HMAs in comparison to LMAs, indicative of a great influence of the anticipatory anxiety prior to mathematical performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Motor-cortical interaction in Gilles de la Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Stephanie Franzkowiak

    Full Text Available BACKGROUND: In Gilles de la Tourette syndrome (GTS increased activation of the primary motor cortex (M1 before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG. Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS.

  4. Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales.

    Science.gov (United States)

    Kodama, Nathan X; Feng, Tianyi; Ullett, James J; Chiel, Hillel J; Sivakumar, Siddharth S; Galán, Roberto F

    2018-01-12

    In the highly interconnected architectures of the cerebral cortex, recurrent intracortical loops disproportionately outnumber thalamo-cortical inputs. These networks are also capable of generating neuronal activity without feedforward sensory drive. It is unknown, however, what spatiotemporal patterns may be solely attributed to intrinsic connections of the local cortical network. Using high-density microelectrode arrays, here we show that in the isolated, primary somatosensory cortex of mice, neuronal firing fluctuates on timescales from milliseconds to tens of seconds. Slower firing fluctuations reveal two spatially distinct neuronal ensembles, which correspond to superficial and deeper layers. These ensembles are anti-correlated: when one fires more, the other fires less and vice versa. This interplay is clearest at timescales of several seconds and is therefore consistent with shifts between active sensing and anticipatory behavioral states in mice.

  5. Abnormalities in structural covariance of cortical gyrification in schizophrenia.

    Science.gov (United States)

    Palaniyappan, Lena; Park, Bert; Balain, Vijender; Dangi, Raj; Liddle, Peter

    2015-07-01

    The highly convoluted shape of the adult human brain results from several well-coordinated maturational events that start from embryonic development and extend through the adult life span. Disturbances in these maturational events can result in various neurological and psychiatric disorders, resulting in abnormal patterns of morphological relationship among cortical structures (structural covariance). Structural covariance can be studied using graph theory-based approaches that evaluate topological properties of brain networks. Covariance-based graph metrics allow cross-sectional study of coordinated maturational relationship among brain regions. Disrupted gyrification of focal brain regions is a consistent feature of schizophrenia. However, it is unclear if these localized disturbances result from a failure of coordinated development of brain regions in schizophrenia. We studied the structural covariance of gyrification in a sample of 41 patients with schizophrenia and 40 healthy controls by constructing gyrification-based networks using a 3-dimensional index. We found that several key regions including anterior insula and dorsolateral prefrontal cortex show increased segregation in schizophrenia, alongside reduced segregation in somato-sensory and occipital regions. Patients also showed a lack of prominence of the distributed covariance (hubness) of cingulate cortex. The abnormal segregated folding pattern in the right peri-sylvian regions (insula and fronto-temporal cortex) was associated with greater severity of illness. The study of structural covariance in cortical folding supports the presence of subtle deviation in the coordinated development of cortical convolutions in schizophrenia. The heterogeneity in the severity of schizophrenia could be explained in part by aberrant trajectories of neurodevelopment.

  6. Functional specializations in human cerebral cortex analyzed using the Visible Man surface-based atlas

    Science.gov (United States)

    Drury, H. A.; Van Essen, D. C.

    1997-01-01

    We used surface-based representations to analyze functional specializations in the human cerebral cortex. A computerized reconstruction of the cortical surface of the Visible Man digital atlas was generated and transformed to the Talairach coordinate system. This surface was also flattened and used to establish a surface-based coordinate system that respects the topology of the cortical sheet. The linkage between two-dimensional and three-dimensional representations allows the locations of published neuroimaging activation foci to be stereotaxically projected onto the Visible Man cortical flat map. An analysis of two activation studies related to the hearing and reading of music and of words illustrates how this approach permits the systematic estimation of the degree of functional segregation and of potential functional overlap for different aspects of sensory processing.

  7. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system

    Science.gov (United States)

    Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.

    1996-01-01

    We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.

  8. Associations between cortical thickness and general intelligence in children, adolescents and young adults

    Science.gov (United States)

    Menary, Kyle; Collins, Paul F.; Porter, James N.; Muetzel, Ryan; Olson, Elizabeth A.; Kumar, Vipin; Steinbach, Michael; Lim, Kelvin O.; Luciana, Monica

    2013-01-01

    Neuroimaging research indicates that human intellectual ability is related to brain structure including the thickness of the cerebral cortex. Most studies indicate that general intelligence is positively associated with cortical thickness in areas of association cortex distributed throughout both brain hemispheres. In this study, we performed a cortical thickness mapping analysis on data from 182 healthy typically developing males and females ages 9 to 24 years to identify correlates of general intelligence (g) scores. To determine if these correlates also mediate associations of specific cognitive abilities with cortical thickness, we regressed specific cognitive test scores on g scores and analyzed the residuals with respect to cortical thickness. The effect of age on the association between cortical thickness and intelligence was examined. We found a widely distributed pattern of positive associations between cortical thickness and g scores, as derived from the first unrotated principal factor of a factor analysis of Wechsler Abbreviated Scale of Intelligence (WASI) subtest scores. After WASI specific cognitive subtest scores were regressed on g factor scores, the residual score variances did not correlate significantly with cortical thickness in the full sample with age covaried. When participants were grouped at the age median, significant positive associations of cortical thickness were obtained in the older group for g-residualized scores on Block Design (a measure of visual-motor integrative processing) while significant negative associations of cortical thickness were observed in the younger group for g-residualized Vocabulary scores. These results regarding correlates of general intelligence are concordant with the existing literature, while the findings from younger versus older subgroups have implications for future research on brain structural correlates of specific cognitive abilities, as well as the cognitive domain specificity of behavioral

  9. Neurological, neuropsychological and neuroradiological studies of the posterior cerebral artery occlusion

    International Nuclear Information System (INIS)

    Tagawa, Koichi

    1978-01-01

    Neurological, neuropsychological and neuroradiological studies were performed on 31 cases of the posterior cerebral artery (PCA) occlusion diagnosed by cerebral angiography and/or computed tomography (CT). Neurological examinations revealed visual field defect in 28 cases, contralateral sensory disturbance and hemiparesis in 23 cases and mental syndrome of memory disturbance, disorientation or confusion in 8 cases. CT was done on 17 cases out of 23 cases with contralateral sensory disturbance and hemiparesis. Ten cases of them revealed to have thalamic lesions by CT. In 7 cases which had no evidence of thalamic lesion by CT, 3 cases were highly suspected to have thalamic involvement clinically. The neurological and neuroradiological findings revealed high incidence and its pathomechanism of thalamic lesion in the cases of PCA occlusion. Neuropsychological examinations disclosed pure alexia in 6 cases, cortical blindness in 2 cases and hemispatial agnosia in 2 cases. Four cases with pure alexia were followed their alexic symptoms. Alexic symptoms lasted long in 3 cases. In these cases, collateral flow to the territory of the occlude PCA was hardly visible. One case with a relatively good collateral filling of the occluded PCA, alexic symptoms showed gradual improvement. Two cases with cortical blindness were proven to have bilateral PCA occlusion. In these 2 cases, collateral filling was hardly visible and their symptoms were permanent. The neurological and neuroradiological findings mentioned above suggest that the prognosis of pure alexia and cortical blindness depends largely on the degree of development of collateral circulation to the occluded PCA. Hemispatial agnosia was seen in 2 cases. (author)

  10. Functional MRI (fMRI) on lesions in and around the motor and the eloquent cortices

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamura, Shogo; Tamaki, Norihiko; Kitamura, Junji

    1999-01-01

    From the view point of neurosurgeons, to aim the preoperative localized diagnosis on the motor and the eloquent cortices and postoperative preservation of neurological functions, fMRI was carried for patients with lesions in and around the motor and the eloquent cortices. Even in cases of mechanical oppression or brain edema, the motor and the eloquent cortices are localized on cerebral gyri. In perioperative period, identification and preserving the motor and the eloquent cortices are important for keeping brain function. Twenty six preoperative cases and 3 normal healthy subjects were observed. Exercise enhanced fMRI was performed on 3 normal healthy subjects, fMRI with motor stimulation in 24 cases and fMRI with speech stimulation in 4 cases. The signal intensity increased in all cases responsing to both stimulations. But the signal intensity in 8 cases decreased in some regions by motor stimulation and 1 case by speech stimulation. The decrease of signal intensity in this study seems to be a clinically important finding and it will be required to examine the significance in future. (K.H.)

  11. Postradiation regional cerebral blood flow in primates

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Cerveny, T.J.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with hypotension and a dramatic release of mast cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomenon and the postradiation decrease in cerebral blood flow, primates were exposed to 100 Gy (1 Gy = 100 rads), whole-body, gamma radiation. Pontine and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. Systemic arterial histamine levels were determined preradiation and postradiation. Data obtained indicated that radiated animals showed a decrease in blood flow of 63% in the motor cortex and 51% in the pons by 10 min postradiation. Regional cerebral blood flow of radiated animals showed a slight recovery 20 min postradiation, followed by a fall to the 10 min nadir by 60 min postradiation. Immediately, postradiation systemic blood pressure fell 67% and remained at that level for the remainder of the experiment. Histamine levels in the radiated animals increased a hundredfold 2 min postradiation. This study indicates that regional cerebral blood flow decreases postradiation with the development of hypotension and may be associated temporally with the postradiation release of histamine

  12. Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates

    Directory of Open Access Journals (Sweden)

    Ivica eKostović

    2014-07-01

    Full Text Available The developmental vulnerability of different classes of axonal pathways in preterm white matter is not known. We propose that laminar compartments of the developing cerebral wall serve as spatial framework for axonal growth and evaluate potential of anatomical landmarks for understanding reorganization of the cerebral wall after perinatal lesions. The 3T MRI (in vivo and histological analysis were performed in a series of cases ranging from 22 PCW to 3 years. For the follow-up scans, three groups of children (control, normotypic and preterms with lesions were examined at the term equivalent age and after the first year of life. MRI and histological abnormalities were analyzed in the following compartments: (a periventricular, with periventricular fibre system; (b intermediate, with periventricular crossroads, sagittal strata and centrum semiovale; (c superficial, composed of gyral white matter, subplate and cortical plate. Vulnerability of thalamo-cortical pathways within the crossroads and sagittal strata seems to be characteristic for early preterms, while vulnerability of long association pathways in the centrum semiovale seems to be predominant feature of late preterms. The structural indicator of the lesion of the long association pathways is the loss of delineation between centrum semiovale and subplate remnant, which is possible substrate of the diffuse periventricular leukomalacia. The enhanced difference in MR signal intensity of centrum semiovale and subplate remnant, observed in damaged children after first year, we interpret as structural plasticity of intact short cortico-cortical fibres, which grow postnatally through U-zones and enter the cortex through the subplate remnant. Our findings indicate that radial distribution of MRI signal abnormalities in the cerebral compartments may be related to lesion of different classes of axonal pathways and have prognostic value for predicting the likely outcome of prenatal and perinatal

  13. Reduced Numbers of Somatostatin Receptors in the Cerebral Cortex in Alzheimer's Disease

    Science.gov (United States)

    Flint Beal, M.; Mazurek, Michael F.; Tran, Vinh T.; Chattha, Geetinder; Bird, Edward D.; Martin, Joseph B.

    1985-07-01

    Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatinlike immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.

  14. Cortical capillary dysfunction in patients suspected of Alzheimer’s disease

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Gyldensted, Louise; Nagenthiraja, Kartheeban

    ) leads to inefficient oxygen extraction and eventually to tissue hypoxia. In this study we investigated regional cerebral blood flow (CBF) and CTH in cortical gray matter of AD patients and controls using dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) and surface based statistics.......Vascular risk factors are suspected to play a role in the etiology of Alzheimer’s disease. Recently, a model that relates capillary dysfunction to the development of AD was proposed[1]. The model predicts that capillary dysfunction in form of increased capillary transit time heterogeneity (CTH...

  15. Cell biologic studies of the subplate during the development of the mammalian cerebral cortex

    International Nuclear Information System (INIS)

    Chun, J.J.M.

    1988-01-01

    This study focuses on pre- and postnatal events that may be necessary in establishing organized connections within the cat cerebral cortex. The fetal white matter beneath the cortical plate - the subplate - is shown to contain synapses and synapsin I. The likely presynaptic elements are the waiting axons from the other parts of cortex as well as the thalamus. A postsynaptic target is here identified as a transient population of neurons born between E24 and E30, based on 3 H-thymidine labeling studies combined with immunohistochemistry for the neuron-specific molecule MAP2, as well as ultrastructural and neuroanatomical studies showing that these early-generated subplate neurons receive synapses and have distant projections. The subplate neurons define the subplate by their immunoreactivity for MAP2. An identity is also demonstrated between the adult remnant of the subplate neuron population and the previously described interstitial and transmitter-immunoreactive neurons within the adult cerebral cortical white matter. The subplate neurons are further developmentally correlated with extracellular matrix molecule fibronectin and in experiments in which the subplate neurons are intentionally killed, fibronectin immunostaining decreases

  16. Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity.

    Science.gov (United States)

    Guo, Hong; Hu, Li-Min; Wang, Shao-Xia; Wang, Yu-Lin; Shi, Fang; Li, Hui; Liu, Yang; Kang, Li-Yuan; Gao, Xiu-Mei

    2011-12-31

    An increasing number of studies has indicated that hypoxic-ischemic-induced cerebral injury is partly mediated via oxidative stress. Recent researches have focused on searching for drug and herbal manipulations to protect against hypoxic-ischemic-induced oxidative cell damage. Scutellarin is a flavonoid derived from the Erigeron breviscapus (vant.) and has been reported to exhibit neuroprotective properties. However, its precise mechanism, particularly its antioxidation mechanism, remains elusive. In the present study, we investigated the neuroprotective effects of scutellarin on middle cerebral artery occlusion (MCAO)-induced brain damage in rats, and oxygen-glucose deprivation (OGD)-induced toxicity in primary culture of rat cortical neurons. In vivo, intraperitoneal injections of scutellarin (20 and 60 mg/kg) improved the neurological score and diminished the percentage of brain infarct volume. At the same time, scutellarin significantly increased superoxide dismutase (SOD), catalase (CAT) activities and glutathione (GSH) level in ischemic brain tissues, enhancing endogenous antioxidant activity. Moreover, pretreatment of scutellarin (25, 50 and 100 μM) protected neurons against lethal stimuli, decreased the percentage of apoptotic cells and inhibited reactive oxygen species (ROS) generation in OGD-induced primary cortical neurons in vitro. These results suggest that the preventive and therapeutic potential of scutellarin in cerebral injury patients is, at least in part, ascribed to augmentation of cellular antioxidant defense capacity.

  17. The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination.

    Science.gov (United States)

    Gerfen, C R

    1989-10-20

    The basal ganglia, of which the striatum is the major component, process inputs from virtually all cerebral cortical areas to affect motor, emotional, and cognitive behaviors. Insights into how these seemingly disparate functions may be integrated have emerged from studies that have demonstrated that the mammalian striatum is composed of two compartments arranged as a mosaic, the patches and the matrix, which differ in their neurochemical and neuroanatomical properties. In this study, projections from prefrontal, cingulate, and motor cortical areas to the striatal compartments were examined with the Phaseolus vulgaris-leucoagglutinin (PHA-L) anterograde axonal tracer in rats. Each cortical area projects to both the patches and the matrix of the striatum; however, deep layer V and layer VI corticostriatal neurons project principally to the patches, whereas superficial layer V and layer III and II corticostriatal neurons project principally to the matrix. The relative contribution of patch and matrix corticostriatal projections varies among the cortical areas examined such that allocortical areas provide a greater number of inputs to the patches than to the matrix, whereas the reverse obtains for neocortical areas. These results demonstrate that the compartmental organization of corticostriatal inputs is related to their laminar origin and secondarily to the cytoarchitectonic area of origin.

  18. Point application with Angong Niuhuang sticker protects hippocampal and cortical neurons in rats with cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Dong-shu Zhang

    2015-01-01

    Full Text Available Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological functions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris and Realgar, we used transdermal enhancers to deliver Angong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg were administered to the Dazhui (DU14, Qihai (RN6 and Mingmen (DU4 of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application of Angong Niuhuang stickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efficacy similar to interventions by electroacupuncture at Dazhui (DU14, Qihai (RN6 and Mingmen (DU4. Our experimental findings indicate that point application with Angong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efficacy to acupuncture.

  19. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    Directory of Open Access Journals (Sweden)

    Daniel Blashki

    2016-08-01

    Full Text Available In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies.

  20. The role of reelin in the development and evolution of the cerebral cortex

    Directory of Open Access Journals (Sweden)

    Tissir F.

    2002-01-01

    Full Text Available Reelin is an extracellular matrix protein that is defective in reeler mutant mice and plays a key role in the organization of architectonic patterns, particularly in the cerebral cortex. In mammals, a "reelin signal" is activated when reelin, secreted by Cajal-Retzius neurons, binds to receptors of the lipoprotein receptor family on the surface of cortical plate cells, and triggers Dab1 phosphorylation. As reelin is a key component of cortical development in mammals, comparative embryological studies of reelin expression were carried out during cortical development in non-mammalian amniotes (turtles, squamates, birds and crocodiles in order to assess the putative role of reelin during cortical evolution. The data show that reelin is present in the cortical marginal zone in all amniotes, and suggest that reelin has been implicated in the evolution of the radial organization of the cortical plate in the synapsid lineage leading from stem amniotes to mammals, as well as in the lineage leading to squamates, thus providing an example of homoplastic evolution (evolutionary convergence. The mechanisms by which reelin instructs radial cortical organization in these two lineages seem different: in the synapsid lineage, a drastic amplification of reelin production occurred in Cajal-Retzius cells, whereas in squamates, in addition to reelin-secreting cells in the marginal zone, a second layer of reelin-producing cells developed in the subcortex. Altogether, our results suggest that the reelin-signaling pathway has played a significant role in shaping the evolution of cortical development.

  1. Model-driven harmonic parameterization of the cortical surface: HIP-HOP.

    Science.gov (United States)

    Auzias, G; Lefèvre, J; Le Troter, A; Fischer, C; Perrot, M; Régis, J; Coulon, O

    2013-05-01

    In the context of inter subject brain surface matching, we present a parameterization of the cortical surface constrained by a model of cortical organization. The parameterization is defined via an harmonic mapping of each hemisphere surface to a rectangular planar domain that integrates a representation of the model. As opposed to previous landmark-based registration methods we do not match folds between individuals but instead optimize the fit between cortical sulci and specific iso-coordinate axis in the model. This strategy overcomes some limitation to sulcus-based registration techniques such as topological variability in sulcal landmarks across subjects. Experiments on 62 subjects with manually traced sulci are presented and compared with the result of the Freesurfer software. The evaluation involves a measure of dispersion of sulci with both angular and area distortions. We show that the model-based strategy can lead to a natural, efficient and very fast (less than 5 min per hemisphere) method for defining inter subjects correspondences. We discuss how this approach also reduces the problems inherent to anatomically defined landmarks and open the way to the investigation of cortical organization through the notion of orientation and alignment of structures across the cortex.

  2. Basal forebrain motivational salience signal enhances cortical processing and decision speed

    Directory of Open Access Journals (Sweden)

    Sylvina M Raver

    2015-10-01

    Full Text Available The basal forebrain (BF contains major projections to the cerebral cortex, and plays a well-documented role in arousal, attention, decision-making, and in modulating cortical activity. BF neuronal degeneration is an early event in Alzheimer’s disease and dementias, and occurs in normal cognitive aging. While the BF is best known for its population of cortically projecting cholinergic neurons, the region is anatomically and neurochemically diverse, and also contains prominent populations of non-cholinergic projection neurons. In recent years, increasing attention has been dedicated to these non-cholinergic BF neurons in order to better understand how non-cholinergic BF circuits control cortical processing and behavioral performance. In this review, we focus on a unique population of putative non-cholinergic BF neurons that encodes the motivational salience of stimuli with a robust ensemble bursting response. We review recent studies that describe the specific physiological and functional characteristics of these BF salience-encoding neurons in behaving animals. These studies support the unifying hypothesis whereby BF salience-encoding neurons act as a gain modulation mechanism of the decision-making process to enhance cortical processing of behaviorally relevant stimuli, and thereby facilitate faster and more precise behavioral responses. This function of BF salience-encoding neurons represents a critical component in determining which incoming stimuli warrant an animal’s attention, and is therefore a fundamental and early requirement of behavioral flexibility.

  3. Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [{sup 11}C]Befloxatone

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch. [INSERM U797, Research Unit ' Neuroimaging and Psychiatry' , Orsay (France); Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch. [CEA, ' Neuroimaging and Psychiatry, U797 Unit, Hospital Department Frederic Joliot and Neurospin (France); Leroy, C.; Bragulat, V.; Penttila, J.; Artiges, E.; Martinot, J.L.; Trichard, Ch. [Paris sud University - Paris Descartes University, UMR U797 (France); Berlin, I. [Service de Pharmacologie, Hopital Pitie-Salpetriere - Universite Paris6 - INSERM U677, Paris (France); Gregoire, M.C.; Bottlaender, M.; Roumenov, D.; Dolle, F.; Bourgeois, S. [CEA, DSV, I2BM, Service Hospitalier Frederic Joliot, Orsay (France); Artiges, E.; Trichard, Ch. [Psychiatry Department, Orsay Hospital, Orsay (France)

    2009-07-01

    The inhibition of cerebral monoamine oxidases (MAOs) by cigarette smoke components could participate to the tobacco addiction. However, the actual extent of this inhibition in vivo in smokers is still poorly known. We investigated cerebral MAO-A availability in 7 tobacco-dependent subjects and 6 healthy nonsmokers, using positron emission tomography (PET) and the MAO-A selective radioligand [{sup 11}C]befloxatone. In comparison to nonsmokers, smokers showed a significant overall reduction of [{sup 11}C]befloxatone binding potential (BP) in cortical areas (average reduction, -60%) and a similar trend in caudate and thalamus (-40%). Our findings confirm a widespread inhibition of cerebral MAO-A in smokers. This mechanism may contribute to tobacco addiction and for a possible mood-modulating effect of tobacco. (authors)

  4. Parenchymal abnormalities in cerebral venous thrombosis: findings of magnetic resonance imaging and magnetic resonance angiography; Alteracoes parenquimatosas na trombose venosa cerebral: aspectos da ressonancia magnetica e da angiorressonancia

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Clecia Santos; Pellini, Marcos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Medicina. Dept. de Radiologia]. E-mail: csferreira@superig.com.br; Boasquevisque, Edson [Universidade do Estado do Rio de Janeiro, (UERJ), RJ (Brazil). Faculdade de Medicina. Dept. de Patologia; Souza, Luis Alberto M. de [Hospital da Beneficencia Portuguesa do Rio de Janeiro, RJ (Brazil). Servico de Imagem. Setor de Ressonancia Magnetica

    2006-09-15

    Objective: to determine the frequency and localization of parenchymal abnormalities in cerebral venous thrombosis on magnetic resonance imaging and magnetic resonance angiography as well as their correlation with the territory and affected venous drainage. Materials and methods: retrospective analysis (1996 to 2004) of 21 patients (3 male and 18 female) age range between 3 and 82 years (mean 40 years, median 36 years) with clinical and radiological diagnosis of cerebral venous thrombosis on magnetic resonance imaging and magnetic resonance angiography in 2D PC, 3D PC and contrast-enhanced 3D TOF sequences. The statistical analysis was performed with the qui-square test. Four patients had follow-up exams and three patients underwent digital subtraction angiography. Results: main predisposing factors were: infection, use of oral contraceptives, hormone replacement therapy and collagenosis. Predominant symptoms included: focal deficit, headache, alteration of consciousness level and seizures. Most frequent parenchymal manifestations were: cortical/subcortical edema or infarct, venous congestion and collateral circulation, meningeal enhancement and thalamic and basal ganglia edema or infarct. Occlusion occurred mainly in superior sagittal, left transverse, left sigmoid and straight sinuses. Cavernous sinus and cortical veins thrombosis are uncommon events. Conclusion: cerebral venous thrombosis is an uncommon cause of stroke, with favorable prognosis because of its reversibility. Diagnosis is highly dependent on the radiologist capacity to recognize the presentations of this disease, principally in cases where the diagnosis is suggested by parenchymal abnormalities rather than necessarily by visualization of the thrombus itself. An accurate and rapid diagnosis allows an immediate treatment, reducing the morbidity and mortality rates. (author)

  5. Abnormalities in cortical gray matter density in borderline personality disorder

    Science.gov (United States)

    Rossi, Roberta; Lanfredi, Mariangela; Pievani, Michela; Boccardi, Marina; Rasser, Paul E; Thompson, Paul M; Cavedo, Enrica; Cotelli, Maria; Rosini, Sandra; Beneduce, Rossella; Bignotti, Stefano; Magni, Laura R; Rillosi, Luciana; Magnaldi, Silvia; Cobelli, Milena; Rossi, Giuseppe; Frisoni, Giovanni B

    2015-01-01

    Background Borderline personality disorder (BPD) is a chronic condition with a strong impact on patients‘ affective,cognitive and social functioning. Neuroimaging techniques offer invaluable tools to understand the biological substrate of the disease. We aimed to investigate gray matter alterations over the whole cortex in a group of Borderline Personality Disorder (BPD) patients compared to healthy controls (HC). Methods Magnetic resonance-based cortical pattern matching was used to assess cortical gray matter density (GMD) in 26 BPD patients and in their age- and sex-matched HC (age: 38±11; females: 16, 61%). Results BPD patients showed widespread lower cortical GMD compared to HC (4% difference) with peaks of lower density located in the dorsal frontal cortex, in the orbitofrontal cortex, the anterior and posterior cingulate, the right parietal lobe, the temporal lobe (medial temporal cortex and fusiform gyrus) and in the visual cortex (p<0.005). Our BPD subjects displayed a symmetric distribution of anomalies in the dorsal aspect of the cortical mantle, but a wider involvement of the left hemisphere in the mesial aspect in terms of lower density. A few restricted regions of higher density were detected in the right hemisphere. All regions remained significant after correction for multiple comparisons via permutation testing. Conclusions BPD patients feature specific morphology of the cerebral structures involved in cognitive and emotional processing and social cognition/mentalization, consistent with clinical and functional data. PMID:25561291

  6. Age- and function-related regional changes in cortical folding of the default mode network in older adults.

    Science.gov (United States)

    Jockwitz, Christiane; Caspers, Svenja; Lux, Silke; Jütten, Kerstin; Schleicher, Axel; Eickhoff, Simon B; Amunts, Katrin; Zilles, Karl

    2017-01-01

    Healthy aging is accompanied by changes in the functional architecture of the default mode network (DMN), e.g. a posterior to anterior shift (PASA) of activations. The putative structural correlate for this functional reorganization, however, is largely unknown. Changes in gyrification, i.e. decreases of cortical folding were found to be a marker of atrophy of the brain in later decades of life. Therefore, the present study assessed local gyrification indices of the DMN in relation to age and cognitive performance in 749 older adults aged 55-85 years. Age-related decreases in local gyrification indices were found in the anterior part of the DMN [particularly; medial prefrontal cortex (mPFC)] of the right hemisphere, and the medial posterior parts of the DMN [particularly; posterior cingulate cortex (PCC)/precuneus] of both hemispheres. Positive correlations between cognitive performance and local gyrification indices were found for (1) selective attention and left PCC/precuneus, (2) visual/visual-spatial working memory and bilateral PCC/precuneus and right angular gyrus (AG), and (3) semantic verbal fluency and right AG and right mPFC. The more pronounced age-related decrease in local gyrification indices of the posterior parts of the DMN supports the functionally motivated PASA theory by correlated structural changes. Surprisingly, the prominent age-related decrease in local gyrification indices in right hemispheric ROIs provides evidence for a structural underpinning of the right hemi-aging hypothesis. Noticeably, the performance-related changes in local gyrification largely involved the same parts of the DMN that were subject to age-related local gyrification decreases. Thus, the present study lends support for a combined structural and functional theory of aging, in that the functional changes in the DMN during aging are accompanied by comparably localized structural alterations.

  7. Cerebral metabolism, magnetic resonance spectroscopy and cognitive dysfunction in early multiple sclerosis: an exploratory study

    DEFF Research Database (Denmark)

    Blinkenberg, Morten; Mathiesen, Henrik K; Tscherning, Thomas

    2012-01-01

    and neurological disability. METHODS: We studied 20 recently diagnosed, clinically definite, relapsing-remitting MS patients. Global and cortical CMRglc was estimated using PET with 18-F-deoxyglucose and NAA/Cr ratio was measured using multislice echo-planar spectroscopic imaging. All subjects were neuro-psychologically......OBJECTIVES: Positron emission tomography (PET) studies have shown that cortical cerebral metabolic rate of glucose (CMRglc) is reduced in multiple sclerosis (MS). Quantitative magnetic resonance spectroscopy (MRS) measures of N-acetyl-aspartate (NAA) normalized to creatine (NAA/Cr) assess neuronal...... deterioration, and several studies have shown reductions in MS. Furthermore, both PET and MRS reductions correlate with cognitive dysfunction in MS. Our aim was to determine if changes in cortical CMRglc in early MS correlate with NAA/Cr measurements of neuronal deterioration, as well as cognitive dysfunction...

  8. Reduction in cortical IMP-SPET tracer uptake with recent cigarette consumption in a young group of healthy males

    International Nuclear Information System (INIS)

    Rourke, S.B.; Dupont, R.M.; Grant, I.; Lehr, P.P.; Lamoureux, G.; Halpern, S.; Yeung, D.W.C.

    1997-01-01

    Functional brain imaging techniques are being used increasingly to infer disturbances in brain function in various neuropsychiatric disorders, but the specificity of such findings is not always clear. We retrospectively examined the effects of one possible confound - cigarette smoking - on cortical uptake of iodine-123 iodoamphetamine (IMP) using single-photon emission tomographic imaging in a young (mean age=35 years) healthy group of male controls divided according to their smoking history. Subjects who had never smoked (n=17), or those with a history of smoking but no recent smoking (n=8), had equivalent and significantly higher mean cortical uptake of IMP than subjects with a history of smoking and who were current smokers (n=8). There were no differences in the cortical distribution of IMP. Our results indicate that cigarette smoking has an acute effect on global cerebral blood flow. This potential confound must be considered before abnormalities in cortical tracer uptake are attributed to some neuropsychiatric disorder of interest. (orig.). With 2 figs., 3 tabs

  9. Autosomal dominant arteriopathy with sub cortical infarcts and leucoencephalopathy (CADASIL)

    International Nuclear Information System (INIS)

    Ojeda, Adriana; Tiezzi, Gerardo; Uriarte, Ana M.; Eguren, Leonor

    2002-01-01

    Cerebral autosomal dominant arteriopathy with sub cortical infarcts and leucoencephalopathy (CASADIL) is a systemic hereditary, vascular disease that involves small arteries. Recurrent ischemia, pseudo bulbar paralysis and dementia are characteristic. Other manifestations include migraine and depression. We report an Argentine family with VI generations with evidence of disease in IV. MR examinations were performed on 21 family members (both symptomatic and asymptomatic). The main findings on MR on symptomatic and asymptomatic patients were small lesions with high signal on T2 localised in periventricular white matter, brain stem, basal ganglia and thalamus, and confluent patches on white matter although with high signal on T2 images, usually symmetric. In conclusion we can assess that diffuse myelin loss and small infarcts occurring in cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy well demonstrated with MR. In addition, some of the abnormalities in pre symptomatic patients can be identified on MR images. (author)

  10. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons

    DEFF Research Database (Denmark)

    Brekke, Eva Marie; Walls, Anne Byriel; Schousboe, Arne

    2012-01-01

    is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism...

  11. Neuroimaging findings in children with retinopathy-confirmed cerebral malaria

    International Nuclear Information System (INIS)

    Potchen, Michael J.; Birbeck, Gretchen L.; DeMarco, J. Kevin; Kampondeni, Sam D.; Beare, Nicholas; Molyneux, Malcolm E.; Taylor, Terrie E.

    2010-01-01

    Purpose: To describe brain CT findings in retinopathy-confirmed, paediatric cerebral malaria. Materials and methods: In this outcomes study of paediatric cerebral malaria, a subset of children with protracted coma during initial presentation was scanned acutely. Survivors experiencing adverse neurological outcomes also underwent a head CT. All children had ophthalmological examination to confirm the presence of the retinopathy specific for cerebral malaria. Independent interpretation of CT images was provided by two neuroradiologists. Results: Acute brain CT findings in three children included diffuse oedema with obstructive hydrocephalus (2), acute cerebral infarctions in multiple large vessel distributions with secondary oedema and herniation (1), and oedema of thalamic grey matter (1). One child who was reportedly normal prior to admission had parenchymal atrophy suggestive of pre-existing CNS injury. Among 56 survivors (9-84 months old), 15 had adverse neurologic outcomes-11/15 had a follow-up head CT, 3/15 died and 1/15 refused CT. Follow-up head CTs obtained 7-18 months after the acute infection revealed focal and multifocal lobar atrophy correlating to regions affected by focal seizures during the acute infection (5/11). Other findings were communicating hydrocephalus (2/11), vermian atrophy (1/11) and normal studies (3/11). Conclusions: The identification of pre-existing imaging abnormalities in acute cerebral malaria suggests that population-based studies are required to establish the rate and nature of incidental imaging abnormalities in Malawi. Children with focal seizures during acute cerebral malaria developed focal cortical atrophy in these regions at follow-up. Longitudinal studies are needed to further elucidate mechanisms of CNS injury and death in this common fatal disease.

  12. Neuroimaging findings in children with retinopathy-confirmed cerebral malaria

    Energy Technology Data Exchange (ETDEWEB)

    Potchen, Michael J. [Michigan State University, Department of Radiology, 184 Radiology Building, East Lansing, MI 48824-1303 (United States)], E-mail: mjp@rad.msu.edu; Birbeck, Gretchen L. [Michigan State University, International Neurologic and Psychiatric Epidemiology Program, 324 West Fee Hall, East Lansing, MI 48824 (United States)], E-mail: Gretchen.Birbeck@ht.msu.edu; DeMarco, J. Kevin [Michigan State University, Department of Radiology, 184 Radiology Building, East Lansing, MI 48824-1303 (United States)], E-mail: jkd@rad.msu.edu; Kampondeni, Sam D. [University of Malawi, Department of Radiology, Queen Elizabeth Central Hospital, Blantyre (Malawi)], E-mail: kamponde@msu.edu; Beare, Nicholas [St. Paul' s Eye Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP (United Kingdom)], E-mail: nbeare@btinternet.com; Molyneux, Malcolm E. [Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine (Malawi); School of Tropical Medicine, University of Liverpool, Liverpool (United Kingdom)], E-mail: mmolyneux999@google.com; Taylor, Terrie E. [Michigan State University, College of Osteopathic Medicine, B309-B West Fee Hall, East Lansing, MI 48824 (United States); University of Malawi, College of Medicine, Blantyre Malaria Project, Blantyre (Malawi)], E-mail: taylort@msu.edu

    2010-04-15

    Purpose: To describe brain CT findings in retinopathy-confirmed, paediatric cerebral malaria. Materials and methods: In this outcomes study of paediatric cerebral malaria, a subset of children with protracted coma during initial presentation was scanned acutely. Survivors experiencing adverse neurological outcomes also underwent a head CT. All children had ophthalmological examination to confirm the presence of the retinopathy specific for cerebral malaria. Independent interpretation of CT images was provided by two neuroradiologists. Results: Acute brain CT findings in three children included diffuse oedema with obstructive hydrocephalus (2), acute cerebral infarctions in multiple large vessel distributions with secondary oedema and herniation (1), and oedema of thalamic grey matter (1). One child who was reportedly normal prior to admission had parenchymal atrophy suggestive of pre-existing CNS injury. Among 56 survivors (9-84 months old), 15 had adverse neurologic outcomes-11/15 had a follow-up head CT, 3/15 died and 1/15 refused CT. Follow-up head CTs obtained 7-18 months after the acute infection revealed focal and multifocal lobar atrophy correlating to regions affected by focal seizures during the acute infection (5/11). Other findings were communicating hydrocephalus (2/11), vermian atrophy (1/11) and normal studies (3/11). Conclusions: The identification of pre-existing imaging abnormalities in acute cerebral malaria suggests that population-based studies are required to establish the rate and nature of incidental imaging abnormalities in Malawi. Children with focal seizures during acute cerebral malaria developed focal cortical atrophy in these regions at follow-up. Longitudinal studies are needed to further elucidate mechanisms of CNS injury and death in this common fatal disease.

  13. Effect of thuringiensin on adenylate cyclase in rat cerebral cortex

    International Nuclear Information System (INIS)

    Tsai, S.-F.; Yang Chi; Wang, S.-C.; Wang, J.-S.; Hwang, J.-S.; Ho, S.-P.

    2004-01-01

    The purpose of this work is to evaluate the effect of thuringiensin on the adenylate cyclase activity in rat cerebral cortex. The cyclic adenosine 3'5'-monophosphate (cAMP) levels were shown to be dose-dependently elevated 17-450% or 54-377% by thuringiensin at concentrations of 10 μM-100 mM or 0.5-4 mM, due to the activation of basal adenylate cyclase activity of rat cerebral cortical membrane preparation. Thuringiensin also activated basal activity of a commercial adenylate cyclase from Escherichia coli. However, the forskolin-stimulated adenylate cyclase activity in rat cerebral cortex was inhibited by thuringiensin at concentrations of 1-100 μM, thus cAMP production decreased. Furthermore, thuringiensin or adenylate cyclase inhibitor (MDL-12330A) reduced the forskolin (10 μM)-stimulated adenylate cyclase activity at concentrations of 10 μM, 49% or 43% inhibition, respectively. In conclusion, this study demonstrated that thuringiensin could activate basal adenylate cyclase activity and increase cAMP concentrations in rat cerebral cortex or in a commercial adenylate cyclase. Comparing the dose-dependent effects of thuringiensin on the basal and forskolin-stimulated adenylate cyclase activity, thuringiensin can be regarded as a weak activator of adenylate cyclase or an inhibitor of forskolin-stimulated adenylate cyclase

  14. [A case of infected subdural hematoma accompanied by cerebral infarction].

    Science.gov (United States)

    Fujii, Norio; Naito, Yuichiro; Takanashi, Shigehiko; Ueno, Toshiaki; Nakagomi, Tadayoshi

    2013-05-01

    Infected subdural hematoma(ISH)is a rare disease caused by hematogenous infection of a preexisting subdural hematoma. We report a rare case of ISH accompanied by cerebral infarction. A 76-year-old man who had suffered a closed head injury 3 months before presented fever, headache and left hemiparesis during the medical treatment of acute cholangitis and obstructive jaundice with pancreatic cancer at the department of surgical gastroenterology. At the consultation, computed tomography(CT)scan indicated right chronic subdural hematoma. We performed a burr hole opening surgery on the same day. Abscess and hematoma was aspirated from the subdural space, and methicillin-resistant Staphylococcus aureus(MRSA)was detected in this specimen. Thus the diagnosis of the infected subdural hematoma was confirmed. However, despite the antibiotics therapy, follow-up CT showed a low-density area close to the residual abscess, which suggested cerebral infarction. Cerebral angiography showed a vasospasm at the cortical segment of the right middle cerebral artery near the residual abscess. Eventually we carried out a small craniotomy to evacuate the abscess. Our case showed that prompt surgical treatment is required in case of ISH and the whole hematoma and abscess should be removed as soon as possible with an image diagnosis and an additional surgical operation.

  15. Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation

    DEFF Research Database (Denmark)

    Friberg, L; Olsen, T S; Roland, P E

    1985-01-01

    This study is an attempt to reveal projection areas for vestibular afferents to the human brain. Changes in regional cerebral blood flow (rCBF) were measured over 254 cortical regions during caloric vestibular stimulation with warm water (44 degrees C). rCBF was measured when the external auditory...... meatus was irrigated with water at body temperature as a control to vestibular stimulation. During vestibular stimulation there was only a single cortical area, located in the superior temporal region, which showed a consistent focal activation in the hemisphere contralateral to the stimulated side...... stimulation that gives rise to the associated conscious vestibular sensation of vertigo....

  16. Hyperintensity on diffusion weighted image along ipsilateral cortical spinal tract after cerebral ischemic stroke: A diffusion tensor analysis

    International Nuclear Information System (INIS)

    Liu Xiang; Tian Wei; Li Lilin; Kolar, Balasubramanya; Qiu Xing; Chen, Feng; Dogra, Vikram S.

    2012-01-01

    Purpose: Hyperintensity along the ipsilateral cortical spinal tract (CST) on a diffusion weighted imaging (DWI) has been reported to may be associated with motor disability after brain infarction and can be misdiagnosed as a new infarction. However, the underlying patho-physiology related to this finding is not clear. The goal of our study was to analyze the diffusion tensor imaging (DTI) changes in patients with this hyperintensity. Materials and methods: Eight patients (50 ± 10 years) who exhibited hyperintensity on DWI along ipsilateral CST from 3 to 21 days after stroke onset were reviewed as positive group, including 5 patients with serial DTI examinations. Twelve patients without hyperintensity during the matched examination time were classified as reference group. The apparent diffusion coefficient (ADC), fractional anisotropy (FA), and eigenvalues and their ratios (ipsilateral/contralateral value) in cerebral peduncle were measured, their correlation with motor function scale at eight months after stroke onset were evaluated. Results: The serial examinations showed that hyperintensity could eventually disappear. Both the ipsilateral ADC and FA values were significantly decreased (p < 0.05) compared to the contralateral side. The ipsilateral FA significantly correlated with motor function scale in both groups (r = 0.875, 0.738; p = 0.004, 0.006 respectively). Conclusions: The hyperintensity on DWI is a transient pathological process of Wallerian degeneration after ischemic stroke, its diffusion characteristics include concurrent significant decrease of ipsilateral ADC and FA. The ipsilateral FA value has the potential to predict neurological motor function outcome in such patients.

  17. The Posterior Cerebral Artery and its Main Cortical Branches Identified with Noninvasive Transcranial Color-Coded Duplex Sonography.

    Science.gov (United States)

    Frid, P E; Schreiber, S J; Pade, O; Doepp, F; Valdueza, J

    2015-11-01

    To differentiate PCA segments and cortical branches by means of transcranial color-coded duplex sonography (TCCD) and to measure flow parameters at rest and during visual stimulation. 60 healthy subjects with a good acoustic temporal bone window were examined. The main stem of the PCA (P1, P2 and P3) and 4 main cortical branches - the anterior temporal artery (ATA), the occipital temporal artery (OTA), the parietooccipital artery (POA) and the calcarine artery (CA) - were assessed using an axial transtemporal approach. Systolic and diastolic blood flow velocities (BFVs) were recorded at rest and during visual stimulation. Identification of the P1 segment of the PCA was successful in 97.5% (117/120) of cases. The P2 and P3 segments were visualized in all cases. The 4 main cortical branches could be identified to varying degrees: ATA in 88%, OTA in 96%, POA in 69% and CA in 62%. There was an evoked flow response in the P2 main stem and in all cortical branches. The most pronounced increase in diastolic/systolic BFV after visual stimulation test was seen in the CA (42%/35%), followed by P2 (30%/24%), the POA (27%/27%), the OTA (16%/13%) and the ATA (9%/8%). Insonation through the temporal bone window with TCCD confidently allows the assessment of the P1 to P3 segments of the PCA as well as the 2 proximal branches, the ATA and the OTA. An ultrasound-based classification of PCA anatomy and its cortical branches may be used as a noninvasive method for the evaluation of posterior circulation pathology.

  18. Cerebral sex dimorphism and sexual orientation.

    Science.gov (United States)

    Manzouri, Amirhossein; Savic, Ivanka

    2018-03-01

    The neurobiology of sexual orientation is frequently discussed in terms of cerebral sex dimorphism (defining both functional and structural sex differences). Yet, the information about possible cerebral differences between sex-matched homo and heterosexual persons is limited, particularly among women. In this multimodal MRI study, we addressed these issues by investigating possible cerebral differences between homo and heterosexual persons, and by asking whether there is any sex difference in this aspect. Measurements of cortical thickness (Cth), subcortical volumes, and functional and structural resting-state connections among 40 heterosexual males (HeM) and 40 heterosexual females (HeF) were compared with those of 30 homosexual males (HoM) and 30 homosexual females (HoF). Congruent with previous reports, sex differences were detected in heterosexual controls with regard to fractional anisotropy (FA), Cth, and several subcortical volumes. Homosexual groups did not display any sex differences in FA values. Furthermore, their functional connectivity was significantly less pronounced in the mesial prefrontal and precuneus regions. In these two particular regions, HoM also displayed thicker cerebral cortex than other groups, whereas HoF did not differ from HeF. In addition, in HoM the parietal Cth showed "sex-reversed" values, not observed in HoF. Homosexual orientation seems associated with a less pronounced sexual differentiation of white matter tracts and a less pronounced functional connectivity of the self-referential networks compared to heterosexual orientation. Analyses of Cth suggest that male and female homosexuality are not simple analogues of each other and that differences from heterosexual controls are more pronounced in HoM. © 2017 Wiley Periodicals, Inc.

  19. Regional cerebral blood flow and oxygen metabolism in normal pressure hydrocephalus after subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Taki, Waro; Kobayashi, Akira; Nishizawa, Sadahiko; Yonekura, Yoshiharu; Konishi, Junji [Kyoto Univ. (Japan). Faculty of Medicine

    1989-05-01

    To clarify the pathophysiology of normal pressure hydrocephalus (NPH) after subarachnoid hemorrhage, the authors measured cerebral blood flow (CBF), cerebral oxygen metabolic rates (CMRO{sub 2}), the cerebral oxygen extraction fraction (OEF), and cerebral blood volume (CBV) in eight normal volunteers, six SAH patients with NPH, and seven patients without NPH by {sup 15}O-labeled gas and positron emission tomography (PET). In the NPH group, PET revealed a decrease in CBF in the lower regions of the cerebral cortex and a diffuse decrease in CMRO{sub 2}. The decrease in CBF in the lower frontal, temporal, and occipital cortices was significantly greater in the NPH than in the non-NPH group. Reduction of CMRO{sub 2} was also more extensive in the NPH group, and both CBF and CMRO{sub 2} were more markedly decreased in the lower frontal region. OEF was increased in all areas in both of the patient groups, but the increase was not significant in most areas. CBF, CMRO{sub 2} and OEF did not significantly differ between the non-NPH group and the normal volunteers. There was no significant difference in CBV among the three groups. These results indicate that NPH involves impairment of cerebral oxygen metabolism in the lower regions of the cerebral cortex, particularly in the lower frontal region. (author).

  20. Cerebello-cerebral functional relationship in spinocerebellar degeneration using positron emission tomography

    International Nuclear Information System (INIS)

    Koshi, Yasuhiko; Kitamura, Shin; Sakayori, Osamu; Komaba, Yuichi; Terashi, Akiro

    1995-01-01

    In order to investigate the laterality of cerebellar ataxia and its influence for the cerebral cortex in spinocerebellar degeneration (SCD), regional cerebral blood flow (rCBF) was measured using positron emission tomography (PET) in 10 patients with sporadic olivopontocerebellar atrophy (sOPCA), 7 patients with hereditary SCD (hSCD), and 10 age matched control subjects. The laterality of cerebellar ataxia was evaluated by the total score of the difference between left and right limbs of three limb-coordination tests. The lateralities of rCBF were calculated by asymmetry indices (AIs) of each region of interest in the cerebellum, thalamus, caudate, putamen, cerebral cortices. The laterality of cerebellar ataxia was significantly correlated with AI in the cerebellum in patients with sOPCA. Furthermore, significant negative correlations were observed between AI in the cerebellum and each AI in the thalamus, frontal cortex in patients with sOPCA. However, no correlations were observed between AI in the cerebellum and the other AIs in controls and patients with h SCD. Duration of illness in patients with sOPCA with laterality is shorter than that in patients without laterality. These results suggest that the existence of crossed cerebello-cerebral diaschisis (CCCD) resulting from transneuronal deactivation through cerebello-thalamo-cerebral pathway in patients with the early stage of sOPCA with laterality. (author)

  1. Cerebello-cerebral functional relationship in spinocerebellar degeneration using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Koshi, Yasuhiko; Kitamura, Shin; Sakayori, Osamu; Komaba, Yuichi; Terashi, Akiro [Nippon Medical School, Tokyo (Japan)

    1995-07-01

    In order to investigate the laterality of cerebellar ataxia and its influence for the cerebral cortex in spinocerebellar degeneration (SCD), regional cerebral blood flow (rCBF) was measured using positron emission tomography (PET) in 10 patients with sporadic olivopontocerebellar atrophy (sOPCA), 7 patients with hereditary SCD (hSCD), and 10 age matched control subjects. The laterality of cerebellar ataxia was evaluated by the total score of the difference between left and right limbs of three limb-coordination tests. The lateralities of rCBF were calculated by asymmetry indices (AIs) of each region of interest in the cerebellum, thalamus, caudate, putamen, cerebral cortices. The laterality of cerebellar ataxia was significantly correlated with AI in the cerebellum in patients with sOPCA. Furthermore, significant negative correlations were observed between AI in the cerebellum and each AI in the thalamus, frontal cortex in patients with sOPCA. However, no correlations were observed between AI in the cerebellum and the other AIs in controls and patients with h SCD. Duration of illness in patients with sOPCA with laterality is shorter than that in patients without laterality. These results suggest that the existence of crossed cerebello-cerebral diaschisis (CCCD) resulting from transneuronal deactivation through cerebello-thalamo-cerebral pathway in patients with the early stage of sOPCA with laterality. (author).

  2. Morphological and functional correlates of VIP neurons in cerebral cortex

    International Nuclear Information System (INIS)

    Magistretti, P.J.; Morrison, J.H.; Shoemaker, W.J.; Bloom, F.E.

    1984-01-01

    Vasoactive Intestinal Polypeptide (VIP) promotes the hydrolysis of 3H-glycogen newly synthesized from 3H-glucose by mouse cortical slices. This effect occurs rapidly, approximately 50% of the maximal effect being reached within one minute. The maximal effect is achieved after 5 minutes and maintained for at least 25 minutes. Furthermore the glycogenolytic effect of VIP is reversible, and pharmacologically specific. Thus several neuropeptides present in cerebral cortex such as cholecystokinin-8, somatostatin-28, somatostatin-14, met-enkephalin, leu-enkephalin, do not affect 3H-glycogen levels. VIP fragments 6-28, 16-28 and 21-28 are similarly inactive. Furthermore, among the peptides which share structural homologies with VIP, such as glucagon, secretin, PHI-27 and Gastric Inhibitory Peptide, only secretin and PHI-27 promote 3H-glycogen hydrolysis, with EC50 of 500 and 300 nM respectively, compared to an EC50 of 25 nM for VIP. Immunohistochemical observations indicate that each VIP-containing bipolar cell is identified with a unique radical cortical volume, which is generally between 15-60 micrograms in diameter and overlaps with the contiguous domains of neighbouring VIP-containing bipolar cells. Thus this set of biochemical and morphological observations support the notion that VIP neurons have the capacity to regulate the availability of energy substrates in cerebral cortex locally, within circumscribed, contiguous, radial domains

  3. Sleep apnea termination decreases cerebral blood volume: a near-infrared spectroscopy case study

    Science.gov (United States)

    Virtanen, Jaakko; Noponen, Tommi; Salmi, Tapani; Toppila, Jussi; Meriläinen, Pekka

    2009-07-01

    Medical near-infrared spectroscopy (NIRS) can be used to estimate cerebral haemodynamic changes non-invasively. Sleep apnea is a common sleep disorder where repetitive pauses in breathing decrease the quality of sleep and exposes the individual to various health problems. We have measured oxygenated and deoxygenated haemoglobin concentration changes during apneic events in sleep from the forehead of one subject using NIRS and used principal component analysis to extract extracerebral and cortical haemodynamic changes from NIRS signals. Comparison of NIRS signals with EEG, bioimpedance, and pulse oximetry data suggests that termination of apnea leads to decreases in cerebral blood volume and flow that may be related to neurological arousal via neurovascular coupling.

  4. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    OpenAIRE

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2010-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p ...

  5. Cortical projection of the inferior choroidal point as a reliable landmark to place the corticectomy and reach the temporal horn through a middle temporal gyrus approach.

    Science.gov (United States)

    Frigeri, Thomas; Rhoton, Albert; Paglioli, Eliseu; Azambuja, Ney

    2014-10-01

    To establish preoperatively the localization of the cortical projection of the inferior choroidal point (ICP) and use it as a reliable landmark when approaching the temporal horn through a middle temporal gyrus access. To review relevant anatomical features regarding selective amigdalohippocampectomy (AH) for treatment of mesial temporal lobe epilepsy (MTLE). The cortical projection of the inferior choroidal point was used in more than 300 surgeries by one authors as a reliable landmark to reach the temporal horn. In the laboratory, forty cerebral hemispheres were examined. The cortical projection of the ICP is a reliable landmark for reaching the temporal horn.

  6. Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-09-01

    α-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined α-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in α-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased α-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that α-synuclein regulates neuronal survival, and low levels of α-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in α-synuclein and consequently causes serious brain damage.

  7. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors

    International Nuclear Information System (INIS)

    Mueller, W.M.; Zerrin Yetkin, F.; Hammeke, T.A.

    1997-01-01

    Objective. The purpose of this study was to determine the usefulness of functional magnetic resonance imaging (FMRI) to map cerebral functions in patients with frontal or parietal tumors. Methods. Charts and images of patients with cerebral tumors or vascular malformations who underwent FMRI with an echo-planar technique were reviewed. The FMRI maps of motor (11 patients), tactile sensory (12 patients) and language tasks (4 patients) were obtained. The location of the FMRI activation and the positive responses to intraoperative cortical stimulation were compared. The reliability of the paradigms for mapping the rolandic cortex was evaluated. Results. Rolandic cortex was activated by tactile tasks in hall 12 patients and by motor tasks in 10 of 11 patients. Language tasks elicited activation in each of the four patients. Activation was obtained within edematous brain and adjacent to tumors. FMRI in three cases with intraoperative electro-cortical mapping results showed activation for a language, tactile, or motor task within the same gyrus in which stimulation elicited a related motor, sensory, or language function. In patients with >2 cm between the margin of the tumor, as revealed by magnetic resonance imaging, and the activation, no decline in motor function occurred from surgical resection. Conclusions. FMRI of tactile, motor, and language tasks is feasible in patients with cerebral tumors. FMRI shows promise as a means of determining the risk of a postoperative motor deficit from surgical resection of frontal or parietal tumors. (authors)

  8. Word and face recognition deficits following posterior cerebral artery stroke

    DEFF Research Database (Denmark)

    Kuhn, Christina D.; Asperud Thomsen, Johanne; Delfi, Tzvetelina

    2016-01-01

    Abstract Recent findings have challenged the existence of category specific brain areas for perceptual processing of words and faces, suggesting the existence of a common network supporting the recognition of both. We examined the performance of patients with focal lesions in posterior cortical...... areas to investigate whether deficits in recognition of words and faces systematically co-occur as would be expected if both functions rely on a common cerebral network. Seven right-handed patients with unilateral brain damage following stroke in areas supplied by the posterior cerebral artery were...... included (four with right hemisphere damage, three with left, tested at least 1 year post stroke). We examined word and face recognition using a delayed match-to-sample paradigm using four different categories of stimuli: cropped faces, full faces, words, and cars. Reading speed and word length effects...

  9. Different early rearing experiences have long-term effects on cortical organization in captive chimpanzees (Pan troglodytes)

    DEFF Research Database (Denmark)

    Bogart, Stephanie L; Bennett, Allyson J; Schapiro, Steve

    2014-01-01

    -reared chimpanzees have greater global white-to-grey matter volume, more cortical folding and thinner grey matter within the cortical folds than nursery-reared animals. The findings reported here are the first to demonstrate that differences in early rearing conditions have significant consequences on brain......Consequences of rearing history in chimpanzees (Pan troglodytes) have been explored in relation to behavioral abnormalities and cognition; however, little is known about the effects of rearing conditions on anatomical brain development. Human studies have revealed that experiences of maltreatment...... and neglect during infancy and childhood can have detrimental effects on brain development and cognition. In this study, we evaluated the effects of early rearing experience on brain morphology in 92 captive chimpanzees (ages 11-43) who were either reared by their mothers (n = 46) or in a nursery (n = 46...

  10. Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo

    OpenAIRE

    Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L

    2011-01-01

    Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-13C2]--β-hydroxybutyrate (BHB). Time courses of 13C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tes...

  11. Comparison of frailty of primary neurons, embryonic, and aging mouse cortical layers.

    Science.gov (United States)

    Fugistier, Patrick; Vallet, Philippe G; Leuba, Geneviève; Piotton, Françoise; Marin, Pascale; Bouras, Constantin; Savioz, Armand

    2014-02-01

    Superficial layers I to III of the human cerebral cortex are more vulnerable toward Aβ peptides than deep layers V to VI in aging. Three models of layers were used to investigate this pattern of frailty. First, primary neurons from E14 and E17 embryonic murine cortices, corresponding respectively to future deep and superficial layers, were treated either with Aβ(1-42), okadaic acid, or kainic acid. Second, whole E14 and E17 embryonic cortices, and third, in vitro separated deep and superficial layers of young and old C57BL/6J mice, were treated identically. We observed that E14 and E17 neurons in culture were prone to death after the Aβ and particularly the kainic acid treatment. This was also the case for the superficial layers of the aged cortex, but not for the embryonic, the young cortex, and the deep layers of the aged cortex. Thus, the aged superficial layers appeared to be preferentially vulnerable against Aβ and kainic acid. This pattern of vulnerability corresponds to enhanced accumulation of senile plaques in the superficial cortical layers with aging and Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Praticò Andrea D

    2010-09-01

    Full Text Available Abstract Hypoxic-ischemic encephalopathy (HIE is the most important cause of cerebral damage and long-term neurological sequelae in the perinatal period both in term and preterm infant. Hypoxic-ischemic (H-I injuries develop in two phases: the ischemic phase, dominated by necrotic processes, and the reperfusion phase, dominated by apoptotic processes extending beyond ischemic areas. Due to selective ischemic vulnerability, cerebral damage affects gray matter in term newborns and white matter in preterm newborns with the typical neuropathological aspects of laminar cortical necrosis in the former and periventricular leukomalacia in the latter. This article summarises the principal physiopathological and biochemical processes leading to necrosis and/or apoptosis of neuronal and glial cells and reports recent insights into some endogenous and exogenous cellular and molecular mechanisms aimed at repairing H-I cerebral damage.

  13. Aerobic exercise combined with huwentoxin-I mitigates chronic cerebral ischemia injury

    Directory of Open Access Journals (Sweden)

    Hai-feng Mao

    2017-01-01

    Full Text Available Ca2+ channel blockers have been shown to protect neurons from ischemia, and aerobic exercise has significant protective effects on a variety of chronic diseases. The present study injected huwentoxin-I (HWTX-I, a spider peptide toxin that blocks Ca2+ channels, into the caudal vein of a chronic cerebral ischemia mouse model, once every 2 days, for a total of 15 injections. During this time, a subgroup of mice was subjected to treadmill exercise for 5 weeks. Results showed amelioration of cortical injury and improved neurological function in mice with chronic cerebral ischemia in the HWTX-I + aerobic exercise group. The combined effects of HWTX-I and exercise were superior to HWTX-I or aerobic exercise alone. HWTX-I effectively activated the Notch signal transduction pathway in brain tissue. Aerobic exercise up-regulated synaptophysin mRNA expression. These results demonstrated that aerobic exercise, in combination with HWTX-I, effectively relieved neuronal injury induced by chronic cerebral ischemia via the Notch signaling pathway and promoting synaptic regeneration.

  14. Physiology, anatomy, and plasticity of the cerebral cortex in relation to musical instrument performance

    Science.gov (United States)

    Tramo, Mark Jude

    2004-05-01

    The acquisition and maintenance of fine-motor skills underlying musical instrument performance rely on the development, integration, and plasticity of neural systems localized within specific subregions of the cerebral cortex. Cortical representations of a motor sequence, such as a sequence of finger movements along the keys of a saxophone, take shape before the figure sequence occurs. The temporal pattern and spatial coordinates are computed by networks of neurons before and during the movements. When a finger sequence is practiced over and over, performance gets faster and more accurate, probably because cortical neurons generating the sequence increase in spatial extent, their electrical discharges become more synchronous, or both. By combining experimental methods such as single- and multi-neuron recordings, focal stimulation, microanatomical tracers, gross morphometry, evoked potentials, and functional imaging in humans and nonhuman primates, neuroscientists are gaining insights into the cortical physiology, anatomy, and plasticity of musical instrument performance.

  15. Characteristics of cerebral glucose utilization in dementia

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, Taiju; Matsui, Hiroshige; Meguro, Kenichi; Ueda, Masamichi; Yamada, Kenji; Yamaguchi, Tatsuo; Itoh, Masatoshi; Hatazawa, Jun; Kinomura, Shigeo (Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis and Cancer)

    1990-12-01

    To make clear the characteristics of cerebral glucose utilization in dementia, PET studies with 18F-FDG were carried out. Taking the pattern of 18F-FDG utilization, dementia can be subdivided into two types. One type shows a simultaneous and symmetrical reduction glucose utilization in the posterior part of neocortex covering the temporal, parietal and occipital association cortices. This is referred to as type I. Although this type constitutes only about 1/5 of all dementia patients, it is considered the fundamental type of dementia. Aside from this, there is type wherein a simultaneous and symmetrical reduction in glucose utilization of the neocortex. This is type II. It constitutes about 4/5 of all dementia patients which is far more type I. There are no essential difference in the characteristics of cerebral glucose utilization in AD and MID. However, with regards the mean, AD is lower than MID. Various organic defect in neocortex do not correlate with the global reduction in glucose utilization in dementia patients. These results suggest that the reduction in glucose utilization in dementia may be functional disorder. (author).

  16. Characteristics of cerebral glucose utilization in dementia

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Matsui, Hiroshige; Meguro, Kenichi; Ueda, Masamichi; Yamada, Kenji; Yamaguchi, Tatsuo; Itoh, Masatoshi; Hatazawa, Jun; Kinomura, Shigeo

    1990-01-01

    To make clear the characteristics of cerebral glucose utilization in dementia, PET studies with 18F-FDG were carried out. Taking the pattern of 18F-FDG utilization, dementia can be subdivided into two types. One type shows a simultaneous and symmetrical reduction glucose utilization in the posterior part of neocortex covering the temporal, parietal and occipital association cortices. This is referred to as type I. Although this type constitutes only about 1/5 of all dementia patients, it is considered the fundamental type of dementia. Aside from this, there is type wherein a simultaneous and symmetrical reduction in glucose utilization of the neocortex. This is type II. It constitutes about 4/5 of all dementia patients which is far more type I. There are no essential difference in the characteristics of cerebral glucose utilization in AD and MID. However, with regards the mean, AD is lower than MID. Various organic defect in neocortex do not correlate with the global reduction in glucose utilization in dementia patients. These results suggest that the reduction in glucose utilization in dementia may be functional disorder. (author)

  17. Structural and functional analyses of human cerebral cortex using a surface-based atlas

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.

    1997-01-01

    We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.

  18. Bottom-up and Top-down Input Augment the Variability of Cortical Neurons

    Science.gov (United States)

    Nassi, Jonathan J.; Kreiman, Gabriel; Born, Richard T.

    2016-01-01

    SUMMARY Neurons in the cerebral cortex respond inconsistently to a repeated sensory stimulus, yet they underlie our stable sensory experiences. Although the nature of this variability is unknown, its ubiquity has encouraged the general view that each cell produces random spike patterns that noisily represent its response rate. In contrast, here we show that reversibly inactivating distant sources of either bottom-up or top-down input to cortical visual areas in the alert primate reduces both the spike train irregularity and the trial-to-trial variability of single neurons. A simple model in which a fraction of the pre-synaptic input is silenced can reproduce this reduction in variability, provided that there exist temporal correlations primarily within, but not between, excitatory and inhibitory input pools. A large component of the variability of cortical neurons may therefore arise from synchronous input produced by signals arriving from multiple sources. PMID:27427459

  19. Impaired cerebral microcirculation induced by ammonium chloride in rats is due to cortical adenosine release

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Bjerrum, Esben Jannik; Larsen, Fin Stolze

    2018-01-01

    BACKGROUND: Liver failure results in hyperammonaemia, impaired regulation of cerebral microcirculation, encephalopathy and death. However, the key mediator that alters cerebral microcirculation remains unidentified. In this study we show that topical ammonium significantly increases periarteriolar......: In patients with liver failure disturbances in the brain function is caused in part by ammonia toxicity. In our project we have studied how ammonia, through adenosine release, affects the blood flow in the brain of rats. In our experimental model we demonstrated that the detrimental effect of ammonia on blood...... flow regulation was counteracted by blocking the adenosine receptors in the brain. With this observation we have identified a novel potential treatment target. If we can confirm our findings in a future clinical study it might help patients suffering from liver failure and the severe condition called...

  20. Cerebral amyloid angiopathy-related inflammation presenting with steroid-responsive higher brain dysfunction: case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Maeda Yasushi

    2011-09-01

    Full Text Available Abstract A 56-year-old man noticed discomfort in his left lower limb, followed by convulsion and numbness in the same area. Magnetic resonance imaging (MRI showed white matter lesions in the right parietal lobe accompanied by leptomeningeal or leptomeningeal and cortical post-contrast enhancement along the parietal sulci. The patient also exhibited higher brain dysfunction corresponding with the lesions on MRI. Histological pathology disclosed β-amyloid in the blood vessels and perivascular inflammation, which highlights the diagnosis of cerebral amyloid angiopathy (CAA-related inflammation. Pulse steroid therapy was so effective that clinical and radiological findings immediately improved. CAA-related inflammation is a rare disease, defined by the deposition of amyloid proteins within the leptomeningeal and cortical arteries associated with vasculitis or perivasculitis. Here we report a patient with CAA-related inflammation who showed higher brain dysfunction that improved with steroid therapy. In cases with atypical radiological lesions like our case, cerebral biopsy with histological confirmation remains necessary for an accurate diagnosis.

  1. Increased Insular Cortical Thickness Associated With Symptom Severity in Male Youths With Internet Gaming Disorder: A Surface-Based Morphometric Study

    Science.gov (United States)

    Wang, Shuai; Liu, Jing; Tian, Lin; Chen, Limin; Wang, Jun; Tang, Qunfeng; Zhang, Fuquan; Zhou, Zhenhe

    2018-01-01

    With the rising increase in Internet-usage, Internet gaming disorder (IGD) has gained massive attention worldwide. However, detailed cerebral morphological changes remain unclear in youths with IGD. In the current study, our aim was to investigate cortical morphology and further explore the relationship between the cortical morphology and symptom severity in male youths with IGD. Forty-eight male youths with IGD and 32 age- and education-matched normal controls received magnetic resonance imaging scans. We employed a recently proposed surface-based morphometric approach for the measurement of cortical thickness (CT). We found that youths with IGD showed increased CT in the bilateral insulae and the right inferior temporal gyrus. Moreover, significantly decreased CT were found in several brain areas in youths with IGD, including the bilateral banks of the superior temporal sulci, the right inferior parietal cortex, the right precuneus, the right precentral gyrus, and the left middle temporal gyrus. Additionally, youths with IGD demonstrated a significantly positive correlation between the left insular CT and symptom severity. Our data provide evidence for the finding of abnormal CT in distributed cerebral areas and support the notion that altered structural abnormalities observed in substance addiction are also manifested in IGD. Such information extends current knowledge about IGD-related brain reorganization and could help future efforts in identifying the role of insula in the disorder. PMID:29666588

  2. Increased Insular Cortical Thickness Associated With Symptom Severity in Male Youths With Internet Gaming Disorder: A Surface-Based Morphometric Study

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2018-04-01

    Full Text Available With the rising increase in Internet-usage, Internet gaming disorder (IGD has gained massive attention worldwide. However, detailed cerebral morphological changes remain unclear in youths with IGD. In the current study, our aim was to investigate cortical morphology and further explore the relationship between the cortical morphology and symptom severity in male youths with IGD. Forty-eight male youths with IGD and 32 age- and education-matched normal controls received magnetic resonance imaging scans. We employed a recently proposed surface-based morphometric approach for the measurement of cortical thickness (CT. We found that youths with IGD showed increased CT in the bilateral insulae and the right inferior temporal gyrus. Moreover, significantly decreased CT were found in several brain areas in youths with IGD, including the bilateral banks of the superior temporal sulci, the right inferior parietal cortex, the right precuneus, the right precentral gyrus, and the left middle temporal gyrus. Additionally, youths with IGD demonstrated a significantly positive correlation between the left insular CT and symptom severity. Our data provide evidence for the finding of abnormal CT in distributed cerebral areas and support the notion that altered structural abnormalities observed in substance addiction are also manifested in IGD. Such information extends current knowledge about IGD-related brain reorganization and could help future efforts in identifying the role of insula in the disorder.

  3. Automatic localization of cerebral cortical malformations using fractal analysis.

    Science.gov (United States)

    De Luca, A; Arrigoni, F; Romaniello, R; Triulzi, F M; Peruzzo, D; Bertoldo, A

    2016-08-21

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  4. Automatic localization of cerebral cortical malformations using fractal analysis

    Science.gov (United States)

    De Luca, A.; Arrigoni, F.; Romaniello, R.; Triulzi, F. M.; Peruzzo, D.; Bertoldo, A.

    2016-08-01

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  5. [Pain information pathways from the periphery to the cerebral cortex].

    Science.gov (United States)

    Kuroda, Ryotaro; Kawabata, Atsufumi

    2003-07-01

    A recent PET study revealed that the first and second somatosensory cortices (SI, SII), and the anterior cingulate cortex are activated by painful peripheral stimulation in humans. It has become clear that painful signals (nociceptive information) evoked at the periphery are transmitted via various circuits to the multiple cerebral cortices where pain signals are processed and perceived. Human or clinical pain is not merely a modality of somatic sensation, but associated with the affect that accompanies sensation. Consequently, pain has a somatosensory-discriminative aspect and an affective-cognitive aspect that are processed in different but correlated brain structures in the ascending circuits. Considering the physiologic characteristics and fiber connections, the SI and SII cortices appear to be involved in somatosensory-discriminative pain, and the anterior cingulate cortex (area 24) in the affective-cognitive aspect of pain. This paper deals with the ascending pain pathways from the periphery to these cortices and their interconnections. Our recent findings on the protease-activated receptors 1 and 2 (PAR-1, and -2), which are confirmed to exist in the dorsal root ganglion cells, are also described. Activation of PAR-2 during inflammation or tissue injury at the periphery is pronociceptive, while PAR-1 appears to be antinociceptive. Based on the these findings, PAR-1 and PAR-2 are attracting interest as target molecules for new drug development.

  6. Cerebral blood flow autoregulation during intracranial hypertension in hypoxic lambs

    International Nuclear Information System (INIS)

    Borel, C.O.; Backofen, J.E.; Koehler, R.C.; Jones, M.D. Jr.; Traystman, R.J.

    1987-01-01

    The authors tested the hypothesis that hypoxic hypoxia interferes with cerebral blood flow (CBF) autoregulation when intracranial pressure (ICP) is elevated in pentobarbital-anesthetized lambs (3 to 9 days old). Cerebral perfusion pressure (CPP) was lowered stepwise from 73 to 23 mmHg in eight normoxic lambs and from 65 to 31 mmHg in eight other hypoxic lambs by ventricular infusion of artificial cerebrospinal fluid. In normoxic lambs, CBF measured by microspheres labeled with six different radioisotopes was not significantly changed over this range of CPP. In animals made hypoxic, base-line CBF was twice that of normoxic lambs. CBF was unchanged as CPP was reduced to 31 mmHg. Lower levels of CPP were not attained because a pressor response occurred with further elevations of ICP. No regional decrements in blood flow to cortical arterial watershed areas or to more caudal regions, such as cerebellum, brain stem, or thalamus, were detected with elevated ICP. Cerebral O 2 uptake was similar in both groups and did not decrease when CPP was reduced. These results demonstrate that normoxic lambs have a considerable capacity for effective autoregulation of CBF when ICP is elevated. Moreover, cerebral vasodilation in response to a level of hypoxia approximating that normally seen prenatally does not abolish CBF autoregulation when ICP is elevated during the first postnatal week

  7. Microneurosurgical management of aneurysms at A4 and A5 segments and distal cortical branches of anterior cerebral artery.

    Science.gov (United States)

    Lehecka, Martin; Dashti, Reza; Hernesniemi, Juha; Niemelä, Mika; Koivisto, Timo; Ronkainen, Antti; Rinne, Jaakko; Jääskeläinen, Juha

    2008-10-01

    Aneurysms originating distal to the A3 segment of the ACA, located on the A4 and the A5 segments or the distal cortical branches of the ACA (AdistAs) are rare, forming about 0.5% of all IAs. There are only few reports on management of AdistAs. In this article, we review the practical anatomy, preoperative planning, and avoidance of complications in the microsurgical dissection and clipping of AdistAs. This review, and the whole series on IAs, is mainly based on the personal microneurosurgical experience of the senior author (J. H.) in 2 Finnish centers (Helsinki and Kuopio), which serve without patient selection the catchment area in Southern and Eastern Finland. These 2 centers have treated more than 10000 patients with IAs since 1951. In the Kuopio Cerebral Aneurysm Database of 3005 patients and 4253 IAs, there were 26 patients carrying 26 AdistAs, forming 0.9% of all patients with IAs, 0.6% of all IAs, and 2% of all ACA aneurysms. A total of 10 (38%) patients presented with ruptured AdistAs, with ICH in 4 (40%) and IVH in 2 (20%); 16 patients (62%) had multiple aneurysms. AdistAs are small, even when ruptured, with relatively wide base, and they are frequently associated with ICHs. Our data suggest that AdistAs rupture at smaller size than IAs in general. The challenge is to locate the aneurysm inside the interhemispheric fissure and to clip the neck adequately without obstructing branching arteries at the base. Unruptured AdistAs also need microneurosurgical clipping even when they are small.

  8. Local cerebral glucose utilization during status epilepticus in newborn primates

    International Nuclear Information System (INIS)

    Fujikawa, D.G.; Dwyer, B.E.; Lake, R.R.; Wasterlain, C.G.

    1989-01-01

    The effect of bicuculline-induced status epilepticus (SE) on local cerebral metabolic rates for glucose (LCMRglc) was studied in 2-wk-old ketamine-anesthetized marmoset monkeys, using the 2-[ 14 C]-deoxy-D-glucose autoradiographical technique. To estimate LCMRglc in cerebral cortex and thalamus during SE, the lumped constant (LC) for 2-deoxy-D-glucose (2-DG) and the rate constants for 2-DG and glucose were calculated for these regions. The control LC was 0.43 in frontoparietal cortex, 0.51 in temporal cortex, and 0.50 in thalamus; it increased to 1.07 in frontoparietal cortex, 1.13 in temporal cortex, and 1.25 in thalamus after 30 min of seizures. With control LC values, LCMRglc in frontoparietal cortex, temporal cortex, and dorsomedial thalamus appeared to increase four to sixfold. With seizure LC values, LCMRglc increased 1.5- to 2-fold and only in cortex. During 45-min seizures, LCMRglc in cortex and thalamus probably increases 4- to 6-fold initially and later falls to the 1.5- to 2-fold level as tissue glucose concentrations decrease. Together with our previous results demonstrating depletion of high-energy phosphates and glucose in these regions, the data suggest that energy demands exceed glucose supply. The long-term effects of these metabolic changes on the developing brain remain to be determined

  9. Cortical projection of the inferior choroidal point as a reliable landmark to place the corticectomy and reach the temporal horn through a middle temporal gyrus approach

    Directory of Open Access Journals (Sweden)

    Thomas Frigeri

    2014-10-01

    Full Text Available Objective To establish preoperatively the localization of the cortical projection of the inferior choroidal point (ICP and use it as a reliable landmark when approaching the temporal horn through a middle temporal gyrus access. To review relevant anatomical features regarding selective amigdalohippocampectomy (AH for treatment of mesial temporal lobe epilepsy (MTLE. Method The cortical projection of the inferior choroidal point was used in more than 300 surgeries by one authors as a reliable landmark to reach the temporal horn. In the laboratory, forty cerebral hemispheres were examined. Conclusion The cortical projection of the ICP is a reliable landmark for reaching the temporal horn.

  10. Effect of camphor essential oil on rat cerebral cortex activity as manifested by fractal dimension changes

    Directory of Open Access Journals (Sweden)

    Grbić G.

    2008-01-01

    Full Text Available The aim of our study was to investigate the effect of camphor essential oil on rat cerebral cortex activity by fractal analysis. Fractal dimension (FD values of the parietal electrocortical activity were calculated before and after intra-peritoneal administration of camphor essential oil (450-675 μl/kg in anesthetized rats. Camphor oil induced seizure-like activity with single and multiple spiking of high amplitudes in the parietal electrocorticogram and occasional clonic limb convulsions. The FD values of cortical activity after camphor oil administration increased on the average. Only FD values of cortical ECoG sequences were lower than those before camphor oil administration.

  11. Cerebral malformation induced by prenatal X-irradiation: an autoradiographic and Golgi study

    International Nuclear Information System (INIS)

    Ferrer, I.; Xumetra, A.; Santamaria, J.

    1984-01-01

    Brain malformations are produced after X-irradiation at different post-conceptional ages in the rat. Malformed cortical patterns result from abnormal organisation and capricious orientation of the neurons, while a radical migratory pattern of neuroblasts outwards to the cerebral cortex is preserved in animals irradiated on the fourteenth, sixteenth or eighteenth days of gestation. Migratory disturbances are restricted to the large subcortical ectopic masses found in rats irradiated on the fourteenth gestational day and to pyramidal ectopic nodules in the hippocampus in rats irradiated on the sixteenth gestational day. Subcortical ectopic masses develop from ectopic germinal rosettes and are formed by several types of cortical neuron distributed in a stereotyped pattern. The presence of large numbers of intrinsic, afferent and efferent connections are indicative of integrative functions of the subcortical masses. (author)

  12. Cerebral malformation induced by prenatal X-irradiation: an autoradiographic and Golgi study

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, I.; Xumetra, A.; Santamaria, J. (Neuropatologia, Depto. Anatomia Patologica, C.S. ' Principes de Espana' , Hospitalet de Llobregat, Barcelona (Spain))

    1984-01-01

    Brain malformations are produced after X-irradiation at different post-conceptional ages in the rat. Malformed cortical patterns result from abnormal organisation and capricious orientation of the neurons, while a radical migratory pattern of neuroblasts outwards to the cerebral cortex is preserved in animals irradiated on the fourteenth, sixteenth or eighteenth days of gestation. Migratory disturbances are restricted to the large subcortical ectopic masses found in rats irradiated on the fourteenth gestational day and to pyramidal ectopic nodules in the hippocampus in rats irradiated on the sixteenth gestational day. Subcortical ectopic masses develop from ectopic germinal rosettes and are formed by several types of cortical neuron distributed in a stereotyped pattern. The presence of large numbers of intrinsic, afferent and efferent connections are indicative of integrative functions of the subcortical masses.

  13. Effect of thyrotropin-releasing hormone (TRH) on local cerebral glucose utilization, by the autoradiographic 2-deoxy [14C] glucose method, in conscious and pentobarbitalized rats

    International Nuclear Information System (INIS)

    Nagai, Y.; Narumi, S.; Nagawa, Y.; Sakurada, O.; Ueno, H.; Ishii, S.

    1980-01-01

    Effects of TRH and pentobarbital alone, and in combination, on local cerebral glucose utilization of rats were studied by the autoradiographic 2-deoxy[ 14 C] glucose method. TRH (5 mg/kg i.v.) reduced the rate of cerebral glucose utilization slightly in the whole brain. Locally, significant depression was observed in the following structures: frontal and visual cortices, hippocampus Ammon's horn and dentate gyrus, medial and lateral geniculate bodies, nucleus accumbens, caudate-putamen, substantia nigra, pontine gray matter, superior colliculus, superior olivary nucleus, vestibular nucleus, lateral lemniscus and cerebellar cortex. Pentobarbital (30 mg/kg i.v.) produced a marked and diffuse reduction in the rate of glucose utilization throughout the brain. TRH given 15 min after the administration of pentobarbital markedly shortened the pentobarbital sleeping time and caused some reversal of the depression in local cerebral glucose utilization produced by pentobarbital., These effects were almost completely abolished by pretreatment with intracerebroventricular injection of atropine methyl bromide (20 μg/rat). These results indicate that although TRH acts to cause a reduction in the rate of cerebral glucose utilization, it reverses the depression induced by pentobarbital, via a cholinergic mechanism, in a number of structures, some of which are related to monoaminergic systems and the reticulo-thalamo-cortical activating system. (author)

  14. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    Science.gov (United States)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  15. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion.

    Directory of Open Access Journals (Sweden)

    Carmen Ghisleni

    Full Text Available Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women. Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.

  16. Marked reduction of cerebral oxygen metabolism in patients with advanced cirrhosis

    International Nuclear Information System (INIS)

    Kawatoko, Toshiharu; Murai, Koichiro; Ibayashi, Setsurou; Tsuji, Hiroshi; Nomiyama, Kensuke; Sadoshima, Seizo; Eujishima, Masatoshi; Kuwabara, Yasuo; Ichiya, Yuichi

    1992-01-01

    Regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen (rCMRO 2 ), and oxygen extraction fraction (rOEF) were measured using positron emission tomography (PET) in four patients with cirrhosis (two males and two females, aged 57 to 69 years) in comparison with those in five age matched controls with previous transient global amnesia. PET studies were carried out when the patients were fully alert and oriented after the episodes of encephalopathy. In the patients, rCBF tended to be lower, while rCMRO 2 was significantly lowered in almost all hemisphere cortices, more markedly in the frontal cortex. Our results suggest that the brain oxygen metabolism is diffusely impaired in patients with advanced cirrhosis, and the frontal cortex seems to be more susceptible to the systemic metabolic derangements induced by chronic liver disease. (author)

  17. Quantifying cortical development in typically developing toddlers and young children, 1-6 years of age.

    Science.gov (United States)

    Remer, Justin; Croteau-Chonka, Elise; Dean, Douglas C; D'Arpino, Sara; Dirks, Holly; Whiley, Dannielle; Deoni, Sean C L

    2017-06-01

    Cortical maturation, including age-related changes in thickness, volume, surface area, and folding (gyrification), play a central role in developing brain function and plasticity. Further, abnormal cortical maturation is a suspected substrate in various behavioral, intellectual, and psychiatric disorders. However, in order to characterize the altered development associated with these disorders, appreciation of the normative patterns of cortical development in neurotypical children between 1 and 6 years of age, a period of peak brain development during which many behavioral and developmental disorders emerge, is necessary. To this end, we examined measures of cortical thickness, surface area, mean curvature, and gray matter volume across 34 bilateral regions in a cohort of 140 healthy children devoid of major risk factors for abnormal development. From these data, we observed linear, logarithmic, and quadratic patterns of change with age depending on brain region. Cortical thinning, ranging from 10% to 20%, was observed throughout most of the brain, with the exception of posterior brain structures, which showed initial cortical thinning from 1 to 5 years, followed by thickening. Cortical surface area expansion ranged from 20% to 108%, and cortical curvature varied by 1-20% across the investigated age range. Right-left hemisphere asymmetry was observed across development for each of the 4 cortical measures. Our results present new insight into the normative patterns of cortical development across an important but under studied developmental window, and provide a valuable reference to which trajectories observed in neurodevelopmental disorders may be compared. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    International Nuclear Information System (INIS)

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-01-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism

  19. Study on the Mechanism of mTOR-Mediated Autophagy during Electroacupuncture Pretreatment against Cerebral Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Zhou-Quan Wu

    2016-01-01

    Full Text Available This study is aimed at investigating the association between the electroacupuncture (EA pretreatment-induced protective effect against early cerebral ischemic injury and autophagy. EA pretreatment can protect cerebral ischemic and reperfusion injuries, but whether the attenuation of early cerebral ischemic injury by EA pretreatment was associated with autophagy is not yet clear. This study used the middle cerebral artery occlusion model to monitor the process of ischemic injury. For rats in the EA pretreatment group, EA pretreatment was conducted at Baihui acupoint before ischemia for 30 min for 5 consecutive days. The results suggested that EA pretreatment significantly increased the expression of autophagy in the cerebral cortical area on the ischemic side of rats. But the EA pretreatment-induced protective effects on the brain could be reversed by the specific inhibitor 3-methyladenine of autophagy. Additionally, the Pearson correlation analysis indicated that the impact of EA pretreatment on p-mTOR (2481 was negatively correlated with its impact on autophagy. In conclusion, the mechanism of EA pretreatment at Baihui acupoint against cerebral ischemic injury is mainly associated with the upregulation of autophagy expression, and its regulation of autophagy may depend on mTOR-mediated signaling pathways.

  20. Association of Higher Cortical Amyloid Burden With Loneliness in Cognitively Normal Older Adults.

    Science.gov (United States)

    Donovan, Nancy J; Okereke, Olivia I; Vannini, Patrizia; Amariglio, Rebecca E; Rentz, Dorene M; Marshall, Gad A; Johnson, Keith A; Sperling, Reisa A

    2016-12-01

    status, depression, anxiety, and social network, we found that higher amyloid burden was significantly associated with greater loneliness: compared with individuals in the amyloid-negative group, those in the amyloid-positive group were 7.5-fold (95% CI, 1.7-fold to 34.0-fold) more likely to be classified as lonely than nonlonely (β = 3.3, partial r = 0.4, P = .002). Furthermore, the association of high amyloid burden and loneliness was stronger in APOEε4 carriers than in noncarriers. We report a novel association of loneliness with cortical amyloid burden in cognitively normal older adults, suggesting that loneliness is a neuropsychiatric symptom relevant to preclinical AD. This work will inform new research into the neural underpinnings and disease mechanisms involved in loneliness and may enhance early detection and intervention research in AD.

  1. Development of global cortical networks in early infancy.

    Science.gov (United States)

    Homae, Fumitaka; Watanabe, Hama; Otobe, Takayuki; Nakano, Tamami; Go, Tohshin; Konishi, Yukuo; Taga, Gentaro

    2010-04-07

    Human cognition and behaviors are subserved by global networks of neural mechanisms. Although the organization of the brain is a subject of interest, the process of development of global cortical networks in early infancy has not yet been clarified. In the present study, we explored developmental changes in these networks from several days to 6 months after birth by examining spontaneous fluctuations in brain activity, using multichannel near-infrared spectroscopy. We set up 94 measurement channels over the frontal, temporal, parietal, and occipital regions of the infant brain. The obtained signals showed complex time-series properties, which were characterized as 1/f fluctuations. To reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of continuous signals between all the pairs of measurement channels. We found that the cortical network organization showed regional dependency and dynamic changes in the course of development. In the temporal, parietal, and occipital regions, connectivity increased between homologous regions in the two hemispheres and within hemispheres; in the frontal regions, it decreased progressively. Frontoposterior connectivity changed to a "U-shaped" pattern within 6 months: it decreases from the neonatal period to the age of 3 months and increases from the age of 3 months to the age of 6 months. We applied cluster analyses to the correlation coefficients and showed that the bilateral organization of the networks begins to emerge during the first 3 months of life. Our findings suggest that these developing networks, which form multiple clusters, are precursors of the functional cerebral architecture.

  2. Quantitative analyses of postmortem heat shock protein mRNA profiles in the occipital lobes of human cerebral cortices: implications in cause of death.

    Science.gov (United States)

    Chung, Ukhee; Seo, Joong-Seok; Kim, Yu-Hoon; Son, Gi Hoon; Hwang, Juck-Joon

    2012-11-01

    Quantitative RNA analyses of autopsy materials to diagnose the cause and mechanism of death are challenging tasks in the field of forensic molecular pathology. Alterations in mRNA profiles can be induced by cellular stress responses during supravital reactions as well as by lethal insults at the time of death. Here, we demonstrate that several gene transcripts encoding heat shock proteins (HSPs), a gene family primarily responsible for cellular stress responses, can be differentially expressed in the occipital region of postmortem human cerebral cortices with regard to the cause of death. HSPA2 mRNA levels were higher in subjects who died due to mechanical asphyxiation (ASP), compared with those who died by traumatic injury (TI). By contrast, HSPA7 and A13 gene transcripts were much higher in the TI group than in the ASP and sudden cardiac death (SCD) groups. More importantly, relative abundances between such HSP mRNA species exhibit a stronger correlation to, and thus provide more discriminative information on, the death process than does routine normalization to a housekeeping gene. Therefore, the present study proposes alterations in HSP mRNA composition in the occipital lobe as potential forensic biological markers, which may implicate the cause and process of death.

  3. Carvacrol Exerts Neuroprotective Effects Via Suppression of the Inflammatory Response in Middle Cerebral Artery Occlusion Rats.

    Science.gov (United States)

    Li, Zhenlan; Hua, Cong; Pan, Xiaoqiang; Fu, Xijia; Wu, Wei

    2016-08-01

    Increasing evidence demonstrates that inflammation plays an important role in cerebral ischemia. Carvacrol, a monoterpenic phenol, is naturally occurring in various plants belonging to the family Lamiaceae and exerts protective effects in a mice model of focal cerebral ischemia/reperfusion injury by reducing infarct volume and decreasing the expression of cleaved caspase-3. However, the anti-inflammatory mechanisms by which carvacrol protect the brain have yet to be fully elucidated. We investigated the effects of carvacrol on inflammatory reaction and inflammatory mediators in middle cerebral artery occlusion rats. The results of the present study showed that carvacrol inhibited the levels of inflammatory cytokines and myeloperoxidase (MPO) activity, as well as the expression of iNOS and COX-2. It also increased SOD activity and decreased MDA level in ischemic cortical tissues. In addition, carvacrol treatment suppressed the ischemia/reperfusion-induced increase in the protein expression of nuclear NF-kB p65. In conclusion, we have shown that carvacrol inhibits the inflammatory response via inhibition of the NF-kB signaling pathway in a rat model of focal cerebral ischemia. Therefore, carvacrol may be a potential therapeutic agent for the treatment of cerebral ischemia injury.

  4. Sall1 regulates cortical neurogenesis and laminar fate specification in mice: implications for neural abnormalities in Townes-Brocks syndrome

    Directory of Open Access Journals (Sweden)

    Susan J. Harrison

    2012-05-01

    Progenitor cells in the cerebral cortex undergo dynamic cellular and molecular changes during development. Sall1 is a putative transcription factor that is highly expressed in progenitor cells during development. In humans, the autosomal dominant developmental disorder Townes-Brocks syndrome (TBS is associated with mutations of the SALL1 gene. TBS is characterized by renal, anal, limb and auditory abnormalities. Although neural deficits have not been recognized as a diagnostic characteristic of the disease, ∼10% of patients exhibit neural or behavioral abnormalities. We demonstrate that, in addition to being expressed in peripheral organs, Sall1 is robustly expressed in progenitor cells of the central nervous system in mice. Both classical- and conditional-knockout mouse studies indicate that the cerebral cortex is particularly sensitive to loss of Sall1. In the absence of Sall1, both the surface area and depth of the cerebral cortex were decreased at embryonic day 18.5 (E18.5. These deficiencies are associated with changes in progenitor cell properties during development. In early cortical progenitor cells, Sall1 promotes proliferative over neurogenic division, whereas, at later developmental stages, Sall1 regulates the production and differentiation of intermediate progenitor cells. Furthermore, Sall1 influences the temporal specification of cortical laminae. These findings present novel insights into the function of Sall1 in the developing mouse cortex and provide avenues for future research into potential neural deficits in individuals with TBS.

  5. Cortical compression rapidly trimmed transcallosal projections and altered axonal anterograde transport machinery.

    Science.gov (United States)

    Chen, Li-Jin; Wang, Yueh-Jan; Tseng, Guo-Fang

    2017-10-24

    Trauma and tumor compressing the brain distort underlying cortical neurons. Compressed cortical neurons remodel their dendrites instantly. The effects on axons however remain unclear. Using a rat epidural bead implantation model, we studied the effects of unilateral somatosensory cortical compression on its transcallosal projection and the reversibility of the changes following decompression. Compression reduced the density, branching profuseness and boutons of the projection axons in the contralateral homotopic cortex 1week and 1month post-compression. Projection fiber density was higher 1-month than 1-week post-compression, suggesting adaptive temporal changes. Compression reduced contralateral cortical synaptophysin, vesicular glutamate transporter 1 (VGLUT1) and postsynaptic density protein-95 (PSD95) expressions in a week and the first two marker proteins further by 1month. βIII-tubulin and kinesin light chain (KLC) expressions in the corpus callosum (CC) where transcallosal axons traveled were also decreased. Kinesin heavy chain (KHC) level in CC was temporarily increased 1week after compression. Decompression increased transcallosal axon density and branching profuseness to higher than sham while bouton density returned to sham levels. This was accompanied by restoration of synaptophysin, VGLUT1 and PSD95 expressions in the contralateral cortex of the 1-week, but not the 1-month, compression rats. Decompression restored βIII-tubulin, but not KLC and KHC expressions in CC. However, KLC and KHC expressions in the cell bodies of the layer II/III pyramidal neurons partially recovered. Our results show cerebral compression compromised cortical axonal outputs and reduced transcallosal projection. Some of these changes did not recover in long-term decompression. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Fenómenos de despolarización cortical propagada en los pacientes con lesiones cerebrales traumáticas e isquémicas. Resultados de un estudio piloto

    DEFF Research Database (Denmark)

    Sueiras, M; Sahuquillo, J; García-López, B

    2014-01-01

    OBJECTIVES: To determine the frequency and duration of cortical spreading depolarization (CSD) and CSD-like episodes in patients with traumatic brain injury (TBI) and malignant middle cerebral artery infarction (MMCAI) requiring craniotomy. DESIGN: A descriptive observational study was carried ou...

  7. THYROID HORMONE TREATED ASTROCYTES INDUCE MATURATION OF CEREBRAL CORTICAL NEURONS THROUGH MODULATION OF PROTEOGLYCAN LEVELS

    Directory of Open Access Journals (Sweden)

    Romulo Sperduto Dezonne

    2013-08-01

    Full Text Available Proper brain neuronal circuitry formation and synapse development is dependent on specific cues, either genetic or epigenetic, provided by the surrounding neural environment. Within these signals, thyroid hormones (T3 and T4 play crucial role in several steps of brain morphogenesis including proliferation of progenitor cells, neuronal differentiation, maturation, migration, and synapse formation. The lack of thyroid hormones during childhood is associated with several impair neuronal connections, cognitive deficits, and mental disorders. Many of the thyroid hormones effects are mediated by astrocytes, although the mechanisms underlying these events are still unknown. In this work, we investigated the effect of 3, 5, 3’-triiodothyronine-treated (T3-treated astrocytes on cerebral cortex neuronal differentiation. Culture of neural progenitors from embryonic cerebral cortex mice onto T3-treated astrocyte monolayers yielded an increment in neuronal population, followed by enhancement of neuronal maturation, arborization and neurite outgrowth. In addition, real time PCR assays revealed an increase in the levels of the heparan sulfate proteoglycans, Glypican 1 (GPC-1 and Syndecans 3 e 4 (SDC-3 e SDC-4, followed by a decrease in the levels of the chondroitin sulfate proteoglycan, Versican. Disruption of glycosaminoglycan chains by chondroitinase AC or heparanase III completely abolished the effects of T3-treated astrocytes on neuronal morphogenesis. Our work provides evidence that astrocytes are key mediators of T3 actions on cerebral cortex neuronal development and identified potential molecules and pathways involved in neurite extension; which might eventually contribute to a better understanding of axonal regeneration, synapse formation and neuronal circuitry recover.

  8. Cerebral Amyloid Angiopathy

    Directory of Open Access Journals (Sweden)

    Mahmut Edip Gürol

    2009-03-01

    Full Text Available Cerebral amyloid angiopathy (CAA is characterized by the accumulation of amyloid beta-peptides (Ab in the walls of leptomeningeal arteries, arterioles, and veins. Despite the fact that these pathological changes were first described in 1909, major advancement in our understanding of the clinicoradiological manifestations, neurobiology, and course of CAA has occurred only during the last 30 years. No significant associations have been shown between CAA and other systemic/visceral amyloidoses or vascular risk factors, including hypertension. CAA is well known as the most common cause of spontaneous and anticoagulant-related lobar parenchymal ICH in the elderly. It also causes lobar cerebral microbleeds (CMBs, small dot-like dark susceptibility artifacts visible with gradient recalled echo (GRE-magnetic resonance imaging (MRI. CMBs are important markers of disease severity and predictors of CAA progression. Amyloid angiopathy is also a common cause of ischemic microvascular white matter disease (WMD and deep cerebral infarctions. Such WMD is defined as subcortical and periventricular white matter changes without obvious infarction, as well as a dark appearance on computerized tomography (CT and a bright appearance on fluid attenuated inversion recovery (FLAIR-MRI. CAA-related vascular dysfunction, with its hemorrhagic and ischemic complications, is a recognized contributor to vascular cognitive impairment in the elderly, an independent effect that is synergistically increased by Alzheimer pathologies, such as plaques and tangles. A set of clinicoradiological criteria was established for the accurate diagnosis of CAA. According to the Boston Criteria, patients aged 55 years and older with multiple hemorrhages (on CT or GRE-MRI restricted to the lobar, cortical, or corticosubcortical regions (cerebellar hemorrhage allowed are diagnosed as probable CAA when no other etiology is found; a single hemorrhage in the same region is classified as possible

  9. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Wang-shu Xu

    2016-01-01

    Full Text Available Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.

  10. Flow velocity change in the cortical vein during motor activation and its effect on functional brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kazuhiro [Kyoto Prefectural Univ. of Medicine (Japan)

    1998-06-01

    On the brain functional magnetic resonance imaging (fMRI) using the gradient-recalled echo technique with clinical MR scanner, the activated areas nearly correspond with the cortical veins. This suggests that the fMRI signal mainly originates from the cortical veins. In this study, we analyzed the flow velocity in the cortical vein quantitatively during brain activation and resting status using 2 dimensional time-of-flight cine MR venography (2D-TOF-cine-MRV) and 2 dimensional phase contrast MRV (2D-PC-MRV) techniques, and demonstrated that the flow velocity increased in the cortical vein corresponding to the activated area during activation status. The increase of flow velocity was calculated to be about 20%. The reason for the increased flow velocity is probably due to the increased regional cerebral blood flow and volume in the activated area. We should be careful to analyze the data of the fMRI because the flow velocity affects the fMRI signal such as the inflow effect and the oblique flow effect. When using the gradient echo method, the effect of the flow velocity is one of the important factors of the fMRI signal. (author)

  11. Cerebral activity mapped by functional MRI

    International Nuclear Information System (INIS)

    Bruening, R.; Danek, A.; Wu, R.H.; Berchtenbreiter, C.; Reiser, M.

    1997-01-01

    Functional magnetic resonance imaging (fMRI) is a method to noninvasively measure the changes in cerebral activation during sensitive, cognitive or motor activity. fMRI detects activity by subtraction of states of activity and rest. During activity the signal is increased presumably due to a decrease of deoxyhemoglobin in the capillary and venous structures. Using a full field visual stimulation by flashlight goggles, a signal increase of 3% was detected in the primary visual cortex (V1). Different sequences and postprocessing algorythms will be discussed. Data from the primary cortical areas suggest a high reproducability of the experiments. Successfull experiments highly depend on cooperation of subjects. Despite success in experiments fMRI still has to be established for clinical purposes. (orig.) [de

  12. Neonatal Morphine Exposure in Very Preterm Infants – Cerebral Development and Outcomes

    Science.gov (United States)

    Steinhorn, Rachel; McPherson, Chris; Anderson, Peter J; Neil, Jeffrey; Doyle, Lex W; Inder, Terrie

    2015-01-01

    Objective To investigate the association of morphine exposure in very preterm infants with cerebral volumes and neurodevelopmental outcome from birth through middle childhood. Study design Observational study of very preterm infants in the Victorian Infant Brain Study cohort. 230 infants born neonatal intensive care unit (NICU) of the Royal Women’s Hospital. 57 (25%) infants received morphine analgesia during their NICU stay at the attending physician’s discretion. Primary outcomes were regional brain volumes at term and 7 years; neurobehavioral performance at term; and cognitive, motor, emotional, behavioral, communication, and executive function scores at age 2 and 7 years. Linear regressions were used to compare outcomes between participants who did and did not receive morphine. Results At term, preterm infants who received morphine had similar rates of grey matter injury to no-morphine infants, but a trend towards smaller cortical volumes in the orbitofrontal (pleft=0.002, pright=0.01) and subgenual (pleft=0.01) regions. At seven years, cortical volumes did not differ between groups. At 2 years, morphine-exposed children were more likely to show behavioral dysregulation (p=0.007) than no-morphine children, but at seven years no detrimental impacts of morphine on neurobehavioral outcome were observed. Conclusions Low-dose morphine analgesia received during neonatal intensive care was associated with early alterations in cerebral structure and short-term neurobehavioral problems that did not persist into childhood. PMID:25919729

  13. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    Directory of Open Access Journals (Sweden)

    DeFilippis Kelly

    2007-09-01

    Full Text Available Abstract The deposition of amyloid β-protein (Aβ in cerebral vasculature, known as cerebral amyloid angiopathy (CAA, is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β precursor protein transgenic mice harboring two CAA Aβ mutations (Dutch E693Q and Iowa D694N that mimic the prevalent cerebral microvascular Aβ deposition observed in those patients, and the Swedish mutations (K670N/M671L to increase Aβ production. In these Tg-SwDI mice, we have reported predominant fibrillar Aβ along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular Aβ in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular Aβ. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus, C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular Aβ deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular Aβ deposition that is

  14. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    Science.gov (United States)

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  15. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    International Nuclear Information System (INIS)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr.; Gillin, J.C.

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep

  16. Cytosolic phospholipase A2 alpha amplifies early cyclooxygenase-2 expression, oxidative stress and MAP kinase phosphorylation after cerebral ischemia in mice

    Directory of Open Access Journals (Sweden)

    Koehler Raymond C

    2010-07-01

    Full Text Available Abstract Background The enzyme cytosolic phospholipase A2 alpha (cPLA2α has been implicated in the progression of cerebral injury following ischemia and reperfusion. Previous studies in rodents suggest that cPLA2α enhances delayed injury extension and disruption of the blood brain barrier many hours after reperfusion. In this study we investigated the role of cPLA2α in early ischemic cerebral injury. Methods Middle cerebral artery occlusion (MCAO was performed on cPLA2α+/+ and cPLA2α-/- mice for 2 hours followed by 0, 2, or 6 hours of reperfusion. The levels of cPLA2α, cyclooxygenase-2, neuronal morphology and reactive oxygen species in the ischemic and contralateral hemispheres were evaluated by light and fluorescent microscopy. PGE2 content was compared between genotypes and hemispheres after MCAO and MCAO and 6 hours reperfusion. Regional cerebral blood flow was measured during MCAO and phosphorylation of relevant MAPKs in brain protein homogenates was measured by Western analysis after 6 hours of reperfusion. Results Neuronal cPLA2α protein increased by 2-fold immediately after MCAO and returned to pre-MCAO levels after 2 hours reperfusion. Neuronal cyclooxygenase-2 induction and PGE2 concentration were greater in cPLA2α+/+ compared to cPLA2α-/- ischemic cortex. Neuronal swelling in ischemic regions was significantly greater in the cPLA2α+/+ than in cPLA2α-/- brains (+/+: 2.2 ± 0.3 fold vs. -/-: 1.7 ± 0.4 fold increase; P 2α+/+ ischemic core than in cPLA2α-/- (+/+: 7.12 ± 1.2 fold vs. -/-: 3.1 ± 1.4 fold; P 2α+/+, but not cPLA2α-/-, had disruption of neuron morphology and decreased PGE2 content. Phosphorylation of the MAPKs-p38, ERK 1/2, and MEK 1/2-was significantly greater in cPLA2a+/+ than in cPLA2α-/- ischemic cortex 6 hours after reperfusion. Conclusions These results indicate that cPLA2α modulates the earliest molecular and injury responses after cerebral ischemia and have implications for the potential clinical

  17. Asymmetry of cerebral glucose metabolism in very low-birth-weight infants without structural abnormalities.

    Directory of Open Access Journals (Sweden)

    Jae Hyun Park

    Full Text Available Thirty-six VLBW infants who underwent F-18 fluorodeoxyglucose (F-18 FDG brain PET and MRI were prospectively enrolled, while infants with evidence of parenchymal brain injury on MRI were excluded. The regional glucose metabolic ratio and asymmetry index were calculated. The asymmetry index more than 10% (right > left asymmetry or less than -10% (left > right asymmetry were defined as abnormal. Regional cerebral glucose metabolism were compared between right and left cerebral hemispheres, and between the following subgroups: multiple gestations, premature rupture of membrane, bronchopulmonary dysplasia, and low-grade intraventricular hemorrhage.In the individual analysis, 21 (58.3% of 36 VLBW infants exhibited asymmetric cerebral glucose metabolism. Fifteen infants (41.7% exhibited right > left asymmetry, while six (16.7% exhibited left > right asymmetry. In the regional analysis, right > left asymmetry was more extensive than left > right asymmetry. The metabolic ratio in the right frontal, temporal, and occipital cortices and right thalamus were significantly higher than those in the corresponding left regions. In the subgroup analyses, the cerebral glucose metabolism in infants with multiple gestations, premature rupture of membrane, bronchopulmonary dysplasia, or low-grade intraventricular hemorrhage were significantly lower than those in infants without these.VLBW infants without structural abnormalities have asymmetry of cerebral glucose metabolism. Decreased cerebral glucose metabolism are noted in infants with neurodevelopmental risk factors. F-18 FDG PET could show microstructural abnormalities not detected by MRI in VLBW infants.

  18. Parenchymal abnormalities in cerebral venous thrombosis: findings of magnetic resonance imaging and magnetic resonance angiography

    International Nuclear Information System (INIS)

    Ferreira, Clecia Santos; Pellini, Marcos; Boasquevisque, Edson; Souza, Luis Alberto M. de

    2006-01-01

    Objective: to determine the frequency and localization of parenchymal abnormalities in cerebral venous thrombosis on magnetic resonance imaging and magnetic resonance angiography as well as their correlation with the territory and affected venous drainage. Materials and methods: retrospective analysis (1996 to 2004) of 21 patients (3 male and 18 female) age range between 3 and 82 years (mean 40 years, median 36 years) with clinical and radiological diagnosis of cerebral venous thrombosis on magnetic resonance imaging and magnetic resonance angiography in 2D PC, 3D PC and contrast-enhanced 3D TOF sequences. The statistical analysis was performed with the qui-square test. Four patients had follow-up exams and three patients underwent digital subtraction angiography. Results: main predisposing factors were: infection, use of oral contraceptives, hormone replacement therapy and collagenosis. Predominant symptoms included: focal deficit, headache, alteration of consciousness level and seizures. Most frequent parenchymal manifestations were: cortical/subcortical edema or infarct, venous congestion and collateral circulation, meningeal enhancement and thalamic and basal ganglia edema or infarct. Occlusion occurred mainly in superior sagittal, left transverse, left sigmoid and straight sinuses. Cavernous sinus and cortical veins thrombosis are uncommon events. Conclusion: cerebral venous thrombosis is an uncommon cause of stroke, with favorable prognosis because of its reversibility. Diagnosis is highly dependent on the radiologist capacity to recognize the presentations of this disease, principally in cases where the diagnosis is suggested by parenchymal abnormalities rather than necessarily by visualization of the thrombus itself. An accurate and rapid diagnosis allows an immediate treatment, reducing the morbidity and mortality rates. (author)

  19. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  20. Network and external perturbation induce burst synchronisation in cat cerebral cortex

    Science.gov (United States)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Batista, Antonio M.; Baptista, Murilo S.; Viana, Ricardo L.

    2016-05-01

    The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cognitive regions. We have built a network of networks, in which networks are connected among themselves according to the connections observed in the cat cortical areas aiming to study how inputs drive the synchronous behaviour in this cat brain-like network. We show that without external perturbations it is possible to observe high level of bursting synchronisation between neurons within almost all areas, except for the auditory area. Bursting synchronisation appears between neurons in the auditory region when an external perturbation is applied in another cognitive area. This is a clear evidence that burst synchronisation and collective behaviour in the brain might be a process mediated by other brain areas under stimulation.

  1. Analysis of peritumoral cerebral edema of meningiomas

    International Nuclear Information System (INIS)

    Okada, Masaaki; Tanaka, Katsuyuki; Abe, Juzo; Sekino, Hiroaki; Ogawa, Takei; Hayashi, Tatsuo.

    1992-01-01

    Peritumoral edema associated with 28 meningiomas was studied. The results of radiological investigation, using MRI, CT, and angiography, and histological studies were described and correlated with each other in order to clarify the mechanism of peritumoral cerebral edema production. Extensive peritumoral edema was recognized when the venous sinus or cortical veins, especially the superficial and deep Sylvian veins, were invaded and/or compressed markedly by the tumor. Therefore, large tumors (more than 5 cm in diameter) which were located in the parasagittal area and the middle cranial fossa had a tendency to be associated with extensive peritumoral edema. The posterior fossa meningiomas were associated with small edema because there were rich venous channels in the posterior fossa. Although there have been several reports that the peritumoral edema of meningioma would be produced by the vessels of the tumor itself and would migrate through the tumor capsule into the surrounding brain tissue, and although mechanical factors alone are not sufficient to explain peritumoral edema production, we would like to postulate that the longstanding mechanical compression of venous circulation by the meningioma might be an important factor in the production of the peritumoral cerebral edema. (author)

  2. Pathogenesis of cerebral malformations in human fetuses with meningomyelocele

    Directory of Open Access Journals (Sweden)

    Brouwer Oebele F

    2008-03-01

    Full Text Available Abstract Background Fetal spina bifida aperta (SBA is characterized by a spinal meningomyelocele (MMC and associated with cerebral pathology, such as hydrocephalus and Chiari II malformation. In various animal models, it has been suggested that a loss of ventricular lining (neuroepithelial/ependymal denudation may trigger cerebral pathology. In fetuses with MMC, little is known about neuroepithelial/ependymal denudation and the initiating pathological events. The objective of this study was to investigate whether neuroepithelial/ependymal denudation occurs in human fetuses and neonates with MMC, and if so, whether it is associated with the onset of hydrocephalus. Methods Seven fetuses and 1 neonate (16–40 week gestational age, GA with MMC and 6 fetuses with normal cerebral development (22–41 week GA were included in the study. Identification of fetal MMC and clinical surveillance of fetal head circumference and ventricular width was performed by ultrasound (US. After birth, MMC was confirmed by histology. We characterized hydrocephalus by increased head circumference in association with ventriculomegaly. The median time interval between fetal cerebral ultrasound and fixing tissue for histology was four days. Results At 16 weeks GA, we observed neuroepithelial/ependymal denudation in the aqueduct and telencephalon together with sub-cortical heterotopias in absence of hydrocephalus and/or Chiari II malformation. At 21–34 weeks GA, we observed concurrence of aqueductal neuroepithelial/ependymal denudation and progenitor cell loss with the Chiari II malformation, whereas hydrocephalus was absent. At 37–40 weeks GA, neuroepithelial/ependymal denudation coincided with Chiari II malformation and hydrocephalus. Sub-arachnoidal fibrosis at the convexity was absent in all fetuses but present in the neonate. Conclusion In fetal SBA, neuroepithelial/ependymal denudation in the telencephalon and the aqueduct can occur before Chiari II malformation

  3. Cortical thinning in cognitively normal elderly cohort of 60 to 89 year old from AIBL database and vulnerable brain areas

    Science.gov (United States)

    Lin, Zhongmin S.; Avinash, Gopal; Yan, Litao; McMillan, Kathryn

    2014-03-01

    Age-related cortical thinning has been studied by many researchers using quantitative MR images for the past three decades and vastly differing results have been reported. Although results have shown age-related cortical thickening in elderly cohort statistically in some brain regions under certain conditions, cortical thinning in elderly cohort requires further systematic investigation. This paper leverages our previously reported brain surface intensity model (BSIM)1 based technique to measure cortical thickness to study cortical changes due to normal aging. We measured cortical thickness of cognitively normal persons from 60 to 89 years old using Australian Imaging Biomarkers and Lifestyle Study (AIBL) data. MRI brains of 56 healthy people including 29 women and 27 men were selected. We measured average cortical thickness of each individual in eight brain regions: parietal, frontal, temporal, occipital, visual, sensory motor, medial frontal and medial parietal. Unlike the previous published studies, our results showed consistent age-related thinning of cerebral cortex in all brain regions. The parietal, medial frontal and medial parietal showed fastest thinning rates of 0.14, 0.12 and 0.10 mm/decade respectively while the visual region showed the slowest thinning rate of 0.05 mm/decade. In sensorimotor and parietal areas, women showed higher thinning (0.09 and 0.16 mm/decade) than men while in all other regions men showed higher thinning than women. We also created high resolution cortical thinning rate maps of the cohort and compared them to typical patterns of PET metabolic reduction of moderate AD and frontotemporal dementia (FTD). The results seemed to indicate vulnerable areas of cortical deterioration that may lead to brain dementia. These results validate our cortical thickness measurement technique by demonstrating the consistency of the cortical thinning and prediction of cortical deterioration trend with AIBL database.

  4. Turing-like structures in a functional model of cortical spreading depression

    Science.gov (United States)

    Verisokin, A. Yu.; Verveyko, D. V.; Postnov, D. E.

    2017-12-01

    Cortical spreading depression (CSD) along with migraine waves and spreading depolarization events with stroke or injures are the front-line examples of extreme physiological behaviors of the brain cortex which manifest themselves via the onset and spreading of localized areas of neuronal hyperactivity followed by their depression. While much is known about the physiological pathways involved, the dynamical mechanisms of the formation and evolution of complex spatiotemporal patterns during CSD are still poorly understood, in spite of the number of modeling studies that have been already performed. Recently we have proposed a relatively simple mathematical model of cortical spreading depression which counts the effects of neurovascular coupling and cerebral blood flow redistribution during CSD. In the present study, we address the main dynamical consequences of newly included pathways, namely, the changes in the formation and propagation speed of the CSD front and the pattern formation features in two dimensions. Our most notable finding is that the combination of vascular-mediated spatial coupling with local regulatory mechanisms results in the formation of stationary Turing-like patterns during a CSD event.

  5. Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment.

    Science.gov (United States)

    Liu, Yang; Dong, Yan-Hong; Lyu, Pei-Yuan; Chen, Wei-Hong; Li, Rui

    2018-03-05

    Alzheimer's disease and vascular dementia are responsible for more than 80% of dementia cases. These two conditions share common risk factors including hypertension. Cerebral small vessel disease (CSVD) is strongly associated with both hypertension and cognitive impairment. In this review, we identify the pathophysiological changes in CSVD that are caused by hypertension and further explore the relationship between CSVD and cognitive impairment. We searched and scanned the PubMed database for recently published literatures up to December 2017. We used the keywords of "hypertension", "cerebral small vessel disease", "white matter lesions", "enlarged perivascular spaces", "lacunar infarcts", "cerebral microbleeds", and "cognitive impairment" in the database of PubMed. Articles were obtained and reviewed to analyze the hypertension-induced pathophysiological changes that occur in CSVD and the correlation between CSVD and cognitive impairment. In recent years, studies have demonstrated that hypertension-related changes (e.g., small vascular lesions, inflammatory reactions, hypoperfusion, oxidative stress, damage to autoregulatory processes and the blood-brain barrier, and cerebral amyloid angiopathy) can occur over time in cerebral small vessels, potentially leading to lower cognitive function when blood pressure (BP) control is poor or lacking. Both isolated and co-occurrent CSVD can lead to cognitive deterioration, and this effect may be attributable to a dysfunction in either the cholinergic system or the functionality of cortical and subcortical tracts. We explore the currently available evidence about the hypertensive vasculopathy and inflammatory changes that occur in CSVD. Both are vital prognostic indicators of the development of cognitive impairment. Future studies should be performed to validate the relationship between BP levels and CSVD progression and between the numbers, volumes, and anatomical locations of CSVD and cognitive impairment.

  6. In vivo assessment of iron content of the cerebral cortex in healthy aging using 7-Tesla T2*-weighted phase imaging.

    Science.gov (United States)

    Buijs, Mathijs; Doan, Nhat Trung; van Rooden, Sanneke; Versluis, Maarten J; van Lew, Baldur; Milles, Julien; van der Grond, Jeroen; van Buchem, Mark A

    2017-05-01

    Accumulation of brain iron has been suggested as a biomarker of neurodegeneration. Increased iron has been seen in the cerebral cortex in postmortem studies of neurodegenerative diseases and healthy aging. Until recently, the diminutive thickness of the cortex and its relatively low iron content have hampered in vivo study of cortical iron accumulation. Using phase images of a T2*-weighted sequence at ultrahigh field strength (7 Tesla), we examined the iron content of 22 cortical regions in 70 healthy subjects aged 22-80 years. The cortex was automatically segmented and parcellated, and phase shift was analyzed using an in-house developed method. We found a significant increase in phase shift with age in 20 of 22 cortical regions, concurrent with current understanding of cortical iron accumulation. Our findings suggest that increased cortical iron content can be assessed in healthy aging in vivo. The high spatial resolution and sensitivity to iron of our method make it a potentially useful tool for studying cortical iron accumulation in healthy aging and neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Visualizing stages of cortical atrophy in progressive MCI from the ADNI cohort

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Fonov, Vladimir; Coupé, Pierrick

    Amnestic mild cognitive impairment (MCI) is considered a condition where patients are at risk of developing clinically definite Alzheimer’s disease (AD) with an annual conversion rate of approximately 15%[1]. AD is characterized by progressive brain atrophy with major impact on the cerebral cortex...... and visualize the cortical atrophy at different stages in patients who eventually converted to clinically definite AD. We selected patients with a diagnosis of MCI from the ADNI database who converted to AD during the follow-up period. T1-weighted MRI scans were collected at time of conversion(n=140...

  8. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  9. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  10. Cerebral cortex activation mapping upon electrical muscle stimulation by 32-channel time-domain functional near-infrared spectroscopy.

    Science.gov (United States)

    Re, Rebecca; Muthalib, Makii; Contini, Davide; Zucchelli, Lucia; Torricelli, Alessandro; Spinelli, Lorenzo; Caffini, Matteo; Ferrari, Marco; Quaresima, Valentina; Perrey, Stephane; Kerr, Graham

    2013-01-01

    The application of different EMS current thresholds on muscle activates not only the muscle but also peripheral sensory axons that send proprioceptive and pain signals to the cerebral cortex. A 32-channel time-domain fNIRS instrument was employed to map regional cortical activities under varied EMS current intensities applied on the right wrist extensor muscle. Eight healthy volunteers underwent four EMS at different current thresholds based on their individual maximal tolerated intensity (MTI), i.e., 10 % < 50 % < 100 % < over 100 % MTI. Time courses of the absolute oxygenated and deoxygenated hemoglobin concentrations primarily over the bilateral sensorimotor cortical (SMC) regions were extrapolated, and cortical activation maps were determined by general linear model using the NIRS-SPM software. The stimulation-induced wrist extension paradigm significantly increased activation of the contralateral SMC region according to the EMS intensities, while the ipsilateral SMC region showed no significant changes. This could be due in part to a nociceptive response to the higher EMS current intensities and result also from increased sensorimotor integration in these cortical regions.

  11. Microglia in diffuse plaques in hereditary cerebral hemorrhage with amyloidosis (Dutch). An immunohistochemical study.

    Science.gov (United States)

    Maat-Schieman, M L; Rozemuller, A J; van Duinen, S G; Haan, J; Eikelenboom, P; Roos, R A

    1994-09-01

    In hereditary cerebral hemorrhage with amyloidosis (Dutch) (HCHWA-D) beta/A4 amyloid deposition is found in meningocortical blood vessels and in diffuse plaques in the cerebral cortex. Diffuse plaques putatively represent early stages in the formation of senile plaques. Microglia are intimately associated with congophilic plaques in Alzheimer's disease (AD), but microglial involvement in diffuse plaque formation is controversial. Therefore, we studied the relationship between microglia and diffuse plaques in the cerebral cortex of four patients with HCHWA-D using a panel of macrophage/microglia markers (mAbs LCA, LeuM5, LeuM3, LN3, KP1, OKIa, CLB54, Mac1, Ki-M6, AMC30 and the lectin RCA-1). Eight AD patients, one demented Down's syndrome (DS) patient and four non-demented controls were included for comparison. In controls and HCHWA-D patients ramified or "resting" microglia formed a reticular array in cortical gray and subcortical white matter. Microglial cells in or near HCHWA-D diffuse plaques retained their normal regular spacing and ramified morphology. In AD/DS gray matter more microglial cells were stained than in controls and HCHWA-D patients. Intensely immunoreactive microglia with enlarged cell bodies and short, thick processes clustered in congophilic plaques. In contrast to the resting microglia, these "activated microglia" strongly expressed class II major histocompatibility complex antigen, HLA-DR, and were AMC30-immunoreactive. These findings support the view that microglia play a role in the formation of congophilic plaques but do not initiate diffuse plaque formation. Another finding in this study is the presence of strong monocyte/macrophage marker immunoreactivity in the wall of cortical congophilic blood vessels in HCHWA-D.

  12. Serotonin depletion can enhance the cerebrovascular responses induced by cortical spreading depression via the nitric oxide pathway.

    Science.gov (United States)

    Saengjaroentham, Chonlawan; Supornsilpchai, Weera; Ji-Au, Wilawan; Srikiatkhachorn, Anan; Maneesri-le Grand, Supang

    2015-02-01

    Serotonin (5-HT) is an important neurotransmitter involved in the control of neural and vascular responses. 5-HT depletion can induce several neurological disorders, including migraines. Studies on a cortical spreading depression (CSD) migraine animal model showed that the cortical neurons sensitivity, vascular responses, and nitric oxide (NO) production were significantly increased in 5-HT depletion. However, the involvement of NO in the cerebrovascular responses in 5-HT depletion remains unclear. This study aimed to investigate the role of NO in the CSD-induced alterations of cerebral microvessels in 5-HT depletion. Rats were divided into four groups: control, control with L-NAME treatment, 5-HT depleted, and 5-HT depleted with L-NAME treatment. 5-HT depletion was induced by intraperitoneal injection with para-chlorophenylalanine (PCPA) 3 days before the experiment. The CSD was triggered by KCl application. After the second wave of CSD, N-nitro-l-arginine methyl ester (L-NAME) or saline was intravenously injected into the rats with or without L-NAME treatment groups, respectively. The intercellular adhesion molecules-1 (ICAM-1), cell adhesion molecules-1 (VCAM-1), and the ultrastructural changes of the cerebral microvessels were examined. The results showed that 5-HT depletion significantly increased ICAM-1 and VCAM-1 expressions in the cerebral cortex. The number of endothelial pinocytic vesicles and microvilli was higher in the 5-HT depleted group when compared to the control. Interestingly, L-NAME treatment significantly reduced the abnormalities observed in the 5-HT depleted group. The results of this study demonstrated that an increase of NO production is one of the mechanisms involved in the CSD-induced alterations of the cerebrovascular responses in 5-HT depletion.

  13. Meningeal defects alter the tangential migration of cortical interneurons in Foxc1hith/hith mice

    Directory of Open Access Journals (Sweden)

    Zarbalis Konstantinos

    2012-01-01

    Full Text Available Abstract Background Tangential migration presents the primary mode of migration of cortical interneurons translocating into the cerebral cortex from subpallial domains. This migration takes place in multiple streams with the most superficial one located in the cortical marginal zone. While a number of forebrain-expressed molecules regulating this process have emerged, it remains unclear to what extent structures outside the brain, like the forebrain meninges, are involved. Results We studied a unique Foxc1 hypomorph mouse model (Foxc1hith/hith with meningeal defects and impaired tangential migration of cortical interneurons. We identified a territorial correlation between meningeal defects and disruption of interneuron migration along the adjacent marginal zone in these animals, suggesting that impaired meningeal integrity might be the primary cause for the observed migration defects. Moreover, we postulate that the meningeal factor regulating tangential migration that is affected in homozygote mutants is the chemokine Cxcl12. In addition, by using chromatin immunoprecipitation analysis, we provide evidence that the Cxcl12 gene is a direct transcriptional target of Foxc1 in the meninges. Further, we observe migration defects of a lesser degree in Cajal-Retzius cells migrating within the cortical marginal zone, indicating a less important role for Cxcl12 in their migration. Finally, the developmental migration defects observed in Foxc1hith/hith mutants do not lead to obvious differences in interneuron distribution in the adult if compared to control animals. Conclusions Our results suggest a critical role for the forebrain meninges to promote during development the tangential migration of cortical interneurons along the cortical marginal zone and Cxcl12 as the factor responsible for this property.

  14. Investigation of the mechanisms mediating MDMA "Ecstasy"-induced increases in cerebro-cortical perfusion determined by btASL MRI.

    Science.gov (United States)

    Rouine, J; Kelly, M E; Jennings-Murphy, C; Duffy, P; Gorman, I; Gormley, S; Kerskens, C M; Harkin, Andrew

    2015-05-01

    Acute administration of the recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) has previously been shown to increase cerebro-cortical perfusion as determined by bolus-tracking arterial spin labelling (btASL) MRI. The purpose of the current study was to assess the mechanisms mediating these changes following systemic administration of MDMA to rats. Pharmacological manipulation of serotonergic, dopaminergic and nitrergic transmission was carried out to determine the mechanism of action of MDMA-induced increases in cortical perfusion using btASL MRI. Fenfluramine (10 mg/kg), like MDMA (20 mg/kg), increased cortical perfusion. Increased cortical perfusion was not obtained with the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodophenyl-aminopropane hydrochloride (DOI) (1 mg/kg). Depletion of central 5-HT following systemic administration of the tryptophan hydroxylase inhibitor para-chlorophenylalanine (pCPA) produced effects similar to those observed with MDMA. Pre-treatment with the 5-HT receptor antagonist metergoline (4 mg/kg) or with the 5-HT reuptake inhibitor citalopram (30 mg/kg), however, failed to produce any effect alone or influence the response to MDMA. Pre-treatment with the dopamine D1 receptor antagonist SCH 23390 (1 mg/kg) failed to influence the changes in cortical perfusion obtained with MDMA. Treatment with the neuronal nitric oxide (NO) synthase inhibitor 7-nitroindazole (7-NI) (25 mg/kg) provoked no change in cerebral perfusion alone yet attenuated the MDMA-related increase in cortical perfusion. Cortical 5-HT depletion is associated with increases in perfusion although this mechanism alone does not account for MDMA-related changes. A role for NO, a key regulator of cerebrovascular perfusion, is implicated in MDMA-induced increases in cortical perfusion.

  15. Left-right cortical asymmetries of regional cerebral blood flow during listening to words

    DEFF Research Database (Denmark)

    Nishizawa, Y; Olsen, T S; Larsen, B

    1982-01-01

    1. Regional cerebral blood flow (rCBF) was measured during rest and during listening to simple words. The xenon-133 intracarotid technique was used and results were obtained from 254 regions of seven right hemispheres and seven left hemispheres. The measurements were performed just after carotid...... of the entire hemisphere. The focal rCBF increases were localized to the superior part of the temporal regions, the prefrontal regions, the frontal eye fields, and the orbitofrontal regions. Significant asymmetries were found in particular in the superior temporal region with the left side showing a more...

  16. MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging

    International Nuclear Information System (INIS)

    Noguchi, K.; Ogawa, T.; Inugami, A.; Fujita, H.; Hatazawa, J.; Shimosegawa, E.; Okudera, T.; Uemura, K.; Seto, H.

    1997-01-01

    Fluid-attenuated inversion-recovery (FLAIR) sequences have been reported to provide high sensitivity to a wide range of central nervous system diseases. To our knowledge, however, FLAIR sequences have not been used to study patients with acute cerebral infarcts. We evaluated the usefulness of FLAIR sequences in this context. FLAIR sequences were acquired on a 0.5 T superconducting unit within 8 h of the onset in 19 patients (aged 26-80 years) with a total of 23 ischaemic lesions. The images were reviewed retrospectively by three neuroradiologists, and the FLAIR images were compared with T2-weighted fast spin-echo images. All but one of the ischaemic lesions involving grey matter was clearly demonstrated on FLAIR images as increased signal intensity in cortical or central grey matter. FLAIR images were particularly useful for detecting the hyperacute cortical infarcts within 3 h of onset, which were not readily detected on the spin-echo images. In 9 of 11 patients with complete proximal occlusion, the distal portion of the cerebral artery was visible as an area of high signal intensity on FLAIR images. (orig.). With 4 figs., 1 tab

  17. The Complexity of Folding Self-Folding Origami

    Science.gov (United States)

    Stern, Menachem; Pinson, Matthew B.; Murugan, Arvind

    2017-10-01

    Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of "distractor" folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal's paradox) and other NP-hard satisfiability (SAT) problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out ("folding islands"). Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  18. Evolution of Cerebral Atrophy in a Patient with Super Refractory Status Epilepticus Treated with Barbiturate Coma

    Directory of Open Access Journals (Sweden)

    Christopher R. Newey

    2017-01-01

    Full Text Available Introduction. Status epilepticus is associated with neuronal breakdown. Radiological sequelae of status epilepticus include diffusion weighted abnormalities and T2/FLAIR cortical hyperintensities corresponding to the epileptogenic cortex. However, progressive generalized cerebral atrophy from status epilepticus is underrecognized and may be related to neuronal death. We present here a case of diffuse cerebral atrophy that developed during the course of super refractory status epilepticus management despite prolonged barbiturate coma. Methods. Case report and review of the literature. Case. A 19-year-old male with a prior history of epilepsy presented with focal clonic seizures. His seizures were refractory to multiple anticonvulsants and eventually required pentobarbital coma for 62 days and midazolam coma for 33 days. Serial brain magnetic resonance imaging (MRI showed development of cerebral atrophy at 31 days after admission to our facility and progression of the atrophy at 136 days after admission. Conclusion. This case highlights the development and progression of generalized cerebral atrophy in super refractory status epilepticus. The cerebral atrophy was noticeable at 31 days after admission at our facility which emphasizes the urgency of definitive treatment in patients who present with super refractory status epilepticus. Further research into direct effects of therapeutic coma is warranted.

  19. Estudo comparativo do tono muscular na paralisia cerebral tetraparética em crianças com lesões predominantemente corticais ou subcorticais na tomografia computadorizada de crânio Comparative study of muscular tonus in spastic tetraparetic cerebral palsy in children with predominantly cortical and subcortical lesions in computerized tomography of the skull

    Directory of Open Access Journals (Sweden)

    Cristina Iwabe

    2003-09-01

    Full Text Available OBJETIVO: Comparar a distribuição e intensidade do tono muscular na paralisia cerebral tetraparética espástica (PC-T, correlacionando os dados clínicos com a localização da lesão no sistema nervoso central. MÉTODO: Foram incluídas 12 crianças de dois a quatro anos de idade com lesões predominantemente corticais (seis crianças e subcorticais (seis crianças. O tono foi analisado nos membros superiores (MMSS e inferiores (MMII baseado no protocolo de Durigon e Piemonte. RESULTADOS: Não houve diferença significante quanto à intensidade e distribuição de tono em MMSS e MMII nos dois grupos. Comparando os MMSS e MMII de sujeitos do mesmo grupo, os MMII apresentaram mais assimetrias e maior intensidade do tono do que os MMSS. CONCLUSÃO: Neste estudo, crianças com PC devido a lesões predominantemente corticais ou subcorticais apresentam déficit semelhante na modulação de tono, ocasionando distribuição simétrica e homogênea de hipertonia que predomina em MMII.OBJECTIVE: To compare distribution and intensity of muscular tonus in spastic tetraparetic cerebral palsy (CP, correlating the clinical data with lesion location in the central nervous system. METHOD: Twelve children aged two to four years old with predominantly cortical lesions (six children and subcortical lesions (six children were included. The tonus was analyzed in the upper (UULL and lower limbs (LLLL based on Durigon and Piemonte protocol. RESULT: There was no significant difference regarding tonus intensity and distribution in the UULL and LLLL in both groups. Comparing the upper and lower limbs of subjects in the same group, the LLLL presented more asymmetry and higher tonus intensity than the UULL. CONCLUSION: In this study children with CP as a result of predominantly cortical or subcortical lesions present a similar deficit in tonus modulation, causing a symmetric and homogeneous distribution of hypertonicity, which is predominant in the LLLL.

  20. Deafferentation-Induced Plasticity of Visual Callosal Connections: Predicting Critical Periods and Analyzing Cortical Abnormalities Using Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Jaime F. Olavarria

    2012-01-01

    Full Text Available Callosal connections form elaborate patterns that bear close association with striate and extrastriate visual areas. Although it is known that retinal input is required for normal callosal development, there is little information regarding the period during which the retina is critically needed and whether this period correlates with the same developmental stage across species. Here we review the timing of this critical period, identified in rodents and ferrets by the effects that timed enucleations have on mature callosal connections, and compare it to other developmental milestones in these species. Subsequently, we compare these events to diffusion tensor imaging (DTI measurements of water diffusion anisotropy within developing cerebral cortex. We observed that the relationship between the timing of the critical period and the DTI-characterized developmental trajectory is strikingly similar in rodents and ferrets, which opens the possibility of using cortical DTI trajectories for predicting the critical period in species, such as humans, in which this period likely occurs prenatally. Last, we discuss the potential of utilizing DTI to distinguish normal from abnormal cerebral cortical development, both within the context of aberrant connectivity induced by early retinal deafferentation, and more generally as a potential tool for detecting abnormalities associated with neurodevelopmental disorders.

  1. Scaling of cerebral blood perfusion in primates and marsupials.

    Science.gov (United States)

    Seymour, Roger S; Angove, Sophie E; Snelling, Edward P; Cassey, Phillip

    2015-08-01

    The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates. © 2015. Published by The Company of Biologists Ltd.

  2. Sexual orientation related differences in cortical thickness in male individuals.

    Directory of Open Access Journals (Sweden)

    Christoph Abé

    Full Text Available Previous neuroimaging studies demonstrated sex and also sexual orientation related structural and functional differences in the human brain. Genetic information and effects of sex hormones are assumed to contribute to the male/female differentiation of the brain, and similar effects could play a role in processes influencing human's sexual orientation. However, questions about the origin and development of a person's sexual orientation remain unanswered, and research on sexual orientation related neurobiological characteristics is still very limited. To contribute to a better understanding of the neurobiology of sexual orientation, we used magnetic resonance imaging (MRI in order to compare regional cortical thickness (Cth and subcortical volumes of homosexual men (hoM, heterosexual men (heM and heterosexual women (heW. hoM (and heW had thinner cortices primarily in visual areas and smaller thalamus volumes than heM, in which hoM and heW did not differ. Our results support previous studies, which suggest cerebral differences between hoM and heM in regions, where sex differences have been reported, which are frequently proposed to underlie biological mechanisms. Thus, our results contribute to a better understanding of the neurobiology of sexual orientation.

  3. Sexual orientation related differences in cortical thickness in male individuals.

    Science.gov (United States)

    Abé, Christoph; Johansson, Emilia; Allzén, Elin; Savic, Ivanka

    2014-01-01

    Previous neuroimaging studies demonstrated sex and also sexual orientation related structural and functional differences in the human brain. Genetic information and effects of sex hormones are assumed to contribute to the male/female differentiation of the brain, and similar effects could play a role in processes influencing human's sexual orientation. However, questions about the origin and development of a person's sexual orientation remain unanswered, and research on sexual orientation related neurobiological characteristics is still very limited. To contribute to a better understanding of the neurobiology of sexual orientation, we used magnetic resonance imaging (MRI) in order to compare regional cortical thickness (Cth) and subcortical volumes of homosexual men (hoM), heterosexual men (heM) and heterosexual women (heW). hoM (and heW) had thinner cortices primarily in visual areas and smaller thalamus volumes than heM, in which hoM and heW did not differ. Our results support previous studies, which suggest cerebral differences between hoM and heM in regions, where sex differences have been reported, which are frequently proposed to underlie biological mechanisms. Thus, our results contribute to a better understanding of the neurobiology of sexual orientation.

  4. The Complexity of Folding Self-Folding Origami

    Directory of Open Access Journals (Sweden)

    Menachem Stern

    2017-12-01

    Full Text Available Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of “distractor” folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal’s paradox and other NP-hard satisfiability (SAT problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out (“folding islands”. Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  5. The cranial MRI in severe cerebral palsy; A comparative study with clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kazutaka; Itoh, Masahiro; Fueki, Noboru; Hirasawa, Kyoko; Suzuki, Noriko; Kurata, Kiyoko (Metropolitan Medical Center of the Severely Handicapped, Tokyo (Japan)); Sato, Junichi; Morimatsu, Yoshio; Yagishita, Akira

    1993-09-01

    The magnetic resonance examination was performed in 38 patients with severe cerebral palsy (CP; 15 males and 23 females) who had both motor delay (unable to move anywhere) and mental retardation (I.Q. or D.Q. below 30). Neuroimaging findings were compared with the CP type, etiology, and grade of understanding of language. Cranial magnetic resonance imagings (MRI) in CP were divided into five types. In type 1, nine predominantly showed cyst-liked ventricles and periventricular hyperintensity on T[sub 2]-weighted imaging (PVH) and only scarred basal ganglia and thalamus were visible. All suffered from neonatal asphyxia and the clinical type was rigospastic tetraplegia (RST). In type 2, eleven predominantly showed PVH and hyperintensity on T[sub 2]-weighted (HT2) in basal ganglia and thalamus. All suffered from neonatal asphyxia and the clinical type was RST or rigospastic diplegia. In type 3, five showed PVH and three had cortical atrophy. All suffered from neonatal asphyxia and the clinical type was spastic diplegia. In type 4, four predominantly showed HT2 in putamen and thalamus. Three had cortical atrophy. All suffered from neonatal asphyxia. The clinical type was athetotic CP (ATH). In type 5, nine predominantly showed HT2 in globus pallidus. Four had cortical atrophy and two had hippocampal atrophy. All suffered from neonatal jaundice and the clinical type was ATH. All patients who suffered from neonatal asphyxia and spastic CP had MRI in PVH. All patients who suffered from neonatal asphyxia and ATH showed HT2 in putamen and thalamus. Almost patients who suffered from neonatal jaundice and ATH showed HT2 in globus pallidus. With athetotic CP, cases with atrophy of the cerebral cortex and/or hippocampus were lower grade of understanding of language than no atrophy of both. The results of studies of MRI are in agreement with neuropathological findings. (author).

  6. CSF tau and β-amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders.

    Science.gov (United States)

    Irwin, David J; Xie, Sharon X; Coughlin, David; Nevler, Naomi; Akhtar, Rizwan S; McMillan, Corey T; Lee, Edward B; Wolk, David A; Weintraub, Daniel; Chen-Plotkin, Alice; Duda, John E; Spindler, Meredith; Siderowf, Andrew; Hurtig, Howard I; Shaw, Leslie M; Grossman, Murray; Trojanowski, John Q

    2018-03-20

    To test the association of antemortem CSF biomarkers with postmortem pathology in Lewy body disorders (LBD). Patients with autopsy-confirmed LBD (n = 24) and autopsy-confirmed Alzheimer disease (AD) (n = 23) and cognitively normal (n = 36) controls were studied. In LBD, neuropathologic criteria defined Lewy body α-synuclein (SYN) stages with medium/high AD copathology (SYN + AD = 10) and low/no AD copathology (SYN - AD = 14). Ordinal pathology scores for tau, β-amyloid (Aβ), and SYN pathology were averaged across 7 cortical regions to obtain a global cerebral score for each pathology. CSF total tau (t-tau), phosphorylated tau at threonine 181 , and Aβ 1-42 levels were compared between LBD and control groups and correlated with global cerebral pathology scores in LBD with linear regression. Diagnostic accuracy for postmortem categorization of LBD into SYN + AD vs SYN - AD or neocortical vs brainstem/limbic SYN stage was tested with receiver operating curves. SYN + AD had higher CSF t-tau (mean difference 27.0 ± 8.6 pg/mL) and lower Aβ 1-42 (mean difference -84.0 ± 22.9 g/mL) compared to SYN - AD ( p CSF t-tau ( R 2 = 0.15-0.16, p CSF Aβ 1-42 ( R 2 = 0.31, p CSF t-tau/Aβ 1-42 ratio ( R 2 = 0.27, p = 0.01). CSF t-tau/Aβ 1-42 ratio had 100% specificity and 90% sensitivity for SYN + AD, and CSF Aβ 1-42 had 77% specificity and 82% sensitivity for neocortical SYN stage. Higher antemortem CSF t-tau/Aβ 1-42 and lower Aβ 1-42 levels are predictive of increasing cerebral AD and SYN pathology. These biomarkers may identify patients with LBD vulnerable to cortical SYN pathology who may benefit from both SYN and AD-targeted disease-modifying therapies. © 2018 American Academy of Neurology.

  7. LA FUNCIÓN VESTIBULAR Y SU CONCORDANCIA FRENOLÓGICA: CONECTANDO LA HISTORIA DE LA FUNCIÓN CEREBRAL VESTIBULAR

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Duque Parra

    2012-09-01

    Full Text Available En el presente trabajo se inter-relacionan eventos históricos y contemporáneos, que han permitido desde la intuición de los primeros frenólogos y posteriormente con aspectos clínicos y experimentales, determinar un acercamiento a la localización funcional cerebral del procesamiento de información vestibular, asociada con los movimientos de la cabeza. El objetivo es aclarar si se puede establecer un vínculo entre la información frenológica del siglo XVIII con el procesamiento funcional cortical vestibular, con base en investigaciones contemporáneas. Metodológicamente se compara la información vestibular que surgió de la frenología, con los datos contemporáneos de funcionales cerebrales. Se encontró que el sentido de la orientación espacial se postuló en la región craneal parietal de forma intuitiva por los pioneros de la Frenología, en coincidencia con el sabido procesamiento cerebral parietal para la aceleración angular y linear del movimiento de la cabeza. Se concluye que la asignación de la región frenológica 12 en la zona parietal craneal, es concordante, si se extrapola al lobo parietal, para el sentido del lugar y el sentido espacial, pues varios trabajos indican la asignación como zona cortical vestibular principal, a la que se encuentra en dicha región cerebral.

  8. Detection and quantification of regional cortical gray matter damage in multiple sclerosis utilizing gradient echo MRI

    Directory of Open Access Journals (Sweden)

    Jie Wen

    2015-01-01

    Full Text Available Cortical gray matter (GM damage is now widely recognized in multiple sclerosis (MS. The standard MRI does not reliably detect cortical GM lesions, although cortical volume loss can be measured. In this study, we demonstrate that the gradient echo MRI can reliably and quantitatively assess cortical GM damage in MS patients using standard clinical scanners. High resolution multi-gradient echo MRI was used for regional mapping of tissue-specific MRI signal transverse relaxation rate values (R2* in 10 each relapsing–remitting, primary-progressive and secondary-progressive MS subjects. A voxel spread function method was used to correct artifacts induced by background field gradients. R2* values from healthy controls (HCs of varying ages were obtained to establish baseline data and calculate ΔR2* values – age-adjusted differences between MS patients and HC. Thickness of cortical regions was also measured in all subjects. In cortical regions, ΔR2* values of MS patients were also adjusted for changes in cortical thickness. Symbol digit modalities (SDMT and paced auditory serial addition (PASAT neurocognitive tests, as well as Expanded Disability Status Score, 25-foot timed walk and nine-hole peg test results were also obtained on all MS subjects. We found that ΔR2* values were lower in multiple cortical GM and normal appearing white matter (NAWM regions in MS compared with HC. ΔR2* values of global cortical GM and several specific cortical regions showed significant (p < 0.05 correlations with SDMT and PASAT scores, and showed better correlations than volumetric measures of the same regions. Neurological tests not focused on cognition (Expanded Disability Status Score, 25-foot timed walk and nine-hole peg tests showed no correlation with cortical GM ΔR2* values. The technique presented here is robust and reproducible. It requires less than 10 min and can be implemented on any MRI scanner. Our results show that quantitative tissue-specific R2

  9. Cortical mechanisms underlying sensorimotor enhancement promoted by walking with haptic inputs in a virtual environment.

    Science.gov (United States)

    Sangani, Samir; Lamontagne, Anouk; Fung, Joyce

    2015-01-01

    Sensorimotor integration is a complex process in the central nervous system that produces task-specific motor output based on selective and rapid integration of sensory information from multiple sources. This chapter reviews briefly the role of haptic cues in postural control during tandem stance and locomotion, focusing on sensorimotor enhancement of locomotion post stroke. The use of mixed-reality systems incorporating both haptic cues and virtual reality technology in gait rehabilitation post stroke is discussed. Over the last decade, researchers and clinicians have shown evidence of cerebral reorganization that underlies functional recovery after stroke based on results from neuroimaging techniques such as positron emission tomography and functional magnetic resonance imaging. These imaging modalities are however limited in their capacity to measure cortical changes during extensive body motions in upright stance. Functional near-infrared spectroscopy (fNIRS) on the other hand provides a unique opportunity to measure cortical activity associated with postural control during locomotion. Evidence of cortical changes associated with sensorimotor enhancement induced by haptic touch during locomotion is revealed through fNIRS in a pilot study involving healthy individuals and a case study involving a chronic stroke patient. © 2015 Elsevier B.V. All rights reserved.

  10. Normal Control Study of Cerebral Blood Flow by 99mTc HM-PAO SPECT

    International Nuclear Information System (INIS)

    Koong, Sung Soo; Moon, Dae Hyuk; Lee, Bum Woo; Lee, Kyung Han

    1989-01-01

    Regional cerebral perfusion was evaluated in 15 normal controls by single photon emission computed tomography using 99m Tc HM-PAO. For quantitative analysis, 13 pairs of homologous region of interest (ROI) were drawn on three transverse slices matching the vascular territories and cerebral cortices, and normal values of 3 semiquantitative indices including 'Right to left ratio' (R/L ratio), 'Regional index' (RI), and 'Region to cerebellum ratio (R/cbll ratio) were calculated. Mean values of R/L ratios of homologous regions were ranged from 0.985 to 1.023, and mean ± 2 s.d. of all regions did not exceed 11% of mean. Significant difference of Rls (mean count per voxel of a ROI/mean count per voxel of total ROls) between regions were found (p<0.001) with highest values in occipital cortex and cerebellum. After attenuation correction, Rls in deep gray, cranial portion of anterior cerebral artery and vascular territories in the 2nd slice increased significantly (p<0.05-0.001) hut vise versa in other ROIs. Region to cerebellum ratios also showed regional difference similar to Rls.

  11. Análise da distribuição de potência cortical em função do aprendizado de datilografia Analisis da distribuición de potencia cortical en función del aprendizado de dactilografia Analysis of cortical power distribution as a function of the typewriting skill

    OpenAIRE

    Victor Hugo Bastos; Marlo Cunha; Heloisa Veiga; Kaleb McDowell; Fernando Pompeu; Maurício Cagy; Roberto Piedade; Pedro Ribeiro

    2004-01-01

    O objetivo do presente estudo foi investigar alterações nos padrões eletroencefalográficos de sujeitos normais e destros durante o aprendizado motor de uma tarefa manual. Estudos recentes têm demonstrado que o córtex cerebral é suscetível a modificações em vários aspectos durante a aprendizagem e que tais alterações nos padrões eletrocorticais são resultado da aquisição de habilidades motoras e consolidação de memória. Para tal, a atividade elétrica cortical dos sujeitos foi analisada antes e...

  12. Developmental Connectivity and Molecular Phenotypes of Unique Cortical Projection Neurons that Express a Synapse-Associated Receptor Tyrosine Kinase.

    Science.gov (United States)

    Kast, Ryan J; Wu, Hsiao-Huei; Levitt, Pat

    2017-11-28

    The complex circuitry and cell-type diversity of the cerebral cortex are required for its high-level functions. The mechanisms underlying the diversification of cortical neurons during prenatal development have received substantial attention, but understanding of neuronal heterogeneity is more limited during later periods of cortical circuit maturation. To address this knowledge gap, connectivity analysis and molecular phenotyping of cortical neuron subtypes that express the developing synapse-enriched MET receptor tyrosine kinase were performed. Experiments used a MetGFP transgenic mouse line, combined with coexpression analysis of class-specific molecular markers and retrograde connectivity mapping. The results reveal that MET is expressed by a minor subset of subcerebral and a larger number of intratelencephalic projection neurons. Remarkably, MET is excluded from most layer 6 corticothalamic neurons. These findings are particularly relevant for understanding the maturation of discrete cortical circuits, given converging evidence that MET influences dendritic elaboration and glutamatergic synapse maturation. The data suggest that classically defined cortical projection classes can be further subdivided based on molecular characteristics that likely influence synaptic maturation and circuit wiring. Additionally, given that MET is classified as a high confidence autism risk gene, the data suggest that projection neuron subpopulations may be differentially vulnerable to disorder-associated genetic variation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  14. Asymmetric cortical high signal on diffusion weighted-MRI in a case of Creutzfeldt-Jakob disease Hipersinal cortical assimétrico na ressonância magnética na imagem em difusão em caso de doença de Creutzfeldt-Jakob

    Directory of Open Access Journals (Sweden)

    Ricardo Nitrini

    2005-06-01

    Full Text Available High signal in the cerebral cortex and/or basal ganglia on diffusion-weighted magnetic resonance imaging (DW-MRI has been described as a good diagnostic marker for sporadic Creutzfeldt-Jakob disease (sCJD. We report a case of sCJD with atypical clinical evolution and unusual DW-MRI findings. A 53-year-old man was seen with a 2-year history of a rapidly progressive dementia and cerebellar ataxia. Cerebrospinal fluid analysis, including the test for 14-3-3 protein, was normal. EEG did not show periodic activity. However, DW-MRI showed gyriform hyperintensity involving practically the entire cortical ribbon of the left hemisphere, whilst being limited to the posterior cingulate gyrus in the right hemisphere. DNA analysis showed no mutations or insertions in the prion protein gene, and homozigozity for methionine in codon 129. A subsequent brain biopsy confirmed the diagnosis of CJD. Thus, high signal on DW-MRI may be limited to the cerebral cortex and may present a very asymmetric distribution in sCJD.Hipersinal no cortex cerebral e/ou nos gânglios da base observado com a técnica de difusão da ressonância magnética (RM-DIF tem sido descrito como bom marcador diagnóstico da doença de Creutzfeldt-Jakob esporádica (DCJe. Relatamos caso de DCJe com evolução clínica atípica e achados incomuns na RM-DIF. Homem de 53 anos foi examinado com história de dois anos de demência rapidamente progressiva e ataxia cerebelar. Exame do líquido cefalorraqueano, incluindo pesquisa da proteína 14-3-3, foi normal; EEG não revelou atividade periódica; RM-DIF mostrou hiperintensidade nos giros que afetava quase inteiramente o manto cortical do hemisfério cerebral esquerdo e que no hemisfério direito se limitava à parte posterior do giro cíngulo. Análise do DNA revelou ausência de mutação ou de inserção no gene da proteína priônica e a presença de homozigose para metionina no códon 129. Biópsia cerebral confirmou o diagnóstico de DCJ

  15. Cortical neurons and networks are dormant but fully responsive during isoelectric brain state.

    Science.gov (United States)

    Altwegg-Boussac, Tristan; Schramm, Adrien E; Ballestero, Jimena; Grosselin, Fanny; Chavez, Mario; Lecas, Sarah; Baulac, Michel; Naccache, Lionel; Demeret, Sophie; Navarro, Vincent; Mahon, Séverine; Charpier, Stéphane

    2017-09-01

    A continuous isoelectric electroencephalogram reflects an interruption of endogenously-generated activity in cortical networks and systematically results in a complete dissolution of conscious processes. This electro-cerebral inactivity occurs during various brain disorders, including hypothermia, drug intoxication, long-lasting anoxia and brain trauma. It can also be induced in a therapeutic context, following the administration of high doses of barbiturate-derived compounds, to interrupt a hyper-refractory status epilepticus. Although altered sensory responses can be occasionally observed on an isoelectric electroencephalogram, the electrical membrane properties and synaptic responses of individual neurons during this cerebral state remain largely unknown. The aim of the present study was to characterize the intracellular correlates of a barbiturate-induced isoelectric electroencephalogram and to analyse the sensory-evoked synaptic responses that can emerge from a brain deprived of spontaneous electrical activity. We first examined the sensory responsiveness from patients suffering from intractable status epilepticus and treated by administration of thiopental. Multimodal sensory responses could be evoked on the flat electroencephalogram, including visually-evoked potentials that were significantly amplified and delayed, with a high trial-to-trial reproducibility compared to awake healthy subjects. Using an analogous pharmacological procedure to induce prolonged electro-cerebral inactivity in the rat, we could describe its cortical and subcortical intracellular counterparts. Neocortical, hippocampal and thalamo-cortical neurons were all silent during the isoelectric state and displayed a flat membrane potential significantly hyperpolarized compared with spontaneously active control states. Nonetheless, all recorded neurons could fire action potentials in response to intracellularly injected depolarizing current pulses and their specific intrinsic

  16. Early MR detection of cortical and subcortical hypoxic-ischemic encephalopathy in full-term-infants

    International Nuclear Information System (INIS)

    Christophe, C.; Clercx, A.; Blum, D.; Hasaerts, D.; Segebarth, C.; Perlmutter, N.

    1994-01-01

    Four observations illustrate the potential of MR imaging in the early depiction of multiple types of neuropathologic lesions which may coexist in the full-term newborn, upon severe hypoxic-ischemic encephalopathy (HIE). In particular, diffuse, postnatal involvement of cerebral cortex and subcortical white matter (WM) is demonstrated. Cortical hyperintensity on both proton-density- and T1-weighted images is probably related to cellular necrosis which is distributed diffusely or parasigattally. Hyperintense, frontal, subcortical WM edging on proton-density-weighted images results from the increase of water concentration, induced either by infract or by edema. Diffuse WM areas of low intensity on T1-weighted images and of high intensity on T2-weighted images are presumably related to cytotoxic and/or vasogenic edema, proportional to the underlying damaged tissues. On follow-up MR examinations, several months later, the importance of cortical atrophy and of the myelination delay appeared related to the importance of the lesions detected during the post-natal period. (orig.)

  17. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker.

    Science.gov (United States)

    van Rooden, Sanneke; Versluis, Maarten J; Liem, Michael K; Milles, Julien; Maier, Andrea B; Oleksik, Ania M; Webb, Andrew G; van Buchem, Mark A; van der Grond, Jeroen

    2014-01-01

    Postmortem studies have indicated the potential of high-field magnetic resonance imaging (MRI) to visualize amyloid depositions in the cerebral cortex. The aim of this study is to test this hypothesis in patients with Alzheimer's disease (AD). T2*-weighted MRI was performed in 16 AD patients and 15 control subjects. All magnetic resonance images were scored qualitatively by visual assessment, and quantitatively by measuring phase shifts in the cortical gray matter and hippocampus. Statistical analysis was performed to assess differences between groups. Patients with AD demonstrated an increased phase shift in the cortex in the temporoparietal, frontal, and parietal regions (P < .005), and this was associated with individual Mini-Mental State Examination scores (r = -0.54, P < .05). Increased cortical phase shift in AD patients demonstrated on 7-tesla T2*-weighted MRI is a potential new biomarker for AD, which may reflect amyloid pathology in the early stages. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  18. Carbon balance studies of glucose metabolism in rat cerebral cortical synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, U; Brand, K

    1982-07-01

    Synaptosomes were isolated from rat cerebral cortex and incubated with (U-/sup 14/C)-, (1-/sup 14/C)- or (6-/sup 14/C)glucose. Glucose utilization and the metabolic partitioning of glucose carbon in products were determined by isotopic methods. From the data obtained a carbon balance was constructed, showing lactate to be the main product of glucose metabolism, followed by CO/sup 2/, amino acids and pyruvate. Measuring the release of /sup 14/CO/sup 2/ from glucose labelled in three different positions allowed the construction of a flow diagram of glucose carbon atoms in synaptosomes, which provides information about the contribution of the various pathways of glucose metabolism. Some 2% of glucose utilized was calculated to be degraded via the pentose phosphate pathway. Addition of chlorpromazine, imipramine or haloperidol at concentrations of 10(-5) M reduced glucose utilisation by 30% without changing the distribution pattern of radioactivity in the various products.

  19. PET in malformations of cortical development; La tomographie d'emission de positons (TEP) dans les malformations corticales de developpement

    Energy Technology Data Exchange (ETDEWEB)

    Bouilleret, V.; O' Brien, T.J. [Department of medicine, the Royal Melbourne Hospital, Royal Parade, Parkville, 3005 Victoria (Australia); Bouilleret, V. [Unite de neurophysiologie clinique et d' epileptologie, AP-HP, CHU Bicetre, 94275 Paris (France); Bouilleret, V.; Chiron, C. [Service hospitalier Frederic-Joliot, DRM, CEA, 4, place du General-Leclerc, 91401 Orsay cedex (France); Chiron, C. [Inserm U663, AP-HP, hopital Necker, 75015 Paris (France); University Paris-Descartes, 11, rue Pierre-et-Marie-Curie, 75005 Paris (France)

    2009-01-15

    Within the group of malformations of cortical development, focal cortical dysplasia (FCD) are an increasingly recognized cause of intractable epilepsy that can be cured by surgery. The success of cortical resection for intractable epilepsy is highly dependent on the accurate pre-surgical delineation of the regions responsible for generating seizures. [{sup 18}F]-FDG PET, which images cerebral metabolism studying brain glucose uptake, is the most established functional imaging modality in the evaluation of patients with epilepsy. The aim of this article is to review [{sup 18}F]-FDG PET usefulness as a pre-surgical tool in the evaluation of medically refractory partial epilepsy. It has an established place in assisting in the localisation and definition of FCD in patients with no lesion, or only a subtle abnormality, on MRI. The role of FDG-PET in defining the extent of the surgical resection is still uncertain and needs to be the focus of future research. (authors)

  20. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults

    Science.gov (United States)

    Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G

    2016-01-01

    Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife. PMID:27488909

  1. Cortical influences drive amyotrophic lateral sclerosis.

    Science.gov (United States)

    Eisen, Andrew; Braak, Heiko; Del Tredici, Kelly; Lemon, Roger; Ludolph, Albert C; Kiernan, Matthew C

    2017-11-01

    The early motor manifestations of sporadic amyotrophic lateral sclerosis (ALS), while rarely documented, reflect failure of adaptive complex motor skills. The development of these skills correlates with progressive evolution of a direct corticomotoneuronal system that is unique to primates and markedly enhanced in humans. The failure of this system in ALS may translate into the split hand presentation, gait disturbance, split leg syndrome and bulbar symptomatology related to vocalisation and breathing, and possibly diffuse fasciculation, characteristic of ALS. Clinical neurophysiology of the brain employing transcranial magnetic stimulation has convincingly demonstrated a presymptomatic reduction or absence of short interval intracortical inhibition, accompanied by increased intracortical facilitation, indicating cortical hyperexcitability. The hallmark of the TDP-43 pathological signature of sporadic ALS is restricted to cortical areas as well as to subcortical nuclei that are under the direct control of corticofugal projections. This provides anatomical support that the origins of the TDP-43 pathology reside in the cerebral cortex itself, secondarily in corticofugal fibres and the subcortical targets with which they make monosynaptic connections. The latter feature explains the multisystem degeneration that characterises ALS. Consideration of ALS as a primary neurodegenerative disorder of the human brain may incorporate concepts of prion-like spread at synaptic terminals of corticofugal axons. Further, such a concept could explain the recognised widespread imaging abnormalities of the ALS neocortex and the accepted relationship between ALS and frontotemporal dementia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Sleep/wake dependent changes in cortical glucose concentrations.

    Science.gov (United States)

    Dash, Michael B; Bellesi, Michele; Tononi, Giulio; Cirelli, Chiara

    2013-01-01

    Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  3. Radiotracer transit measurements as an index of regional cerebral blood flow. Pt. 1. Methodological and clinical results in chronic alcoholics cortical blood flow

    International Nuclear Information System (INIS)

    Dobrzanski, T.

    1975-01-01

    The numerical mean values of the cerebral radiorheographic index in healthy control subjects and in patients with cerebrovascular disease were not significantly different from the values of regional cerebral blood flow reported, respectively, by other authors using a modification of the Xe-133 method. In the group of chronic alcoholics there was a significant correlation between the duration of alcoholism and certain numerical values of the cerebral radiorheographic index. (author)

  4. Liquid-Diet with Alcohol Alters Maternal, Fetal and Placental Weights and the Expression of Molecules Involved in Integrin Signaling in the Fetal Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Ujjwal K. Rout

    2010-11-01

    Full Text Available Maternal alcohol consumption during pregnancy causes wide range of behavioral and structural deficits in children, commonly known as Fetal Alcohol Syndrome (FAS. Children with FAS may suffer behavioral deficits in the absence of obvious malformations. In rodents, the exposure to alcohol during gestation changes brain structures and weights of offspring. The mechanism of FAS is not completely understood. In the present study, an established rat (Long-Evans model of FAS was used. The litter size and the weights of mothers, fetuses and placentas were examined on gestation days 18 or 20. On gestation day 18, the effects of chronic alcohol on the expression levels of integrin receptor subunits, phospholipase-Cγ and N-cadherin were examined in the fetal cerebral cortices. Presence of alcohol in the liquid-diet reduced the consumption and decreased weights of mothers and fetuses but increased the placental weights. Expression levels of β1 and α3 integrin subunits and phospholipase-Cγ2 were significantly altered in the fetal cerebral cortices of mothers on alcohol containing diet. Results show that alcohol consumption during pregnancy even with protein, mineral and vitamin enriched diet may affect maternal and fetal health, and alter integrin receptor signaling pathways in the fetal cerebral cortex disturbing the development of fetal brains.

  5. Cortical activation in patients with functional hemispherectomy.

    Science.gov (United States)

    Leonhardt, G; Bingel, U; Spiekermann, G; Kurthen, M; Müller, S; Hufnagel, A

    2001-10-01

    Functional hemispherectomy, a safe and effective therapeutical procedure in medically intractable epilepsy, offers the chance to investigate a strictly unilateral cortical activation in ipsilateral limb movement. We assessed the pattern of cortical activation in a group of patients following functional hemispherectomy. We measured regional cerebral blood flow (rCBF) in 6 patients postoperatively and 6 normal subjects with positron emission tomography using 15[O]H2O as a tracer. Brain activation was achieved by passive elbow movements of the affected arm. Analysis of group results and between-group comparisons were performed with statistical parametric mapping, (SPM96). In normal subjects brain activation was found contralaterally in the cranial sensorimotor cortex and the supplementary motor area and ipsilaterally in the inferior parietal cortex. In patients significant rCBF increases were found in the inferior parietal cortex, caudal sensorimotor cortex and the supplementary motor area ipsilaterally. The activation was weaker than in normal subjects. Compared with normal subjects patients showed additional activation in the premotor cortex, caudal sensorimotor cortex and the inferior parietal cortex of the remaining hemisphere. Less activation compared with normal subjects was found in the cranial sensorimotor cortex and the supplementary motor area. A functional network connecting the inferior parietal cortex, premotor cortex and the supplementary motor area as well as the existence of ipsilateral projections originating from these regions may explain why these areas are predominantly involved in reorganization confined to a single hemisphere.

  6. The free radical spin-trap alpha-PBN attenuates periinfarct depolarizations following permanent middle cerebral artery occlusion in rats without reducing infarct volume

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, Torben; Diemer, Nils Henrik

    2003-01-01

    The effect of the free radical spin-trap alpha-phenyl-butyl-tert-nitrone (alpha-PBN) in permanent focal cerebral ischemia in rats was examined in two series of experiments. In the first, rats were subjected to permanent occlusion of the middle cerebral artery (MCAO) and treated 1 h after occlusion...... with a single dose of alpha-PBN (100 mg/kg) or saline. Body temperature was measured and controlled for the first 24 h to obtain identical temperature curves in the two groups. Cortical infarct volumes were determined on histological sections 7 days later. alpha-PBN did not significantly reduce infarct volume...

  7. Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy.

    Science.gov (United States)

    Amlien, Inge K; Fjell, Anders M; Tamnes, Christian K; Grydeland, Håkon; Krogsrud, Stine K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B

    2016-01-01

    The human cerebral cortex undergoes a protracted, regionally heterogeneous development well into young adulthood. Cortical areas that expand the most during human development correspond to those that differ most markedly when the brains of macaque monkeys and humans are compared. However, it remains unclear to what extent this relationship derives from allometric scaling laws that apply to primate brains in general, or represents unique evolutionary adaptations. Furthermore, it is unknown whether the relationship only applies to surface area (SA), or also holds for cortical thickness (CT). In 331 participants aged 4 to 30, we calculated age functions of SA and CT, and examined the correspondence of human cortical development with macaque to human expansion, and with expansion across nonhuman primates. CT followed a linear negative age function from 4 to 30 years, while SA showed positive age functions until 12 years with little further development. Differential cortical expansion across primates was related to regional maturation of SA and CT, with age trajectories differing between high- and low-expanding cortical regions. This relationship adhered to allometric scaling laws rather than representing uniquely macaque-human differences: regional correspondence with human development was as large for expansion across nonhuman primates as between humans and macaque. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Neural control of adrenal medullary and cortical blood flow during hemorrhage

    International Nuclear Information System (INIS)

    Breslow, M.J.; Jordan, D.A.; Thellman, S.T.; Traystman, R.J.

    1987-01-01

    Hemorrhagic hypotension produces an increase in adrenal medullary blood flow and a decrease in adrenal cortical blood flow. To determine whether changes in adrenal blood flow during hemorrhage are neurally mediated, the authors compared blood flow responses following adrenal denervation (splanchnic nerve section) with changes in the contralateral, neurally intact adrenal. Carbonized microspheres labeled with 153 Gd, 114 In, 113 Sn, 103 Ru, 95 Nb or 46 Se were used. Blood pressure was reduced and maintained at 60 mmHg for 25 min by hemorrhage into a pressurized bottle system. Adrenal cortical blood flow decreased to 50% of control with hemorrhage in both the intact and denervated adrenal. Adrenal medullary blood flow increased to four times control levels at 15 and 25 min posthemorrhage in the intact adrenal, but was reduced to 50% of control at 3, 5, and 10 min posthemorrhage in the denervated adrenal. In a separate group of dogs, the greater splanchnic nerve on one side was electrically stimulated at 2, 5, or 15 Hz for 40 min. Adrenal medullary blood flow increased 5- to 10-fold in the stimulated adrenal but was unchanged in the contralateral, nonstimulated adrenal. Adrenal cortical blood flow was not affected by nerve stimulation. They conclude that activity of the splanchnic nerve profoundly affects adrenal medullary vessels but not adrenal cortical vessels and mediates the observed increase in adrenal medullary blood flow during hemorrhagic hypotension

  9. An autopsied case of MM1 + MM2-cortical with thalamic-type sporadic Creutzfeldt-Jakob disease presenting with hyperintensities on diffusion-weighted MRI before clinical onset.

    Science.gov (United States)

    Iwasaki, Yasushi; Mori, Keiko; Ito, Masumi; Mimuro, Maya; Kitamoto, Tetsuyuki; Yoshida, Mari

    2017-02-01

    A 78-year-old Japanese man presented with rapidly progressive dementia and gait disturbances. Eight months before the onset of clinical symptoms, diffusion-weighted magnetic resonance imaging (DWI) demonstrated hyperintensities in the right temporal, right parietal and left medial occipital cortices. Two weeks after symptom onset, DWI showed extensive hyperintensity in the bilateral cerebral cortex, with regions of higher brightness that existed prior to symptom onset still present. Four weeks after clinical onset, periodic sharp wave complexes were identified on an electroencephalogram. Myoclonus was observed 8 weeks after clinical onset. The patient reached an akinetic mutism state and died 5 months after onset. Neuropathological examination showed widespread cerebral neocortical involvement of fine vacuole-type spongiform changes with large confluent vacuole-type spongiform changes. Spongiform degeneration with neuron loss and hypertrophic astrocytosis was also observed in the striatum and medial thalamus. The inferior olivary nucleus showed severe neuron loss with hypertrophic astrocytosis. Prion protein (PrP) immunostaining showed widespread synaptic-type PrP deposition with perivacuolar-type PrP deposition in the cerebral neocortex. Mild to moderate PrP deposition was also observed extensively in the basal ganglia, thalamus, cerebellum and brainstem, but it was not apparent in the inferior olivary nucleus. PrP gene analysis showed no mutations, and polymorphic codon 129 showed methionine homozygosity. Western blot analysis of protease-resistant PrP showed both type 1 scrapie type PrP (PrP Sc ) and type 2 PrP Sc . Based on the relationship between the neuroimaging and pathological findings, we speculated that cerebral cortical lesions with large confluent vacuoles and type 2 PrP Sc would show higher brightness and continuous hyperintensity on DWI than those with fine vacuoles and type 1 PrP Sc . We believe the present patient had a combined form of MM1

  10. Action of a diffusible target-derived chemoattractant on cortical axon branch induction and directed growth.

    Science.gov (United States)

    Sato, M; Lopez-Mascaraque, L; Heffner, C D; O'Leary, D D

    1994-10-01

    Cortical axons innervate their brainstem target, the basilar pons, by the initiation and extension of collateral branches interstitially along their length. To address whether a diffusible pons-derived chemoattractant controls these events, we used cocultures in collagen matrices and time-lapse microscopy. Pontine explants enhanced by 5-fold the de novo initiation of transient branches along cortical axons; most branches were directed toward pons. Of the branches extended toward pons, 2%-3% were stabilized; those extended away were not. Pontine explants also enhanced the stable bifurcation of growth cones and prompted directional changes by growth cone turning and collateral extension. These effects were distance dependent and mimicked by pons-conditioned medium. This evidence indicates that the pons activity promotes branch initiation interstitially along cortical axons, a novel property for a chemoattractant, and provides a directional cue for their growth. These findings suggest that the pons chemoattractant serves as a diffusible target-recognition molecule.

  11. The Cortical Connectivity of the Prefrontal Cortex in the Monkey Brain

    Science.gov (United States)

    Yeterian, Edward H.; Pandya, Deepak N.; Tomaiuolo, Francesco; Petrides, Michael

    2011-01-01

    One dimension of understanding the functions of the prefrontal cortex is knowledge of cortical connectivity. We have surveyed three aspects of prefrontal cortical connections: local projections (within the frontal lobe), the termination patterns of long association (post-Rolandic) projections, and the trajectories of major fiber pathways. The local connections appear to be organized in relation to dorsal (hippocampal origin) and ventral (paleocortical origin) architectonic trends. According to the proposal of a dual origin of the cerebral cortex, cortical areas can be traced as originating from archicortex (hippocampus) on the one hand, and paleocortex, on the other hand, in a stepwise manner (e.g., Sanides, 1969; Pandya and Yeterian, 1985). Prefrontal areas within each trend are connected with less architectonically differentiated areas, and, on the other hand, with more differentiated areas. Such organization may allow for the systematic exchange of information within each architectonic trend. The long connections of the prefrontal cortex with post-Rolandic regions seem to be organized preferentially in relation to dorsal and ventral prefrontal architectonic trends. Prefrontal areas are connected with post-Rolandic auditory, visual and somatosensory association areas, and with multimodal and paralimbic regions. This long connectivity likely works in conjunction with local connections to serve prefrontal cortical functions. The afferent and efferent connections of the prefrontal cortex with post-Rolandic regions are conveyed by specific long association pathways. These pathways as well appear to be organized in relation to dorsal and ventral prefrontal architectonic trends. Finally, although prefrontal areas have preferential connections in relation to dual architectonic trends, it is clear that there are interconnections between and among areas in each trend, which may provide a substrate for the overall integrative function of the prefrontal cortex. Prefrontal

  12. Cerebral misery perfusion diagnosed using hypercapnic blood-oxygenation-level-dependent contrast functional magnetic resonance imaging: a case report

    Directory of Open Access Journals (Sweden)

    D'Souza Olympio

    2010-02-01

    Full Text Available Abstract Introduction Cerebral misery perfusion represents a failure of cerebral autoregulation. It is an important differential diagnosis in post-stroke patients presenting with collapses in the presence of haemodynamically significant cerebrovascular stenosis. This is particularly the case when cortical or internal watershed infarcts are present. When this condition occurs, further investigation should be done immediately. Case presentation A 50-year-old Caucasian man presented with a stroke secondary to complete occlusion of his left internal carotid artery. He went on to suffer recurrent seizures. Neuroimaging demonstrated numerous new watershed-territory cerebral infarcts. No source of arterial thromboembolism was demonstrable. Hypercapnic blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging was used to measure his cerebrovascular reserve capacity. The findings were suggestive of cerebral misery perfusion. Conclusions Blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging allows the inference of cerebral misery perfusion. This procedure is cheaper and more readily available than positron emission tomography imaging, which is the current gold standard diagnostic test. The most evaluated treatment for cerebral misery perfusion is extracranial-intracranial bypass. Although previous trials of this have been unfavourable, the results of new studies involving extracranial-intracranial bypass in high-risk patients identified during cerebral perfusion imaging are awaited. Cerebral misery perfusion is an important and under-recognized condition in which emerging imaging and treatment modalities present the possibility of practical and evidence-based management in the near future. Physicians should thus be aware of this disorder and of recent developments in diagnostic tests that allow its detection.

  13. Normal and abnormal neuronal migration in the developing cerebral cortex.

    Science.gov (United States)

    Sun, Xue-Zhi; Takahashi, Sentaro; Cui, Chun; Zhang, Rui; Sakata-Haga, Hiromi; Sawada, Kazuhiko; Fukui, Yoshihiro

    2002-08-01

    Neuronal migration is the critical cellular process which initiates histogenesis of cerebral cortex. Migration involves a series of complex cell interactions and transformation. After completing their final mitosis, neurons migrate from the ventricular zone into the cortical plate, and then establish neuronal lamina and settle onto the outermost layer, forming an "inside-out" gradient of maturation. This process is guided by radial glial fibers, requires proper receptors, ligands, other unknown extracellular factors, and local signaling to stop neuronal migration. This process is also highly sensitive to various physical, chemical and biological agents as well as to genetic mutations. Any disturbance of the normal process may result in neuronal migration disorder. Such neuronal migration disorder is believed as major cause of both gross brain malformation and more special cerebral structural and functional abnormalities in experimental animals and in humans. An increasing number of instructive studies on experimental models and several genetic model systems of neuronal migration disorder have established the foundation of cortex formation and provided deeper insights into the genetic and molecular mechanisms underlying normal and abnormal neuronal migration.

  14. Cerebral versus Ocular Visual Impairment: The Impact on Developmental Neuroplasticity.

    Science.gov (United States)

    Martín, Maria B C; Santos-Lozano, Alejandro; Martín-Hernández, Juan; López-Miguel, Alberto; Maldonado, Miguel; Baladrón, Carlos; Bauer, Corinna M; Merabet, Lotfi B

    2016-01-01

    Cortical/cerebral visual impairment (CVI) is clinically defined as significant visual dysfunction caused by injury to visual pathways and structures occurring during early perinatal development. Depending on the location and extent of damage, children with CVI often present with a myriad of visual deficits including decreased visual acuity and impaired visual field function. Most striking, however, are impairments in visual processing and attention which have a significant impact on learning, development, and independence. Within the educational arena, current evidence suggests that strategies designed for individuals with ocular visual impairment are not effective in the case of CVI. We propose that this variance may be related to differences in compensatory neuroplasticity related to the type of visual impairment, as well as underlying alterations in brain structural connectivity. We discuss the etiology and nature of visual impairments related to CVI, and how advanced neuroimaging techniques (i.e., diffusion-based imaging) may help uncover differences between ocular and cerebral causes of visual dysfunction. Revealing these differences may help in developing future strategies for the education and rehabilitation of individuals living with visual impairment.

  15. Evaluation of cerebral metabolism in patients with unilateral carotid stenosis by proton MR spectroscopy: a correlative study with cerebral hemodynamics by acetazolamide stress brain perfusion SPECT (acz-SPECT)

    International Nuclear Information System (INIS)

    Kim, Jae Seung; Kim, Geun Eun; Lee, Jeong Hee; Kim, Do Gyun; Kim, Sang Tae; Lee, Hee Kyung

    2001-01-01

    Carotid stenosis may lead not only to cerebral hemodynamic compromise but also cerebral metabolic changes without overt infarction. To investigate the brain metabolic changes as a result of hemodynamic compromise in pts with carotid stenosis, we compared the changes in metabolism of the gray and white matter detected by proton MRS with cortical hemodynamics measured by Acz-SPECT. We prospectively studied symptomatic 18 pts (M/F=15/3, mean ages: 64.4y) with unilateral carotid stenosis. All pts underwent Acz-SPECT and MRS with 3 days. rCBF and rCVR of MCA territory were assessed by Acz-SPECT. Hemodynamic compromise was graded as stage 0 (normal rCBF and rCVR), stage 1 (normal rCBF and reduced rCVR), and stage 2( reduced rCBF and rCVR). Brain metabolism was assessed by measuring the peaks of N-acetyl aspartate (NAA), choline (Cho), and the sum of creatine and phosphocreatine (Cr) from noninfarcted white matter in the both centrum semiovales and gray matter in both MCA territories. On Acz-SPECT, 7 pts showed stage 2 were significantly lower than in pts with stage 0 (p<0.01). The asymmetric ratio of NAA/Cr in pts with state 2 was also significantly lower than in pts with stage 1(p<0.05). The asymmetric ratio of Cho/Cr was increased as hemodynamic stage increased but the differences were not statistically significant among 3 stages. In cortical gray matter, the asymmetric ratios of NAA/Cho and NAA/Cr were decreased statistically significant among 3 stages. In cortical gray matter, the asymmetric ratios of NAA/Cho and NAA/Cr were decreased and that of Cho/Cr was increased as hemodynamic stage increased. However, these differences were not statistically significant among 3 stages. The asymmetric ratios of NAA/Cho of centrum semiovale in pts with reduced rCBF and/or reduced rCVR were lower than in pts with normal perfusion. Our results indicate the metabolic changes detected by proton MRS in patients with carotid stenosis reflect a hemodynamic compromised state

  16. Synchronous changes of cortical thickness and corresponding white matter microstructure during brain development accessed by diffusion MRI tractography from parcellated cortex

    Directory of Open Access Journals (Sweden)

    Tina eJeon

    2015-12-01

    Full Text Available Cortical thickness (CT changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI, especially fractional anisotropy (FA. We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development. DTI and T1-weighted images of 50 healthy children and adolescents between the ages of 7 to 25 years were acquired. With the parcellated cortical gyri transformed from T1-weighted images to DTI space as the tractography seeds, probabilistic tracking was performed to delineate the WM fibers traced from specific parcellated cortical regions. CT was measured at certain cortical regions and FA was measured from the WM fibers traced from same cortical regions. The CT of all frontal cortical gyri, includeing Brodmann areas 4, 6, 8, 9, 10, 11, 44, 45, 46 and 47, decreased significantly and heterogeneously; concurrently, significant and heterogeneous increases of FA of WM traced from corresponding regions were found. We further revealed significant correlation between the slopes of the CT decrease and the slopes of corresponding WM FA increase in all frontal cortical gyri, suggesting coherent cortical pruning and corresponding WM microstructural enhancement. Such correlation was not found in cortical regions other than frontal cortex. The molecular and cellular mechanisms of these synchronous changes may be associated with overlapping signaling pathways of axonal guidance, synaptic pruning, neuronal apoptosis and more prevalent interstitial neurons in the prefrontal cortex. Revealing the coherence of cortical and WM structural changes during development may open a new window for

  17. Brain functional near infrared spectroscopy in human infants : cerebral cortical haemodynamics coupled to neuronal activation in response to sensory stimulation

    OpenAIRE

    Bartocci, Marco

    2006-01-01

    The assessment of cortical activation in the neonatal brain is crucial in the study of brain development, as it provides precious information for how the newborn infant processes external or internal stimuli. Thus far functional studies of neonates aimed to assess cortical responses to certain external stimuli are very few, due to the lack of suitable techniques to monitor brain activity of the newborn. Near Infrared Spectroscopy (NIRS) has been found to be suitable for func...

  18. Intermittent fasting is neuroprotective in focal cerebral ischemia by minimizing autophagic flux disturbance and inhibiting apoptosis.

    Science.gov (United States)

    Jeong, Ji Heun; Yu, Kwang Sik; Bak, Dong Ho; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Dong Kwan; Kim, Jwa-Jin; Han, Seung-Yun

    2016-11-01

    Previous studies have demonstrated that autophagy induced by caloric restriction (CR) is neuroprotective against cerebral ischemia. However, it has not been determined whether intermittent fasting (IF), a variation of CR, can exert autophagy-related neuroprotection against cerebral ischemia. Therefore, the neuroprotective effect of IF was evaluated over the course of two weeks in a rat model of focal cerebral ischemia, which was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). Specifically, the role of autophagy modulation as a potential underlying mechanism for this phenomenon was investigated. It was demonstrated that IF reduced infarct volume and brain edema, improved neurobehavioral deficits, and rescued neuronal loss after MCAO/R. Furthermore, neuronal apoptosis was decreased by IF in the rat cortex. An increase in the number of autophagosomes (APs) was demonstrated in the cortices of IF-treated rats, using immunofluorescence staining and transmission electron microscopy. Using immunoblots, an IF-induced increase was detected in microtubule-associated protein 1 light chain 3 (LC3)-II, Rab7, and cathepsin D protein levels, which corroborated previous morphological studies. Notably, IF reduced the accumulation of APs and p62, demonstrating that IF attenuated the MCAO/R-induced disturbance of autophagic flux in neurons. The findings of the present study suggest that IF-induced neuroprotection in focal cerebral ischemia is due, at least in part, to the minimization of autophagic flux disturbance and inhibition of apoptosis.

  19. Strain differences of the effect of enucleation and anophthalmia on the size and growth of sensory cortices in mice.

    Science.gov (United States)

    Massé, Ian O; Guillemette, Sonia; Laramée, Marie-Eve; Bronchti, Gilles; Boire, Denis

    2014-11-07

    Anophthalmia is a condition in which the eye does not develop from the early embryonic period. Early blindness induces cross-modal plastic modifications in the brain such as auditory and haptic activations of the visual cortex and also leads to a greater solicitation of the somatosensory and auditory cortices. The visual cortex is activated by auditory stimuli in anophthalmic mice and activity is known to alter the growth pattern of the cerebral cortex. The size of the primary visual, auditory and somatosensory cortices and of the corresponding specific sensory thalamic nuclei were measured in intact and enucleated C57Bl/6J mice and in ZRDCT anophthalmic mice (ZRDCT/An) to evaluate the contribution of cross-modal activity on the growth of the cerebral cortex. In addition, the size of these structures were compared in intact, enucleated and anophthalmic fourth generation backcrossed hybrid C57Bl/6J×ZRDCT/An mice to parse out the effects of mouse strains and of the different visual deprivations. The visual cortex was smaller in the anophthalmic ZRDCT/An than in the intact and enucleated C57Bl/6J mice. Also the auditory cortex was larger and the somatosensory cortex smaller in the ZRDCT/An than in the intact and enucleated C57Bl/6J mice. The size differences of sensory cortices between the enucleated and anophthalmic mice were no longer present in the hybrid mice, showing specific genetic differences between C57Bl/6J and ZRDCT mice. The post natal size increase of the visual cortex was less in the enucleated than in the anophthalmic and intact hybrid mice. This suggests differences in the activity of the visual cortex between enucleated and anophthalmic mice and that early in-utero spontaneous neural activity in the visual system contributes to the shaping of functional properties of cortical networks. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Pharmacokinetic Study of Piracetam in Focal Cerebral Ischemic Rats.

    Science.gov (United States)

    Paliwal, Pankaj; Dash, Debabrata; Krishnamurthy, Sairam

    2018-04-01

    Cerebral ischemia affects hepatic enzymes and brain permeability extensively. Piracetam was investigated up to phase III of clinical trials and there is lack of data on brain penetration in cerebral ischemic condition. Thus, knowledge of the pharmacokinetics and brain penetration of piracetam during ischemic condition would aid to improve pharmacotherapeutics in ischemic stroke. Focal cerebral ischemia was induced by middle cerebral artery occlusion for 2 h in male Wistar rats followed by reperfusion. After 24 h of middle cerebral artery occlusion or 22 h of reperfusion, piracetam was administered for pharmacokinetic, brain penetration, and pharmacological experiments. In pharmacokinetic study, blood samples were collected at different time points after 200-mg/kg (oral) and 75-mg/kg (intravenous) administration of piracetam through right external jugular vein cannulation. In brain penetration study, the cerebrospinal fluid, systemic blood, portal blood, and brain samples were collected at pre-designated time points after 200-mg/kg oral administration of piracetam. In a separate experiment, the pharmacological effect of the single oral dose of piracetam in middle cerebral artery occlusion was assessed at a dose of 200 mg/kg. All the pharmacokinetic parameters of piracetam including area under curve (AUC 0-24 ), maximum plasma concentration (C max ), time to reach the maximum plasma concentration (t max ), elimination half-life (t 1/2 ), volume of distribution (V z ), total body clearance, mean residence time, and bioavailability were found to be similar in ischemic stroke condition except for brain penetration. Piracetam exposure (AUC 0-2 ) in brain and CSF were found to be 2.4- and 3.1-fold higher, respectively, in ischemic stroke compared to control rats. Piracetam significantly reduced infarct volume by 35.77% caused by middle cerebral artery occlusion. There was no change in the pharmacokinetic parameters of piracetam in the ischemic stroke model except for