WorldWideScience

Sample records for cerebral cortical blood

  1. Effect of anxiety on cortical cerebral blood flow and metabolism

    International Nuclear Information System (INIS)

    Gur, R.C.; Gur, R.E.; Resnick, S.M.; Skolnick, B.E.; Alavi, A.; Reivich, M.

    1987-01-01

    The relation between anxiety and cortical activity was compared in two samples of normal volunteers. One group was studied with the noninvasive xenon-133 inhalation technique for measuring cerebral blood flow (CBF) and the other with positron emission tomography (PET) using 18 Flurodeoxyglucose ( 18 FDG) for measuring cerebral metabolic rates (CMR) for glucose. The inhalation technique produced less anxiety than the PET procedure, and for low anxiety subjects, there was a linear increase in CBF with anxiety. For higher anxiety subjects, however, there was a linear decrease in CBF with increased anxiety. The PET group manifested a linear decrease in CMR with increased anxiety. The results indicate that anxiety can have systematic effects on cortical activity, and this should be taken into consideration when comparing data from different procedures. They also suggest a physiologic explanation of a fundamental behavioral law that stipulates a curvilinear, inverted-U relationship between anxiety and performance

  2. Regional cerebral blood flow in focal cortical epilepsy

    DEFF Research Database (Denmark)

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were....... This finding accords with earlier studies. All nine patients studied in the interictal phase showed, either spontaneously or during activation by intermittent light, focal flow increases in areas presumed to comprise the epileptic focus. These interictal hyperemic foci probably reflect subictal neuronal...

  3. Cerebral blood flow in migraine and cortical spreading depression

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, M.

    1987-01-01

    In a series of migraine patients, carotid arteriography was carried out as part of the clinical evalution. Nine patients developed a migrainous attack with focal neurological symptoms and headache after the angiography and during the subsequent, ongoing regional cerebral blood flow rCBF study. rCBF was measured by bolus injection of Xenon/sup 133/ into the internal carotid artery and a gamma camera with 254 collimated scintillation detectors covering the lateral aspect of the hemisphere. This technique depicts rCBF mainly at the level of the superficial cortex, with no depth resolution. The resolution is 1 cm/sup 2/ providing detailed spatial information of the cortical blood flow. Other methods for measuring local blood flow in animal and man employ a radioactive, freely diffusible tracer, in combination with an autoradiographic technique for the assessment of the tissue concentration, the so-called autoradiographic methods. In the series of patients with spontaneous migraine, rCBF was estimated using an in-vivo application of the autoradiographic principle. Xenon/sup 133/ was administered by inhalation and the time course of the arterial concentration curve was assessed by a scintillation detector over the upper right lung, since the arterial curve has been found to follow the shape of the lung curve. The rCBF was studied accompanying cortical spreading depression in rat experiments to evaluate wheter this phenomenon could explain the blood flow changes in migraine. (/sup 14/C) iodoantipyrine was given as an intravenous bolus injection and the brain content of indicator was determined by tissue sample or autoradiography after 10 or 20 seconds of isotope circulation. The conditions of the autoradiographic methods are that the flow remains constant within the period of measuring, and that the region under study is homogenous with regard to flow and lambda. (EG).

  4. Subcortical cerebral blood flow and metabolic changes elicited by cortical spreading depression in rat

    Energy Technology Data Exchange (ETDEWEB)

    Mraovitch, S.; Calando, Y.; Goadsby, P.J.; Seylaz, J. (Laboratoire de Recherches Cerebrovasculaire, Paris (France))

    1992-06-01

    Changes in cerebral cortical perfusion (CBF{sub LDF}), local cerebral blood flow (lCBF) and local cerebral glucose utilization (lCGU) elicited by unilateral cortical spreading depression (SD) were monitored and measured in separate groups of rats anesthetized with {alpha}-chloralose. CBF{sub LDF} was recorded with laser Doppler flowmetry, while lCBF and lCGU were measured by the quantitative autoradiographic ({sup 14}C)iodoantipyrine and ({sup 14}C)-2-deoxyglucose methods, respectively. SD elicited a wave of hyperemia after a latency of 2 to 3 min followed by an oligemic phase. Ninety minutes following the onset of SD cortical lCBF and lCGU were essentially the same as on the contralateral side and in sham-treated rats. However, alteration in the lCBF and lCGU in upper and lower brainstem persisted. The present results demonstrate that long-lasting cerebrovascular and metabolic alterations take place within the subcortical regions following SD. These regions provide an attractive site to integrate observations in man concerning spreading depression and the aura of migraine with the other features of the syndrome. 19 refs., 2 figs., 1 tab.

  5. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.

    Science.gov (United States)

    Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki

    2011-05-01

    We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.

  6. Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

    Science.gov (United States)

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2017-04-01

    Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.

  7. Computational model of cerebral blood flow redistribution during cortical spreading depression

    Science.gov (United States)

    Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.

    2016-04-01

    In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.

  8. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... parameters of the whisker/infraorbital nerve etwork (IO) targeting the same cortical area. We tested the hypothesis that the relation between increases in CBF and CMRO2 evoked by stimulation and synaptic activity differed for the two activated networks and that activation of two distinct networks activate...

  9. The correlation of the thalamic lesions on MRI with cerebral cortical blood flow in patients with lacunar infarction

    International Nuclear Information System (INIS)

    Nabatame, Hidehiko; Nakamura, Kazuo; Matsuda, Minoru; Fujimoto, Naoki; Fukuyama, Hidenao.

    1995-01-01

    We performed MRI and measured cerebral blood flow (CBF) using 123 I-IMP SPECT microsphere model in twenty three right-handed patients with lacunar infarction. Twelve of 23 patients showed chronic deterioration of dysarthria and gait disturbance. The mental function of the patients was evaluated by the Mini-Mental State (MMS) examination. The area of high intensity on T2-weighted images was quantitatively analyzed in the cerebral white matter (WM), lenticular nucleus (LN) and thalamus (THA). The score of MMS was positively correlated with the local CBF in the bilateral frontal, parietal, temporal and occipital cortices (p<0.05). Also, the area of high intensity in the left THA showed a significant negative correlation with local CBF of the bilateral frontal, parietal, temporal and occipital cortices (p<0.001). The high intensity areas of the bilateral LN, right WM and right THA had a significant but weaker negative correlation with local CBF of some cortices. These findings suggest that thalamic lesions on the dominant side play an important role in the reduction of cortical blood flow and the deterioration of mental functions in patients with lacunar infarction. (author)

  10. Increased 20-HETE synthesis explains reduced cerebral blood flow but not impaired neurovascular coupling after cortical spreading depression in rat cerebral cortex

    DEFF Research Database (Denmark)

    Fordsmann, Jonas Christoffer; ko, Rebecca; Choi, Hyun B

    2013-01-01

    Cortical spreading depression (CSD) is associated with release of arachidonic acid (AA), impaired neurovascular coupling, and reduced cerebral blood flow (CBF), caused by cortical vasoconstriction. We tested the hypothesis that the released AA is metabolized by the cytochrome P450 enzyme to produce...... neurovascular coupling after CSD. These findings suggest that CSD-induced increments in 20-HETE cause the reduction in CBF after CSD, and that the attenuation of stimulation-induced CBF responses after CSD has a different mechanism. We suggest that blockade of 20-HETE synthesis may be clinically relevant...

  11. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression

    Science.gov (United States)

    Sakadžić, Sava; Yuan, Shuai; Dilekoz, Ergin; Ruvinskaya, Svetlana; Vinogradov, Sergei A.; Ayata, Cenk; Boas, David A.

    2009-01-01

    We developed a novel imaging technique that provides real-time two-dimensional maps of the absolute partial pressure of oxygen and relative cerebral blood flow in rats by combining phosphorescence lifetime imaging with laser speckle contrast imaging. Direct measurement of blood oxygenation based on phosphorescence lifetime is not significantly affected by changes in the optical parameters of the tissue during the experiment. The potential of the system as a novel tool for quantitative analysis of the dynamic delivery of oxygen to support brain metabolism was demonstrated in rats by imaging cortical responses to forepaw stimulation and the propagation of cortical spreading depression waves. This new instrument will enable further study of neurovascular coupling in normal and diseased brain. PMID:19340106

  12. Left-right cortical asymmetries of regional cerebral blood flow during listening to words

    DEFF Research Database (Denmark)

    Nishizawa, Y; Olsen, T S; Larsen, B

    1982-01-01

    1. Regional cerebral blood flow (rCBF) was measured during rest and during listening to simple words. The xenon-133 intracarotid technique was used and results were obtained from 254 regions of seven right hemispheres and seven left hemispheres. The measurements were performed just after carotid...... of the entire hemisphere. The focal rCBF increases were localized to the superior part of the temporal regions, the prefrontal regions, the frontal eye fields, and the orbitofrontal regions. Significant asymmetries were found in particular in the superior temporal region with the left side showing a more...

  13. Radiotracer transit measurements as an index of regional cerebral blood flow. Pt. 1. Methodological and clinical results in chronic alcoholics cortical blood flow

    International Nuclear Information System (INIS)

    Dobrzanski, T.

    1975-01-01

    The numerical mean values of the cerebral radiorheographic index in healthy control subjects and in patients with cerebrovascular disease were not significantly different from the values of regional cerebral blood flow reported, respectively, by other authors using a modification of the Xe-133 method. In the group of chronic alcoholics there was a significant correlation between the duration of alcoholism and certain numerical values of the cerebral radiorheographic index. (author)

  14. Detection of viable cortical neurons using benzodiazepine receptor imaging after reversible focal ischaemia in rats: comparison with regional cerebral blood flow

    International Nuclear Information System (INIS)

    Watanabe, Yoshiyuki; Nakano, Takayuki; Yutani, Kenji; Nishimura, Hiroshi; Nishimura, Tsunehiko; Kusuoka, Hideo; Nakamura, Hironobu

    2000-01-01

    To elucidate the utility of benzodiazepine receptor imaging for the detection of viable cortical neurons, dual-tracer autoradiography using iodine-125 iomazenil (IMZ) and iodine-123 N-isopropyl-4-iodoamphetamine (IMP) was performed in a model of reversible focal ischaemia during the acute and subacute phases. The right middle cerebral artery of anaesthetized rats was occluded for 60 min using an intraluminal filament and reperfused. In the acute phase study, 125 I-IMZ (370 kBq) was injected via the femoral vein at 2 h after reperfusion, and 123 I-IMP (37 MBq) was injected at 50 min post-injection. Rats were sacrificed 10 min after the injection of 123 I-IMP. In the subacute phase study, the same procedure was performed at 5 days after reperfusion. In the acute phase, the IMP uptake was significantly decreased in almost all areas of the lesioned hemisphere, an exception being the cerebellum; however, the IMZ uptake was significantly decreased only in ischaemic cores. The discrepancy between IMZ and IMP uptake was observed in the lateral neocortex and the lateral caudate putamen (CPu), which were most frequently damaged in this ischaemic model. In the subacute phase, the IMZ uptake in lesioned rats was significantly decreased only in the parietal lobe and hippocampus, though the IMP uptake was decreased in many regions of lesioned hemispheres (the frontal, parietal cortex, CPu, hippocampus and thalamus). Histopathological findings indicated that both the IMP and the IMZ uptake was markedly decreased in necrotic areas. Although the IMP uptake was significantly decreased in the ischaemic areas, the IMZ uptake was maintained in these areas. These results suggest that benzodiazepine receptor imaging is superior to regional cerebral blood flow imaging for the detection of viable cortical neurons in both the acute and subacute phases of ischaemia. (orig.)

  15. Detection of viable cortical neurons using benzodiazepine receptor imaging after reversible focal ischaemia in rats: comparison with regional cerebral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshiyuki [Dept. of Radiology, Osaka National Hospital (Japan); Nakano, Takayuki; Yutani, Kenji; Nishimura, Hiroshi; Nishimura, Tsunehiko [Div. of Tracer Kinetics, Osaka University Medical School (Japan); Kusuoka, Hideo [Clinical Research Institute, Osaka National Hospital (Japan); Nakamura, Hironobu [Dept. of Radiology, Osaka University Medical School (Japan)

    2000-03-01

    To elucidate the utility of benzodiazepine receptor imaging for the detection of viable cortical neurons, dual-tracer autoradiography using iodine-125 iomazenil (IMZ) and iodine-123 N-isopropyl-4-iodoamphetamine (IMP) was performed in a model of reversible focal ischaemia during the acute and subacute phases. The right middle cerebral artery of anaesthetized rats was occluded for 60 min using an intraluminal filament and reperfused. In the acute phase study, {sup 125}I-IMZ (370 kBq) was injected via the femoral vein at 2 h after reperfusion, and {sup 123}I-IMP (37 MBq) was injected at 50 min post-injection. Rats were sacrificed 10 min after the injection of {sup 123}I-IMP. In the subacute phase study, the same procedure was performed at 5 days after reperfusion. In the acute phase, the IMP uptake was significantly decreased in almost all areas of the lesioned hemisphere, an exception being the cerebellum; however, the IMZ uptake was significantly decreased only in ischaemic cores. The discrepancy between IMZ and IMP uptake was observed in the lateral neocortex and the lateral caudate putamen (CPu), which were most frequently damaged in this ischaemic model. In the subacute phase, the IMZ uptake in lesioned rats was significantly decreased only in the parietal lobe and hippocampus, though the IMP uptake was decreased in many regions of lesioned hemispheres (the frontal, parietal cortex, CPu, hippocampus and thalamus). Histopathological findings indicated that both the IMP and the IMZ uptake was markedly decreased in necrotic areas. Although the IMP uptake was significantly decreased in the ischaemic areas, the IMZ uptake was maintained in these areas. These results suggest that benzodiazepine receptor imaging is superior to regional cerebral blood flow imaging for the detection of viable cortical neurons in both the acute and subacute phases of ischaemia. (orig.)

  16. Changes of cerebral blood flow during the secondary expansion of a cortical contusion assessed by 14C-iodoantipyrine autoradiography in mice using a non-invasive protocol.

    Science.gov (United States)

    Engel, Doortje C; Mies, Günter; Terpolilli, Nicole A; Trabold, Raimund; Loch, Alexander; De Zeeuw, Chris I; Weber, John T; Maas, Andrew I R; Plesnila, Nikolaus

    2008-07-01

    Although changes of cerebral blood flow (CBF) in and around traumatic contusions are well documented, the role of CBF for the delayed death of neuronal cells in the traumatic penumbra ultimately resulting in secondary contusion expansion remains unclear. The aim of the current study was therefore to investigate the relationship between changes of CBF and progressive peri-contusional cell death following traumatic brain injury (TBI). CBF and contusion size were measured in C57Bl6 mice under continuous on-line monitoring of (ETp)CO2 before, and at 15 min and 24 h following controlled cortical impact by 14C-iodoantipyrine autoradiography (IAP-AR; n = 5-6 per group) and by Nissl staining, respectively. Contused and ischemic (CBF < 10%) tissue volumes were calculated and compared over time. Cortical CBF in not injured mice varied between 69 and 93 mL/100mg/min depending on the anatomical location. Fifteen minutes after trauma, CBF decreased in the whole brain by approximately 50% (39 +/- 18 mL/100mg/min; p < 0.05), except in contused tissue where it fell by more than 90% (3 +/- 2 mL/100mg/min; p < 0.001). Within 24 h after TBI, CBF recovered to normal values in all brain areas except the contusion where it remained reduced by more than 90% (p < 0.001). Contusion volume expanded from 24.9 to 35.5 mm3 (p < 0.01) from 15 min to 24 h after trauma (+43%), whereas the area of severe ischemia (CBF < 10%) showed only a minimal (+13%) and not significant increase (22.3 to 25.1 mm3). The current data therefore suggest that the delayed secondary expansion of a cortical contusion following traumatic brain injury may not be caused by a reduction of CBF alone.

  17. l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway

    Directory of Open Access Journals (Sweden)

    Yuki Kurauchi

    2017-03-01

    Full Text Available l-Citrulline is a potent precursor of l-arginine, and exerts beneficial effect on cardiovascular system via nitric oxide (NO production. Migraine is one of the most popular neurovascular disorder, and imbalance of cerebral blood flow (CBF observed in cortical spreading depression (CSD contributes to the mechanism of migraine aura. Here, we investigated the effect of l-citrulline on cardiovascular changes to KCl-induced CSD. in rats. Intravenous injection of l-citrulline prevented the decrease in CBF, monitored by laser Doppler flowmetry, without affecting mean arterial pressure and heart rate during CSD. Moreover, l-citrulline attenuated propagation velocity of CSD induced by KCl. The effect of l-citrulline on CBF change was prevented by l-NAME, an inhibitor of NO synthase, but not by indomethacin, an inhibitor of cyclooxygenase. On the other hand, attenuation effect of l-citrulline on CSD propagation velocity was prevented not only by l-NAME but also by indomethacin. In addition, propagation velocity of CSD was attenuated by intravenous injection of NOR3, a NO donor, which was diminished by ODQ, an inhibitor of soluble guanylyl cyclase. These results suggest that NO/cyclic GMP- and prostanoids-mediated pathway differently contribute to the effect of l-citrulline on the maintenance of CBF.

  18. Sex differences of human cortical blood flow and energy metabolism.

    Science.gov (United States)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders; Jónsdottir, Kristjana Y; Gjedde, Albert

    2017-07-01

    Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO 2 ) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.

  19. Postradiation regional cerebral blood flow in primates

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Cerveny, T.J.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with hypotension and a dramatic release of mast cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomenon and the postradiation decrease in cerebral blood flow, primates were exposed to 100 Gy (1 Gy = 100 rads), whole-body, gamma radiation. Pontine and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. Systemic arterial histamine levels were determined preradiation and postradiation. Data obtained indicated that radiated animals showed a decrease in blood flow of 63% in the motor cortex and 51% in the pons by 10 min postradiation. Regional cerebral blood flow of radiated animals showed a slight recovery 20 min postradiation, followed by a fall to the 10 min nadir by 60 min postradiation. Immediately, postradiation systemic blood pressure fell 67% and remained at that level for the remainder of the experiment. Histamine levels in the radiated animals increased a hundredfold 2 min postradiation. This study indicates that regional cerebral blood flow decreases postradiation with the development of hypotension and may be associated temporally with the postradiation release of histamine

  20. Preserved regional cerebral blood flow in the occipital cortices, brainstem, and cerebellum of patients with V180I-129M genetic Creutzfeldt-Jakob disease in serial SPECT studies.

    Science.gov (United States)

    Hayashi, Yuichi; Yoshikura, Nobuaki; Takekoshi, Akira; Yamada, Megumi; Asano, Takahiko; Kimura, Akio; Satoh, Katsuya; Kitamoto, Tetsuyuki; Inuzuka, Takashi

    2016-11-15

    Creutzfeldt-Jakob disease (CJD) with a causative point mutation of valine to isoleucine at codon 180 (V180I) is one of the major types of genetic CJD (gCJD) in Japan. V180I gCJD is rarely accompanied by a family history, and its clinical characteristics include late-onset, long disease duration, and edematous cortical hyperintensity in diffusion, fluid attenuate inversion and T2-weighted MRI. We performed serial imaging with single-photon emission computed tomography (SPECT) and MRI in three V180I gCJD cases over long-term observation. All cases were characterized by progressive dementia, parkinsonism, and the absence of cerebellar signs or cortical visual dysfunction in their clinical courses. Moreover, during the end-stage, SPECT findings showed preserved regional cerebral blood flow (rCBF) in the occipital cortices, brainstem, and cerebellum. Similarly, no apparent atrophy or increased signal intensities were observed in MRI images of the occipital and cerebellar regions. In conclusion, we report a decrease in rCBF predominantly in the frontal and temporal cortices during the early-stage, which became more widespread as the disease progressed. Importantly, rCBF was preserved in the occipital cortices, brainstem, and cerebellar regions until the end-stage, which may be distinct to V180I gCJD cases. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Crossed cerebellar and cerebral cortical diaschisis in basal ganglia hemorrhage

    International Nuclear Information System (INIS)

    Lim, Joon Seok; Ryu, Young Hoon; Kim, Hee Joung; Kim, Byung Moon; Lee, Jong Doo; Lee, Byung Hee

    1998-01-01

    The purpose of this study was to evaluate the phenomenon of diaschisis in the cerebellum and cerebral cortex in patients with pure basal ganglia hemorrhage using cerebral blood flow SPECT. Twelve patients with pure basal ganglia hemorrhage were studied with Tc-99m ECD brain SPECT. Asymmetric index (AI) was calculated in the cerebellum and cerebral cortical regions as | C R -C L |/ (C R -C L ) x 200, where C R and C L are the mean reconstructed counts for the right and left ROIs, respectively. Hypoperfusion was considered to be present when AI was greater than mean + 2 SD of 20 control subjects. Mean AI of the cerebellum and cerebral cortical regions in patients with pure basal ganglia hemorrhage was significantly higher than normal controls (p<0.05): Cerebellum (18.68±8.94 vs 4.35±0.94, mean ±SD), thalamus (31.91±10.61 vs 2.57±1.45), basal ganglia (35.94±16.15 vs 4.34±2.08), parietal (18.94±10.69 vs 3.24±0.87), frontal (13.60±10.8 vs 4.02±2.04) and temporal cortex (18.92±11.95 vs 5.13±1.69). Ten of the 12 patients had significant hypoperfusion in the contralateral cerebellum. Hypoperfusion was also shown in the ipsilateral thalamus (n=12), ipsilateral parietal (n=12), frontal (n=6) and temporal cortex (n=10). Crossed cerebellar diaschisis (CCD) and cortical diaschisis may frequently occur in patients with pure basal ganglia hemorrhage, suggesting that CCD can develop without the interruption of corticopontocerebellar pathway

  2. Functional MRI study of cerebral cortical activation during volitional swallowing

    International Nuclear Information System (INIS)

    Wakasa, Toru; Aiga, Hideki; Yanagi, Yoshinobu; Kawai, Noriko; Sugimoto, Tomosada; Kuboki, Takuo; Kishi, Kanji

    2002-01-01

    The purpose of this study was to investigate the somatotropic distribution and lateralization of motor and sensory cortical activity during swallowing in healthy adult human subjects using functional MR imaging. Nine healthy right-handed adult volunteers (6 men, 3 women; ages 22-38) were examined. Their cortical activities were evoked by having them swallow, five times, a small bolus of water (3 ml) supplied through a plastic catheter. As a positive control, the subjects performed five repetitions of right-handed grasping tasks. Blood oxygenation level-dependent images were obtained using a 1.5 Tesla MR system (Magnetom Vision, Siemens Germany; repetition time/echo time (TR/TE)=0.96/0.66, flip angle (FA)=90 deg). T1 weighted anatomical images were obtained for the same slices in each subject. Cerebral activity was observed most notably in the primary motor cortex and primary somatosensory cortex, followed by the premotor cortex, anterior cingulate cortex, frontal operculum, and insula. The hand-grasping task activated relatively superior parts of the primary motor and somatosensory cortices. The swallowing task, on the other hand, activated the inferior parts of the pre- and postcentral gyri. The hand-grasping activation of motor and sensory cortices was localized absolutely on the contralateral side, whereas swallowing activated the motor cortex either bilaterally or unilaterally. Swallowing activated the sensory cortex almost always bilaterally. This study suggested that fMRI could be used to identify the specific areas of cortical activation caused by various tasks, and to differentiate the locations of cortical activation between tasks. (author)

  3. Functional MRI study of cerebral cortical activation during volitional swallowing

    Energy Technology Data Exchange (ETDEWEB)

    Wakasa, Toru; Aiga, Hideki; Yanagi, Yoshinobu; Kawai, Noriko; Sugimoto, Tomosada; Kuboki, Takuo; Kishi, Kanji [Okayama Univ. (Japan). Graduate School of Medicine and Dentistry

    2002-12-01

    The purpose of this study was to investigate the somatotropic distribution and lateralization of motor and sensory cortical activity during swallowing in healthy adult human subjects using functional MR imaging. Nine healthy right-handed adult volunteers (6 men, 3 women; ages 22-38) were examined. Their cortical activities were evoked by having them swallow, five times, a small bolus of water (3 ml) supplied through a plastic catheter. As a positive control, the subjects performed five repetitions of right-handed grasping tasks. Blood oxygenation level-dependent images were obtained using a 1.5 Tesla MR system (Magnetom Vision, Siemens Germany; repetition time/echo time (TR/TE)=0.96/0.66, flip angle (FA)=90 deg). T1 weighted anatomical images were obtained for the same slices in each subject. Cerebral activity was observed most notably in the primary motor cortex and primary somatosensory cortex, followed by the premotor cortex, anterior cingulate cortex, frontal operculum, and insula. The hand-grasping task activated relatively superior parts of the primary motor and somatosensory cortices. The swallowing task, on the other hand, activated the inferior parts of the pre- and postcentral gyri. The hand-grasping activation of motor and sensory cortices was localized absolutely on the contralateral side, whereas swallowing activated the motor cortex either bilaterally or unilaterally. Swallowing activated the sensory cortex almost always bilaterally. This study suggested that fMRI could be used to identify the specific areas of cortical activation caused by various tasks, and to differentiate the locations of cortical activation between tasks. (author)

  4. Cerebral blood flow and cerebral oxygen metabolism in thalamic hemorrhage

    International Nuclear Information System (INIS)

    Yasui, Nobuyuki; Asakura, Ken

    1987-01-01

    Cerebral blood flow (CBF), cerebral oxygen consumption (CMRO 2 ), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were studied in 20 cases of thalamic hemorrhage using positron CT and 15 O labeled gas steady-state inhalation method. CBF reduction was limited around the thalamus in the small sized hematoma. CBF were significantly diminished in the mean cortical, parietal, temporal, basal ganglia and thalamic area ipsilateral and cerebellar cortex contralateral to the medium sized hematoma. There was bilateral and diffuse CBF reduction in the large sized hematoma which was caused by increased intracranial pressure. CMRO 2 value were similary changed as CBF. OEF change showed within normal limit. Diffuse CBV reduction was observed in the large sized hematoma. This reduction was the result of decreased vascular bed caused by mass effect of the hematoma and hydrocephalus. Effect of surgical treatment such as ventricular drainage and hematoma evacuation were also discussed in correlation to CBF in some case using positron and single photon ECT. (author)

  5. Subcortical aphasia and cerebral blood flow using SPECT

    International Nuclear Information System (INIS)

    Celsis, P.; Puel, M.; Demonet, J.P.; Bonafe, A.; Cardebat, D.; Viallard, G.; Pujol, T.; Marc-Vergnes, J.P.; Rascol, A.

    1985-01-01

    Possible cerebral blood flow (CBF) alteration in subcortical aphasia was investigated by single-photon emission tomography (SPECT). The results confirm the capsulo-striatal lesions and also point to the high rate of ipsilateral thalamic and cortical dysfunction. (author). 8 refs.; 1 fig.; 1 tab

  6. Apolipoprotein E Mimetic Peptide Increases Cerebral Glucose Uptake by Reducing Blood-Brain Barrier Disruption after Controlled Cortical Impact in Mice: An 18F-Fluorodeoxyglucose PET/CT Study.

    Science.gov (United States)

    Qin, Xinghu; You, Hong; Cao, Fang; Wu, Yue; Peng, Jianhua; Pang, Jinwei; Xu, Hong; Chen, Yue; Chen, Ligang; Vitek, Michael P; Li, Fengqiao; Sun, Xiaochuan; Jiang, Yong

    2017-02-15

    Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB) and reduces cerebral glucose uptake. Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI, and COG1410 has demonstrated neuroprotective activity in several models of TBI. However, the effects of COG1410 on VEGF and glucose metabolism following TBI are unknown. The current study aimed to investigate the expression of VEGF and glucose metabolism effects in C57BL/6J male mice subjected to experimental TBI. The results showed that controlled cortical impact (CCI)-induced vestibulomotor deficits were accompanied by increases in brain edema and the expression of VEGF, with a decrease in cerebral glucose uptake. COG1410 treatment significantly improved vestibulomotor deficits and glucose uptake and produced decreases in VEGF in the pericontusion and ipsilateral hemisphere of injury, as well as in brain edema and neuronal degeneration compared with the control group. These data support that COG1410 may have potential as an effective drug therapy for TBI.

  7. Effects of intermittent theta burst stimulation on cerebral blood flow and cerebral vasomotor reactivity.

    Science.gov (United States)

    Pichiorri, Floriana; Vicenzini, Edoardo; Gilio, Francesca; Giacomelli, Elena; Frasca, Vittorio; Cambieri, Chiara; Ceccanti, Marco; Di Piero, Vittorio; Inghilleri, Maurizio

    2012-08-01

    To determine whether intermittent theta burst stimulation influences cerebral hemodynamics, we investigated changes induced by intermittent theta burst stimulation on the middle cerebral artery cerebral blood flow velocity and vasomotor reactivity to carbon dioxide (CO(2)) in healthy participants. The middle cerebral artery flow velocity and vasomotor reactivity were monitored by continuous transcranial Doppler sonography. Changes in cortical excitability were tested by transcranial magnetic stimulation. In 11 healthy participants, before and immediately after delivering intermittent theta burst stimulation, we tested cortical excitability measured by the resting motor threshold and motor evoked potential amplitude over the stimulated hemisphere and vasomotor reactivity to CO(2) bilaterally. The blood flow velocity was monitored in both middle cerebral arteries throughout the experimental session. In a separate session, we tested the effects of sham stimulation under the same experimental conditions. Whereas the resting motor threshold remained unchanged before and after stimulation, motor evoked potential amplitudes increased significantly (P = .04). During and after stimulation, middle cerebral artery blood flow velocities also remained bilaterally unchanged, whereas vasomotor reactivity to CO(2) increased bilaterally (P = .04). The sham stimulation left all variables unchanged. The expected intermittent theta burst stimulation-induced changes in cortical excitability were not accompanied by changes in cerebral blood flow velocities; however, the bilateral increased vasomotor reactivity suggests that intermittent theta burst stimulation influences the cerebral microcirculation, possibly involving subcortical structures. These findings provide useful information on hemodynamic phenomena accompanying intermittent theta burst stimulation, which should be considered in research aimed at developing this noninvasive, low-intensity stimulation technique for safe

  8. Cerebral cortices of East african early hominids.

    Science.gov (United States)

    Falk, D

    1983-09-09

    An endocast of the frontal lobe of a reconstructed skull, which is approximately 2 million years old, from the Koobi Fora region of Kenya appears to represent the oldest human-like cortical sulcal pattern in the fossil record, while the endocast from another skull from the same region produces an endocast that appears apelike in its frontal lobe and similar to endocasts from earlier South African australopithecines. New analysis of paleoanatomical evidence thus indicates that at least two taxa of early hominids coexisted in East Africa.

  9. Middle cerebral artery blood velocity during running

    NARCIS (Netherlands)

    Lyngeraa, T. S.; Pedersen, L. M.; Mantoni, T.; Belhage, B.; Rasmussen, L. S.; van Lieshout, J. J.; Pott, F. C.

    2013-01-01

    Running induces characteristic fluctuations in blood pressure (BP) of unknown consequence for organ blood flow. We hypothesized that running-induced BP oscillations are transferred to the cerebral vasculature. In 15 healthy volunteers, transcranial Doppler-determined middle cerebral artery (MCA)

  10. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    International Nuclear Information System (INIS)

    Zohar, J.; Insel, T.R.; Berman, K.F.; Foa, E.B.; Hill, J.L.; Weinberger, D.R.

    1989-01-01

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO 2 did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during in vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow

  11. Cerebral blood flow response to functional activation

    DEFF Research Database (Denmark)

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only inc...... the cerebral tissue's increased demand for glucose supply during neural activation with recent evidence supporting a key function for astrocytes in rCBF regulation....

  12. Studies of cerebral atrophy and regional cerebral blood flow in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Kitamura, Shin

    1983-01-01

    Cerebral atrophy and regional cerebral blood flow (rCBF) of 25 patients with Parkinson's disease were studied. The rCBF was measured with the intra-arterial Xe-133 injection method. The results obtained were as follows: 1) Sixty four % of Parkinson's disease patients showed ventricular dilation, and 76% of Parkinson's disease patients showed cortical atrophy on the CT scan, but we had to allow for the effects of the natural aging process on these results. 2) No correlation was recognized either between cerebral atrophy and the severity of Parkinson's disease, or between cerebral atrophy and the duration of Parkinson's disease. 3) In Parkinson's disease patients, the mean rCBF was lower than that of normal control subjects. The difference was even more remarkable in older patients. Only 40% of Parkinson's disease patients showed hyperfrontal pattern. 4) There was no correlation either between the mean rCBF and the severity of Parkinson's disease, or between the mean rCBF and the duration of Parkinson's disease. There was no significant difference between the mean rCBF of Parkinson's disease patients receiving levodopa and that of untreated patients. 5) The mean rCBF decreased in patients with cerebral atrophy on the CT scan. 6) Parkinson's disease patients with intellectual impairment showed cerebral atrophy and a remarkable decrease of the mean rCBF. 7) The effect of aging on cerebral atrophy on the CT scan had to be allowed for, but judging from the decrease of the mean rCBF, the cerebral cortex is evidently involved in Parkinson's disease. 8) The rCBF decline in Parkinson's disease patients may be related with the diminished cortical metabolic rate due to a remote effect of striatal dysfunction and a disturbance of mesocortical dopaminergic pathways. (J.P.N.)

  13. Studies of cerebral atrophy and regional cerebral blood flow in patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin [Nippon Medical School, Tokyo

    1983-04-01

    Cerebral atrophy and regional cerebral blood flow (rCBF) of 25 patients with Parkinson's disease were studied. The rCBF was measured with the intra-arterial Xe-133 injection method. The results obtained were as follows: 1) Sixty four % of Parkinson's disease patients showed ventricular dilation, and 76% of Parkinson's disease patients showed cortical atrophy on the CT scan, but we had to allow for the effects of the natural aging process on these results. 2) No correlation was recognized either between cerebral atrophy and the severity of Parkinson's disease, or between cerebral atrophy and the duration of Parkinson's disease. 3) In Parkinson's disease patients, the mean rCBF was lower than that of normal control subjects. The difference was even more remarkable in older patients. Only 40% of Parkinson's disease patients showed hyperfrontal pattern. 4) There was no correlation either between the mean rCBF and the severity of Parkinson's disease, or between the mean rCBF and the duration of Parkinson's disease. There was no significant difference between the mean rCBF of Parkinson's disease patients receiving levodopa and that of untreated patients. 5) The mean rCBF decreased in patients with cerebral atrophy on the CT scan. 6) Parkinson's disease patients with intellectual impairment showed cerebral atrophy and a remarkable decrease of the mean rCBF. 7) The effect of aging on cerebral atrophy on the CT scan had to be allowed for, but judging from the decrease of the mean rCBF, the cerebral cortex is evidently involved in Parkinson's disease. 8) The rCBF decline in Parkinson's disease patients may be related with the diminished cortical metabolic rate due to a remote effect of striatal dysfunction and a disturbance of mesocortical dopaminergic pathways.

  14. Role of hypotension in decreasing cerebral blood flow in porcine endotoxemia

    International Nuclear Information System (INIS)

    Miller, C.F.; Breslow, M.J.; Shapiro, R.M.; Traystman, R.J.

    1987-01-01

    The role of reduced arterial blood pressure (MAP) in decreasing cerebral blood flow (CBF) during endotoxemia was studied in pentobarbital-anesthetized pigs. Microspheres were used to measure regional CBF changes during MAP manipulations in animals with and without endotoxin. Endotoxin decreased MAP to 50 mmHg and decreased blood flow to the cortex and cerebellum without affecting cerebral cortical oxygen consumption (CMRo 2 ). Elevating MAP from 50 to 70 mmHg during endotoxemia with norepinephrine did not change cortical blood flow or CMRo 2 but increased cerebellar blood flow. Brain stem blood flow was not affected by endotoxin or norepinephrine. When MAP was decreased to 50 mmHg by hemorrhage without endotoxin, no change in blood flow to cortex, cerebellum, or brain stem was observed from base-line levels. These results suggest that decreased MAP below a lower limit for cerebral autoregulation does not account for the decreased CBF observed after endotoxin

  15. Spreading depression and focal venous cerebral ischemia enhance cortical neurogenesis

    Directory of Open Access Journals (Sweden)

    Ryo Tamaki

    2017-01-01

    Full Text Available Endogenous neurogenesis can arise from a variety of physiological stimuli including exercise, learning, or “enriched environment” as well as pathological conditions such as ischemia, epilepsy or cortical spreading depression. Whether all these conditions use a common trigger to set off endogenous neurogenesis is yet unclear. We hypothesized that cortical spreading depression (CSD induces neurogenesis in the cerebral cortex and dentate gyrus after cerebral venous ischemia. Forty-two Wistar rats alternatively underwent sham operation (Sham, induction of ten CSDs or venous ischemia provoked via occlusion of two adjacent superficial cortical vein followed by ten induced CSDs (CSD + 2-VO. As an additional control, 15 naïve rats received no intervention except 5-bromo-2′-deoxyuridine (BrdU treatment for 7 days. Sagittal brain slices (40 μm thick were co-stained for BrdU and doublecortin (DCX; new immature neuronal cells on day 9 or NeuN (new mature neuronal cells on day 28. On day 9 after sham operation, cell proliferation and neurogenesis occurred in the cortex in rats. The sole induction of CSD had no effect. But on days 9 and 28, more proliferating cells and newly formed neurons in the ipsilateral cortex were observed in rats subjected to CSD + 2VO than in rats subjected to sham operation. On days 9 and 28, cell proliferation and neurogenesis in the ipsilateral dentate gyrus was increased in sham-operated rats than in naïve rats. Our data supports the hypothesis that induced cortical neurogenesis after CSD + 2-VO is a direct effect of ischemia, rather than of CSD alone.

  16. Decreased cerebral blood flow in renal transplant recipients

    International Nuclear Information System (INIS)

    Kamano, Chisako; Komaba, Yuichi; Sakayori, Osamu; Iino, Yasuhiko; Katayama, Yasuo

    2002-01-01

    We performed single-photon emission computed tomography (SPECT) to investigate the influence of renal transplantation on cerebral blood flow (CBF). Fifteen renal transplant recipients and twelve normal subjects underwent cerebral SPECT with N-isopropyl-p-[ 123 I] iodoamphetamine ( 123 I-IMP). All transplant recipients received prednisolone and cyclosporine (CyA). Regional CBF (rCBF) was measured by defining regions of interest in the cerebral cortex, deep white matter, striatum, thalamus, and cerebellum. In transplant recipients, correlations to the mean overall cortical CBF were assessed using the interval from transplantation to measurement of SPECT, as well as the serum creatinine concentration. Moreover, to investigate the influence of CyA on CBF, the correlation between mean overall cortical CBF and CyA trough concentrations was assessed. In all regions, CBF in renal transplant recipients was significantly lower than in normal subjects. No significant correlation was seen between serum creatinine, interval from transplantation, or CyA trough concentrations and mean overall cortical CBF. Renal transplant recipients demonstrated a decrease in CBF, that can have an associated secondary pathology. Therefore, renal transplant recipients may benefit from post-operative MRI or CT. (author)

  17. Effect of caffeine on preterm infants' cerebral cortical activity: an observational study.

    Science.gov (United States)

    Hassanein, Sahar M A; Gad, Ghada I; Ismail, Rania I H; Diab, Mohamed

    2015-01-01

    Our first aim was to investigate the effects of caffeine on preterm infants' respiratory functions and brain cortical activity (conventional and amplitude-integrated electroencephalography (cEEG and aEEG)). Secondary aim was to study its long-term effects on respiratory system and electroencephalographic maturation by 36 weeks post-menstrual age. Prospective observational study on 33 consecutively admitted preterm infants less than 34-weeks-gestation. cEEG and aEEG, cardiopulmonary and sleep state were recorded in 20 preterm infants, before, during and 2-hours after intravenous (IV) caffeine (caffeine Group), and for 13 preterms (control group). Both groups were subjected to assessment of cerebral cortical maturation by cEEG and aEEG at 36-weeks post-menstrual age as an outcome measure. IV caffeine administration significantly increased heart rate (p = 0.000), mean arterial blood pressure (p = 0.000), capillary oxygen saturation (p = 0.003), arousability (p = 0.000) and aEEG continuity (p = 0.002) after half an hour. No clinical seizures were recorded and non-significant difference was found in electrographic seizures activity in cEEG. At 36-weeks post-conceptional age, NICU stay was significantly longer in controls (p = 0.022). aEEG score was significantly higher in caffeine group than the control group, (p = 0.000). Caffeine increases preterm infants' cerebral cortical activity during infusion and results in cerebral cortical maturation at 36weeks, without increase in seizure activity.

  18. Sex differences of human cortical blood flow and energy metabolism

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders

    2017-01-01

    cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral...... cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy...... turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity....

  19. Relation between hippocampal damage and cerebral cortical function in Alzheimer's disease

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Asano, Tetsuichi; Kogure, Daiji; Sakurai, Hirofumi; Iwamoto, Toshihiko; Takasaki, Masaru

    2000-01-01

    We investigated the relation between hippocampal damage and cerebral cortical dysfunction in Alzheimer's disease (AD) using MRI and SPECT. Nineteen patients with AD and 10 control subjects were studied. Hippocampal damage (including hippocampal formation, entorhinal cortex, and parahippocampal white matter) was assessed to evaluate the severity of atrophy and the magnetization transfer ratio (MTR) and cerebral cortical dysfunction was evaluated by quantitative cerebral blood flow (CBF) measurements using SPECT with 99mTc-ECD. Compared with controls, patients with AD had significantly more atrophy of the medial temporal lobe and a decrease in MTRs of the hippocampus and parahippocampus. There were significant correlations between the severity of hippocampal damage and regional CBF in temporoparietal lobes. Mini-Mental State Examination scores significantly correlated with the severity of hippocampal damage and regional CBFs in temporoparietal lobes. These results suggest that the functional effect of hippocampal damage occurs in temporoparietal lobes in AD, probably due to neuronal disconnections between hippocampal areas (including the entorhinal cortex) and temporoparietal lobes. (author)

  20. Cerebral blood flow autoregulation during intracranial hypertension in hypoxic lambs

    International Nuclear Information System (INIS)

    Borel, C.O.; Backofen, J.E.; Koehler, R.C.; Jones, M.D. Jr.; Traystman, R.J.

    1987-01-01

    The authors tested the hypothesis that hypoxic hypoxia interferes with cerebral blood flow (CBF) autoregulation when intracranial pressure (ICP) is elevated in pentobarbital-anesthetized lambs (3 to 9 days old). Cerebral perfusion pressure (CPP) was lowered stepwise from 73 to 23 mmHg in eight normoxic lambs and from 65 to 31 mmHg in eight other hypoxic lambs by ventricular infusion of artificial cerebrospinal fluid. In normoxic lambs, CBF measured by microspheres labeled with six different radioisotopes was not significantly changed over this range of CPP. In animals made hypoxic, base-line CBF was twice that of normoxic lambs. CBF was unchanged as CPP was reduced to 31 mmHg. Lower levels of CPP were not attained because a pressor response occurred with further elevations of ICP. No regional decrements in blood flow to cortical arterial watershed areas or to more caudal regions, such as cerebellum, brain stem, or thalamus, were detected with elevated ICP. Cerebral O 2 uptake was similar in both groups and did not decrease when CPP was reduced. These results demonstrate that normoxic lambs have a considerable capacity for effective autoregulation of CBF when ICP is elevated. Moreover, cerebral vasodilation in response to a level of hypoxia approximating that normally seen prenatally does not abolish CBF autoregulation when ICP is elevated during the first postnatal week

  1. Middle cerebral artery blood velocity during running

    DEFF Research Database (Denmark)

    Lyngeraa, Tobias; Pedersen, Lars Møller; Mantoni, T

    2013-01-01

    for eight subjects, respectively, were excluded from analysis because of insufficient signal quality. Running increased mean arterial pressure and mean MCA velocity and induced rhythmic oscillations in BP and in MCA velocity corresponding to the difference between step rate and heart rate (HR) frequencies....... During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow...

  2. Cerebral blood flow changes in cluster headache

    International Nuclear Information System (INIS)

    Norris, J.W.; Hachinski, V.C.; Cooper, P.W.

    1976-01-01

    Serial cerebral blood flod studies performed by the intra-carotid 133 Xenon method were fortuitously determined during the course of a cluster headache in a 32 year old man. The initial study was performed about 10 min after the headache began and showed values at the upper limit of normal. Twenty min after the headache started a second procedure showed that the autoregulatory response on hyperventilation was normal. Ergotamine tartrate was given intra-muscularly 23 min after the headache began and there was partial relief. A third cerebral blood flow estimation showed abnormally high values. The probable reasons for this are discussed. (author)

  3. Statistical image analysis of cerebral blood flow in moyamoya disease

    International Nuclear Information System (INIS)

    Yamada, Masaru; Yuzawa, Izumi; Suzuki, Sachio; Kurata, Akira; Fujii, Kiyotaka; Asano, Yuji

    2007-01-01

    The Summary of this study was to investigate pathophysiology of moyamoya disease, we analyzed brain single photon emission tomography (SPECT) images of patients with this disease by using interface software for a 3-dimensional (3D) data extraction format. Presenting symptoms were transient ischemic attack (TIA) in 21 patients and hemorrhage in 6 patients. All the patients underwent brain SPECT scan of 123 I-iofetamine (IMP) at rest and after acetazolamide challenge (17 mg/kg iv, 2-day method). Cerebral blood flow (CBF) was quantitatively measured using arterial blood sampling and an autoradiography model. The group of the patients who presented with TIAs showed decreased CBF in the frontal lobe at rest compared to that of patients with hemorrhage, but Z-score ((mean-patient data)/ standard deviation (SD)) did not reach statistical significance. Significant CBF decrease after acetazolamide challenge was observed in a wider cerebral cortical area in the TIA group than in the hemorrhagic group. The brain region of hemodynamic ischemia (stage II) correlated well with the responsible cortical area for clinical symptoms of TIA. A hemodynamic ischemia stage image clearly represented recovery of reserve capacity after bypass surgery. Statistical evaluation of SPECT may be useful to understand and clarify the pathophysiology of this disease. (author)

  4. Regional cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions

  5. Regional cerebral blood flow in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-10-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions.

  6. Cerebral blood flow in acute mountain sickness

    DEFF Research Database (Denmark)

    Jensen, J B; Wright, Anne; Lassen, N A

    1990-01-01

    Changes in cerebral blood flow (CBF) were measured using the radioactive xenon technique and were related to the development of acute mountain sickness (AMS). In 12 subjects, ascending from 150 to 3,475 m, CBF was 24% increased at 24 h [45.1 to 55.9 initial slope index (ISI) units] and 4% increased...

  7. Low cerebral blood flow in hypotensive perinatal distress

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Friis-Hansen, B

    1977-01-01

    was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays...... a crucial role in the development of perinatal hypoxic brain injury....

  8. Cerebral blood flow and metabolism during sleep

    DEFF Research Database (Denmark)

    Madsen, Peter Lund; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness......, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different...... current state identify the physiological processes involved in sleep or the physiological role of sleep....

  9. Cerebral blood flow and metabolism in multi-infarct dementia

    International Nuclear Information System (INIS)

    Ujike, Takashi; Terashi, Akiro; Soeda, Toshiyuki; Kitamura, Shin; Kato, Toshiaki; Iio, Masaaki.

    1985-01-01

    Cerebral blood flow and oxygen metabolism were studied in three aged normal volunteers and 10 patients with multi-infarct dementia (MID) by Positron Emission Tomography using O-15. The diagnosis of MID was done according to the Loeb's modified ischemic score and X-ray CT findings. The MID patients, whose X-ray CT showed localized low density areas in the subcortical white matter and basal ganglia and thalamus, were studied. No occulusion was observed at anterior cerebral artery and/or middle cerebral artery on cerebral angiography. All cases of MID were mild dementias. Regional CBF, rOEF and rCMRO 2 were measured by the steady state technique described by Terry Jones et al. The values of rCBF in MID patients were significantly low compared with those of aged normal subjects in frontal, temporal, occipital, parietal cortices and thalamus. The values of CMRO 2 in MID were significantly low in frontal, temporal, occipital cortices and thalamus compared with normal subjects'. The OEF was 0.46 in aged normal subjects, and 0.52 in MID patients. The MID patients in the early stage of dementia showed the increased oxygen extraction fraction, and this fact suggests that ischemia is a significant pathogenic mechanism in the production and progression of multi-infarct dementia. The decrease of CBF and CMRO 2 in MID compared from normal subjects' were most remarkable in frontal cortex. The impairment of mental functions in MID should be caused by the decreased neuronal activities in frontal association cortex. (author)

  10. Cerebral blood flow variations in CNS lupus

    International Nuclear Information System (INIS)

    Kushner, M.J.; Tobin, M.; Fazekas, F.; Chawluk, J.; Jamieson, D.; Freundlich, B.; Grenell, S.; Freemen, L.; Reivich, M.

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebral ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery

  11. Regional cerebral blood flow in schizophrenics

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, J.; Ohta, Y.; Nakane, Y.; Mori, H.; Hirota, N.; Yonekura, M.

    1987-01-01

    The present study on schizophrenics dealt with the relationship of regional cerebral blood flow (rCBF) to age, disease duration, and treatment length with chlorpromazine hydrochloride (CPZ). Regional cerebral blood flow in 28 cerebral regions of interest was measured by iv injection of /sup 133/X in 54 schizophrenic patients and 39 healthy volunteers. Neither age nor dosage of CPZ significantly influenced rCBF. All patients, including 11 treated for a short period of time (6 months or less), were characterized by having a decreased rCBF over the whole cerebrum. Thirty-four patients treated for a long period of time (2 years or more) had a varied rCBF distribution in the left hemisphere, with the most predominant feature being the decrease in rCBF in the frontal lobe (i.e., hypofrontality); however, there was no linear correlation between rCBF and disease duration. A decreased rCBE in the right occipital region was seen in patients with paranoid schizophrenia, suggesting that manifestations of symptoms may depend on disturbed regions. These results suggest that cerebral dysfunction in schizophrenic patients may not be restricted to the frontal lobe, but cover the whole cerebrum, and that nonuniform dysfunction in various regions of the cerebrum, including the frontal lobe, may be involved in manifestations of symptoms.

  12. Regional cerebral blood flow in schizophrenics

    International Nuclear Information System (INIS)

    Uchino, Jun; Ohta, Yasuyuki; Nakane, Yoshibumi; Mori, Hiroyuki; Hirota, Noriyoshi; Yonekura, Masahiro.

    1987-01-01

    The present study on schizophrenics dealt with the relationship of regional cerebral blood flow (rCBF) to age, disease duration, and treatment length with chlorpromazine hydrochloride (CPZ). Regional cerebral blood flow in 28 cerebral regions of interest was measured by iv injection of X-133 in 54 schizophrenic patients and 39 healthy volunteers. Neither age nor dosage of CPZ significantly influenced rCBF. All patients, including 11 treated for a short period of time (6 months or less), were characterized by having a decreased rCBF over the whole cerebrum. Thirty-four patients treated for a long period of time (2 years or more) had a varied rCBF distribution in the left hemisphere, with the most predominant feature being the decrease in rCBF in the frontal lobe (i.e., ''hypofrontality''); however, there was no linear correlation between rCBF and disease duration. A decreased rCBE in the right occipital region was seen in patients with paranoid schizophrenia, suggesting that manifestations of symptoms may depend on disturbed regions. These results suggest that cerebral dysfunction in schizophrenic patients may not be restricted to the frontal lobe, but cover the whole cerebrum, and that nonuniform dysfunction in various regions of the cerebrum, including the frontal lobe, may be involved in manifestations of symptoms. (Namekawa, K.)

  13. Cerebral blood-flow tomography

    DEFF Research Database (Denmark)

    Lassen, N A; Henriksen, L; Holm, S

    1983-01-01

    . The Xe-133 flow maps are essentially based on the average Xe-133 concentration over the initial 2 min during and after an inhalation of the inert gas lasting 1 min. These maps agreed very well with the early IMP maps obtained over the initial 10 min following an i.v. bolus injection. The subsequent IMP......, and with low radiation exposure to patient and personnel. On the other hand, IMP gives an image of slightly higher resolution. It also introduces a new class of iodinated brain-seeking compounds allowing, perhaps, imaging of other functions more important than mere blood flow....

  14. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo

    1989-01-01

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author)

  15. Regional cerebral blood flow in the patient with brain tumor

    International Nuclear Information System (INIS)

    Tsuchida, Shohei

    1993-01-01

    Regional cerebral blood flow (rCBF) was measured with xenon-enhanced CT (Xe-CT) in 21 cases of intracranial tumors (13 meningiomas, 5 gliomas, 3 metastatic brain tumors). Peritumoral edema was graded as mild, moderate or severe based on the extent of edema on CT and MRI. According to intratumoral blood flow distribution patterns, three patterns were classified as central type with relatively high blood flow at the center of the tumor, homogeneous type with an almost homogeneous blood flow distribution, and marginal type with relatively high blood flow at the periphery of the tumor. High grade astrocytoma and metastatic brain tumor showed marginal type blood flow and moderate or severe edema except in one case. Five meningiomas with severe peritumoral edema revealed marginal type blood flow and four with mild peritumoral edema showed central type blood flow, except for one case. No correlation was found between the extent of peritumoral edema and histological subtype, tumor size, location, duration of clinical history, vascularization on angiogram, and mean blood flow in the tumor. These results suggest that blood flow distribution patterns within the tumor may affect the extension of peritumoral edema. Pre- and postoperative rCBFs were evaluated with Xe-CT and IMP-SPECT in 7 cases, mean rCBF of peritumoral edema was 6.2 ml/100 g/min preoperatively, and discrepancy between rCBF on Xe-CT and that on IMP-SPECT was shown in the remote cortical region ipsilateral to the tumor. Postoperative rCBF revealed an improved blood flow in both adjacent and remote areas, suggesting that the decreased blood flow associated with brain tumors might be relieved after surgery. (author) 53 refs

  16. Cerebral small-resistance artery structure and cerebral blood flow in normotensive subjects and hypertensive patients

    Energy Technology Data Exchange (ETDEWEB)

    De Ciuceis, Carolina; Porteri, Enzo; Rizzoni, Damiano; Boari, Gianluca E.M.; Rosei, Enrico Agabiti [University of Brescia, Clinica Medica, Department of Clinical and Experimental Sciences, Brescia (Italy); Cornali, Claudio; Mardighian, Dikran; Fontanella, Marco M. [University of Brescia, Section of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); Pinardi, Chiara [Spedali Civili, Medical Physics Unit, Brescia (Italy); University of Brescia, Section of Neuroradiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); Rodella, Luigi F.; Rezzani, Rita [University of Brescia, Section of Anatomy, Department of Clinical and Experimental Sciences, Brescia (Italy); Gasparotti, Roberto [University of Brescia, Section of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy); University of Brescia, Section of Neuroradiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Brescia (Italy)

    2014-12-15

    The aim of this study was to prospectively investigate whether the structure of cerebral small-resistance arteries is related to cerebral perfusion parameters as measured with dynamic susceptibility-weighted contrast magnetic resonance imaging (DSC-MRI) in a selected cohort of hypertensive and normotensive patients. Ten hypertensive and 10 normotensive patients were included in the study. All patients underwent neurosurgical intervention for an intracranial tumor and were investigated with DSC-MRI at 1.5 T. Cerebral small-resistance arteries were dissected from a small portion of morphologically normal cerebral tissue and mounted on an isometric myograph for the measurement of the media-to-lumen (M/L) ratio. A quantitative assessment of cerebral blood flow (CBF) and volume (CBV) was performed with a region-of-interest approach. Correlation coefficients were calculated for normally distributed variables. The institutional review board approved the study, and informed consent was obtained from all patients. Compared with normotensive subjects, hypertensive patients had significantly lower regional CBF (mL/100 g/min) in the cortical grey matter (55.63 ± 1.90 vs 58.37 ± 2.19, p < 0.05), basal ganglia (53.34 ± 4.39 vs 58.22. ± 4.33, p < 0.05), thalami (50.65 ± 3.23 vs 57.56 ± 4.45, p < 0.01), subcortical white matter (19.32 ± 2.54 vs 22.24 ± 1.9, p < 0.05), greater M/L ratio (0.099 ± 0.013 vs 0.085 ± 0.012, p < 0.05), and lower microvessel density (1.66 ± 0.67 vs 2.52 ± 1.28, p < 0.05). A statistically significant negative correlation was observed between M/L ratio of cerebral arteries and CBF in the cortical grey matter (r = -0.516, p < 0.05), basal ganglia (r = -0.521, p < 0.05), thalami (r = -0.527 p < 0.05), and subcortical white matter (r = -0.612, p < 0.01). Our results indicate that microvascular structure might play a role in controlling CBF, with possible clinical consequences. (orig.)

  17. Regional cerebral blood flow in schizophrenic patients

    International Nuclear Information System (INIS)

    Sagawa, Katsuo; Sibuya, Isoo; Oiji, Arata; Kawakatsu, Sinobu; Morinobu, Shigeru; Totsuka, Shiro; Kinoshita, Osami; Yazaki, Mitsuyasu.

    1990-01-01

    Seventy-six schizophrenic patients were examined by a Xe-133 inhalation method to determine regional cerebral blood flow. A decreased blood flow was observed in the frontal lobe, especially in the right inferior part. In a study on the relationship between disease subtypes and regional cerebral blood flow, negative symptoms were found more predominantly associated with dissolution type than delusion type. In the group of dissolution type, a decreased blood flow was observed in both the right inferior frontal lobe and the right upper hemisphere, in comparison to the group of delution type. Patients presenting with auditory hallucination had a significantly higher incidence of both negative and positive symptoms, as compared with those not presenting with it. In such patients, a significantly decreased blood flow was also seen in the left upper frontal lobe and the bilateral parietal lobe. Xe-133 inhalation method should assist in evaluating brain function in schizophrenic patients, thus leading to the likelihood of developing a new treatment modality. (N.K.)

  18. Preliminary studies of regional cerebral blood flow changes in patients with leukoaraiosis

    International Nuclear Information System (INIS)

    Li Yaming; Ren Yan; He Qiu

    1997-01-01

    PURPOSE: To investigate changes of regional cerebral blood flow (rCBF) in leukoaraiosis (LA) lesion and cortical regions and analyse the relation between rCBF changes and dementia. METHODS: Regional cerebral blood flow perfusion imaging with SPECT was performed in 49 patients with subcortical multiple cerebral infarction, including 24 cases company LA [LA(+)], 25 cases not company LA[LA(-)] and 10 normal subjects. The relative analysis was made between rCBF changes and cognitive scores. RESULTS: Compared the LA(+) with control, the rCBFs in frontal, parietal, temporal cortexes and LA lesion significantly decreased (P<0.05). The rCBF of frontal, parietal cortexes and LA lesions was also significantly decreased (P<0.05) compared with LA(-) groups. The cognitive scores were significantly related with rCBF changes in frontal cortex and LA lesion (r = 0.765, P<0.01 and r = 0.439, P<0.05). CONCLUSION: In patients with subcortical multiple cerebral infarction company LA lesion, there were extensive ischemic hypoperfusion changes in the cortical regions and LA lesion, which may response to decreased cerebral function and had certain relationship with dementia. The examination with SPECT cerebral blood flow perfusion imaging had unique advantage and value

  19. Alterations in behaviour, cerebral cortical morphology and cerebral oxidative stress markers following aspartame ingestion.

    Science.gov (United States)

    Onaolapo, Adejoke Y; Onaolapo, Olakunle J; Nwoha, Polycarp U

    2016-12-01

    The study evaluated changes in open field behaviours, cerebral cortical histomorphology and biochemical markers of oxidative stress following repeated administration of aspartame in mice. Adult mice were assigned into five groups of twelve each. Vehicle (distilled water), or aspartame (20, 40, 80 and 160mg/kg body weight) were administered orally for 28days. Horizontal locomotion, rearing and grooming were assessed after the first and last dose of aspartame. Sections of the cerebral cortex were processed and stained for general histology, and also examined for neuritic plaques using the Bielschwosky's protocol. Glial fibrillary acidic protein (GFAP) and neuron specific enolase (NSE) immunoreactivity were assessed using appropriate antibodies. Aspartate and antioxidant levels were also assayed from cerebral cortex homogenates. Data obtained were analysed using descriptive and inferential statistics. Body weight and food consumption decreased significantly with aspartame consumption. Locomotion, rearing and grooming increased significantly after first dose, and with repeated administration of aspartame. Histological changes consistent with neuronal damage were seen at 40, 80 and 160mg/kg. Neuritic plaque formation was not evident; while GFAP-reactive astrocytes and NSE-reactive neurons increased at 40 and 80mg/kg but decreased at 160mg/kg. Superoxide dismutase and nitric oxide increased with increasing doses of aspartame, while aspartate levels showed no significant difference. The study showed morphological alterations consistent with neuronal injury and biochemical changes of oxidative stress. These data therefore supports the need for caution in the indiscriminate use of aspartame as a non-nutritive sweetener. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Relationship between relative cerebral blood flow, relative cerebral blood volume, and relative cerebral metabolic rate of oxygen in the preterm neonatal brain.

    Science.gov (United States)

    Nourhashemi, Mina; Kongolo, Guy; Mahmoudzadeh, Mahdi; Goudjil, Sabrina; Wallois, Fabrice

    2017-04-01

    The mechanisms responsible for coupling between relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and relative cerebral metabolic rate of oxygen ([Formula: see text]), an important function of the microcirculation in preterm infants, remain unclear. Identification of a causal relationship between rCBF-rCBV and [Formula: see text] in preterms may, therefore, help to elucidate the principles of cortical hemodynamics during development. We simultaneously recorded rCBF and rCBV and estimated [Formula: see text] by two independent acquisition systems: diffuse correlation spectroscopy and near-infrared spectroscopy, respectively, in 10 preterms aged between 28 and 35 weeks of gestational age. Transfer entropy was calculated in order to determine the directionality between rCBF-rCBV and [Formula: see text]. The surrogate method was applied to determine statistical significance. The results show that rCBV and [Formula: see text] have a predominant driving influence on rCBF at the resting state in the preterm neonatal brain. Statistical analysis robustly detected the correct directionality of rCBV on rCBF and [Formula: see text] on rCBF. This study helps to clarify the early organization of the rCBV-rCBF and [Formula: see text] inter-relationship in the immature cortex.

  1. Symptom correlates of cerebral blood flow following acute concussion

    Directory of Open Access Journals (Sweden)

    Nathan W. Churchill

    Full Text Available Concussion is associated with significant symptoms within hours to days post-injury, including disturbances in physical function, cognition, sleep and emotion. However, little is known about how subjective impairments correlate with objective measures of cerebrovascular function following brain injury. This study examined the relationship between symptoms and cerebral blood flow (CBF in individuals following sport-related concussion. Seventy university level athletes had CBF measured using Arterial Spin Labelling (ASL, including 35 with acute concussion and 35 matched controls and their symptoms were assessed using the Sport Concussion Assessment Tool 3 (SCAT3. For concussed athletes, greater total symptom severity was associated with elevated posterior cortical CBF, although mean CBF was not significantly different from matched controls (p=0.46. Examining symptom clusters, athletes reporting greater cognitive symptoms also had lower frontal and subcortical CBF, relative to athletes with greater somatic symptoms. The “cognitive” and “somatic” subgroups also exhibited significant differences in CBF relative to controls (p≤0.026. This study demonstrates objective CBF correlates of symptoms in recently concussed athletes and shows that specific symptom clusters may have distinct patterns of altered CBF, significantly extending our understanding of the neurobiology of concussion and traumatic brain injury. Keywords: Sport concussion, Cerebral blood flow, ASL, Symptoms

  2. Cerebral blood flow in normal pressure hydrocephalus

    International Nuclear Information System (INIS)

    Mamo, H.L.; Meric, P.C.; Ponsin, J.C.; Rey, A.C.; Luft, A.G.; Seylaz, J.A.

    1987-01-01

    A xenon-133 method was used to measure cerebral blood flow (CBF) before and after cerebrospinal fluid (CSF) removal in patients with normal pressure hydrocephalus (NPH). Preliminary results suggested that shunting should be performed on patients whose CBF increased after CSF removal. There was a significant increase in CBF in patients with NPH, which was confirmed by the favorable outcome of 88% of patients shunted. The majority of patients with senile and presenile dementia showed a decrease or no change in CBF after CSF removal. It is suggested that although changes in CBF and clinical symptoms of NPH may have the same cause, i.e., changes in the cerebral intraparenchymal pressure, there is no simple direct relation between these two events. The mechanism underlying the loss of autoregulation observed in NPH is also discussed

  3. Scaling of cerebral blood perfusion in primates and marsupials.

    Science.gov (United States)

    Seymour, Roger S; Angove, Sophie E; Snelling, Edward P; Cassey, Phillip

    2015-08-01

    The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates. © 2015. Published by The Company of Biologists Ltd.

  4. Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL

    International Nuclear Information System (INIS)

    Jouvent, E.; Bousser, M.G.; Chabriat, H.; Jouvent, E.; Bousser, M.G.; Chabriat, H.; Porcher, R.; Viswanathan, A.; Viswanathan, A.; Viswanathan, A.; O'Sullivan, M.; Dichgans, M.; Guichard, J.P.

    2008-01-01

    Brain atrophy represents a key marker of disease progression in cerebrovascular disorders. The 3D changes of cortex morphology occurring during the course of small vessel diseases of the brain (SVDB) remain poorly understood. The objective of this study was to assess the changes affecting depth and surface area of cortical sulci and their clinical and radiological correlates in a cohort of patients with cerebral autosomal dominant arteriolopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic SVDB. Data were obtained from a series of 69 CADASIL patients. Validated methods were used to determine depth and surface area of four cortical sulci. The ratio of brain to intracranial cavity volumes (brain parenchymal fraction-BPF), volume of lacunar lesions (LL) and of white matter hyper-intensities, number of cerebral micro-haemorrhages, and mean apparent diffusion coefficient were also measured. Association between depth and surface area of the cortical sulci and BPF, clinical status and subcortical MRI lesions were tested. Depth and surface area of cortical sulci obtained in 54 patients were strongly correlated with both cognitive score and disability scales. Depth was related to the extent of subcortical lesions, surface area was related only to age. In additional analyses, the depth of the cingular sulcus was independently associated with the volume of LL (P 0.001), and that of the superior frontal sulcus with the mean apparent diffusion coefficient (P 0.003). In CADASIL, important morphological changes of cortical sulci occur in association with clinical worsening,extension of subcortical tissue damage and progression of global cerebral atrophy. These results suggest that the examination of cortical morphology may be of high clinical relevance in SVDB. (authors)

  5. APC sets the Wnt tone necessary for cerebral cortical progenitor development.

    Science.gov (United States)

    Nakagawa, Naoki; Li, Jingjun; Yabuno-Nakagawa, Keiko; Eom, Tae-Yeon; Cowles, Martis; Mapp, Tavien; Taylor, Robin; Anton, E S

    2017-08-15

    Adenomatous polyposis coli (APC) regulates the activity of β-catenin, an integral component of Wnt signaling. However, the selective role of the APC-β-catenin pathway in cerebral cortical development is unknown. Here we genetically dissected the relative contributions of APC-regulated β-catenin signaling in cortical progenitor development, a necessary early step in cerebral cortical formation. Radial progenitor-specific inactivation of the APC-β-catenin pathway indicates that the maintenance of appropriate β-catenin-mediated Wnt tone is necessary for the orderly differentiation of cortical progenitors and the resultant formation of the cerebral cortex. APC deletion deregulates β-catenin, leads to high Wnt tone, and disrupts Notch1 signaling and primary cilium maintenance necessary for radial progenitor functions. β-Catenin deregulation directly disrupts cilium maintenance and signaling via Tulp3, essential for intraflagellar transport of ciliary signaling receptors. Surprisingly, deletion of β-catenin or inhibition of β-catenin activity in APC-null progenitors rescues the APC-null phenotype. These results reveal that APC-regulated β-catenin activity in cortical progenitors sets the appropriate Wnt tone necessary for normal cerebral cortical development. © 2017 Nakagawa et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Psychiatric and subjective symptoms and cerebral blood flow in patients with chronic cerebral infarction after treatment with Ca antagonist (nilvadipine). Quantitative measurement of cerebral blood flow by the 123IMP-SPECT ARG method

    International Nuclear Information System (INIS)

    Sakayori, Osamu; Kitamura, Shin; Mishina, Masahiro; Yamazaki, Mineo; Terashi, Akirou

    1997-01-01

    Psychiatric and subjective symptoms such as headache, dizziness, lack of spontaneity, anxiety, and a depressive state are often found in patients with chronic cerebral infarction. Some Ca antagonists are reported to relieve such symptoms. The purpose of the present study was to investigate the relationship between psychiatric and subjective symptoms and cerebral blood flow (CBF) in cerebral infarction and to evaluate the clinical effects of Ca antagonists from the standpoint of the cerebral circulation. Nilvadipine was administered to is patients with chronic cerebral infarction and their CBF was measured by the 123 IMP-SPECT ARG method before and at 8 weeks after the nilvadipine treatment. The CBF in patients with hypertension was increased by 11% after giving nilvadipine. Patients without hypertension showed no tendency for elevation of their CBF. Patients who were relieved from some psychiatric symptoms revealed a 14% increase of CBF in all cortical regions, and a significant increase was noted in the frontal and temporal regions. In other patients without changes in psychiatric symptoms, the CBF did not increase in any of the cortical regions. No relationship between symptoms and CBF was observed in any of the patients with subjective symptoms. Our study demonstrated a close correlation between psychiatric symptoms and CBF. We speculate that psychiatric symptoms in chronic cerebral infarction may reflect diffuse brain dysfunctions. We also conclude that nilvadipine is more effective in relieving psychiatric symptoms in patients with hypertensive cerebral infarction. It is inferred that nilvadipine may be more effective in relieving psychiatric symptoms in patients with hypertension. (author)

  7. Regional cerebral blood flow in diabetic patients

    International Nuclear Information System (INIS)

    Nagamachi, Shigeki; Ono, Shinnichi; Nishikawa, Takushi

    1993-01-01

    N-isopropyl-p- 123 I-iodoamphetamine (IMP) was used to quantify the regional cerebral blood flow (r-CBF) in 11 diabetic patients (average age; 67.9 years) and 12 non-diabetic subjects (average age; 67.4 years), none of whom had (cerebrovascular disease (CVD) on CT studies. A reference sampling method by continuous arterial blood sampling was used to quantify r-CBF. There were no significant differences in physiological or laboratory data between diabetic and non-diabetic groups except for fasting plasma glucose and HbA 1c levels. The average of r-CBF in each region of cerebrum and cerebellum was significantly lower in diabetic group than that in the control group (p<0.01). These observations show that r-CBF of diabetic patients is reduced, even in the absence of findings of CVD on a CT study. (author)

  8. Disodium cromoglycate, a mast-cell stabilizer, alters postradiation regional cerebral blood flow in primates

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Doyle, T.F.; Pautler, E.L.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure, and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with systemic hypotension and a dramatic release of mast-cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomena and the postradiation decrease in cerebral blood flow, primates were given the mast-cell stabilizers disodium cromoglycate (DSCG) or BRL 22321 before exposure to 100 Gy whole-body gamma radiation. Hypothalamic and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. The data indicated that DSCG was successful in diminishing postradiation decrease in cerebral blood flow. Irradiated animals pretreated with DSCG, showed only a 10% decrease in hypothalamic blood flow 60 min postradiation, while untreated, irradiated animals showed a 57% decrease. The cortical blood flow of DSCG treated, irradiated animals showed a triphasic response, with a decrease of 38% at 10 min postradiation, then a rise to 1% below baseline at 20 min, followed by a fall to 42% below baseline by 50 min postradiation. In contrast, the untreated, irradiated animals showed a steady decrease in cortical blood flow to 79% below baseline by 50 min postradiation. There was no significant difference in blood-pressure response between the treated and untreated, irradiated animals. Systemic blood pressure showed a 60% decrease at 10 min postradiation, falling to a 71% decrease by 60 min

  9. Effect of growth hormone on glycogenesis in rat cerebral cortical slices

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Azad, V.S.S.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    Incubation of cerebral cortical slices of growth hormone treated diabetic and normal rats with U- 14 C glucose showed a two-fold increase in glycogenesis in diabetic rats. Glucose-6-phosphatase activity was lowered while the activities of phosphoglucomutase and phosphorylase were elevated in the cerebral cortex of diabetic rats treated with growth hormone. However, glycogen synthetase activity was slightly depressed. (author). 13 refs., 2 tabs

  10. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise

    DEFF Research Database (Denmark)

    Madsen, P L; Sperling, B K; Warming, T

    1993-01-01

    Results obtained by the 133Xe clearance method with external detectors and by transcranial Doppler sonography (TCD) suggest that dynamic exercise causes an increase of global average cerebral blood flow (CBF). These data are contradicted by earlier data obtained during less-well-defined conditions....... To investigate this controversy, we applied the Kety-Schmidt technique to measure the global average levels of CBF and cerebral metabolic rate of oxygen (CMRO2) during rest and dynamic exercise. Simultaneously with the determination of CBF and CMRO2, we used TCD to determine mean maximal flow velocity...... in the middle cerebral artery (MCA Vmean). For values of CBF and MCA Vmean a correction for an observed small drop in arterial PCO2 was carried out. Baseline values for global CBF and CMRO2 were 50.7 and 3.63 ml.100 g-1.min-1, respectively. The same values were found during dynamic exercise, whereas a 22% (P

  11. Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation

    DEFF Research Database (Denmark)

    Friberg, L; Olsen, T S; Roland, P E

    1985-01-01

    This study is an attempt to reveal projection areas for vestibular afferents to the human brain. Changes in regional cerebral blood flow (rCBF) were measured over 254 cortical regions during caloric vestibular stimulation with warm water (44 degrees C). rCBF was measured when the external auditory...... meatus was irrigated with water at body temperature as a control to vestibular stimulation. During vestibular stimulation there was only a single cortical area, located in the superior temporal region, which showed a consistent focal activation in the hemisphere contralateral to the stimulated side...... stimulation that gives rise to the associated conscious vestibular sensation of vertigo....

  12. Regional cerebral blood flow and oxygen metabolism in normal pressure hydrocephalus after subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Taki, Waro; Kobayashi, Akira; Nishizawa, Sadahiko; Yonekura, Yoshiharu; Konishi, Junji [Kyoto Univ. (Japan). Faculty of Medicine

    1989-05-01

    To clarify the pathophysiology of normal pressure hydrocephalus (NPH) after subarachnoid hemorrhage, the authors measured cerebral blood flow (CBF), cerebral oxygen metabolic rates (CMRO{sub 2}), the cerebral oxygen extraction fraction (OEF), and cerebral blood volume (CBV) in eight normal volunteers, six SAH patients with NPH, and seven patients without NPH by {sup 15}O-labeled gas and positron emission tomography (PET). In the NPH group, PET revealed a decrease in CBF in the lower regions of the cerebral cortex and a diffuse decrease in CMRO{sub 2}. The decrease in CBF in the lower frontal, temporal, and occipital cortices was significantly greater in the NPH than in the non-NPH group. Reduction of CMRO{sub 2} was also more extensive in the NPH group, and both CBF and CMRO{sub 2} were more markedly decreased in the lower frontal region. OEF was increased in all areas in both of the patient groups, but the increase was not significant in most areas. CBF, CMRO{sub 2} and OEF did not significantly differ between the non-NPH group and the normal volunteers. There was no significant difference in CBV among the three groups. These results indicate that NPH involves impairment of cerebral oxygen metabolism in the lower regions of the cerebral cortex, particularly in the lower frontal region. (author).

  13. Low cerebral blood flow in hypotensive perinatal distress

    International Nuclear Information System (INIS)

    Lou, H.C.; Lassen, N.A.; Friis-Hansen, B.

    1977-01-01

    Hypoxic brain injury is the most important neurological problem in the neonatal period and accounts for more neurological deficits in children than any other lesion. The neurological deficits are notably mental retardation, epilepsy and cerebral palsy. The pathogenesis has hitherto been poorly understood. Arterial hypoxia has been taken as the obvious mechanism but this does not fully explain the patho-anatomical findings. In the present investigation we have examined the arterial blood pressure and the cerebral blood flow in eight infants a few hours after birth. The 133Xe clearance technique was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays a crucial role in the development of perinatal hypoxic brain injury. (author)

  14. Regional cerebral blood flow and periventricular hyperintensity in silent cerebral infarction. Comparison with multi-infarct dementia

    International Nuclear Information System (INIS)

    Koshi, Yasuhiko; Kitamura, Shin; Nagazumi, Atushi; Tsuganesawa, Toshikazu; Terashi, Akiro

    1996-01-01

    In order to investigate relationship between regional cerebral blood flow (rCBF) and the white matter lesions on MRI in silent cerebral infarction, we quantitatively measured rCBF by 123 I-IMP autoradiography method (IMP ARG method) and single photon emission tomography (SPECT) in 36 patients with silent cerebral infarction (SCI group), 22 patients with multi-infarct dementia (MID group), and 16 control subjects without periventricular hyperintensity (PVH) and lacunar infarction on MRI (CL group). Regions of interest (ROIs) on rCBF images were set in the frontal (F), temporal (T), parietal (P), occipital (O) cortex, and the cerebral white matter (W). The severity of PVH on MRI T 2 -weighted image was divided into four grades (grade 0-3). Though the frequency of hypertension was significantly higher in SCI group and MID group compared with CL group, no significant difference was seen in the mean age among these three groups. rCBF in the white matter and cerebral cortices except the occipital cortex in SCI group was significantly low compared with CL group (rCBF SCI /rCBF CL : W 0.87, F 0.87, T 0.87, P 0.88, O 0.92). rCBF in the white matter and cerebral cortices, especially in the white matter and frontal cortex, in MID group was significantly low compared with SCI group (rCBF MID /rCBF CL : W 0.69, F 0.71, T 0.74, P 0.75, O 0.81). The mean grade of PVH in MID group was significantly higher than that in SCI group (SCI 1.1 vs MID 2.5). The severity of PVH was significantly correlated with each rCBF in the white matter and cerebral cortices, especially in the white matter and frontal cortex. Our findings suggest that the quantitative measurement of rCBF by IMP ARG method is useful for the follow-up study in the patients with silent cerebral infarction as well as the evaluation of the severity of PVH on MRI. (author)

  15. Gender differences in regional cerebral blood flow

    International Nuclear Information System (INIS)

    Gur, R.E.; Gur, R.C.

    1990-01-01

    Gender differences have been noted in neurobehavioral studies. The 133xenon inhalation method for measuring regional cerebral blood flow (rCBF) can contribute to the understanding of the neural basis of gender differences in brain function. Few studies have examined gender differences in rCBF. In studies of normal subjects, women have higher rates of CBF than men, and this is related to age. Usually by the sixth decade men and women have similar flow rates. Fewer studies on rCBF in schizophrenia have examined sex differences. The pattern of higher flows for females maintains, but its correlates with gender differences in clinical as well as other parameters of brain function remain to be examined

  16. Quantitative measurement of the cerebral blood flow

    International Nuclear Information System (INIS)

    Houdart, R.; Mamo, H.; Meric, P.; Seylaz, J.

    1976-01-01

    The value of the cerebral blood flow measurement (CBF) is outlined, its limits are defined and some future prospects discussed. The xenon 133 brain clearance study is at present the most accurate quantitative method to evaluate the CBF in different regions of the brain simultaneously. The method and the progress it has led to in the physiological, physiopathological and therapeutic fields are described. The major disadvantage of the method is shown to be the need to puncture the internal carotid for each measurement. Prospects are discussed concerning methods derived from the same general principle but using a simpler, non-traumatic way to introduce the radio-tracer, either by breathing into the lungs or intraveinously [fr

  17. Regional cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Kanoh, Masayuki

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured at rest using the 133 Xe inhalation technique in 40 DSM-III-diagnosed schizophrenics (22 males, 18 females: mean age 35.0 years, range 20-49 years) and 31 age-and sex-matched normal controls (16 males, 15 females: mean age 34.3 years, range 21-49 years). The absolute value (AV) and the percent value (PV) of the rCBF in schizophrenics were compared with those in controls. Correlations between rCBF and the Brief Psychiatric Rating Scale (BPRS) scores or the performance of Wisconsin Card Sorting Test (WCST) were examined in schizophrenics. Schizophrenics showed significantly lower AVs in all brain regions examined and a significantly lower PV in the left superior frontal region than controls. The hyperfrontal rCBF distribution which was found in both hemispheres in controls, was absent in the left hemisphere in schizophrenics. In schizophrenics, superior frontal blood flows were significantly negatively correlated with the negative symptom scores of the BPRS but not with the total scores and the positive symptom scores of the BPRS. In schizophrenics, inferior frontal blood flows were significantly correlated with the number of sorting categories achieved. These results indicate that rCBF in schizophrenia is reduced in the whole brain and especially in the left superior frontal region. These findings suggest a frontal lobe dysfunction in schizophrenia. (author)

  18. Cerebral blood volume alterations during fractional pneumoencephalography

    International Nuclear Information System (INIS)

    Voigt, K.; Greitz, T.

    1976-01-01

    Simultaneous and continuous measurements of the cerebral blood volume (CBV), cerebrospinal fluid (CSF) and blood pressure were carried out in six patients during fractional pneumoencephalography in order to examine intracranial volumetric interactions. Three patients (Group A) showed normal encephalographic findings, and in three patients (Group B) communicating hydrocephalus with convexity block was found encephalographically. In all patients the injection of air was followed by an immediate increase of CSF pressure and blood pressure and a concomitant decrease of CBV. The initial CSF pressure was invariably re-established within 3 to 3.5 min. During this time interval the CBV of the patients of Group B decreased significantly and 30 percent more than that of Group A. Furthermore, after restoration of the original CSF pressure, CBV returned to its initial level in all patients of Group A, whereas it remained unchanged or showed a further decrease in the patients of Group B. Removal of an amount of CSF corresponding to half of the amount of injected air was followed by a significant reactive hyperemic response in two normal patients. The intracranial volumetric alterations during fractional pneumoencephalography are discussed in detail with respect to the underlying physiologic mechanisms and are suggested as a model for acute and low pressure hydrocephalus

  19. Daily rhythm of cerebral blood flow velocity

    Directory of Open Access Journals (Sweden)

    Spielman Arthur J

    2005-03-01

    Full Text Available Abstract Background CBFV (cerebral blood flow velocity is lower in the morning than in the afternoon and evening. Two hypotheses have been proposed to explain the time of day changes in CBFV: 1 CBFV changes are due to sleep-associated processes or 2 time of day changes in CBFV are due to an endogenous circadian rhythm independent of sleep. The aim of this study was to examine CBFV over 30 hours of sustained wakefulness to determine whether CBFV exhibits fluctuations associated with time of day. Methods Eleven subjects underwent a modified constant routine protocol. CBFV from the middle cerebral artery was monitored by chronic recording of Transcranial Doppler (TCD ultrasonography. Other variables included core body temperature (CBT, end-tidal carbon dioxide (EtCO2, blood pressure, and heart rate. Salivary dim light melatonin onset (DLMO served as a measure of endogenous circadian phase position. Results A non-linear multiple regression, cosine fit analysis revealed that both the CBT and CBFV rhythm fit a 24 hour rhythm (R2 = 0.62 and R2 = 0.68, respectively. Circadian phase position of CBT occurred at 6:05 am while CBFV occurred at 12:02 pm, revealing a six hour, or 90 degree difference between these two rhythms (t = 4.9, df = 10, p Conclusion In conclusion, time of day variations in CBFV have an approximately 24 hour rhythm under constant conditions, suggesting regulation by a circadian oscillator. The 90 degree-phase angle difference between the CBT and CBFV rhythms may help explain previous findings of lower CBFV values in the morning. The phase difference occurs at a time period during which cognitive performance decrements have been observed and when both cardiovascular and cerebrovascular events occur more frequently. The mechanisms underlying this phase angle difference require further exploration.

  20. Cerebral circulation, metabolism, and blood-brain barrier of rats in hypocapnic hypoxia

    International Nuclear Information System (INIS)

    Beck, T.; Krieglstein, J.

    1987-01-01

    The effects of hypoxic hypoxia on physiological variables, cerebral circulation, cerebral metabolism, and blood-brain barrier were investigated in conscious, spontaneously breathing rats by exposing them to an atmosphere containing 7% O 2 . Hypoxia affected a marked hypotension, hypocapnia and alkalosis. Cortical tissue high-energy phosphates and glucose content were not affected by hypoxia, glucose 6-phosphate lactate, and pyruvate levels were significantly increased. Blood-brain barrier permeability, regional brain glucose content and lumped constant were not changed by hypoxia. Local cerebral glucose utilization (LCGU) rose by 40-70% of control values in gray matter and by 80-90% in white matter. Under hypoxia, columns of increased and decreased LCGU and were detectable in cortical gray matter. Color-coded [ 14 C]2-deoxy-D-glucose autoradiograms of rat brain are shown. Local cerebral blood flow (LCBF) increased by 50-90% in gray matter and by up to 180% in white matter. Coupling between LCGU and LCBF in hypoxia remained unchanged. The data suggests a stimulation of glycolysis, increased glucose transport into the cell, and increased hexokinase activity. The physiological response of gray and white matter to hypoxia obviously differs. Uncoupling of the relation between LCGU and LCBF does not occur

  1. Cerebral blood flow in patients with hypertensive intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Sugiyama, Hirotaka

    1984-01-01

    Cerebral blood flow (CBF) is usually decreased in patients with hypertensive intracerebral hemorrhage. A total of 81 regional CBF measurements were performed using an Anger-type dynamic gamma camera with the Xe-133 intracarotid injection technique in 23 patients with thalamic hemorrhage, 18 with small putaminal hemorrhage, and 5 with large putaminal hemorrhage. The results were as follows: Bilateral CBF in thalamic hemorrhages was markedly reduced from 1 week to 2 or 3 weeks after onset; it then showed a tendency to increase from 4 weeks to 3 months. In putaminal hemorrhages, however, CBF in the affected hemisphere did not tend to increase despite increased CBF in the contralateral hemisphere. CBF of the affected hemisphere was plotted against the hematoma volume, and the biphasic curve showed an initial steep and subsequent gentle slope in both putaminal and thalamic hemorrhages. The degree of CBF reduction in the affected hemisphere was more evident in thalamic than in putaminal hemorrhages. However, the flow reduction in the contralateral hemisphere was more obvious in thalamic than in putaminal hemorrhages. Factors such as mean arterial blood pressure, partial pressure of arterial carbon dioxide, cerebrospinal fluid pressure, hematocrit and the degree of involvement of the internal capsule, as shown on CT scan were not directly related to CBF reduction. In conclusion, it is unlikely that the mass effect of the hematoma plays an important role in the discrepancy between CBF reduction in putaminal and thalamic hemorrhages. Rather, the discrepancy may result from the impairment of respective anatomical sites in the thalamic and putaminal regions. It is also suggested that ipsilateral as well as contralateral CBF reduction is probably caused by the decreased cortical metabolic demand. This may be based on the disruption of the transneural fiber pathways, which connect both the thalamus and putamen to the cerebral cortex. (author)

  2. Intensive Blood Pressure Control Affects Cerebral Blood Flow in Type 2 Diabetes Mellitus Patients

    NARCIS (Netherlands)

    Kim, Yu-Sok; Davis, Shyrin C. A. T.; Truijen, Jasper; Stok, Wim J.; Secher, Niels H.; van Lieshout, Johannes J.

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic

  3. Regional cerebral blood flow in childhood headache

    International Nuclear Information System (INIS)

    Roach, E.S.; Stump, D.A.

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured in 16 cranial regions in 23 children and adolescents with frequent headaches using the non-invasive Xenon-133 inhalation technique. Blood flow response to 5% carbon dioxide (CO2) was also determined in 21 patients, while response to 50% oxygen was measured in the two patients with hemoglobinopathy. Included were 10 patients with a clinical diagnosis of migraine, 4 with musculoskeletal headaches, and 3 with features of both types. Also studied were 2 patients with primary thrombocythemia, 2 patients with hemoglobinopathy and headaches, 1 patient with polycythemia, and 1 with headaches following trauma. With two exceptions, rCBF determinations were done during an asymptomatic period. Baseline rCBF values tended to be higher in these young patients than in young adults done in our laboratory. Localized reduction in the expected blood flow surge after CO2 inhalation, most often noted posteriorly, was seen in 8 of the 13 vascular headaches, but in none of the musculoskeletal headache group. Both patients with primary thrombocythemia had normal baseline flow values and altered responsiveness to CO2 similar to that seen in migraineurs; thus, the frequently reported headache and transient neurologic signs with primary thrombocythemia are probably not due to microvascular obstruction as previously suggested. These data support the concept of pediatric migraine as a disorder of vasomotor function and also add to our knowledge of normal rCBF values in younger patients. Demonstration of altered vasomotor reactivity to CO2 could prove helpful in children whose headache is atypical

  4. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Asao, Chiaki [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical Sciences, Department of Diagnostic Radiology, Kumamoto (Japan); Yoshimatsu, Shunji [National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Matsukawa, Tetsuya; Imuta, Masanori [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); Sagara, Katsuro [Kumamoto Regional Medical Center, Department of Internal Medicine, Kumamoto (Japan)

    2008-03-15

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  5. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Asao, Chiaki; Hirai, Toshinori; Yamashita, Yasuyuki; Yoshimatsu, Shunji; Matsukawa, Tetsuya; Imuta, Masanori; Sagara, Katsuro

    2008-01-01

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  6. Relationship between blood uric and acute cerebral infarction

    International Nuclear Information System (INIS)

    Yin Zhanxia; Zhao Danyang

    2011-01-01

    Objective: To study the relationship between blood uric acid and acute cerebral infarction. Methods: The level of blood uric acid and prevalence of hyperuricemia (HUA) were compared in 360 patients with acute cerebral infarction and 300 patients without it. According to the level of blood uric acid, 360 acute cerebral infarction patients were divided into HUA and normouricemia (NUA) groups. Age, sex, body mass index (BMI), blood glucose and total cholesterol were compared between the HUA and NUA group. The degree of neurological functional defection was compared between the two groups when patients were attacked by acute cerebral infarction. After a recovery treatment, the neurological functional defection of the two groups was compared a second time. Results: (1)The average blood uric acid level and prevalence of HUA were higher in patients with acute cerebral infarction. (2) The BMI, blood glucose and total cholesterol were higher in HUA group than in NUA group. (3) The neurological functional defection was more serious in HUA group when patients were attacked by acute cerebral infarction and after a recovery treatment. Conclusion: Hyperuricemia is related to acute cerebral infarction. (authors)

  7. Patient state index and cerebral blood flow changes during shoulder arthroscopy in beach chair position.

    Science.gov (United States)

    Buget, Mehmet Ilke; Atalar, Ata Can; Edipoglu, Ipek Saadet; Sungur, Zerrin; Sivrikoz, Nukhet; Karadeniz, Meltem; Saka, Esra; Kucukay, Suleyman; Senturk, Mert N

    2016-01-01

    The aim of the study were to demonstrate the possible hemodynamic changes and cerebral blood flow alterations in patients who were positioned from supine to beach chair position; and to detect if the position change causes any cortical activity alteration as measured by the 4-channeled electroencephalography monitor. 35 patients were included. Before the induction, mean arterial pressure and patient state index values were recorded (T0). After the intubation, doppler-ultrasonography of the patients' internal carotid and vertebral arteries were evaluated to acquire cerebral blood flow values from the formula. In supine position, mean arterial pressure, patient state index and cerebral blood flow values were recorded (T1) and the patient was positioned to beach chair position. After 5min all measurements were repeated (T2). Measurements of patient state index and mean arterial pressure were repeated after 20 (T3), and 40 (T4)min. There was a significant decrease between T0 and T1 in heart rate (80.5±11.6 vs. 75.9±14.4beats/min), MAP (105.8±21.9 vs. 78.9±18.4mmHg) and PSI (88.5±8.3 vs. 30.3±9.7) (all pstate index values (T1-T4) showed no significant change; however, comparing only T1 and T2 resulted in a statically significant decrease in patient state index. There was a significant decrease in cerebral blood flow after beach chair position. Beach chair position was associated with a decrease in cerebral blood flow and patient state index values. Patient state index was affected by the gravitational change of the cerebral blood flow; however, both factors were not directly correlated to each other. Moreover, the decrease in patient state index value was transient and returned to normal values within 20min. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. [Patient state index and cerebral blood flow changes during shoulder arthroscopy in beach chair position].

    Science.gov (United States)

    Buget, Mehmet Ilke; Atalar, Ata Can; Edipoglu, Ipek Saadet; Sungur, Zerrin; Sivrikoz, Nukhet; Karadeniz, Meltem; Saka, Esra; Kucukay, Suleyman; Senturk, Mert N

    2016-01-01

    The aim of the study were to demonstrate the possible hemodynamic changes and cerebral blood flow alterations in patients who were positioned from supine to beach chair position; and to detect if the position change causes any cortical activity alteration as measured by the 4-channeled electroencephalography monitor. 35 patients were included. Before the induction, mean arterial pressure and patient state index values were recorded (T0). After the intubation, doppler-ultrasonography of the patients' internal carotid and vertebral arteries were evaluated to acquire cerebral blood flow values from the formula. In supine position, mean arterial pressure, patient state index and cerebral blood flow values were recorded (T1) and the patient was positioned to beach chair position. After 5min all measurements were repeated (T2). Measurements of patient state index and mean arterial pressure were repeated after 20 (T3), and 40 (T4)min. There was a significant decrease between T0 and T1 in heart rate (80.5±11.6 vs. 75.9±14.4beats/min), MAP (105.8±21.9 vs. 78.9±18.4mmHg) and PSI (88.5±8.3 vs. 30.3±9.7) (all pstate index values (T1-T4) showed no significant change; however, comparing only T1 and T2 resulted in a statically significant decrease in patient state index. There was a significant decrease in cerebral blood flow after beach chair position. Beach chair position was associated with a decrease in cerebral blood flow and patient state index values. Patient state index was affected by the gravitational change of the cerebral blood flow; however, both factors were not directly correlated to each other. Moreover, the decrease in patient state index value was transient and returned to normal values within 20min. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  9. Arterial blood gas management in retrograde cerebral perfusion: the importance of carbon dioxide.

    Science.gov (United States)

    Ueno, K; Takamoto, S; Miyairi, T; Morota, T; Shibata, K; Murakami, A; Kotsuka, Y

    2001-11-01

    Many interventional physiological assessments for retrograde cerebral perfusion (RCP) have been explored. However, the appropriate arterial gas management of carbon dioxide (CO2) remains controversial. The aim of this study is to determine whether alpha-stat or pH-stat could be used for effective brain protection under RCP in terms of cortical cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), and distribution of regional cerebral blood flow. Fifteen anesthetized dogs (25.1+/-1.1 kg) on cardiopulmonary bypass (CPB) were cooled to 18 degrees C under alpha-stat management and had RCP for 90 min under: (1), alpha-stat; (2), pH-stat; or (3), deep hypothermic (18 degrees C) antegrade CPB (antegrade). RCP flow was regulated for a sagittal sinus pressure of around 25 mmHg. CBF was monitored by a laser tissue flowmeter. Serial analyses of blood gas were made. The regional cerebral blood flow was measured with colored microspheres before discontinuation of RCP. CBF and CMRO2 were evaluated as the percentage of the baseline level (%CBF, %CMRO2). The oxygen content of arterial inflow and oxygen extraction was not significantly different between the RCP groups. The %CBF and %CMRO2 were significantly higher for pH-stat RCP than for alpha-stat RCP. The regional cerebral blood flow, measured with colored microspheres, tended to be higher for pH-stat RCP than for alpha-stat RCP, at every site in the brain. Irrespective of CO2 management, regional differences were not significant among any site in the brain. CO2 management is crucial for brain protection under deep hypothermic RCP. This study revealed that pH-stat was considered to be better than alpha-stat in terms of CBF and oxygen metabolism in the brain. The regional blood flow distribution was considered to be unchanged irrespective of CO2 management.

  10. Single-photon emission tomography and cerebral blood flow

    International Nuclear Information System (INIS)

    Celsis, P.; Chan, M.; Marc-Vergnes, J.P.; Sveinsdottir, E.; Goldman, T.G.; Henriksen, L.; Paulson, O.B.; Stokely, E.M.; Lassen, N.A.

    1982-01-01

    This paper illustrates the capabilities of single-photon emission tomography in imaging local cerebral blood flows in man. The results purport the conclusion that a fairly good improvement has been achieved when compared to stationary detectors and that single-photon emission tomography is a well-suited tool for studying cerebral hemodynamics, especially within the framework of clinical studies [fr

  11. Sympathetic regulation of cerebral blood flow in humans : a review

    NARCIS (Netherlands)

    ter Laan, M.; van Dijk, J. M. C.; Elting, J. W. J.; Staal, M. J.; Absalom, A. R.

    Cerebral blood flow (CBF) is regulated by vasomotor, chemical, metabolic, and neurogenic mechanisms. Even though the innervation of cerebral arteries is quite extensively described and reviewed in the literature, its role in regulation of CBF in humans remains controversial. We believe that

  12. Regional cerebral blood flow in neuropediatrics

    International Nuclear Information System (INIS)

    Junik, R.

    2001-01-01

    Single photon emission computed tomography can effectively and non-invasively measure regional blood flow. Mostly used 99mTc-HMPAO is a safe brain imaging agent for pediatric applications. The radiation dose is acceptable. Knowledge of the normal rCBF pattern, including normal asymmetries and variations due to age, is necessary prerequisite for the evaluation and reporting of the results of 99mTc-HMPAO brain SPECT studies in clinical practice. The interpretation of he rCBF study in a child requires knowledge of normal brain maturation. The aim of the present review is to focus on the contribution to clinical developmental neurology of SPECT The clinical use of SPECT in developmental neurology are epilepsy, brain death, acute neurological loss including stroke, language disorders, cerebral palsy, high-risk neonates, hypertension due to renovascular disease, traumatic brain injury, migraine, anorexia nervosa, autism, Gilles de la Tourette syndrome, attention deficit disorder-hyperactivity, and monitoring therapy. Sedation is not routinely used, rather each child is evaluated. However, drug sedation is mandatory in some uncooperative children. (author)

  13. Cerebral blood flow simulations in realistic geometries

    Directory of Open Access Journals (Sweden)

    Szopos Marcela

    2012-04-01

    Full Text Available The aim of this work is to perform the computation of the blood flow in all the cerebral network, obtained from medical images as angiographies. We use free finite elements codes as FreeFEM++. We first test the code on analytical solutions in simplified geometries. Then, we study the influence of boundary conditions on the flow and we finally perform first computations on realistic meshes. L’objectif est ici de simuler l’écoulement sanguin dans tout le réseau cérébral (artériel et veineux obtenu à partir d’angiographies cérébrales 3D à l’aide de logiciels d’éléments finis libres, comme FreeFEM++. Nous menons d’abord une étude détaillée des résultats sur des solutions analytiques et l’influence des conditions limites à imposer dans des géométries simplifiées avant de travailler sur les maillages réalistes.

  14. Evaluation of cerebral blood flow, cerebral metabolism and cerebral function by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tanaka, Chuzo; Higuchi, Toshihiro; Umeda, Masahiro; Naruse, Shoji; Horikawa, Yoshiharu; Ueda, Satoshi; Furuya, Seiichi.

    1995-01-01

    The magnetic resonance (MR) method has the unique potentiality of detecting cerebral metabolites, cerebral blood flow and brain functions in a noninvasive fashion. We have developed several MR techniques to detect these cerebral parameters with the use of clinical MRI scanners. By modifying the MR spectroscopy (MRS) technique, both 31 P- and 1 H-MRS data can be obtained from multiple, localized regions (multi-voxel method) of the brain, and the distribution of each metabolite in the brain can be readily visualized by metabolite mapping. The use of diffusion weighted images (DWI) permits visualization of the anisotropy of water diffusion in white matter, and based on the difference of diffusion coefficiency, the differential diagnosis between epidermoid tumor and arachnoid cyst can be made. By employing dynamic-MRI (Dyn-MRI) with Gd-DTPA administration, it is possible to examine the difference in blood circulation between brain tumor tissue and normal tissue, as well as among different types of brain tumors. By using magnetization transfer contrast (MTC) imaging, it has become possible to detect brain tumors, and with a small dose of Gd-DTPA, to visualize the vascular system. Functional MRI (fMRI) visualizes the activated brain by using conventional gradient echo technique on conventional MRI scanners. This method has the unique characteristic of detecting a brain function with high spatial and temporal resolution by using the intrinsic substance. Moreover, the localization of motor and sensory areas was detected by noninvasive means within few minutes. The fMRI procedure will be used in the future to analyze the higher and complex brain functions. In conclusion, multi-modality MR is a powerful technique that is useful for investigating the pathogenesis of many diseases, and provides a noninvasive analytic modality for studying brain function. (author)

  15. Cerebral blood measurements in cerebral vascular disease: methodological and clinical aspects

    International Nuclear Information System (INIS)

    Fieschi, C.; Lenzi, G.L.

    1982-01-01

    This paper is devoted mainly to studies performed on acute cerebral vascular disease with the invasive techniques for the measurement of regional cerebral blood flow (rCBF). The principles of the rCBF method are outlined and the following techniques are described in detail: xenon-133 inhalation method, xenon-133 intravenous method and emission tomography methods. (C.F.)

  16. Middle cerebral artery thrombosis: acute blood-brain barrier consequences

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, W.D.; Prado, R.; Watson, B.D.; Nakayama, H.

    1988-07-01

    The effect of middle cerebral artery (MCA) thrombosis on the integrity of the blood-brain barrier (BBB) was studied in rats using horseradish peroxidase (HRP). Endothelial injury with subsequent platelet thrombosis was produced by means of a rose bengal-sensitized photochemical reaction, facilitated by irradiating the right proximal MCA segment with the focused beam of an argon laser. At 15 minutes following thrombosis formation, diffuse leakage of HRP was observed bilaterally within cortical and subcortical brain areas. Peroxidase extravasation was most dense within the territory of the occluded artery including neocortical areas and dorso-lateral striatum. Contralaterally, a similar distribution was observed but with less intense HRP leakage. Ultrastructural studies demonstrated an increase in permeability to HRP within arterioles, venules and capillaries. At these sites, the vascular endothelium contained HRP-filled pinocytotic vesicles and tubular profiles. Although less intense, bilateral HRP leakage was also observed following MCA stenosis or femoral artery occlusion. Endothelial-platelet interactions at the site of vascular injury may be responsible for releasing substances or neurohumoral factors which contribute to the acute opening of the BBB.

  17. Dynamic emission tomography of regional cerebral blood flow

    International Nuclear Information System (INIS)

    Lassen, N.A.

    1984-01-01

    The author reviews three tomographic methods for measuring the regional cerebral blood flow: single photon transmission tomography; dual photon emission tomography; and single photon emission tomography. The latter technique is discussed in detail. (Auth.)

  18. Sequential assessment of regional cerebral blood flow, regional cerebral blood volume, and blood-brain barrier in focal cerebral ischemia: a case report

    International Nuclear Information System (INIS)

    Di Piero, V.; Perani, D.; Savi, A.; Gerundini, P.; Lenzi, G.L.; Fazio, F.

    1986-01-01

    Regional CBF (rCBF) and regional cerebral blood volume (rCBV) were evaluated by N,N,N'-trimethyl-N'-(2)-hydroxy-3-methyl-5-[123I]iodobenzyl-1, 3-propanediamine-2 HCl- and /sup 99m/TC-labeled red blood cells, respectively, and single-photon emission computerized tomography (SPECT) in a patient with focal cerebral ischemia. Sequential transmission computerized tomography (TCT) and SPECT functional data were compared with clinical findings to monitor the pathophysiological events occurring in stroke. A lack of correlation between rCBF-rCBV distributions and blood-brain barrier (BBB) breakdown was found in the acute phase. In the face of more prolonged alteration of BBB, as seen by TCT enhancement, a rapid evolution of transient phenomena such as luxury perfusion was shown by SPECT studies. Follow-up of the patient demonstrated a correlation between the neurological recovery and a parallel relative improvement of the cerebral perfusion

  19. Cerebral blood flow and metabolism during exercise: implications for fatigue

    DEFF Research Database (Denmark)

    Seifert, T.; Lieshout, J.J. van; Secher, Niels

    2008-01-01

    During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries......, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an increase in cerebral O(2) supply is required because there is no capillary recruitment within the brain and increased metabolism becomes dependent on an enhanced gradient for oxygen diffusion. During maximal...... whole body exercise, however, cerebral oxygenation decreases because of eventual arterial desaturation and marked hyperventilation-related hypocapnia of consequence for CBF. Reduced cerebral oxygenation affects recruitment of motor units, and supplemental O(2) enhances cerebral oxygenation and work...

  20. Regional cerebral blood flow and P300 in neurosurgical disorders

    International Nuclear Information System (INIS)

    Funahashi, Kazuyoshi; Hyoutani, Genhachi; Maeshima, Shinichirou; Miyamoto, Kazuki; Kuwata, Toshikazu; Terada, Tomoaki; Komai, Norihiko

    1990-01-01

    Changes in regional cerebral blood flow (rCBF), P300 and higher brain function were studied in neurosurgical patients with localized lesions on computed tomography (CT). Twenty-five patients ranging in age from 30 to 81 were studied. Nineteen of these suffered from cerebrovascular disease and six had tumors. Using the oddball paradigm, P300 components were elicited by rate tones (2 KHz) and recorded at Cz and Pz referred to linked ear-lobe electorodes. The P300 latencies of the patients were statistically compared with those of 27 normal subjects. Higher brain function was evaluated with the following psychological tests: a rating scale for psychological function (Sano and Tanemura), Mini-Mental State (MMS), Hasegawa's Dementia Scale (HDS) and the 'Kanahiroi' test. Regional CBF was measured in the bilateral cerebral cortices (the frontal, temporal and occipital lobes), thalamus and basal ganglia by means of a cold xenon CT method. The laterality indices of rCBF (Rt. rCBF/Lt. rCBF) in the bilateral symmetrical areas of the patients were compared to those of 8 normal subjects. Of the 25 patients, 12 revealed prolongation of P300 latency. Ten (86%) of the 12 with prolonged P300 latency showed reduction of rCBF in the right cerebral hemisphere (rt. frontal lobe, rt. thalamus and rt. basal ganglia). Significant correlations (P<0.025) were recognized between the P300 latencies and the laterality indices of rCBF in the frontal lobe and thalamus. There was a significant correlation (P<0.05) between the scores of MMS and HDS and the laterality indicies of rCBF in the frontal lobe only. In the 13 patients with normal P300 latency, 6 (46%) displayed no reduction in rCBF. The remaining 7 patients with normal P300 showed reduction of rCBF in the left hemisphere. Both right frontal lobe and right thalamus have an important role affecting the prolongation of P300 latency and disturbance of cognitive functions. (author)

  1. Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes

    Science.gov (United States)

    Tiryaki, Volkan Mujdat; Ayres, Virginia M; Khan, Adeel A; Ahmed, Ijaz; Shreiber, David I; Meiners, Sally

    2012-01-01

    Cerebral cortical astrocyte responses to polyamide nanofibrillar scaffolds versus poly-L-lysine (PLL)-functionalized planar glass, unfunctionalized planar Aclar coverslips, and PLL-functionalized planar Aclar surfaces were investigated by atomic force microscopy and immunocytochemistry. The physical properties of the cell culture environments were evaluated using contact angle and surface roughness measurements and compared. Astrocyte morphological responses, including filopodia, lamellipodia, and stress fiber formation, and stellation were imaged using atomic force microscopy and phalloidin staining for F-actin. Activation of the corresponding Rho GTPase regulators was investigated using immunolabeling with Cdc42, Rac1, and RhoA. Astrocytes cultured on the nanofibrillar scaffolds showed a unique response that included stellation, cell–cell interactions by stellate processes, and evidence of depression of RhoA. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family, with demonstrable morphological consequences for cerebral cortical astrocytes. PMID:22915841

  2. Cerebral blood flow: Physiologic and clinical aspects

    International Nuclear Information System (INIS)

    Wood, J.H.

    1987-01-01

    This book contains 46 chapters divided among nine sections. The section titles are: Historical Perspectives; Cerebrovascular Anatomy; Cerebrovascular Physiology; Methods of Clinical Measurement; Experimental Methods; Imaging of Cerebral Circulation; Cerebrovascular Pathophysiology; Cerebrovascular Pharmacology; and Surgical and Interventional Augmentation

  3. A Means for the Scintigraphic Imaging of Regional Brain Dynamics. Regional Cerebral Blood Flow and Regional Cerebral Blood Volume

    Energy Technology Data Exchange (ETDEWEB)

    Potchen, E. J.; Bentley, R.; Gerth, W.; Hill, R. L.; Davis, D. O. [Washington University School Of Medicine, St. Louis, MO (United States)

    1969-05-15

    The use of freely diffusable inert radioactive gas as a washout indicator to measure regional cerebral blood flow has become a standardized kinetic procedure in many laboratories. Recent investigations with this technique have led us to conclude that we can reliably distinguish regional flow with perfusion against regional flow without perfusion from the early portion of the curve. Based on a detailed study of the early curve kinetics in patients with and without cerebral vascular disease we have defined the sampling duration necessary for application of the Anger gamma camera imaging process to regional changes in cerebral radioactivity. Using a standard camera and a small computer, a procedure has been developed and based upon entire field to determine the time of maximum height followed by analysis of the data in a matrix. This will permit a contour plot presentation of calculated regional cerebral blood flow in millilitres per 100 grams perfused brain per minute. In addition, we propose to augment this data by the display of regional non-perfusion blood flow versus regional cerebral flow with perfusion. Preliminary investigation on sampling duration, and Compton scattering were prerequisite to clinical scintigraphy of regional cerebral blood flow. In addition, the method of interface for the conventional Anger gamma camera to digital computers used in this procedure are discussed. Applications to further assess regional cerebral dynamics by scintigraphy are presented. (author)

  4. Novel assessment of cortical response to somatosensory stimuli in children with hemiparetic cerebral palsy.

    Science.gov (United States)

    Maitre, Nathalie L; Barnett, Zachary P; Key, Alexandra P F

    2012-10-01

    The brain's response to somatosensory stimuli is essential to experience-driven learning in children. It was hypothesized that advances in event-related potential technology could quantify the response to touch in somatosensory cortices and characterize the responses of hemiparetic children. In this prospective study of 8 children (5-8 years old) with hemiparetic cerebral palsy, both event-related potential responses to sham or air puff trials and standard functional assessments were used. Event-related potential technology consistently measured signals reflecting activity in the primary and secondary somatosensory cortices as well as complex cognitive processing of touch. Participants showed typical early responses but less efficient perceptual processes. Significant differences between affected and unaffected extremities correlated with sensorimotor testing, stereognosis, and 2-point discrimination (r > 0.800 and P = .001 for all). For the first time, a novel event-related potential paradigm shows that hemiparetic children have slower and less efficient tactile cortical perception in their affected extremities.

  5. Cerebral blood flow and oxygen metabolism after subarachnoid hemorrhage

    International Nuclear Information System (INIS)

    Ito, Hidemichi; Sakurai, Takashi; Hayashi, Tatsuo; Hashimoto, Takuo

    2004-01-01

    The mechanism of reduction of cerebral circulation in the early phase of aneurysmal subarachnoid hemorrhage (SAH) has not yet been clarified. Previous studies have variously indicated that cerebral blood flow (CBF) reduction may be due to cerebral vasospasm, an elevation in intracranial pressure (ICP), constriction of intraparenchymal arterioles, or metabolic reduction. The aim of this study is to investigate the relationship between cerebral circulation and oxygen metabolism. In 36 patients with aneurysmal SAH, the values of mean cerebral blood flow (mCBF), cerebral metabolic rate of oxygen (GMRO 2 ) and oxygen extraction fraction (OEF) were measured by using single photon emission computed tomography (SPECT) with arterial blood drawing and oxygen saturation of internal jugular bulb blood (SjO 2 ) in the acute stage (1-3 days after onset) and the spasm stage (7-10 days after onset). The patients in our study were selected by using the following criteria: no history of cerebrovascular or cardiopulmonary diseases; under the age of 70; the ruptured aneurysm was treated by clipping or coil embolization within 72 hours after onset; no symptoms of cerebral vasospasm; no signs of cerebral ischemic change on CT scans. These patients were divided into 2 groups according to the World Federation of Neurological Surgeons (WFNS) grading classification; the mild group (Grades I and II) consisted of 27 cases and the severe group (Grade IV) consisted of 9 cases. We studied differences in mCBF CMRO 2 , and OEF between the mild group and severe group. In the mild group, mCBF, CMRO 2 , and OEF were significantly higher than in the severe group during both the acute and the spasm stage. Also mCBF showed a direct correlation with CMRO 2 . All the patients were kept under the following conditions: the bed was positioned so that the upper body was raised at an angle at 30 deg; blood pressure was maintained at 130-150 mmHg and PaCO 2 of arterial blood was maintained at 35-40 mmHg; ICP

  6. Automatic localization of cerebral cortical malformations using fractal analysis.

    Science.gov (United States)

    De Luca, A; Arrigoni, F; Romaniello, R; Triulzi, F M; Peruzzo, D; Bertoldo, A

    2016-08-21

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  7. Automatic localization of cerebral cortical malformations using fractal analysis

    Science.gov (United States)

    De Luca, A.; Arrigoni, F.; Romaniello, R.; Triulzi, F. M.; Peruzzo, D.; Bertoldo, A.

    2016-08-01

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  8. Regional cerebral blood flow in pure dysarthria. A 3D-SSP study

    International Nuclear Information System (INIS)

    Okamoto, Kensho; Kamogawa, Kenji; Okuda, Bungo; Kawabata, Keita; Tachibana, Hisao

    2007-01-01

    Pure dysarthria from brain infarction is a rare condition, and its pathophysiology remains unclear. To clarify the underlying mechanism of pure dysarthria, we investigated the lesion sites and regional cerebral blood flow in patients with pure dysarthria. We examined 18 consecutive patients with pure dysarthria (9 men and 9 women; mean age, 71 years) who underwent MRI and cerebral blood flow studies. To visualize the regional cerebral blood flow, we generated Z score images using the three-dimensional stereotactic surface projection (3D-SSP) method with single-photon emission computed tomography (SPECT) and N-isopropyl-p [ 123 I]iodoamphetamine. Data on the brain surface perfusion extracted by the 3D-SSP analysis were compared between the pure dysarthria (PD) patients and 9 control subjects. MRI revealed multiple lacunar infarctions involving the internal capsule and/or corona radiata in 11 patients, left internal capsule-corona radiata infarction in 4 patients, and pontine infarction in 3 patients. SPECT with 3D-SSP demonstrated bilateral frontal cortical hypoperfusion in all patients, particularly in the anterior opercular region. Based on intergroup comparisons, the PD group exhibited pronounced cortical hypoperfusion in the opercular and medial frontal regions, left more than right. In conclusion, pure dysarthria is considered to originate from frontal cortical hypoperfusion, mainly in the anterior opercular and medial frontal regions, which is probably due to interruption of the corticosubcortical neural networks relevant to speech expression and articulation. In addition, it is suggested that left hemispheric lesions may make a greater contribution to the development of pure dysarthria than do right ones. (author)

  9. Regional cerebral blood flow in aphasia

    DEFF Research Database (Denmark)

    Soh, K; Larsen, B; Skinhøj, E

    1978-01-01

    . In motor (nonfluent) aphasia, the rCBF method showed areas of cortical dysfunction that always included the lower part of the rolandic area while Broca's area was not consistently affected. In sensory (fluent) aphasia, the superior-posterior temporal cortex was involved in all cases. In global aphasia......, the abnormalities included both regions consistently involved in the other types of aphasia. The 133Xe injection method for mapping abnormalities relevant for localizing the cortical speech areas was superior to the classical neuroradiological methods in that several cases failed to show any relevant lesion...

  10. Cerebral oxygen metabolism and cerebral blood flow in man during light sleep (stage 2)

    DEFF Research Database (Denmark)

    Madsen, P L; Schmidt, J F; Holm, S

    1991-01-01

    We measured cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during light sleep (stage 2) in 8 young healthy volunteers using the Kety-Schmidt technique with 133Xe as the inert gas. Measurements were performed during wakefulness and light sleep as verified by standard...... polysomnography. Unlike our previous study in man showing a highly significant 25% decrease in CMRO2 during deep sleep (stage 3-4) we found a modest but statistically significant decrease of 5% in CMRO2 during stage 2 sleep. Deep and light sleep are both characterized by an almost complete lack of mental activity....... They differ in respect of arousal threshold as a stronger stimulus is required to awaken a subject from deep sleep as compared to light sleep. Our results suggest that during non-rapid eye movement sleep cerebral metabolism and thereby cerebral synaptic activity is correlated to cerebral readiness rather than...

  11. Modulation of cerebral blood flow with transcutaneous electrical neurostimulation (TENS) in patients with cerebral vasospasm after subarachnoid hemorrhage

    NARCIS (Netherlands)

    ter Laan, Mark; van Dijk, J.M.C.; Stewart, Roy; Staal, Michiel J; Elting, Jan-Willem J.

    ObjectivesTranscutaneous electrical neurostimulation (TENS) and spinal cord stimulation have been shown to increase peripheral and cerebral blood flow. We postulate that certain pathological conditions attenuate cerebral autoregulation, which may result in a relative increase of the importance of

  12. Modulation of cerebral blood flow with transcutaneous electrical neurostimulation (TENS) in patients with cerebral vasospasm after subarachnoid hemorrhage

    NARCIS (Netherlands)

    Laan, M. ter; Dijk, J.M. van; Stewart, R.; Staal, M.J.; Elting, J.W.

    2014-01-01

    OBJECTIVES: Transcutaneous electrical neurostimulation (TENS) and spinal cord stimulation have been shown to increase peripheral and cerebral blood flow. We postulate that certain pathological conditions attenuate cerebral autoregulation, which may result in a relative increase of the importance of

  13. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Cermik, Tevfik F.; Kaya, Meryem; Bedel, Deniz; Berkarda, Sakir; Yigitbasi, Oemer N.; Ugur-Altun, Betuel

    2007-01-01

    We assessed the alterations in regional cerebral blood flow (rCBF) in patients with primary hyperparathyroidism (PHP) before parathyroidectomy by semiquantitative analysis of brain single photon emission computed tomography (SPECT) images. Included in this prospective study were 14 patients (mean age 47.6 ± 10.4 years; 3 male, 11 female) and 10 control subjects (mean age 36.0 ± 8.5 years, 6 male, 4 female) were SPECT imaging was performed using a dual-headed gamma camera 60-90 min after intravenous administration of 925 MBq Tc-99m HMPAO. The corticocerebellar rCBF ratios were calculated from 52 brain areas and reference lower values (RLVs) were calculated from the rCBF ratios of control subjects. The regional ratios that were below the corresponding RLV were considered abnormal (hypoperfused). Hypoperfusion was shown in 171 out of 728 regions (23%) and there was a significant correlation between serum calcium, PTH levels and the sum of hypoperfused regions in the patient group (R = 0.75 and P = 0.001, and R = 0.75, P = 0.001, respectively). Significantly reduced rCBF were found in the following cortical regions: bilateral cingulate cortex, superior and inferior frontal cortex, anterior temporal cortex, precentral gyrus, postcentral gyrus and parietal cortex, and right posterior temporal cortex. Our results indicate that alterations in rCBF in patients with PHP can be demonstrated with brain SPECT. The correlation between serum calcium, PTH levels and the sum of hypoperfused regions indicates that there may be a strong relationship between rCBF abnormalities and increased levels of serum calcium and PTH. In addition, the degree of rCBF abnormalities could be determined by brain SPECT in PHP patients with or without psychiatric symptoms. (orig.)

  14. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Cermik, Tevfik F. [Hospital of the University of Trakya, Department of Nuclear Medicine, Edirne (Turkey); Trakya Universitesi Hastanesi, Nukleer Tip Anabilim Dali, Gullapoglu Yerleskesi, Edirne (Turkey); Kaya, Meryem; Bedel, Deniz; Berkarda, Sakir; Yigitbasi, Oemer N. [Hospital of the University of Trakya, Department of Nuclear Medicine, Edirne (Turkey); Ugur-Altun, Betuel [Hospital of the University of Trakya, Department of Internal Medicine, Division of Endocrinology, Edirne (Turkey)

    2007-04-15

    We assessed the alterations in regional cerebral blood flow (rCBF) in patients with primary hyperparathyroidism (PHP) before parathyroidectomy by semiquantitative analysis of brain single photon emission computed tomography (SPECT) images. Included in this prospective study were 14 patients (mean age 47.6 {+-} 10.4 years; 3 male, 11 female) and 10 control subjects (mean age 36.0 {+-} 8.5 years, 6 male, 4 female) were SPECT imaging was performed using a dual-headed gamma camera 60-90 min after intravenous administration of 925 MBq Tc-99m HMPAO. The corticocerebellar rCBF ratios were calculated from 52 brain areas and reference lower values (RLVs) were calculated from the rCBF ratios of control subjects. The regional ratios that were below the corresponding RLV were considered abnormal (hypoperfused). Hypoperfusion was shown in 171 out of 728 regions (23%) and there was a significant correlation between serum calcium, PTH levels and the sum of hypoperfused regions in the patient group (R = 0.75 and P = 0.001, and R = 0.75, P = 0.001, respectively). Significantly reduced rCBF were found in the following cortical regions: bilateral cingulate cortex, superior and inferior frontal cortex, anterior temporal cortex, precentral gyrus, postcentral gyrus and parietal cortex, and right posterior temporal cortex. Our results indicate that alterations in rCBF in patients with PHP can be demonstrated with brain SPECT. The correlation between serum calcium, PTH levels and the sum of hypoperfused regions indicates that there may be a strong relationship between rCBF abnormalities and increased levels of serum calcium and PTH. In addition, the degree of rCBF abnormalities could be determined by brain SPECT in PHP patients with or without psychiatric symptoms. (orig.)

  15. Changes in regional cerebral blood flow during auditory cognitive tasks

    International Nuclear Information System (INIS)

    Ohyama, Masashi; Kitamura, Shin; Terashi, Akiro; Senda, Michio.

    1993-01-01

    In order to investigate the relation between auditory cognitive function and regional brain activation, we measured the changes in the regional cerebral blood flow (CBF) using positron emission tomography (PET) during the 'odd-ball' paradigm in ten normal healthy volunteers. The subjects underwent 3 tasks, twice for each, while the evoked potential was recorded. In these tasks, the auditory stimulus was a series of pure tones delivered every 1.5 sec binaurally at 75 dB from the earphones. Task A: the stimulus was a series of tones with 1000 Hz only, and the subject was instructed to only hear. Task B: the stimulus was a series of tones with 1000 Hz only, and the subject was instructed to push the button on detecting a tone. Task C: the stimulus was a series of pure tones delivered every 1.5 sec binaurally at 75 dB with a frequency of 1000 Hz (non-target) in 80% and 2000 Hz (target) in 20% at random, and the subject was instructed to push the button on detecting a target tone. The event related potential (P300) was observed in task C (Pz: 334.3±19.6 msec). At each task, the CBF was measured using PET with i.v. injection of 1.5 GBq of O-15 water. The changes in CBF associated with auditory cognition was evaluated by the difference between the CBF images in task C and B. Localized increase was observed in the anterior cingulate cortex (in all subjects), the bilateral associate auditory cortex, the prefrontal cortex and the parietal cortex. The latter three areas had a large individual variation in the location of foci. These results suggested the role of those cortical areas in auditory cognition. The anterior cingulate was most activated (15.0±2.24% of global CBF). This region was not activated in the condition of task B minus task A. The anterior cingulate is a part of Papez's circuit that is related to memory and other higher cortical function. These results suggested that this area may play an important role in cognition as well as in attention. (author)

  16. Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs

    International Nuclear Information System (INIS)

    Busija, D.W.; Leffler, C.W.

    1987-01-01

    The authors examined effects of hypothermia on cerebral metabolic rate and cerebral blood flow in anesthetized, newborn pigs (1-4 days old). Cerebral blood flow (CBF) was determined with 15-μm radioactive microspheres. Regional CBF ranged from 44 to 66 ml·min -1 ·100 g -1 , and cerebral metabolic rate was 1.94 ± 0.23 ml O 2 ·100 g -1 ·min -1 during normothermia (39 degree C). Reduction of rectal temperature to 34-35 degree C decreased CBF and cerebral metabolic rate 40-50%. In another group of piglets, they examined responsiveness of the cerebral circulation to arterial hypercapnia during hypothermia. Although absolute values for normocapnic and hypercapnic CBF were reduced by hypothermia and absolute values for normocapnic and hypercapnic cerebrovascular resistance were increased, the percentage changes from control in these variables during hypercapnia were similar during normothermia and hypothermia. In another group of animals that were maintained normothermic and exposed to two episodes of hypercapnia, there was no attenuation of cerebrovascular dilation during the second episode. They conclude that hypothermia reduces CBF secondarily to a decrease in cerebral metabolic rate and that percent dilator responsiveness to arterial hypercapnia is unaltered when body temperature is reduced

  17. Regional cerebral blood flow measurement in brain tumors

    International Nuclear Information System (INIS)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-01-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of 133 Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors. (author)

  18. Regional cerebral blood flow measurement in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-10-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of /sup 133/Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors.

  19. CT and MRI findings of cerebral ischemic lesions in the cortical and perforating arterial system

    Energy Technology Data Exchange (ETDEWEB)

    Kameyama, Masakuni; Udaka, Fukashi; Nishinaka, Kazuto; Kodama, Mitsuo; Urushidani, Makoto; Kawamura, Kazuyuki; Inoue, Haruhisa; Kageyama, Taku [Sumitomo Hospital, Osaka (Japan)

    1995-07-01

    It is clinically useful to divide the location of infarction into the cortical and perforating arterial system. Computerized tomography (CT) and magnetic resonance imaging (MRI) now make the point of infarction a simple and useful task in daily practice. The diagnostic modality has also demonstrated that risk factors and clinical manifestations are different for infarction in the cortical as opposed to the perforating system. In this paper, we present various aspects of images of cerebral ischemia according to CT and/or MRI findings. With the advance of imaging mechanics, diagnostic capability of CT or/and MRI for cerebral infarction has markedly been improved. We must consider these points on evaluating the previously reported results. In addition, we always consider the pathological background of these image-findings for the precise interpretation of their clinical significance. In some instances, dynamic study such as PET or SPECT is needed for real interpretations of CT and/or MRI images. We paid special reference to lacunar stroke and striatocapsular infarct. In addition, `branch atheromatous disease (Caplan)` was considered, in particular, for their specific clinical significances. Large striatocapsular infarcts frequently show cortical signs and symptoms such as aphasia or agnosia in spite of their subcortical localization. These facts, although have previously been known, should be re-considered for their pathoanatomical mechanism. (author).

  20. CT and MRI findings of cerebral ischemic lesions in the cortical and perforating arterial system

    International Nuclear Information System (INIS)

    Kameyama, Masakuni; Udaka, Fukashi; Nishinaka, Kazuto; Kodama, Mitsuo; Urushidani, Makoto; Kawamura, Kazuyuki; Inoue, Haruhisa; Kageyama, Taku

    1995-01-01

    It is clinically useful to divide the location of infarction into the cortical and perforating arterial system. Computerized tomography (CT) and magnetic resonance imaging (MRI) now make the point of infarction a simple and useful task in daily practice. The diagnostic modality has also demonstrated that risk factors and clinical manifestations are different for infarction in the cortical as opposed to the perforating system. In this paper, we present various aspects of images of cerebral ischemia according to CT and/or MRI findings. With the advance of imaging mechanics, diagnostic capability of CT or/and MRI for cerebral infarction has markedly been improved. We must consider these points on evaluating the previously reported results. In addition, we always consider the pathological background of these image-findings for the precise interpretation of their clinical significance. In some instances, dynamic study such as PET or SPECT is needed for real interpretations of CT and/or MRI images. We paid special reference to lacunar stroke and striatocapsular infarct. In addition, 'branch atheromatous disease (Caplan)' was considered, in particular, for their specific clinical significances. Large striatocapsular infarcts frequently show cortical signs and symptoms such as aphasia or agnosia in spite of their subcortical localization. These facts, although have previously been known, should be re-considered for their pathoanatomical mechanism. (author)

  1. Evaluation of ocular acupuncture on cerebral infarction with cerebral blood flow perfusion imaging

    International Nuclear Information System (INIS)

    Li Yuge; Gao Qinyi; Wang Shuang; Zhao Yong

    2008-01-01

    To evaluate the immediate effect of ocular acupuncture on patients, an method of SPECT image of cerebral blood flow daily stress test was established. 10 patients diagnosed as cerebral infarction by CT or MRI were tested. They all received 99 Tc m -ECD SPECT imaging at twice before and after ocular acupuncture. By means of image subtraction technique and semi-quantitative method of regional interesting area, the change of regional cerebral blood flow was observed between the two images. Under restful state perfusion of cerebral blood flow in 18 foci was low at the frontal lobe, the cerebellum, the basal ganglia and temporal lobe. After ocular acupuncture, the perfusions were obviously increased in 16 foci among them and the reactivity of the frontal lobe and the cerebellum to ocular acupuncture was higher, the average improvement rate of which was 55.15% and 53.06% respectively, lower in the basal ganglia and temporal lobe, the average improvement rate was 31.79% and 36.67% respectively. 99 Tc m -ECD SPECT cerebral perfusion image has some significant clinic value for evaluating the effect of ocular acupuncture to treating cerebral infarction. (authors)

  2. Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults

    Science.gov (United States)

    Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G

    2016-01-01

    Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife. PMID:27488909

  3. Disparity in regional cerebral blood flow during electrically induced seizure

    DEFF Research Database (Denmark)

    Sestoft, D; Meden, P; Hemmingsen, R

    1993-01-01

    This is a presentation of 2 cases in which the intraictal regional cerebral blood flow distribution was measured with the 99mTc-HMPAO single photon emission computerized tomography technique during an electrically induced seizure. Although the seizure was verified as generalized on electroencepha......This is a presentation of 2 cases in which the intraictal regional cerebral blood flow distribution was measured with the 99mTc-HMPAO single photon emission computerized tomography technique during an electrically induced seizure. Although the seizure was verified as generalized...... electroencephalography-verified generalized seizures....

  4. Sleep apnea termination decreases cerebral blood volume: a near-infrared spectroscopy case study

    Science.gov (United States)

    Virtanen, Jaakko; Noponen, Tommi; Salmi, Tapani; Toppila, Jussi; Meriläinen, Pekka

    2009-07-01

    Medical near-infrared spectroscopy (NIRS) can be used to estimate cerebral haemodynamic changes non-invasively. Sleep apnea is a common sleep disorder where repetitive pauses in breathing decrease the quality of sleep and exposes the individual to various health problems. We have measured oxygenated and deoxygenated haemoglobin concentration changes during apneic events in sleep from the forehead of one subject using NIRS and used principal component analysis to extract extracerebral and cortical haemodynamic changes from NIRS signals. Comparison of NIRS signals with EEG, bioimpedance, and pulse oximetry data suggests that termination of apnea leads to decreases in cerebral blood volume and flow that may be related to neurological arousal via neurovascular coupling.

  5. Regional cerebral blood flow in Angelman syndrome

    International Nuclear Information System (INIS)

    Guecueyener, K.; Goekcora, N.; Ilgin, N.; Buyan, N.; Sayli, A.

    1993-01-01

    A patient with typical features of Angelman syndrome - a genetically inherited disorder involving developmental delay, ataxia, episodes of paroxysmal laughter and brachiocephaly - was studied with single-photon emission tomography. Hyperfusion found in the left frontal and left temporoparietal regions can provide insights into the functional cerebral pathology, which may be due to a disturbance of the developmental process related to a chromosomal abnormality. (orig.)

  6. Regional cerebral blood flow in Angelman syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Guecueyener, K [Dept. of Pediatric Neurology, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Goekcora, N [Dept. of Nuclear Medicine, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Ilgin, N [Dept. of Nuclear Medicine, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Buyan, N [Dept. of Pediatric Neurology, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Sayli, A [Dept. of Molecular Biology and Genetics, Faculty of Medicine, Gazi Univ., Ankara (Turkey)

    1993-07-01

    A patient with typical features of Angelman syndrome - a genetically inherited disorder involving developmental delay, ataxia, episodes of paroxysmal laughter and brachiocephaly - was studied with single-photon emission tomography. Hyperfusion found in the left frontal and left temporoparietal regions can provide insights into the functional cerebral pathology, which may be due to a disturbance of the developmental process related to a chromosomal abnormality. (orig.)

  7. Cerebral blood flow measurement techniques in infants and children

    International Nuclear Information System (INIS)

    Kirsch, J.R.; Traystman, R.J.; Rogers, M.C.

    1985-01-01

    The tremendous growth of interest in neurologic intensive care and in the pathophysiology of the cerebral circulation in the past few years has resulted in increasing numbers of studies that document alterations in cerebral flow during the course of various diseases or as a response to treatment of them. Before pediatricians come to conclusions based on these studies, it is important to have an understanding of the techniques involved. The techniques are complex and difficult but are based on understandable principles. They also have limitations and are subject to misinterpretations. Pediatricians should become knowledgeable about some of these techniques and their limitations because it is likely that they will be applied with increasing frequency in the next several years. We are on the threshold of exciting discoveries in abnormalities of cerebral blood flow and cerebral metabolism not only in critically ill children but also in children with congenital and learning disorders

  8. Evaluation of the cerebral ventricular system and cortical sulci associated with aging on CT

    International Nuclear Information System (INIS)

    Akimoto, Hiroshi; Maki, Yutaka; Ono, Yukio; Nose, Tadao; Yoshizawa, Takashi

    1983-01-01

    This study was attempted to establish a relationship between normal values and aging process of cerebral ventricular size and cortical sulci on computed tomography. A total of two hundred and fifty-eight cases of 126 males and 132 females was selected. The width of the fourth ventricle increased significantly in the fourth decade comparing with in the third decade. The width of the third ventricle increased significantly in the fourth decade compaing with in the third decade at the hypothalamic level and also in the sixth decade comparing with in the fifth decade at the thalamic level. The width of the anterior horn and the body of the lateral ventricles increased gradually with age, and showed a significant increase in the sixth decade comparing with in the fifth decade. The number of cortical sulci increased gradually with age, and increased significantly in the seventh decade comparing with in the sixth decade, especially in the occipital areas. The cortical sulci started to appear initially in the frontal areas during the second decade, subsequently in the central during the third decade and finally in both the parietal and occipital areas during the fourth decade. The width of the cortical sulci was less than 4.5 mm under the fifth decade. It did not exeed 6.2 mm in all of the cases, though widening gradually with age over the fifth decade. (J.P.N.)

  9. Effect of superfused insulin on cerebral cortical glucose utilization in awake goats

    International Nuclear Information System (INIS)

    Pelligrino, D.A.; Miletich, D.J.; Albrecht, R.F.

    1987-01-01

    The effect on cortical cerebral glucose utilization (CMR glu ) of intracerebral insulin administration in awake goats was studied. The insulin was superfused in a mock cerebrospinal fluid (CSF) employing chronically implanted cranial windows. Two windows were implanted bilaterally: one window over an equivalent portion of each parietal cortex. With one window used to deliver insulin/CSF and the other used to simultaneously deliver CSF alone (control), changes in CMR glu were assessed using a modification of a sequential 2-[ 3 H]- then 2[ 14 C]deoxy-D-glucose (2DG) technique originally described by Altenau and Agranoff. Initial experiments employing 125 I-insulin demonstrated that the superfusion procedure increased insulin levels only in the outer 1 mm of cortical tissue exposed to insulin containing perfusate. Additional preliminary evaluations, using conditions known to alter CMR glu , generally established that present methods were adequate to induce and detect CMR glu changes. However, it was also shown experimentally and using a mathematical model that 2-[ 3 H]DG test/control tissue ratios could be influenced by subsequent changes in CMR glu and the dephosphorylation rate. Thus 3 H ratios could not be used to establish preexperimental test/control CMR glu relationships as the originally devised model assumed but could be employed to indicate changes in dephosphorylation. The mathematical model allowed for improved estimates of CMR glu changes from 2[ 14 C]DG/2-[ 3 H]DG test over control tissue ratios. Even with these corrections, insulin was estimated to cause no more than an 8-15% increase in cortical CMR glu . A very limited role for insulin, at least in cerebral cortical metabolic regulation, is thus indicated

  10. Role of cerebral blood flow in extreme breath holding.

    Science.gov (United States)

    Bain, Anthony R; Ainslie, Philip N; Hoiland, Ryan L; Willie, Chris K; MacLeod, David B; Madden, Dennis; Maslov, Petra Zubin; Drviš, Ivan; Dujić, Željko

    2016-01-01

    The role of cerebral blood flow (CBF) on a maximal breath-hold (BH) in ultra-elite divers was examined. Divers (n = 7) performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg). Arterial blood gases and CBF were measured prior to (baseline), and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO 2 ) by about 26% (p tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa). The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01). These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H + washout, and therefore central chemoreceptive drive to breathe, rather than to CDO 2 .

  11. Cerebral autoregulation control of blood flow in the brain

    CERN Document Server

    Payne, Stephen

    2016-01-01

    This Brief provides a comprehensive introduction to the control of blood flow in the brain. Beginning with the basic physiology of autoregulation, the author goes on to discuss measurement techniques, mathematical models, methods of analysis, and relevant clinical conditions, all within this single volume. The author draws together this disparate field, and lays the groundwork for future research directions. The text gives an up-to-date review of the state of the art in cerebral autoregulation, which is particularly relevant as cerebral autoregulation moves from the laboratory to the bedside. Cerebral Autoregulation will be useful to researchers in the physical sciences such as mathematical biology, medical physics, and biomedical engineering whose work is concerned with the brain. Researchers in the medical sciences and clinicians dealing with the brain and blood flow, as well as industry professionals developing techniques such as ultrasound, MRI, and CT will also find this Brief of interest.

  12. Regional cerebral blood flow in primary degenerative dementia

    International Nuclear Information System (INIS)

    Kawakatsu, Shinobu; Totsuka, Shiro; Shinohara, Masao; Koyama, Hideki; Sagawa, Katsuo; Morinobu, Shigeru; Oiji, Arata; Komatani, Akio

    1991-01-01

    Regional cerebral blood flow (rCBF) was examined, using SPECT by Xe-133 inhalation, in patients with primary degenerative dementia who were subgrouped according to predominant symptoms with respect to amnesia, apraxia, agnosia, aphasia, and personality changes. Also the effect of sex and age at dementia onset on the rCBF patterns was assessed. (author). 26 refs.; 1 fig.; 7 tabs

  13. Neurophysiological Basis of Cerebral Blood Flow Control: An ...

    African Journals Online (AJOL)

    The book describes the current understanding of cerebral blood flow ... metaoolism of the central nervous system. The brain ... in stroke it is a deficiency of the book that the clinical correlates are .... Review of Nutrition and Dietetics. Edited by ...

  14. A New Technology for Detecting Cerebral Blood Flow

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Guo, Song; Jensen, Lars T

    2012-01-01

    There is a need for real-time non-invasive, continuous monitoring of cerebral blood flow (CBF) during surgery, in intensive care units and clinical research. We investigated a new non-invasive hybrid technology employing ultrasound tagged near infrared spectroscopy (UT-NIRS) that may estimate...

  15. Cerebral blood flow in patients with dementia of Alzheimer's type

    DEFF Research Database (Denmark)

    Postiglione, A; Lassen, N A; Holman, B L

    1993-01-01

    In the normal brain as well as in Alzheimer's disease (AD), regional cerebral blood flow (CBF) is coupled to metabolic demand and, therefore, changes in CBF reflect variations in neuronal metabolism. The use of radionuclide techniques, such as positron emission tomography (PET) and single photon...

  16. Cerebral blood flow imaging with thallium-201 diethyldithiocarbamate SPECT

    NARCIS (Netherlands)

    van Royen, E. A.; de Bruïne, J. F.; Hill, T. C.; Vyth, A.; Limburg, M.; Byse, B. L.; O'Leary, D. H.; de Jong, J. M.; Hijdra, A.; van der Schoot, J. B.

    1987-01-01

    Thallium-201 diethyldithiocarbamate ([201TI]DDC) was studied in humans as an agent for cerebral blood flow imaging. Brain uptake proved to be complete 90 sec after injection with no appreciable washout or redistribution for hours. Intracarotid injection suggested an almost 100% extraction during the

  17. Patterns of regional cerebral blood flow in acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Skriver, E B

    1981-01-01

    In a consecutive group of 56 stroke patients the regional cerebral blood flow was measured within 84 hours after stroke. A 254 multidetector scintillation camera and the intracarotid Xenon-133 injection method was used to study rCBF. Typical rCBF-patterns are described and compared to the findings...

  18. Determinants of resting cerebral blood flow in sickle cell disease

    NARCIS (Netherlands)

    Bush, Adam M.; Borzage, Matthew T.; Choi, Soyoung; Václavů, Lena; Tamrazi, Benita; Nederveen, Aart J.; Coates, Thomas D.; Wood, John C.

    2016-01-01

    Stroke is common in children with sickle cell disease and results from an imbalance in oxygen supply and demand. Cerebral blood flow (CBF) is increased in patients with sickle cell disease to compensate for their anemia, but adequacy of their oxygen delivery has not been systematically demonstrated.

  19. Effect of pregnancy on regional cerebral blood flow

    International Nuclear Information System (INIS)

    Nagamachi, Shigeki; Hoshi, Hiroaki; Jinnouchi, Seishi; Ohnishi, Takashi; Futami, Shigemi; Watanabe, Katsushi; Ikeda, Tomoaki; Mori, Norimasa

    1993-01-01

    Regional cerebral blood flow (r-CBF) of 10 pregnant women were quantified by 133 Xe SPECT study with inhalation method before and after artificial abortion. During pregnancy, value of r-CBF in each region except occipital lobe was significantly higher than that of the post abortion. Arterial blood gas was analyzed after SPECT procedure. P co2 concentration increased significantly after artificial abortion. Although its mechanism is unknown, our preliminary work demonstrates that r-CBF increased by pregnancy. (author)

  20. The effect of ventricular assist devices on cerebral blood flow and blood pressure fractality

    International Nuclear Information System (INIS)

    Bellapart, Judith; Fraser, John F; Chan, Gregory S H; Tzeng, Yu-Chieh; Ainslie, Philip N; Dunster, Kimble R; Barnett, Adrian G; Boots, Rob

    2011-01-01

    Biological signals often exhibit self-similar or fractal scaling characteristics which may reflect intrinsic adaptability to their underlying physiological system. This study analysed fractal dynamics of cerebral blood flow in patients supported with ventricular assist devices (VAD) to ascertain if sustained modifications of blood pressure waveform affect cerebral blood flow fractality. Simultaneous recordings of arterial blood pressure and cerebral blood flow velocity using transcranial Doppler were obtained from five cardiogenic shock patients supported by VAD, five matched control patients and five healthy subjects. Computation of a fractal scaling exponent (α) at the low-frequency time scale by detrended fluctuation analysis showed that cerebral blood flow velocity exhibited 1/f fractal scaling in both patient groups (α = 0.95 ± 0.09 and 0.97 ± 0.12, respectively) as well as in the healthy subjects (α = 0.86 ± 0.07). In contrast, fluctuation in blood pressure was similar to non-fractal white noise in both patient groups (α = 0.53 ± 0.11 and 0.52 ± 0.09, respectively) but exhibited 1/f scaling in the healthy subjects (α = 0.87 ± 0.04, P < 0.05 compared with the patient groups). The preservation of fractality in cerebral blood flow of VAD patients suggests that normal cardiac pulsation and central perfusion pressure changes are not the integral sources of cerebral blood flow fractality and that intrinsic vascular properties such as cerebral autoregulation may be involved. However, there is a clear difference in the fractal scaling properties of arterial blood pressure between the cardiogenic shock patients and the healthy subjects

  1. [Assessment of maternal cerebral blood flow in patients with preeclampsia].

    Science.gov (United States)

    Mandić, Vesna; Miković, Zeljko; Dukić, Milan; Vasiljević, Mladenko; Filimonović, Dejan; Bogavac, Mirjana

    2005-01-01

    Systemic vasoconstriction in preeclamptic patients increases vascular resistance, and is manifested by increased arterial blood flow velocity. The aim of the study is to evaluate if there is a change of Doppler indices in maternal medial cerbral artery (MCA) in severe preeclampsia due to: 1) severity of clinical symptoms, 2) the begining of eclamptic attack and 3) the application of anticonvulsive therapy. A prospective clinical study included 92 pregnant women, gestational age 28-36 weeks. They were divided into three groups: normotensive (n=30), mild preeclampsia (n=33), and severe preeclampsia (n=29). We investigated maternal cerebral circulation by assessing the MCA. We registrated: pulsatility index (Pi), resistance index (Ri), systolic/diastolic ratio (S/D), and the maximum systolic, end diastolic and medium velocity. Patients with severe preeclampsia were divided into two subgroups. subgroup 1 included patients without symptoms of threatening eclampsia (n=18; 62.06%); while subgroup 2 included those with symptoms of preeclampsia (n=11; 37.94%). All patients with severe preeclampsia were treated with magnesium sulfate (MgSO4), and cerebral blood flow was measured before and after the treatment. Statistical analysis was done by oneway ANOVA, Student t-test and t-paired sample test. The difference was considered to be significant if ppreclampsia we found increased velocity values, Pi and Ri, especially in patients with signs of threatened eclampsia, suggesting that blood vessels changes are most prominent in severe preeclampsia. Cerebral blood flow meassurements can be used as a clinical test for the prediction of eclampsia. Magnesium-sulfate (MgSO4) has a signifficant role in prophylaxis and treatment of eclampsia, and, therefore, positive influence on reduction of cerebral ishemic lesions can be expected. We can conclude that changes of the cerebral blood flow can be evaluated by evaluating blood flow velocities in the medial cerebral artery. Velocities tend

  2. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    Energy Technology Data Exchange (ETDEWEB)

    Clanet, M

    1987-06-18

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO/sub 2/), oxygen extraction (EO/sub 2/) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO/sub 2/ and often a decrease in CMRO/sub 2/, whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO/sub 2/, EO/sub 2/ and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis.

  3. Value of cerebral blood flow rate and regional oxygen consumption studies in cerebral ischaemia

    International Nuclear Information System (INIS)

    Clanet, M.

    1987-01-01

    Studies of experimentally-induced ischaemia have shown that the intensity of neuronal suffering is related to the fall in perfusion rate. Below a certain level, called functional threshold, cerebral function is reversibly altered, whereas at a lower level (tissue necrosis threshold) the damage inflicted on neurons is irreversible. Between these two thresholds lies a ''penumbra zone''. This concept of thresholds must be mitigated by 2 parameters: duration of ischaemia and selective vulnerability of the various structures affected. Variations in blood flow rate only indirectly affect the state of tissues. Techniques developed from positron emission tomography make it possible to evaluate the metabolic activity of brain tissue in vivo: oxygen consumption (CMRO 2 ), oxygen extraction (EO 2 ) and glucose consumption (CMRG) which are thus correlated to cerebral blood flow and cerebral blood volume, sometimes also to tissue pH. Normal relations between blood flow rate and metabolism may be altered. Misery perfusion reflects a fall in cerebral blood flow with an increase in EO 2 and often a decrease in CMRO 2 , whereas luxury perfusion reflects an increase in cerebral blood flow rate with reduction of CMRO 2 , EO 2 and CMRG. The type of alteration encountered in human ischaemia varies according to the nature of the accident: studies of transient accidents emphasize the different haemodynamic aspects of occlusion of the wider arteries. The metabolic and haemodynamic profiles of established ischaemic accidents vary according to their type and to the time of the study, reflecting the complexity of the physiopathological mechanisms involved; they are frequently associated with metabolic repercussions at a distance from the ischaemic focus, which supports the concept of diaschisis [fr

  4. Relation between clinical findings and progression of cerebral cortical pathology in MM1-type sporadic Creutzfeldt-Jakob disease: proposed staging of cerebral cortical pathology.

    Science.gov (United States)

    Iwasaki, Yasushi; Tatsumi, Shinsui; Mimuro, Maya; Kitamoto, Tetsuyuki; Hashizume, Yoshio; Yoshida, Mari

    2014-06-15

    In our pathologic observation of the cerebral cortex including the neocortex, hippocampus, and limbic cortex in 43 Japanese patients with MM1-type sporadic Creutzfeldt-Jakob disease, the earliest pathologic finding was spongiform change and next was gliosis. Subsequently, neuropil rarefaction appeared, followed by neuron loss. On the basis of these observations, we propose the following cortical pathologic staging: Stage I, spongiform change; Stage II, hypertrophic astrocytosis; Stage III, neuropil rarefaction; Stage IV, neuron loss; Stage V, status spongiosus; and Stage VI, large cavity formation. We also suggest a more simple staging classification: Stages I and II, mild; Stages III and IV, moderate; and Stages V and VI, severe involvement. Based on statistical analysis of the cases, strong correlation coefficients were obtained between the neocortical and limbic pathologic stage and both total disease duration and brain weight. We estimated that the first observation times of cortical hyperintensity on diffusion-weighted images of magnetic resonance imaging, myoclonus, and periodic sharp wave complexes on the electroencephalogram approximately correspond to the early phase of Stage II of the neocortex. The time to reach the akinetic mutism state approximately corresponds to the middle phase of Stage II of the neocortex. Therefore, we think that approximate clinical manifestations at death, total disease duration, and brain weight can be estimated according to the pathologic stage of the neocortex or limbic cortex. Panencephalopathic-type pathology appeared approximately 12 months after disease onset, and this time approximately corresponds to the middle phase of Stage III of the neocortex. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Homocysteine Aggravates Cortical Neural Cell Injury through Neuronal Autophagy Overactivation following Rat Cerebral Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Yaqian Zhao

    2016-07-01

    Full Text Available Elevated homocysteine (Hcy levels have been reported to be involved in neurotoxicity after ischemic stroke. However, the underlying mechanisms remain incompletely understood to date. In the current study, we hypothesized that neuronal autophagy activation may be involved in the toxic effect of Hcy on cortical neurons following cerebral ischemia. Brain cell injury was determined by hematoxylin-eosin (HE staining and TdT-mediated dUTP Nick-End Labeling (TUNEL staining. The level and localization of autophagy were detected by transmission electron microscopy, western blot and immunofluorescence double labeling. The oxidative DNA damage was revealed by immunofluorescence of 8-Hydroxy-2′-deoxyguanosine (8-OHdG. Hcy treatment aggravated neuronal cell death, significantly increased the formation of autophagosomes and the expression of LC3B and Beclin-1 in the brain cortex after middle cerebral artery occlusion-reperfusion (MCAO. Immunofluorescence analysis of LC3B and Beclin-1 distribution indicated that their expression occurred mainly in neurons (NeuN-positive and hardly in astrocytes (GFAP-positive. 8-OHdG expression was also increased in the ischemic cortex of Hcy-treated animals. Conversely, LC3B and Beclin-1 overexpression and autophagosome accumulation caused by Hcy were partially blocked by the autophagy inhibitor 3-methyladenine (3-MA. Hcy administration enhanced neuronal autophagy, which contributes to cell death following cerebral ischemia. The oxidative damage-mediated autophagy may be a molecular mechanism underlying neuronal cell toxicity of elevated Hcy level.

  6. Effects of midazolam on cerebral blood flow in human volunteers

    International Nuclear Information System (INIS)

    Forster, A.; Juge, O.; Morel, D.

    1982-01-01

    The effects of intravenously administered midazolam on cerebral blood flow were evaluated in eight healthy volunteers using the 133 Xe inhalation technique. Six minutes after an intravenous dose of 0.15 mg/kg midazolam, the cerebral blood flow decreased significantly (P less than 0.001) from a value of 40.6 +/- 3.3 to a value of 27.0 +/- 5.0 ml . 100 g-1 . min-1. Cerebrovascular resistance (CVR) increased from 2.8 +/- 0.2 to 3.9 to 0.6 mmHg/(ml . 100 g-1 . min-1)(P less than 0.001). Mean arterial blood pressure decreased significantly (P less than 0.05) from 117 +/- 8 to 109 +/- 9 mmHg and arterial carbon dioxide tension increased from 33.9 +/- 2.3 to 38.6 +/- 3.2 mmHg (P less than 0.05). Arterial oxygen tension remained stable throughout the study, 484 +/- 95 mmHg before the administration of midazolam and 453 +/- 76 mmHg after. All the subjects slept after the injection of the drug and had anterograde amnesia of 24.5 +/- 5 min. The decrease in mean arterial blood pressure was probably not important since it remained in the physiologic range for cerebral blood flow autoregulation. The increase in arterial carbon dioxide tension observed after the midazolam injection may have partially counteracted the effect of this new benzodiazepine on cerebral blood flow. Our data suggest that midazolam might be a safe agent to use for the induction of anethesia in neurosurgical patients with intracranial hypertension

  7. Regional cerebral blood flow changes in chronic polidrug abusers

    International Nuclear Information System (INIS)

    Quintana, J.C.; Olea, E.; Seijas, D.; Haydn, V.

    2002-01-01

    Chronic exposure to cocaine and other drugs are in clear association with a variety of medical complications, involving many organ systems. The Central Nervous System (CNS) is particularly sensitive to such exposures: permanent behavioral, psychiatric and neurological complications are common in this group of patients. Regional cerebral blood perfusion (rCBF) analysis has been used to study these conditions with PET and SPECT for a long time. According to the literature, it is clear that drug exposure (particularly cocaine) does produce significant changes over rCBF, nevertheless the vast majority of SPECT and some PET studies are difficult to reproduce because they were analyzed using subjective (visual) and/or ROI's to address the changes. Aim: To study the pattern of rCBF change of chronic cocaine and other drugs (polidrug) users/abusers population using brain SPECT and SPM (Statistical Parametric Mapping). Material and Methods: From a population of 163 addicted patients, 55 chronic cocaine and other drugs users/abuser were selected. A pre-treatment brain SPECT under basal conditions was performed in all of them. 99mTc-ECD was used as rCBF tracer and SPM (Statistical Parametric Mapping) as a framework to address statistically significant rCBF variations of change. The whole group was compared with a population of normal patients (both sexes, aged between 20 and 40 y.o., no history of trauma, drug exposure, neurological or psychiatric disorders). Results: Significant areas of reduced (hypoperfusion) and increased (hyperperfusion) rCBF were identified in the patients group. The hypoperfusion areas involve mainly the left insula region and the surrounding frontal and temporal lobe and a smaller area in the anterior and inferior portion of the right frontal lobe. The increased perfusion areas were identified at the left thalamus and the right fronto-parietal cortical region. Conclusion: Our results suggest that chronic cocaine exposure produce activation/damage to

  8. High spatial resolution magnetic resonance imaging of experimental cerebral venous thrombosis with a blood pool contrast agent

    International Nuclear Information System (INIS)

    Spuentrup, E.; Wiethoff, A.J.; Parsons, E.C.; Spangenberg, P.; Stracke, C.P.

    2010-01-01

    Purpose: The purpose of this study was to investigate the feasibility of clot visualization in small sinus and cortical veins with contrast enhanced MRA in a cerebral venous thrombosis animal model using a blood pool contrast agent, Gadofosveset, and high spatial resolution imaging. Material and methods: For induction of cerebral venous thrombosis a recently developed combined interventional and microsurgical model was used. Cerebral sinus and cortical vein thrombosis was induced in six pigs. Two further pigs died during the procedure. Standard structural, time-of-flight- and phase contrast-angiograms were followed by fast time resolved high resolution 3D MRA (4D MRA) and subsequent high spatial resolution 3D MRA in the equilibrium phase with and without addition of parallel imaging. Visualization of the clots using the different sequences was subjectively compared and contrast-to-noise ratio (CNR) was assessed. Results: In the remaining six animals the procedure and MR-imaging protocol including administration of Gadofosveset was successfully completed. The 3D high resolution MRA in the equilibrium phase without the addition of parallel imaging was superior to all the other applied MR measurement techniques in terms of visualization of the clots. Only applying this sequence bridging vein thromboses were also seen as a small filling defect with a high CNR of >18. Conclusion: Only the non-accelerated high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset allows for high-contrast visualization of very small clots in the cerebral sinus and cortical veins. Statement clinical impact: Detection of cortical vein thrombosis is of high clinical impact. Conventional MRI sequences often fail to visualize the clot. We could demonstrate that, in contrast to conventional sequences, with high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset very small clots in the cerebral sinus and

  9. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    International Nuclear Information System (INIS)

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-01-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF

  10. Regional cerebral blood flow in fibromyalgia

    International Nuclear Information System (INIS)

    Kwiatek, R.; Barnden, L.; Rowe, C.; McKinnon, J.; Pile, K.

    1998-01-01

    Full text: Little is known of the aetiology of fibromyalgia (FM), a condition diagnosed on the basis of widespread chronic pain and multiple tender points. We have used Tc-99m HMPAO SPECT to compare regional cerebral bloodflow (rCBF) in 17 women who fulfill American College of Rheumatology criteria for FM to 22 age, sex and education matched controls. Both Statistical Parametric Mapping (SPM95) and coregistered MRI guided ROI were used for analysis. SPM95 revealed statistically significant hypoperfusion in the pontine tegmentum (p=0.048) and a trend to hypoperfusion in the left putamen (p=0.07). MRI guided ROI placement by an operator blinded to clinical information and the coregistered SPECT images, confirmed significant hypoperfusion of the left thalamus (p<0.0001) and the pontine tegmentum (p=0.001) and revealed trends towards hypoperfusion in the caudate nuclei and right thalamus. These results are consistent with the hypothesis that FM is due to dysfunction of central pain pathways. Spinothalamic neurones are known to be involved in pain perception and there are synapse connections to the thalamus in the gigantocellular part of the medulla and pons

  11. Regional cerebral blood flow in fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatek, R.; Barnden, L.; Rowe, C.; McKinnon, J.; Pile, K. [The Queen Elizabeth Hospital , Adelaide, SA (Australia)

    1998-06-01

    Full text: Little is known of the aetiology of fibromyalgia (FM), a condition diagnosed on the basis of widespread chronic pain and multiple tender points. We have used Tc-99m HMPAO SPECT to compare regional cerebral bloodflow (rCBF) in 17 women who fulfill American College of Rheumatology criteria for FM to 22 age, sex and education matched controls. Both Statistical Parametric Mapping (SPM95) and coregistered MRI guided ROI were used for analysis. SPM95 revealed statistically significant hypoperfusion in the pontine tegmentum (p=0.048) and a trend to hypoperfusion in the left putamen (p=0.07). MRI guided ROI placement by an operator blinded to clinical information and the coregistered SPECT images, confirmed significant hypoperfusion of the left thalamus (p<0.0001) and the pontine tegmentum (p=0.001) and revealed trends towards hypoperfusion in the caudate nuclei and right thalamus. These results are consistent with the hypothesis that FM is due to dysfunction of central pain pathways. Spinothalamic neurones are known to be involved in pain perception and there are synapse connections to the thalamus in the gigantocellular part of the medulla and pons

  12. Impaired cerebral microcirculation induced by ammonium chloride in rats is due to cortical adenosine release

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Bjerrum, Esben Jannik; Larsen, Fin Stolze

    2018-01-01

    BACKGROUND: Liver failure results in hyperammonaemia, impaired regulation of cerebral microcirculation, encephalopathy and death. However, the key mediator that alters cerebral microcirculation remains unidentified. In this study we show that topical ammonium significantly increases periarteriolar......: In patients with liver failure disturbances in the brain function is caused in part by ammonia toxicity. In our project we have studied how ammonia, through adenosine release, affects the blood flow in the brain of rats. In our experimental model we demonstrated that the detrimental effect of ammonia on blood...... flow regulation was counteracted by blocking the adenosine receptors in the brain. With this observation we have identified a novel potential treatment target. If we can confirm our findings in a future clinical study it might help patients suffering from liver failure and the severe condition called...

  13. Quantification of cerebral blood flow via Duplex sonography

    International Nuclear Information System (INIS)

    Vogl, G.; Pohl, P.; Willeit, J.; Aichner, F.

    1987-01-01

    An attempt was made to measure quantitatively the total cerebral blood flow by means of Duplex sonography. In a group of healthy young subjects a median value for total cerebral blood flow was obtained amounting to 469 ml/min ± 30%, repeat measurements yielded a maximum deviation of ± 11%. In three patients the values obtained after severe apoplectic insult due to occlusion of the internal carotid artery were definitely below the value of the group of healthy subjects, whereas the value for the total blood flow was in the upper range of normal values in a patient with occlusion of the a. cerebri media. Comparative measurements of the regional cerebral blood flow with xenon 13 yielded in those patients with occlusion of the internal carotid artery a markedly reduced mean flow and in the patient with occlusion of the a. cerebri media a less markedly reduced mean flow. Regionally reduced perfusion was seen in all the four patients in the range of the clinically and computer tomographically well-known ischaemia zone. Thanks to the simplicity of this sonographic examination method it could be a useful decision parameter in determining the indication for a reconstruction of the carotid artery, especially in asymptotic patients. (orig.) [de

  14. Regional cerebral blood flow in mood disorders. I. Comparison of major depressives and normal controls at rest

    International Nuclear Information System (INIS)

    Sackeim, H.A.; Prohovnik, I.; Moeller, J.R.; Brown, R.P.; Apter, S.; Prudic, J.; Devanand, D.P.; Mukherjee, S.

    1990-01-01

    We measured regional cerebral blood flow with the xenon 133 inhalation technique in 41 patients with major depressive disorder and 40 matched, normal controls during an eyes-closed, resting condition. The depressed group had a marked reduction in global cortical blood flow. To examine topographic abnormalities, traditional multivariate analyses were applied, as well as a new scaled subprofile model developed to identify abnormal functional neural networks in clinical samples. Both approaches indicated that the depressed sample had an abnormality in topographic distribution of blood flow, in addition to the global deficit. The scaled subprofile model identified the topographic abnormality as being due to flow reduction in the depressed patients in selective frontal, central, superior temporal, and anterior parietal regions. This pattern may reflect dysfunction in the parallel distributed cortical network involving frontal and temporoparietal polymodal association areas. The extent of this topographic abnormality, as revealed by the scaled subprofile model, was associated with both patient age and severity of depressive symptoms

  15. Cerebral blood flow in Binswanger's disease

    International Nuclear Information System (INIS)

    Kawabata, Keita; Tachibana, Hisao; Sugita, Minoru

    1991-01-01

    Eight patients with a clinical diagnosis of Binswanger's disease (BD) were evaluated with I-123 IMP SPECT. The SPECT findings were compared with those in 7 other patients with Alzheimer's disease (AD) and 9 normal subjects. The ratios of I-123 IMP in the temporal cortex, thalamus, and basal ganglia to that in the cerebellum were lower in the BD group than the normal group. The BD group had a higher ratio of the occipital cortex/the cerebellum than the control group, suggesting a decreased blood flow in the cerebellum. When I-123 IMP ratio in various areas to that in the occipital cortex was examined, both the BD and AD groups seemed to have a decreased blood flow over the whole cerebrum. The BD group had a lower I-123 IMP uptake in the thalamus and basal ganglia, and the AD group had it in the parietal cortex, relative to the occipital cortex. Blood flow patterns for BD were found to be different from those for AD. This suggests the difference in areas responsible for etiology between BD and AD. (N.K.)

  16. Cerebral blood oxygenation measurements in neonates with optoacoustic technique

    Science.gov (United States)

    Herrmann, Stephen; Petrov, Irene Y.; Petrov, Yuriy; Richardson, C. Joan; Fonseca, Rafael A.; Prough, Donald S.; Esenaliev, Rinat O.

    2017-03-01

    Cerebral hypoxia is a major contributor to neonatal/infant mortality and morbidity including severe neurological complications such as mental retardation, cerebral palsy, motor impairment, and epilepsy. Currently, no technology is capable of accurate monitoring of neonatal cerebral oxygenation. We proposed to use optoacoustics for this application by probing the superior sagittal sinus (SSS), a large central cerebral vein. We developed and built a multi-wavelength, optical parametric oscillator (OPO) and laser diode optoacoustic systems for measurement of SSS blood oxygenation in the reflection mode through open anterior or posterior fontanelles and in the transmission mode through the skull in the occipital area. In this paper we present results of initial tests of the laser diode system for neonatal cerebral oxygenation measurements. First, the system was tested in phantoms simulating neonatal SSS. Then, using the data obtained in the phantoms, we optimized the system's hardware and software and tested it in neonates admitted in the Neonatal Intensive Care Unit. The laser diode system was capable of detecting SSS signals in the reflection mode through the open anterior and posterior fontanelles as well as in the transmission mode through the skull with high signal-to-noise ratio. Using the signals measured at different wavelengths and algorithms developed for oxygenation measurements, the laser diode system provided real-time, continuous oxygenation monitoring with high precision at all these locations.

  17. Monoclonal antibody identification of subpopulations of cerebral cortical neurons affected in Alzheimer's disease

    International Nuclear Information System (INIS)

    Miller, C.A.; Rudnicka, M.; Hinton, D.R.; Blanks, J.C.; Kozlowski, M.

    1987-01-01

    Neuronal degeneration is one of the hallmarks of Alzheimer's disease (AD). Given the paucity of molecular markers available for the identification of neuronal subtypes, the specificity of neuronal loss within the cerebral cortex has been difficult to evaluate. With a panel of four monoclonal antibodies (mAbs) applied to central nervous system tissues from AD patients, the authors have immunocytochemically identified a population of vulnerable cortical neurons; a subpopulation of pyramidal neurons is recognized by mAbs 3F12 and 44.1 in the hippocampus and neocortex, and clusters of multipolar neurons in the entorhinal cortex reactive with mAb 44.1 show selective degeneration. Closely adjacent stellate-like neurons in these regions, identified by mAb 6A2, show striking preservation in AD. The neurons recognized by mAbs 3F12 and 44.1 do not comprise a single known neurotransmitter system. mAb 3A4 identifies a phosphorylated antigen that is undetectable in normal brain but accumulates early in the course of AD in somas of vulnerable neurons. Antigen 3A4 is distinct from material reactive with thioflavin S or antibody generated against paired helical filaments. Initially, antigen 3A4 is localized to neurons in the entorhinal cortex and subiculum, later in the association neocortex, and, ultimately in cases of long duration, in primary sensory cortical regions. mAb 3F12 recognizes multiple bands of immunoblots of homogenates of normal and AD cortical tissues, whereas mAb 3A4 does not bind to immunoblots containing neurofilament proteins or brain homogenates from AD patients. Ultrastructurally, antigen 3A4 is localized to paired-helical filaments. Using these mAbs, further molecular characterization of the affected cortical neurons is now possible

  18. Measurement of regional cerebral blood flow by positron emission tomography

    International Nuclear Information System (INIS)

    Herscovitch, P.; Powers, W.J.

    1987-01-01

    The principal advantage of positron emission tomography over other methods for measuring cerebral blood flow stems from the accurate, quantitative three-dimensional measurements of regional brain radioactivity that are possible with this technique. As a result, accurate quantitative measurements of regional cerebral blood flow can be obtained for both superficial and deep cerebral structures. The value of PET for investigating central nervous system physiology and pathology extends far beyond this, however. Through the use of different radiotracers and appropriate mathematical models, PET can be applied to the measurement of a wide variety of physiologic variables. Measurements of rCBF tell only part of the story. Experience with PET and with a variety of other techniques has taught us that rCBF is at times a poor indicator of the metabolic, functional, and biochemical status of cerebral tissue. It is only by understanding the interaction of all of these factors that our understanding of neurologic disease can advance. It is in the investigation of these complex relationships that the real value of PET resides

  19. Regional cerebral blood flow in SPECT pattern in Parkinson's disease

    International Nuclear Information System (INIS)

    Lenart-Jankowska, D.; Junik, R.; Sowinski, J.; Gembicki, M.; Wender, M.

    1997-01-01

    The purpose of our work was to compare the regional cerebral blood flow (rCBF) in SPECT examination in Parkinson's disease with (17 cases) and without (7 cases) dementia and in various clinical stages of the disease. The patients underwent SPECT examination 5-40 min after intravenous application of HMPAO (Ceretec, Amersham) with 740 Mbq (20 mCi) pertechnate 99m Tc. SPECT was performed with a Siemens Diacam single-head rotating gamma camera coupled to a high resolution collimator and Icon computer system provided by the manufacturer. The results were defined in relative values of ROI in relation to cerebellum. Patients with Parkinson's disease showed hypoperfusion in cerebral lobes and in deep cerebral structures including the basal ganglia. Regional perfusion deficit in SPECT was seen with and without associated dementia and already in early stage of the disease. Parkinson's disease is provoked by the lesions of dopaminergic neurons of the central nervous system leading to domination of extrapyramidal symptoms. There are many indications that also the neurotransmitters associated with cognitive functions as acetylcholine demonstrate some abnormalities. However, only in some cases of Parkinson's disease dementia is the dominating symptom. Our results of regional cerebral blood flow testify that in Parkinson's disease the dysfunction of the central nervous system is more diffuse than has previously been suggested. (author)

  20. Recovery of cerebral blood flow in unilateral chronic subdural hematoma. The correlation with cerebral re-expansion in elders

    International Nuclear Information System (INIS)

    Nemoto, Akio

    2003-01-01

    CT and SPECT were used to investigate the relationship between cerebral re-expansion and changes in cerebral blood flow underneath hematoma in elderly patients after surgery for chronic unilateral subdural hematoma. I studied 22 patients with mild hematoma, aged 43 to 82 years (mean 67 years). The patients were placed in either Group A (under 70 years) or Group B (70 years or over) to observe postoperative changes. CT and SPECT examinations were conducted before surgery and 1, 7 and 30 days after surgery, 4 times in total. Cerebral re-expansion was represented by the re-expansion rate (PER) comparing the pre- and postoperative thickness of the maximal hematoma in CT images. The rate of cerebral re-expansion was slowed in Group B (p<0.01). Cerebral re-expansion was characterized by biphasic, rapid or gradual re-expansion on postoperative day 1 with a significant difference between groups (p<0.01). Before surgery, cerebral blood flow on the affected side correlated with age (p<0.01), thougn blood flow was diminished in both groups. After surgery, cerebral blood flow on the affected side exceeded that on the unaffected side in Group A and transiently increased on postoperative day 1. Cerebral blood flow improved after surgery in both groups, with a significant difference in those changes over time (p<0.01). In both groups, cerebral re-expansion on postoperative days 7 and 30 correlated with cerebral blood flow on the affected side (p<0.05). The present results suggest that improvement in cerebral blood flow on the affected side is delayed in elderly patients, due to slower postoperative cerebral re-expansion. (author)

  1. Cerebral blood flow tomography with xenon-133

    DEFF Research Database (Denmark)

    Lassen, N A

    1985-01-01

    computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical...... of other tracers for CBF tomography using SPECT is summarized with emphasis on the 99mTc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers....

  2. Intensive blood pressure control affects cerebral blood flow in type 2 diabetes mellitus patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Davis, Shyrin C A T; Truijen, Jasper

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic...... variables and transcranial Doppler-determined cerebral blood flow velocity (CBFV), cerebral CO2 responsiveness, and cognitive function were determined after 3 and 6 months of intensive BP control in 17 type 2 diabetic patients with microvascular complications (T2DM+), in 18 diabetic patients without (T2DM......-) microvascular complications, and in 16 nondiabetic hypertensive patients. Cerebrovascular reserve capacity was lower in T2DM+ versus T2DM- and nondiabetic hypertensive patients (4.6±1.1 versus 6.0±1.6 [P

  3. Cerebral blood flow mapping in children with sickle cell disease

    International Nuclear Information System (INIS)

    Numaguchi, Y.; Humbert, J.R.; Robinson, A.E.; Lindstrom, W.W.; Gruenauer, L.M.

    1988-01-01

    A cerebral blood flow mapping system was applied to the evaluation of cerebral blood flow (CBF) in 21 patients with sickle cell cerebrovascular disease, by means of a Picker xenon computed tomographic (CT) scanner. Results indicate that (1) xenon CT is a safe and reliable procedure in children with cerebrovascular diseases; (2) CBF in the gray matter of children seems to be higher than in previously reported data obtained with use of isotopes; and (3) regional CBF can be altered significantly by changing the size of the region of interest (ROI). The term regional CBF probably has to be carefully defined in xenon CT flow mapping. Correlation with anatomy by means of CT or magnetic resonance imaging and comparison with the ROI of the contralateral side and/or adjacent sections is important

  4. Regional cerebral blood volume (rCBV) in the cerebral and cerebellar hemispheres in nomal 52 healthy adults. Measurement with contrast-enhanced dynamic echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Muroi, Kenzo; Kurihara, Hiroaki; Amauchi, Hiroshi; Nozawa, Takeo; Matsubara, Sho; Yamamoto, Isao [Yokohama City Univ. (Japan). Hospital; Iwasawa, Tae

    2001-05-01

    The aim of this study was to investigate the possibility of absolute quantification of mean transit time (MTT) and rCBV in normal 52 healthy adults using contrast-enhanced dynamic echo-planar imaging, changes in signals in the middle cerebral arteries (MCAs) in the Sylvian fissures as AIF. MR was performed with a 1.5 T magnet (Horizon, GE Medical System, Milwaukee, WI). Dynamic susceptibility contrast-enhanced imaging was obtained every 1.8 second using echo-planar imaging (EPI) sequence (TE=42 msec, matrices=128 x 128) in six slices (6 mm slice thickness with 10 mm gap) including the cerebellar hemisphere at the level of middle cerebellar peduncles. The regional cerebral blood volume (rCBV) was calculated based on dilution theory. We calculated rCBV of the cerebral white matter (WM), cortical gray matter (GM), and cerebellar hemispheres (CH), and the effect of age on MTT and rCBV were evaluated linear regression analyses. The MTT of MCAs did not change with age, and the area under the curve of MCAs declined slightly with age. The mean rCBV of cortical GM, cerebral WM and cerebellar hemispheres were 8.2{+-}2.8, 2.0{+-}0.8 and 8.8{+-}2.1 respectively. The rCBV of cortical GM and the CH decreased slightly with age, however, that of WM remained to be a greater extent than those in GM. From these results, the method using AIF determined in bilateral MCAs was considered as an practical approach for the quantification of rCBV. Further clinical and/or comparative studies with other modalities will be necessary for the application of this method for patients with atherosclerosis and/or major vessel occlusion. (author)

  5. Pressure passive cerebral blood flow and breakdown of the blood-brain barrier in experimental fetal asphyxia

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Tweed, W A

    1979-01-01

    reaching CBF values up to 6 times normal at normal MABP of about 60 to 70 mmHg, and severe ischemia reaching CBF values close to zero in large cortical areas at MABP of 30 mmHg. CVP remained essentially unchanged at 10--15 mmHg. The severe and prolonged asphyxia rendered the blood-brain barrier leaky......Cerebral blood flow (CBF) was studied in non-exteriorized near-term sheep fetuses using the radioactive microsphere technique. By partially occluding the umbilical vessels for a period of 1--1 1/2 hours a progressive and severe asphyxia with a final arterial pH of 6.90 was achieved. Varying...... the mean arterial blood pressure in the fetuses by blood withdrawal or infusion in this state, CBF was measured at different perfusion pressures (mean arterial blood pressure (MABP) minus central venous pressure (CVP)). A passive flow/pressure relationship--loss of autoregulation--was found, with hyperemia...

  6. Analysing coupling architecture in the cortical EEG of a patient with unilateral cerebral palsy

    Science.gov (United States)

    Kornilov, Maksim V.; Baas, C. Marjolein; van Rijn, Clementina M.; Sysoev, Ilya V.

    2016-04-01

    The detection of coupling presence and direction between cortical areas from the EEG is a popular approach in neuroscience. Granger causality method is promising for this task, since it allows to operate with short time series and to detect nonlinear coupling or coupling between nonlinear systems. In this study EEG multichannel data from adolescent children, suffering from unilateral cerebral palsy were investigated. Signals, obtained in rest and during motor activity of affected and less affected hand, were analysed. The changes in inter-hemispheric and intra-hemispheric interactions were studied over time with an interval of two months. The obtained results of coupling were tested for significance using surrogate times series. In the present proceeding paper we report the data of one patient. The modified nonlinear Granger causality is indeed able to reveal couplings within the human brain.

  7. Kinetics of 137cesium in cerebral structures and blood

    International Nuclear Information System (INIS)

    Ribas, B.; Gonzalez, M.D.; Rio, J. del; Reus, M.I.S.; Gonzalez-Baron, M.

    1987-01-01

    The old clinical use of cesium in epilepsy expresses a relation of this metal with the central nervous system. Two groups of male Wistar rats of 200 g were administered single doses of 50μCi intravenously for blood kinetics and 2μCi 137 CsCl in each lateral ventricle of the brain for the kinetics in the cerebral structures, respectively. In both cases under ether anesthesia. Blood samples of IV gouts were weighed, and cerebral structure hypothalamus, hypocampus, striatum, cortex, cerebellum, mesencephalon and medulla oblongata dissected, cleaned, washed, dried, weighed, and in both cases cpm of the samples evaluated submitting it to the gamma radiations detector. In both experimental values of the 137 CsCl kinetics are expressed and applying the retroprojection method; parameters and constants are obtained. tsub(1/2) alpha = 0.0358 h and tsub(1/2) beta = 6.7159 h. In tables the equations of the alpha and beta phases are expressed. In blood after the rapid diminution of the radioactivity in the first 5 min the equilibrium phase is reached in 30 min afterwards, and the values remain almost the same 4 h after the injection and cesium is slowly eliminated by the rat. Cerebral structures after its intracerebroventricular application show that cesium has a great uptake velocity, it is rapidly incorporated by hypothalamus and after by cortex, hypocampus, striatum, mesencephalon and medulla oblongata, the two last showing the slower incorporation. After 24 h the cesium radioactivity declines slowly and progressively. (author)

  8. The Coupling of Cerebral Metabolic Rate of Glucose and Cerebral Blood Flow In Vivo

    DEFF Research Database (Denmark)

    Hasselbalch, Steen; Paulson, Olaf Bjarne

    2012-01-01

    The energy supplied to the brain by metabolic substrate is largely utilized for maintaining synaptic transmission. In this regulation cerebral blood flow and glucose consumption is tightly coupled as well in the resting condition as during activation. Quantification of cerebral blood flow...... not used for aerobic metabolism. Although some of the excess glucose uptake can be explained by lactate production, this phenomenon can still not account for the excess glucose uptake. Thus, more complex metabolic patterns in the brain might be reflected in the excess glucose uptake during activation......, and especially temporal relationships must be taken into account. What triggers the flow increase during functional brain activation is not entirely elucidated. The demand for excess glucose uptake may be important and a possible oxygen deficit in tissue distant from the capillaries is probably of minor...

  9. Characterization of rat cerebral cortical beta adrenoceptor subtypes using (-)-[125I]-iodocyanopindolol

    International Nuclear Information System (INIS)

    Tiong, A.H.; Richardson, J.S.

    1990-01-01

    (-)-[125I]-Iodocyanopindolol [-(ICYP)], used to characterize beta adrenoceptors on membrane preparations from rat cerebral cortex, was shown to have affinity for both beta adrenoceptors and serotonin receptors. Therefore, 10 microM serotonin was added to the assays to prevent (-)ICYP binding to serotonin receptors. Under these conditions, (-)ICYP binding to the cortical membrane preparation was reversible and saturable, and the association reaction was very slow. The dissociation reaction was also very slow, and revealed two affinity states corresponding to a high and a low affinity state. Scatchard analysis showed a single class of binding sites with an equilibrium dissociation constant (KD) of 20.7 pM, and a maximal density of binding sites (Bmax) of 95.1 fmol/mg membrane protein. Displacement binding analyses revealed a potency series of (-) isoproterenol greater than (-) epinephrine equal to (-) norepinephrine, suggesting a predominance of the beta 1 adrenoceptor subtype. Detailed competition ligand binding studies with the selective beta 1 adrenoceptor antagonist ICI-89406 and the selective beta 2 adrenoceptor antagonist ICI-118551, showed that about 70% of the beta adrenoceptor population in the rat cortex is of the beta 1 subtype with the remainder being of the beta 2 subtype. We conclude that since (-)ICYP binds to both beta adrenoceptors and serotonin receptors, it is important to prevent the binding of (-)ICYP to serotonin receptors by adding a suppressing ligand like excess cold serotonin when assaying beta adrenoceptors. We have presented the first such characterization of rat cerebral cortical beta adrenoceptors with (-)ICYP in this study

  10. Regional cerebral blood flow in status epileptics measured by single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Ichiseki, Hajime; Terashi, Akiro; Hamamoto, Makoto; Miyazaki, Tokuzo.

    1995-01-01

    We have performed single photon emission computed tomography (SPECT) with 99m Tc-hexamethylpropylene amineoxime (HM-PAO) to evaluate regional cerebral blood flow (rCBF) in status epileptics (SE) caused by a cerebral vascular accident. In addition, we have discussed the neurophysiology of SE based on the SPECT findings. A total of sixteen patients (5 males and 11 females, average age; 78.2 years old) with SE who were suffering from prolonged consciousness disturbance were investigated. When SPECT was performed in the ictal state, there was a remarkable increase in radio isotope (RI) uptake at the focus which correlated well with EEG findings. However, in other cortical regions, basal ganglia and thalamus, there was a relatively demonstrated decrease in RI uptake compared with that of the focus. Additionally in the interictal state, we found a decrease in RI uptake in the epileptic foci and normal recovery of the RI uptake level in other cerebral regions. We speculate that these characteristic patterns of cerebral blood flow distribution shown by SPECT scans in the ictal state reflect the state of consciousness disturbance due to SE. In general, in the elderly, it is difficult to make a differential diagnosis between prolonged consciousness disturbance due to nonconvulsive SE and other diseases such as cardiovascular diseases, dehydration, metabolic disorder, etc. Nevertheless, nonconvulsive SE causes diffuse cell loss and irreversible brain damage. Therefore the elderly who have suffered from prolonged consciousness disturbance due to SE need an exact diagnosis and immediate medical treatment. When we diagnose a nonconvulsive SE, the characteristic findings of SPECT scans in the ictal state are very clear and useful. In conclusion, SPECT is a very simple and non-invasive method that demonstrates abnormalities of brain function exactly. Therefore, we should perform not only EEC but also SPECT scans when making a diagnosis of SE. (author)

  11. Regional cerebral blood flow in status epileptics measured by single photon emission computed tomography (SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Ichiseki, Hajime; Terashi, Akiro [Nippon Medical School, Tokyo (Japan); Hamamoto, Makoto; Miyazaki, Tokuzo

    1995-12-01

    We have performed single photon emission computed tomography (SPECT) with {sup 99m}Tc-hexamethylpropylene amineoxime (HM-PAO) to evaluate regional cerebral blood flow (rCBF) in status epileptics (SE) caused by a cerebral vascular accident. In addition, we have discussed the neurophysiology of SE based on the SPECT findings. A total of sixteen patients (5 males and 11 females, average age; 78.2 years old) with SE who were suffering from prolonged consciousness disturbance were investigated. When SPECT was performed in the ictal state, there was a remarkable increase in radio isotope (RI) uptake at the focus which correlated well with EEG findings. However, in other cortical regions, basal ganglia and thalamus, there was a relatively demonstrated decrease in RI uptake compared with that of the focus. Additionally in the interictal state, we found a decrease in RI uptake in the epileptic foci and normal recovery of the RI uptake level in other cerebral regions. We speculate that these characteristic patterns of cerebral blood flow distribution shown by SPECT scans in the ictal state reflect the state of consciousness disturbance due to SE. In general, in the elderly, it is difficult to make a differential diagnosis between prolonged consciousness disturbance due to nonconvulsive SE and other diseases such as cardiovascular diseases, dehydration, metabolic disorder, etc. Nevertheless, nonconvulsive SE causes diffuse cell loss and irreversible brain damage. Therefore the elderly who have suffered from prolonged consciousness disturbance due to SE need an exact diagnosis and immediate medical treatment. When we diagnose a nonconvulsive SE, the characteristic findings of SPECT scans in the ictal state are very clear and useful. In conclusion, SPECT is a very simple and non-invasive method that demonstrates abnormalities of brain function exactly. Therefore, we should perform not only EEC but also SPECT scans when making a diagnosis of SE. (author).

  12. Cerebral blood flow and metabolism during exercise: implications for fatigue.

    Science.gov (United States)

    Secher, Neils H; Seifert, Thomas; Van Lieshout, Johannes J

    2008-01-01

    During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a approximately 25% increase is detected with a parallel increase in metabolism. During activation, an increase in cerebral O(2) supply is required because there is no capillary recruitment within the brain and increased metabolism becomes dependent on an enhanced gradient for oxygen diffusion. During maximal whole body exercise, however, cerebral oxygenation decreases because of eventual arterial desaturation and marked hyperventilation-related hypocapnia of consequence for CBF. Reduced cerebral oxygenation affects recruitment of motor units, and supplemental O(2) enhances cerebral oxygenation and work capacity without effects on muscle oxygenation. Also, the work of breathing and the increasing temperature of the brain during exercise are of importance for the development of so-called central fatigue. During prolonged exercise, the perceived exertion is related to accumulation of ammonia in the brain, and data support the theory that glycogen depletion in astrocytes limits the ability of the brain to accelerate its metabolism during activation. The release of interleukin-6 from the brain when exercise is prolonged may represent a signaling pathway in matching the metabolic response of the brain. Preliminary data suggest a coupling between the circulatory and metabolic perturbations in the brain during strenuous exercise and the ability of the brain to access slow-twitch muscle fiber populations.

  13. Applications of brain blood flow imaging in behavioral neurophysiology: cortical field activation hypothesis

    International Nuclear Information System (INIS)

    Roland, P.E.

    1985-01-01

    The 133 xenon intracarotid method for rCBF measurements has been a very useful method for functional mapping and functional dissection of the cerebral cortex in humans. With this method it has been shown that different types of cortical information treatment activate different cortical areas and furthermore that sensory and motor functions of the cerebral cortex could be dissected into anatomical and informational subcomponents by behavioral manipulations. The brain organizes its own activity. One of the principles of organization was that the brain could recruit in advance cortical fields that were expected to participate in a certain type of information operation. During brain work in awake human beings the cerebral cortex was activated in fields that, projected on the cerebral surface, most often had a size greater than 3 CM 2 . Such activated fields appeared no matter which type of information processing was going on in the brain: during planning and execution of voluntary movements, during preparation for sensory information processing, and during sensory information processing, as well as during cognitive brain work and retrieval of specific memories. Therefore, it was hypothesized that cortical field activation was the physiological manifestation of normal brain work in awake humans

  14. Applications of brain blood flow imaging in behavioral neurophysiology: cortical field activation hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Roland, P.E.

    1985-01-01

    The /sup 133/xenon intracarotid method for rCBF measurements has been a very useful method for functional mapping and functional dissection of the cerebral cortex in humans. With this method it has been shown that different types of cortical information treatment activate different cortical areas and furthermore that sensory and motor functions of the cerebral cortex could be dissected into anatomical and informational subcomponents by behavioral manipulations. The brain organizes its own activity. One of the principles of organization was that the brain could recruit in advance cortical fields that were expected to participate in a certain type of information operation. During brain work in awake human beings the cerebral cortex was activated in fields that, projected on the cerebral surface, most often had a size greater than 3 CM/sup 2/. Such activated fields appeared no matter which type of information processing was going on in the brain: during planning and execution of voluntary movements, during preparation for sensory information processing, and during sensory information processing, as well as during cognitive brain work and retrieval of specific memories. Therefore, it was hypothesized that cortical field activation was the physiological manifestation of normal brain work in awake humans.

  15. Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia

    Directory of Open Access Journals (Sweden)

    Robert Sweet

    2010-06-01

    Full Text Available Converging lines of evidence indicate that schizophrenia is characterized by impairments of synaptic machinery within cerebral cortical circuits. Efforts to localize these alterations in brain tissue from subjects with schizophrenia have frequently been limited to the quantification of structures that are non-selectively identified (e.g. dendritic spines labeled in Golgi preparations, axon boutons labeled with synaptophysin, or to quantification of proteins using methods unable to resolve relevant cellular compartments. Multiple label fluorescence confocal microscopy represents a means to circumvent many of these limitations, by concurrently extracting information regarding the number, morphology, and relative protein content of synaptic structures. An important adaptation required for studies of human disease is coupling this approach to stereologic methods for systematic random sampling of relevant brain regions. In this review article we consider the application of multiple label fluorescence confocal microscopy to the mapping of synaptic alterations in subjects with schizophrenia and describe the application of a novel, readily automated, iterative intensity/morphological segmentation algorithm for the extraction of information regarding synaptic structure number, size, and relative protein level from tissue sections obtained using unbiased stereological principles of sampling. In this context, we provide examples of the examination of pre- and post-synaptic structures within excitatory and inhibitory circuits of the cerebral cortex.

  16. Aging, regional cerebral blood flow, and neuropsychological functioning

    International Nuclear Information System (INIS)

    MacInnes, W.D.; Golden, C.J.; Gillen, R.W.; Sawicki, R.F.; Quaife, M.; Uhl, H.S.; Greenhouse, A.J.

    1984-01-01

    Previous studies found changes in regional cerebral blood flow (rCBF) patterns related to both age and various cognitive tasks. However, no study has yet demonstrated a relationship between rCBF and performance on the Luria-Nebraska Neuropsychological Battery (LNNB) in an elderly group. Seventy-nine elderly volunteers (56-88 years old), both healthy and demented, underwent the 133 xenon inhalation rCBF procedure and were given the LNNB. The decrements in the gray-matter blood flow paralleled decrements in performance on the LNNB. Using partial correlations, a significant proportion of shared variance was observed between gray-matter blood flow and the LNNB scales. However, there was much less of a relationship between white-matter blood flow and performance on the LNNB. This study suggests that even within a restricted age sample rCBF is related in a global way to neuropsychological functioning

  17. Cerebral misery perfusion diagnosed using hypercapnic blood-oxygenation-level-dependent contrast functional magnetic resonance imaging: a case report

    Directory of Open Access Journals (Sweden)

    D'Souza Olympio

    2010-02-01

    Full Text Available Abstract Introduction Cerebral misery perfusion represents a failure of cerebral autoregulation. It is an important differential diagnosis in post-stroke patients presenting with collapses in the presence of haemodynamically significant cerebrovascular stenosis. This is particularly the case when cortical or internal watershed infarcts are present. When this condition occurs, further investigation should be done immediately. Case presentation A 50-year-old Caucasian man presented with a stroke secondary to complete occlusion of his left internal carotid artery. He went on to suffer recurrent seizures. Neuroimaging demonstrated numerous new watershed-territory cerebral infarcts. No source of arterial thromboembolism was demonstrable. Hypercapnic blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging was used to measure his cerebrovascular reserve capacity. The findings were suggestive of cerebral misery perfusion. Conclusions Blood-oxygenation-level-dependent-contrast functional magnetic resonance imaging allows the inference of cerebral misery perfusion. This procedure is cheaper and more readily available than positron emission tomography imaging, which is the current gold standard diagnostic test. The most evaluated treatment for cerebral misery perfusion is extracranial-intracranial bypass. Although previous trials of this have been unfavourable, the results of new studies involving extracranial-intracranial bypass in high-risk patients identified during cerebral perfusion imaging are awaited. Cerebral misery perfusion is an important and under-recognized condition in which emerging imaging and treatment modalities present the possibility of practical and evidence-based management in the near future. Physicians should thus be aware of this disorder and of recent developments in diagnostic tests that allow its detection.

  18. Effect of head rotation on cerebral blood velocity in the prone position

    DEFF Research Database (Denmark)

    Højlund, Jakob; Sandmand, Marie; Sonne, Morten

    2012-01-01

    for cerebral blood flow. We tested in healthy subjects the hypothesis that rotating the head in the prone position reduces cerebral blood flow. Methods. Mean arterial blood pressure (MAP), stroke volume (SV), and CO were determined, together with the middle cerebral artery mean blood velocity (MCA V...... V(mean) ~10% in spite of an elevated MAP. Prone positioning with rotated head affects both CBF and cerebrovenous drainage indicating that optimal brain perfusion requires head centering....

  19. Cerebral blood flow and cerebrovascular response to acetazolamide in patients with chronic alcoholism

    OpenAIRE

    Oishi, M; Mochizuki, Y; Takasu, T

    1997-01-01

    Cerebral blood flow and cerebrovascular response to acetazolamide were studied in 12 patients with chronic alcoholism and 12 age matched healthy controls. Blood flows in the cerebral cortex, thalamus, and putamen were significantly lower in the chronic alcoholic group than in the healthy control group. The increase in blood flow caused by acetazolamide did not show any significant difference between the two groups. These findings suggest that the decreased cerebral blood flow i...

  20. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, Tetsuhiko; Aida, Noriko; Nozawa, Kumiko [Kanagawa Children' s Medical Center, Department of Radiology, Yokohama (Japan); Niwa, Tetsu [Kanagawa Children' s Medical Center, Department of Radiology, Yokohama (Japan); Tokai University School of Medicine, Department of Radiology, Isehara (Japan); Shibasaki, Jun [Kanagawa Children' s Medical Center, Department of Neonatology, Yokohama (Japan); Osaka, Hitoshi [Kanagawa Children' s Medical Center, Department of Neurology, Yokohama (Japan)

    2014-05-15

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [<1 month], n=5; infants [1 month-12 months], n=3; others [≥1 year], n=4) with acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one. (orig.)

  1. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction

    International Nuclear Information System (INIS)

    Okabe, Tetsuhiko; Aida, Noriko; Nozawa, Kumiko; Niwa, Tetsu; Shibasaki, Jun; Osaka, Hitoshi

    2014-01-01

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [<1 month], n=5; infants [1 month-12 months], n=3; others [≥1 year], n=4) with acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one. (orig.)

  2. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction.

    Science.gov (United States)

    Okabe, Tetsuhiko; Aida, Noriko; Niwa, Tetsu; Nozawa, Kumiko; Shibasaki, Jun; Osaka, Hitoshi

    2014-05-01

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one.

  3. Cerebral blood flow and metabolism during isoflurane-induced hypotension in patients subjected to surgery for cerebral aneurysms

    DEFF Research Database (Denmark)

    Madsen, J B; Cold, G E; Hansen, E S

    1987-01-01

    Cerebral blood flow and cerebral metabolic rate for oxygen were measured during isoflurane-induced hypotension in 10 patients subjected to craniotomy for clipping of a cerebral aneurysm. Flow and metabolism were measured 5-13 days after the subarachnoid haemorrhage by a modification of the classi......Cerebral blood flow and cerebral metabolic rate for oxygen were measured during isoflurane-induced hypotension in 10 patients subjected to craniotomy for clipping of a cerebral aneurysm. Flow and metabolism were measured 5-13 days after the subarachnoid haemorrhage by a modification......). Controlled hypotension to an average MAP of 50-55 mm Hg was induced by increasing the dose of isoflurane, and maintained at an inspired concentration of 2.2 +/- 0.2%. This resulted in a significant decrease in CMRO2 (to 1.73 +/- 0.16 ml/100 g min-1), while CBF was unchanged. After the clipping...

  4. Role of cerebral blood flow in extreme breath holding

    Directory of Open Access Journals (Sweden)

    Bain Anthony R.

    2016-01-01

    Full Text Available The role of cerebral blood flow (CBF on a maximal breath-hold (BH in ultra-elite divers was examined. Divers (n = 7 performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg. Arterial blood gases and CBF were measured prior to (baseline, and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO2 by about 26% (p < 0.01. Indomethacin reduced maximal BH time from 339 ± 51 to 319 ± 57 seconds (p = 0.04. In both conditions, the CDO2 remained unchanged from baseline to the termination of apnea. At BH termination, arterial oxygen tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa. The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01. These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H+ washout, and therefore central chemoreceptive drive to breathe, rather than to CDO2.

  5. Regional cerebral blood flow study with 123I-IMP in patients with degenerative dementia

    International Nuclear Information System (INIS)

    Ohnishi, T.; Hoshi, H.; Nagamachi, S.; Jinnouchi, S.; Futami, S.; Watanabe, K.; Mitsuyama, Y.

    1991-01-01

    Regional cerebral blood flow was evaluated by single-photon emission CT (SPECT) with 123I-N-isopropyl-p-iodoamphetamine (123I-IMP) in 11 patients with dementia of the Alzheimer type, three patients with progressive dementia and motor neuron disease, and eight healthy control subjects. Regional blood flow measurements in the bilateral frontal, parietal association, and temporal cortices were lower in the Alzheimer dementia patients than in controls. Flow deficits in the parietal association cortex were demonstrated in all patients with Alzheimer-type dementia; these deficits were correlated with the severity of disease. Lateral hemispheric asymmetry was seen in nine of 11 patients with Alzheimer-type dementia. In all three patients with progressive dementia and motor neuron disease, flow deficits were demonstrated in the bilateral frontal and temporal cortices, but no flow deficits were seen in the parietal association cortex. Brain SPECT with 123I-IMP may be useful in the differential diagnosis and evaluation of the severity of degenerative dementia

  6. Regional cerebral blood flow changes associated with focal electrically administered seizure therapy (FEAST).

    Science.gov (United States)

    Chahine, George; Short, Baron; Spicer, Ken; Schmidt, Matthew; Burns, Carol; Atoui, Mia; George, Mark S; Sackeim, Harold A; Nahas, Ziad

    2014-01-01

    Use of electroconvulsive therapy (ECT) is limited by cognitive disturbance. Focal electrically-administered seizure therapy (FEAST) is designed to initiate focal seizures in the prefrontal cortex. To date, no studies have documented the effects of FEAST on regional cerebral blood flow (rCBF). A 72 year old depressed man underwent three single photon emission computed tomography (SPECT) scans to capture the onset and resolution of seizures triggered with right unilateral FEAST. We used Bioimage Suite for within-subject statistical analyses of perfusion differences ictally and post-ictally compared with the baseline scan. Early ictal increases in regional cerebral blood flow (rCBF) were limited to the right prefrontal cortex. Post-ictally, perfusion was reduced in bilateral frontal and occipital cortices and increased in left motor and precuneus cortex. FEAST appears to triggers focal onsets of seizure activity in the right prefrontal cortex with subsequent generalization. Future studies are needed on a larger sample. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Cerebral blood flow and oxygen metabolism in the Rett syndrome

    International Nuclear Information System (INIS)

    Yoshikawa, Hideto; Fueki, Noboru; Suzuki, Hisaharu; Sakuragawa, Norio; Iio, Masaaki

    1992-01-01

    Positron emission tomography (PET) was performed on six patients with the Rett syndrome and the results were compared with the concurrent clinical status of the patients. The cerebral metabolic rate of oxygen (CMRO 2 ) was low in five patients, and oxygen extraction fraction (OEF) was low in four patients; both had a tendency to decline with advancing age. Although the cause is unknown, it is suggested that impaired oxidative metabolism exists in the Rett syndrome. An analysis of the distribution among brain regions showed that the ratios of values for the frontal cortex to those for the temporal cortex for both the cerebral blood flow (CBF) and CMRO 2 were lower than those for the controls, which may indicate the loss of of hyperfrontality in the Rett syndrome. Distribution of brain metabolism may be immature in the Rett syndrome. (author)

  8. Regional cerebral blood flow measurement using a scintillation camera

    International Nuclear Information System (INIS)

    Heiss, W.D.

    1979-01-01

    A scintillation camera connected to auxillary equipment with off-line data processing or connected to an on-line dedicated computer system permits measurement of hemispheric and regional cerebral blood flow. Reliable flow values are obtained from regions limited in size by spatial resolution and the count rates achieved. Flow measurements obtained with the camera are able to resolve inhomogeneities of cerebral circulation in normal subjects. In a variety of clinical conditions, the localization, severity and extent of flow alterations are shown. Results of flow measurements in individual cases elucidate the pathogenesis of neurologic deficits, quantify the damage to the brain, indicate therapeutic measures of potential value and permit an estimation of the further clinical course. With restricted spatial resolution, flow measurements after intravenous 133 Xe injection are also feasible

  9. Upper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon

    DEFF Research Database (Denmark)

    Strandgaard, S; Jones, J V; MacKenzie, E T

    1975-01-01

    The effect of arterial hypertension on cerebral blood flow was studied by the intracarotid 133Xe clearance method in baboons. The arterial blood pressure was raised in gradual steps with angiotensin. Baboons with renal hypertension of 8-12 weeks duration were studied along with normotensive baboons....... In initially normotensive baboons, cerebral blood flow remained constant until the mean arterial blood pressure had risen to the range of 140 to 154 mm Hg; thereafter cerebral blood flow increased with each rise in mean arterial blood pressure. In the chronically hypertensive baboons, cerebral blood flow...... remained constant until the mean arterial blood pressure had been elevated to the range of 155 to 169 mm Hg. Thus, in chronic hypertension it appears that there are adaptive changes in the cerebral circulation which may help to protect the brain from further increases in arterial blood pressure....

  10. Impact of Cardiac Contractility during Cerebral Blood Flow in Ischemia

    Directory of Open Access Journals (Sweden)

    Silver, Brian

    2011-05-01

    Full Text Available Objective: In cerebral regions affected by ischemia, intrinsic vascular autoregulation is often lost. Blood flow delivery depends upon cardiac function and may be influenced by neuro-endocrine mediated myocardial suppression. Our objective is to evaluate the relation between ejection fraction (EF and transcranial doppler (TCD peak systolic velocities (PSV in patients with cerebral ischemic events.Methods: We conducted a retrospective cohort study from an existing TCD registry. We evaluated patients admitted within 24 hours of onset of a focal neurological deficit who had an echocardiogram and TCD performed within 72 hours of admission.Results: We identified 58 patients from March to October 2003. Eighty-one percent (n=47 had a hospital discharge diagnosis of ischemic stroke and 18.9% (n=11 had a diagnosis of transient ischemic attack. Fourteen patients had systolic dysfunction (EF50% compared to those with systolic dysfunction (EF<50% was as follows: middle cerebral artery 62.0 + 28.6 cm/s vs. 51.0 + 23.3 cm/s, p=0.11; anterior cerebral artery 52.1 + 21.6 cm/s vs. 45.9 + 22.7 cm/s, p=0.28; internal carotid artery 56.5 + 20.1 cm/s vs. 46.4 + 18.4 cm/s, p=0.04; ophthalmic artery 18.6 + 7.2 cm/s vs. 15.3 + 5.2 cm/s, p=0.11; vertebral artery 34.0 + 13.9 cm/s vs. 31.6 + 15.0 cm/s, p=0.44.Conclusion: Cerebral blood flow in the internal carotid artery territory appears to be higher in cerebral ischemia patients with preserved left ventricular contractility. Our study was unable to differentiate pre-existing cardiac dysfunction from neuro-endocrine mediated myocardial stunning. Future research is necessary to better understand heart-brain interactions in this setting and to further explore the underlying mechanisms and consequences of neuro-endocrine mediated cardiac dysfunction. [West J Emerg Med. 2011;12(2:227-232.

  11. The clinical study of cerebral blood flow imaging in patients with early syphilis

    International Nuclear Information System (INIS)

    Liu Zengli; Shi Xin; Wu Jinchang; Tang Jun; Zhong Jijun

    2003-01-01

    Objective: To study the clinical value of cerebral blood flow imaging for evaluation of patients with early syphilis. Methods: Fifty-three patients with early syphilis underwent cerebral blood flow imaging using 99 Tc m -ethylenecysteinate dimer(ECD). Regional cerebral blood flow (rCBF) changes were analyzed. Results: The acquired images of 53 patients were graded as 5 types. The rCBF was significantly depressed in 48 of 53 patients mainly in the areas dominated by anterior cerebral artery and middle cerebral artery. Conclusion: Treponema pallidum (TP) could start invading central nervous system at the early stage of infection

  12. Quantitation of cerebral blood flow using HMPAO tomography

    International Nuclear Information System (INIS)

    Bruyant, P.; Mallet, J.J.; Sau, J.; Teyssier, R.; Bonmartin, A.

    1997-01-01

    A method has been developed to quantitate regional cerebral blood flow (rCBF) using 99m Tc-HMPAO. It relies on the application of the bolus distribution principle. The rCBF is determined using compartmental analysis, by measuring the amount of tracer retained in the parenchyma and the input function. The values for blood: brain partition coefficient and for the conversion rate from the lipophilic to the hydrophilic form of the tracer are taken from the literature. Mean values for rCBF in eight patients are 41.1 ± 6.4 et 25.6 ± 5.8 mL.min -1 for the grey matter and for the white matter respectively (mean±standard deviation). This method allows to quantitate rCBF with one SPET scan and one venous blood sample. (authors)

  13. Collateral blood flow in different cerebrovascular hierarchy provides endogenous protection in cerebral ischemia.

    Science.gov (United States)

    Luo, Chuanming; Liang, Fengyin; Ren, Huixia; Yao, Xiaoli; Liu, Qiang; Li, Mingyue; Qin, Dajiang; Yuan, Ti-Fei; Pei, Zhong; Su, Huanxing

    2017-11-01

    Collateral blood flow as vascular adaptions to focal cerebral ischemia is well recognized. However, few studies directly investigate the dynamics of collateral vessel recruitment in vivo and little is known about the effect of collateral blood flow in different cerebrovascular hierarchy on the neuropathology after focal ischemic stroke. Here, we report that collateral blood flow is critically involved in blood vessel compensations following regional ischemia. We occluded a pial arteriole using femtosecond laser ablating under the intact thinned skull and documented the changes of collateral flow around the surface communication network and between the surface communication network and subsurface microcirculation network using in vivo two photon microscopy imaging. Occlusion of the pial arteriole apparently increased the diameter and collateral blood flow of its leptomeningeal anastomoses, which significantly reduced the cortical infarction size. This result suggests that the collateral flow via surface communicating network connected with leptomeningeal anastomoses could greatly impact on the extent of infarction. We then further occluded the target pial arteriole and all of its leptomeningeal anastomoses. Notably, this type of occlusion led to reversals of blood flow in the penetrating arterioles mainly proximal to the occluded pial arteriole in a direction from the subsurface microcirculation network to surface arterioles. Interesting, the cell death in the area of ischemic penumbra was accelerated when we performed occlusion to cease the reversed blood flow in those penetrating arterioles, suggesting that the collateral blood flow from subsurface microcirculation network exerts protective roles in delaying cell death in the ischemic penumbra. In conclusion, we provide the first experimental evidence that collateral blood vessels at different cerebrovascular hierarchy are endogenously compensatory mechanisms in brain ischemia. © 2016 International Society of

  14. Regional cerebral blood flow during comprehension and speech (in cerebrally healthy subjects)

    International Nuclear Information System (INIS)

    Lechevalier, B.; Petit, M.C.; Eustache, F.; Lambert, J.; Chapon, F.; Viader, F.

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured by the xenon-133 inhalation method in 10 cerebrally healthy subjects at rest and during linguistic activation tests. These consisted of a comprehension test (binaural listening to a narrative text) and a speech test (making sentences from a list of words presented orally at 30-s intervals). The comprehension task induced a moderate increase in the mean right CBF and in both inferior parietal areas, whereas the speech test resulted in a diffuse increase in the mean CBF of both hemispheres, predominating regionally in both inferior parietal, left operculary, and right upper motor and premotor areas. It is proposed that the activation pattern induced by linguistic stimulation depends on not only specific factors, such as syntactic and semantic aspects of language, but also the contents of the material proposed and the attention required by the test situation

  15. Long-term follow-up of cerebral blood flow in patients with ruptured cerebral aneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Yamakami, Iwao; Tanno, Hirokazu; Isobe, Katsumi [Kimitsu Central Hospital, Kisarazu, Chiba (Japan); Yamaura, Akira

    1992-03-01

    The xenon-133 inhalation technique was used to make three measurements of regional cerebral blood flow (CBF) in 34 patients with ruptured cerebral aneurysm: in the acute period (<14 days) after subarachnoid hemorrhage, in the subacute period (15-30 days), and in the chronic period (12-24 months). The hemispheric mean value of initial slope index was used as the mean CBF. The clinical outcomes were classified into good recovery (GR)(24 cases), moderate disability (MD)(5), and severe disability (SD)(5) on the Glasgow Outcome Scale. In all periods, the mean CBF significantly correlated with the outcome. GR patients had the highest mean CBF, MD patients the intermediate mean CBF, and SD patients the lower mean CBF. GR patients had a near-normal mean CBF by the chronic period, while SD patients showed no significant CBF recovery throughout the course. (author).

  16. Cerebral blood flow is reduced in patients with sepsis syndrome

    International Nuclear Information System (INIS)

    Bowton, D.L.; Bertels, N.H.; Prough, D.S.; Stump, D.A.

    1989-01-01

    The relationship between sepsis-induced CNS dysfunction and changes in brain blood flow remains unknown, and animal studies examining the influence of sepsis on cerebral blood flow (CBF) do not satisfactorily address that relationship. We measured CBF and cerebrovascular reactivity to CO 2 in nine patients with sepsis syndrome using the 133 Xe clearance technique. Mean CBF was 29.6 +/- 15.8 (SD) ml/100 g.min, significantly lower than the normal age-matched value in this laboratory of 44.9 +/- 6.2 ml/100 g.min (p less than .02). This depression did not correlate with changes in mean arterial pressure. Despite the reduction in CBF, the specific reactivity of the cerebral vasculature to changes in CO 2 was normal, 1.3 +/- 0.9 ml/100 g.min/mm Hg. Brain blood flow is reduced in septic humans; the contribution of this reduction to the metabolic and functional changes observed in sepsis requires further study

  17. Quantification of cerebral blood flow and its clinical usefulness. Application of SPECT to psychiatry

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Uema, Takeshi; Kogure, Daisuke; Takano, Harumasa; Terada, Tomo [National Center Hospital for Mental, Nervous and Muscular Disorders, Kodaira, Tokyo (Japan)

    1998-10-01

    Brain perfusion SPECT using {sup 99m}Tc-ethyl-cysteinate dimer ({sup 99m}Tc-ECD) was applied to psychiatric diseases with aid of statistical parametric mapping (SPM) for analysis of data. To evaluate influence of aging on brain perfusion, noninvasive measurements of cerebral blood flow using {sup 99m}Tc-ECD were performed in 53 normal volunteers, aged 18 to 87 years old. Mean cerebral blood flow (mCBF) was 43.9{+-}5.0 ml/100 g/min and showed weak negative correlation with aging (r=-0.451). Perisylvian cerebral cortices and medial frontal areas including anterior cingulate gyri showed greater negative correlation than other areas. These findings suggest the necessity of age-matched control regional CBF (rCBF) data to investigate rCBF abnormality in patients. Four drug-naive schizophrenic patients showed flow decrease in bilateral frontal and superior temporal areas and a left infero-posterior temporal area. Haloperidol administration induced flow decrease in bilateral frontal and left parietal areas, while flow increase in bilateral striatal and right hippocampal areas. Ten aged depressive patients showed flow decrease in bilateral frontal and left temporo-parietal areas. Even after remission patients showed flow decrease in the left frontal area as compared with normal subjects. Remission induced flow increase in the right frontal, right parietal, and right orbitofrontal areas compared with depression. These results suggest that CBF measurements using {sup 99m}Tc-ECD are useful for objective evaluation of regional abnormality in brain function in psychiatric diseases. (author)

  18. Imaging local cerebral blood flow by xenon-enhanced computed tomography - technical optimization procedures

    International Nuclear Information System (INIS)

    Meyer, J.S.; Shinohara, T.; Imai, A.; Kobari, M.; Solomon, E.

    1988-01-01

    Methods are described for non-invasive, computer-assisted serial scanning throughout the human brain during eight minutes of inhalation of 27%-30% xenon gas in order to measure local cerebral blood flow (LCBF). Optimized xenon-enhanced computed tomography (XeCT) was achieved by 5-second scanning at one-minute intervals utilizing a state-of-the-art CT scanner and rapid delivery of xenon gas via a face mask. Values for local brain-blood partition coefficients (Lλ) measured in vivo were utilized to calculate LCBF values. Previous methods assumed Lλ values to be normal, introducing the risk of systematic errors, because Lλ values differ throughout normal brain and may be altered by disease. Color-coded maps of Lλ and LCBF values were formatted directly onto CT images for exact correlation of function with anatomic and pathologic observations (spatial resolution: 26.5 cubic mm). Results were compared among eight normal volunteers, aged between 50 and 88 years. Mean cortical gray matter blood flow was 46.3 ± 7.7, for subcortical gray matter it was 50.3 ± 13.2 and for white matter it was 18.8 ± 3.2. Modern CT scanners provide stability, improved signal to noise ratio and minimal radiation scatter. Combining these advantages with rapid xenon saturation of the blood provides correlations of Lλ and LCBF with images of normal and abnormal brain in a safe, useful and non-invasive manner. (orig.)

  19. Imaging local cerebral blood flow by xenon-enhanced computed tomography - technical optimization procedures

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.S.; Shinohara, T.; Imai, A.; Kobari, M.; Sakai, F.; Hata, T.; Oravez, W.T.; Timpe, G.M.; Deville, T.; Solomon, E.

    1988-08-01

    Methods are described for non-invasive, computer-assisted serial scanning throughout the human brain during eight minutes of inhalation of 27%-30% xenon gas in order to measure local cerebral blood flow (LCBF). Optimized xenon-enhanced computed tomography (XeCT) was achieved by 5-second scanning at one-minute intervals utilizing a state-of-the-art CT scanner and rapid delivery of xenon gas via a face mask. Values for local brain-blood partition coefficients (Llambda) measured in vivo were utilized to calculate LCBF values. Previous methods assumed Llambda values to be normal, introducing the risk of systematic errors, because Llambda values differ throughout normal brain and may be altered by disease. Color-coded maps of Llambda and LCBF values were formatted directly onto CT images for exact correlation of function with anatomic and pathologic observations (spatial resolution: 26.5 cubic mm). Results were compared among eight normal volunteers, aged between 50 and 88 years. Mean cortical gray matter blood flow was 46.3 +- 7.7, for subcortical gray matter it was 50.3 +- 13.2 and for white matter it was 18.8 +- 3.2. Modern CT scanners provide stability, improved signal to noise ratio and minimal radiation scatter. Combining these advantages with rapid xenon saturation of the blood provides correlations of Llambda and LCBF with images of normal and abnormal brain in a safe, useful and non-invasive manner.

  20. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia.

    Science.gov (United States)

    Moraga, Ana; Pradillo, Jesús M; García-Culebras, Alicia; Palma-Tortosa, Sara; Ballesteros, Ivan; Hernández-Jiménez, Macarena; Moro, María A; Lizasoain, Ignacio

    2015-05-10

    Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in

  1. Trigeminal cardiac reflex and cerebral blood flow regulation

    Directory of Open Access Journals (Sweden)

    Dominga Lapi

    2016-10-01

    Full Text Available The stimulation of some facial regions is known to trigger the trigemino-cardiac reflex: the main stimulus is represented by the contact of the face with water. This phenomenon called diving reflex induces a set of reactions in the cardiovascular and respiratory systems occurring in all mammals, especially marine (whales, seals. During the immersion of the face in the water, the main responses are aimed at reducing the oxygen consumption of the organism. Accordingly reduction in heart rate, peripheral vasoconstriction, blood pooling in certain organs, especially the heart and brain, and an increase in blood pressure have been reported. Moreover, the speed and intensity of the reflex is inversely proportional to the temperature of the water: more cold the water, more reactions as described are strong. In the case of deep diving an additional effect, such as blood deviation, has been reported: the blood is requested within the lungs, to compensate for the increase in the external pressure, preventing them from collapsing.The trigeminal-cardiac reflex is not just confined to the diving reflex; recently it has been shown that a brief proprioceptive stimulation (10 min by jaw extension in rats produces interesting effects both at systemic and cerebral level, reducing the arterial blood pressure and vasodilating the pial arterioles. The arteriolar dilation is associated with rhythmic diameter changes characterized by an increase in the endothelial activity. Fascinating the stimulation of trigeminal nerve is able to activated the nitric oxide release by vascular endothelial. Therefore the aim of this review was to highlight the effects due to trigeminal cardiac reflex induced by a simple mandibular extension, because produced opposite effects compared to those elicited by the diving reflex as it induces hypotension and modulation of cerebral arteriolar tone.

  2. Quantitative comparison of cortical and deep grey matter in pathological subtypes of unilateral cerebral palsy.

    Science.gov (United States)

    Scheck, Simon M; Pannek, Kerstin; Fiori, Simona; Boyd, Roslyn N; Rose, Stephen E

    2014-10-01

    The aim of this study was to quantify grey matter changes in children with unilateral cerebral palsy (UCP), differentiating between cortical or deep grey matter (CDGM) lesions, periventricular white matter (PWM) lesions, and unilateral and bilateral lesions. In a cross-sectional study we obtained high resolution structural magnetic resonance images from 72 children (41 males, 31 females, mean age 10y 9mo [SD 3y 1mo], range 5y 1mo-17y 1mo) with UCP (33 left, 39 right hemiplegia; Manual Ability Classification System level I n=29, II n=43; Gross Motor Function Classification System level I n=46, II n=26), and 19 children with typical development (CTD; eight males, 11 females, mean age 11y 2mo [SD 2y 7mo], range 7y 8mo-16y 4mo). Images were classified by lesion type and analyzed using voxel-based morphometry (VBM) and subcortical volumetric analysis. Deep grey matter volumes were not significantly different between children with CDGM and PWM lesions, with the thalamus, putamen, and globus pallidus being reduced unilaterally in both groups compared with CTD (p≤0.001). Children with CDGM lesions additionally showed widespread cortical changes involving all lobes using VBM (p<0.01). Children with bilateral lesions had reduced thalamus and putamen volumes bilaterally (p<0.001). The thalamic volume was reduced bilaterally in children with unilateral lesions (p=0.004). Lesions to the PWM cause secondary changes to the deep grey matter structures similar to primary changes seen in CDGM lesions. Despite having a unilateral phenotype, grey matter changes are observed bilaterally, even in children with unilateral lesions. © 2014 Mac Keith Press.

  3. Modeling cerebral blood flow during posture change from sitting to standing

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Olufsen, M.; Tran, H.T.

    2004-01-01

    extremities, the brain, and the heart. We use physiologically based control mechanisms to describe the regulation of cerebral blood flow velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. To justify the fidelity of our mathematical model and control......Abstract Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow velocity regulation, are among the first signs indicating the presence of cerebral vascular disease. In this paper, we will present a mathematical model that can predict blood flow and pressure during posture...

  4. Decreased cerebral blood flow after administration of sodium bicarbonate in the distressed newborn infant

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Fris-Hansen, B

    1978-01-01

    In the course of our studies on cerebral blood flow in newborn infants, we have observed a striking depressing effect of sodium bicarbonate infusion on cerebral blood flow which in some cases may severely aggravate cerebral ischemia. We measured cerebral blood flow before and after the treatment...... with 1 to 8 meqs of sodium bicarbonate in seven distressed newborn infants. The 133 Xe clearance technique was used. The results showed in six of the seven cases a decrease in cerebral blood flow, which in most cases was reduced to 14 to 22 ml/100 g/min, which is about half the value prior...... to the bicarbonate infusion. In one case an extreme reduction occurred: cerebral blood flow was reduced to 3 ml/100 g/min, well below the level compatible with tissue survival. The results are discussed with regard to the optimal treatment of the acidotic newborn....

  5. Noninvasive MRI measurement of the absolute cerebral blood volume-cerebral blood flow relationship during visual stimulation in healthy humans.

    Science.gov (United States)

    Ciris, Pelin Aksit; Qiu, Maolin; Constable, R Todd

    2014-09-01

    The relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF) underlies blood oxygenation level-dependent functional MRI signal. This study investigates the potential for improved characterization of the CBV-CBF relationship in humans, and examines sex effects as well as spatial variations in the CBV-CBF relationship. Healthy subjects were imaged noninvasively at rest and during visual stimulation, constituting the first MRI measurement of the absolute CBV-CBF relationship in humans with complete coverage of the functional areas of interest. CBV and CBF estimates were consistent with the literature, and their relationship varied both spatially and with sex. In a region of interest with stimulus-induced activation in CBV and CBF at a significance level of the P < 0.05, a power function fit resulted in CBV = 2.1 CBF(0.32) across all subjects, CBV = 0.8 CBF(0.51) in females and CBV = 4.4 CBF(0.15) in males. Exponents decreased in both sexes as ROIs were expanded to include less significantly activated regions. Consideration for potential sex-related differences, as well as regional variations under a range of physiological states, may reconcile some of the variation across literature and advance our understanding of the underlying cerebrovascular physiology. Copyright © 2013 Wiley Periodicals, Inc.

  6. Effects of smoking on regional cerebral blood flow in cerebral vascular disease patients and normal subjects

    International Nuclear Information System (INIS)

    Kubota, Kazuo; Yamaguchi, Tatsuo; Fujiwara, Takehiko; Matsuzawa, Taiju

    1987-01-01

    The chronic effect of smoking on the regional cerebral blood flow (r-CBF) was studied by 133-Xenon inhalation method and described with the Initial Slope Index (ISI). Fifty-two patients as the control group who had no abnormality neurologically or with CT scan, 32 patients with old cerebral infarction and 20 patients with old cerebral hemorrhage were introduced to the present study, and these patients were divided into smokers and non-smokers in each group. Those whose smoking index of 200 or more [(number of cigarettes/day) x (years of smoking history) ≥ 200] were designated as smokers. ISI values were decreased significantly in smokers than non-smokers in all groups. Mean ISI value of unaffected hemisphere in smokers decreased by 16 % in the infarction group and 22 % in the hemorrhage group comparing to the non-smokers', respectively. In the control group, mean ISI value of right hemisphere decreased by 15 % and left 14 % in smokers compared to the non-smokers. The r-CBF values in 44 of the 47 smokers were found to be lower than the expected age matched values in non-smokers. Serum high density lipoprotein cholesterol value in smokers was significantly lower than that in non-smokers. We demonstrated preliminarily that the smoking chronically reduced the r-CBF. Advanced atherosclerosis associated with the smoker was suggested to affect the CBF. (author)

  7. CT and MR Studies of Giant Dermoid Cyst Associated to Fat Dissemination at the Cortical and Cisternal Cerebral Spaces

    Directory of Open Access Journals (Sweden)

    Alessandro D'Amore

    2013-01-01

    Full Text Available This study focuses on CT and MR studies of adult patient with giant lesion of the posterior cranial fossa associated with micro- and macroaccumulations with density and signal like “fat” at the level of the cortical and cisternal cerebral spaces. This condition is compatible with previous asymptomatic ruptured dermoid cyst. Histological findings confirm the hypothesis formulated using the imaging. We also integrate elements of differential diagnosis by another giant lesion of the posterior cranial fossa.

  8. Neural control of adrenal medullary and cortical blood flow during hemorrhage

    International Nuclear Information System (INIS)

    Breslow, M.J.; Jordan, D.A.; Thellman, S.T.; Traystman, R.J.

    1987-01-01

    Hemorrhagic hypotension produces an increase in adrenal medullary blood flow and a decrease in adrenal cortical blood flow. To determine whether changes in adrenal blood flow during hemorrhage are neurally mediated, the authors compared blood flow responses following adrenal denervation (splanchnic nerve section) with changes in the contralateral, neurally intact adrenal. Carbonized microspheres labeled with 153 Gd, 114 In, 113 Sn, 103 Ru, 95 Nb or 46 Se were used. Blood pressure was reduced and maintained at 60 mmHg for 25 min by hemorrhage into a pressurized bottle system. Adrenal cortical blood flow decreased to 50% of control with hemorrhage in both the intact and denervated adrenal. Adrenal medullary blood flow increased to four times control levels at 15 and 25 min posthemorrhage in the intact adrenal, but was reduced to 50% of control at 3, 5, and 10 min posthemorrhage in the denervated adrenal. In a separate group of dogs, the greater splanchnic nerve on one side was electrically stimulated at 2, 5, or 15 Hz for 40 min. Adrenal medullary blood flow increased 5- to 10-fold in the stimulated adrenal but was unchanged in the contralateral, nonstimulated adrenal. Adrenal cortical blood flow was not affected by nerve stimulation. They conclude that activity of the splanchnic nerve profoundly affects adrenal medullary vessels but not adrenal cortical vessels and mediates the observed increase in adrenal medullary blood flow during hemorrhagic hypotension

  9. Frontiers in optical imaging of cerebral blood flow and metabolism.

    Science.gov (United States)

    Devor, Anna; Sakadžić, Sava; Srinivasan, Vivek J; Yaseen, Mohammad A; Nizar, Krystal; Saisan, Payam A; Tian, Peifang; Dale, Anders M; Vinogradov, Sergei A; Franceschini, Maria Angela; Boas, David A

    2012-07-01

    In vivo optical imaging of cerebral blood flow (CBF) and metabolism did not exist 50 years ago. While point optical fluorescence and absorption measurements of cellular metabolism and hemoglobin concentrations had already been introduced by then, point blood flow measurements appeared only 40 years ago. The advent of digital cameras has significantly advanced two-dimensional optical imaging of neuronal, metabolic, vascular, and hemodynamic signals. More recently, advanced laser sources have enabled a variety of novel three-dimensional high-spatial-resolution imaging approaches. Combined, as we discuss here, these methods are permitting a multifaceted investigation of the local regulation of CBF and metabolism with unprecedented spatial and temporal resolution. Through multimodal combination of these optical techniques with genetic methods of encoding optical reporter and actuator proteins, the future is bright for solving the mysteries of neurometabolic and neurovascular coupling and translating them to clinical utility.

  10. The effect of combined treatment with transcranial direct current stimulation on cerebral blood flow in patients with cerebral palsy

    Directory of Open Access Journals (Sweden)

    K. V. Yatsenko

    2017-02-01

    Full Text Available There is a close link between the activity of the brain and cerebral blood supply. Transcranial direct current stimulation (tDCS modulates the activity of the cerebral cortex and thus affects the cerebral blood flow. The aim of the study was to investigate the effect of combined treatment with tDCS on cerebral blood flow in patients with cerebral palsy (CP. Materials and Methods. 60 patients with various forms of cerebral palsy were examined and received the course of treatment. The comparison group was formed from 30 children who received the course of basic medical and rehabilitation procedures. The main group included 30 children who, in addition to the same therapy, received a course of tDCS. A transcranial Doppler ultrasound examination of head blood vessels was used for the study of cerebral hemodynamics in children with cerebral palsy before and after combined treatment with tDCS. Results. tDCS reduced asymmetry coefficient of blood flow velocity in the middle cerebral arteries (MCA by 12.3 %, whereas in the comparison group only by 2.5 %; in the anterior cerebral artery (ACA – 9.5 %, while in the comparison group – 0.8 %. tDCS significantly reduced the high mean blood flow velocity per cycle (MFV in the basilar artery (BA, MCA and ACA (21.7 %, 18.3 % and 7.8 %, respectively; in the comparison group no statistically significant positive dynamics was observed. tDCS significantly increased the low MVF in the BA, MCA and ACA (29.7 %, 21.2 % and 9.7 % respectively; a statistically significant increase of MVF by 9.9 % was only in the CMA in the comparison group of patients. Conclusions. Our data indicate that the use of tDCS in the combined treatment of CP patients improves cerebral hemodynamics in 87 % of patients, in contrast to 52 % in the comparison group. The addition of transcranial direct current stimulation method to the complex treatment of patients with cerebral palsy improves the effectiveness of treatment and may also

  11. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hyoung; Chung, Yong An; Seo, Ye Young; Yoo, Ik Dong; Na, Sae Jung; Jung, Hyun Suk; Kim, Ki Jun [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2009-04-15

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19approx52 years, average age: 29.3+-9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19approx53 years, average age: 31.4+-9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  12. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    International Nuclear Information System (INIS)

    Lee, Won Hyoung; Chung, Yong An; Seo, Ye Young; Yoo, Ik Dong; Na, Sae Jung; Jung, Hyun Suk; Kim, Ki Jun

    2009-01-01

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19∼52 years, average age: 29.3±9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19∼53 years, average age: 31.4±9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  13. Cerebral blood flow measurement in cerebrovascular occlusive diseases

    International Nuclear Information System (INIS)

    Yanagihara, T.; Wahner, H.W.

    1984-01-01

    In order to evaluate cerebral blood flow (CBF) patterns among individual patients with increased statistical confidence, CBF measurements were carried out using the 133Xe-inhalation method and external head detectors. F1 values representing gray matter flow from 3 to 6 head detectors were averaged to form 16 different regions for each cerebral hemisphere. Normative values were obtained from 46 healthy volunteers, and data from individual regions were analyzed for absolute blood flow rates (ml/100g/min), for concordance between right and left hemispheres and as percent of mean hemispheric flow. CBF measurements were then carried out among 37 patients with cerebrovascular occlusive diseases, and results were compared with normative values. A high incidence of abnormal flows were detected among symptomatic patients with intracranial arterial stenosis or occlusion and those with extracranial internal carotid artery occlusion. By using the above method for data analysis, it was possible to delineate hypoperfused areas among these patients. Even though the 133Xe-inhalation method has inherent limitations, this is a practical and safe method for measurement of CBF which can provide reliable information useful for management of patients with cerebrovascular occlusive diseases, particularly when the results are presented with statistical confidence

  14. Cortical Cerebral Microinfarcts on 3 Tesla MRI in Patients with Vascular Cognitive Impairment.

    Science.gov (United States)

    Ferro, Doeschka A; van Veluw, Susanne J; Koek, Huiberdina L; Exalto, Lieza G; Biessels, Geert Jan

    2017-01-01

    Cerebral microinfarcts (CMIs) are small ischemic lesions that are a common neuropathological finding in patients with stroke or dementia. CMIs in the cortex can now be detected in vivo on 3 Tesla MRI. To determine the occurrence of CMIs and associated clinical features in patients with possible vascular cognitive impairment (VCI). 182 memory-clinic patients (mean age 71.4±10.6, 55% male) with vascular injury on brain MRI (i.e., possible VCI) underwent a standardized work-up including 3 Tesla MRI and cognitive assessment. A control group consisted of 70 cognitively normal subjects (mean age 70.6±4.7, 60% male). Cortical CMIs and other neuroimaging markers of vascular brain injury were rated according to established criteria. Occurrence of CMIs was higher (20%) in patients compared to controls (10%). Among patients, the presence of CMIs was associated with male sex, history of stroke, infarcts, and white matter hyperintensities. CMI presence was also associated with a diagnosis of vascular dementia and reduced performance in multiple cognitive domains. CMIs on 3 Tesla MRI are common in patients with possible VCI and co-occur with imaging markers of small and large vessel disease, likely reflecting a heterogeneous etiology. CMIs are associated with worse cognitive performance, independent of other markers of vascular brain injury.

  15. Actions of the pyrethroid insecticide bifenthrin on sodium channels expressed in rat cerebral cortical neurons.

    Science.gov (United States)

    Yang, Lin; Li, Li

    2015-01-01

    Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. Here, we studied the mode of action of bifenthrin on the native sodium channels in cerebral cortical neurons prepared from newborn rat brain, where the toxic effects are largely generated. Bifenthrin caused a pronounced late current that persisted at the end of a depolarizing pulse, a slowly-decaying tail current following repolarization and significant resting modification (25.3% modification at 10 μM). No significant bifenthrin-induced effect was observed at the peak current. Bifenthrin also caused a concentration-dependent hyperpolarizing shift in steady-state activation and inactivation as well as slowed recovery from channel inactivation. Repetitive depolarization increased the potency of bifenthrin with high frequency. There was approximately 64% inhibition of modification upon repetitive activation by 10-Hz trains of depolarizing pulses. These results suggest that bifenthrin binds to and modifies sodium channels in both the closed and open states and exhibits the behavior between type I and type II.

  16. Murine model of acute myocarditis and cerebral cortical neuron edema induced by coxsackievirus B4

    Directory of Open Access Journals (Sweden)

    Zhao-Peng Dong

    2018-01-01

    Full Text Available Globally, coxsackievirus B4 (CV-B4 has been continuously isolated and evidence suggests an association with the development of pancreatitis and type I diabetes. In addition, CV-B4 is also associated with myocarditis and severe central nervous system (CNS complications, which remain poorly studied and understood. In the present study, we established an ICR mouse model of CV-B4 infection and examined whether CV-B4 infection resulted in a predisposition to myocarditis and CNS infection. We found high survival in both the treatment and control group, with no significant differences in clinical outcomes observed. However, pathological lesions were evident in both brain and heart tissue of the CV-B4-infected mice. In addition, high viral loads were found in the neural and cardiac tissues as early as 2 d postinfection. Expressions of IFN-γ and IL-6 in sera were significantly higher in CV-B4-infected mice compared to uninfected negative controls, suggesting the involvement of these cytokines in the development of histopathological lesions. Our murine model successfully reproduced the acute myocarditis and cerebral cortical neuron edema induced by CV-B4, and may be useful for the evaluation of vaccine candidates and potential antivirals against CV-B4 infection.

  17. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons.

    Science.gov (United States)

    Marosi, Krisztina; Kim, Sang Woo; Moehl, Keelin; Scheibye-Knudsen, Morten; Cheng, Aiwu; Cutler, Roy; Camandola, Simonetta; Mattson, Mark P

    2016-12-01

    During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD + /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  18. Cerebral blood flow mapping using stable xenon-enhanced CT in sickle cell cerebrovascular disease

    International Nuclear Information System (INIS)

    Numaguchi, Y.; Robinson, A.E.; Carey, J.E.

    1990-01-01

    The cerebral blood flow (CBF) of 25 patients with sickle cell cerebrovascular disease (SCCVD) was examined using a xenon-CT flow mapping method. Brain CT and MR findings were correlated with those of the xenon-CT flow studies. CBF defects on xenon-CT correlated reasonably well with the areas of cortical infarctions on the MR images, but in 27% of the cases, flow defects were slightly larger than the areas of infarctions on the MR images. In deep watershed or basal ganglia infarctions, abnormal CBF was noted about the cerebral cortex near infarctions in 72% of the patients, regardless of infarction sizes on the MR images. However, decreased CBF was recognized in 4 of the 9 children whose MR images were virtually normal. Thus, the extent of flow depletion cannot be predicted accurately by MR imaging alone. Xenon-CT flow mapping proved a safe and reliable procedure for evaluation of the CBF of patients with SCCVD. Although this study is preliminary, it may have a potential in selecting patients for hypertransfusion therapy, as a noninvasive test and for following children with SCCVD during their therapy. Careful correlation of results of CBF with those of MR imaging or of CT is important for objective interpretations of flow mapping images. (orig.)

  19. Characterization of neuronal damage by iomazenil binding and cerebral blood flow in an ischemic rat model

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Takeuchi, Akira; Koga, Sukehiko; Matsumura, Kaname; Nakashima, Hiromichi; Takeda, Kan; Yoshida, Toshimichi; Ichise, Masanori

    1998-01-01

    I-123-iomazenil is a SPECT probe for central benzodiazepine receptors (BZR) which may reflect intact cortical neuron density after ischemic insults. We evaluated whether neuronal damage in rats could be characterized by iomazenil as compared with cerebral blood flow (CBF). Serial changes in I-125-iomazenil for BZR and I-123-IMP for CBF were analyzed after the unilateral middle cerebral artery occlusion in rats by using an in vivo dualtracer technique. Uptake ratios of affected to contralateral regions were calculated. The iomazenil as well as IMP were decreased in all regions except for the cerebellum (remote area). Both iomazenil and IMP increased over time except in the temporal region (ischemic core). The iomazenil uptake was higher than IMP except in the ischemic core between 1 and 3-4 wk when iomazenil was lower than IMP. Iomazenil showed a moderate decrease in the proximal and middle parietal regions (peri-infarct areas) at 3-4 wk. The triphenyl-tetrazolium-chloride (TTC) stain at 1 wk demonstrated unstained tissue in the temporal region indicating tissue necrosis. With hematoxylin-eosin (HE) stain at 1 wk, widespread neuronal necrosis with occasional intact neurons were found in the proximal parietal region, and isolated necrotic neurons were represented in the distal parietal region. Iomazenil correlated well with the neuron distribution and the finding of a discrepancy between iomazenil and IMP might be useful in evaluating the neuronal damage. (author)

  20. Cerebral blood flow in hypothyroidism: Response to therapy and associated cognitive performance

    International Nuclear Information System (INIS)

    Ilgin, N.; Akdemir, U.O.; Yetkin, I.; Eroglu, A.

    2002-01-01

    Hypothyroidism is often associated with defective memory, psychomotor slowing and depression. However, the relationship between thyroid status, related cognitive state and associated cerebral circulatory and/or metabolic abnormalities have not been elucidated. Purpose: The aim of this study was to evaluate pre-and post-therapy brain perfusion patterns in 9 hypothyroid patients presenting with Hashimoto thyroiditis. Method: Patients were referred on the basis of abnormal levels of anti-thyroglobulin and anti-microsomal antibodies, hypothyroidism and symptoms of cognitive dysfunction. Cognitive performance was tested using Raven's Coloured Progressive Matrices and Bender Gestalt Test. Functional evaluation of the brain was also performed via the methods of electroencephalography (EEG) and single photon emission tomography (SPECT). An initial SPECT study was carried out after I.V. injection of Tc99m-HMPAO and semiquantitative rCBF analysis was performed by drawing irregular regions of interest (ROIs) in three slices. A total number of 12 sector regions of interest placed on the two hemispheres and regional cerebral blood flow (rCBF) was determined using cortical region/cerebellum ratios obtained in each hemisphere. A repeat SPECT study was undertaken in 5 subjects 3-6 months after the initiation of medical therapy. Results: Pre-therapy perfusion data in four patients showed that the cortical ratios were globally depressed at the levels of 0.65-0.85 where these ratios improved quickly to the near normal-above normal levels (range of rCBF improvement as % difference from baseline 25%-45%) within 3-4 months of therapy. Conclusion: These results indicate that brain activity was globally decreased in severe hypothyroidism of short duration which normalized steadily as the hypothyroid state is corrected

  1. Modelling of impaired cerebral blood flow due to gaseous emboli

    International Nuclear Information System (INIS)

    Hague, J P; Banahan, C; Chung, E M L

    2013-01-01

    Bubbles introduced to the arterial circulation during invasive medical procedures can have devastating consequences for brain function but their effects are currently difficult to quantify. Here we present a Monte Carlo simulation investigating the impact of gas bubbles on cerebral blood flow. For the first time, this model includes realistic adhesion forces, bubble deformation, fluid dynamical considerations, and bubble dissolution. This allows investigation of the effects of buoyancy, solubility, and blood pressure on embolus clearance. Our results illustrate that blockages depend on several factors, including the number and size distribution of incident emboli, dissolution time and blood pressure. We found it essential to model the deformation of bubbles to avoid overestimation of arterial obstruction. Incorporation of buoyancy effects within our model slightly reduced the overall level of obstruction but did not decrease embolus clearance times. We found that higher blood pressures generate lower levels of obstruction and improve embolus clearance. Finally, we demonstrate the effects of gas solubility and discuss potential clinical applications of the model. (paper)

  2. Heterogeneity of cerebral blood flow: a fractal approach

    International Nuclear Information System (INIS)

    Kuikka, J.T.; Hartikainen, P.

    2000-01-01

    Aim: We demonstrate the heterogeneity of regional cerebral blood flow using a fractal approach and single-photon emission computed tomography (SPECT). Method: Tc-99m-labelled ethylcysteine dimer was injected intravenously in 10 healthy controls and in 10 patients with dementia of frontal lobe type. The head was imaged with a gamma camera and transaxial, sagittal and coronal slices were reconstructed. Two hundred fifty-six symmetrical regions of interest (ROIs) were drawn onto each hemisphere of functioning brain matter. Fractal analysis was used to examine the spatial heterogeneity of blood flow as a function of the number of ROIs. Results: Relative dispersion (=coefficient of variation of the regional flows) was fractal-like in healthy subjects and could be characterized by a fractal dimension of 1.17±0.05 (mean±SD) for the left hemisphere and 1.15±0.04 for the right hemisphere, respectively. The fractal dimension of 1.0 reflects completely homogeneous blood flow and 1.5 indicates a random blood flow distribution. Patients with dementia of frontal lobe type had a significantly lower fractal dimension of 1.04±0.03 than in healthy controls. (orig.) [de

  3. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    International Nuclear Information System (INIS)

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-01-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did not alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine

  4. Abnormality of cerebral cortical glucose metabolism in temporal lobe epilepsy with cognitive function impairment

    International Nuclear Information System (INIS)

    Bang-Hung Yang; Tsung-Szu Yeh; Tung-Ping Su; Jyh-Cheng Chen; Ren-Shyan Liu

    2004-01-01

    Objective: People with epilepsy commonly report having problems with their memory. Many indicate that memory difficulties significantly hinder their functioning at work, in school, and at home. Besides, some studies have reported that memory performance as a prognostic factor is of most value in patients with risk of refractory epilepsy and when used in a multidisciplinary setting. However, the cerebral cortical areas involving memory impairment in epilepsy is still unknown. The purpose of this study was to access changes of cerebral glucose metabolism of epilepsy patients using [F-18] fluorodeoxyglucose positron emission tomography (FDG PET). Method: Nine temporal lobe epilepsy patients were studied. Each patient was confirmed with lesions in right mesial temporal lobe by MRI, PET and EEG. Serial cognition function tests were performed. Regional cerebral glucose metabolism (rCMRglc) was measured by PET at 45 minutes after injection of 370 MBq of FDG. Parametric images were generated by grand mean scaling each scan to 50. The images were then transformed into standard stereotactic space. Statistical parametric mapping (SPM2) was applied to find the correlations between verbal memory, figure memory, perception intelligent quotation (PIQ) and rCMRglc in epilepsy patients. The changes of rCMRglc were significant if corrected p value was less than 0.05. Results: There was no significant relationship between figure memory score and verbal memory score. FDG-PET scan showed changes of rCMRglc positive related with verbal memory score in precentral gyms of right frontal lobe (Brodmann area 4, corrected p < 0.001, voxel size 240) and cingulated gyms of right limbic lobe (Brodmann area 32, corrected p=0.002, voxel size 143). No negative relationship was demonstrable between verbal memory and rCMRglc in this study. Besides, significanfiy positive correlation between figure memory was shown in cuneus of right occipital lobe (Brodmann area 18, corrected p < 0.001, voxel size

  5. Interactive effects of vascular risk burden and advanced age on cerebral blood flow

    Directory of Open Access Journals (Sweden)

    Katherine eBangen

    2014-07-01

    Full Text Available Vascular risk factors and cerebral blood flow (CBF reduction have been linked to increased risk of cognitive impairment and Alzheimer’s disease (AD; however the possible moderating effects of age and vascular risk burden on CBF in late life remain understudied. We examined the relationships among elevated vascular risk burden, age, CBF, and cognition. Seventy-one non-demented older adults completed an arterial spin labeling MR scan, neuropsychological assessment, and medical history interview. Relationships among vascular risk burden, age, and CBF were examined in a priori regions of interest (ROIs previously implicated in aging and AD. Interaction effects indicated that, among older adults with elevated vascular risk burden (i.e., multiple vascular risk factors, advancing age was significantly associated with reduced cortical CBF whereas there was no such relationship for those with low vascular risk burden (i.e., no or one vascular risk factor. This pattern was observed in cortical ROIs including medial temporal (hippocampus, parahippocampal gyrus, uncus, inferior parietal (supramarginal gyrus, inferior parietal lobule, angular gyrus, and frontal (anterior cingulate, middle frontal gyrus, medial frontal gyrus cortices. Furthermore, among those with elevated vascular risk, reduced CBF was associated with poorer cognitive performance. Such findings suggest that older adults with elevated vascular risk burden may be particularly vulnerable to cognitive change as a function of CBF reductions. Findings support the use of CBF as a potential biomarker in preclinical AD and suggest that vascular risk burden and regionally-specific CBF changes may contribute to differential age-related cognitive declines.

  6. Changes in local cerebral blood flow by neuroactivation and vasoactivation in patients with impaired cognitive function

    International Nuclear Information System (INIS)

    Knapp, W.H.; Dannenberg, C.; Marschall, B.; Zedlick, D.; Loeschmann, K.; Bettin, S.; Barthel, H.; Seese, A.

    1996-01-01

    Imaging of local cerebral blood flow (lCBF) may serve as an important supplementary tool in the aetiological assessment of dementias. In early or preclinical disease, however, there are less characteristic changes in lCBF. In the present study it was investigated whether vasoactivation or neuroactivation may produce more pronounced local lCBF deficits. Local CBF was investigated by using technetium-99m hexamethylpropylene amine oxime and single-photon emission tomography (SPET) in 80 patients (50 with mild cognitive impairment and 30 with dementia of Alzheimer type (DAT), all without evidence of cerebrovascular disease) at rest (baseline) and during activation. In 31 studies patients underwent vasomotor activation with acetazolamide, while 62 studies were performed under cognitive challenge (neuroactivation by labyrinth task). Cortical activity relative to that of cerebellum increased significantly in a right temporal region and tended to increase in other cortical regions upon vasoactivation. In contrast, neuroactivation reduced cortical activity relative to that of cerebellum in several left and right temporal and in left parietal regions. Visual classification of SPET images of patients with probable DAT by three observers resulted in a reduction of the number of definitely abnormal patterns from 9/12 to 4/12 by vasoactivation and an increase from 10/18 to 15/18 by neuroactivation. Correspondingly, abnormal ratings in patients with mild cognitive dysfunction were reduced form 7/19 to 5/19 by vasoactivation and were increased from 12/21 to 18/21 by neuroactivation. In conclusion, vasoactivation does not enhance local relative perfusion deficits in patients with cognitive impairment of non-vascular aetiology, whereas neuroactivation by labyrinth task produces more pronounced local flow differences and enhances abnormal patterns in lCBF imaging. (orig.)

  7. Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass

    NARCIS (Netherlands)

    Ide, K.; Pott, F.; van Lieshout, J. J.; Secher, N. H.

    1998-01-01

    We tested the hypothesis that pharmacological reduction of the increase in cardiac output during dynamic exercise with a large muscle mass would influence the cerebral blood velocity/perfusion. We studied the relationship between changes in cerebral blood velocity (transcranial Doppler), rectus

  8. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral cir...

  9. Prediction of Cerebral Hyperperfusion Syndrome with Velocity Blood Pressure Index

    Directory of Open Access Journals (Sweden)

    Zhi-Chao Lai

    2015-01-01

    Full Text Available Background: Cerebral hyperperfusion syndrome is an important complication of carotid endarterectomy (CEA. An >100% increase in middle cerebral artery velocity (MCAV after CEA is used to predict the cerebral hyperperfusion syndrome (CHS development, but the accuracy is limited. The increase in blood pressure (BP after surgery is a risk factor of CHS, but no study uses it to predict CHS. This study was to create a more precise parameter for prediction of CHS by combined the increase of MCAV and BP after CEA. Methods: Systolic MCAV measured by transcranial Doppler and systematic BP were recorded preoperatively; 30 min postoperatively. The new parameter velocity BP index (VBI was calculated from the postoperative increase ratios of MCAV and BP. The prediction powers of VBI and the increase ratio of MCAV (velocity ratio [VR] were compared for predicting CHS occurrence. Results: Totally, 6/185 cases suffered CHS. The best-fit cut-off point of 2.0 for VBI was identified, which had 83.3% sensitivity, 98.3% specificity, 62.5% positive predictive value and 99.4% negative predictive value for CHS development. This result is significantly better than VR (33.3%, 97.2%, 28.6% and 97.8%. The area under the curve (AUC of receiver operating characteristic: AUC VBI = 0.981, 95% confidence interval [CI] 0.949-0.995; AUC VR = 0.935, 95% CI 0.890-0.966, P = 0.02. Conclusions: The new parameter VBI can more accurately predict patients at risk of CHS after CEA. This observation needs to be validated by larger studies.

  10. Prediction of Cerebral Hyperperfusion Syndrome with Velocity Blood Pressure Index.

    Science.gov (United States)

    Lai, Zhi-Chao; Liu, Bao; Chen, Yu; Ni, Leng; Liu, Chang-Wei

    2015-06-20

    Cerebral hyperperfusion syndrome is an important complication of carotid endarterectomy (CEA). An >100% increase in middle cerebral artery velocity (MCAV) after CEA is used to predict the cerebral hyperperfusion syndrome (CHS) development, but the accuracy is limited. The increase in blood pressure (BP) after surgery is a risk factor of CHS, but no study uses it to predict CHS. This study was to create a more precise parameter for prediction of CHS by combined the increase of MCAV and BP after CEA. Systolic MCAV measured by transcranial Doppler and systematic BP were recorded preoperatively; 30 min postoperatively. The new parameter velocity BP index (VBI) was calculated from the postoperative increase ratios of MCAV and BP. The prediction powers of VBI and the increase ratio of MCAV (velocity ratio [VR]) were compared for predicting CHS occurrence. Totally, 6/185 cases suffered CHS. The best-fit cut-off point of 2.0 for VBI was identified, which had 83.3% sensitivity, 98.3% specificity, 62.5% positive predictive value and 99.4% negative predictive value for CHS development. This result is significantly better than VR (33.3%, 97.2%, 28.6% and 97.8%). The area under the curve (AUC) of receiver operating characteristic: AUC(VBI) = 0.981, 95% confidence interval [CI] 0.949-0.995; AUC(VR) = 0.935, 95% CI 0.890-0.966, P = 0.02. The new parameter VBI can more accurately predict patients at risk of CHS after CEA. This observation needs to be validated by larger studies.

  11. Cerebrospinal fluid ionic regulation, cerebral blood flow, and glucose use during chronic metabolic alkalosis

    International Nuclear Information System (INIS)

    Schroeck, H.K.; Kuschinsky, W.

    1989-01-01

    Chronic metabolic alkalosis was induced in rats by combining a low K+ diet with a 0.2 M NaHCO3 solution as drinking fluid for either 15 or 27 days. Local cerebral blood flow and local cerebral glucose utilization were measured in 31 different structures of the brain in conscious animals by means of the iodo-[14C]antipyrine and 2-[14C]deoxy-D-glucose method. The treatment induced moderate [15 days, base excess (BE) 16 mM] to severe (27 days, BE 25 mM) hypochloremic metabolic alkalosis and K+ depletion. During moderate metabolic alkalosis no change in cerebral glucose utilization and blood flow was detectable in most brain structures when compared with controls. Cerebrospinal fluid (CSF) K+ and H+ concentrations were significantly decreased. During severe hypochloremic alkalosis, cerebral blood flow was decreased by 19% and cerebral glucose utilization by 24% when compared with the control values. The decrease in cerebral blood flow during severe metabolic alkalosis is attributed mainly to the decreased cerebral metabolism and to a lesser extent to a further decrease of the CSF H+ concentration. CSF K+ concentration was not further decreased. The results show an unaltered cerebral blood flow and glucose utilization together with a decrease in CSF H+ and K+ concentrations at moderate metabolic alkalosis and a decrease in cerebral blood flow and glucose utilization together with a further decreased CSF H+ concentration at severe metabolic alkalosis

  12. The phosphodiesterase 3 inhibitor cilostazol dilates large cerebral arteries in humans without affecting regional cerebral blood flow

    DEFF Research Database (Denmark)

    Birk, Steffen; Kruuse, Christina Rostrup; Petersen, Kenneth A

    2004-01-01

    in the middle cerebral arteries (VMCA) was measured with transcranial Doppler, and the superficial temporal and radial arteries diameters were measured with ultrasonography. During the 4-hour observation period, there was no effect on systolic blood pressure (P = 0.28), but diastolic blood pressure decreased...

  13. No relationship between cerebral blood flow velocity and cerebrovascular reserve capacity and contemporaneously measured glucose and insulin concentrations in diabetes mellitus

    NARCIS (Netherlands)

    Fülesdi, B.; Limburg, M.; Bereczki, D.; Molnár, C.; Michels, R. P.; Leányvári, Z.; Csiba, L.

    1999-01-01

    Blood glucose and insulin concentrations have been reported to influence cerebral hemodynamics. We studied the relationship between actual blood glucose and insulin concentrations and resting cerebral blood flow velocity in the middle cerebral artery and cerebrovascular reserve capacity after

  14. MDMA ‘ecstasy’ increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI

    Science.gov (United States)

    Rouine, J; Gobbo, O L; Campbell, M; Gigliucci, V; Ogden, I; McHugh Smith, K; Duffy, P; Behan, B; Byrne, D; Kelly, M E; Blau, C W; Kerskens, C M; Harkin, A

    2013-01-01

    Background and Purpose The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA ‘ecstasy’) to rats. Experimental Approach Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg−1; i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg−1; i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg−1; i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. Key Results MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg−1; i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. Conclusions and Implications MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use. PMID:23517012

  15. Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders

    Directory of Open Access Journals (Sweden)

    David Vállez García

    2016-08-01

    Full Text Available There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD. However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1 to validate previous results showing alterations of regional cerebral blood flow (rCBF in cWAD, (2 to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3 to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H215O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing.

  16. Cerebral blood flow in sickle cell cerebrovascular disease

    International Nuclear Information System (INIS)

    Huttenlocher, P.R.; Moohr, J.W.; Johns, L.; Brown, F.D.

    1984-01-01

    Cerebral blood flow (CBF) has been studied by the xenon-133 ( 133 Xe) inhalation method in 16 children with suspected sickle cell cerebrovascular disease. Abnormalities consisting of decreases in total, hemispheral, or regional CBF were found in 17 of 26 studies. Eleven studies performed immediately after stroke, transient ischemic attack, or depression of state of alertness showed abnormalities. In addition to confirming regional cerebrovascular insufficiency in children with stroke due to major cerebral artery occlusion, the method detected diffuse decrease in CBF in children with stupor, coma, and seizures who had normal angiographic findings. In contrast, six of seven studies obtained after exchange transfusion or during maintenance on hypertransfusion therapy showed normal findings. The difference between results in patients with acute neurologic disturbances and those receiving transfusion therapy was statistically significant (P less than .005). The data indicate that the 133 Xe method reliably demonstrates cerebrovascular impairment in sickle cell disease. They also suggest that CBF changes in patients with sickle cell disease can be reversed by exchange transfusion and by hypertransfusion therapy. The 133 Xe CBF method may be useful for following up children with sickle cell disease who are at high risk for recurrent stroke

  17. Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels

    International Nuclear Information System (INIS)

    Garcia-Villalon, A.L.; Krause, D.N.; Ehlert, F.J.; Duckles, S.P.

    1991-01-01

    The identity and distribution of muscarinic cholinergic receptor subtypes and associated signal transduction mechanisms was characterized for the cerebral circulation using correlated functional and biochemical investigations. Subtypes were distinguished by the relative affinities of a panel of muscarinic antagonists, pirenzepine, AF-DX 116 [11-2-[[2-[diethylaminomethyl]- 1-piperidinyl]acetyl]-5,11-dihydro-6H- pyrido[2,3-b][1,4]benzodiazepine-6-one], hexahydrosiladifenidol, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methobromide, dicyclomine, para-fluoro-hexahydrosiladifenidol and atropine. Muscarinic receptors characterized by inhibition of [3H]quinuclidinylbenzilate binding in membranes of bovine pial arteries were of the M2 subtype. In contrast pharmacological analysis of [3H]-quinuclidinylbenzilate binding in bovine intracerebral microvessels suggests the presence of an M4 subtype. Receptors mediating endothelium-dependent vasodilation in rabbit pial arteries were of the M3 subtype, whereas muscarinic receptors stimulating endothelium-independent phosphoinositide hydrolysis in bovine pial arteries were of the M1 subtype. These findings suggest that characteristics of muscarinic receptors in cerebral blood vessels vary depending on the type of vessel, cellular location and function mediated

  18. Acute effect of glucose on cerebral blood flow, blood oxygenation, and oxidative metabolism.

    Science.gov (United States)

    Xu, Feng; Liu, Peiying; Pascual, Juan M; Xiao, Guanghua; Huang, Hao; Lu, Hanzhang

    2015-02-01

    While it is known that specific nuclei of the brain, for example hypothalamus, contain glucose-sensing neurons thus their activity is affected by blood glucose level, the effect of glucose modulation on whole-brain metabolism is not completely understood. Several recent reports have elucidated the long-term impact of caloric restriction on the brain, showing that animals under caloric restriction had enhanced rate of tricarboxylic acid cycle (TCA) cycle flux accompanied by extended life span. However, acute effect of postprandial blood glucose increase has not been addressed in detail, partly due to a scarcity and complexity of measurement techniques. In this study, using a recently developed noninvasive MR technique, we measured dynamic changes in global cerebral metabolic rate of O2 (CMRO2 ) following a 50 g glucose ingestion (N = 10). A time dependent decrease in CMRO2 was observed, which was accompanied by a reduction in oxygen extraction fraction (OEF) with unaltered cerebral blood flow (CBF). At 40 min post-ingestion, the amount of CMRO2 reduction was 7.8 ± 1.6%. A control study without glucose ingestion was performed (N = 10), which revealed no changes in CMRO2 , CBF, or OEF, suggesting that the observations in the glucose study was not due to subject drowsiness or fatigue after staying inside the scanner. These findings suggest that ingestion of glucose may alter the rate of cerebral metabolism of oxygen in an acute setting. © 2014 Wiley Periodicals, Inc.

  19. Cerebral blood flow SPECT scanning in cortico-basal degeneration

    International Nuclear Information System (INIS)

    Slawek, J.; Walczak, A.; Krupa-Olchawa, J.; Lass, P.; Dubaniewicz, M.

    1999-01-01

    Idiopathic Parkinson's disease accounts for ca. 75% of all cases of Parkinsonism. Corticobasal degeneration is a relatively rare example of the so-called ''Parkinson-plus'' syndrome. The authors present the case of a 56-year-old woman with rigidity and atypical tremor of upper extremity followed by gait apraxia, dysarthria, bilateral pyramidal signs and myoclonus. There was no improvement after treatment with L-dopa. The disease has progressed, but the patient is still alive. On the basis of clinical data a diagnosis of corticobasal degeneration has been established. Cerebral blood flow SPECT scanning revealed diffuse hypoperfusion of left frontal lobe, antero-inferior part of the left temporal lobe and left basal ganglia. The case illustrates the usefulness of brain SPECT in atypical forma of Parkinson's disease. (author)

  20. Portable real time analysis system for regional cerebral blood flow

    International Nuclear Information System (INIS)

    Tiernan, T.; Entine, G.; Stump, D.A.; Prough, D.S.

    1988-01-01

    A very portable, regional cerebral blood flow (rCBF) analysis instrument system suitable for use in the operating theater during surgery is under development. Cadmium telluride (CdTe) solid state radiation detectors, an 8086 based data acquisition and communications module and a DEC Microvax computer are used so that the instrument is very compact, yet has the computational power to provide real time data analysis in the clinical environment. The instrument is currently being used at Bowman Gray School of Medicine to study rCBF during cardiopulmonary bypass surgery (CPB). Preliminary studies indicate that monitoring rCBF during this surgical procedure may provide insights into the mechanism that causes a significant fraction of these patients to suffer post operative neuropsychological deficit

  1. Cerebral blood flow in normal and abnormal sleep and dreaming

    International Nuclear Information System (INIS)

    Meyer, J.S.; Ishikawa, Y.; Hata, T.; Karacan, I.

    1987-01-01

    Measurements of regional or local cerebral blood flow (CBF) by the xenon-133 inhalation method and stable xenon computerized tomography CBF (CTCBF) method were made during relaxed wakefulness and different stages of REM and non-REM sleep in normal age-matched volunteers, narcoleptics, and sleep apneics. In the awake state, CBF values were reduced in both narcoleptics and sleep apneics in the brainstem and cerebellar regions. During sleep onset, whether REM or stage I-II, CBF values were paradoxically increased in narcoleptics but decreased severely in sleep apneics, while in normal volunteers they became diffusely but more moderately decreased. In REM sleep and dreaming CBF values greatly increased, particularly in right temporo-parietal regions in subjects experiencing both visual and auditory dreaming

  2. Inherited neurovascular diseases affecting cerebral blood vessels and smooth muscle.

    Science.gov (United States)

    Sam, Christine; Li, Fei-Feng; Liu, Shu-Lin

    2015-10-01

    Neurovascular diseases are among the leading causes of mortality and permanent disability due to stroke, aneurysm, and other cardiovascular complications. Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and Marfan syndrome are two neurovascular disorders that affect smooth muscle cells through accumulation of granule and osmiophilic materials and defective elastic fiber formations respectively. Moyamoya disease, hereditary hemorrhagic telangiectasia (HHT), microcephalic osteodysplastic primordial dwarfism type II (MOPD II), and Fabry's disease are disorders that affect the endothelium cells of blood vessels through occlusion or abnormal development. While much research has been done on mapping out mutations in these diseases, the exact mechanisms are still largely unknown. This paper briefly introduces the pathogenesis, genetics, clinical symptoms, and current methods of treatment of the diseases in the hope that it can help us better understand the mechanism of these diseases and work on ways to develop better diagnosis and treatment.

  3. Cerebral blood flow changes in Parkinson's disease associated with dementia

    International Nuclear Information System (INIS)

    Derejko, M.; Lass, P.; Slawek, J.; Nyka, W.M.

    2001-01-01

    Dementia is one of the main non-motor symptoms of Parkinson's disease (PD) and it is diagnosed in about 30% of cases. Its aetiology remains unclear and contributing factors are controversial. Dementia may be more common in old patients with severe motor symptoms and mild cognitive impairment. Clinico-pathological studies show the association between dementia in PD and the age-related group of dementias, such as AD and VaD. A valuable aid in the assessment of dementia in PD is cerebral blood flow (CBF) brain SPECT scanning. It shows three different patterns of rCBF reduction, including frontal lobe hypoperfusion, iu Alzheimer-likel type of hypoperfusion and multiple, vascular defects. The heterogeneity of rCBF reduction may reflect the multifactorial pathophysiology of dementia in PD. It may result from concomitant AD pathology, cerebrovascular disease, destruction of nigro-striato-frontal projection or may be a distinct disease of different aetiology. (author)

  4. Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Ming Xiao

    2017-01-01

    Full Text Available During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.

  5. Regional cerebral blood flow in patients with hypertensive intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Kuroda, Kiyoshi

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured in 36 patients with hypertensive intracerebral hemorrhage (putaminal hemorrhage) treated surgically, using the Xenon-133 intracarotid injection method. The correlations between CBF in four regions, (the hemisphere, the frontal region, the sensori-motor area and the focal area) and the duration from the operation, the conscious level, the hematoma volume and motor function were investigated. Mean cerebral blood flow (MCBF), rCBF in sensori-motor area and in the focal area showed a value below 30 ml/100g/min. for any duration after the operation within one year. However, in the frontal region rCBF tends to increase from 4 months after the operation. There was a close correlation between the conscious level and CBF, especially in the frontal region. The higher CBF was noted in the better consciousness group. In hematoma cases the larger the hematoma volume (especially those over 31 ml)the lower the CBF in all three regions. In the focal area rCBF showed the lowest value among these three regions and was dependent on the hematoma volume, while frontal region revealed the highest flow value of them all, even in cases with a hematoma volume over 81 ml. There was a significant difference in rCBF between cases with severe motor disturbance and cases with moderate motor disturbance, except in the focal area. In the frontal region rCBF coincides rather well to the degree of motor disturbance. While, rCBF in the focal area was less than 30 ml/100g/min., and showed no correlation to motor function. (J.P.N.)

  6. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.

    Science.gov (United States)

    Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E

    2017-07-01

    Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.

  7. Cerebral blood flow and metabolic abnormalities in Alzheimer's disease

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2001-01-01

    In this review I summarize observations of PET and SPECT studies about cerebral blood flow and metabolic abnormalities in Alzheimer's disease (AD). In very early AD flow or metabolism reduces first in the posterior cingulate gyrus and precuneus. This reduction may arise from functional deafferentation caused by primary neural degeneration in the remote area of the entorhinal cortex that is the first to be pathologically affected in AD. Then medial temporal structures and parietotemporal association cortex show flow or metabolic reduction as disease processes. The reason why flow or metabolism in medial temporal structures shows delay in starting to reduce in spite of the earliest pathological affection remains to be elucidated. It is likely that anterior cingulate gyrus is functionally involved, since attention is the first non-memory domain to be affected, before deficits in language and visuospatial functions. However few reports have described involvement in the anterior cingulate gyrus. Relationship between cerebral blood flow or metabolism and apolipoprotein E (APOE) genotype has been investigated. Especially, the APOEε4 allele has been reported to increase risk and to lower onset age as a function of the inherited dose of the ε4 allele. Reduction of flow or metabolism in the posterior cingulate gyrus and precuneus has been reported even in presymptomatic nondemented subjects who were cognitively normal and had at least a single ε4 allele. On the contrary the relation of ε4 allele to the progression rate of AD has been controversial from neuroimaging approaches. PET and SPECT imaging has become to be quite useful for assessing therapeutical effects of newly introduced treatment for AD. Recent investigations observed significant regional flow increase after donepezil hydrochloride treatment. Most of these observations have been made by applying computer assisted analysis of three-dimensional stereotactic surface projection or statistical parametric mapping

  8. Effect of hypoxia on cerebral blood flow regulation during rest and exercise : role of cerebral oxygen delivery on performance

    OpenAIRE

    Fan, J.-L.

    2014-01-01

    Adequate supply of oxygen to the brain is critical for maintaining normal brain function. Severe hypoxia, such as that experienced during high altitude ascent, presents a unique challenge to brain oxygen (O2) supply. During high-intensity exercise, hyperventilation-induced hypocapnia leads to cerebral vasoconstriction, followed by reductions in cerebral blood flow (CBF), oxygen delivery (DO2), and tissue oxygenation. This reduced O2 supply to the brain could potentially account for the reduce...

  9. Cortical somatosensory reorganization in children with spastic cerebral palsy: a multimodal neuroimaging study

    Directory of Open Access Journals (Sweden)

    CHRISTOS ePAPADELIS

    2014-09-01

    Full Text Available Although cerebral palsy (CP is among the most common causes of physical disability in early childhood, we know little about the functional and structural changes of this disorder in the developing brain. Here, we investigated with three different neuroimaging modalities (magnetoencephalography (MEG, diffusion tension imaging (DTI, and resting state fMRI whether spastic CP is associated with functional and anatomical abnormalities in the sensorimotor network. Ten children participated in the study: four with diplegic CP (DCP, three with hemiplegic CP (HCP, and three typically-developing (TD children. Somatosensory evoked fields (SEFs were recorded in response to pneumatic stimuli applied to digits D1, D3, and D5 of both hands. Several parameters of water diffusion were calculated from DTI between the thalamus and the precentral and postcentral gyri in both hemispheres. The sensorimotor resting state networks (RSNs were examined by using an independent component analysis method. Tactile stimulation of the fingers elicited the first prominent cortical response at ~50 ms, in all except one child, localized over the primary somatosensory cortex (S1. In five CP children, abnormal somatotopic organization was observed in the affected (or more affected hemisphere. Euclidean distances were markedly different between the two hemispheres in the HCP children, and between DCP and TD children for both hemispheres. DTI analysis revealed decreased fractional anisotropy and increased apparent diffusion coefficient for the thalamocortical pathways in the more affected compared to less affected hemisphere in CP children. Rs-fMRI results indicated absent and/or abnormal sensorimotor RSNs for children with HCP and DCP consistent with the severity and location of their lesions. Our findings suggest an abnormal somatosensory processing mechanism in the sensorimotor network of children with CP possibly as a result of diminished thalamocortical projections.

  10. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    The authors investigated the effect of acclimatization to high altitude on cerebral blood flow and oxidative metabolism at rest and during exercise. Nine healthy, native sea-level residents were studied 3 weeks after arrival at Chacaltaya, Bolivia (5,260 m) and after reacclimatization to sea level....... At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery...... and cerebral metabolic rates of oxygen and glucose also remained unchanged, whereas cerebral metabolic rates of lactate increased slightly but nonsignificantly at high altitude during exercise compared with high altitude at rest. Reaction time was unchanged. The data indicate that cerebral blood flow...

  11. Cerebral blood flow autoregulation is impaired in schizophrenia: A pilot study.

    Science.gov (United States)

    Ku, Hsiao-Lun; Wang, Jiunn-Kae; Lee, Hsin-Chien; Lane, Timothy Joseph; Liu, I-Chao; Chen, Yung-Chan; Lee, Yao-Tung; Lin, I-Cheng; Lin, Chia-Pei; Hu, Chaur-Jong; Chi, Nai-Fang

    2017-10-01

    Patients with schizophrenia have a higher risk of cardiovascular diseases and higher mortality from them than does the general population; however, the underlying mechanism remains unclear. Impaired cerebral autoregulation is associated with cerebrovascular diseases and their mortality. Increased or decreased cerebral blood flow in different brain regions has been reported in patients with schizophrenia, which implies impaired cerebral autoregulation. This study investigated the cerebral autoregulation in 21 patients with schizophrenia and 23 age- and sex-matched healthy controls. None of the participants had a history of cardiovascular diseases, hypertension, or diabetes. All participants underwent 10-min blood pressure and cerebral blood flow recording through finger plethysmography and Doppler ultrasonography, respectively. Cerebral autoregulation was assessed by analyzing two autoregulation indices: the mean blood pressure and cerebral blood flow correlation coefficient (Mx), and the phase shift between the waveforms of blood pressure and cerebral blood flow determined using transfer function analysis. Compared with the controls, the patients had a significantly higher Mx (0.257 vs. 0.399, p=0.036) and lower phase shift (44.3° vs. 38.7° in the 0.07-0.20Hz frequency band, p=0.019), which indicated impaired maintenance of constant cerebral blood flow and a delayed cerebrovascular autoregulatory response. Impaired cerebral autoregulation may be caused by schizophrenia and may not be an artifact of coexisting medical conditions. The mechanism underlying impaired cerebral autoregulation in schizophrenia and its probable role in the development of cerebrovascular diseases require further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Correlations of cerebral blood flow with language function in aphasic patients following cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Eriko; Nagata, Ken; Uemura, Kazuo [Research Inst. for Brain and Blood Vessels, Akita (Japan)

    1997-04-01

    To elucidate the participation of the brain regions in language function, cerebral blood flow (CBF) which were measured with positron emission tomography (PET) were compared with the language scores based on the standard language test for aphasics in 97 right-handed patients with aphasia due to cerebral infarction. PET studies were performed on 71.4{+-}107.3 days after onset. By the linear regression analysis, the aphasic scores were correlated with the regional CBF from 55 brain regions. CBF from the left frontal, left temporal, and left parietal lobes significantly correlated with language scores of auditory comprehension, speaking, reading, writing, calculation, and repetition. Highly significant correlation was obtained from the left posterior inferior frontal, superior temporal, supramarginal and angular gyri. CBF from the right inferior frontal, right superior temporal, right parahippocampal and right anterior cingulate gyri also correlated with the auditory comprehension, speaking and reading. Accordingly, in addition to the classical language areas which play an essential roles in language function, the extensive areas in the left hemisphere and some part of the right hemisphere may be related to the language processing and recovery from aphasia. (author)

  13. Correlations of cerebral blood flow with language function in aphasic patients following cerebral infarction

    International Nuclear Information System (INIS)

    Yokoyama, Eriko; Nagata, Ken; Uemura, Kazuo

    1997-01-01

    To elucidate the participation of the brain regions in language function, cerebral blood flow (CBF) which were measured with positron emission tomography (PET) were compared with the language scores based on the standard language test for aphasics in 97 right-handed patients with aphasia due to cerebral infarction. PET studies were performed on 71.4±107.3 days after onset. By the linear regression analysis, the aphasic scores were correlated with the regional CBF from 55 brain regions. CBF from the left frontal, left temporal, and left parietal lobes significantly correlated with language scores of auditory comprehension, speaking, reading, writing, calculation, and repetition. Highly significant correlation was obtained from the left posterior inferior frontal, superior temporal, supramarginal and angular gyri. CBF from the right inferior frontal, right superior temporal, right parahippocampal and right anterior cingulate gyri also correlated with the auditory comprehension, speaking and reading. Accordingly, in addition to the classical language areas which play an essential roles in language function, the extensive areas in the left hemisphere and some part of the right hemisphere may be related to the language processing and recovery from aphasia. (author)

  14. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy.

    Science.gov (United States)

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with

  15. Effect of hematocrit and systolic blood pressure on cerebral blood flow in newborn infants

    International Nuclear Information System (INIS)

    Younkin, D.P.; Reivich, M.; Jaggi, J.L.; Obrist, W.D.; Delivoria-Papadopoulos, M.

    1987-01-01

    The effects of hematocrit and systolic blood pressure on cerebral blood flow were measured in 15 stable, low birth weight babies. CBF was measured with a modification of the xenon-133 ( 133 Xe) clearance technique, which uses an intravenous bolus of 133 Xe, an external chest detector to estimate arterial 133 Xe concentration, eight external cranial detectors to measure cephalic 133 Xe clearance curves, and a two-compartmental analysis of the cephalic 133 Xe clearance curves to estimate CBF. There was a significant inverse correlation between hematocrit and CBF, presumably due to alterations in arterial oxygen content and blood viscosity. Newborn CBF varied independently of systolic blood pressure between 60 and 84 mm Hg, suggesting an intact cerebrovascular autoregulatory mechanism. These results indicate that at least two of the factors that affect newborn animal CBF are operational in human newborns and may have important clinical implications

  16. Altered Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity in Schizophrenia.

    Science.gov (United States)

    Zhu, Jiajia; Zhuo, Chuanjun; Xu, Lixue; Liu, Feng; Qin, Wen; Yu, Chunshui

    2017-10-21

    Respective changes in resting-state cerebral blood flow (CBF) and functional connectivity in schizophrenia have been reported. However, their coupling alterations in schizophrenia remain largely unknown. 89 schizophrenia patients and 90 sex- and age-matched healthy controls underwent resting-state functional MRI to calculate functional connectivity strength (FCS) and arterial spin labeling imaging to compute CBF. The CBF-FCS coupling of the whole gray matter and the CBF/FCS ratio (the amount of blood supply per unit of connectivity strength) of each voxel were compared between the 2 groups. Whole gray matter CBF-FCS coupling was decreased in schizophrenia patients relative to healthy controls. In schizophrenia patients, the decreased CBF/FCS ratio was predominantly located in cognitive- and emotional-related brain regions, including the dorsolateral prefrontal cortex, insula, hippocampus and thalamus, whereas an increased CBF/FCS ratio was mainly identified in the sensorimotor regions, including the putamen, and sensorimotor, mid-cingulate and visual cortices. These findings suggest that the neurovascular decoupling in the brain may be a possible neuropathological mechanism of schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com

  17. SPECT measurements of cerebral blood volume before and after acetazolamide in occlusive cerebrovascular diseases

    International Nuclear Information System (INIS)

    Inoue, Yusuke; Momose, Toshimitsu; Machida, Kikuo; Honda, Norinari; Nishikawa, Junichi; Sasaki, Yasuhito.

    1994-01-01

    Cerebral blood volume before and after acetazolamide was measured by SPECT to evaluate cerebral vasodilatory capacity in eight patients with cerebrovascular disease and five control subjects. Two SPECT measurements were performed serially, and acetazolamide was administered between them. The ratio of increase in hemispheric blood volume was calculated, and it was compared with the results of cerebral blood flow and cerebral blood volume measurements. A cerebral vasodilatory capacity map, the image after acetazolamide minus the baseline image, was also produced. Acetazolamide increased hemispheric blood volume in all subjects. The ratio of increase was lower in the involved hemispheres of the patients with unilateral carotid disease than in the uninvolved hemispheres of the patients and control subjects. The ratio of concordance with blood flow and blood volume measurements was approximated at 80%. Cerebral vasodilatory capacity mapping revealed three defects compatible with the clinical data. SPECT measurements of cerebral blood volume after acetazolamide can be performed following baseline SPECT with no additional radiotracer, and may be helpful to assess hemodynamic status. (author)

  18. Regional cerebral blood flow and oxygen consumption during normal human sleep

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ken [Toho Univ., Tokyo (Japan). School of Medicine

    1989-09-01

    Regional cerebral blood flow (rCBF), regional oxygen extraction fraction (rCEF) and regional cerebral metabolic rate for oxygen (rCMRO{sub 2}) were measured using the continuous inhalation technique for {sup 15}O with positron emission tomography (PET) during both wakefulness and sleep. Ten paid volunteers, with a mean age of 21.6 yrs., were deprived of sleep for a period of approximately 20 hours, and the experiments were performed mostly in the morning. {sup 15}O activity of both whole blood and the plasma, pixel count of PET, total arterial blood oxygen content were used for analysis of rCBF, rOEF and rCMRO{sub 2}. PET scannings were carried out mostly during the very light non-rapid eye movement (NREM) sleep, i.e. stage 1 and/or 2, and wakefulness. About 10 minutes after the start of continuous inhalation of {sup 15}O gas, the {sup 15}O activity of the brain was found to be in a steady-state condition. During this steady-state condition, PET scannings were performed for about 10 minutes. Regions of interest, square in shape and having an area of 2.8 cm{sup 3}, were set in each cortex on PET images of a horizontal cross-section of the brain, set at 45 mm above the orbitomeatal line. The rCBF and rCMRO{sub 2} were analysed in 5 of 10 male subjects during both wakefulness and NREM sleep, and only 3 were done during three sleep stages, including REM sleep. Levels of rCBF and rCMRO{sub 2} were found to be decreased in NREM sleep, and the decreasing rates were calculated at 10.2% and 7.6% from the level of wakefulness, respectively. There was no significant difference in the mean value of rOEF between wakefulness and NREM sleep. There were no significant regional differences found in the rate of decrease among the frontal, temporal and occipital cortices. It was considered that the decrease of rCBF and rCMRO{sub 2} during NREM sleep suggested a decrease of the activity levels in the cerebral functions. (author).

  19. Regional cerebral blood flow and oxygen consumption during normal human sleep

    International Nuclear Information System (INIS)

    Takahashi, Ken

    1989-01-01

    Regional cerebral blood flow (rCBF), regional oxygen extraction fraction (rCEF) and regional cerebral metabolic rate for oxygen (rCMRO 2 ) were measured using the continuous inhalation technique for 15 O with positron emission tomography (PET) during both wakefulness and sleep. Ten paid volunteers, with a mean age of 21.6 yrs., were deprived of sleep for a period of approximately 20 hours, and the experiments were performed mostly in the morning. 15 O activity of both whole blood and the plasma, pixel count of PET, total arterial blood oxygen content were used for analysis of rCBF, rOEF and rCMRO 2 . PET scannings were carried out mostly during the very light non-rapid eye movement (NREM) sleep, i.e. stage 1 and/or 2, and wakefulness. About 10 minutes after the start of continuous inhalation of 15 O gas, the 15 O activity of the brain was found to be in a steady-state condition. During this steady-state condition, PET scannings were performed for about 10 minutes. Regions of interest, square in shape and having an area of 2.8 cm 3 , were set in each cortex on PET images of a horizontal cross-section of the brain, set at 45 mm above the orbitomeatal line. The rCBF and rCMRO 2 were analysed in 5 of 10 male subjects during both wakefulness and NREM sleep, and only 3 were done during three sleep stages, including REM sleep. Levels of rCBF and rCMRO 2 were found to be decreased in NREM sleep, and the decreasing rates were calculated at 10.2% and 7.6% from the level of wakefulness, respectively. There was no significant difference in the mean value of rOEF between wakefulness and NREM sleep. There were no significant regional differences found in the rate of decrease among the frontal, temporal and occipital cortices. It was considered that the decrease of rCBF and rCMRO 2 during NREM sleep suggested a decrease of the activity levels in the cerebral functions. (author)

  20. Functional response of cerebral blood flow induced by somatosensory stimulation in rats with subarachnoid hemorrhage

    Science.gov (United States)

    Li, Zhiguo; Huang, Qin; Liu, Peng; Li, Pengcheng; Ma, Lianting; Lu, Jinling

    2015-09-01

    Subarachnoid hemorrhage (SAH) is often accompanied by cerebral vasospasm (CVS), which is the phenomenon of narrowing of large cerebral arteries, and then can produce delayed ischemic neurological deficit (DIND) such as lateralized sensory dysfunction. CVS was regarded as a major contributor to DIND in patients with SAH. However, therapy for preventing vasospasm after SAH to improve the outcomes may not work all the time. It is important to find answers to the relationship between CVS and DIND after SAH. How local cerebral blood flow (CBF) is regulated during functional activation after SAH still remains poorly understood, whereas, the regulation of CBF may play an important role in weakening the impact of CVS on cortex function. Therefore, it is worthwhile to evaluate the functional response of CBF in the activated cortex in an SAH animal model. Most evaluation of the effect of SAH is presently carried out by neurological behavioral scales. The functional imaging of cortical activation during sensory stimulation may help to reflect the function of the somatosensory cortex more locally than the behavioral scales do. We investigated the functional response of CBF in the somatosensory cortex induced by an electrical stimulation to contralateral forepaw via laser speckle imaging in a rat SAH model. Nineteen Sprague-Dawley rats from two groups (control group, n=10 and SAH group, n=9) were studied. SAH was induced in rats by double injection of autologous blood into the cisterna magna after CSF aspiration. The same surgical procedure was applied in the control group without CSF aspiration or blood injection. Significant CVS was found in the SAH group. Meanwhile, we observed a delayed peak of CBF response in rats with SAH compared with those in the control group, whereas no significant difference was found in magnitude, duration, and areas under curve of relative CBF changes between the two groups. The results suggest that the regulation function of local CBF during

  1. Cerebral blood flow (CBF) with 133Xe inhalation method

    International Nuclear Information System (INIS)

    Kusunoki, Tadaki; Masumura, Michio; Tamaki, Norihiko; Matsumoto, Satoshi; Yamashita, Hideyuki.

    1982-01-01

    The effects of CO 2 inhalation on the cerebral blood flow (CBF) were examined with 133 Xe inhalation method (Novo Inhalation Cerebrograph) on 9 normal peoples and 20 patients. Nine normal peoples were divided into 3 groups consisting of each 3 peoples, namely young age group, middle age group, and old age group. Each increased CBF (%) by CO 2 inhalation was 40 -- 44 in young age group, 36 -- 37 in middle age group, and 35 -- 36 in old age group in the blood flow of the first compartment (F 1 ), and 27 -- 28 in young age group, 30 -- 31 in middle age group and 23 -- 24 in old age group in the initial slope index (ISI). Each CO 2 reactivity factor (RF) was 5.5 -- 5.8 in young age group, 3.8 -- 4.0 in middle age group and 3.3 in old age group in F 1 , and 3.1 -- 3.2 in young age group, 2.0 -- 3.3 in middle age group, and 1.2 -- 1.3 in old age group in ISI. Twenty patients consisted of 15 patients of occlusive cerebrovascular disease, 2 patients of head injury, 2 patients of normal pressure hydrocephalus and one patient of subarachnoid hemorrhage. RF was abnormally lower than normal value in 5 patients in F 1 , but in 7 in ISI. Clinical benefits of CBF study during CO 2 inhalation with 133 Xe inhalation method were discussed. (author)

  2. Altered Cerebral Blood Flow Covariance Network in Schizophrenia.

    Science.gov (United States)

    Liu, Feng; Zhuo, Chuanjun; Yu, Chunshui

    2016-01-01

    Many studies have shown abnormal cerebral blood flow (CBF) in schizophrenia; however, it remains unclear how topological properties of CBF network are altered in this disorder. Here, arterial spin labeling (ASL) MRI was employed to measure resting-state CBF in 96 schizophrenia patients and 91 healthy controls. CBF covariance network of each group was constructed by calculating across-subject CBF covariance between 90 brain regions. Graph theory was used to compare intergroup differences in global and nodal topological measures of the network. Both schizophrenia patients and healthy controls had small-world topology in CBF covariance networks, implying an optimal balance between functional segregation and integration. Compared with healthy controls, schizophrenia patients showed reduced small-worldness, normalized clustering coefficient and local efficiency of the network, suggesting a shift toward randomized network topology in schizophrenia. Furthermore, schizophrenia patients exhibited altered nodal centrality in the perceptual-, affective-, language-, and spatial-related regions, indicating functional disturbance of these systems in schizophrenia. This study demonstrated for the first time that schizophrenia patients have disrupted topological properties in CBF covariance network, which provides a new perspective (efficiency of blood flow distribution between brain regions) for understanding neural mechanisms of schizophrenia.

  3. Type of aphasia and regional cerebral blood flow

    International Nuclear Information System (INIS)

    Tagawa, Koichi; Sugimoto, Keiko; Minematsu, Kazuo; Yamaguchi, Takenori; Naritomi, Hiroaki; Sawada, Tohru

    1982-01-01

    In 40 patients with aphasia due to cerebral infarction, regional cerebral blood flow (rCBF) was measured after 2 months of ictus with 133 Xe inhalation method. There were 18 cases with motor aphasia and 22 with sensory aphasia. On the measurements of rCBF, 3 detectors were placed over frontal region (group F), 3 over temporal region (group T), and remaining 3 over parietal region (group P), of the dominant hemisphere. The flow values were compared with the rCBF values obtained from 21 control subjects who had no abnormality in CT scan and on neurological examinations. The control subjects revealed the hyperfrontal pattern of flow distribution; rCBF values in groups F, T and P, which were expressed as an initial slope index, were 50.0 +- 4.8, 48.0 +- 5.1 and 47.4 +- 4.5, respectively. The hyperfrontal pattern was absent in cases with motor aphasia. In this group, rCBF in groups F, T and P were 42.0 +- 8.3, 44.7 +- 8.4 and 41.0 +- 8.5, respectively, and rCBF in frontal region was significantly reduced compared with that in the control group. In sensory aphasia, rCBF values in groups F, T and P were all significantly reduced compared to the controls showing 44.0 +- 5.7, 42.8 +- 5.1 and 40.6 +- 5.4, respectively. In this group, the hyperfrontal pattern was maintained at a low flow level. When absolute rCBF values were compared between motor and sensory aphasia, there was no significant difference between these 2 groups. However, regional flow distribution in motor aphasia was significantly different from that of sensory aphasia, and the cases having the lowest value in group F were more frequently found in the former than in the latter. (J.P.N.)

  4. Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders.

    Science.gov (United States)

    Vállez García, David; Doorduin, Janine; Willemsen, Antoon T M; Dierckx, Rudi A J O; Otte, Andreas

    2016-08-01

    There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD). However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1) to validate previous results showing alterations of regional cerebral blood flow (rCBF) in cWAD, (2) to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3) to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H2(15)O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Cerebral oxygen metabolism and cerebral blood flow in man during light sleep (stage 2)

    DEFF Research Database (Denmark)

    Madsen, P L; Schmidt, J F; Holm, S

    1991-01-01

    . They differ in respect of arousal threshold as a stronger stimulus is required to awaken a subject from deep sleep as compared to light sleep. Our results suggest that during non-rapid eye movement sleep cerebral metabolism and thereby cerebral synaptic activity is correlated to cerebral readiness rather than...

  6. Measurement of regional cerebral blood flow with the Xenon-133 inhalation procedure in patients with cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, A.

    1985-10-01

    Measurement of regional cerebral blood flow with inhalation of Xenon-133 and recording of regional clearance curves by stationary external detectors permits repeated estimation of bilateral cortical blood flow in resting position and after different activating procedures. Measurements can be performed on an outpatient basis, measurements in critical ill patients are possible as well. Compared to Xenon-133 single photon emission computerized tomography smaller doses can be used. Compared to Iodine-123 amphetamie SPECT actual flow calculation without arterial puncture is possible. Drawbacks of the technique are the two-dimensional imaging, unsufficient indication of the look through phenomenon and non-perfused tissue with zero-flow. However, measurement of rCBF with this technique are helpful in individual diagnosis of the following diseases: transient ischemic attacks with prolonged ischemia, communicating hydrocephalus with normal intracranial pressure, follow up studies in hemodilution, evaluation of patients with polyarterial vascular disease in respect to neurosurgical or vasculosurgical intervention, subarachnoid hemorrhage and head trauma. (orig.).

  7. Modeling Cerebral Blood Flow Control During Posture Change from Sitting to Standing

    DEFF Research Database (Denmark)

    Olufsen, Mette; Tran, Hien; Ottesen, Johnny T.

    2004-01-01

    , the heart, and venous valves. We use physiologically based control mechanisms to describe the regulation of cerebral blood velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. Beyond active control mechanisms we also have to include certain passive non......Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow regulation, are among the first signs indicating the presence of cerebral vascular disease. In this paper, we will present a mathematical model that can predict blood flow and pressure during posture change from sitting......-linearities in some of the compliance-pressure and resistance-pressure relationships. Futhermore, an acurate and physiologically based submodel, describing the dynamics of how gravity effects the blood distribution during suspine changes, is included. To justify the fidelity of our mathematical model and control...

  8. Clinical research on quantitative imaging of cerebral blood flow using 123I-IMP

    International Nuclear Information System (INIS)

    Kinoshita, Hirofumi

    1987-01-01

    Cerebral blood flow measurement was performed using N-Isopropyl-p-( 123 I)-Iodoam-phetamine (IMP) and rotating gammacamera emission computed tomography (ECT), and a new quantitative profile curve was designed. There was a good correlation between the cerebral blood flow measured by intravenous Xe-133 method and that measured by IMP method in ten normal volunteers. IMP-ECT was performed in 40 patients with various cerebral diseases. The following results were obtained: 1. Minimum recognizable cerebral blood flow difference was 5 ml/100 g/min. 2. Quantitative redistribution was observed in approximately half of the cases which showed qualitative redistribution. 3. The incidence of crossed cerebellar diaschiasis was high among patients with significant cerebral disease (8 cases/10 cases). (author)

  9. Effects of captopril on cerebral blood flow in normotensive and hypertensive rats

    International Nuclear Information System (INIS)

    Barry, D.I.; Paulson, O.B.; Jarden, J.O.; Juhler, M.; Graham, D.I.; Strandgaard, S.

    1984-01-01

    Cerebrovascular effects of the angiotensin converting enzyme inhibitor captopril were examined in normotensive and hypertensive rats. Cerebral blood flow was measured with the intracarotid 133 xenon injection method in halothane-anesthetized animals. The blood-brain barrier permeability of captopril (determined with an integral-uptake method) was negligible, the permeability-surface area product in most brain regions being 1 X 10(-5) cm3/g per second, that is, three to four times lower than that of sodium ion. When administered into the cerebral ventricles to bypass the blood-brain barrier, captopril had no effect on cerebral blood flow: furthermore, cerebral blood flow autoregulation (studied by raising and lowering blood pressure) was identical to that in controls. In contrast, when given intravenously, captopril had a marked effect on cerebral blood flow autoregulation--both the lower and upper limits of autoregulation being shifted to a lower pressure (by about 20 to 30 and 50 to 60 mm Hg, respectively), and the autoregulatory range was shortened by about 40 mm Hg. This effect may be ascribed to inhibition of converting enzyme in the cerebral blood vessels rather than within the brain

  10. The effect of glycerol on regional cerebral blood flow, blood volume and oxygen metabolism

    International Nuclear Information System (INIS)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Kobayashi, Akira; Yonekura, Yoshiharu; Nishizawa, Sadahiko.

    1989-01-01

    Using positron emission tomography with 15 O-labelled CO 2 , O 2 and CO gases, the effects of glycerol on regional cerebral blood flow (CBF), blood volume (CBV) and oxygen metabolism (CMRO 2 ) were investigated in 6 patients with meningioma accompanying peritumoral brain edema. The same study was done in 5 normal volunteers. The changes of blood gases, hematocrit and hemoglobin were also examined. After a drip infusion of glycerol, the regional CBF increased not only in the peritumoral cortex and white matter but also in the intact cortex and white matter on the contralateral side. The increase of CBF was extensive and substantially there were no regional differences. In contrast, the changes of CMRO 2 were not significant. This was derived from the increase in oxygen extraction fraction throughout extensive areas including the peritumoral area. There were no changes in CBV. Hematocrit and hemoglobin decreased to a small degree. In the normal volunteers, the same findings were noted. Thus, glycerol increases the functional reserve for cerebral oxygen metabolism, not only in the peritumoral regions but also in the intact regions. The effects of glycerol on hemodynamics and metabolism were discussed with reference to some differences from mannitol. (author)

  11. Regional cerebral blood flow patterns in extremely elderly patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Hirao, Kentaro; Hanyu, Haruo; Kanetaka, Hidekazu; Shimizu, Soichiro; Sato, Tomohiko; Iwamoto, Toshihiko

    2008-01-01

    Clinical and pathologic features in Alzheimer's disease (AD) patients differ depending on the age of onset. The aim of our study was to compare the regional cerebral blood flow (rCBF) patterns of younger, elderly, and extremely elderly patients with AD with that of controls to characterize the rCBF patterns in extremely elderly patients with AD. Single photon emission CT (SPECT) was performed in 113 patients with probable AD, including 34 younger (<70 years), 41 elderly (70-84 years), and 38 extremely elderly (≥85 years) patients divided according to age at examination. The SPECT data were analyzed using three-dimensional stereotactic surface projection (3D-SSP). No significant differences regarding gender, duration of disease, education, and Mini-Mental State Examination score were found among the groups. As compared with controls, younger and elderly AD demonstrated significant reduction of rCBF in the temporo-parietal areas, posterior cingulate cortices and precunei, which is considered to be a characteristic rCBF pattern in AD. On the other hand, the extremely elderly AD group demonstrated significant reduction of rCBF in the frontal and medial temporal areas, in addition to the temporo-parietal areas, posterior cingulate cortices and precunei, but the reductions were milder than in those in younger and elderly AD groups. The extremely elderly patients with AD showed atypical rCBF patterns in AD compared to younger and elderly patients with AD. Our data suggest that pathological features in extremely elderly AD may be different from those in younger and elderly AD and that diseases different from AD, such as senile dementia of the neurofibrillary tangle type may be clinically diagnosed as extremely elderly AD. (author)

  12. Association of Automatically Quantified Total Blood Volume after Aneurysmal Subarachnoid Hemorrhage with Delayed Cerebral Ischemia

    NARCIS (Netherlands)

    Zijlstra, I. A.; Gathier, C. S.; Boers, A. M.; Marquering, H. A.; Slooter, A. J.; Velthuis, B. K.; Coert, B. A.; Verbaan, D.; van den Berg, R.; Rinkel, G. J.; Majoie, C. B.

    2016-01-01

    The total amount of extravasated blood after aneurysmal subarachnoid hemorrhage, assessed with semiquantitative methods such as the modified Fisher and Hijdra scales, is known to be a predictor of delayed cerebral ischemia. However, prediction rates of delayed cerebral ischemia are moderate, which

  13. Cerebral blood flow velocity changes during upright positioning in bed after acute stroke : An observational study

    NARCIS (Netherlands)

    Aries, Marcel J; Elting, Jan Willem; Stewart, Roy; De Keyser, Jacques; Kremer, Berry; Vroomen, Patrick

    2013-01-01

    Objectives: National guidelines recommend mobilisation in bed as early as possible after acute stroke. Little is known about the influence of upright positioning on real-time cerebral flow variables in patients with stroke. We aimed to assess whether cerebral blood flow velocity (CBFV) changes

  14. Redistribution of Cerebral Blood Flow during Severe Hypovolemia and Reperfusion in a Sheep Model: Critical Role of α1-Adrenergic Signaling

    Directory of Open Access Journals (Sweden)

    René Schiffner

    2017-05-01

    Full Text Available Background: Maintenance of brain circulation during shock is sufficient to prevent subcortical injury but the cerebral cortex is not spared. This suggests area-specific regulation of cerebral blood flow (CBF during hemorrhage. Methods: Cortical and subcortical CBF were continuously measured during blood loss (≤50% and subsequent reperfusion using laser Doppler flowmetry. Blood gases, mean arterial blood pressure (MABP, heart rate and renal blood flow were also monitored. Urapidil was used for α1A-adrenergic receptor blockade in dosages, which did not modify the MABP-response to blood loss. Western blot and quantitative reverse transcription polymerase chain reactions were used to determine adrenergic receptor expression in brain arterioles. Results: During hypovolemia subcortical CBF was maintained at 81 ± 6% of baseline, whereas cortical CBF decreased to 40 ± 4% (p < 0.001. Reperfusion led to peak CBFs of about 70% above baseline in both brain regions. α1A-Adrenergic blockade massively reduced subcortical CBF during hemorrhage and reperfusion, and prevented hyperperfusion during reperfusion in the cortex. α1A-mRNA expression was significantly higher in the cortex, whereas α1D-mRNA expression was higher in the subcortex (p < 0.001. Conclusions: α1-Adrenergic receptors are critical for perfusion redistribution: activity of the α1A-receptor subtype is a prerequisite for redistribution of CBF, whereas the α1D-receptor subtype may determine the magnitude of redistribution responses.

  15. Physiological activation of the human cerebral cortex during auditory perception and speech revealed by regional increases in cerebral blood flow

    DEFF Research Database (Denmark)

    Lassen, N A; Friberg, L

    1988-01-01

    by measuring regional cerebral blood flow CBF after intracarotid Xenon-133 injection are reviewed with emphasis on tests involving auditory perception and speech, and approach allowing to visualize Wernicke and Broca's areas and their contralateral homologues in vivo. The completely atraumatic tomographic CBF...

  16. Clinical studies on cerebral blood flow in chronic subdural hematoma

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Atsuhiro; Akagi, Katsuhito; Horibe, Kunio; Yamasaki, Mami; Yuguchi, Takamichi

    1988-11-01

    Cerebral blood flow (CBF) and clinical symptoms were examined between pre- and post-operations in twenty-four patients with unilateral chronic subdural hematoma. The following results were obtained by intravenous /sup 133/Xe method : 1. There was a reducing tendency of the CBF (hemisphere) on hematoma side, in most cases. While, the groups of headache and disturbances of consciousness did not give a laterality between hematoma and opposite side without the group of hemiparesis. 2. The absolute values of the CBF in the groups of headache and disturbances of consciousness were correlated with the clinical symptoms. In the group of hemiparesis, the laterality between hematoma and opposite side was correlated with the clinical symptoms. 3. In the group of hemiparesis, the F-flow (fast-flow) had sensitive reaction more than the ISI (initial slope index) with symptomatic improvement. 4. It was found that there was not an increase in the absolute value of the CBF, which was under the normal limit between pre- and post-operations in the case without improvement. By SPECT (Method of IMP), the following results were obtained : 1. There was the area of defect at the location of hematoma and the CBF tended to reduce at the subcortical white matter and at the basal ganglia of hematoma side. 2. The CBF of the contralateral hematoma side in the hemisphere of cerebellum was also tended to reduce.

  17. Regional cerebral blood flow in the persistent vegetative state

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masaharu; Kuroda, Ryotaro; Ioku, Masahiko [Kinki Univ., Osakasayama, Osaka (Japan). Faculty of Medicine; and others

    1989-05-01

    Regional cerebral blood flow (CBF) in eight patients in a persistent vegetative state was measured and compared with that in five healthy volunteers. The patients were classified into three groups: Group 1 (locked-in syndrome) consisted of a single patient, Group 2 (typical vegetative state) of five patients, and Group 3 (prolonged coma) of two patients. CBF was measured early after onset by single photon emission computed tomography with {sup 123}I-N-isopropyl-p-iodo-amphetamine and/or {sup 99m}Tc-hexamethyl-propyleneamine oxime. The regions of interest (ROIs) were the bilateral frontal, temporal, parietal, occipital, and cerebellar areas and basal ganglia. The values obtained in these areas were averaged, and the ratio for each ROI ((the value in the ROI/the mean value) x 100) was calculated. 'Hyper-frontal distribution' of CBF was found to be rare in both the normal condition and the vegetative state. Higher CBF values were noted in the left than in the right frontal area in four of the five volunteers but in only four of the eight patients. CBF distribution in the frontal lobe was characteristic for each group: Group 1 showed high CBF bilaterally, although the elevation was statistically significant only on the right side, and Group 3 exhibited significantly low values. In Group 2, CBF was variable but, for the most part, within normal limits. Awareness was closely correlated with frontal lobe function and alteration of CBF in the frontal region. (author).

  18. Cerebral blood flow in patients with thalamic hemorrhage, 2

    International Nuclear Information System (INIS)

    Ueda, Mikiya; Matsumoto, Yukihiro; Omiya, Nobuyuki; Mikami, Junichi; Sato, Hiroyuki; Inoue, Yoshitoshi; Okawara, Shuji; Matsuoka, Takahiro; Takeda, Satoshi.

    1989-01-01

    In twenty-nine patients with thalamic hemorrhage, single photon emission CT (SPECT) and CT were performed in the acute stage. Measurement of cerebral blood flow (CBF) was performed by the 133-Xe inhalation method using SPECT (Tomomatic 64). CT findings such as hematoma volume, involvement of internal capsule, ventricular hematoma and topographical localization of hematoma were investigated. We studied etiological analysis of decreased CBF in the acute stage. CBF values in the group of large-volume hematoma (≥10 ml) decreased moderately on the hematoma side and mildly on the nonhematoma side. CBF values in the group of small-volume hematoma (<10 ml) decreased mildly on the hematoma side but didn't decrease on the nonhematoma side. CBF values of the former on the hematoma side decreased significantly compared with the latter. Linear correlation between hematoma volume and CBF was significant. As to topographical localization, CBF values of the group which involved medial thalamus decreased significantly compared with the other group. Factors of involvement of internal capsule and ventricular hematoma didn't affect CBF values. In conclusion, major factors which affected decreased CBF in the acute stage were hematoma volume and tomographical localization. (author)

  19. Effect of disodium cromoglycate (DSCG) and antihistamines on postirradiation cerebral blood flow and plasma levels of histamine and neurotensin

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Pautler, E.L.; Carraway, R.E.; Cochrane, D.E.; Hampton, J.D.

    1988-01-01

    In an attempt to elucidate mechanisms underlying the irradiation-induced decrease in regional cerebral blood flow (rCBF) in primates, hippocampal and visual cortical blood flows of rhesus monkeys were measured by hydrogen clearance, before and after exposure to 100 Gy, whole-body, gamma irradiation. Systemic blood pressures were monitored simultaneously. Systemic arterial plasma histamine and neurotensin levels were determined preirradiation and postirradiation. Compared to control animals, the irradiated monkeys exhibited an abrupt decline in systemic blood pressure to 23% of the preirradiation level within 10 min postirradiation, falling to 12% by 60 min. A decrease in hippocampal blood flow to 32% of the preirradiation level was noted at 10 min postirradiation, followed by a slight recovery to 43% at 30 min and a decline to 23% by 60 min. The cortical blood flow for the same animals showed a steady decrease to 29% of the preirradiation levels by 60 min postirradiation. Animals given the mast cell stabilizer disodium cromoglycate and the antihistamines mepyramine and cimetidine before irradiation did not exhibit an abrupt decline in blood pressure but displayed a gradual decrease to a level 33% below preirradiation levels by 60 min postirradiation. Also, the treated, irradiated monkeys displayed rCBF values that were not significantly different from the nonirradiated controls. The plasma neurotensin levels in the irradiated animals, treated and untreated, indicated a nonsignificant postirradiation increase above control levels. However, the postirradiation plasma histamine levels in both irradiated groups showed an increase of approximately 1600% above the preirradiation levels and the postirradiation control levels

  20. Cine-CT measurement of cortical renal blood flow

    International Nuclear Information System (INIS)

    Jaschke, W.R.; Gould, R.G.; Cogan, M.G.; Sievers, R.; Lipton, M.J.

    1987-01-01

    A modified indicator-dilution technique using radiographic contrast material and a cine-CT scanner was used to measure blood flow in the renal cortex of dogs. To validate this technique, CT measurements were correlated with simultaneous measurements of flow determined by radioactive microspheres. Measurements were taken during euvolemic conditions and after hemorrhage. Thirty-nine measurements were compared, covering a flow range from 1 to 7 ml min-1 g-1, and a good correlation was found between the cine-CT and microsphere results (r = 0.93; p less than 0.001). Additionally, cine-CT measurements were made of the mean transit time (MTT) of contrast material through the renal cortex, and the reciprocal of these MTT values was also well correlated to microsphere determined flow (r = 0.94; p less than 0.001). Thus, cine-CT appears to be a promising new technique for measuring renal blood flow

  1. Effects of video game playing on cerebral blood flow in young adults: a SPECT study.

    Science.gov (United States)

    Chou, Yuan-Hwa; Yang, Bang-Hung; Hsu, Ju-Wei; Wang, Shyh-Jen; Lin, Chun-Lung; Huang, Kai-Lin; Chien Chang, Alice; Lee, Shin-Min

    2013-04-30

    To study the impact of video game playing on the human brain, the effects of two video games playing on cerebral blood flow (CBF) in young adults were determined. Thirty healthy subjects comprising 18 males and 12 females who were familiar with video game playing were recruited. Each subject underwent three sessions of single photon emission computed tomography (SPECT) with a bolus injection of 20 mCi (99m)Tc ECD IV to measure their CBF. The first measurement was performed as baseline, the second and third measurements were performed after playing two different video games for 30 min, respectively. Statistic parametric mapping (SPM2) with Matlab 6.5 implemented on a personal computer was used for image analysis. CBF was significantly decreased in the prefrontal cortex and significantly increased in the temporal and occipital cortices after both video games playing. Furthermore, decreased CBF in the anterior cingulate cortex (ACC) which was significantly correlated with the number of killed characters was found after the violent game playing. The major finding of hypo-perfusion in prefrontal regions after video game playing is consistent with a previous study showing reduced or abnormal prefrontal cortex functions after video game playing. The second finding of decreased CBF in the ACC after playing the violent video game provides support for a previous hypothesis that the ACC might play a role in regulating violent behavior. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Relationships between Cerebral Blood Flow and IQ in Typically Developing Children and Adolescents.

    Science.gov (United States)

    Kilroy, Emily; Liu, Collin Y; Yan, Lirong; Kim, Yoon Chun; Dapretto, Mirella; Mendez, Mario F; Wang, Danny J J

    2011-01-01

    The objective of this study was to explore the relationships between IQ and cerebral blood flow (CBF) measured by arterial spin labeling (ASL) in children and adolescents. ASL was used to collect perfusion MRI data on 39 healthy participants aged 7 to 17. The Wechsler Abbreviated Intelligence Scale was administered to determine IQ scores. Multivariate regression was applied to reveal correlations between CBF and IQ scores, accounting for age, sex and global mean CBF. Voxel Based Morphometry (VBM) analysis, which measures regional cortical volume, was performed as a control. Regression analyses were further performed on CBF data with adjustment of regional gray matter density (GMD). A positive correlation between CBF and IQ scores was primarily seen in the subgenual/anterior cingulate, right orbitofrontal, superior temporal and right inferior parietal regions. An inverse relationship between CBF and IQ was mainly observed in bilateral posterior temporal regions. After adjusting for regional GMD, the correlations between CBF and IQ in the subgenual/anterior cingulate cortex, right orbitofrontal, superior temporal regions and left insula remained significant. These findings support the Parieto-Frontal Integration Theory of intelligence, especially the role of the subgenual/anterior cingulate cortex in the neural networks associated with intelligence. The present study also demonstrates the unique value of CBF in assessing brain-behavior relationships, in addition to structural morphometric measures.

  3. Characteristic regional cerebral blood flow patterns in anorexia nervosa patients with binge/purge behavior.

    Science.gov (United States)

    Naruo, T; Nakabeppu, Y; Sagiyama, K; Munemoto, T; Homan, N; Deguchi, D; Nakajo, M; Nozoe, S

    2000-09-01

    The authors' goal was to investigate the effect of imagining food on the regional cerebral blood flow (rCBF) of anorexia nervosa patients with and without habitual binge/purge behavior. The subjects included seven female patients with purely restrictive anorexia, seven female patients with anorexia and habitual binge/purge behavior, and seven healthy women. Single photon emission computed tomography examination was performed before and after the subjects were asked to imagine food. Changes in rCBF count ratios (percent change) were then calculated and compared. The subjects were also asked to assess their degree of fear regarding their control of food intake. The anorexia nervosa patients with habitual binge/purge behavior had a significantly higher percent change in the inferior, superior, prefrontal, and parietal regions of the right brain than the patients with purely restrictive anorexia and the healthy volunteers. The patients with habitual binge/purge behavior also had the highest level of apprehension in regard to food intake. Specific activation in cortical regions suggests an association between habitual binge/purge behavior and the food recognition process linked to anxiety in patients with anorexia nervosa.

  4. Effect of Kanji and Kana reading on cerebral blood flow patterns measured by PET

    International Nuclear Information System (INIS)

    Kiyosawa, Motohiro; Itoh, Masatoshi; Nakagawa, Youichi; Kobayashi, Naoki; Tamai, Makoto.

    1995-01-01

    To investigate the respective functions of pathways in processing visual information from different types of symbols, by positron emission tomography (PET) we examined the effect on cerebral blood flow (CBF) of reading the Japanese morphogram (kanji) versus the syllabogram (kana). Nine Japanese men were presented with three visual conditions in random order 2 minutes before the scan: eyes open controls, kanji morphogram reading, and kana syllabogram reading. Three words written in kanji or kana were shown, and subjects were instructed to read them silently and to identify the word unrelated logically to the other two. The reading and analyzing tasks activated wide areas of vision-related cortices. The comparison of the kanji and kana readings showed higher metabolism, with the former only in the posterior part of the primary visual cortex. Most of the CBF increases were common for both stimuli, although the patterns of these increases differed slightly. The correlation matrix of CBF change in the left hemisphere showed a ventral connection in kanji reading and a dorsal connection in kana reading. Our results suggest there is a functional differentiation in the brain between patterned and sequential perception when reading Japanese morphograms and syllabograms. (author)

  5. Verbal or Visual Memory Score and Regional Cerebral Blood Flow in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Satoshi Hayashi

    2018-01-01

    Full Text Available Objective: Among many cognitive function deficits, memory impairment is an initial and cardinal symptom in Alzheimer disease (AD. In most cases, verbal and visual memory scores correlate highly, but in some cases the deficit of verbal or visual memory is very different from that of the other memory. In this study, we examined the neural substrates of verbal and visual memory in patients with AD. Methods: One hundred eighty-eight consecutive patients with AD were recruited from outpatient units. Verbal and visual memory scores were evaluated using the Wechsler Memory Scale – revised. The patients underwent brain SPECT with 99mTc-ethylcysteinate dimer. Results: After removing the effects of age, sex, education, and Mini-Mental State Examination scores, correlation analysis showed a significant correlation of verbal memory scores to regional cerebral blood flow (rCBF in the bilateral cingulate gyrus and left precuneus. Similarly, a significant correlation of visual memory scores to rCBF was found in the right precuneus and right cingulate gyrus. Conclusion: The posterior medial cortices (PMC are very important areas in episodic memory among patients with mild AD. Verbal memory is more closely related to the both sides of the PMC, while visual memory is more closely related to the right PMC.

  6. Regional cerebral blood flow (rCBF) changes in major depression

    International Nuclear Information System (INIS)

    Ohtaki, Junichi

    1992-01-01

    Regional cerebral blood flow (rCBF) in patients with major depression and in normal controls was measured by single photon emission computed tomography (SPECT) using N-isopropyl-p [ 123 I]-iodoamphetamine (IMP). The subjects were 22 patients with major depression and 14 normal controls. The rCBF was calculated by the ratio of activity per pixel in the cortical regions to activity per pixel in the cerebellum. IMP-SPECT was conducted in patients with major depression under the depressive and remitted states. rCBF values in the frontal, parietal, temporal, basal ganglia and the occipital regions, and the mean rCBF values were significantly lower in depressive patients than in the controls. Increased rCBF values were observed, and the mean rCBF became normal in the state of remittence. There was no significant difference in mean rCBF between depressive patients and the controls. Therefore, because the lower rCBF was normalized following improvement in expressive symptoms, the rCBF values could be useful as 'state dependent markers' in patients with major depression. (author)

  7. Verbal or Visual Memory Score and Regional Cerebral Blood Flow in Alzheimer Disease.

    Science.gov (United States)

    Hayashi, Satoshi; Terada, Seishi; Oshima, Etsuko; Sato, Shuhei; Kurisu, Kairi; Takenoshita, Shintaro; Yokota, Osamu; Yamada, Norihito

    2018-01-01

    Among many cognitive function deficits, memory impairment is an initial and cardinal symptom in Alzheimer disease (AD). In most cases, verbal and visual memory scores correlate highly, but in some cases the deficit of verbal or visual memory is very different from that of the other memory. In this study, we examined the neural substrates of verbal and visual memory in patients with AD. One hundred eighty-eight consecutive patients with AD were recruited from outpatient units. Verbal and visual memory scores were evaluated using the Wechsler Memory Scale - revised. The patients underwent brain SPECT with 99m Tc-ethylcysteinate dimer. After removing the effects of age, sex, education, and Mini-Mental State Examination scores, correlation analysis showed a significant correlation of verbal memory scores to regional cerebral blood flow (rCBF) in the bilateral cingulate gyrus and left precuneus. Similarly, a significant correlation of visual memory scores to rCBF was found in the right precuneus and right cingulate gyrus. The posterior medial cortices (PMC) are very important areas in episodic memory among patients with mild AD. Verbal memory is more closely related to the both sides of the PMC, while visual memory is more closely related to the right PMC.

  8. New possibilities for quantitative measurements of regional cerebral blood flow with gold-195m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1985-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied to patients after stroke and to volunteers undergoing a mental stimulation exercise. The energy spectrum of gold-195m shows two strong photon peaks, one at an energy level of 68 keV and a second at an energy-level of 262 keV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres; no look-through effect is seen. The high energy level is good for studies in posterior-anterior positions. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that, not only with freely diffusible indicators like xenon but also with nondiffusible indicators, it is possible to measure quantitatively cerebral blood flow patterns

  9. Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Larsson, Henrik B W; Hansen, Adam E

    2012-01-01

    PURPOSE: To investigate the within and between subject variability of quantitative cerebral blood flow (CBF) measurements in normal subjects using various MRI techniques and positron emission tomography (PET). MATERIALS AND METHODS: Repeated CBF measurements were performed in 17 healthy, young...

  10. The influence of transcutaneous electrical neurostimulation (TENS) on human cerebral blood flow velocities

    NARCIS (Netherlands)

    ter Laan, Mark; van Dijk, J. Marc C.; Elting, Jan-Willem J.; Fidler, Vaclav; Staal, Michiel J.

    It has been shown that transcutaneous electrical neurostimulation (TENS) reduces sympathetic tone. Spinal cord stimulation (SCS) has proven qualities to improve coronary, peripheral, and cerebral blood circulation. Therefore, we postulate that TENS and SCS affect the autonomic nervous system in

  11. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip...

  12. The circadian oscillator of the cerebral cortex: molecular, biochemical and behavioral effects of deleting the Arntl clock gene in cortical neurons

    DEFF Research Database (Denmark)

    Bering, Tenna; Carstensen, Mikkel Bloss; Wörtwein, Gitta

    2018-01-01

    for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly...... prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect...... that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry....

  13. Effect of age on cerebral blood flow during hypothermic cardiopulmonary bypass

    International Nuclear Information System (INIS)

    Brusino, F.G.; Reves, J.G.; Smith, L.R.; Prough, D.S.; Stump, D.A.; McIntyre, R.W.

    1989-01-01

    Cerebral blood flow was measured in 20 patients by xenon 133 clearance methodology during nonpulsatile hypothermic cardiopulmonary bypass to determine the effect of age on regional cerebral blood flow during these conditions. Measurements of cerebral blood flow at varying perfusion pressures were made in patients arbitrarily divided into two age groups at nearly identical nasopharyngeal temperature, hematocrit value, and carbon dioxide tension and with equal cardiopulmonary bypass flows of 1.6 L/min/m2. The range of mean arterial pressure was 30 to 110 mm Hg for group I (less than or equal to 50 years of age) and 20 to 90 mm Hg for group II (greater than or equal to 65 years of age). There was no significant difference (p = 0.32) between the mean arterial pressure in group I (54 +/- 28 mm Hg) and that in group II (43 +/- 21 mm Hg). The range of cerebral blood flow was 14.8 to 29.2 ml/100 gm/min for group I and 13.8 to 37.5 ml/100 gm/min for group II. There was no significant difference (p = 0.37) between the mean cerebral blood flow in group I (21.5 +/- 4.6 ml/100 gm/min) and group II (24.3 +/- 8.1 ml/100 gm/min). There was a poor correlation between mean arterial pressure and cerebral blood flow in both groups: group I, r = 0.16 (p = 0.67); group II, r = 0.5 (p = 0.12). In 12 patients, a second cerebral blood flow measurements was taken to determine the effect of mean arterial pressure on cerebral blood flow in the individual patient. Changes in mean arterial pressure did not correlate with changes in cerebral blood flow (p less than 0.90). We conclude that age does not alter cerebral blood flow and that cerebral blood flow autoregulation is preserved in elderly patients during nonpulsatile hypothermic cardiopulmonary bypass

  14. Correlation of severity of aphasia with cerebral blood flow

    International Nuclear Information System (INIS)

    Tagawa, Koichi; Sugimoto, Keiko; Sone, Noriaki; Yamaguchi, Takenori; Naritomi, Hiroaki; Sawada, Tohru

    1982-01-01

    In 46 patients with aphasia due to cerebral infarction, regional cerebral blood flow (rCBF) was measured by 133 Xe inhalation method, and relationship between severity of aphasia and degree of rCBF reduction was investigated. Measurements of rCBF were performed after 2 months of ictus in all patients. At the time of rCBF measurements, the severity of aphasia was mild in 13, moderate in 16 and severe in the other 17 patients. Control rCBF values were obtained from 16 subjects who had neither neurological deficits nor abnormal findings on CT scan. In control group, mean hemispheric rCBF values (mCBF), which were calculated from initial slope index, were 49.1 +- 3.8 and 49.4 +- 3.9 respectively in the right and left hemisphere. In all aphasic patients but two who had mild aphasia, mCBF in the left hemisphere showed lower values as compared to that in the right hemisphere. The mCBF in the left hemisphere was 46.5 +- 5.3 in the mild group, 41.3 +- 5.8 in the moderate group and 34.3 +- 5.0 in the severe group. The values in the moderate and severe groups were significantly reduced as compared to the control or those in the mild group. The mCBF in the severe group was also significantly lower than those in the moderate group. The mCBF in the right hemisphere was 48.4 +- 6.3 in the mild group, 45.6 +- 6.1 in the moderate group and 38.6 +- 4.9 in the severe group. The values in the severe group were significantly reduced as compared to those in the other groups as well as the control. The present study suggests that measurements of rCBF by 133 Xe inhalation method are valid for the evaluation of severity of aphasia in stroke patients. (author)

  15. Potentials of positron emission tomography for regional cerebral blood flow evaluation

    International Nuclear Information System (INIS)

    Depresseux, J.C.

    1982-01-01

    A general overview of the potentials of positron emission tomography and of positron-emitting radiopharmaceuticals for the evaluation of regional cerebral blood flow is proposed and discussed. Specific characteristics of this technique are described, with special stress on conceptual and methodological implications. Four different approaches to the problem of the determination of cerebral blood flow are distinguished: trapping equilibrium methods, steady state equilibrium methods, clearance methods and convoluted kinetic methods [fr

  16. Cerebral blood flow during delirium tremens and related clinical states studied with xenon-133 inhalation tomography

    International Nuclear Information System (INIS)

    Hemmingsen, R.; Vorstrup, S.; Clemmesen, L.; Holm, S.; Tfelt-Hansen, P.; Sorensen, A.S.; Hansen, C.; Sommer, W.; Bolwig, T.G.

    1988-01-01

    The regional cerebral blood flow of 12 patients with severe alcohol withdrawal reactions (delirium tremens or impending delirium tremens) was measured during the acute state before treatment and after recovery. Greater cerebral blood flow was significantly correlated with visual hallucinations and agitation during the acute withdrawal reaction. The results suggest that delirium tremens and related clinical states represent a type of acute brain syndrome mainly characterized by CNS hyperexcitability

  17. Mechanisms of recovery from aphasia: evidence from serial xenon 133 cerebral blood flow studies

    International Nuclear Information System (INIS)

    Knopman, D.S.; Rubens, A.B.; Selnes, O.A.; Klassen, A.C.; Meyer, M.W.

    1984-01-01

    In 21 patients who suffered aphasia resulting from left hemisphere ischemic infarction, the xenon 133 inhalation cerebral blood flow technique was used to measure cerebral blood flow within 3 months and 5 to 12 months after stroke. In addition to baseline measurements, cerebral blood flow measurements were also carried out while the patients were performing purposeful listening. In patients with incomplete recovery of comprehension and left posterior temporal-inferior parietal lesions, greater cerebral blood flow occurred with listening in the right inferior frontal region in the late studies than in the early studies. In patients with nearly complete recovery of comprehension and without left posterior temporal-inferior parietal lesions, early listening studies showed diffuse right hemisphere increases in cerebral blood flow. Later listening studies in this latter patient group showed greater cerebral blood flow in the left posterior temporal-inferior parietal region. The study provides evidence for participation of the right hemisphere in language comprehension in recovering aphasics, and for later return of function in left hemisphere regions that may have been functionally impaired early during recovery

  18. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip......-oxidative carbohydrate uptake during exercise. Adrenaline appears to accelerate cerebral glycolysis through a beta2-adrenergic receptor mechanism since noradrenaline is without such an effect. In addition, the exercise-induced cerebral non-oxidative carbohydrate uptake is blocked by combined beta 1/2-adrenergic blockade...

  19. Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.

    Science.gov (United States)

    Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin

    2013-12-15

    Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (ppills had protective effects on focal cerebral ischemia rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Global cerebral blood flow and metabolism during acute hyperketonemia in the awake and anesthetized rat

    DEFF Research Database (Denmark)

    Linde, Rasmus; Hasselbalch, Steen G.; Topp, Simon

    2006-01-01

    and cerebral metabolism could not be explained by alterations in blood pH or arterial CO2 tension. By measuring cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy, it could further be concluded that the brain pH was unchanged during acute hyperketonemia. These observations indicate......In the human setting, it has been shown that acute increase in the concentration of ketone bodies by infusion of beta-hydroxybutyrate increased the cerebral blood flow (CBF) without affecting the overall cerebral metabolic activity. The mechanism by which this effect of ketone bodies was mediated...... that the mechanism responsible for the increase in CBF is rather a direct effect on the cerebral endothelium than via some metabolic interactions...

  1. Significance of preoperative cerebral blood flow measurements in endovascular occlusion of the internal carotid and middle cerebral arteries

    International Nuclear Information System (INIS)

    Laurent, A.; Weitzner, I.; Luft, A.; Merland, J.J.

    1988-01-01

    Cerebral blood flow (CBF) measurements during 12 endovascular balloon occlusions (ten internal carotid and two middle cerebral arteries) with good clinical and angiographic tolerance were done with repeated boluses of Xe-133 injected directly into the ipsi- and contralateral carotid systems, during the occlusion and repeated measurements with detectors on both sides (before occlusion and 5-30 minutes after occlusion). In two cases of unchanged and four of increased CBF, one reversible deficit was probably due to an embolus. In six cases of decreased CBF, two deficits occurred, characterized by a greater than 25% decrease. It seems to represent a good predictive value for intolerance to occlusion

  2. Whole blood angiopoietin-1 and -2 levels discriminate cerebral and severe (non-cerebral malaria from uncomplicated malaria

    Directory of Open Access Journals (Sweden)

    Tangpukdee Noppadon

    2009-12-01

    Full Text Available Abstract Background Severe and cerebral malaria are associated with endothelial activation. Angiopoietin-1 (ANG-1 and angiopoietin-2 (ANG-2 are major regulators of endothelial activation and integrity. The aim of this study was to investigate the clinical utility of whole blood angiopoietin (ANG levels as biomarkers of disease severity in Plasmodium falciparum malaria. Methods The utility of whole blood ANG levels was examined in Thai patients to distinguish cerebral (CM; n = 87 and severe (non-cerebral malaria (SM; n = 36 from uncomplicated malaria (UM; n = 70. Comparative statistics are reported using a non-parametric univariate analysis (Kruskal-Wallis test or Chi-squared test, as appropriate. Multivariate binary logistic regression was used to examine differences in whole blood protein levels between groups (UM, SM, CM, adjusting for differences due to ethnicity, age, parasitaemia and sex. Receiver operating characteristic curve analysis was used to assess the diagnostic accuracy of the ANGs in their ability to distinguish between UM, SM and CM. Cumulative organ injury scores were obtained for patients with severe disease based on the presence of acute renal failure, jaundice, severe anaemia, circulatory collapse or coma. Results ANG-1 and ANG-2 were readily detectable in whole blood. Compared to UM there were significant decreases in ANG-1 (p Conclusions These results suggest that whole blood ANG-1/2 levels are promising clinically informative biomarkers of disease severity in malarial syndromes.

  3. Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients

    DEFF Research Database (Denmark)

    Lassen, L.H.; Jacobsen, V.B.; Haderslev, P.A.

    2008-01-01

    Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment...

  4. The effects of anticholinergic drugs on regional cerebral blood flow, and oxygen metabolism in previously untreated patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Obara, Satoko; Takahashi, Satoshi; Yonezawa, Hisashi; Sato, Yoshitomo

    1998-01-01

    Regional cerebral blood flow (rCBF) and oxygen metabolism (rCMRO 2 ) were measured using the steady-state 15 O technique and positron emission tomography (PET) in six previously untreated patients with Parkinson's disease before and after trihexyphenidyl (THP) treatment. The patients comprised of 4 men and 2 women with Hoehn-Yahr stage II-III. Their ages at the onset of the study ranged from 46 to 57 years (mean±SD, 51.8±3.7) and the duration of the illness ranged from 10 to 48 months (mean±SD, 28.8±15.5). The PET study, assessments of the disability and cognitive function were undergone twice. The first time assessments were done was when the patients were not receiving any drugs, and the second time was one to three months after administration of 6 mg THP. All patients showed clinical improvement after THP treatment. The mean disability score of Unified Parkinson's Disease Rating Scale decreased from 35.1 (SD±11.3) to 25.7 (SD±11.6). The cognitive function assessed by Hasegawa's dementia rating scale-revised, Mini-Mental State Examination, Wechsler Adult Intelligence Scale-Revised, and Wechsler Memory Scale-Revised, were not significantly different before and after the THP treatment. After the THP treatment, rCBF and rCMRO 2 decreased significantly in the striatum (about 15%) and all cerebral cortices (about 10%) on both sides contralateral and ipsilateral to the predominantly symptomatic limbs. We conclude that an anticholinergic THP decreases the rCBF and rCMRO 2 significantly in the cerebral cortices without cognitive impairment in early untreated patients with Parkinson's disease. (author)

  5. Low cerebral blood flow after cardiac arrest is not associated with anaerobic cerebral metabolism

    NARCIS (Netherlands)

    Hoedemaekers, C.W.E.; Ainslie, Philip N.; Hinssen, S.; Aries, M.J.; Bisschops, Laurens L.; Hofmeijer, Jeannette; van der Hoeven, J.G.

    2017-01-01

    Aim of the study Estimation of cerebral anaerobic metabolism in survivors and non-survivors after cardiac arrest. Methods We performed an observational study in twenty comatose patients after cardiac arrest and 19 healthy control subjects. We measured mean flow velocity in the middle cerebral artery

  6. Studies of cerebral blood flow and metabolism in patients with senile dementia of the Alzheimer's type and diagnostic evaluation of the dementing illnesses by positron emission tomography

    International Nuclear Information System (INIS)

    Sakamoto, Shizuki

    1990-01-01

    This study was designed to determine cerebral dysfunction in senile dementia of the Alzheimer's type (SDAT). Regional cerebral blood flow (rCBF), oxygen extraction fraction and cerebral oxygen consumption (rCMRO 2 ) were studied in SDAT patients (n=16) and age-matched normal elderly people (n=5) by positron emission tomography (PET) using the O-15 labeled CO 2 and O 2 inhalation technique. The SDAT group had a significantly lower values in both rCBF and rCMRO 2 than the normal control. During the early stage of SDAT, rCMRO 2 was restricted to the temporal cortex; and it extended to the parietal and frontal cortices associated with a decreased rCBF as the disease progressed. Posterior temporal and posterior parietal association cortices were considered to be the most damageable part during the early stage. Bilateral differences in oxygen metabolism of the temporal and parietal cortices tended to be in accordance with clinical symptoms for disturbed speech and visuospatial function, suggesting the correlation between rCMRO 2 and rCBF in SDAT. Findings of PET in SDAT differed from those obtained in each patient with multi-infarct dementia or Pick disease, in that both rCBF and rCMRO 2 were inhomogeneously decreased over the whole cerebral cortex for multi-infarct dementia and in that homogeneously decreased rCBF and rCMRO 2 were restricted to the frontal and temporal cortices for Pick disease. PET may have a potential for differentiating various types of dementia. (N.K.)

  7. Effect of Body Temperature on the Radionuclide Evaluation of Cerebral Blood Flow

    International Nuclear Information System (INIS)

    Mustafa, S. . E- mail: seham@hsc.edu.kw; Elgazzar, A.H.; Gopinath, S.; Mathew, M.; Khalil, M.

    2006-01-01

    Changes in regional cerebral blood flow (rCBF) may reflect physiological correlates of the disease state. In neuro-imaging studies, some diseases have frequently been reported to be associated with reduced or increased rCBF. In a previous study we had shown evidence of heat induced vasoconstriction of the carotid artery, which is the main vessel supplying blood to the brain. This vasoconstriction may lead to a decrease in cerebral blood flow in hyperthermic patients. Most radionuclide studies used to assess cerebral blood flow are routinely performed without taking into consideration patients' body temperature. In this regard it may be noted that results of radionuclide cerebral perfusion studies may be affected by hyperthermia, which could lead to false positive studies or misinterpretation of results when they are performed on patients suffering from various cerebrovascular diseases. The objective of the present study was to investigate the importance of body temperature and its effect on the results of radionuclide cerebral perfusion studies. Cerebral blood flow was assessed using Tc-99m hexamethylpropyleneamineoxime (Tc-99m HMPAO) imaging. Baseline scintigraphic images of the brain were obtained in 10 rabbits using a gamma camera equipped with a low energy parallel hole and high resolution collimator interfaced with a computer. Repeat brain studies were performed on the same rabbits at 3 and 6 days after raising the body temperature by 2 deg. C and 4 deg. C respectively using the same imaging protocol. The counts per pixel were determined on control and hyperthermia images. The uptake of Tc-99m HMPAO in the brain was found to be significantly reduced following hyperthermia implying reduction in blood flow. This decrease in cerebral perfusion appears to be variable from region to region, being more in the cerebral hemispheres, frontal areas (olfactory lobes) than in the cerebellum. Based on the results, the authors conclude that a rise in body temperature might

  8. Noninvasive 133Xe inhalation method for cerebral blood flow measurement

    International Nuclear Information System (INIS)

    Takagi, Shigeharu; Kobatake, Keitaro; Shinohara, Yukito

    1991-01-01

    Recent development of the 133 Xe inhalation technique has made it possible to measure cerebral blood flow (CBF) noninvasively. Recording of the head curves from the frontal and temporal areas during inhalation of 133 Xe, however, is contaminated by the artifact from the air passages. A method based on Fourier transforms was reported to be able to eliminate air passage artifact (APA) effectively. However, it was pointed out that such an algorithm does not give a complete correction if the artifact seen by the head detectors differs in shape from that recorded from the airways at the mouth, which may happen when there is a slow isotope convection in the nasal and sinus cavities. The purpose of this study was to compare the CBF values calculated by the Fourier method with those by the conventional method of Obrist (VM method). Mean hemispheric gray matter flow (F 1 ) calculated by the VM method in 11 subjects, including normal volunteers and patients with various neurological diseases, was 69.2±13.2 mg/100 g brain/ min, whereas F 1 calculated by the Fourier method in the same subjects was 64.4±13.5, indicating that APA can be effectively eliminated by the Fourier method. The F 1 values calculated by the Fourier method from the frontal and temporal regions were relatively high, and closer to the F 1 values calculated by the VM method. The size of the APA was large in these regions. It was concluded that the deformed APA contaminated the results in these regions, and could not be eliminated effectively by the Fourier method. It is suggested that the shape of the head curve and the size of APA should be carefully examined to ensure that CBF data are reliable. (author)

  9. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep

    DEFF Research Database (Denmark)

    Madsen, P L; Schmidt, J F; Wildschiødtz, Gordon

    1991-01-01

    on examination of this question. We have now measured CBF and CMRO2 in young healthy volunteers using the Kety-Schmidt technique with 133Xe as the inert gas. Measurements were performed during wakefulness, deep sleep (stage 3/4), and rapid-eye-movement (REM) sleep as verified by standard polysomnography...... associated with light anesthesia. During REM sleep (dream sleep) CMRO2 was practically the same as in the awake state. Changes in CBF paralleled changes in CMRO2 during both deep and REM sleep.......It could be expected that the various stages of sleep were reflected in variation of the overall level of cerebral activity and thereby in the magnitude of cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF). The elusive nature of sleep imposes major methodological restrictions...

  10. Relations between neuropsychological findings and lateral asymmetries of cerebral blood flow measured by SPECT in dementia of Alzheimer type

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Nahoko; Soma, Yoshiaki; Ootsuki, Mika [Takeda General Hospital, Aizu-Wakamatsu, Fukushima (Japan)

    1993-10-01

    We studied 16 right-handed patients clinically diagnosed as dementia of Alzheimer type (6 men, 10 women; aged 63-85, mean 72.8 years). The average duration of symptoms was 2.7 years. Dementia ranged from mild to moderately severe. None had clinical or laboratory evidence of cerebrovascular disease (Hachinski ischemic scores for all patients were 4 or below 4). All received the Wechsler Adult Intelligence Scale (WAIS), Mini-mental State Test (MMS) and Western Aphasia Battery (WAB, First Japanese edition, 1986). Regional cerebral blood flow (rCBF) was evaluated by single photon emission CT (SPECT) with {sup 123}I-N-isopropyl-p-iodoamphetamine ({sup 123}I-IMP), using the Matsuda`s quantitative method. Regional tracer uptake was measured in regions of interests (ROIs) over right and left frontal, temporal, parietal and occipital cortical regions; basal ganglia; and cerebellar hemispheres. The subjects were divided into three groups on the basis of lateral asymmetries in the temporal and parietal cortexes of rCBF (leftcerebral blood flow. Verbal IQ in patients with predominant hypoperfusion of left temporal and parietal lobe was significantly lower than other group, while performance IQ and WAB constructive scores were lower in those with right hemispheric hypoperfusion (p<0.05). We concluded that cerebral blood flow asymmetry by SPECT was related significantly to the deficit of language and constructive function in patients with dementia of Alzheimer type. Decreased rCBF in the left temporoparietal lobe was associated with language dysfunction, and that in the right hemisphere, with constructive dysfunction. (author).

  11. Relations between neuropsychological findings and lateral asymmetries of cerebral blood flow measured by SPECT in dementia of Alzheimer type

    International Nuclear Information System (INIS)

    Yoshimura, Nahoko; Soma, Yoshiaki; Ootsuki, Mika

    1993-01-01

    We studied 16 right-handed patients clinically diagnosed as dementia of Alzheimer type (6 men, 10 women; aged 63-85, mean 72.8 years). The average duration of symptoms was 2.7 years. Dementia ranged from mild to moderately severe. None had clinical or laboratory evidence of cerebrovascular disease (Hachinski ischemic scores for all patients were 4 or below 4). All received the Wechsler Adult Intelligence Scale (WAIS), Mini-mental State Test (MMS) and Western Aphasia Battery (WAB, First Japanese edition, 1986). Regional cerebral blood flow (rCBF) was evaluated by single photon emission CT (SPECT) with 123 I-N-isopropyl-p-iodoamphetamine ( 123 I-IMP), using the Matsuda's quantitative method. Regional tracer uptake was measured in regions of interests (ROIs) over right and left frontal, temporal, parietal and occipital cortical regions; basal ganglia; and cerebellar hemispheres. The subjects were divided into three groups on the basis of lateral asymmetries in the temporal and parietal cortexes of rCBF (left< right, n=5; right< left, n=3; left=right, n=8). We decided that lateral asymmetry was present when rCBF for each ROI between left and right sides differs by more than 10%. General score (MMS, T-IQ) was not correlated with asymmetry of cerebral blood flow. Verbal IQ in patients with predominant hypoperfusion of left temporal and parietal lobe was significantly lower than other group, while performance IQ and WAB constructive scores were lower in those with right hemispheric hypoperfusion (p<0.05). We concluded that cerebral blood flow asymmetry by SPECT was related significantly to the deficit of language and constructive function in patients with dementia of Alzheimer type. Decreased rCBF in the left temporoparietal lobe was associated with language dysfunction, and that in the right hemisphere, with constructive dysfunction. (author)

  12. Semiquantifying regional cerebral blood flow by dynamic CT scanning

    International Nuclear Information System (INIS)

    Takeuchi, Totaro; Kasahara, Eishi; Takahashi, Eriko; Kojima, Seiichi; Ogawa, Haruhiko; Suzuki, Keiko; Miyamae, Tatsuya; Yamazaki, Setsuo.

    1990-01-01

    The study was undertaken to evaluate the semi-quantitative significance of the absolute value obtained by calculating the regional cerebral blood flow index (rCBFI) from dynamic CT in comparison with SPECT. rCBFI was calculated from mean transit time (MTT) and blood capacity index (BCI) obtained by rapidly infusing 50 ml of Omnipurk into the elbow vein by the use of Hitachi's W-600. [rCBFI=BCI/MTT unit/sec (U/S)] measurment of the rCBF by SPECT was made according to the semi-quantitative method by Matsuda et al. by the use of SHIMADZU's improved type HEADTOME SET-050 with rapid infusion of 123 I-IMP in 3.5 m Ci from the elbow vein. Patients in whom no abnormality was observed in the cardiopulmonary function were enrolled as subjects. The rCBFI in each intracranial site was calculated from dynamic CT in 10 normal adults (aged 35-60, averaging 46.7) as subjects and compared with the rCBF obtained from SPECT in the same cases and same site. Comparative investigation was made similarly between rCBFI and rCBF regarding 10 patients with tracranial diseases (age 29-65, averaging 51.2). The mean rCBFIs in the normal adults obtained from dynamic CT were 1.15±0.18 U/S in the frontal lobar cortex, 1.28±0.19 U/S in the temporal lobar cortex, 1.43±0.1 U/S in the occipital lobar cortex, 1.27±0.2 U/S in the basal ganglia region and 0.43±0.1 U/S in the white matter. On the other hand, the mean rCBFs by SPECT were 47.36±3.93 ml/100 g/min, 55.19±2.22 ml/100 g/min, 61.92±5.42 ml/100 g/min, 54.38±3.51 ml/100 g/min and 38.68±6.18 ml/100 g/min, respectively. Positive correlation was observed between rCBFIs and rCBFs of 10 normal adults and 10 patients with intracranial disease, totalling 20 cases (r=0.79, P<0.005). The rCBFI by dynamic CT has a correlation with the rCBF by SPECT, suggesting the possibility of its evaluation as an absolute value, though semi-quantitatively. (author)

  13. Cerebral distribution of 133Xe and blood flow measured with high purity germanium

    International Nuclear Information System (INIS)

    Reich, T.; Rusinek, H.; Youdin, M.; Clagnaz, M.

    1985-01-01

    Distribution of cerebral blood flow was measured with an array of 200 ultra-pure germanium radiation detectors and 133 Xe by inhalation. The array sees the head as a composite of different subvolumes and enables measurement of the concentration history of tracer every 1-10 sec in each subvolume simultaneously. Subvolume mean flows, (fm), and partition coefficients, lambda m, are derived by compartmental analysis of tissue concentration washout curves. Errors from cross talk, scalp radiation, look through, and assumed partition coefficients are eliminated. Average fm adjusted for 40 mm Hg PACO 2 in 14 cortical subvolumes (7 right, 7 left) of four normal 21-24 year old controls ranged from 50 to 60 ml/100 cc tissue/min, and lambda m ranged from 0.97 to 1.14. Average fm and lambda m in white matter was 24 ml/100 cc/min and 1.42 - 1.14 respectively. During CO 2 inhalation, right and left hemispheric fm increased 6.4% and 5.7%/mm Hg respectively, whereas white matter fm increased 2.2% and 3.4% mm Hg respectively. There was no systematic difference between front and back or dominant vs non-dominant sides. Three 73-84 year old controls had reduced fm and CO 2 reactivity in all subvolumes, lambda m was in the same range as in younger controls. Two patients with intracranial cerebrovascular disease showed excellent localization of ischemic subvolumes. One patient with asymptomatic unilateral 98% stenosis of the internal carotid artery had a similar distribution of blood flow in both hemispheres

  14. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with {sup 15}O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Department of Nuclear Medicine and Radiology, Division of Brain Sciences, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-Machi, 980-8575, Aoba-Ku, Sendai (Japan); Kanno, Iwao [Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita (Japan); Kato, Chietsugu [Department of Nuclear Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Sasaki, Toshiaki [Cyclotoron Research Center, Iwate Medical University, Morioka (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo (Japan); Ouchi, Yasuomi [Positron Medical Center, Hamamatsu Medical Center, Hamakita (Japan); Iida, Akihiko [Nagoya City Rehabilitation Center, Nagoya (Japan); Okazawa, Hidehiko [PET Unit, Research Institute, Shiga Medical Center, Moriyama (Japan); Hayashida, Kohei [Department of Radiology, National Cardiovascular Center, Suita, Osaka (Japan); Tsuyuguchi, Naohiro [Department of Neurosurgery, Osaka City University Medical School, Osaka (Japan); Ishii, Kazunari [Division of Imaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders, Himeji, Hyogo (Japan); Kuwabara, Yasuo [Department of Radiology, Faculty of Medicine, Kyushu University, Fukuoka (Japan); Senda, Michio [Department of Image-based Medicine, Institute of Biomedical Research and Innovation, Kobe (Japan)

    2004-05-01

    Measurement of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) by positron emission tomography (PET) with oxygen-15 labelled carbon dioxide (C{sup 15}O{sub 2}) or {sup 15}O-labelled water (H{sub 2}{sup 15}O), {sup 15}O-labelled carbon monoxide (C{sup 15}O) and {sup 15}O-labelled oxygen ({sup 15}O{sub 2}) is useful for diagnosis and treatment planning in cases of cerebrovascular disease. The measured values theoretically depend on various factors, which may differ between PET centres. This study explored the applicability of a database of {sup 15}O-PET by examining between-centre and within-centre variation in values. Eleven PET centres participated in this multicentre study; seven used the steady-state inhalation method, one used build-up inhalation and three used bolus administration of C{sup 15}O{sub 2} (or H{sub 2}{sup 15}O) and {sup 15}O{sub 2}. All used C{sup 15}O for measurement of CBV. Subjects comprised 70 healthy volunteers (43 men and 27 women; mean age 51.8{+-}15.1 years). Overall mean{+-}SD values for cerebral cortical regions were: CBF=44.4{+-}6.5 ml 100 ml{sup -1} min{sup -1}; CBV=3.8{+-}0.7 ml 100 ml{sup -1}; OEF=0.44{+-}0.06; CMRO{sub 2}=3.3{+-}0.5 ml 100 ml{sup -1} min{sup -1}. Significant between-centre variation was observed in CBV, OEF and CMRO{sub 2} by one-way analysis of variance. However, the overall inter-individual variation in CBF, CBV, OEF and CMRO{sub 2} was acceptably small. Building a database of normal cerebral haemodynamics obtained by the{sup 15}O-PET methods may be practicable. (orig.)

  15. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET

    DEFF Research Database (Denmark)

    IIda, H.; Law, I.; Pakkenberg, B.

    2000-01-01

    Limited spatial resolution of positron emission tomography (PET) can cause significant underestimation in the observed regional radioactivity concentration (so-called partial volume effect or PVE) resulting in systematic errors in estimating quantitative physiologic parameters. The authors have...... formulated four mathematical models that describe the dynamic behavior of a freely diffusible tracer (H215O) in a region of interest (ROI) incorporating estimates of regional tissue flow that are independent of PVE. The current study was intended to evaluate the feasibility of these models and to establish...... a methodology to accurately quantify regional cerebral blood flow (CBF) corrected for PVE in cortical gray matter regions. Five monkeys were studied with PET after IV H2(15)O two times (n = 3) or three times (n = 2) in a row. Two ROIs were drawn on structural magnetic resonance imaging (MRI) scans and projected...

  16. Relationship between cerebral blood flow and later cognitive decline in hypertensive patients with cerebral small vessel disease

    International Nuclear Information System (INIS)

    Kitagawa, Kazuo; Oku, Naohiko; Yagita, Yoshiki; Sakaguchi, Manabu; Sakoda, Saburo; Kimura, Yasuyuku; Hatazawa, Jun

    2009-01-01

    Vascular risk factors are thought to be important for dementia. However, there is little evidence for a prospective association between cerebral blood flow and the risk of cognitive decline. Twenty-seven cognitively intact hypertensive patients aged 55 years and older with lacunar infarction or white matter lesions in magnetic resonance imaging (MRI) underwent positron emission tomography (PET) to measure cerebral blood flow (CBF) and cerebral vascular reactivity (CVR). Cognitive function was assessed at baseline and 3 years later with the mini-mental state examination (MMSE). Patients whose MMSE score fell by more than three points were classified as having cognitive decline. Six patients showed cognitive decline. Baseline CBF in these patients was significantly lower than that of the 21 patients without cognitive decline (31.2±2.4 vs. 42.6±5.9 ml per 100 gmin -1 , respectively; P<0.001). A moderate linear association was found between CBF and change in MMSE score over a 3-year period (r=0.59, P=0.001), not between CBF and baseline MMSE score. In contrast, no association between CVR and later cognitive decline was found. This study suggests that cerebral hypoperfusion is associated with later cognitive decline. (author)

  17. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-(13)C]Glucose and [1,2-(13)C]Acetate as Substrates

    DEFF Research Database (Denmark)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B

    2017-01-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few...

  18. The influence of the non-Newtonian properties of blood on blood-hammer through the posterior cerebral artery.

    Science.gov (United States)

    Tazraei, Pedram; Riasi, Alireza; Takabi, Behrouz

    2015-06-01

    This work investigates a two dimensional numerical analysis of blood hammer through the posterior cerebral artery. The non-Newtonian and usual Newtonian blood models are compared in the case of blood hammer through the posterior cerebral artery to quantify the differences between the models. In this way, a validated CFD simulation is used to study non-Newtonian shear-thinning effects of blood. The governing equations for the modeling of two-dimensional transient flow are solved using a combination of characteristics and central finite difference methods, respectively for the hyperbolic and parabolic parts. Herein, the non-Newtonian viscosity characteristic of blood is incorporated by using the Carreau model. To convert the nonlinear terms available in the characteristics equation into the linear ones, the Newton-Kantorovich method is implemented. The verification and validation of the numerical results are carried out in detail. Hemodynamic characteristics of blood hammer through the posterior cerebral artery are derived with both the Newtonian and non-Newtonian models, and the results are meticulously compared and discussed. The results show that when blood hammer occurs, the non-Newtonian properties greatly influence the velocity and shear stress profiles. At the early stages of blood hammer, there is a 64% difference between magnitudes of wall shear stress in these two models, and the magnitude of the wall shear stress for the shear-thinning blood flow is lower than the Newtonian one. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Quantitative cerebral blood flow patterns with the short lived isotope 195m Au

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1984-01-01

    A previously reported theory for quantitative cerebral blood flow measurements using intravenously injected nondiffusible radiotracers has been applied on patients after stroke and on volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow patterns (in ml/min/100g) not only in p.a. but also in lateral views of the brain are possible by using of the short-lived (30 sec) isotope Au 195m. The energy spectrum of the eluate of the generator shows two strong photon peaks, one at 68 keV and a second at 262 keV. The 68 keV peak is suitable for perfusion studies in lateral views of the hemispheres, no 'look through' effect is seen. The 262 keV peak is good for studies in p.a. positions. The studies last less than 1 minute and can be repeated after 3 minutes. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be made visible. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. After optical stimulation a clear increase of blood flow was seen in the visual cortex. The results prove that not only with freely diffusible (like Xenon) but also with nondiffusible indicators like 195m Au it is possible to measure quantitatively cerebral blood flow patterns. Au 195m is very advantageous for quantitative clinical investigations of cerebrovascular disease. (Author)

  20. Emesis, radiation exposure, and local cerebral blood flow in the ferret

    International Nuclear Information System (INIS)

    Tuor, U.I.; Kondysar, M.H.; Harding, R.K.

    1988-01-01

    We examined the sensitivity of the ferret to emetic stimuli and the effect of radiation exposure near the time of emesis on local cerebral blood flow. Ferrets vomited following the administration of either apomorphine (approx 45% of the ferrets tested) or peptide YY (approx 36% of those tested). Exposure to radiation was a very potent emetic stimulus, but vomiting could be prevented by restraint of the hindquarters of the ferret. Local cerebral blood flow was measured using a quantitative autoradiographic technique and with the exception of several regions in the telencephalon and cerebellum, local cerebral blood flow in the ferret was similar to that in the rat. In animals with whole-body exposure to moderate levels of radiation (4 Gy of 137 Cs), mean arterial blood pressure was similar to that in the control group. However, 15-25 min following irradiation there was a general reduction of local cerebral blood flow ranging from 7 to 33% of that in control animals. These cerebral blood flow changes likely correspond to a reduced activation of the central nervous system

  1. Cerebral blood flow and oximetry response to blood transfusion in relation to chronological age in preterm infants.

    Science.gov (United States)

    Banerjee, J; Leung, T S; Aladangady, N

    2016-06-01

    Preterm infants frequently receive blood transfusion (BT) and the aim of this study was to measure the effect of BT on cerebral blood flow and oxygenation in preterm infants in relation to chronological age. Preterm infants undergoing intensive care recruited to three chronological age groups: 1 to 7 (Group 1; n=20), 8 to 28 (Group 2; n=21) & ≥29days of life (Group 3; n=18). Pre and post-BT anterior cerebral artery (ACA) time averaged mean velocity (TAMV) and superior vena cava (SVC) flow were measured. Cerebral Tissue Haemoglobin Index (cTHI) and Oxygenation Index (cTOI) were measured from 15-20min before to 15-20min post-BT using NIRS. Vital parameters and blood pressure were measured continuously. Mean BP increased significantly, and there was no significant change in vital parameters following BT. Pre-BT ACA TAMV was higher in Group 2 and 3 compared to Group 1 (pBlood transfusion increased cTOI and cTHI and decreased ACA TAMV in all groups. PDA had no impact on the baseline cerebral oximetry and blood flow as well as changes following blood transfusion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Brain regions associated with cognitive impairment in patients with Parkinson disease: quantitative analysis of cerebral blood flow using 123I iodoamphetamine SPECT.

    Science.gov (United States)

    Hattori, Naoya; Yabe, Ichiro; Hirata, Kenji; Shiga, Tohru; Sakushima, Ken; Tsuji-Akimoto, Sachiko; Sasaki, Hidenao; Tamaki, Nagara

    2013-05-01

    Cognitive impairment is a representative neuropsychiatric presentation that accompanies Parkinson disease (PD). The purpose of this study was to localize the cerebral regions associated with cognitive impairment in patients with PD using quantitative SPECT. Thirty-two patients with PD (mean [SD] age, 75 [8] years; 25 women; Hoehn-Yahr scores from 2 to 5) underwent quantitative brain SPECT using 123I iodoamphetamine. Parametric images of regional cerebral blood flow (rCBF) were spatially normalized to the standard brain atlas. First, voxel-by-voxel comparison between patients with PD with versus without cognitive impairment was performed to visualize overall trend of regional differences. Next, the individual quantitative rCBF values were extracted in representative cortical regions using a standard region-of-interest template to compare the quantitative rCBF values. Patients with cognitive impairment showed trends of lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices in the voxel-by-voxel analyses. Region-of-interest-based analysis demonstrated significantly lower rCBF in the bilateral anterior cingulate cortices (right, 25.8 [5.5] vs 28.9 [5.7] mL per 100 g/min, P left, 25.8 [5.8] vs 29.1 [5.7] mL per 100 g/min, P left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices. The results suggested dysexecutive function as an underlining mechanism of cognitive impairment in patients with PD.

  3. Regulation of cerebral blood flow in patients with autonomic dysfunction and severe postural hypotension

    DEFF Research Database (Denmark)

    Hesse, Birger; Mehlsen, Jesper; Boesen, Finn

    2002-01-01

    Whether cerebral blood flow (CBF) autoregulation is maintained in autonomic dysfunction has been debated for a long time, and the rather sparse data available are equivocal. The relationship between CBF and mean arterial blood pressure (MABP) was therefore tested in eight patients with symptoms...

  4. Cerebral blood volume measurement using radioactive carboxyhemoglobin and positron emission tomography. Chapter 26

    International Nuclear Information System (INIS)

    Kanno, Iwao; Murakami, Matsutaro; Miura, Shuichi; Iida, Hidehiro; Takahashi, Kazuhiro; Sasaki, Hiroshi; Uemura, Kazuo

    1988-01-01

    This paper aims to describe the technical basis for this simplest cerebral blood volume (CBV) measurement using CO-labelled red blood cells and PET and to clarify the error sources in the technique which will become critical when we perform studies on physiological activation of CBV. 17 refs.; 6 figs.; 2 tabs

  5. A study of the cerebral blood flow pattern and cognitive deficit in Parkinson's disease

    International Nuclear Information System (INIS)

    Tamaru, Fuyuhiko

    1997-01-01

    Cerebral blood flow pattern in Parkinson's disease was examined by 123 I-IMP SPECT to determine whether the deficit in cognitive function is reflected in it. The patient group with Parkinson's disease showed deterioration in intelligence (Minimental state examination, Raven's Colored Progressive Matrices) and frontal lobe test (the Wisconsin Card Sorting Test). Though the uptake ratio of prefrontal area/occipital area in 123 I-IMP SPECT study varied widely in the Parkinson's disease group compared to the normal control group, there was no significant difference in the mean. Selective depletion of frontal lobe blood flow was not confirmed in this study. There was no correlation between cerebral blood flow pattern and cognitive functions including frontal lobe function and intelligence. We concluded that the deficit in cognitive function was not reflected in the cerebral blood flow pattern in Parkinson's disease. (author)

  6. A simple technique to measure regional cerebral blood flow during intravascular ballon clamping

    International Nuclear Information System (INIS)

    Furuhata, Shigeru; Kubo, Atsushi; Kawase, Takeshi; Ibata, Yukio; Toya, Shigeo

    1988-01-01

    A case of giant internal carotid ophthalmic aneurysm was presented. In order to clarify whether the patient could tolerate carotid occlusion, a ballon clamping test was performed before surgery. The cerebral blood flow was measured using early imaging by single photon emission computed tomography (SPECT) with N-isopropyl-(iodine-123)-p-iodoamphetamine ( 123 I-IMP). When the ballon clamping test was performed the tracer was injected, and scanning was performed 35 minutes after removing the catheter. This tracer enabled a 'memory of blood flow' during temporary ischemia to determine the character of quick diffusion and slow wash out, that could not be performed by other methods of cerebral blood flow measurement. SPECT with 123 I-IMP can simplify the measurement of cerebral blood flow during the balloon clamping test. (author)

  7. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children

    Directory of Open Access Journals (Sweden)

    Laura Chaddock-Heyman

    2016-08-01

    Full Text Available The present study is the first to investigate whether cerebral blood flow in the hippocampus relates to aerobic fitness in children. In particular, we used arterial spin labeling (ASL perfusion MRI to provide a quantitative measure of blood flow in the hippocampus in 73 7- to 9-year-old preadolescent children. Indeed, aerobic fitness was found to relate to greater perfusion in the hippocampus, independent of age, sex, and hippocampal volume. Such results suggest improved microcirculation and cerebral vasculature in preadolescent children with higher levels of aerobic fitness. Further, aerobic fitness may influence how the brain regulates its metabolic demands via blood flow in a region of the brain important for learning and memory. To add specificity to the relationship of fitness to the hippocampus, we demonstrate no significant association between aerobic fitness and cerebral blood flow in the brainstem. Our results reinforce the importance of aerobic fitness during a critical period of child development.

  8. Regional cerebral blood flow changes in patients with internet addiction.

    Science.gov (United States)

    Otte, Andreas

    2016-01-01

    Dear Editor, Internet addiction (IA) has become a severe challenge of our modern world today, though little is known about its pathology. In this context, the interesting study by Liu et al. in the May-August 2016 issue of HJNM using 99m Tc-labelled ethylene biyldicysteinate dimer single photon emission tomography (SPET) at rest and after pharmaceutical (adenosine) stress is more than welcomed. As this seems to be the first perfusion SPET study in this indication, the obtained data may be discussed carefully. There are mainly the following questions: a) Regional cerebral blood flow (rCBF): There is no description on how the rCBF was calculated: Was it scaled relatively to the whole brain mean value or to the cerebellar mean value? b) P value threshold and clusters: There is no indication of whether the authors are performing any kind of correction for multiple comparisons in the statistical parametric mapping (SPM) t-test. This, combined with the use of a really "liberal" voxel P value of only 0.01 could be subject to providing many false positive results. Generally a P value threshold of 0.001 should be used. In addition, there is no information related to the clusters. For the question of the validity of parametric statistical methods used for the analysis of functional neuroimaging data, we would like to mention the important recent paper by Eklund et al. 2016. c) Data analysis: The authors state (p. 97): "As some abnormal rCBF in adenosine-stressed state might relate with normal responses to adenosine compared to resting state, we excluded those regions that showed abnormal rCBF in stressed state in healthy controls (Table 4) from those in IA group (Table 5). The rest abnormal regions were compared between the IA group and the control group". For this, with SPM a flexible factorial design with all the data rather than only t-tests would have been interesting to find out whether the difference between the groups at stress is the same difference observed between

  9. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Jinping Xu

    2017-06-01

    Full Text Available Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I, 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm2. Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.

  10. I-123 hydroxyiodobenzyl propanediamine (HIPDM) cerebral blood flow imaging demonstrating transtentorial diaschisis

    Energy Technology Data Exchange (ETDEWEB)

    Shih, W.J.; Dekosky, S.T.; Coupal, J.J.; Simmons, G.; Pulmano, C.; Kung, H.F.; Ryo, U.Y.; Clark, D.B. (Veterans Affairs Medical Center, Lexington, KY (USA))

    1990-09-01

    To assess the clinical significance of transtentorial diaschisis (TTD) as demonstrated by I-123 HIPDM brain imaging, SPECT and/or planar images of 35 patients with stroke, 26 patients with Alzheimer's disease (AD), 2 patients with Creutzfeldt-Jakob disease (CJD), and 1 patient with a schizoaffective disorder were analyzed. TTD was observed in 21 of the 35 patients with strokes. In 13 stroke patients, TTD was associated with large infarcts in the middle cerebral artery (MCA) territory; in the remaining 8 stroke patients, TTD was associated with internal capsule and/or basal ganglia infarcts. TTD was not associated with small occipital or parietal infarcts. Despite cortical perfusion decrements, TTD was not seen in the AD patients, the CJD patients, or the patient with schizoaffective disorder. It is concluded that (1) TTD frequently occurs following cerebral infarct of the MCA territory (60% of the patients in this sample); (2) absence of TTD in the presence of a large cerebral perfusion abnormality may represent neuronal dysfunction of the cerebral cortex; and (3) the presence of TTD without a significant cortical perfusion abnormality may indicate basal ganglia and/or internal capsule infarct.

  11. I-123 hydroxyiodobenzyl propanediamine (HIPDM) cerebral blood flow imaging demonstrating transtentorial diaschisis

    International Nuclear Information System (INIS)

    Shih, W.J.; Dekosky, S.T.; Coupal, J.J.; Simmons, G.; Pulmano, C.; Kung, H.F.; Ryo, U.Y.; Clark, D.B.

    1990-01-01

    To assess the clinical significance of transtentorial diaschisis (TTD) as demonstrated by I-123 HIPDM brain imaging, SPECT and/or planar images of 35 patients with stroke, 26 patients with Alzheimer's disease (AD), 2 patients with Creutzfeldt-Jakob disease (CJD), and 1 patient with a schizoaffective disorder were analyzed. TTD was observed in 21 of the 35 patients with strokes. In 13 stroke patients, TTD was associated with large infarcts in the middle cerebral artery (MCA) territory; in the remaining 8 stroke patients, TTD was associated with internal capsule and/or basal ganglia infarcts. TTD was not associated with small occipital or parietal infarcts. Despite cortical perfusion decrements, TTD was not seen in the AD patients, the CJD patients, or the patient with schizoaffective disorder. It is concluded that (1) TTD frequently occurs following cerebral infarct of the MCA territory (60% of the patients in this sample); (2) absence of TTD in the presence of a large cerebral perfusion abnormality may represent neuronal dysfunction of the cerebral cortex; and (3) the presence of TTD without a significant cortical perfusion abnormality may indicate basal ganglia and/or internal capsule infarct

  12. Point application with Angong Niuhuang sticker protects hippocampal and cortical neurons in rats with cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Dong-shu Zhang

    2015-01-01

    Full Text Available Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological functions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris and Realgar, we used transdermal enhancers to deliver Angong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg were administered to the Dazhui (DU14, Qihai (RN6 and Mingmen (DU4 of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application of Angong Niuhuang stickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efficacy similar to interventions by electroacupuncture at Dazhui (DU14, Qihai (RN6 and Mingmen (DU4. Our experimental findings indicate that point application with Angong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efficacy to acupuncture.

  13. Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps.

    Directory of Open Access Journals (Sweden)

    Piotr Bogorodzki

    Full Text Available PURPOSE: To estimate and compare cerebral cortex thickness in patients with unilateral end-stage glaucoma with that of age-matched individuals with unaffected vision. METHODS: 14 patients with unilateral end-stage primary open angle glaucoma (POAG and 12 age-matched control individuals with no problems with vision were selected for the study based on detailed ophthalmic examination. For each participant 3D high-resolution structural brain T1-weighted magnetization prepared MR images were acquired on a 3.0 T scanner. Brain cortex thickness was estimated using the FreeSurfer image analysis environment. After warping of subjects' cortical surfaces to FreeSurfer common space, differences between POAG and control groups were inferred at the group analysis level with the General Linear Model. RESULTS: The analysis performed revealed local thinning in the visual cortex areas in the POAG group. Statistically significant differences form 600 mm2 clusters located in the Brodmann area BA19 in the left and right hemisphere. CONCLUSION: Unilateral vision loss due to end-stage neuropathy from POAG is associated with significant thinning of cortical areas employed in vision.

  14. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Noboru Toda

    2016-08-01

    Full Text Available Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic nerves and nitric oxide (NO liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS/neuronal NOS (nNOS inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD. Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD.

  15. New possibilities for quantitative measurements of regional cerebral blood flow with Au-195 m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1984-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied on patients after stroke and an volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow patterns not only in p-a. but also in lateral views of the brain are possible by the use of the recently developed generator for the short lived (30 sec) isotope Au-195 m. The energy spectrum of the eluate of the generator shows two strong photon peaks, one at an energy level of 68 KeV and a second at an energy-level of 262 KeV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres, no ''look through'' effect is seen. The high energy level is good for studies in p-a-positions. The studies last less than 1 minute and can be repeated after 3 minutes. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that not only with freely diffusible indicators like Xenon but also with nondiffusible indicators it is possible to measure quantitatively cerebral blood flow patterns. (orig.)

  16. The Posterior Cerebral Artery and its Main Cortical Branches Identified with Noninvasive Transcranial Color-Coded Duplex Sonography.

    Science.gov (United States)

    Frid, P E; Schreiber, S J; Pade, O; Doepp, F; Valdueza, J

    2015-11-01

    To differentiate PCA segments and cortical branches by means of transcranial color-coded duplex sonography (TCCD) and to measure flow parameters at rest and during visual stimulation. 60 healthy subjects with a good acoustic temporal bone window were examined. The main stem of the PCA (P1, P2 and P3) and 4 main cortical branches - the anterior temporal artery (ATA), the occipital temporal artery (OTA), the parietooccipital artery (POA) and the calcarine artery (CA) - were assessed using an axial transtemporal approach. Systolic and diastolic blood flow velocities (BFVs) were recorded at rest and during visual stimulation. Identification of the P1 segment of the PCA was successful in 97.5% (117/120) of cases. The P2 and P3 segments were visualized in all cases. The 4 main cortical branches could be identified to varying degrees: ATA in 88%, OTA in 96%, POA in 69% and CA in 62%. There was an evoked flow response in the P2 main stem and in all cortical branches. The most pronounced increase in diastolic/systolic BFV after visual stimulation test was seen in the CA (42%/35%), followed by P2 (30%/24%), the POA (27%/27%), the OTA (16%/13%) and the ATA (9%/8%). Insonation through the temporal bone window with TCCD confidently allows the assessment of the P1 to P3 segments of the PCA as well as the 2 proximal branches, the ATA and the OTA. An ultrasound-based classification of PCA anatomy and its cortical branches may be used as a noninvasive method for the evaluation of posterior circulation pathology.

  17. Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest

    Science.gov (United States)

    Clark, J. M.; Skolnick, B. E.; Gelfand, R.; Farber, R. E.; Stierheim, M.; Stevens, W. C.; Beck, G. Jr; Lambertsen, C. J.

    1996-01-01

    Cerebral blood flow (CBF) was measured by 133Xe clearance simultaneously with the velocity of blood flow through the left middle cerebral artery (MCA) over a wide range of arterial PCO2 in eight normal men. Average arterial PCO2, which was varied by giving 4% and 6% CO2 in O2 and by controlled hyperventilation on O2, ranged from 25.3 to 49.9 mm Hg. Corresponding average values of global CBF15 were 27.2 and 65.0 ml 100 g min-1, respectively, whereas MCA blood-flow velocity ranged from 42.8 to 94.2 cm/s. The relationship of CBF to MCA blood-flow velocity over the imposed range of arterial PCO2 was described analytically by a parabola with the equation: CBF = 22.8 - 0.17 x velocity + 0.006 x velocity2 The observed data indicate that MCA blood-flow velocity is a useful index of CBF response to change in arterial PCO2 during O2 breathing at rest. With respect to baseline values measured while breathing 100% O2 spontaneously, percent changes in velocity were significantly smaller than corresponding percent changes in CBF at increased levels of arterial PCO2 and larger than CBF changes at the lower arterial PCO2. These observed relative changes are consistent with MCA vasodilation at the site of measurement during exposure to progressive hypercapnia and also during extreme hyperventilation hypocapnia.

  18. Positron emission tomography in cerebrovascular disease: The relationship between regional cerebral blood flow, blood volume and oxygen metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Herold, S.

    1985-03-01

    Positron emission tomography in cerebrovascular disease has demonstrated the importance of the relationship between regional cerebral blood flow and the cerebral metabolic activity. In acute stroke it has been found that within the first hours after the onset of symptoms cerebral blood flow in the affected area is more depressed than cerebral oxygen utilisation. This relative preservation of oxygen utilisation results from an increase in the oxygen extraction ratio far above its normal value. However, the oxygen extraction fraction subsequently falls in the following days indicating the transition from a situation of possibly reversible ischaemia to irreversible infarction. In patients with carotid occlusive disease an increase in the oxygen extraction ratio has been observed only in very few cases. It has been shown, however, that at an earlier stage the relationship between CBF and CBV (as CBF/CBV-ratio) provides a sensitive measure of diminished perfusion pressure which could be helpful for the selection of patients for EC-IC bypass surgery. In patients with sickle cell anaemia it has been found that oxygen delivery to the brain is maintained by an increase in cerebral blood flow, whereas the oxygen extraction ratio is not increased despite the presence of a low oxygen affinity haemoglobin. Preliminary observations in classical migraine suggest an ischaemic situation during the attack.

  19. An autopsied case of MV2K + C-type sporadic Creutzfeldt-Jakob disease presenting with widespread cerebral cortical involvement and Kuru plaques.

    Science.gov (United States)

    Iwasaki, Yasushi; Saito, Yufuko; Aiba, Ikuko; Kobayashi, Atsushi; Mimuro, Maya; Kitamoto, Tetsuyuki; Yoshida, Mari

    2017-06-01

    MV2-type sporadic Creutzfeldt-Jakob disease (sCJD), which was previously called "Kuru-plaque variant", was gradually revealed to have a wide spectrum and has been classified into three pathological subtypes: MV2K, MV2C and MV2K + C. We herein describe the detailed clinical findings and neuropathologic observations from an autopsied MV2K + C-type Japanese sCJD case with widespread cerebral cortical pathology and Kuru plaques. In the early stages of the disease, the patient exhibited gait disturbance with ataxia and dysarthria as well as gradual appearance of cognitive dysfunction. Diffusion-weighted images (DWI) on MRI revealed extensive cerebral cortical hyperintensity. Pathologic investigation revealed extensive spongiform change in the cerebral cortex, particularly in the deeper layers. Vacuole size varied, and some were confluent. Prion protein (PrP) immunostaining revealed extensive PrP deposition in the cerebral cortex, basal ganglia, thalamus, cerebellum, brainstem and spinal cord. In the cerebral cortex, synaptic-type, Kuru plaque-like, and coarse plaque-type PrP depositions were mainly observed, along with some perivacuolar-type PrP depositions. Kuru plaques and coarse plaque-type PrP depositions also were observed in the cerebellar cortex. PrP gene analysis revealed no mutations, and polymorphic codon 129 exhibited Met/Val heterozygosity. Western blot analysis revealed a mixture of intermediate-type PrP Sc and type 2 PrP Sc . Based on previous reports regarding MV2-type sCJD and the clinicopathologic findings of the present case, we speculated that it may be possible to clinically distinguish each MV2 subtype. Clinical presentation of the MV2K + C subtype includes predominant cerebral cortical involvement signs with ataxia and DWI hyperintensity of the cerebral cortex on MRI. © 2016 Japanese Society of Neuropathology.

  20. Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: Nonlinear assessment of cerebral autoregulation

    Science.gov (United States)

    Hu, Kun; Peng, C. K.; Huang, Norden E.; Wu, Zhaohua; Lipsitz, Lewis A.; Cavallerano, Jerry; Novak, Vera

    2008-04-01

    Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique-the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.

  1. Effect of graded hyperventilation on cerebral metabolism in a cisterna magna blood injection model of subarachnoid hemorrhage in rats

    DEFF Research Database (Denmark)

    Ma, Xiaodong; Bay-Hansen, Rikke; Hauerberg, John

    2006-01-01

    In subarachnoid hemorrhage (SAH) with cerebrovascular instability, hyperventilation may induce a risk of inducing or aggravating cerebral ischemia. We measured cerebral blood flow (CBF) and cerebral metabolic rates of oxygen (CMRO2), glucose (CMRglc), and lactate (CMRlac) at different PaCO2 level...

  2. Effects of electroacupuncture on the cortical extracellular signal regulated kinase pathway in rats with cerebral ischaemia/reperfusion.

    Science.gov (United States)

    Wu, Chunxiao; Li, Chun; Zhou, Guoping; Yang, Lu; Jiang, Guimei; Chen, Jing; Li, Qiushi; Zhan, Zhulian; Xu, Xiuhong; Zhang, Xin

    2017-12-01

    To explore the effects of electroacupuncture (EA) on the phosphorylated extracellular signal regulated kinase (p-ERK) pathway of the cerebral cortex in a rat model of focal cerebral ischaemia/reperfusion (I/R). 160 adult Sprague-Dawley rats underwent middle carotid artery occlusion (MCAO) to establish I/R injury and were randomly divided into four groups (n=40 each) that remained untreated (I/R group) or received EA at LU5, LI4, ST36 and SP6 (I/R+EA group), the ERK inhibitor PD98059 (I/R+PD group), or both interventions (I/R+PD+EA groups). An additional 40 rats undergoing sham surgery formed a healthy control group. Eight rats from each group were sacrificed at the following time points: 2 hours, 6 hours, 1 day, 3 days and 1 week. Neurological function was assessed using neurological deficit scores, morphological examination was performed following haematoxylin-eosin staining of cortical tissues, and apoptotic indices were calculated after terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labelling. Cortical protein and mRNA expression of p-ERK and ERK were measured by immunohistochemistry and real-time quantitative PCR, respectively. Compared with the I/R group, neurological deficit scores and apoptotic indices were lower in the I/R+EA group at 1 and 3 days, whereas mRNA/protein expression of ERK/p-ERK was higher in the EA group at all time points studied. Our results suggest that EA can alleviate neurological deficits and reduce cortical apoptosis in rats with I/R injury. These anti-apoptotic effects may be due to upregulation of p-ERK. Moreover, apoptosis appeared to peak at 1 day after I/R injury, which might therefore represent the optimal time point for targeting of EA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Profiles of cortical tissue depolarization in cat focal cerebral ischemia in relation to calcium ion homeostasis and nitric oxide production.

    Science.gov (United States)

    Ohta, K; Graf, R; Rosner, G; Heiss, W D

    1997-11-01

    Cortical depolarization was investigated in a topographic gradient of ischemic density after 1-hour transient middle cerebral artery occlusion in halothane-anesthetized cats. A laser Doppler flow probe, an ion-selective microelectrode, and a nitric oxide (NO) electrode measured regional CBF (rCBF), direct current (DC) potential, extracellular Ca2+ concentration ([Ca2+]o), and NO concentration in ectosylvian and suprasylvian gyri of nine animals. Recordings revealed 12 of 18 sites with persistent negative shifts of the DC potential, severe rCBF reduction, and a drop of [Ca2+]o characteristic for core regions of focal ischemia. Among these sites, two types were distinguished by further analysis. In Type 1 (n = 5), rapid, negative DC shifts resembled anoxic depolarization as described for complete global ischemia. In this type, ischemia was most severe (8.9 +/- 2.5% of control rCBF), [Ca2+]o dropped fast and deepest (0.48 +/- 0.20 mmol/L), and NO concentration increased transiently (36.1 +/- 24.0 nmol/L at 2.5 minutes), and decreased thereafter. In Type 2 (n = 7), the DC potential fell gradually over the first half of the ischemic episode, rCBF and [Ca2+]o reductions were smaller than in Type 1 (16.2 +/- 8.2%; 0.77 +/- 0.41 mmol/L), and NO increased continuously during ischemia (53.1 +/- 60.4 nmol/L at 60 minutes) suggesting that in this type NO most likely exerts its diverse actions on ischemia-threatened tissue. In the remaining six recording sites, a third type (Type 3) attributable to the ischemic periphery was characterized by minimal DC shifts, mild ischemia (37.2 +/- 13.3%), nonsignificant alterations of [Ca2+]o, but decreased NO concentrations during middle cerebral artery occlusion. Reperfusion returned the various parameters to baseline levels within 1 hour, the recovery of [Ca2+]o and NO concentration being delayed in Type 1. An NO synthase inhibitor (N(G)-nitro-L-arginine, 50 mg/kg intravenously; four animals) abolished NO elevation during ischemia. In

  4. Clinical study of cerebral blood flow in unilateral chronic subdural hematoma measured by {sup 99m}Tc-HMPAO SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Tohru; Saito, Koji; Fukuyama, Kohichi; Yamamoto, Kouki; Morimoto, Mamoru [Kushiro Neurosurgical Hospital, Hokkaido (Japan); Aburano, Tamio

    2000-02-01

    Cerebral blood flow (CBF) measured by {sup 99m}Tc-HMPAO SPECT before operation was studied in 60 patients with unilateral chronic subdural hematoma. The regional CBF was measured in 26 regions of the fronto-occipital 10 cortices, putamen, thalamus and cerebellar hemisphere on both sides. Sixty cases with unilateral chronic subdural hematoma were classified into four groups on the basis of clinical symptoms: 17 cases with headache (headache group), 34 cases with hemiparesis (hemiparesis group) and 9 cases with consciousness disturbance or dementia (consciousness disturbance group), and into three groups on the basis of the degree of midline brain shift on MRI: 7 cases of mild shift group, 24 cases of moderate shift group and 29 cases of severe shift group. The average CBF in 60 patients in each region indicated that the regional CBF was reduced in frontal, occipital cortices and cerebellum on the non-hematoma side, and in putamen and thalamus on the hematoma side. In the headache group, the regional CBF reduction on the non-hematoma side was found in only frontal and occipital cortices compared with the corresponding regions on the hematoma side. In the hemiparesis group, the regional CBF was reduced in frontal and occipital cortices on the non-hematoma side and in putamen and thalamus on the hematoma side. The part of CBF reduction in both hemispheres was also noted in the hemiparesis group. In the consciousness disturbance group, the CBF reduction was markedly noted in whole brain. The CBF reductions in frontal and occipital cortices on the non-hematoma side and in putamen, thalamus and cerebellum on the hematoma side was not mutually related with the degree of midline brain shift. We concluded that the disturbance of CBF in chronic subdural hematoma was started from frontal and occipital cortices on the non-hematoma side observed in the headache group, and which was extended to putamen and thalamus on the hematoma side and a part of both hemispheres observed in

  5. Clinical study of cerebral blood flow in unilateral chronic subdural hematoma measured by 99mTc-HMPAO SPECT

    International Nuclear Information System (INIS)

    Okuyama, Tohru; Saito, Koji; Fukuyama, Kohichi; Yamamoto, Kouki; Morimoto, Mamoru; Aburano, Tamio

    2000-01-01

    Cerebral blood flow (CBF) measured by 99m Tc-HMPAO SPECT before operation was studied in 60 patients with unilateral chronic subdural hematoma. The regional CBF was measured in 26 regions of the fronto-occipital 10 cortices, putamen, thalamus and cerebellar hemisphere on both sides. Sixty cases with unilateral chronic subdural hematoma were classified into four groups on the basis of clinical symptoms: 17 cases with headache (headache group), 34 cases with hemiparesis (hemiparesis group) and 9 cases with consciousness disturbance or dementia (consciousness disturbance group), and into three groups on the basis of the degree of midline brain shift on MRI: 7 cases of mild shift group, 24 cases of moderate shift group and 29 cases of severe shift group. The average CBF in 60 patients in each region indicated that the regional CBF was reduced in frontal, occipital cortices and cerebellum on the non-hematoma side, and in putamen and thalamus on the hematoma side. In the headache group, the regional CBF reduction on the non-hematoma side was found in only frontal and occipital cortices compared with the corresponding regions on the hematoma side. In the hemiparesis group, the regional CBF was reduced in frontal and occipital cortices on the non-hematoma side and in putamen and thalamus on the hematoma side. The part of CBF reduction in both hemispheres was also noted in the hemiparesis group. In the consciousness disturbance group, the CBF reduction was markedly noted in whole brain. The CBF reductions in frontal and occipital cortices on the non-hematoma side and in putamen, thalamus and cerebellum on the hematoma side was not mutually related with the degree of midline brain shift. We concluded that the disturbance of CBF in chronic subdural hematoma was started from frontal and occipital cortices on the non-hematoma side observed in the headache group, and which was extended to putamen and thalamus on the hematoma side and a part of both hemispheres observed in the

  6. Assessing regional cerebral blood flow in depression using 320-slice computed tomography.

    Directory of Open Access Journals (Sweden)

    Yiming Wang

    Full Text Available While there is evidence that the development and course of major depressive disorder (MDD symptomatology is associated with vascular disease, and that there are changes in energy utilization in the disorder, the extent to which cerebral blood flow is changed in this condition is not clear. This study utilized a novel imaging technique previously used in coronary and stroke patients, 320-slice Computed-Tomography (CT, to assess regional cerebral blood flow (rCBF in those with MDD and examine the pattern of regional cerebral perfusion. Thirty nine participants with depressive symptoms (Hamilton Depression Rating Scale 24 (HAMD24 score > 20, and Self-Rating Depression Scale (SDS score > 53 and 41 healthy volunteers were studied. For all subjects, 3 ml of venous blood was collected to assess hematological parameters. Transcranial Doppler (TCD ultrasound was utilized to measure parameters of cerebral artery rCBFV and analyse the Pulsatility Index (PI. 16 subjects (8 =  MDD; 8 =  healthy also had rCBF measured in different cerebral artery regions using 320-slice CT. Differences among groups were analyzed using ANOVA and Pearson's tests were employed in our statistical analyses. Compared with the control group, whole blood viscosity (including high\\middle\\low shear rateand hematocrit (HCT were significantly increased in the MDD group. PI values in different cerebral artery regions and parameters of rCBFV in the cerebral arteries were decreased in depressive participants, and there was a positive relationship between rCBFV and the corresponding vascular rCBF in both gray and white matter. rCBF of the left gray matter was lower than that of the right in MDD. Major depression is characterized by a wide range of CBF impairments and prominent changes in gray matter blood flow. 320-slice CT appears to be a valid and promising tool for measuring rCBF, and could thus be employed in psychiatric settings for biomarker and treatment response purposes.

  7. Disparity in regional cerebral blood flow during electrically induced seizure

    DEFF Research Database (Denmark)

    Sestoft, D; Meden, P; Hemmingsen, R

    1993-01-01

    on electroencephalography, the regional neuronal activity expressed as rCBF unexpectedly was markedly asymmetrical in one of the cases. These findings demonstrated that the 99mTc-HMPAO technique makes it possible to discriminate intraictal variation in cortical and subcortical activation between the hemispheres during...

  8. Regional cerebral blood flow changes associated with transcranial magnetic stimulation in refractory depressed patients

    International Nuclear Information System (INIS)

    Kim, C. H.; Chung, Y. A.; Chae, J. H.; Oh, J. H.; Kim, S. H.; Sohn, H. S.; Chung, S. K.

    2005-01-01

    Imaging studies by repetitive transcranial magnetic stimulation (rTMS) demonstrates biological activities of the brain. The aim of this study was to investigate the patterns of regional cerebral blood flow (rCBF) after a series of therapeutic rTMS sessions. Nine patients with refractory depression who had not been responsive to appropriate pharmacotherapy over 1 year were randomly assigned to daily 1 Hz right-sided rTMS or 20 Hz left-sided rTMS sessions for over 3 weeks. Baseline and 3-week post-rTMS treatment SPECT images were obtained 40 minutes after intravenous injection of approximately 740925 MBq of Tc-99m ECD using a multi-detector scanner (ECAM plus; Siemens, Erlangen, Germany) equipped with a low-energy, fan-beam collimator. All patients showed a good clinical outcome. Statistically significant common increase in rCBF patterns was found in the fusiform gyrus of left temporal lobe, left hippocampus, left superior parietal lobule, superior frontal gyrus of right frontal lobe, right lateral globus pallidus and cingulated gyrus of both limbic lobes. And in the fusiform gyrus of left occipital lobe and middle frontal gyrus of right frontal lobe decreased uptake was seen compared to controls. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased activity in specific brain regions in patients with treatment refractory depression. Therapeutic TMS seems to influence distinct cortical regions, as well as different pathways, affecting rCBF in a homogeneous manner that is probably region dependent and illness related

  9. First Episode Schizophrenia Regional Cerebral Blood Flow Assessment after Atypical Antipsychotics

    International Nuclear Information System (INIS)

    Rimbu, A.; Mititelu, R.; Marinescu, G.; Ghita, S.; Mazilu, C.; Codorean, I.; Gheorghe, M.

    2006-01-01

    Full text: Aim: Since regional cerebral blood flow (rCBF) findings in schizophrenic patients are inconsistent, the aim of our study was to evaluate and compare rCBF in the first episode of schizophrenia, before and after atypical antipsychotic treatment. Method: 21 patients who met criteria for schizophrenia were assessed PANSS score and tomographic brain perfusion (SPECT). The treatment was administered for 10-12 weeks and the dose was 4.8mg/day Risperidone, 11.6mg/day Olanzepine, 440mg/day Quetiapine. After finishing treatment all patients underwent a control SPECT study. Results: PANSS scores revealed two groups: group A-14 patients with predominant positive symptoms; 9 received Olanzapine and 5 Quetiapine. In group B -7 patients with predominant negative symptoms received Risperidone. Positive symptoms were associated with hypoperfusion in posterior parietal regions and superior temporal gyrus, bilaterally; for negative symptoms we found hypoperfusion in prefrontal cortex, predominantly in left side and a hyper perfusion in left basal ganglia. All patients that received atypical antipsychotic drugs had clinical improvement and decreases in PANSS scores; the control SPECT analysis revealed the same cortical changes as first studies in 15 patients and an increase of the rCBF in frontal lobes for 4 patients. 14 patients we noticed an increased rCBF at subcortical level, especially in left caudate nuclei. Conclusions: We found nonspecific features of rCBF in patients with first episode of schizophrenia, suggesting a perfusion dynamic balance rather than a fixed model. Those aspects are much more related to clinical symptoms, than to the therapeutical response. The rCBF changes in subcortical level after treatment (64.4% increase of rCBF; 35.6% not modified), can have a good prognostic value for therapeutic response. (author)

  10. Regional cerebral blood flow changes associated with transcranial magnetic stimulation in refractory depressed patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. H.; Chung, Y. A.; Chae, J. H.; Oh, J. H.; Kim, S. H.; Sohn, H. S.; Chung, S. K. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    Imaging studies by repetitive transcranial magnetic stimulation (rTMS) demonstrates biological activities of the brain. The aim of this study was to investigate the patterns of regional cerebral blood flow (rCBF) after a series of therapeutic rTMS sessions. Nine patients with refractory depression who had not been responsive to appropriate pharmacotherapy over 1 year were randomly assigned to daily 1 Hz right-sided rTMS or 20 Hz left-sided rTMS sessions for over 3 weeks. Baseline and 3-week post-rTMS treatment SPECT images were obtained 40 minutes after intravenous injection of approximately 740925 MBq of Tc-99m ECD using a multi-detector scanner (ECAM plus; Siemens, Erlangen, Germany) equipped with a low-energy, fan-beam collimator. All patients showed a good clinical outcome. Statistically significant common increase in rCBF patterns was found in the fusiform gyrus of left temporal lobe, left hippocampus, left superior parietal lobule, superior frontal gyrus of right frontal lobe, right lateral globus pallidus and cingulated gyrus of both limbic lobes. And in the fusiform gyrus of left occipital lobe and middle frontal gyrus of right frontal lobe decreased uptake was seen compared to controls. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased activity in specific brain regions in patients with treatment refractory depression. Therapeutic TMS seems to influence distinct cortical regions, as well as different pathways, affecting rCBF in a homogeneous manner that is probably region dependent and illness related.

  11. Increase of cerebral blood flow at high altitude

    DEFF Research Database (Denmark)

    Lassen, N A

    1992-01-01

    but rather somewhat sharpened over five days at almost 4000 meters of altitude. This, along with other evidence, shows that CBF does not in itself adapt to chronic hypoxia. Nevertheless, a decrease in CBF is seen over days at constant altitude primarily due to increase in the hematocrit. The cerebral...

  12. Cerebral blood flow control in small vessel disease

    NARCIS (Netherlands)

    Kim, Y.S.

    2014-01-01

    In normal conditions CBF is maintained over a wide range of perfusion pressures (ca. 60~150 mm Hg) by two main control systems, i.e. mechanoregulation, referring to CA, and chemoregulation, also known as cerebrovascular CO2 responsiveness reflecting the vasodilatory capacity of the cerebral

  13. Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders

    NARCIS (Netherlands)

    Vállez García, David; Doorduin, Janine; Willemsen, Antoon T.M.; Dierckx, Rudi A.j.o.; Otte, Andreas

    There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD). However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1) to validate previous results showing

  14. Role of nitric oxide and prostaglandin in the maintenance of cortical and renal medullary blood flow

    Directory of Open Access Journals (Sweden)

    S.I Gomez

    2008-02-01

    Full Text Available This study was undertaken in anesthetized dogs to evaluate the relative participation of prostaglandins (PGs and nitric oxide (NO in the maintenance of total renal blood flow (TRBF, and renal medullary blood flow (RMBF. It was hypothesized that the inhibition of NO should impair cortical and medullary circulation because of the synthesis of this compound in the endothelial cells of these two territories. In contrast, under normal conditions of perfusion pressure PG synthesis is confined to the renal medulla. Hence PG inhibition should predominantly impair the medullary circulation. The initial administration of 25 µM kg-1 min-1 NG-nitro-L-arginine methyl ester produced a significant 26% decrease in TRBF and a concomitant 34% fall in RMBF, while the subsequent inhibition of PGs with 5 mg/kg meclofenamate further reduced TRBF by 33% and RMBF by 89%. In contrast, the initial administration of meclofenamate failed to change TRBF, while decreasing RMBF by 49%. The subsequent blockade of NO decreased TRBF by 35% without further altering RMBF. These results indicate that initial PG synthesis inhibition predominantly alters the medullary circulation, whereas NO inhibition decreases both cortical and medullary flow. This latter change induced by NO renders cortical and RMBF susceptible to a further decrease by PG inhibition. However, the decrease in medullary circulation produced by NO inhibition is not further enhanced by subsequent PG inhibition.

  15. Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake

    DEFF Research Database (Denmark)

    Dam, Gitte; Keiding, Susanne; Munk, Ole Lajord

    2013-01-01

    Studies have shown decreased cerebral oxygen metabolism (CMRO(2)) and blood flow (CBF) in patients with cirrhosis with hepatic encephalopathy (HE). It remains unclear, however, whether these disturbances are associated with HE or with cirrhosis itself and how they may relate to arterial blood...... associated with HE rather than the liver disease as such. The changes in CMRO(2) and CBF could not be linked to blood ammonia concentration or CMRA....

  16. Blood-brain barrier and cerebral blood flow: Age differences in hemorrhagic stroke

    Directory of Open Access Journals (Sweden)

    Semyachkina-Glushkovskaya Oxana

    2015-11-01

    Full Text Available Neonatal stroke is similar to the stroke that occurs in adults and produces a significant morbidity and long-term neurologic and cognitive deficits. There are important differences in the factors, clinical events and outcomes associated with the stroke in infants and adults. However, mechanisms underlying age differences in the stroke development remain largely unknown. Therefore, treatment guidelines for neonatal stroke must extrapolate from the adult data that is often not suitable for children. The new information about differences between neonatal and adult stroke is essential for identification of significant areas for future treatment and effective prevention of neonatal stroke. Here, we studied the development of stress-induced hemorrhagic stroke and possible mechanisms underlying these processes in newborn and adult rats. Using histological methods and magnetic resonance imaging, we found age differences in the type of intracranial hemorrhages. Newborn rats demonstrated small superficial bleedings in the cortex while adult rats had more severe deep bleedings in the cerebellum. Using Doppler optical coherent tomography, we found higher stress-reactivity of the sagittal sinus to deleterious effects of stress in newborn vs. adult rats suggesting that the cerebral veins are more vulnerable to negative stress factors in neonatal vs. adult brain in rats. However, adult but not newborn rats demonstrated the stroke-induced breakdown of blood brain barrier (BBB permeability. The one of possible mechanisms underlying the higher resistance to stress-related stroke injures of cerebral vessels in newborn rats compared with adult animals is the greater expression of two main tight junction proteins of BBB (occludin and claudin-5 in neonatal vs. mature brain in rats.

  17. Change of blood glucose level and its possible mechanism in patients with cerebral stroke

    International Nuclear Information System (INIS)

    Chen Weizhen; Zhang Yong; Zhang Zikang; Mo Congjian

    2003-01-01

    To study the mechanism of the change of blood glucose levels in patients with cerebral stroke, the levels of blood glucose, cortisol, glucogen, insulin, growth hormone, triiodothyronine (T 3 ), thyroxine (T 4 ) and adrenocorticotropic hormone (ACTH) were dynamically measured in 90 patients with cerebral stroke. The circumstances of brain middle line movement, lateral ventricle oppression and entrance brain ventricle of burst hematoma of the patients were examines by CT scan. The total incidence of hyperglycemia in the patients was 42.22%. The blood glucose level was positively related to the cortisol and glucogen levels, and negatively related to the T 3 level. The changed level of blood glucose and its related hormones both returned to normal range in 10 days. Both the ACTH level and the rate of cerebral pathological change in hyperglycemia group were significantly higher than that in normoglycemia and control groups. The rate of cerebral pathological change in elevated ACTH level group was higher than that in normal ACTH level group. The mechanism of hyperglycemia in the patients with cerebral stroke might be related to the stimulation of the hypothalamus, which may induce the discharge of ACTH and glucagon releasing factor, and to that the level of cortisol and glucagon increased, the level of T 3 decreased

  18. Quantification of renal cortical blood flow using factor analysis of O-15 water dynamic PET images

    International Nuclear Information System (INIS)

    Seo, Kang Jun; Ahn, Ji Young; Lee, Jae Sung; Paeng, Jin Chul; Cheon, Gi Jeong; Lee, Dong Soo; Noh, Tae Won; Chung, June Key; Lee, Myung Chul

    2000-01-01

    To obtain spatial distribution of renal factor images, input function, and regional tissue time-activity curve (TAC) from O-15 water dynamic PET images non-invasively, factor analysis (FA) was used. O-15 water dynamic PET scans were performed on 3 normal dogs (22 ∼ 29 kg) with the bolus injection of O-15 water (555 ∼ 740 Mbq). We performed FA on the masked dynamic images and obtained the pure TACs and the corresponding factor images. Microsphere experiment also was performed. 37MBq of microsphere labeled with Sc-46 was injected into the left ventricle. Arterial input functions derived from the PET images using FA were compared with the invasively derived arterial blood samples. The renal cortical blood flow using the TACs by FA was within the normal range of 1.23 ∼ 2.46 ml/min/g. In microsphere study, the renal cortical blood flow of left kidney by FA was 2.49±0.47 ml/min/g (1.81∼2.90 ml/min/g) and by microsphere was 2.52 ±0.19 ml/min/g (2.34 ∼2.68 ml/min/g). In right kidney, flow by FA was 2.02 ±0.32 ml/min/g (1.82∼2.49 ml/min/g) and by microsphere was 2.49 ±0.27 ml/min/g (2.02∼2.7). FA is a useful and robust method to extract input functions and tissue TACs from O-15 dynamic renal PET. Renal cortical blood flow can be estimated non-invasively using FA and it will be helpful for the assessment of renal functional disease

  19. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy.

    Science.gov (United States)

    Whitney, Daniel G; Singh, Harshvardhan; Miller, Freeman; Barbe, Mary F; Slade, Jill M; Pohlig, Ryan T; Modlesky, Christopher M

    2017-01-01

    Nonambulatory children with severe cerebral palsy (CP) have underdeveloped bone architecture, low bone strength and a high degree of fat infiltration in the lower extremity musculature. The present study aims to determine if such a profile exists in ambulatory children with mild CP and if excess fat infiltration extends into the bone marrow. Ambulatory children with mild spastic CP and typically developing children (4 to 11years; 12/group) were compared. Magnetic resonance imaging was used to estimate cortical bone, bone marrow and total bone volume and width, bone strength [i.e., section modulus (Z) and polar moment of inertia (J)], and bone marrow fat concentration in the midtibia, and muscle volume, intermuscular, subfascial, and subcutaneous adipose tissue (AT) volume and intramuscular fat concentration in the midleg. Accelerometer-based activity monitors worn on the ankle were used to assess physical activity. There were no group differences in age, height, body mass, body mass percentile, BMI, BMI percentile or tibia length, but children with CP had lower height percentile (19th vs. 50th percentile) and total physical activity counts (44%) than controls (both pChildren with CP also had lower cortical bone volume (30%), cortical bone width in the posterior (16%) and medial (32%) portions of the shaft, total bone width in the medial-lateral direction (15%), Z in the medial-lateral direction (34%), J (39%) and muscle volume (39%), and higher bone marrow fat concentration (82.1±1.8% vs. 80.5±1.9%), subfascial AT volume (3.3 fold) and intramuscular fat concentration (25.0±8.0% vs. 16.1±3.3%) than controls (all pfat infiltration estimates, except posterior cortical bone width, were still present (all pchildren with CP compared to controls emerged (pchildren with mild spastic CP exhibit an underdeveloped bone architecture and low bone strength in the midtibia and a greater infiltration of fat in the bone marrow and surrounding musculature compared to typically

  20. Very Low Cerebral Blood Volume Predicts Parenchymal Hematoma in Acute Ischemic Stroke

    DEFF Research Database (Denmark)

    Hermitte, Laure; Cho, Tae-Hee; Ozenne, Brice

    2013-01-01

    BACKGROUND AND PURPOSE: Parenchymal hematoma (PH) may worsen the outcome of patients with stroke. The aim of our study was to confirm the relationship between the volume of very low cerebral blood volume (CBV) and PH using a European multicenter database (I-KNOW). A secondary objective was to exp......BACKGROUND AND PURPOSE: Parenchymal hematoma (PH) may worsen the outcome of patients with stroke. The aim of our study was to confirm the relationship between the volume of very low cerebral blood volume (CBV) and PH using a European multicenter database (I-KNOW). A secondary objective...

  1. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral...... group. CBF was measured by the intracarotid 133xenon injection method and BP was raised by noradrenaline infusion and lowered by controlled haemorrhage in separate groups of rats. The limits of autoregulation were determined by computed least-sum-of-squares analysis. PD 123319 did not influence baseline...

  2. Measurement of regional cerebral blood flow by xenon-enhanced computed tomography

    International Nuclear Information System (INIS)

    Nakagomi, Tadayoshi; Yoshimasu, Norio; Kim, Shi-in; Takano, Koichi; Segawa, Hiromu.

    1982-01-01

    Serial CT scanning was carried out during and after inhalation of 50% non-radioactive xenon in humans. Our results of this research was as follows; 1) In normal subjects, blood flow in gray matter was 82 +- 11 and that in white matter 24 +- 5 ml/100 gm/min. 2) The blood flow of the brain tumors was close to that of gray matter, whereas blood flow of edematous white matter surrounding the tumor was decreased. 3) The blood flow in cerebral infarctions was always decreased. Effect of STA-MCA bypass was also evaluated. 4) In cerebral arterio-venous malformations, the blood flow in the white matter surrounding nidus was not decreased. This method appeared to have several advantages over conventional isotope method and to provide useful clinical and research informations. (author)

  3. Cerebral blood flow modulation by Basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes.

    Science.gov (United States)

    Takata, Norio; Nagai, Terumi; Ozawa, Katsuya; Oe, Yuki; Mikoshiba, Katsuhiko; Hirase, Hajime

    2013-01-01

    We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.

  4. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil

    2014-01-01

    Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate t...

  5. Cerebral blood flow autoregulation in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten

    2001-01-01

    Ph.d. afhandlingen omhandler sammenhængen mellem hjernens blodtilførsel (CBF) og middelarterietrykket (MAP) hos patienter med akut bakteriel meningitis. Hos raske er CBF uafhængig af MAP, hvilket kaldes CBF autoregulation. Svækket autoregulation antages at øge risikoen for cerebral hypoperfusion og...... iskæmi under episoder med lavt MAP, og for cerebral hyperperfusion og vasogent ødem ved højt MAP. CBF autoregulationen undersøgtes hos tyve voksne patienter med akut bakteriel meningitis i den tidlige sygdomsfase (... meningitis, men retableres ved klinisk restitution. Autoregulationen kan endvidere delvis retableres ved akut hyperventilation. Fundene har potentiel betydning for valg af supportiv terapi hos patienter med meningitis....

  6. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates.

    Science.gov (United States)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B; Andersen, Jens V; Aldana, Blanca I; Nissen, Jakob D; Schousboe, Arne; Waagepetersen, Helle S

    2017-03-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U- 13 C]glucose or [1,2- 13 C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13 C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13 C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13 C-labeling observed with [U- 13 C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2- 13 C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13 C-labeling (%) data obtained from

  7. A study on measurement of the regional cerebral blood flow using autoradiographic method in moyamoya disease

    International Nuclear Information System (INIS)

    Sasaki, Tomohiro; Kiya, Katsuzo; Yuki, Kiyoshi; Kawamoto, Hitoshi; Mizoue, Tatsuya; Kiura, Yoshihiro; Uozumi, Tohru; Ikawa, Fusao

    1997-01-01

    Development of Autoradiographic method (ARG) has provided measurement of cerebral blood flow in moyamoya disease. We evaluate a cerebral vasodilatory capacity (CVC) for moyamoya disease using ARG method. We used 5 patients with moyamoya disease as a candidate for measurement of the cerebral blood flow (CBF) who admitted to Hiroshima Prefectural Hospital during the past one year. There were 3 patients in an adult age and 2 patients in a young age. We tried to measure the regional CBF (rCBF) using ARG method which was a easy way to estimate the rCBF on SPECT. The CVC was calculated from the difference of the rCBF between resting SPECT and Diamox-loading SPECT. Results were as follows; Reactivity of cerebral vessels to CO 2 loading and CVC weakened in moyamoya disease. The rCBF and CVC in the territories of anterior and middle cerebral arteries reduced in comparison with those in the area supplied by the posterior cerebral artery. The CVC at the treated side with surgical reconstruction recovered somewhat in an adult type. From these results, measurement of CBF using ARG method seems to be useful for evaluation of the CVC in moyamoya disease. (author)

  8. THYROID HORMONE TREATED ASTROCYTES INDUCE MATURATION OF CEREBRAL CORTICAL NEURONS THROUGH MODULATION OF PROTEOGLYCAN LEVELS

    Directory of Open Access Journals (Sweden)

    Romulo Sperduto Dezonne

    2013-08-01

    Full Text Available Proper brain neuronal circuitry formation and synapse development is dependent on specific cues, either genetic or epigenetic, provided by the surrounding neural environment. Within these signals, thyroid hormones (T3 and T4 play crucial role in several steps of brain morphogenesis including proliferation of progenitor cells, neuronal differentiation, maturation, migration, and synapse formation. The lack of thyroid hormones during childhood is associated with several impair neuronal connections, cognitive deficits, and mental disorders. Many of the thyroid hormones effects are mediated by astrocytes, although the mechanisms underlying these events are still unknown. In this work, we investigated the effect of 3, 5, 3’-triiodothyronine-treated (T3-treated astrocytes on cerebral cortex neuronal differentiation. Culture of neural progenitors from embryonic cerebral cortex mice onto T3-treated astrocyte monolayers yielded an increment in neuronal population, followed by enhancement of neuronal maturation, arborization and neurite outgrowth. In addition, real time PCR assays revealed an increase in the levels of the heparan sulfate proteoglycans, Glypican 1 (GPC-1 and Syndecans 3 e 4 (SDC-3 e SDC-4, followed by a decrease in the levels of the chondroitin sulfate proteoglycan, Versican. Disruption of glycosaminoglycan chains by chondroitinase AC or heparanase III completely abolished the effects of T3-treated astrocytes on neuronal morphogenesis. Our work provides evidence that astrocytes are key mediators of T3 actions on cerebral cortex neuronal development and identified potential molecules and pathways involved in neurite extension; which might eventually contribute to a better understanding of axonal regeneration, synapse formation and neuronal circuitry recover.

  9. Cerebral blood flow and oxygen metabolism in patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Shin; Ujike, Takashi; Kuroki, Soemu; Sakamoto, Shizuki; Soeda, Toshiyuki; Terashi, Akiro; Iio, Masaaki

    1988-10-01

    The purpose of this study was to determine functional changes in the cerebral cortex and basal ganglia in Parkinson's disease (PD). Cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO/sub 2/) were determined using 0-15 positron emission tomography in 10 PD patients and five age-matched healthy volunteers. There was a tendency among PD patients towards a decreased CBF and CMRO/sub 2/ in the cerebral cortex and basal ganglia. These values were significantly lower in the frontal cortex in the PD group than the control group. There was no difference in OEF between the groups. A more decreased cerebral oxygen metabolism was observed in patients staged as severer on the scale of Hoehn and Yahr. There was no correlation between cerebral oxygen metabolism and tremor, rigidity, or bradykinesis. A decreased cerebral oxygen metabolism was associated with mental disorders, such as depression, hallucination, and dementia. These results may provide an important clue for the understanding of mesocortical dopaminergic pathway and the relationship between PD and dementia. (N.K.).

  10. Cerebral blood flow and oxygen metabolism in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Kitamura, Shin; Ujike, Takashi; Kuroki, Soemu; Sakamoto, Shizuki; Soeda, Toshiyuki; Terashi, Akiro; Iio, Masaaki.

    1988-01-01

    The purpose of this study was to determine functional changes in the cerebral cortex and basal ganglia in Parkinson's disease (PD). Cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ) were determined using 0-15 positron emission tomography in 10 PD patients and five age-matched healthy volunteers. There was a tendency among PD patients towards a decreased CBF and CMRO 2 in the cerebral cortex and basal ganglia. These values were significantly lower in the frontal cortex in the PD group than the control group. There was no difference in OEF between the groups. A more decreased cerebral oxygen metabolism was observed in patients staged as severer on the scale of Hoehn and Yahr. There was no correlation between cerebral oxygen metabolism and tremor, rigidity, or bradykinesis. A decreased cerebral oxygen metabolism was associated with mental disorders, such as depression, hallucination, and dementia. These results may provide an important clue for the understanding of mesocortical dopaminergic pathway and the relationship between PD and dementia. (N.K.)

  11. Quantitative agreement between [(15)O]H2O PET and model free QUASAR MRI-derived cerebral blood flow and arterial blood volume

    NARCIS (Netherlands)

    Heijtel, D. F. R.; Petersen, E. T.; Mutsaerts, H. J. M. M.; Bakker, E.; Schober, P.; Stevens, M. F.; van Berckel, B. N. M.; Majoie, C. B. L. M.; Booij, J.; van Osch, M. J. P.; van Bavel, E. T.; Boellaard, R.; Lammertsma, A. A.; Nederveen, A. J.

    2016-01-01

    The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week

  12. The use of stable xenon-enhanced computed tomographic studies of cerebral blood flow to define changes in cerebral carbon dioxide vasoresponsivity caused by a severe head injury.

    Science.gov (United States)

    Marion, D W; Bouma, G J

    1991-12-01

    Previous studies using the xenon-133 cerebral blood flow (CBF) method have documented the impairment of CO2 vasoresponsivity after a severe head injury, but only global values can be obtained reliably with this technique. We studied CO2 vasoresponsivity using the stable xenon-enhanced computed tomographic CBF method, which provided information about well-defined cortical regions and deep brain structures not available with the xenon-133 method. In 17 patients with admission Glasgow Coma Scale scores of 8 or less, hemispheric CO2 vasoresponsivity ranged from 1.3 to 8.5% per mm Hg change in partial CO2 pressure. Lobar, cerebellar, basal ganglia, and brain stem CO2 vasoresponsivity frequently varied from the mean global value by more than 25%. In all but one patient, local CO2 vasoresponsivity in one or more of these areas differed from the mean global value by more than 50%. The greatest variability occurred in patients with acute subdural hematomas and diffuse (bihemispheric) injuries. This variability in CO2 vasoresponsivity has important implications for the effective and safe management of intracranial hypertension that frequently accompanies severe head injury.

  13. Quantification of modulated blood oxygenation levels in single cerebral veins by investigating their MR signal decay

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacik, Jan [St. Jude Children' s Research Hospital, Memphis, TN (United States). Div. of Translational Imaging Research; University Clinics Jena (Germany). Medical Physics Group; Rauscher, Alexander [University Clinics Jena (Germany). Medical Physics Group; British Columbia Univ., Vancouver (Canada). MRI Research Centre; Reichenbach, Juergen R. [University Clinics Jena (Germany). Medical Physics Group

    2009-07-01

    The transverse magnetization of a single vein and its surrounding tissue is subject to spin dephasing caused by the local magnetic field inhomogeneity which is induced by the very same vessel. This phenomenon can be approximated and simulated by applying the model of an infinitely long and homogeneously magnetized cylinder embedded in a homogeneous tissue background. It is then possible to estimate the oxygenation level of the venous blood by fitting the simulated magnetization-time-course to the measured signal decay. In this work we demonstrate the ability of this approach to quantify the blood oxygenation level (Y) of small cerebral veins in vivo, not only under normal physiologic conditions (Y{sub native}=0.5-0.55) but also during induced changes of physiologic conditions which affect the cerebral venous blood oxygenation level. Changes of blood's oxygenation level induced by carbogen (5% CO{sub 2}, 95% O{sub 2}) and caffeine were observed and quantified, resulting in values of Y{sub carbogen}=0.7 and Y{sub caffeine}=0.42, respectively. The proposed technique may ultimately help to better understand local changes in cerebral physiology during neuronal activation by quantifying blood oxygenation in veins draining active brain areas. It may also be beneficial in clinical applications where it may improve diagnosis of cerebral pathologies as well as monitoring of responses to therapy. (orig.)

  14. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans

    DEFF Research Database (Denmark)

    Nybo, Lars; Møller, Kirsten; Volianitis, Stefanos

    2002-01-01

    The development of hyperthermia during prolonged exercise in humans is associated with various changes in the brain, but it is not known whether the cerebral metabolism or the global cerebral blood flow (gCBF) is affected. Eight endurance-trained subjects completed two exercise bouts on a cycle...... ergometer. The gCBF and cerebral metabolic rates of oxygen, glucose, and lactate were determined with the Kety-Schmidt technique after 15 min of exercise when core temperature was similar across trials, and at the end of exercise, either when subjects remained normothermic (core temperature = 37.9 degrees C...... with control at the end of exercise (43 +/- 4 vs. 51 +/- 4 ml. 100 g(-1). min(-1); P glucose, and the cerebral metabolic rate was therefore higher at the end...

  15. Comparative studies of D2 receptors and cerebral blood flow in hemi-Parkinsonism rats

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    2000-01-01

    Objective: To study the relationship between dopamine D 2 receptors and cerebral blood flow in hemi-Parkinsonism rats. Methods: Hemi-Parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra and ventral tegmental area, apomorphine (Apo) which could induce the successful model rat to rotate toward the intact side was used to select the rat models, 125 I-IBZM in vivo autoradiography and 99 Tc m -HMPAO regional cerebral biodistribution analysis were used to study D 2 receptors and cerebral blood flow. The HPLC-ECD was used to measure striatum DA and its metabolite content . Results: the lesioned side striatum DA and its metabolites homovanillic acid (HVA) 3,4-dihyroxy-phenylacetic acid (DOPAC) reduced significantly than that of the intact side and pseudo-operated group, striatum/cerebellum 125 I-IBZM uptake ratio was 8.04 +- 0.71 in lesioned side of hemi-Parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (P 0.05). Conclusions: the 6-OH-DA lesioned side DA content decreased significantly and thus induced a compensative up-regulation of striatum D 2 receptor binding sites in hemi-Parkinsonism rats, which show good correlation with rotation behavior induced by Apo. Comparing with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-Parkinsonism

  16. Influence of upper body position on middle cerebral artery blood velocity during continuous positive airway pressure breathing

    DEFF Research Database (Denmark)

    Højlund Rasmussen, J; Mantoni, T; Belhage, B

    2007-01-01

    Continuous positive airway pressure (CPAP) is a treatment modality for pulmonary oxygenation difficulties. CPAP impairs venous return to the heart and, in turn, affects cerebral blood flow (CBF) and augments cerebral blood volume (CBV). We considered that during CPAP, elevation of the upper body ...

  17. Regional cerebral blood flow measurement with intravenous [15O]water bolus and [18F]fluoromethane inhalation

    International Nuclear Information System (INIS)

    Herholz, K.; Pietrzyk, U.; Wienhard, K.; Hebold, I.; Pawlik, G.; Wagner, R.; Holthoff, V.; Klinkhammer, P.; Heiss, W.D.

    1989-01-01

    In 20 patients with ischemic cerebrovascular disease, classic migraine, or angiomas, we compared paired dynamic positron emission tomographic measurements of regional cerebral blood flow using both [ 15 O]water and [ 18 F]fluoromethane as tracers. Cerebral blood flow was also determined according to the autoradiographic technique with a bolus injection of [ 15 O]water. There were reasonable overall correlations between dynamic [ 15 O]water and [ 18 F]fluoromethane values for cerebral blood flow (r = 0.82) and between dynamic and autoradiographic [ 15 O]water values for cerebral blood flow (r = 0.83). We found a close correspondence between abnormal pathologic findings and visually evaluated cerebral blood flow tomograms obtained with the two tracers. On average, dynamic [ 15 O]water cerebral blood flow was 6% lower than that measured with [ 18 F]fluoromethane. There also was a general trend toward a greater underestimation with [ 15 O]water in high-flow areas, particularly in hyperemic areas, probably due to incomplete first-pass extraction of [ 15 O]water. Underestimation was not detected in low-flow areas or in the cerebellum. Absolute cerebral blood flow values were less closely correlated between tracers and techniques than cerebral blood flow patterns. The variability of the relation between absolute flow values was probably caused by confounding effects of the variation in the circulatory delay time. The autoradiographic technique was most sensitive to this type error

  18. Cerebral oxygenation in the beach chair position for shoulder surgery in regional anesthesia: impact on cerebral blood flow and neurobehavioral outcome.

    Science.gov (United States)

    Aguirre, José A; Märzendorfer, Olivia; Brada, Muriel; Saporito, Andrea; Borgeat, Alain; Bühler, Philipp

    2016-12-01

    Beach chair position is considered a potential risk factor for central neurological events particularly if combined with low blood pressure. The aim of this study was to assess the impact of regional anesthesia on cerebral blood flow and neurobehavioral outcome. This is a prospective, assessor-blinded observational study evaluating patients in the beach chair position undergoing shoulder surgery under regional anesthesia. University hospital operating room. Forty patients with American Society of Anesthesiologists classes I-II physical status scheduled for elective shoulder surgery. Cerebral saturation and blood flow of the middle cerebral artery were measured prior to anesthesia and continued after beach chair positioning until discharge to the postanesthesia care unit. The anesthesiologist was blinded for these values. Controlled hypotension with systolic blood pressure≤100mm Hg was maintained during surgery. Neurobehavioral tests and values of regional cerebral saturation, bispectral index, the mean maximal blood flow of the middle cerebral artery, and invasive blood pressure were measured prior to regional anesthesia, and measurements were repeated after placement of the patient on the beach chair position and every 20 minutes thereafter until discharge to postanesthesia care unit. The neurobehavioral tests were repeated the day after surgery. The incidence of cerebral desaturation events was 5%. All patients had a significant blood pressure drop 5 minutes after beach chair positioning, measured at the heart as well as the acoustic meatus levels, when compared with baseline values (Psurgery (Pshoulder surgery had no major impact on cerebral blood flow and cerebral oxygenation. However, some impact on neurobehavioral outcome 24 hours after surgery was observed. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Computational modelling of the cerebral cortical microvasculature: effect of x-ray microbeams versus broad beam irradiation

    Science.gov (United States)

    Merrem, A.; Bartzsch, S.; Laissue, J.; Oelfke, U.

    2017-05-01

    Microbeam Radiation Therapy is an innovative pre-clinical strategy which uses arrays of parallel, tens of micrometres wide kilo-voltage photon beams to treat tumours. These x-ray beams are typically generated on a synchrotron source. It was shown that these beam geometries allow exceptional normal tissue sparing from radiation damage while still being effective in tumour ablation. A final biological explanation for this enhanced therapeutic ratio has still not been found, some experimental data support an important role of the vasculature. In this work, the effect of microbeams on a normal microvascular network of the cerebral cortex was assessed in computer simulations and compared to the effect of homogeneous, seamless exposures at equal energy absorption. The anatomy of a cerebral microvascular network and the inflicted radiation damage were simulated to closely mimic experimental data using a novel probabilistic model of radiation damage to blood vessels. It was found that the spatial dose fractionation by microbeam arrays significantly decreased the vascular damage. The higher the peak-to-valley dose ratio, the more pronounced the sparing effect. Simulations of the radiation damage as a function of morphological parameters of the vascular network demonstrated that the distribution of blood vessel radii is a key parameter determining both the overall radiation damage of the vasculature and the dose-dependent differential effect of microbeam irradiation.

  20. In vivo analysis of physiological 3D blood flow of cerebral veins

    Energy Technology Data Exchange (ETDEWEB)

    Schuchardt, Florian; Schroeder, Laure; Baeuerle, Jochen; Harloff, Andreas [University Medical Centre, Department of Neurology, Freiburg (Germany); Anastasopoulos, Constantin [University Medical Center, Department of Neuropaediatrics and Muscle Disorders, Freiburg (Germany); University Medical Centre, Department of Neuroradiology, Freiburg (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine and McCormick School of Engineering, Chicago, IL (United States); Hennemuth, Anja; Drexl, Johann [Fraunhofer MEVIS, Bremen (Germany); Valdueza, Jose M. [Neurological Center, Segeberger Kliniken, Bad Segeberg (Germany); Mader, Irina [University Medical Centre, Department of Neuroradiology, Freiburg (Germany)

    2015-08-15

    To visualize and quantify physiological blood flow of intracranial veins in vivo using time-resolved, 3D phase-contrast MRI (4D flow MRI), and to test measurement accuracy. Fifteen healthy volunteers underwent repeated ECG-triggered 4D flow MRI (3 Tesla, 32-channel head coil). Intracranial venous blood flow was analysed using dedicated software allowing for blood flow visualization and quantification in analysis planes at the superior sagittal, straight, and transverse sinuses. MRI was evaluated for intra- and inter-observer agreement and scan-rescan reproducibility. Measurements of the transverse sinuses were compared with transcranial two-dimensional duplex ultrasound. Visualization of 3D blood flow within cerebral sinuses was feasible in 100 % and within at least one deep cerebral vein in 87 % of the volunteers. Blood flow velocity/volume increased along the superior sagittal sinus and was lower in the left compared to the right transverse sinus. Intra- and inter-observer reliability and reproducibility of blood flow velocity (mean difference 0.01/0.02/0.02 m/s) and volume (mean difference 0.0002/-0.0003/0.00003 l/s) were good to excellent. High/low velocities were more pronounced (8 % overestimation/9 % underestimation) in MRI compared to ultrasound. Four-dimensional flow MRI reliably visualizes and quantifies three-dimensional cerebral venous blood flow in vivo and is promising for studies in patients with sinus thrombosis and related diseases. (orig.)

  1. Cerebral blood volume changes in cats with acute increased intracranial pressure

    International Nuclear Information System (INIS)

    Kondo, Takashi; Kano, Mitsumasa; Ikeda, Takuya.

    1984-01-01

    We measured the changes in cerebral blood volume in cats with increased intracranial pressure with a high-speed CT scanner, employing contrast effects by the iodine agent. In acute increased intracranial pressure caused by raising the extradural pressure by 20 mmHg, cerebral blood volume showed a significant decrease by 32% in comparison with that at normal intracranial pressure. There was also a tendency that a decline of iodine was delayed with time at increased intracranial pressure than that at normal pressure. This was supposed to be a delay of cerebral circulation due to venous congestion. This experimental model and measuring method provide the changes in CBV in the same individual without any tedious procedure, and therefore this is a reliable method with respect to precision. (author)

  2. Cluster headache: transcranial Doppler ultrasound and regional cerebral blood flow studies

    International Nuclear Information System (INIS)

    Dahl, A.; Russell, D.; Nyberg-Hansen, R.; Rootwelt, K.

    1990-01-01

    Transcranial Doppler and rCBF examinations were carried out in 25 cluster headache patients. Spontaneous glyceryl trinitrate (nitroglycerin) provoked attacks were accompanied by a bilateral decrease in middle cerebral artery blood flow velocities. This decrease was more pronounced on the symptomatic side, but the difference did not reach statistical significance. Mean hemispheric blood flow and rCBF were within normal limits during provoked attacks and similar to those found when patients were attack-free. During cluster periods middle cerebral artery velocities were significantly higher on the symptomatic side. Glyceryl trinitrate caused a bilateral middle cerebral artery velocity decrease which was significantly greater on the symptomatic side. Attacks provoked by glyceryl trinitrate appeared to begin when the vasodilatory effect of this substance was received. 17 refs., 2 figs., 5 tabs

  3. Methods for measurement of cerebral blood flow in man

    DEFF Research Database (Denmark)

    Lassen, N A

    1976-01-01

    -cerebral uptake, and insensitive both for detecting regional ischemia and regional hyperemia. The spatial resolution is also much more limited. For these reasons great caution must be exercised in interpreting the results. Methods yielding three-dimensional rCBF data will be needed in order to gain more precise...... information both on spatial localization and, especially, on ischemic areas. The most promising is computer-assisted axial tomography with freely diffusible radioactive isotopes or with x-rays using an intra-arterial injection of contrast. But, the available techniques are still too slow: in order to measure...

  4. Relationship between cardiac function and resting cerebral blood flow

    DEFF Research Database (Denmark)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja

    2014-01-01

    ) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P...... = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed...

  5. Cerebral blood flow study with 3D-SSP and neuropsychological evaluation by mini-mental state examination (MMSE) before and after clipping of unruptured cerebral aneurysm

    International Nuclear Information System (INIS)

    Takada, Hidekazu; Sasaki, Takehiko; Osato, Toshiaki

    2006-01-01

    We evaluate the influence of surgery for unruptured aneurysms on cerebral blood flow and neuropsychological estimate. We evaluated the cases of 28 consecutive patients with unruptured cerebral aneurysm treated with direct surgery accompanied by craniotomy. Before and after surgery, MRI, 123 I-IMP-SPECT with 3D-SSP analysis and MMSE were performed. There was not a significant decrease in MMSE. In 123 I-IMP-SPECT, it was recognized that the cerebral blood flow was decreased at the frontal operculum of operative site. These results indicate that careful neuropsychological evaluation is essential to make a favorable treatment plan for unruptured aneulysms. (author)

  6. Regional cerebral blood flow in elderly patients with heart failure evaluated with SPECT

    International Nuclear Information System (INIS)

    Alves, T.C.T.F.; Fraguas, R.; Busatto, G.; Garrido, G.; Buchpiguel, C.A.; Rays, J.; Wajngarten, M.; Robilotta, C.C.; Meneghetti, J.C.

    2002-01-01

    Introduction: Heart failure (HF) may be related to brain dysfunction due to reduced cerebral blood flow (CBF) and white matter lesions. However, no studies have yet used quantitative regional CBF (rCBF) techniques to demonstrate the presence of significant functional abnormalities in representative samples of cardiac patients compared with normal controls. Aim: The purpose of this study was to investigate the rCBF distribution as assessed with SPECT in a group of elderly patients with HF in comparison with a normal control group. The hypothesis were: (1) HF would be associated with rCBF reductions in comparison to healthy controls. Methodology: We studied a group of 36 HF patients functional class II or III from New York Heart Association (NYHA), divided in 19 depressed (74.6 +/- 6.8 years) and 17 non depressed (73.7 +/- 5.4 years), and compared to 19 normal subjects (71.1 +/- 4.8 years), matched for age, sex, cerebral dominance and social level. Brain perfusion was evaluated with a double-headed SPECT system (Sophy-DST) with high-resolution collimators (128x128 matrix, 128 views, 30s/view) after 30mcI 99mTc-HMPAO injection. Group differences were investigated using SPM99, with a p<0.001 statistical threshold (uncorrected for multiple comparisons). Results: Significant rCBF reductions were seen in the HF non depressed group relative to healthy controls in the right lateral temporal lobe, cuneus and precuneus, as well as in a small area of the medial prefrontal cortex. In the HF depressed group, significant cortical rCBF reductions relative to healthy controls were seen in similar locations but more extensively. In addition, the HF depressed group showed significant rCBF reductions relative to controls limbic and subcortical areas, including the right parahypocampal gyrus, posterior cingulate, thalamus and caudate at the border of the lateral ventricle, and bilaterally in the posterior insula. Conclusion: The presence of greater areas of hypoperfusion in the HF

  7. Cerebral ischemia produced by four-vessel occlusion in the rat: a quantitative evaluation of cerebral blood flow

    International Nuclear Information System (INIS)

    Furlow, T.W. Jr.

    1982-01-01

    Cerebral ischemia was produced in the rat by simultaneous occlusion of the vertebral and carotid arteries according to the method of Pulsinelli and Brierley (Stroke 10: 267, 1979). Local cerebral blood flow (CBF) was determined by polarographic and autoradiographic techniques. Hydrogen-clearance measurements showed that mean CBF fell in four monitored regions of the hemispheres to between 0.11 and 0.18 ml/g/min, being least in deep rostal gray, intermediate in superficial gray, and greatest in deep caudal gray. However, individual animals had local CBF in excess of 0.20 and even 0.30 ml/g/min, and no animal showed zero CBF. When animals were rendered hypotensive (MABP of 50 Torr) during vascular occlusion, mean CBF ranged between 0.03 and 0.10 ml/g/min in the same regional order. With hypotension, total arrest of flow occurred. Autoradiographic data confirmed the above findings and indicated adequate CBF to the lower brainstem. During vascular occlusion, sufficient CBF may be present ot sustain cerebral tissue as in animals with a well developed spinal circulation or an inadvertently patent vertebral artery

  8. Cerebral blood flow and cerebrovascular reserve capacity in patients with occlusion or severe stenosis of cerebral arterial trunk

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Shinya; Tanaka, Akira; Nakayama, Yoshiya; Tomonaga, Masamichi [Fukuoka Univ., Chikushino (Japan). Chikushi Hospital

    1997-12-01

    The cerebral blood flow (CBF) and the cerebrovascular reserve capacity (CVRC) were sequentially measured using a xenon enhanced CT scan in patients with transient ischemic attack or minor stroke due to an occlusion or a severe stenosis of the cerebral arterial trunk. The patients consisted of twelve males and one female ranging from 37 to 71 years of age (53 years on average). The vascular lesion was located in the internal carotid artery (7 patients) and in the middle cerebral artery (6 patients). Eleven patients received antiplatelet drug therapy, while two other patients underwent STA-MCA anastomosis. The CBF measurements were initially done within one month after the attack and then from 6 to 24 months (12 months on average) after the first study. Only one of 13 patients demonstrated a reattack during the period of observation and the CVRC decreased to 0% from the 14% level observed prior to the reattack, although the CBF was preserved. In the other twelve patients without a reattack, the CVRC was found to improve to 29.4% from 9.9% with statistical significance, even though the CBF remained the same in the first study. This study suggests hemodynamic insult to be closely related to the decreased in the CVRC, while STA-MCA anastomosis does not for prevent hemodynamic reattack based on a decrease in the CVRC in the early stage. (author)

  9. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans

    Directory of Open Access Journals (Sweden)

    Farzaneh A Sorond

    2008-04-01

    Full Text Available Farzaneh A Sorond1,2, Lewis A Lipsitz2,4, Norman K Hollenberg3,5, Naomi DL Fisher31Department of Neurology, Stroke Division; 2Institute for Aging Research, Hebrew SeniorLife, Boston, MA; 3Department of Medicine, Endocrine-Hypertension Division; 4Department of Medicine, Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, USA; 5Department of Radiology, Brigham and Women’s Hospital, Boston, MABackground and Purpose: Cerebral ischemia is a common, morbid condition accompanied by cognitive decline. Recent reports on the vascular health benefits of flavanol-containing foods signify a promising approach to the treatment of cerebral ischemia. Our study was designed to investigate the effects of flavanol-rich cocoa (FRC consumption on cerebral blood flow in older healthy volunteers.Methods: We used transcranial Doppler (TCD ultrasound to measure mean blood flow velocity (MFV in the middle cerebral artery (MCA in thirty-four healthy elderly volunteers (72 ± 6 years in response to the regular intake of FRC or flavanol-poor cocoa (FPC.Results: In response to two weeks of FRC intake, MFV increased by 8% ± 4% at one week (p = 0.01 and 10% ± 4% (p = 0.04 at two weeks. In response to one week of cocoa, significantly more subjects in the FRC as compared with the FPC group had an increase in their MFV (p < 0.05.Conclusions: In summary, we show that dietary intake of FRC is associated with a significant increase in cerebral blood flow velocity in the MCA as measured by TCD. Our data suggest a promising role for regular cocoa flavanol’s consumption in the treatment of cerebrovascular ischemic syndromes, including dementias and stroke.Keywords: cerebral blood flow, flavanol, cocoa, transcranial Doppler ultrasound

  10. Carbon balance studies of glucose metabolism in rat cerebral cortical synaptosomes

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, U; Brand, K

    1982-07-01

    Synaptosomes were isolated from rat cerebral cortex and incubated with (U-/sup 14/C)-, (1-/sup 14/C)- or (6-/sup 14/C)glucose. Glucose utilization and the metabolic partitioning of glucose carbon in products were determined by isotopic methods. From the data obtained a carbon balance was constructed, showing lactate to be the main product of glucose metabolism, followed by CO/sup 2/, amino acids and pyruvate. Measuring the release of /sup 14/CO/sup 2/ from glucose labelled in three different positions allowed the construction of a flow diagram of glucose carbon atoms in synaptosomes, which provides information about the contribution of the various pathways of glucose metabolism. Some 2% of glucose utilized was calculated to be degraded via the pentose phosphate pathway. Addition of chlorpromazine, imipramine or haloperidol at concentrations of 10(-5) M reduced glucose utilisation by 30% without changing the distribution pattern of radioactivity in the various products.

  11. Effects of activated ACM on expression of signal transducers in cerebral cortical neurons of rats.

    Science.gov (United States)

    Wang, Xiaojing; Li, Zhengli; Zhu, Changgeng; Li, Zhongyu

    2007-06-01

    To explore the roles of astrocytes in the epileptogenesis, astrocytes and neurons were isolated, purified and cultured in vitro from cerebral cortex of rats. The astrocytes were activated by ciliary neurotrophic factor (CNTF) and astrocytic conditioned medium (ACM) was collected to treat neurons for 4, 8 and 12 h. By using Western blot, the expression of calmodulin dependent protein kinase II (CaMK II), inducible nitric oxide synthase (iNOS) and adenylate cyclase (AC) was detected in neurons. The results showed that the expression of CaMK II, iNOS and AC was increased significantly in the neurons treated with ACM from 4 h to 12 h (PACM and such signal pathways as NOS-NO-cGMP, Ca2+/CaM-CaMK II and AC-cAMP-PKA might take part in the signal transduction of epileptogenesis.

  12. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks

    DEFF Research Database (Denmark)

    Olesen, J; Friberg, L; Olsen, T S

    1990-01-01

    Ten years of study has resulted in considerable but fragmented knowledge about regional cerebral blood flow in migraine with aura (classic migraine). In the present study, the number of repeatedly studied patients (n = 63) was large enough to determine statistically significant sequences of event...

  13. Influence of caffeine and caffeine withdrawal on headache and cerebral blood flow velocities

    NARCIS (Netherlands)

    Couturier, EGM; Laman, DM; vanDuijn, MAJ; vanDuijn, H

    Caffeine consumption may cause headache, particularly migraine. Its withdrawal also produces headaches and may be related to weekend migraine attacks. Transcranial Doppler sonography (TCD) has shown changes in cerebral blood flow velocities (BFV) during and between attacks of migraine. In order to

  14. Regional cerebral blood flow distribution in newly diagnosed schizophrenia and schizophreniform disorder

    DEFF Research Database (Denmark)

    Rubin, P; Holm, S; Madsen, P L

    1994-01-01

    Regional cerebral blood flow distribution (rCBF) in 24 first admissions with schizophrenia or schizophreniform disorder and in 17 healthy volunteers was examined. Single photon emission computed tomography with a brain-retained tracer, technetium-99m-d,l-hexamethyl-propylene amine oxime, was used...... interrelationship in schizophrenia and schizophreniform disorder....

  15. Performance on Paced Auditory Serial Addition Test and cerebral blood flow in multiple sclerosis

    NARCIS (Netherlands)

    D'haeseleer, M.; Steen, C.; Hoogduin, J. M.; van Osch, M. J. P.; Fierens, Y.; Cambron, M.; Koch, M. W.; De Keyser, J.

    BackgroundTo assess the relationship between performance on the Paced Auditory Serial Addition Test (PASAT) and both cerebral blood flow (CBF) and axonal metabolic integrity in normal appearing white matter (NAWM) of the centrum semiovale in patients with multiple sclerosis (MS). MethodsNormal

  16. Acquisition and Processing of Cerebral Blood Flow Data with a M ...

    African Journals Online (AJOL)

    1974-12-07

    Dec 7, 1974 ... anaesthetic agent is described, as well as the use of a ... anaesthetic agents cerebral blood flow has therefore to .... AlO = area under clearance curve after 10 min. .... weighted flow was 0,54, and the percentage standard.

  17. Monitoring variables affecting positron emission tomography measurements of cerebral blood flow in anaesthetized pigs

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Zois, Nora Elisabeth; Simonsen, Mette

    Background: Positron emission tomography (PET) imaging of anaesthetised pig brains is a useful tool in neuroscience. Stable cerebral blood flow (CBF) is essential for PET, since variations can affect the kinetics of several radiotracers. However, the impact of physiological factors regulating CBF...

  18. Cognitive profiles and regional cerebral blood flow patterns in dementia of the Alzheimer type

    DEFF Research Database (Denmark)

    Waldemar, G; Bruhn, P; Schmidt, E

    1994-01-01

    Individual cognitive profiles and correlations between cognitive functions and regional cerebral blood flow (rCBF) were analyzed in 20 consecutive patients with a clinical diagnosis of probable Alzheimer's disease (AD). CBF was measured with high resolution single photon emission computed...

  19. Effects of ethamsylate on cerebral blood flow velocity in premature babies.

    OpenAIRE

    Rennie, J M; Lam, P K

    1989-01-01

    Cerebral blood flow velocity and cardiac output were measured with ultrasound before and 30 minutes after the administration of ethamsylate in a double blind placebo controlled study of 19 very low birthweight infants. No differences were found before or after treatment in either group.

  20. Focal increase of cerebral blood flow during stereognostic testing in man

    DEFF Research Database (Denmark)

    Roland, E; Larsen, B

    1976-01-01

    An attempt was made to study the regional cerebral blood flow (rCBF) pattern during stereognostic discrimination in man. The rCBF was measured in 18 subjects who had no major neurological defects. The clearance from the hemisphere of xenon 133 injected (133Xe) into the carotid artery was measured...

  1. Decreased cerebral blood flow after administration of sodium bicarbonate in the distressed newborn infant

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Fris-Hansen, B

    1978-01-01

    with 1 to 8 meqs of sodium bicarbonate in seven distressed newborn infants. The 133 Xe clearance technique was used. The results showed in six of the seven cases a decrease in cerebral blood flow, which in most cases was reduced to 14 to 22 ml/100 g/min, which is about half the value prior...

  2. Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion

    NARCIS (Netherlands)

    van Hoften, Jacorina C. R.; Verhagen, Elise A.; Keating, Paul; ter Horst, Hendrik J.; Bos, Arend F.

    Objective Preterm infants often need red blood cell (RBC) transfusions. The aim of this study was to determine whether haemoglobin levels before transfusion were associated with regional cerebral tissue oxygen saturation (r(c)SO(2)) and fractional tissue oxygen extraction (FTOE) and whether RBC

  3. Regional cerebral blood flow changes associated with clitorally induced orgasm in healthy women

    NARCIS (Netherlands)

    Georgiadis, Janniko R.; Kortekaas, Rudie; Kuipers, Rutger; Nieuwenburg, Arie; Pruim, Jan; Reinders, A. A. T. Simone; Holstege, Gert

    2006-01-01

    There is a severe lack of knowledge regarding the brain regions involved in human sexual performance in general, and female orgasm in particular. We used [(15)O]-H(2)O positron emission tomography to measure regional cerebral blood flow (rCBF) in 12 healthy women during a nonsexual resting state,

  4. Near-infrared spectroscopy determined cerebral oxygenation with eliminated skin blood flow in young males

    DEFF Research Database (Denmark)

    Hirasawa, Ai; Kaneko, Takahito; Tanaka, Naoki

    2016-01-01

    We estimated cerebral oxygenation during handgrip exercise and a cognitive task using an algorithm that eliminates the influence of skin blood flow (SkBF) on the near-infrared spectroscopy (NIRS) signal. The algorithm involves a subtraction method to develop a correction factor for each subject. ...

  5. Regional cerebral blood flow changes related to affective speech presentation in persistent vegetative state

    NARCIS (Netherlands)

    deJong, BM; Willemsen, ATM; Paans, AMJ

    A story told by his mother was presented on tape to a trauma patient in persistent vegetative state (PVS). During auditory presentation, measurements of regional cerebral blood flow (rCBF) were performed by means of positron emission tomography (PET). Changes in rCBF related to this stimulus

  6. Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Paulson, O B; Lassen, N A

    1986-01-01

    Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan...

  7. Effect of fasting and different diets on 14C incorporation from U-14C glucose into glycogen and carbon dioxide by cerebral cortical slices of rats

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Sinha, A.P.; Suraiya, A.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    There are some reports regarding change in the glycogen level due to fasting. Here an attempt is made by keeping the albino rats under fasting or feeding different diets on the rate of 14 C incorporation into glycogen and carbon dioxide from U- 14 C glucose. Our study reveals that the above conditions do not alter any significant change in the glycogen and carbon dioxide in the cerebral cortical slices of albino rats. (author). 8 refs., 1 tab

  8. Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage.

    OpenAIRE

    Kempley, S T; Gamsu, H R

    1993-01-01

    Doppler ultrasound was used to measure blood flow velocity in the anterior cerebral artery of six premature infants with posthaemorrhagic hydrocephalus, before and after intermittent cerebrospinal fluid (CSF) drainage, on 23 occasions. There was a significant increase in mean blood flow velocity after the drainage procedures (+5.6 cm/s, 95% confidence interval +2.9 to +8.3 cm/s), which was accompanied by a decrease in velocity waveform pulsatility. CSF pressure also fell significantly. In pat...

  9. Cerebral blood flow autoregulation in hypertension and effects of antihypertensive drugs

    DEFF Research Database (Denmark)

    Barry, David; Lassen, N A

    1984-01-01

    If antihypertensive treatment, especially emergency blood pressure lowering, is always to be safe, more thought should be given to autoregulation of cerebral blood in the hypertensive patient. This topic is reviewed in the present article, in the hypertensive patient. This topic is reviewed...... in the present article, particular emphasis being placed on the resetting of the lower limit of autoregulation to higher pressure in hypertension and the effects of acute administration of anti-hypertensive drugs on CBF and CBF-autoregulation....

  10. Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI

    OpenAIRE

    Pinkham, Amy; Loughead, James; Ruparel, Kosha; Wu, Wen-Chau; Overton, Eve; Gur, Raquel; Gur, Ruben

    2011-01-01

    Arterial spin labeling imaging (ASL) perfusion MRI is a relatively novel technique that can allow for quantitative measurement of cerebral blood flow (CBF) by using magnetically labeled arterial blood water as an endogenous tracer. Available data on resting CBF in schizophrenia primarily comes from invasive and expensive nuclear medicine techniques that are often limited to small samples and yield mixed results. The noninvasive nature of ASL offers promise for larger-scale studies. The utilit...

  11. Imaging of the appearance time of cerebral blood using [15O]H2O PET for the computation of correct CBF.

    Science.gov (United States)

    Kudomi, Nobuyuki; Maeda, Yukito; Sasakawa, Yasuhiro; Monden, Toshihide; Yamamoto, Yuka; Kawai, Nobuyuki; Iida, Hidehiro; Nishiyama, Yoshihiro

    2013-05-23

    Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. Positron emission tomography (PET) with H215O (or C15O2) can quantify CBF and apply kinetic analyses, including autoradiography (ARG) and the basis function methods (BFM). These approaches, however, are sensitive to input function errors such as the appearance time of cerebral blood (ATB), known as the delay time. We estimated brain ATB in an image-based fashion to correct CBF by accounting for differences in computed CBF values using three different analyses: ARG and BFM with and without fixing the partition coefficient. Subject groups included those with no significant disorders, those with elevated cerebral blood volume, and those with reduced CBF. All subjects underwent PET examination, and CBF was estimated using the three analyses. The ATB was then computed from the differences of the obtained CBF values, and ATB-corrected CBF values were computed. ATB was also estimated for regions of interest (ROIs) of multiple cortical regions. The feasibility of the present method was tested in a simulation study. There were no significant differences in the obtained ATB between the image- and ROI-based methods. Significantly later appearance was found in the cerebellum compared to other brain regions for all groups. In cortical regions where CBF was reduced due to occlusive lesions, the ATB was 0.2 ± 1.2 s, which was significantly delayed relative to the contralateral regions. A simulation study showed that the ATB-corrected CBF was less sensitive to errors in input function, and noise on the tissue curve did not enhance the degree of noise on ATB-corrected CBF image. This study demonstrates the potential utility of visualizing the ATB in the brain, enabling the determination of CBF with less sensitivity to error in input function.

  12. Feasibility of arterial blood bypass using microcatheter in intraarterial thrombolysis for acute cerebral ischemic stroke

    International Nuclear Information System (INIS)

    Wang Wei; Li Cheng; Liu Zhensheng; Zhang Xinjiang; Zhou Longjiang; Yin Haiyan

    2010-01-01

    Objective: To assess the feasibility of arterial blood bypass using microcatheter in intraarterial thrombolysis for acute cerebral ischemic stroke. Methods: Six patients with acute cerebral infarction within 6 hours underwent intraarterial thrombolysis, in which arterial blood bypass was used. A 2.3 F microcatheter was advanced through the clot and two milliliters of contrast was injected beyond the clot that remained stagnant in the major branches. At this point, 20 ml of oxygenated blood from femoral artery was injected for 2 minutes through the microcatheter past the occluding clot. Then, conventional intraarterial thrombolysis, including fibrinolytic agents infusion and mechanical disruption, was performed. Intraarterial thrombolysis and oxygenated blood infusion alternated every 30 minutes. Results: Every patient received arterial blood bypass with average three times (from 1 to 5 times) in the process of the intraarterial thrombolysis, which cost (8.0 ± 3.2) min. Recanalization was achieved in all 6 patients, but minor subarachnoid hemorrhage developed in one patient. All the patients got favorable clinical outcome. The life conditions is excellent in 4 cases and good in 2 cases. Conclusions: Arterial blood bypass using microcatheter in intraarterial thrombolysis for acute cerebral ischemic stroke might be feasible, which did not interfere with conventional intraarterial thrombolysis and prolong the operation time significantly but could protect ischemic penumbra. (authors)

  13. Hyperintensity on diffusion weighted image along ipsilateral cortical spinal tract after cerebral ischemic stroke: A diffusion tensor analysis

    International Nuclear Information System (INIS)

    Liu Xiang; Tian Wei; Li Lilin; Kolar, Balasubramanya; Qiu Xing; Chen, Feng; Dogra, Vikram S.

    2012-01-01

    Purpose: Hyperintensity along the ipsilateral cortical spinal tract (CST) on a diffusion weighted imaging (DWI) has been reported to may be associated with motor disability after brain infarction and can be misdiagnosed as a new infarction. However, the underlying patho-physiology related to this finding is not clear. The goal of our study was to analyze the diffusion tensor imaging (DTI) changes in patients with this hyperintensity. Materials and methods: Eight patients (50 ± 10 years) who exhibited hyperintensity on DWI along ipsilateral CST from 3 to 21 days after stroke onset were reviewed as positive group, including 5 patients with serial DTI examinations. Twelve patients without hyperintensity during the matched examination time were classified as reference group. The apparent diffusion coefficient (ADC), fractional anisotropy (FA), and eigenvalues and their ratios (ipsilateral/contralateral value) in cerebral peduncle were measured, their correlation with motor function scale at eight months after stroke onset were evaluated. Results: The serial examinations showed that hyperintensity could eventually disappear. Both the ipsilateral ADC and FA values were significantly decreased (p < 0.05) compared to the contralateral side. The ipsilateral FA significantly correlated with motor function scale in both groups (r = 0.875, 0.738; p = 0.004, 0.006 respectively). Conclusions: The hyperintensity on DWI is a transient pathological process of Wallerian degeneration after ischemic stroke, its diffusion characteristics include concurrent significant decrease of ipsilateral ADC and FA. The ipsilateral FA value has the potential to predict neurological motor function outcome in such patients.

  14. Intraventricular hemorrhage in the preterm neonate: timing and cerebral blood flow changes

    International Nuclear Information System (INIS)

    Ment, L.R.; Duncan, C.C.; Ehrenkranz, R.A.; Lange, R.C.; Taylor, K.J.; Kleinman, C.S.; Scott, D.T.; Sivo, J.; Gettner, P.

    1984-01-01

    Serial cranial ultrasound studies, 133xenon inhalation cerebral blood flow determinations, and risk factor analyses were performed in 31 preterm neonates. Contrast echocardiographic studies were additionally performed in 16 of these 31 infants. Sixty-one percent were found to have germinal matrix or intraventricular hemorrhage. Seventy-four percent of all hemorrhages were detected by the thirtieth postnatal hour. The patients were divided into three groups: early GMH/IVH by the sixth postnatal hour (eight infants) interval GMH/IVH from 6 hours through 5 days (10), and no GMH/IVH (12). Cerebral blood flow values at 6 postnatal hours were significantly lower for the early GMH/IVH group than for the no GMH/IVH group (P less than 0.01). Progression of GMH/IVH was observed only in those infants with early hemorrhage, and these infants had a significantly higher incidence of neonatal mortality. Ventriculomegaly as determined by ultrasound studies was noted equally in infants with and without GMH/IVH (50%) and was not found to correlate with low cerebral blood flow. The patients with early hemorrhage were distinguishable by their need for more vigorous resuscitation at the time of birth and significantly higher ventilator settings during the first 36 postnatal hours, during which time they also had higher values of PCO2. An equal incidence of patent ductus arteriosus was found across all of the groups. We propose that early GMH/IVH may be related to perinatal events and that the significant decrease in cerebral blood flow found in infants with early GMH/IVH is secondary to the presence of the hemorrhage itself. Progression of early GMH/IVH and new interval GMH/IVH may be related to later neonatal events known to alter cerebral blood flow

  15. Neurological Injury and Cerebral Blood Flow in Single Ventricles Throughout Staged Surgical Reconstruction.

    Science.gov (United States)

    Fogel, Mark A; Li, Christine; Elci, Okan U; Pawlowski, Tom; Schwab, Peter J; Wilson, Felice; Nicolson, Susan C; Montenegro, Lisa M; Diaz, Laura; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Mascio, Christopher; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J

    2017-02-14

    Patients with a single ventricle experience a high rate of brain injury and adverse neurodevelopmental outcome; however, the incidence of brain abnormalities throughout surgical reconstruction and their relationship with cerebral blood flow, oxygen delivery, and carbon dioxide reactivity remain unknown. Patients with a single ventricle were studied with magnetic resonance imaging scans immediately prior to bidirectional Glenn (pre-BDG), before Fontan (BDG), and then 3 to 9 months after Fontan reconstruction. One hundred sixty-eight consecutive subjects recruited into the project underwent 235 scans: 63 pre-BDG (mean age, 4.8±1.7 months), 118 BDG (2.9±1.4 years), and 54 after Fontan (2.4±1.0 years). Nonacute ischemic white matter changes on T2-weighted imaging, focal tissue loss, and ventriculomegaly were all more commonly detected in BDG and Fontan compared with pre-BDG patients ( P <0.05). BDG patients had significantly higher cerebral blood flow than did Fontan patients. The odds of discovering brain injury with adjustment for surgical stage as well as ≥2 coexisting lesions within a patient decreased (63%-75% and 44%, respectively) with increasing amount of cerebral blood flow ( P <0.05). In general, there was no association of oxygen delivery (except for ventriculomegaly in the BDG group) or carbon dioxide reactivity with neurological injury. Significant brain abnormalities are commonly present in patients with a single ventricle, and detection of these lesions increases as children progress through staged surgical reconstruction, with multiple coexisting lesions more common earlier than later. In addition, this study demonstrated that BDG patients had greater cerebral blood flow than did Fontan patients and that an inverse association exists of various indexes of cerebral blood flow with these brain lesions. However, CO 2 reactivity and oxygen delivery (with 1 exception) were not associated with brain lesion development. URL: http

  16. Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans.

    Science.gov (United States)

    Smirl, J D; Tzeng, Y C; Monteleone, B J; Ainslie, P N

    2014-06-15

    We examined the hypothesis that changes in the cerebrovascular resistance index (CVRi), independent of blood pressure (BP), will influence the dynamic relationship between BP and cerebral blood flow in humans. We altered CVRi with (via controlled hyperventilation) and without [via indomethacin (INDO, 1.2 mg/kg)] changes in PaCO2. Sixteen subjects (12 men, 27 ± 7 yr) were tested on two occasions (INDO and hypocapnia) separated by >48 h. Each test incorporated seated rest (5 min), followed by squat-stand maneuvers to increase BP variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis (TFA). Beat-to-beat BP, middle cerebral artery velocity (MCAv), posterior cerebral artery velocity (PCAv), and end-tidal Pco2 were monitored. Dynamic pressure-flow relations were quantified using TFA between BP and MCAv/PCAv in the very low and low frequencies through the driven squat-stand maneuvers at 0.05 and 0.10 Hz. MCAv and PCAv reductions by INDO and hypocapnia were well matched, and CVRi was comparably elevated (P flow dynamics. These findings are consistent with the concept of CVRi being a key factor that should be considered in the correct interpretation of cerebral pressure-flow dynamics as indexed using TFA metrics. Copyright © 2014 the American Physiological Society.

  17. Cerebral extraction of N-13 ammonia: its dependence on cerebral blood flow and capillary permeability, surface area product

    International Nuclear Information System (INIS)

    Phelps, M.E.; Huang, S.C.; Kuhl, D.E.; Hoffman, E.J.; Slin, C.

    1979-01-01

    13 N-labeled ammonia was used to investigate: (1) the cerebral extraction and clearance of ammonia; (2) the mechanicsm by which capillaries accommodate changes in cerebral blood flow (CBF); and (3) its use for the measure of CBF. This was investigated by measuring the single pass extraction of 13 NH 3 in rhesus monkeys during P/sub a/CO 2 induced changes in CBF, and with dog studies using in vitro tissue counting techniques to examine 13 NH 3 extraction in gray and white matter, mixed tissue, and cerebellum during variations in CBF produced by combinations of embolization, local brain compression, and changes in P/sub a/CO 2 . The single pass extraction fraction of 13 NH 3 varied from about 70 to 20% over a CBF range of 12 to 140cc/min/100gms. Capillary permeability-surface area product (PS) estimates from this data and the dog experiments show PS increasing with CBF. The magnitude and rate of increase in PS with CBF was highest in gray matter > mixed tissue > white matter. Tissue extraction of 13 NH 3 vs CBF relationship was best described by a unidirectional transport model in which CBF increases by both recruitment of capillaries and by increases of blood velocity in open capillaries. Glutamine synthetase, which incorporates 13 NH 3 into glutamine, appears to be anatomically located in astrocytes in general and specifically in the astrocytic pericapillary end-feet that are in direct contact with gray and white matter capillaries. The net 13 NH 3 extraction subsequent to an i.v. injection increases nonlinearly with CBF. Doubling or halving basal CBF produced from 40 to 50% changes in the 13 N tissue concentrations with further increases in CBF associated with progressively smaller changes in 13 N concentrations. 13 NH 3 appears to be a good tracer for the detection of cerebral ischemia with positron tomography but exhibits a poor response at high values of CBF

  18. Evaluation of cerebral intravascular blood flow by time density curve study of intravenous digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Toru; Kogure, Kyuya (Tohoku Univ., Sendai (Japan). School of Medicine); Sekine, Teiko; Satoh, Kei; Endoh, Minoru; Tsuburaya, Kenji; Hoshi, Akihiko

    1992-01-01

    Time density curve (TDC) can be reconstructed from the data of intravenous digital subtraction angiography (IVDSA). We evaluated peak time (PT) and modal transit time (MOTT) of the TDC as the probable indicator of cerebral intravascular blood flow. Cerebral IVDSA and single photon emission CT (SPECT) were performed on 12 patients with ischemic cerebrovascular disease, which consisted of 3 internal carotid artery (ICA) occlusions, one middle cerebral artery (MCA) occlusion, one anterior cerebral artery (ACA) branch occlusion and 7 lacunar infarctions. We classified former 4 patients as occlusion group and latter 8 as reference group. In 3 patients (2 ICA and one MCA occlusions), SPECT study revealed definite hypoaccumulation in the MCA territory of occlusive side. Two regions of interest (ROI) were placed on the territories of right and left middle cerebral arteries in the frontal view of cerebral IVDSA. Digital data processor fitted {gamma} curve to the TDC of each ROI, and calculated PT and MOTT. The absolute lateralities of PT and MOTT of MCA territory was significantly (p<0.05) larger in occlusion group than reference group. Patients with hypoaccumulation in SPECT had significantly (p<0.02) larger laterality of MOTT than patients with isoaccumulation. One ICA occluded patient without hypoaccumulation in corresponding MCA territory had relatively small laterality of MOTT similar to the patients of ACA branch occlusion and lacunar infarction. These results suggest that PT and MOTT are possible to detect the laterality of the intravascular blood flow in MCA territories caused by major artery occlusion. Cerebral TDC study of IVDSA may be useful in some clinical therapeutic situations such as hemodilution or intra-arterial thrombolysis, and worth further clinical evaluation. (author).

  19. Regional cerebral blood flow in Parkinson's disease measured with N-isopropyl-p-[[sup 123]I]iodoamphetamine (IMP) SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Odano, Ikuo; Nishihara, Mamiko; Hayashi, Hiroko; Higuchi, Shoichi; Sakai, Kunio [Niigata Univ. (Japan). School of Medicine; Ishikawa, Atsushi; Ibayashi, Katsuhiko

    1992-09-01

    N-isopropyl-p-[[sup 123]I]iodoamphetamine (IMP) SPECT studies were performed on 21 patients (13 females; 45-73 yrs) with idiopathic Parkinson's disease (PD) and 10 age-matched normal controls (39-69 yrs). Regional cerebral blood flow (rCBF) was quantitatively measured by the arterial blood sampling method. When compared with normal controls, global CBF, and rCBF in the frontal cortex and in the basal ganglia were reduced 22.1% (p<0.01), 25.0% (p<0.05) and 25.6% (p<0.01), respectively. The reduction of rCBF in the basal ganglia was significantly correlated (p<0.05) with symptoms such as gait disturbance, frozen gait and motor disability score. However, no significant correlation was observed between the severity of dementia and any regional reduction of CBF, including the frontal or parietal cortices. These data show that the severity of dementia in PD may be related to other factors but not with CBF. Quantification of rCBF with [sup 123]I-IMP SPECT imaging is useful for evaluation and follow-up of patients with PD. (author).

  20. By Improving Regional Cortical Blood Flow, Attenuating Mitochondrial Dysfunction and Sequential Apoptosis Galangin Acts as a Potential Neuroprotective Agent after Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2012-11-01

    Full Text Available Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS. These effects were consistent with improvements in the membrane potential level (Dym, membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose polymerase (PARP. All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.

  1. By improving regional cortical blood flow, attenuating mitochondrial dysfunction and sequential apoptosis galangin acts as a potential neuroprotective agent after acute ischemic stroke.

    Science.gov (United States)

    Li, Shaojing; Wu, Chuanhong; Zhu, Li; Gao, Jian; Fang, Jing; Li, Defeng; Fu, Meihong; Liang, Rixin; Wang, Lan; Cheng, Ming; Yang, Hongjun

    2012-11-09

    Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF) were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS). These effects were consistent with improvements in the membrane potential level (Dym), membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP). All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.

  2. Cellullar insights into cerebral cortical development: focusing on the locomotion mode of neuronal migration

    Directory of Open Access Journals (Sweden)

    Takeshi eKawauchi

    2015-10-01

    Full Text Available The mammalian brain consists of numerous compartments that are closely connected with each other via neural networks, comprising the basis of higher order brain functions. The highly specialized structure originates from simple pseudostratified neuroepithelium-derived neural progenitors located near the ventricle. A long journey by neurons from the ventricular side is essential for the formation of a sophisticated brain structure, including a mammalian-specific six-layered cerebral cortex. Neuronal migration consists of several contiguous steps, but the locomotion mode comprises a large part of the migration. The locomoting neurons exhibit unique features; a radial glial fiber-dependent migration requiring the endocytic recycling of N-cadherin and a neuron-specific migration mode with dilation/swelling formation that requires the actin and microtubule organization possibly regulated by cyclin-dependent kinase 5 (Cdk5, Dcx, p27kip1, Rac1 and POSH. Here I will introduce the roles of various cellular events, such as cytoskeletal organization, cell adhesion and membrane trafficking, in the regulation of the neuronal migration, with particular focus on the locomotion mode.

  3. Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Thomsen, Gerda

    2002-01-01

    BACKGROUND: The optimal arterial carbon dioxide tension (P(a)CO(2)) in patients with acute bacterial meningitis (ABM) is unknown and controversial. The objective of this study was to measure global cerebral blood flow (CBF), cerebrovascular CO(2) reactivity (CO(2)R), and cerebral metabolic rates...... and hyperventilation with single-photon emission computed tomography (SPECT) (14 patients) and/or the Kety-Schmidt technique (KS) (11 patients and all controls). In KS studies, CMR was measured by multiplying the arterial to jugular venous concentration difference (a-v D) by CBF. RESULTS: CBF did not differ...

  4. Cerebral blood flow in acute and chronic ischemic stroke using xenon-133 inhalation tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Paulson, O B; Lassen, N A

    1986-01-01

    . They showed in the acute phase (Days 1-3) very large low-flow areas, larger than the hypodense areas seen on the CT scan. The cerebral vasoconstrictor and vasodilator capacity was tested in the acute phase following aminophylline and acetazolamide, respectively. A preserved but reduced reactivity was seen......Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan...

  5. Local cerebral blood flow and glucose metabolism during seizure in spontaneously epileptic El mice

    International Nuclear Information System (INIS)

    Hosokawa, Chisa; Ochi, Hironobu; Yamagami, Sakae; Kawabe, Joji; Kobashi, Toshiko; Okamura, Terue; Yamada, Ryusaku

    1995-01-01

    Local cerebral blood flow and glucose metabolism were examined in spontaneously epileptic El mice using autoradiography with 125 I-IMP and 14 C-DG in the interictal phase and during seizure. El (+) mice that developed generalized tonic-clonic convulsions and El (-) mice that received no stimulation and had no history of epileptic seizures were examined. The seizure non-susceptible, maternal strain ddY mice were used as control. Uptake ratios for IMP and DG in mouse brain were calculated using the autoradiographic density. In the interictal phase, the pattern of local cerebral blood flow of El (+) mice was similar to that of ddY and El (-) mice, and glucose metabolism in the hippocampus was higher in El (+) mice than in El (-) and ddY mice, but flow and metabolism were nearly matched. During seizure, no significant changed blood flow and increased glucose metabolism in the hippocampus, the epileptic focus, and no markedly changed blood flow and depressed glucose metabolism in other brain regions were observed and considered to be flow-metabolism uncoupling. These observations have never been reported in clinical or experimental studies of epilepsy. Seizures did not cause large regional differences in cerebral blood flow. Therefore, only glucose metabolism is useful for detection of the focus of secondary generalized seizures in El mice, and appeared possibly to be related to the pathophysiology of secondary generalized epilepsy in El mice. (author)

  6. Regional cerebral blood flow characteristics of the Sturge-Weber syndrome

    International Nuclear Information System (INIS)

    Riela, A.R.; Stump, D.A.; Roach, E.S.; McLean, W.T. Jr.; Garcia, J.C.

    1985-01-01

    Four patients with the Sturge-Weber syndrome were studied using the non-invasive Xenon-133 inhalation technique. All four patients had decreased regional cerebral blood flow in the area of their lesion, and in two patients who were subsequently tested with 5% carbon dioxide inhalation, impaired vasomotor reactivity was documented. Diminished regional cerebral blood flow is consistent with previously described nuclide flow studies which demonstrated a delay in the initial perfusion blush in the region of the abnormal vasculature. The focal decrease in blood flow was greatest in the most severely affected patient, but was also prominent in the two younger patients, both of whom have excellent neurologic function. These studies suggest that localized decrease in blood flow and vasomotor dysfunction in Sturge-Weber syndrome can precede the occurrence of severe neurologic impairment and extensive cerebral atrophy and possibly be a major contributing factor in progressive dysfunction. A secondary observation was that the blood flow in the unaffected hemisphere was significantly greater in two children compared to the two adults and was similar to the age-related differences reported for normal children and adults

  7. Quantitative determination of the regional cerebral blood flow with 133Xe

    International Nuclear Information System (INIS)

    Otto, H.J.; Abraham, K.; Freitag, J.; Koch, R.D.; Freitag, G.; Hoefs, R.

    1982-01-01

    After injection of 133 Xe into the A. carotis interna, the regional blood flow in the brain was determined with a 10-channel measuring unit. From the first clinical evaluation of the findings in 35 patients, the following conclusions can be drawn: 1. In epileptics, a localized hyperemia indicates very probably a latent increased convulsive activity. 2. The measurement of the cerebral blood flow does not yield a contribution to the diagnosis of the type of cerebral tumors. 3. As consequence of mass shifting of space occupying processes particularly endangered brain sections, also remote from the focus proper, show a localized pathological hyeperemia (morbid 'luxus perfusion'). 4. Of greatest importance is the method with regard to the elucidation of pathophysiological relations, as well as of questions in connection with the blood/brain barrier function, and concerning the indication for and the estimation of the results of vascular interventions. (author)

  8. Chronically impaired autoregulation of cerebral blood flow in long-term diabetics

    DEFF Research Database (Denmark)

    Bentsen, N; Larsen, B; Lassen, N A

    1975-01-01

    Using the arteriovenous oxygen difference method autoregulation of cerebral blood flow (CBF) was tested in 16 long-term diabetics and eight control patients. Blood pressure was raised by angiotensin infusion and lowered by trimethaphan camsylate infusion, in some cases combined with head-up tilting...... of the patient. Regression analysis was carried out on the results in order to quantify autoregulatory capacity. In the control patients CBF did not vary with moderate blood pressure variations, indicating normal autoregulation. In four of the 16 diabetic patients CBF showed significant pressure dependency......, indicating impaired autoregulation. The cause of impaired autoregulation in some long-term diabetics is believed to be diffuse or multifocal dysfunction of cerebral arterioles due to diabetic vascular disease. Other conditions with impaired autoregulation are discussed and compared with that seen in long...

  9. Comparative studies of D2 receptors and cerebral blood flow in hemi-parkinsonism rats

    International Nuclear Information System (INIS)

    Lin, Y.; Lin, X.

    2000-01-01

    To study the relationship between dopamine (DA) D 2 receptors and cerebral blood flow in hemiparkinsonism rats. Hemi-parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra and ventral tegmental area, apomorphine (Apo) which could induce the successful model rat rotates toward the intact side was used to screen that rats, 125 I-IBZM in vivo autoradiography and 99m Tc-HM-PAO regional brain biodistribution were used to study D 2 receptors and cerebral blood flow. The HPLC-ECD were used to measure the concentration of DA and it metabolites homovanillic acid (HVA), 3,4-dehydroxyphenyl acetic acid (DOPAC) in bilateral striatum (ST). The lesioned side ST DA and its metabolites HVA DOPAC reduced significantly than that of the intact side and pseudo-operated control group, ST/cerebellum (CB) 125 I-IBZM uptake ratio was 8.04 ±0.71 in lesioned side of hemi-parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (p 99m Tc 30.1±4.53% enhancement as compared to the intact side, and also show good correlation with 30 min Apo induced rotation numbers (r=0.98), the regional cerebral blood flow study didn't show significant difference between bilateral brain cortex area (p>0.05). The DA content decreased significantly and induced an up-regulation of ST D 2 receptor binding sites in 6-OH-DA lesioned side in hemi-parkinsonism rats, the increased percentage of lesioned-intact side ST/CB 125 I-IBZM uptake ratio showed good correlation with rotation behavior induced by Apo. Compare with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-parkinsonism

  10. Dynamic alteration of regional cerebral blood flow during carotid compression and proof of reversibility

    International Nuclear Information System (INIS)

    Asahi, Kouichi; Hori, M; Hamasaki, N; Sato, S; Nakanishi, H; Kuwatsuru, R; Sasai, K; Aoki, S

    2012-01-01

    It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression

  11. Cerebral blood flow response to hypoglycemia is altered in patients with type 1 diabetes and impaired awareness of hypoglycemia.

    Science.gov (United States)

    Wiegers, Evita C; Becker, Kirsten M; Rooijackers, Hanne M; von Samson-Himmelstjerna, Federico C; Tack, Cees J; Heerschap, Arend; de Galan, Bastiaan E; van der Graaf, Marinette

    2017-06-01

    It is unclear whether cerebral blood flow responses to hypoglycemia are altered in people with type 1 diabetes and impaired awareness of hypoglycemia. The aim of this study was to investigate the effect of hypoglycemia on both global and regional cerebral blood flow in type 1 diabetes patients with impaired awareness of hypoglycemia, type 1 diabetes patients with normal awareness of hypoglycemia and healthy controls ( n = 7 per group). The subjects underwent a hyperinsulinemic euglycemic-hypoglycemic glucose clamp in a 3 T MR system. Global and regional changes in cerebral blood flow were determined by arterial spin labeling magnetic resonance imaging, at the end of both glycemic phases. Hypoglycemia generated typical symptoms in patients with type 1 diabetes and normal awareness of hypoglycemia and healthy controls, but not in patients with impaired awareness of hypoglycemia. Conversely, hypoglycemia increased global cerebral blood flow in patients with impaired awareness of hypoglycemia, which was not observed in the other two groups. Regionally, hypoglycemia caused a redistribution of cerebral blood flow towards the thalamus of both patients with normal awareness of hypoglycemia and healthy controls, consistent with activation of brain regions associated with the autonomic response to hypoglycemia. No such redistribution was found in the patients with impaired awareness of hypoglycemia. An increase in global cerebral blood flow may enhance nutrient supply to the brain, hence suppressing symptomatic awareness of hypoglycemia. Altogether these results suggest that changes in cerebral blood flow during hypoglycemia contribute to impaired awareness of hypoglycemia.

  12. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children

    International Nuclear Information System (INIS)

    Kern, F.H.; Ungerleider, R.M.; Quill, T.J.; Baldwin, B.; White, W.D.; Reves, J.G.; Greeley, W.J.

    1991-01-01

    We examined the relationship of changes in partial pressure of carbon dioxide on cerebral blood flow responsiveness in 20 pediatric patients undergoing hypothermic cardiopulmonary bypass. Cerebral blood flow was measured during steady-state hypothermic cardiopulmonary bypass with the use of xenon 133 clearance methodology at two different arterial carbon dioxide tensions. During these measurements there was no significant change in mean arterial pressure, nasopharyngeal temperature, pump flow rate, or hematocrit value. Cerebral blood flow was found to be significantly greater at higher arterial carbon dioxide tensions (p less than 0.01), so that for every millimeter of mercury rise in arterial carbon dioxide tension there was a 1.2 ml.100 gm-1.min-1 increase in cerebral blood flow. Two factors, deep hypothermia (18 degrees to 22 degrees C) and reduced age (less than 1 year), diminished the effect carbon dioxide had on cerebral blood flow responsiveness but did not eliminate it. We conclude that cerebral blood flow remains responsive to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in infants and children; that is, increasing arterial carbon dioxide tension will independently increase cerebral blood flow

  13. Caffeine and human cerebral blood flow: A positron emission tomography study

    International Nuclear Information System (INIS)

    Cameron, O.G.; Modell, J.G.; Hariharan, M.

    1990-01-01

    Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p a CO 2 and increased systolic blood pressure significantly; the change in p a CO 2 did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety were also observed

  14. A single subcutaneous bolus of erythropoietin normalizes cerebral blood flow autoregulation after subarachnoid haemorrhage in rats

    DEFF Research Database (Denmark)

    Springborg, Jacob Bertram; Ma, XiaoDong; Rochat, Per

    2002-01-01

    the intracarotid (133)Xe method. CBF autoregulation was preserved in both sham-operated groups (lower limits of mean arterial blood pressure: 91+/-3 and 98+/-3 mmHg in groups A and B, respectively). In the vehicle treated SAH-group, autoregulation was abolished and the relationship between CBF and blood pressure...... administered recombinant EPO on impaired cerebral blood flow (CBF) autoregulation after experimental subarachnoid haemorrhage (SAH). Four groups of male Sprague-Dawley rats were studied: group A, sham operation plus vehicle; group B, sham operation plus EPO; group C, SAH plus vehicle; group D, SAH plus EPO...

  15. Impaired autoregulation of cerebral blood flow in the distressed newborn infant

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Friis-Hansen, B

    1979-01-01

    Cerebral blood flow was measured, using the 133Xe clearance technique, a few hours after birth in 19 infants with varying degrees of respiratory distress syndrome. Ten of these infants had had asphyxia at birth. The least affected infants with normotension (systolic blood pressure 60 to 65 mm Hg......) had CBF values of about 40 ml/100 gm/minute. Hypotensive infants with asphyxia at birth or RDS or both had values for CBF of about 20 ml/100 gm/minute, or less. CBF was strongly correlated with the arterial blood pressure, showing a linear relationship that was identical in infants with asphyxia...

  16. Regional cerebral blood flow measurement using N-isopropyl-p-[123I] iodoamphetamine and rotating gamma camera emission computed tomography

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Seki, Hiroyasu; Ishida, Hiroko

    1985-01-01

    Thirty-one regional cerebral blood flow (rCBF) measurements were performed on 26 patients with cerebrovascular accidents using N-Isopropyl-p-[ 123 I] Iodoamphetamine ( 123 I-IMP) and rotating gamma camera emission computed tomography (ECT). The equation for determining rCBF is as follows: F=100.R.Cb/(N.A), where F is rCBF in ml/100 g/min., R is the constant withdrawal rate of arterial blood in ml/min., Cb is the brain activity concentration in μCi/g, A is the total activity (5 min.) in the withdrawal arterial whole blood in μCi and N is the fraction of A that is true tracer activity (0.75). In determining Cb at 5 min. after injection, reconstructed counts from 35 min. to 59 min. were corrected to represent those from 4 min. to 5 min. with the use of time activity curve for the entire brain immediately after injection to 30 min. Reconstructed counts of central region in tomographic image were corrected 118% of the obtained values from the result of the countingrate ratio between peripheral and central regions of interests obtained from phantom study. Brain mean blood flow values were distributed from 11 to 39 ml/100 g/min. In 119 cortical regions obtained from 11 measurements in 9 patients, there was a significant correlation (r=0.41, p 123 I-IMP and rotating gamma camera ECT and those from 133 Xe inhalation method. rCBF measurement using 123 I-IMP and rotating gamma camera ECT is not only relatively noninvasive measurement for the entire brain but also three-dimensional evaluation. Besides, it is superior in spatial resolution and accuracy to conventional 133 Xe clearance method. (author)

  17. Clinical study of cerebral blood flow in bilateral chronic subdural hematoma measured by 99mTc-HMPAO SPECT

    International Nuclear Information System (INIS)

    Okuyama, Tohru; Saito, Koji; Fukuyama, Kohichi; Yamamoto, Kouki; Morimoto, Mamoru; Aburano, Tamio

    2000-01-01

    Cerebral blood flow (CBF) in 34 patients with bilateral chronic subdural hematoma was measured by 99m Tc-HMPAO SPECT before operation. The regional CBF was measured in 26 regions of the 10 cortical regions, putamen, thalamus and cerebellar hemisphere on both sides. According to the thickness of subdural hematoma, the thicker hematoma side was measured and examined as the thick hematoma side, and the other side as the thin hematoma side. Thirty four cases with bilateral chronic subdural hematoma were classified into four groups on the basis of clinical symptoms :13 cases with headache (headache group), 10 cases with hemiparesis (hemiparesis group), 5 cases with tetraparesis (tetraparesis group) and 6 cases with consciousness disturbance or dementia (consciousness disturbance group), and into two groups according to the degree of midline brain shift on MRI: 14 cases of non-shifted group and 20 cases of shifted group. The average CBF of 34 patients in each region indicated a regional CBF reduction in the frontal, parietal and occipital cortices on the thin hematoma side, and in the putamen on the thick hematoma side. In the headache group, the regional CBF reduction on the thin hematoma side was found in the frontal, parietal and occipital cortices compared with the corresponding regions on the thick hematoma side, and in thalamus on the thick hematoma side. In the hemiparesis and tetraparesis groups, there was no statistically significant CBF reduction between the thick and thin hematoma sides. In the consciousness disturbance group, the CBF reduction in whole brain was remarkably significant. By the degree of the midline brain shift, the CBF reductions between the thick and thin hematoma sides were observed. Namely, in the shifted group, the CBF reductions were noted in the frontal, parietal and occipital cortices in the thin hematoma side, and in the putamen in the thick hematoma side. We concluded that the CBF reduction of bilateral chronic subdural hematoma was

  18. Clinical study of cerebral blood flow in bilateral chronic subdural hematoma measured by {sup 99m}Tc-HMPAO SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Tohru; Saito, Koji; Fukuyama, Kohichi; Yamamoto, Kouki; Morimoto, Mamoru [Kushiro Neurosurgical Hospital, Hokkaido (Japan); Aburano, Tamio

    2000-08-01

    Cerebral blood flow (CBF) in 34 patients with bilateral chronic subdural hematoma was measured by {sup 99m}Tc-HMPAO SPECT before operation. The regional CBF was measured in 26 regions of the 10 cortical regions, putamen, thalamus and cerebellar hemisphere on both sides. According to the thickness of subdural hematoma, the thicker hematoma side was measured and examined as the thick hematoma side, and the other side as the thin hematoma side. Thirty four cases with bilateral chronic subdural hematoma were classified into four groups on the basis of clinical symptoms :13 cases with headache (headache group), 10 cases with hemiparesis (hemiparesis group), 5 cases with tetraparesis (tetraparesis group) and 6 cases with consciousness disturbance or dementia (consciousness disturbance group), and into two groups according to the degree of midline brain shift on MRI: 14 cases of non-shifted group and 20 cases of shifted group. The average CBF of 34 patients in each region indicated a regional CBF reduction in the frontal, parietal and occipital cortices on the thin hematoma side, and in the putamen on the thick hematoma side. In the headache group, the regional CBF reduction on the thin hematoma side was found in the frontal, parietal and occipital cortices compared with the corresponding regions on the thick hematoma side, and in thalamus on the thick hematoma side. In the hemiparesis and tetraparesis groups, there was no statistically significant CBF reduction between the thick and thin hematoma sides. In the consciousness disturbance group, the CBF reduction in whole brain was remarkably significant. By the degree of the midline brain shift, the CBF reductions between the thick and thin hematoma sides were observed. Namely, in the shifted group, the CBF reductions were noted in the frontal, parietal and occipital cortices in the thin hematoma side, and in the putamen in the thick hematoma side. We concluded that the CBF reduction of bilateral chronic subdural hematoma

  19. Is there any influence of breastfeeding on the cerebral blood flow? A review of 256 healthy newborns

    Directory of Open Access Journals (Sweden)

    Alexandra Maria Vieira Monteiro

    2012-10-01

    Full Text Available OBJECTIVE: To investigate whether breastfeeding influence the cerebral blood-flow velocity. MATERIALS AND METHODS: The present study included 256 healthy term neonates, all of them with appropriate weight for gestational age, 50.8% being female. Pulsatility index, resistance index and mean velocity were measured during breastfeeding or resting in the anterior cerebral artery, in the left middle cerebral artery, and in the right middle cerebral artery of the neonates between their first 10 and 48 hours of life. The data were analyzed by means of a paired t-test, Brieger's f-test for analysis of variance and linear regression, with p < 0.01 being accepted as statistically significant. RESULTS: Mean resistance index decreased as the mean velocity increased significantly during breastfeeding. Pulsatility index values decreased as much as the resistance index, but in the right middle cerebral artery it was not statistically significant. CONCLUSION: Breastfeeding influences the cerebral blood flow velocities.

  20. Stable xenon CT measurement of cerebral blood flow in cardiac transplantation candidates: Correlation with cognitive function

    International Nuclear Information System (INIS)

    Bello, J.A.; Fink, M.E.; Hilal, S.K.; Rose, E.A.; Reemtsma, K.

    1987-01-01

    Thirteen consecutive unselected patients with NYHA class 4 cardiac failure referred for cardiac transplantation underwent neurologic examination and cerebral blood flow measurement (rCBF) using the stable xenon enhanced CT method on a GE9800 system. Eleven men and two women were studied (mean age = 43.8 +- 6.1). On neurological examination, six of the patients demonstrated normal mental function; the remaining seven patients demonstrated memory, language, or learning impairment. There was no difference in mean cardiac output between the groups (4.9 L/min +- 1.68 vs. 4.2L/min +- 1.57). rCBF was significantly reduced in the impaired group. Cognitive impairment in patients with cardiac failure can be correlated with cerebral ischemia. Stable xenon CT measurement of rCBF in transplant candidates may help identify patients requiring more rapid transplantation to prevent permanent cerebral injury

  1. Impaired cerebral blood flow and oxygenation during exercise in type 2 diabetic patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Seifert, Thomas; Brassard, Patrice

    2015-01-01

    Endothelial vascular function and capacity to increase cardiac output during exercise are impaired in patients with type 2 diabetes (T2DM). We tested the hypothesis that the increase in cerebral blood flow (CBF) during exercise is also blunted and, therefore, that cerebral oxygenation becomes...... affected and perceived exertion increased in T2DM patients. We quantified cerebrovascular besides systemic hemodynamic responses to incremental ergometer cycling exercise in eight male T2DM and seven control subjects. CBF was assessed from the Fick equation and by transcranial Doppler-determined middle...... at higher workloads in T2DM patients and their work capacity and increase in cardiac output were only ~80% of that established in the control subjects. CBF and cerebral oxygenation were reduced during exercise in T2DM patients (P

  2. Radial extracorporeal shock wave therapy improves cerebral blood flow and neurological function in a rat model of cerebral ischemia.

    Science.gov (United States)

    Kang, Nan; Zhang, Jing; Yu, Xiaotong; Ma, Yuewen

    2017-01-01

    We performed middle cerebral artery occlusion (MCAO) in rats to investigate the effect and some of the underlying mechanisms of radial extracorporeal shock wave therapy (rESWT) in cerebral ischemia rats. We measured neurological function and cerebral blood flow (CBF) using a full-field laser perfusion imager and brain infarct volume on days 3, 12, and 30. Immunofluorescence, western blot, and real-time polymerase chain reaction (PCR) techniques were used to detect the expression of vascular endothelial growth factor (VEGF), neuron-specific enolase (NSE), nestin, Wnt3a, and β-catenin in the ischemic hemisphere. The dose of rESWT used on the head revealed remarkable advantages over sham rESWT, as demonstrated by improved neurological function scores, increased CBF, and reduced brain infarct volume. Furthermore, applying rESWT to the head and limbs enhanced short-term neurological function. Our results confirmed that rESWT can induce VEGF expression over an extended period with a profound effect, which may be the primary reason for CBF recovery. High NSE and nestin expression levels suggest that rESWT enhanced the number of neurons and neural stem cells (NSCs). Wnt3a and β-catenin expression were up-regulated in the ischemic hemisphere, indicating that rESWT promoted NSC proliferation and differentiation via the Wnt/β-catenin pathway. Overall, our findings suggest that an appropriate rESWT dose delivered to the head of rats helps restore neurological function and CBF, and additional application of rESWT to the limbs is more effective than treating the head alone.

  3. Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: implications for the neural substrates of emotion regulation.

    Science.gov (United States)

    Albaugh, Matthew D; Ducharme, Simon; Collins, D Louis; Botteron, Kelly N; Althoff, Robert R; Evans, Alan C; Karama, Sherif; Hudziak, James J

    2013-05-01

    Recent functional connectivity studies have demonstrated that, in resting humans, activity in a dorsally-situated neocortical network is inversely associated with activity in the amygdalae. Similarly, in human neuroimaging studies, aspects of emotion regulation have been associated with increased activity in dorsolateral, dorsomedial, orbital and ventromedial prefrontal regions, as well as concomitant decreases in amygdalar activity. These findings indicate the presence of two countervailing systems in the human brain that are reciprocally related: a dorsally-situated cognitive control network, and a ventrally-situated limbic network. We investigated the extent to which this functional reciprocity between limbic and dorsal neocortical regions is recapitulated from a purely structural standpoint. Specifically, we hypothesized that amygdalar volume would be related to cerebral cortical thickness in cortical regions implicated in aspects of emotion regulation. In 297 typically developing youths (162 females, 135 males; 572 MRIs), the relationship between cortical thickness and amygdalar volume was characterized. Amygdalar volume was found to be inversely associated with thickness in bilateral dorsolateral and dorsomedial prefrontal, inferior parietal, as well as bilateral orbital and ventromedial prefrontal cortices. Our findings are in line with previous work demonstrating that a predominantly dorsally-centered neocortical network is reciprocally related to core limbic structures such as the amygdalae. Future research may benefit from investigating the extent to which such cortical-limbic morphometric relations are qualified by the presence of mood and anxiety psychopathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. How does the blood leave the brain? A systematic ultrasound analysis of cerebral venous drainage patterns

    International Nuclear Information System (INIS)

    Doepp, Florian; Schreiber, Stephan J.; Muenster, Thomas von; Rademacher, Joerg; Valdueza, Jose M.; Klingebiel, Randolf

    2004-01-01

    The internal jugular veins are considered to be the main pathways of cerebral blood drainage. However, angiographic and anatomical studies show a wide anatomical variability and varying degrees of jugular and non-jugular venous drainage. The study systematically analyses the types and prevalence of human cerebral venous outflow patterns by ultrasound and MRI. Fifty healthy volunteers (21 females; 29 males; mean age 27±7 years) were studied by color-coded duplex sonography. Venous blood volume flow was measured in both internal jugular and vertebral veins in the supine position. Furthermore, the global arterial cerebral blood volume flow was calculated as the sum of volume flows in both internal carotid and vertebral arteries. Three types of venous drainage patterns were defined: a total jugular volume flow of more than 2/3 (type 1), between 1/3 and 2/3 (type 2) and less than 1/3 (type 3) of the global arterial blood flow. 2D TOF MR-venography was performed exemplarily in one subject with type-1 and in two subjects with type-3 drainage. Type-1 drainage was present in 36 subjects (72%), type 2 in 11 subjects (22%) and type 3 in 3 subjects (6%). In the majority of subjects in our study population, the internal jugular veins were indeed the main drainage vessels in the supine body position. However, a predominantly non-jugular drainage pattern was found in approximately 6% of subjects. (orig.)

  5. Cerebral blood flow single-photon emission tomography with 123I-IMP in vascular dementia

    International Nuclear Information System (INIS)

    Kawahata, Nobuya; Gotoh, Chiharu; Yokoyama, Sakura; Daitoh, Nobuyuki

    2001-01-01

    Cerebral blood flow differences between patients with vascular dementia, patients with multiple lacunar infarction without cognitive dysfunction, and age-matched controls were examined. Thirty four patients with vascular dementia (VD) were selected from consecutive referrals to the Memory Clinic at Narita Memorial Hospital. All the patients had routine assessment including history, physical and neurological examinations, neuropsychological assessment, blood tests, EEG, head MRI, and single photon emission computed tomography (SPECT). All of them fulfilled the NINDS-AIREN diagnostic criteria for vascular dementia. Thirty nine patients with multiple lacunar infarction without cognitive dysfunction and 110 age-matched controls were included in this study. Mean cerebral blood flow (mCBF) and regional cerebral blood flow (rCBF) were measured using N-isopropyl-P- 123 I-iodoamphetamine ( 123 I-IMP) and SPECT imager. The mCBF in VD was 27.6±5.3 ml/100 g/min, while those in the control group and multiple lacunar infarction without cognitive dysfunction were 36.6±6.1 ml/100 g/min and 32.5±5.5 ml/100 g/min, respectively. The patients with VD demonstrated significantly reduced mCBF and rCBF in twenty regions including both cerebellar hemispheres as compared with those of the control group. Although there was no significant rCBF differences in bilateral inferior occipital regions and the right cerebellar hemisphere between patients with VD and multiple lacunar infarction without cognitive dysfunction, we could find significant lower rCBF in the remaining brain areas. In spite of the severity of VD, the diffuse decrease of cerebral blood flow was recognized in all patients with VD. (author)

  6. The contribution of astrocytes to the regulation of cerebral blood flow

    Directory of Open Access Journals (Sweden)

    Clare eHowarth

    2014-05-01

    Full Text Available In order to maintain normal brain function, it is critical that cerebral blood flow (CBF is matched to neuronal metabolic needs. Accordingly, blood flow is increased to areas where neurons are more active (a response termed functional hyperemia. The tight relationships between neuronal activation, glial cell activity, cerebral energy metabolism and the cerebral vasculature, known as neurometabolic and neurovascular coupling, underpin functional MRI (fMRI signals but are incompletely understood. As functional imaging techniques, particularly BOLD fMRI, become more widely used, their utility hinges on our ability to accurately and reliably interpret the findings. A growing body of data demonstrates that astrocytes can serve as a ‘bridge’, relaying information on the level of neural activity to blood vessels in order to coordinate oxygen and glucose delivery with the energy demands of the tissue. It is widely assumed that calcium-dependent release of vasoactive substances by astrocytes results in arteriole dilation and the increased blood flow which accompanies neuronal activity. However, the signaling molecules responsible for this communication between astrocytes and blood vessels are yet to be definitively confirmed. Indeed, there is controversy over whether activity-induced changes in astrocyte calcium are widespread and fast enough to elicit such functional hyperemia responses. In this review, I will summarise the evidence which has convincingly demonstrated that astrocytes are able to modify the diameter of cerebral arterioles. I will discuss the prevalence, presence and timing of stimulus-induced astrocyte calcium transients and describe the evidence for and against the role of calcium-dependent formation and release of vasoactive substances by astrocytes. I will also review alternative mechanisms of astrocyte-evoked changes in arteriole diameter and consider the questions which remain to be answered in this exciting area of research.

  7. Comparison of cerebral blood flow and metabolism to flumazenil binding potential in patients with hemodynamic ischemia

    International Nuclear Information System (INIS)

    Yukawa, Hirotsugu; Ogasawara, Kuniaki

    2003-01-01

    Because benzodiazepine receptors (BZR) are abundant in the cortex, an accumulation of 11 C-flumazenil which selectively bind to BZR may be useful as markers of neuron density. The aims of this study were to clarify the relationship between neuron density and cerebral oxygen metabolism and to investigate the usefulness of 11 C-flumazenil PET for detecting misery perfusion. The subjects were 16 patients with either internal carotid or middle cerebral arterial occlusive disease who underwent PET. Regional cerebral blood flow (CBF), regional cerebral oxygen extraction fraction (OEF), regional cerebral metabolic rate for oxygen (CMRO 2 ) and regional cerebrovascular reserve capacity (CVRC) to acetazolamide were calculated. After CBF study, flumazenil binding potential was measured using the [ 11 C] flumazenil bolus injection method. Forty-eight regions of interests (ROIs) were obtained in 16 patients. Flumazenil binding potential was correlated to CMRO 2 (r=0.337, p=0.0069), but in 7 of 48 ROIs, CMRO 2 decreased, whereas flumazenil binding potential did not change. Seventeen of 29 ROIs with decreased CVRC showed high OEF and the remaining 12 showed normal OEF. Flumazenil binding potential in ROIs with normal OEF was significantly lower than in those with high OEF (p=0.0003). This study demonstrated that 11 C-flumazenil PET is useful for detecting misery perfusion in patients with hemodynamic ischemia. (author)

  8. Investigations of the cerebral blood flow by means of nuclear medicine in polycythemia vera rubra

    International Nuclear Information System (INIS)

    Franke, W.G.; Unger, L.; Mueller, J.

    1993-01-01

    P.v. represents a ''clinical model'' of diagnostic radionuclide application to evaluate the total and regional perfusion of brain. 107 polycythemians treated by or provided for radiophosphorus were studied by neurologic methods as EEG e.g. and with XCT if necessary. These studies were accomplished repeatedly in 62% of the surveyed patients. We found disturbed perfusion in brain: 32, diminuation of blood flow in vertebral-basilar region: 8, polyneuropathies: 27, psychic abnormalities: 60. Therapeutic effects became ascertained in 34% of hemipareses. The majority of polycythemic patients let recognize a regression of subjective complaints. The diagnostic informations obtained by radionuclide methods were compared to clinical and neurologic results as mentioned above. A good correlation could observed from radionuclide angiography, 133 Xe-studies of total and regional cerebral perfusion and HMPAO-SPECT to neurologic and radiological findings. 66% of studied patients showed abnormal radioactivity distribution at static scintigrams. Disturbances of cerebral perfusion were seen in 20 from 26 patients if radionuclide angiography was used. Especially the inflow to cerebral vessels was found retarded by this method. Even in 3 neurologically inconspicuous persons the cerebral perfusion was restricted. Only 5 patients without signs of decreased flow could be seen. In 9 of 10 cases studied using 133 Xenon referred to diminuation of cerebral perfusion. Both dynamic methods showed changes in perfusion depending from time course. Numerous localized defects of vascularization were detected by SPECT in some corresponding with neurologic symptoms in other patients differing from these ones. (orig./MG) [de

  9. Cerebral blood flow and oxygen consumption during ethanol withdrawal in the rat.

    Science.gov (United States)

    Hemmingsen, R; Barry, D I; Hertz, M M; Klinken, L

    1979-09-14

    The ethanol withdrawal syndrome in man and animals is characterized by signs of CNS hyperactivity although a direct measurement of a physiological variable reflecting this CNS hyperactivity has never been performed in untreated man or in animals. We induced ethanol dependence in the rat by means of intragastric intubation with a 20% w/v ethanol solution, thus keeping the animals in a state of continuous severe intoxication for 3--4 days; during the subsequent state of withdrawal characterized by tremor, rigidity, stereotyped movements and general seizures a 25% increase in cerebral oxygen consumption (CMRO2) could be measured; this increase was not due to catecholamines originating from adrenal medulla as adrenomedullectomized animals showed a similar increase in CMRO2 (28%); the withdrawing animals showed a corresponding cerebral blood flow (CBF) increase. The elevated CMRO2 and CBF could be reduced to normal by administration of a beta-adrenergic receptor blocker (propranolol 2 mg/kg i.v.), and hence the increased CMRO2 during ethanol withdrawal could be related to catecholaminergic systems in the brain, e.g. the noradrenergic locus coeruleus system which is anatomically well suited as a general activating system. This interpretation is supported by the earlier neurochemical finding of an increased cerebral noradrenaline turnover during ethanol withdrawal. The exact mechanism underlying the increased cerebral oxygen consumption during ethanol withdrawal and the effect of propranolol on cerebral function during this condition remains to be clarified.

  10. Cerebral blood flow in the occlusive cerebrovascular disease. 133Xe intravenous injection method

    Energy Technology Data Exchange (ETDEWEB)

    Kuda, Hitoshi; Mukawa, Jiro; Takara, Eiichi; Kinjo, Toshihiko; Ishikawa, Yasunari

    1988-04-01

    From December 1985 to May 1986, cerebral blood flow (CBF) was studied in 11 patients with occlusive cerebrovascular diseases confined by angiography. 133Xe (5mci) intravenous injection method designed by Kuikka and coworkers was applied for the measurement of regional-CBF and mean-CBF, and the calculation was based on the initial slope index. They were composed of 4 patients of the middle cerebral artery occlusion, 2 of the posterior cerebral artery occlusion, 1 of the internal carotid artery occlusion, 2 of the middle cerebral artery stenosis, 1 of the internal carotid artery stenosis, and 1 of the anterior cerebral artery stenosis. The period from the vascular attack to the initial CBF study was 2-29 days(mean 9.2 days). Recovery of mean-CBF was correlated with clinical and neurological improvement, and vice versa. There was no correlation between mean-CBF and neurological severity. CBF study alone is not sufficient to evaluate neuronal conditions in the occlusive disease. Additional other means, such as CT-scan, angiography and etc. should be requested for it. Intravenous 133Xe injection technique has an advantage over intracarotid injection method; less dangerous, especially in ages and capable of simultaneous measurement of bilateral hemisphere. Considering /sup c/ross talk/sup /regional-CBF of a low density area on X-ray CT-scan was equal to the one obtained by intracarotid injection method.

  11. Normal Control Study of Cerebral Blood Flow by 99mTc HM-PAO SPECT

    International Nuclear Information System (INIS)

    Koong, Sung Soo; Moon, Dae Hyuk; Lee, Bum Woo; Lee, Kyung Han

    1989-01-01

    Regional cerebral perfusion was evaluated in 15 normal controls by single photon emission computed tomography using 99m Tc HM-PAO. For quantitative analysis, 13 pairs of homologous region of interest (ROI) were drawn on three transverse slices matching the vascular territories and cerebral cortices, and normal values of 3 semiquantitative indices including 'Right to left ratio' (R/L ratio), 'Regional index' (RI), and 'Region to cerebellum ratio (R/cbll ratio) were calculated. Mean values of R/L ratios of homologous regions were ranged from 0.985 to 1.023, and mean ± 2 s.d. of all regions did not exceed 11% of mean. Significant difference of Rls (mean count per voxel of a ROI/mean count per voxel of total ROls) between regions were found (p<0.001) with highest values in occipital cortex and cerebellum. After attenuation correction, Rls in deep gray, cranial portion of anterior cerebral artery and vascular territories in the 2nd slice increased significantly (p<0.05-0.001) hut vise versa in other ROIs. Region to cerebellum ratios also showed regional difference similar to Rls.

  12. Positron emission tomography in the newborn: extensive impairment of regional cerebral blood flow with intraventricular hemorrhage and hemorrhagic intracerebral involvement

    International Nuclear Information System (INIS)

    Volpe, J.J.; Herscovitch, P.; Perlman, J.M.; Raichle, M.E.

    1983-01-01

    Positron emission tomography (PET) now provides the capability of measuring regional cerebral blood flow with high resolution and little risk. In this study, we utilized PET in six premature infants (920 to 1,200 g) with major intraventricular hemorrhage and hemorrhagic intracerebral involvement to measure regional cerebral blood flow during the acute period (5 to 17 days of age). Cerebral blood flow was determined after intravenous injection of H 2 O, labeled with the positron-emitting isotope, 15 O. Findings were similar and dramatic in all six infants. In the area of hemorrhagic intracerebral involvement, little or no cerebral blood flow was detected. However, in addition, surprisingly, a marked two- to fourfold reduction in cerebral blood flow was observed throughout the affected hemisphere, well posterior and lateral to the intracerebral hematoma, including cerebral white matter and, to a lesser extent, frontal, temporal, and parietal cortex. In the one infant studied a second time, ie, at 3 months of age, the extent and severity of the decreased cerebral blood flows in the affected hemisphere were similar to those observed on the study during the neonatal period. At the three autopsies, the affected left hemisphere showed extensive infarction, corroborating the PET scans. These observations, the first demonstration of the use of PET in the determination of regional cerebral blood flow in the newborn, show marked impairments in regional cerebral blood flow in the hemisphere containing an apparently restricted intracerebral hematoma, indicating that the hemorrhagic intracerebral involvement is only a component of a much larger lesion, ischemic in basic nature, ie, an infarction. This large ischemic lesion explains the poor neurologic outcome in infants with intraventricular hemorrhage and hemorrhagic intracerebral involvement

  13. Cerebral blood flow and metabolism in patients with aphasia due to basal ganglionic lesion

    International Nuclear Information System (INIS)

    Kitamura, Shin; Kato, Toshiaki; Ujike, Takashi; Kuroki, Soemu; Terashi, Akiro

    1987-01-01

    Cerebral blood flow and metabolism in right handed eight patients with subcortical lesion and aphasia were measured to investigate the correlation between aphasia and functional changes in cerebral blood flow (CBF) and cerebral oxygen consumption (CMRO 2 ) in the cortex and the basal ganglionic region. All patients had no lesion in the cortex, but in the basal ganglionic region (putamen, caudate nucleus, internal capsule, and periventricular white matter) on CT images. Patients with bilateral lesion were excluded in this study. Six patients with cerebral infarction in the left basal ganglionic region and two patients with the left putammal hemorrhage were examined. Five patients had non fluent Broca's type speech, two patients had poor comprehension, fluent Wernicke-type speech and one patient was globally aphasic. CBF, CMRO 2 , and oxygen extraction fraction were measured by the positron emission tomography using 15 O 2 , C 15 O 2 inhalation technique. In addition to reduction of CBF and CMRO 2 in the basal ganglionic region, CBF and CMRO 2 decreased in the left frontal cortex especially posterior part in four patients with Broca's aphasia. In two patients with Wernicke type aphasia, CBF and CMRO 2 decreased in the basal ganglionic region and the left temporal cortex. In a globally aphasic patient, marked reduction of CBF and CMRO 2 was observed in the left frontal and temporal cortex, in addition to the basal ganglionic region. These results suggest that dysfunction of cortex as well as that of basal ganglionic region might be related to the occurence of aphasia. However, in one patient with Broca's ahasia, CBF and CMRO 2 were preserved in the cortex and metabolic reduction was observed in only basal ganglia. This case indicates the relation between basal ganglionic lesion and the occurrence of aphasia. These results suggest that measurements of cerebral blood flow and metabolism were necessary to study the responsible lesion for aphasia. (author)

  14. Vertigo-related cerebral blood flow changes on magnetic resonance imaging.

    Science.gov (United States)

    Chang, Feiyan; Li, Zhongshi; Xie, Sheng; Liu, Hui; Wang, Wu

    2014-11-01

    A prospective study using magnetic resonance imaging on a consecutive cohort of patients with cervical vertigo. To quantitatively investigate the cerebral blood flow (CBF) changes associated with cervical vertigo by using 3-dimensional pseudocontinuous arterial spin labeling. Previous studies reported blood flow velocity reduction in posterior circulation during vertigo. However, the detailed information of CBF related to cervical vertigo has not been provided. A total of 33 patients with cervical vertigo and 14 healthy volunteers were recruited in this study. Three-dimensional pseudocontinuous arterial spin labeling was performed on each subject to evaluate the CBF before and after the cervical hyperextension-hyperflexion movement tests, which was used to induce cervical vertigo. Repeated-measures analysis of variance was conducted to assess the effect of subjects and tests. There were time effects of CBF in the territory of bilateral superior cerebellar artery, bilateral posterior cerebral artery, bilateral middle cerebral artery, and right anterior cerebral artery, but no group effect was observed. The analysis of CBF revealed a significant main effect of tests (P=0.024) and participants (P=0.038) in the dorsal pons. Cervical vertigo onset may be related to CBF reduction in the dorsal pons, which sequentially evokes the vestibular nuclei. 2.

  15. pCO2 And pH regulation of cerebral blood flow

    Directory of Open Access Journals (Sweden)

    SeongHun eYoon

    2012-09-01

    Full Text Available CO2 Serves as one of the fundamental regulators of cerebral blood flow. It is widely considered that this regulation occurs through pCO2-driven changes in pH of the cerebral spinal fluid, with elevated and lowered pH causing direct relaxation and contraction of the smooth muscle, respectively. However, some findings also suggest that pCO2 acts independently of and/or in conjunction with altered pH. This action may be due to a direct effect of cerebral spinal fluid pCO2 on the smooth muscle as well as on the endothelium, nerves, and astrocytes. Findings may also point to an action of arterial pCO2 on the endothelium to regulate smooth muscle contractility. Thus, the effects of pH and pCO2 may be influenced by the absence/presence of different cell types in the various experimental preparations. Results may also be influenced by experimental parameters including myogenic tone as well as solutions containing significantly altered HCO3- concentrations, i.e., solutions routinely employed to differentiate the effects of pH from pCO2. In sum, it appears that pCO2, independently and in conjunction with pH, may regulate cerebral blood flow.

  16. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects

    International Nuclear Information System (INIS)

    Fox, P.T.; Raichle, M.E.

    1986-01-01

    Coupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) was studied using multiple sequential administrations of 15 O-labeled radiotracers and positron emission tomography. In the resting state an excellent correlation between CBF and CMRO 2 was found when paired measurements of CBF and CMRO 2 from multiple (30-48) brain regions were tested in each of 33 normal subjects. Regional uncoupling of CBF and CMRO 2 was found, however, during neuronal activation induced by somatosensory stimulation. Stimulus-induced focal augmentation of cerebral blood flow (29% mean) far exceeded the concomitant local increase in tissue metabolic rate (mean, 5%), when resting-state and stimulated-state measurements were obtained in each of 9 subjects. Stimulus duration had no significant effect on response magnitude or on the degree of CBF-CMRO 2 uncoupling observed. Dynamic, physiological regulation of CBF by a mechanism (neuronal or biochemical) dependent on neuronal firing per se, but independent of the cerebral metabolic rate of oxygen, is hypothesized

  17. Microneurosurgical management of aneurysms at A4 and A5 segments and distal cortical branches of anterior cerebral artery.

    Science.gov (United States)

    Lehecka, Martin; Dashti, Reza; Hernesniemi, Juha; Niemelä, Mika; Koivisto, Timo; Ronkainen, Antti; Rinne, Jaakko; Jääskeläinen, Juha

    2008-10-01

    Aneurysms originating distal to the A3 segment of the ACA, located on the A4 and the A5 segments or the distal cortical branches of the ACA (AdistAs) are rare, forming about 0.5% of all IAs. There are only few reports on management of AdistAs. In this article, we review the practical anatomy, preoperative planning, and avoidance of complications in the microsurgical dissection and clipping of AdistAs. This review, and the whole series on IAs, is mainly based on the personal microneurosurgical experience of the senior author (J. H.) in 2 Finnish centers (Helsinki and Kuopio), which serve without patient selection the catchment area in Southern and Eastern Finland. These 2 centers have treated more than 10000 patients with IAs since 1951. In the Kuopio Cerebral Aneurysm Database of 3005 patients and 4253 IAs, there were 26 patients carrying 26 AdistAs, forming 0.9% of all patients with IAs, 0.6% of all IAs, and 2% of all ACA aneurysms. A total of 10 (38%) patients presented with ruptured AdistAs, with ICH in 4 (40%) and IVH in 2 (20%); 16 patients (62%) had multiple aneurysms. AdistAs are small, even when ruptured, with relatively wide base, and they are frequently associated with ICHs. Our data suggest that AdistAs rupture at smaller size than IAs in general. The challenge is to locate the aneurysm inside the interhemispheric fissure and to clip the neck adequately without obstructing branching arteries at the base. Unruptured AdistAs also need microneurosurgical clipping even when they are small.

  18. Age and gender effects on normal regional cerebral blood flow studied using two different voxel-based statistical analyses

    International Nuclear Information System (INIS)

    Pirson, A.S.; George, J.; Krug, B.; Vander Borght, T.; Van Laere, K.; Jamart, J.; D'Asseler, Y.; Minoshima, S.

    2009-01-01

    Fully automated analysis programs have been applied more and more to aid for the reading of regional cerebral blood flow SPECT study. They are increasingly based on the comparison of the patient study with a normal database. In this study, we evaluate the ability of Three-Dimensional Stereotactic Surface Projection (3 D-S.S.P.) to isolate effects of age and gender in a previously studied normal population. The results were also compared with those obtained using Statistical Parametric Mapping (S.P.M.99). Methods Eighty-nine 99m Tc-E.C.D.-SPECT studies performed in carefully screened healthy volunteers (46 females, 43 males; age 20 - 81 years) were analysed using 3 D-S.S.P.. A multivariate analysis based on the general linear model was performed with regions as intra-subject factor, gender as inter-subject factor and age as co-variate. Results Both age and gender had a significant interaction effect with regional tracer uptake. An age-related decline (p < 0.001) was found in the anterior cingulate gyrus, left frontal association cortex and left insula. Bilateral occipital association and left primary visual cortical uptake showed a significant relative increase with age (p < 0.001). Concerning the gender effect, women showed higher uptake (p < 0.01) in the parietal and right sensorimotor cortices. An age by gender interaction (p < 0.01) was only found in the left medial frontal cortex. The results were consistent with those obtained with S.P.M.99. Conclusion 3 D-S.S.P. analysis of normal r.C.B.F. variability is consistent with the literature and other automated voxel-based techniques, which highlight the effects of both age and gender. (authors)

  19. Enhanced cerebral uptake of receptor ligands by modulation of P-glycoprotein function in the blood-brain barrier

    NARCIS (Netherlands)

    Doze, P; Van Waarde, A; Elsinga, P H; Hendrikse, N H; Vaalburg, W

    Low cerebral uptake of some therapeutic drugs can be enhanced by modulation of P-glycoprotein (P-gp), an ATP-driven drug efflux pump at the blood-brain barrier (BBB). We investigated the possibility of increasing cerebral uptake of the beta-adrenergic ligands S-1'-[(18)F]-fluorocarazolol (FCAR) and

  20. Ten-minute umbilical cord occlusion markedly reduces cerebral blood flow and heat production in fetal sheep.

    NARCIS (Netherlands)

    Lotgering, F.K.; Bishai, J.M.; Struijk, P.C.; Blood, A.B.; Hunter, C.J.; Power, G.G.; Longo, L.D.

    2003-01-01

    OBJECTIVE: The study was undertaken to determine to what extent a 10-minute total umbilical cord occlusion affects autoregulation of cerebral blood flow and cerebral heat production in the fetus. STUDY DESIGN: In seven chronically catheterized late-gestation fetal sheep (127-131 days' gestation), we

  1. Regional cerebral blood flow pattern in normal young and aged volunteers: a 99mTc-HMPAO SPET study

    International Nuclear Information System (INIS)

    Catafau, A.M.; Lomena, J.; Pavia, J.; Parellada, E.; Bernardo, M.; Setoain, J.; Tolosa, E.

    1996-01-01

    The aim of this study was to investigate the normal pattern of regional cerebral blood flow (rCBF) distribution in normal young and aged volunteers using technetium-99m hexamethylpropylene amine oxime ( 99m -Tc-HMPAO) as a tracer. The region brain perfusion of young and aged subjects was compared, especially regarding rCBF differences due to age and gender, and interhemispheric rCBF asymmetries. Sixty-eight right-handed normal volunteers -40 young (mean age 29.5±6.3 years) and 28 aged (mean age 71.2±4.3 years) - were included in the study. rCBF was estimated on the basis of a semiquantitative approach by means of a left-right index and two region/reference ratios, using the cerebellum and the whole brain activity as references. A good correlation between these two region/reference ratios was found (P<0.005 in all cerebral regions). The highest rCBF ratios corresponded to the cerebellum, followed by the occipital lobe. The remaining cortical regions (temporal, parietal, frontal and basal ganglia) showed slightly lower values. The white matter showed rCBF ratios substantially lower than the grey matter. In neighter young nor aged subjects were significant rCBF differences between the genders found in any of the two region/reference indices employed. Aged sugjects showed significantly lower rCBF ratios than young subjects in the left frontal lobe and in the posterior region of the left temporal lobe. In both young and aged subjects, lower perfusion was found in the left hemisphere, except for the white matter region in both age groups and the frontal lobe in the young subjects. Aged subjects presented a slightly higher interhemispheric asymmetry in the frontal lobe. However, interhemispheric asymmetry was minimal (-1.01% to 3.14%). Consequently, a symmetrical rCBF distribution can be assumed between homologous regions, independent of age. (orig.)

  2. Regional cerebral blood flow and the effects of nicardipine, a new cerebral vasodilator, in patients with neuropsychiatric symptoms

    International Nuclear Information System (INIS)

    Toyoda, Katsuhiro; Motomura, Naoyasu; Murata, Koen; Sakai, Toshiaki; Yoshioka, Michio; Tsutsumi, Shigetoshi.

    1984-01-01

    Regional cerebral blood flow (rCBF) was determined by 133 Xe inhalation method in 22 neuropsychiatric patients with an average age of 65.8 years -- 14 patients having cerebrovascular disturbance (Group 1) and 8 patients having endogenous or organic psychosis or neurological lesions (Group 2). Furthermore, nicardipine was orally administered to the patients and its effects on rCBF and on neuropsychiatric symptoms were examined. Regarding the mean and abnormal decrease of rCBF in the bilateral hemispheres and the frequency of ischemic foci, there was no significant difference between the groups. However, regional ischemic focus was more frequently observed in Group 1 than in Group 2. Long-term serial administration of nicardipine increased the rCBF and improved psychiatric symptoms in some of the patients in Group 1. (Namekawa, K.)

  3. Regional cerebral blood flow in psychiatry: Application to clinical research

    International Nuclear Information System (INIS)

    Berman, K.F.; Weinberger, D.R.; Morihisa, J.M.; Zec, R.F.

    1984-01-01

    In the following sections, the authors describe aspects of the xenon-133 inhalation technique as it has been modified in their lab, as well as a number of considerations and prerequisites for setting up such a facility. The authors also discuss the processes by which they technically and clinically validated the methods used. Several case studies follow along with descriptions of the approaches they are taking in investigating psychiatric illnesses with rCBF. Since the concept of a relation between brain functional activity, metabolism, and blood flow has a long history, both in theory and in practice, they first briefly review some of this history and some of the principles involved

  4. Tomographic images of cerebral blood flow using a slant hole collimator

    International Nuclear Information System (INIS)

    Wraight, E.P.; Barber, R.W.; Crossland, P.; Maltby, P.

    1983-01-01

    The feasibility of using a rotating slant hole (RSH) collimator on simple tomographic equipment such as a standard gamma camera interfaced to a general purpose Nuclear Medicine computer is reported for producing images of cerebral blood flow following the administration of 123 I-iodoamphetamine to patients. Initial studies produced satisfactory images, thus opening the possibility of tomographic cerebral blood flow imaging to centres not possessing sophisticated tomographic equipment. Planar resolution is superior to that reported for a 25 0 RSH collimator. Axial resolution is not as good at small source distances but is comparable at distances beyond 10 cm. Sensitivity is comparable to other RSH collimators and is similar to Technicare's parallel hole general all purpose collimator. (UK)

  5. Regional cerebral blood flow during mechanical hyperventilation in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Høgh, Peter; Larsen, Fin Stolze

    2000-01-01

    Mechanical hyperventilation is often instituted in patients with acute bacterial meningitis when increased intracranial pressure is suspected. However, the effect on regional cerebral blood flow (CBF) is unknown. In this study, we measured regional CBF (rCBF) in patients with acute bacterial...... meningitis before and during short-term hyperventilation. In 17 patients with acute bacterial meningitis, absolute rCBF (in ml/100 g min-1) was measured during baseline ventilation and hyperventilation by single-photon emission computed tomography (SPECT) using intravenous 133Xe bolus injection. Intravenous...... in the frontal and parietal cortex as well as in the basal ganglia. Focal perfusion abnormalities were present in 10 of 12 patients. Regional cerebral blood flow abnormalities are frequent in patients with acute bacterial meningitis. Short-term hyperventilation does not enhance these abnormalities....

  6. Sources of variability of resting cerebral blood flow in healthy subjects

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Kruuse, Christina Rostrup; Olesen, Jes

    2013-01-01

    Measurements of cerebral blood flow (CBF) show large variability among healthy subjects. The aim of the present study was to investigate the relative effect of established factors influencing CBF on the variability of resting CBF. We retrospectively analyzed spontaneous variability in 430 CBF...... measurements acquired in 152 healthy, young subjects using (133)Xe single-photon emission computed tomography. Cerebral blood flow was correlated positively with both end-tidal expiratory PCO2 (PETCO2) and female gender and inversely with hematocrit (Hct). Between- and within-subject CO2 reactivity...... when Hct was also accounted for. The present study confirms large between-subject variability in CBF measurements and that gender, Hct, and PETCO2 explain only a small part of this variability. This implies that a large fraction of CBF variability may be due to unknown factors such as differences...

  7. Characterisation of cerebral blood flow via determining the vascular mean transit time

    International Nuclear Information System (INIS)

    Lindner, P.; Thelen, M.

    1987-01-01

    By using a recently developed algorithm it is possible to quantify the dynamic information of a DSA sequence of the brain. The theory of algorithm allows to calculate vascular mean transit from time density curves. The algorithm minimizes the problems of densitometry with regard to 'quantitative DSA'. There is a strong correlation between vascular mean transit times and cerebral blood flow values, and therefore the results for mean transit times also correspond to the results obtained for cerebral blood flow. By computerized postprocessing of DSA-images it is possible to generate functional images of the brain with a spatial resolution that had not been attainable so far. The images represent the distribution pattern of reverse vascular mean transit times. The results from 36 patients with proven stenoses of the cervical vessels are reported. (orig.) [de

  8. Ultrasound tagged near infrared spectroscopy does not detect hyperventilation-induced reduction in cerebral blood flow

    DEFF Research Database (Denmark)

    Lund, Anton; Secher, Niels H.; Hirasawa, Ai

    2016-01-01

    Introduction: Continuous non-invasive monitoring of cerebral blood flow (CBF) may be important during anaesthesia and several options are available. We evaluated the CerOx monitor that employs ultrasound tagged near infrared spectroscopy to estimate changes in a CBF index (CFI).Methods: Seven...... healthy males (age 21-26 years) hyperventilated and were administered phenylephrine to increase mean arterial pressure by 20-30 mmHg. Frontal lobe tissue oxygenation (ScO2) and CFI were obtained using the CerOx and mean blood flow velocity in the middle cerebral artery (MCAvmean) was determined....... Administration of phenylephrine was not associated with any changes in MCAvmean, ICAf, ECAf, ScO2, SkBF, SskinO2, or CFI.Conclusion: The CerOx was able to detect a stable CBF during administration of phenylephrine. However, during hyperventilation MCAvmean and ICAf decreased while CFI increased, likely due...

  9. In vivo tomographic study of cerebral blood perfusion with SPECT in hemiparkinsonian monkeys

    International Nuclear Information System (INIS)

    Chen Shengdi; Xu Delong

    1994-01-01

    The authors present data on the utility of functional brain imaging with 99m Tc-ECD and SPECT in the study of MPTP induced hemiparkinsonism in monkeys. Injection of MPTP into the right common carotid artery of 10 rhesus monkeys produced hemiparkinsonism in the contralateral limbs which responded to antiparkinsonian medication. The unilateral neurotoxicity of the MPTP treated side was confirmed biochemically by marked reduction of DA contents in the nigrostriatum and histologically by selective neuronal loss in the substantia nigra. These monkeys with hemiparkinsonism were studied with SPECT using 99m Tc-ECD as perfusion marker. The results of brain scanning showed that the cerebral blood perfusion of MPTP treated side was significantly depleted 20∼90 days after MPTP intoxication, and returned to normal 8 months after perfusion. The experiment indicates that abnormal cerebral blood perfusion is involved in the course of parkinsonian pathophysiology

  10. Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography

    Science.gov (United States)

    Wang, Ruikang K.

    2014-01-01

    In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632

  11. Urine Test Strips to Exclude Cerebral Spinal Fluid Blood

    Directory of Open Access Journals (Sweden)

    Marshall, Robin A

    2011-02-01

    Full Text Available Introduction: Determining the presence or absence of red blood cells (RBC or their breakdown products in cerebrospinal fluid (CSF is essential for the evaluation of subarachnoid hemorrhage (SAH in headache patients. Current methodology for finding blood in the CSF is either spectrophotometric detection of pigment, which is time consuming and labor intensive, or visual assesment of samples for color change (xanthochromia, which is inaccurate. Bayer Multistix® urine test strips are designed to test urine for RBC by detecting the presence of hemoglobin. The aim of this pilot study was to evaluate the perfomance of urine reagent test strips for ruling out the presence of RBC in CSF.Methods: We compared color changes on Multistix® urine test strips to the standard of spectrophotometric absorbtion at 415nm and initial RBC counts in 138 visually clear CSF samples.Results: We performed Pearson Chi-Square and likelihood ratios on the results and found a correlation between a negative result on the urine test strip and less than 5 RBC per high power field and a spectrophotometric absorbance of less than 0.02% at 415nm in a CSF sample.Conclusion: These results warrant further investigation in the form of a prospective clinical validation as it may alter the emergency department evaluation for SAH. [West J Emerg Med. 2011;12(1:63-66.

  12. Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin

    International Nuclear Information System (INIS)

    Phelps, M.E.; Huang, S.C.; Hoffman, E.J.; Kuhl, D.E.

    1979-01-01

    Red blood cells, tagged with C-11 administration of 11 CO gas, have been used to portray the distribution of blood in the brain. To date, however, the accuracy of this approach has not been validated. We have performed in vitro measurements of regional cerebral blood volume (CBV) with red blood cells labeled with C-11 and Cr-51 in four dogs and two rhesus monkeys. These studies yielded a ratio of CBV/sub C-1/ to CBV/sub Cr-11/ of 1.02 +- 0.03 (s.d.) from 92 samples. A least-squares fit to these data showed CBV/sub C-11/ = 1.01 CBV/sub Cr-51/ + 0.037; P much 11 CO-RBC gave coefficients of variation of +- 2.8% and +- 4.8% for cross-sectional CBV and regional (approx.4 cm 2 ) CBV over an 80-min period. The average human CBV was found to be 4.2 +- 0.4 cc blood per 100 g tissue. Clear tomographic delineation of the distribution of CBV in human subjects is achieved with ECT, which provides a ''live'' measurement of this parameter of cerebral hemodynamics. These data demonstrate that 11 CO administered by single-breath inhalation is a reliable and accurate blood tracer for measurement of CBV with ECT

  13. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    Science.gov (United States)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  14. Alterations in Cerebral Cortical Glucose and Glutamine Metabolism Precedes Amyloid Plaques in the APPswe/PSEN1dE9 Mouse Model of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Andersen, Jens V; Christensen, Sofie K; Aldana, Blanca I

    2017-01-01

    slices of APPswe/PSEN1dE9 mice incubated in media containing [U-(13)C]glucose. No changes in glial [1,2-(13)C]acetate metabolism were observed. Cerebral cortical slices from APPswe/PSEN1dE9 mice exhibited a reduced capacity for uptake and oxidative metabolism of glutamine. Furthermore, the ATP synthesis......Alterations in brain energy metabolism have been suggested to be of fundamental importance for the development of Alzheimer's disease (AD). However, specific changes in brain energetics in the early stages of AD are poorly known. The aim of this study was to investigate cerebral energy metabolism...... in the APPswe/PSEN1dE9 mouse prior to amyloid plaque formation. Acutely isolated cerebral cortical and hippocampal slices of 3-month-old APPswe/PSEN1dE9 and wild-type control mice were incubated in media containing [U-(13)C]glucose, [1,2-(13)C]acetate or [U-(13)C]glutamine, and tissue extracts were analyzed...

  15. Aberrant Cerebral Blood Flow in Response to Hunger and Satiety in Women Remitted from Anorexia Nervosa

    OpenAIRE

    Christina E. Wierenga; Amanda Bischoff-Grethe; Grace Rasmusson; Ursula F. Bailer; Ursula F. Bailer; Laura A. Berner; Thomas T. Liu; Walter H. Kaye

    2017-01-01

    The etiology of pathological eating in anorexia nervosa (AN) remains poorly understood. Cerebral blood flow (CBF) is an indirect marker of neuronal function. In healthy adults, fasting increases CBF, reflecting increased delivery of oxygen and glucose to support brain metabolism. This study investigated whether women remitted from restricting-type AN (RAN) have altered CBF in response to hunger that may indicate homeostatic dysregulation contributing to their ability to restrict food. We comp...

  16. Cerebral blood flow and end-tidal PCO2 during prolonged acetazolamide treatment in humans

    DEFF Research Database (Denmark)

    Friberg, L; Kastrup, J; Rizzi, Dominick Albert

    1990-01-01

    One oral dose of 1,000 mg of acetazolamide caused an acute 38% increase in cerebral blood flow (CBF) in eight healthy volunteers. During the following 10 days the subjects took 1,000 mg acetazolamide daily. CBF normalized within the first 2 days. The drug induced mild hyperventilation, gradually ...... of a transient extracellular acidosis dilating brain arterioles, whereas increased ventilatory drive results from a gradually increasing mild intracellular acidosis in the brain....

  17. Changes in glutamate concentration, glucose metabolism, and cerebral blood flow during focal brain cooling of the epileptogenic cortex in humans.

    Science.gov (United States)

    Nomura, Sadahiro; Fujii, Masami; Inoue, Takao; He, Yeting; Maruta, Yuichi; Koizumi, Hiroyasu; Suehiro, Eiichi; Imoto, Hirochika; Ishihara, Hideyuki; Oka, Fumiaki; Matsumoto, Mishiya; Owada, Yuji; Yamakawa, Takeshi; Suzuki, Michiyasu

    2014-05-01

    Recently, focal brain cooling (FBC) was proposed as a method for treating refractory epilepsy. However, the precise influence of cooling on the molecular basis of epilepsy has not been elucidated. Thus the aim of this study was to assess the effect of FBC on glutamate (Glu) concentration, cerebral blood flow (CBF), and glucose metabolism in patients with intractable epilepsy. Nine patients underwent FBC at 15°C for 30 min prior to cortical resection (n = 6) or hippocampectomy (n = 3). Measurement of metabolites and CBF, as well as electrocorticography (ECoG), was performed. Epileptic discharge (ED), as observed by ECoG, disappeared in the cooling period and reappeared in the rewarming period. Glu concentrations were high during the precooling period and were reduced to 51.2% during the cooling period (p = 0.025). Glycerol levels showed a similar decrease (p = 0.028). Lactate concentration was high during the precooling period and was reduced during the cooling period (21.3% decrease; p = 0.005). Glucose and pyruvate levels were maintained throughout the procedure. Changes in CBF were parallel to those observed by ECoG. FBC reduced EDs and concentrations of Glu and glycerol. This demonstrates the neuroprotective effect of FBC. Our findings confirm that FBC is a reasonable and optimal treatment option for patients with intractable epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  18. Cerebral blood flow SPECT may be helpful in establishing the diagnosis of progressive supranuclear palsy and corticobasal degeneration

    International Nuclear Information System (INIS)

    Slawek, J.; Lass, P.; Derejko, M.; Dubaniewicz, M.

    2001-01-01

    We present 4 cases, which illustrate the usefulness of neuroimaging studies in atypical forms of Parkinsonism. Progressive Supranuclear Palsy (PSP) and Corticobasal Degeneration (CBD) are rare neurodegenerative progressive disorders of the central nervous system of unknown cause. The clinical accuracy in this diagnosis is not very high even in centres specialising in movement disorders. Functional imaging can be helpful in diagnosing PSP and CBD. We present the results of cerebral blood flow (CBF) SPECT scanning in 2 patients with PSP and 2 patients with CBD. This was performed using a triple-head gammacamera and 99m Tc-HMPAO. In PSP patients a diffuse frontal perfusion deficit was seen, eventually with striatal and occipital hypoperfusion. CT/MRI was either normal or showed a diffuse cortical-subcortical atrophy. In CBD patients left fronto-parieto-temporal cortex and a striatal hypoperfusion were shown. CT scanning was normal in one case and showed an asymmetrical temporo-parietal atrophy in second one. The pattern of diffuse frontal perfusions deficit in PSP and asymmetrical, contralateral to symptoms of CBD, cortico-subcortical hypoperfusion may be helpful in establishing the correct diagnosis. (author)

  19. A study of the acute effect of smoking on cerebral blood flow using 99mTc-ECD SPET

    International Nuclear Information System (INIS)

    Yamamoto, Yuka; Nishiyama, Yoshihiro; Monden, Toshihide; Satoh, Katashi; Ohkawa, Motoomi

    2003-01-01

    Cigarette smoking is known to be associated with atherosclerosis, is an important risk factor for stroke and has other serious effects. The aim of this study was to evaluate the acute effect of cigarette smoking on cerebral blood flow using statistical parametric mapping (SPM). Ten healthy volunteers with a smoking habit were studied using technetium-99m-labelled ethylcysteinate dimer single-photon emission tomography (SPET). We evaluated the regional cerebral blood flow under the smoking and resting states. The regional cerebral blood flow on smoking-activated SPET was significantly decreased in the whole brain as compared with that on resting SPET. Our findings therefore suggest that one of the acute effects of cigarette smoking is to induce a diffuse decrease in cerebral blood flow. (orig.)

  20. A study of the acute effect of smoking on cerebral blood flow using {sup 99m}Tc-ECD SPET

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yuka; Nishiyama, Yoshihiro; Monden, Toshihide; Satoh, Katashi; Ohkawa, Motoomi [Department of Radiology, Faculty of Medicine