WorldWideScience

Sample records for cerebral cortical 5-ht

  1. Gender and the use of hormonal contraception in women are not associated with cerebral cortical 5-HT 2A receptor binding

    Frokjaer, V G; Erritzoe, D; Madsen, J

    2009-01-01

    to frontolimbic 5-HT(2A) receptor binding and to be more pronounced in women, again, the effect of gender was not significant (P=0.42, n=127). Also, the use of hormonal contraception (n=14) within the group of pre-menopausal women (total n=29) was not associated with cortical 5-HT(2A) receptor binding (P=0.......31). In conclusion, neither gender, nor the use of hormonal contraception in premenopausal women was associated with cortical 5-HT(2A) receptor binding....... binding it is not clear if gender or use of hormonal contraception exhibits associations with 5-HT(2A) receptor binding. We found no significant effect of gender on cortical 5-HT(2A) receptor binding (P=0.15, n=132). When adjusting for the personality trait neuroticism, known to be positively correlated...

  2. Forced swimming test and fluoxetine treatment: in vivo evidence that peripheral 5-HT in rat platelet-rich plasma mirrors cerebral extracellular 5-HT levels, whilst 5-HT in isolated platelets mirrors neuronal 5-HT changes.

    Bianchi, M; Moser, C; Lazzarini, C; Vecchiato, E; Crespi, F

    2002-03-01

    Low levels of central serotonin (5-HT) have been related to the state of depression, and 5-HT is the major target of the newer antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs). Neurons and platelets display structural and functional similarities, so that the latter have been proposed as a peripheral model of central functions. In particular, in blood more than 99% of 5-HT is contained in platelets, so that one could consider changes in 5-HT levels in platelets as a mirror of changes in central 5-HT. Here, this hypothesis has been studied via the analysis of the influence of: (1) the forced swimming test (FST, which has been proved to be of utility to predict the clinical efficacy of antidepressants in rodents) and (2) treatment with the SSRI fluoxetine upon 5-HT levels monitored in brain regions and in peripheral platelets by means of electrochemical in vivo and ex vivo measurements. The results obtained confirm that the FST increases immobility; furthermore they show a parallel and significant decrease in cerebral (brain homogenate) and peripheral (in platelet-rich plasma, PRP) voltammetric 5-HT levels following the FST in naive rats. In addition, subchronic treatment with fluoxetine was followed by a significant increase in 5-HT levels in PRP, while the same SSRI treatment performed within the FST resulted in a decrease in the 5-HT levels in PRP. However, this decrease was inferior to that observed without SSRI treatment. These data suggest that there is an inverse relationship between immobility and the levels of 5-HT in PRP and that these peripheral 5-HT levels are sensitive to: (1) the FST, (2) the treatment with fluoxetine and (3) the combination of both treatments, i.e. SSRI + FST. It has been reported that SSRI treatment at first inhibits the 5-HT transporter in brain, resulting in increased extracellular 5-HT, while following sustained SSRI treatments decreased intracellular levels of central 5-HT were observed. Accordingly, the

  3. Effect of acute and chronic tramadol on [3H]-5-HT uptake in rat cortical synaptosomes

    Giusti, Pietro; Buriani, Alessandro; Cima, Lorenzo; Lipartiti, Maria

    1997-01-01

    Tramadol hydrochloride is a centrally acting opioid analgesic, the efficacy and potency of which is only five to ten times lower than that of morphine. Opioid, as well as non-opioid mechanisms, may participate in the analgesic activity of tramadol.[3H]-5-hydroxytryptamine (5-HT) uptake in rat isolated cortical synaptosomes was studied in the presence of tramadol, desipramine, fluoxetine, methadone and morphine. Methadone and tramadol inhibited synaptosomal [3H]-5-HT uptake with apparent Kis o...

  4. OCD is associated with an altered association between sensorimotor gating and cortical and subcortical 5-HT1b receptor binding.

    Pittenger, Christopher; Adams, Thomas G; Gallezot, Jean-Dominique; Crowley, Michael J; Nabulsi, Nabeel; James Ropchan; Gao, Hong; Kichuk, Stephen A; Simpson, Ryan; Billingslea, Eileen; Hannestad, Jonas; Bloch, Michael; Mayes, Linda; Bhagwagar, Zubin; Carson, Richard E

    2016-05-15

    Obsessive-compulsive disorder (OCD) is characterized by impaired sensorimotor gating, as measured using prepulse inhibition (PPI). This effect may be related to abnormalities in the serotonin (5-HT) system. 5-HT1B agonists can impair PPI, produce OCD-like behaviors in animals, and exacerbate OCD symptoms in humans. We measured 5-HT1B receptor availability using (11)C-P943 positron emission tomography (PET) in unmedicated, non-depressed OCD patients (n=12) and matched healthy controls (HC; n=12). Usable PPI data were obtained from 20 of these subjects (10 from each group). There were no significant main effects of OCD diagnosis on 5-HT1B receptor availability ((11)C-P943 BPND); however, the relationship between PPI and (11)C-P943 BPND differed dramatically and significantly between groups. 5-HT1B receptor availability in the basal ganglia and thalamus correlated positively with PPI in controls; these correlations were lost or even reversed in the OCD group. In cortical regions there were no significant correlations with PPI in controls, but widespread positive correlations in OCD patients. Positive correlations between 5-HT1B receptor availability and PPI were consistent across diagnostic groups only in two structures, the orbitofrontal cortex and the amygdala. Differential associations of 5-HT1B receptor availability with PPI in patients suggest functionally important alterations in the serotonergic regulation of cortical/subcortical balance in OCD. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Cortical and subcortical 5-HT2A receptor binding in neuroleptic-naive first-episode schizophrenic patients

    Erritzoe, David; Rasmussen, Hans; Kristiansen, Klaus Nyegaard

    2008-01-01

    MRIs and PET images. The cerebellum was used as a reference region. The binding potential of specific tracer binding (BP(p)) was used as the outcome measure. No significant difference was seen in cortical receptor distribution between patients and controls. An increase in 5-HT(2A) receptor binding...

  6. Enhancement of cortical extracellular 5-HT by 5-HT1A and 5-HT2C receptor blockade restores the antidepressant-like effect of citalopram in non-responder mice.

    Calcagno, Eleonora; Guzzetti, Sara; Canetta, Alessandro; Fracasso, Claudia; Caccia, Silvio; Cervo, Luigi; Invernizzi, Roberto W

    2009-07-01

    We recently found that the response of DBA/2 mice to SSRIs in the forced swim test (FST) was impaired and they also had a smaller basal and citalopram-stimulated increase in brain extracellular serotonin (5-HT) than 'responder' strains. We employed intracerebral microdialysis, FST and selective antagonists of 5-HT1A and 5-HT2C receptors to investigate whether enhancing the increase in extracellular 5-HT reinstated the anti-immobility effect of citalopram in the FST. WAY 100635 (0.3 mg/kg s.c.) or SB 242084 (1 mg/kg s.c.), respectively a selective 5-HT1A and 5-HT2C receptor antagonist, raised the effect of citalopram (5 mg/kg) on extracellular 5-HT in the medial prefrontal cortex of DBA/2N mice (citalopram alone 5.2+/-0.3 fmol/20 microl, WAY 100635+citalopram 9.9+/-2.1 fmol/20 microl, SB 242084+ citalopram 7.6+/-1.0 fmol/20 microl) to the level reached in 'responder' mice given citalopram alone. The 5-HT receptor antagonists had no effect on the citalopram-induced increase in extracellular 5-HT in the dorsal hippocampus. The combination of citalopram with WAY 100635 or SB 242084 significantly reduced immobility time in DBA/2N mice that otherwise did not respond to either drug singly. Brain levels of citalopram in mice given citalopram alone or with 5-HT antagonists did not significantly differ. The results confirm that impaired 5-HT transmission accounts for the lack of effect of citalopram in the FST and suggest that enhancing the effect of SSRIs on extracellular 5-HT, through selective blockade of 5-HT1A and 5-HT2C receptors, could be a useful strategy to restore the response in treatment-resistant depression.

  7. Selective up-regulation of 5-HT(1B/1D) receptors during organ culture of cerebral arteries

    Hoel, N L; Hansen-Schwartz, J; Edvinsson, L

    2001-01-01

    5-Hydroxytryptamine (5-HT) is thought to be involved in migraine headache and the pathophysiology of cerebrovascular diseases. Previous data show that organ culture induces a phenotypic change in cerebral vessels. Therefore we investigated if these changes also applied for the vasoconstrictive 5-HT......(cultured) 6.8+/-0.4). The response was inhibited by the 5-HT(1B/1D) selective antagonist GR55562 (pEC50(fresh) 5.1+/-0.2 and pEC50(cultured) 6.0+/-0.3). The organ model might mimic the phenotypic changes during cerebrovascular diseases....... receptors. Rat cerebral arteries express 5-HT2 receptors. Using organ culture we observed a phenotypic change with a selective up-regulation of 5-HT(1B/1D) receptors. This was revealed by an increased sensitivity to the selective 5-HT(1B/1D) agonist 5-CT after organ culture (pEC50(fresh) 5.6+/-0.2 and pEC50...

  8. Subarachnoid hemorrhage-induced upregulation of the 5-HT1B receptor in cerebral arteries in rats

    Hansen-Schwartz, Jacob; Hoel, Natalie Løvland; Xu, Cang-Bao

    2003-01-01

    experimental SAH. METHODS: Experimental SAH was induced in rats by using an autologous prechiasmatic injection of arterial blood. Two days later, the middle cerebral artery (MCA), posterior communicating artery (PCoA), and basilar artery (BA) were harvested and examined functionally with the aid of a sensitive...... RNA coding for the 5-HT1B receptor as determined by quantitative real-time PCR. In the PCoA no upregulation of the 5-HT1B receptor was observed. CONCLUSIONS: Changes in the receptor phenotype in favor of contractile receptors may well represent the end stage in a sequence of events leading from SAH...... to the actual development of cerebral vasospasm. Insight into the mechanism of upregulation may provide new targets for developing specific treatment against cerebral vasospasm....

  9. 5HT{sub 2} receptors in cerebral cortex of migraineurs studied using PET and {sup 18}F-fluorosetoperoene

    Chabriat, H.; Tehindrazanarivelo, A.; Vera, P.; Samson, Y.; Pappata, S.; Boullais, N.; Bousser, M.G. [Hospital Saint Antoine, Paris (France)

    1995-04-01

    Since the brain 5HT{sub 2} might be implicated in migraine pathogenesis, the authors have used positron emission tomography and {sup 18}F-fluorosetoperone, a 5HT{sub 2} specific radioligand, to investigate in vivo the cortical 5HT{sub 2} receptors in migraine subjects. Nine migraineurs who had either migraine with and without aura or only migraine without aura were studied between attacks. 12 unmedicated healthy subjects of similar mean age were used as controls. Brain radioactivity was measured after {sup 18}F-setoperone IV injection for 90 min. A decrease of the regional specific distribution volumes (SDV) of the ligand was observed both in migraineurs and in controls. The age adjusted group means of SDV did not differ between patients and controls for the whole and for the right or left frontal, temporal, parietal and occipital cortex. These results suggest that cortical 5HT{sub 2} receptors may be unaltered between attacks in migraine sufferers. 30 refs., 4 figs., 2 tabs.

  10. Cerebral 5-HT2A receptor binding is increased in patients with Tourette's syndrome

    Haugbøl, Steven; Pinborg, Lars H.; Regeur, Lisbeth

    2007-01-01

    Experimental and clinical data have suggested that abnormalities in the serotonergic neurotransmissions in frontal-subcortical circuits are involved in Tourette's syndrome. To test the hypothesis that the brain's 5-HT2A receptor binding is increased in patients with Tourette's syndrome, PET imagi...

  11. The effects of inorganic lead on the spontaneous and potassium-evoked release of 3H-5-HT from rat cortical synaptosome interaction with calcium

    Oudar, P.; Caillard, L.; Fillion, G.

    1989-01-01

    Interaction of lead with the serotonergic system has been studied in vitro in rat brain synaptosomal fraction prepared from cortical tissue. Synaptosomes were loaded with 3 H-5-HT and spontaneous and K + -evoked release of the amine was examined in the presence and the absence of calcium. It was shown that lead itself induced the release of 3 H-5-HT (EC50=27 μM). This effect decreased (40%) in the presence of calcium without modification of the EC50. Moreover, lead markedly inhibited the K + -evoked release of 3 H-5-HT observed in the presence of calcium. This effect was obtained either in the presence of lead or using synaptosomes pretreated with lead and washed. These results indicate that lead interferes with neuronal 5-HT release by mechanism(s) involving calcium. (author)

  12. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    Chow, Tiffany W; Mamo, David C; Uchida, Hiroyuki; Graff-Guerrero, Ariel; Houle, Sylvain; Smith, Gwenn S; Pollock, Bruce G; Mulsant, Benoit H

    2009-01-01

    Position emission tomography (PET) imaging using [ 18 F]-setoperone to quantify cortical 5-HT 2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT 2A receptor (5HT 2A R) binding potential. The purpose of this study was to assess the test-retest variability of [ 18 F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT 2A R availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [ 18 F]-setoperone PET scans on two separate occasions 5–16 weeks apart. The average difference in the binding potential (BP ND ) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. We conclude that the test-retest variability of [ 18 F]-setoperone PET in elderly subjects is comparable to that of [ 18 F]-setoperone and other 5HT 2A R radiotracers in younger subject samples

  13. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2A......)) receptor or serotonin transporter (SERT) binding in healthy subjects. No statistically significant differences in 5-HT(2A) receptor or SERT binding were found between the val/val and met carriers, nor were blood BDNF values associated with SERT binding or 5-HT(2A) receptor binding. In conclusion, val66met...... BDNF polymorphism status is not associated with changes in the serotonergic system. Moreover, BDNF levels in blood do not correlate with either 5-HT(2A) or SERT binding....

  14. Abeta(1-42) injection causes memory impairment, lowered cortical and serum BDNF levels, and decreased hippocampal 5-HT(2A) levels

    Christensen, R; Marcussen, Anders Bue; Wörtwein, Gitta

    2008-01-01

    was used to monitor Abeta(1-42) induced memory impairment. Memory impairment was seen 22 days after injection of Abeta(1-42) in the experimental group and until termination of the experiments. In the Abeta(1-42) injected animals we saw an abolished increase in serum BDNF levels that was accompanied...... by significant lower BDNF levels in frontal cortex and by an 8.5% reduction in hippocampal 5-HT(2A) receptor levels. A tendency towards lowered cortical 5-HT(2A) was also observed. These results indicate that the Abeta(1-42) associated memory deficit is associated with an impaired BDNF regulation, which...

  15. Protein kinase C inhibition prevents upregulation of vascular ET(B) and 5-HT(1B) receptors and reverses cerebral blood flow reduction after subarachnoid haemorrhage in rats

    Beg, Saema S; Hansen-Schwartz, Jacob A; Vikman, Petter J

    2007-01-01

    with Western blot; only PKCdelta and PKCalpha subtypes were increased after SAH RO-31-7549 treatment abolished this. At 2 days after the SAH basilar and middle cerebral arteries were harvested and the contractile response to endothelin-1 (ET-1; ET(A) and ET(B) receptor agonist) and 5-carboxamidotryptamine (5......-CT; 5-HT(1) receptor agonist) were investigated with a myograph. The contractile responses to ET-1 and 5-CT were increased (Poperated rats. In parallel, the ET(B) and 5-HT(1B) receptor mRNA and protein expression were significantly elevated after SAH, as analysed...

  16. Endothelium-dependent relaxant responses to selective 5-HT(1B/1D) receptor agonists in the isolated middle cerebral artery of the rat

    Hansen-Schwartz, Jacob; Løvland Hoel, Natalie; Nilsson, Elisabeth

    2003-01-01

    perfused. Luminally added 5- hydroxytryptamine (5-HT), sumatriptan and rizatriptan induced maximal dilatations of 22 +/- 4, 10 +/- 2 and 13 +/- 5%, respectively, compared to the resting diameter. The relaxant effect of sumatriptan was blocked by the 5- HT(1B/1D) receptor selective antagonist GR 55562 (10......The vasomotor effects of triptans in the middle cerebral artery (MCA) of rats were studied using the pressurised arteriography method and in vitro vessel baths. Using the arteriograph, MCAs from Sprague-Dawley rats were mounted on two glass micropipettes, pressurised to 85 mm Hg and luminally...... response to 5-HT and triptans. Using the vessel bath technique, MCA segments were mounted on two metal wires. The relaxant responses to sumatriptan could not be reproduced using this model; instead, weak contractile responses (6 +/- 3% of submaximal contractile capacity) were observed. The difference...

  17. Acute social defeat does not alter cerebral 5-HT2A receptor binding in male Wistar rats

    Visser, Anniek K D; Meerlo, Peter; Ettrup, Anders

    2014-01-01

    suppressed growth, but did not affect anxiety-like behavior in an open field test. A positron emission tomography scan with the 5-HT2A R tracer [11C]MDL 100907 1 day and 3 weeks after defeat did not show significant changes in receptor binding. To verify these results, [3H]MDL 100907 binding assays were...

  18. Longitudinal assessment of cerebral 5-HT{sub 2A} receptors in healthy elderly volunteers: an [{sup 18}F]-altanserin PET study

    Marner, Lisbeth; Knudsen, Gitte M.; Haugboel, Steven [University Hospital Rigshospitalet, Neurobiology Research Unit, N9201, Copenhagen O (Denmark); Holm, Soeren [Rigshospitalet, PET and Cyclotron Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen (Denmark); Baare, William [Hvidovre Hospital, Danish Research Center for Magnetic Resonance, Copenhagen (Denmark); Hasselbalch, Steen G. [University Hospital Rigshospitalet, Neurobiology Research Unit, N9201, Copenhagen O (Denmark)]|[Memory Disorders Research Unit, The Neuroscience Center, Copenhagen (Denmark)

    2009-02-15

    The serotonin 2A (5-HT{sub 2A}) receptor is of interest in several psychiatric and neurological diseases. In the present study we investigated the longitudinal stability of 5-HT{sub 2A} receptors and the stability of the quantification procedure in the elderly in order to be able to study elderly patients with neuropsychiatric diseases on a longitudinal basis. [{sup 18}F]-Altanserin PET was used to quantify 5-HT{sub 2A} receptors in 12 healthy elderly individuals at baseline and at 2 years in six volumes of interest. A bolus/infusion protocol was used to achieve the binding potential, BP{sub P}. The reproducibility as assessed in terms of variability and the reliability as assessed in terms of intraclass correlation coefficient (ICC) were used to compare inter- and intraobserver stability and to evaluate the effects of increasing complexity of partial volume (PV) corrections. We also compared the stability of our measurements over 2 years with the stability of data from an earlier study with 2-week test-retest measurements. BP{sub P} was unaltered at follow-up without the use of PV correction and when applying two-tissue PV correction, test-retest reproducibility was 12-15% and reliability 0.45-0.67 in the large bilateral regions such as the parietal, temporal, occipital and frontal cortices, while orbitofrontal and anterior cingulate cortical regions were less stable. The use of PV correction decreased the variability but also decreased the between-subject variation, thereby worsening the reliability. In healthy elderly individuals, brain 5-HT{sub 2A} receptor binding remains stable over 2 years, and acceptable reproducibility and reliability in larger regions and high intra- and interobserver stability allow the use of [{sup 18}F]-altanserin in longitudinal studies of patients with neuropsychiatric disorders. (orig.)

  19. Radiosynthesis and in vivo evaluation of novel radioligands for PET imaging of cerebral 5-HT7 receptors

    Hansen, Hanne D; Herth, Matthias M; Ettrup, Anders

    2014-01-01

    in the living brain. Here, we present the radiosynthesis and in vivo evaluation of Cimbi-712 (3-{4-[4-(4-methylphenyl)piperazine-1-yl]butyl}p-1,3-dihydro-2H-indol-2-one) and Cimbi-717 (3-{4-[4-(3-methoxyphenyl)piperazine-1-yl]butyl}-1,3-dihydro-2H-indol-2-one) as selective 5-HT7R PET radioligands in the pig...

  20. Longitudinal assessment of cerebral 5-HT2A receptors in healthy elderly volunteers: an [18F]-altanserin PET study

    Marner, Lisbeth; Knudsen, Gitte M; Haugbøl, Steven

    2009-01-01

    patients with neuropsychiatric diseases on a longitudinal basis. METHODS: [(18)F]-Altanserin PET was used to quantify 5-HT(2A) receptors in 12 healthy elderly individuals at baseline and at 2 years in six volumes of interest. A bolus/infusion protocol was used to achieve the binding potential, BP(P...... of our measurements over 2 years with the stability of data from an earlier study with 2-week test-retest measurements. RESULTS: BP(P) was unaltered at follow-up without the use of PV correction and when applying two-tissue PV correction, test-retest reproducibility was 12-15% and reliability 0...

  1. The role of 5-HT(1A) receptors in learning and memory.

    Ogren, Sven Ove; Eriksson, Therese M; Elvander-Tottie, Elin; D'Addario, Claudio; Ekström, Joanna C; Svenningsson, Per; Meister, Björn; Kehr, Jan; Stiedl, Oliver

    2008-12-16

    The ascending serotonin (5-HT) neurons innervate the cerebral cortex, hippocampus, septum and amygdala, all representing brain regions associated with various domains of cognition. The 5-HT innervation is diffuse and extensively arborized with few synaptic contacts, which indicates that 5-HT can affect a large number of neurons in a paracrine mode. Serotonin signaling is mediated by 14 receptor subtypes with different functional and transductional properties. The 5-HT(1A) subtype is of particular interest, since it is one of the main mediators of the action of 5-HT. Moreover, the 5-HT(1A) receptor regulates the activity of 5-HT neurons via autoreceptors, and it regulates the function of several neurotransmitter systems via postsynaptic receptors (heteroreceptors). This review assesses the pharmacological and genetic evidence that implicates the 5-HT(1A) receptor in learning and memory. The 5-HT(1A) receptors are in the position to influence the activity of glutamatergic, cholinergic and possibly GABAergic neurons in the cerebral cortex, hippocampus and in the septohippocampal projection, thereby affecting declarative and non-declarative memory functions. Moreover, the 5-HT(1A) receptor regulates several transduction mechanisms such as kinases and immediate early genes implicated in memory formation. Based on studies in rodents the stimulation of 5-HT(1A) receptors generally produces learning impairments by interfering with memory-encoding mechanisms. In contrast, antagonists of 5-HT(1A) receptors facilitate certain types of memory by enhancing hippocampal/cortical cholinergic and/or glutamatergic neurotransmission. Some data also support a potential role for the 5-HT(1A) receptor in memory consolidation. Available results also implicate the 5-HT(1A) receptor in the retrieval of aversive or emotional memories, supporting an involvement in reconsolidation. The contribution of 5-HT(1A) receptors in cognitive impairments in various psychiatric disorders is still

  2. Serotonergic Regulation of Prefrontal Cortical Circuitries Involved in Cognitive Processing: A Review of Individual 5-HT Receptor Mechanisms and Concerted Effects of 5-HT Receptors Exemplified by the Multimodal Antidepressant Vortioxetine.

    Leiser, Steven C; Li, Yan; Pehrson, Alan L; Dale, Elena; Smagin, Gennady; Sanchez, Connie

    2015-07-15

    It has been known for several decades that serotonergic neurotransmission is a key regulator of cognitive function, mood, and sleep. Yet with the relatively recent discoveries of novel serotonin (5-HT) receptor subtypes, as well as an expanding knowledge of their expression level in certain brain regions and localization on certain cell types, their involvement in cognitive processes is still emerging. Of particular interest are cognitive processes impacted in neuropsychiatric and neurodegenerative disorders. The prefrontal cortex (PFC) is critical to normal cognitive processes, including attention, impulsivity, planning, decision-making, working memory, and learning or recall of learned memories. Furthermore, serotonergic dysregulation within the PFC is implicated in many neuropsychiatric disorders associated with prominent symptoms of cognitive dysfunction. Thus, it is important to better understand the overall makeup of serotonergic receptors in the PFC and on which cell types these receptors mediate their actions. In this Review, we focus on 5-HT receptor expression patterns within the PFC and how they influence cognitive behavior and neurotransmission. We further discuss the net effects of vortioxetine, an antidepressant acting through multiple serotonergic targets given the recent findings that vortioxetine improves cognition by modulating multiple neurotransmitter systems.

  3. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding

    da Cunha-Bang, Sofi; Mc Mahon, Brenda; Fisher, Patrick MacDonald

    2016-01-01

    of 5-HT, we here test the hypothesis in healthy men and women that brain 5-HT levels, as indexed by cerebral 5-HT4R, are inversely correlated with trait aggression and impulsivity. Sixty-one individuals (47 men) underwent positron emission tomography scanning with the radioligand [(11)C]SB207145......Impulsive aggression has commonly been associated with a dysfunction of the serotonin (5-HT) system: many, but not all, studies point to an inverse relationship between 5-HT and aggression. As cerebral 5-HT4 receptor (5-HT4R) binding has recently been recognized as a proxy for stable brain levels...... for quantification of brain 5-HT4R binding. The Buss-Perry Aggression Questionnaire (BPAQ) and the Barratt Impulsiveness Scale were used for assessment of trait aggression and trait impulsivity. Among male subjects, there was a positive correlation between global 5-HT4R and BPAQ total score (P = 0.037) as well...

  4. Enhanced down regulation of cortical ±-propranolol sensitive [3H]-DHA binding sites by co-administration of DMI and 5-HT1A partial agonist gepirone

    Geissler, M.A.; Yocca, F.D.

    1990-01-01

    The putative interrelationship between the noradrenergic and serotonergic systems has been supported by numerous studies. Recently, Dudley et al. (1989) demonstrated significant down regulation of cortical β-adrenergic receptors by co-administration of desipramine (DMI), a norepinephrine uptake inhibitor, and the full 5-HT 1A agonist 8-OH-DPAT. To this end, the effects of acute and chronic (4 and 14 day) administration of DMI, gepirone, a selective 5-HT 1A post-synaptic partial agonist, as well as a combination of the two, on cortical (±)-propranolol sensitive [ 3 H]-DHA binding sites were examined in rats. Down regulation was apparent after 4 and 14 day treatment with DMI. However, this was not the case with gepirone. Of particular importance is the demonstration of a greater magnitude of down regulation with co-administration of a greater magnitude of down regulation with co-administration of DMI and gepirone. These results suggests that alteration in rat cortical (±)-propranolol sensitive [ 3 H]-DHA binding sites by noradrenergic uptake inhibitors can be further modulated by selective partial agonist activity at central 5-HT 1A postsynaptic receptors. Further data on the co-administration of DMI and BMY 7378 (7,9-dioxo-8-[2-(4-o-methoxyphenylpiperazinyl)ethyl]-8-azaspiro[4,5]decane dihydrochloride), a weak partial agonist at postsynaptic 5-HT 1A receptors, are also presented

  5. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding

    Mc Mahon, Brenda; MacDonald Fisher, Patrick; Jensen, Peter Steen; Svarer, Claus; Moos Knudsen, Gitte

    2016-01-01

    Impulsive aggression has commonly been associated with a dysfunction of the serotonin (5-HT) system: many, but not all, studies point to an inverse relationship between 5-HT and aggression. As cerebral 5-HT4 receptor (5-HT4R) binding has recently been recognized as a proxy for stable brain levels of 5-HT, we here test the hypothesis in healthy men and women that brain 5-HT levels, as indexed by cerebral 5-HT4R, are inversely correlated with trait aggression and impulsivity. Sixty-one individuals (47 men) underwent positron emission tomography scanning with the radioligand [11C]SB207145 for quantification of brain 5-HT4R binding. The Buss–Perry Aggression Questionnaire (BPAQ) and the Barratt Impulsiveness Scale were used for assessment of trait aggression and trait impulsivity. Among male subjects, there was a positive correlation between global 5-HT4R and BPAQ total score (P = 0.037) as well as BPAQ physical aggression (P = 0.025). No main effect of global 5-HT4R on trait aggression or impulsivity was found in the mixed gender sample, but there was evidence for sex interaction effects in the relationship between global 5-HT4R and BPAQ physical aggression. In conclusion we found that low cerebral 5-HT levels, as indexed by 5-HT4R binding were associated with high trait aggression in males, but not in females. PMID:26772668

  6. Two dose investigation of the 5-HT-agonist psilocybin on relative and global cerebral blood flow.

    Lewis, Candace R; Preller, Katrin H; Kraehenmann, Rainer; Michels, Lars; Staempfli, Philipp; Vollenweider, Franz X

    2017-10-01

    Psilocybin, the active compound in psychedelic mushrooms, is an agonist of various serotonin receptors. Seminal psilocybin positron emission tomography (PET) research suggested regional increases in glucose metabolism in frontal cortex (hyperfrontality). However, a recent arterial spin labeling (ASL) study suggests psilocybin may lead to hypo-perfusion in various brain regions. In this placebo-controlled, double-blind study we used pseudo-continuous ASL (pCASL) to measure perfusion changes, with and without adjustment for global brain perfusion, after two doses of oral psilocybin (low dose: 0.160 mg/kg; high dose: 0.215 mg/kg) in two groups of healthy controls (n = 29 in both groups, total N = 58) during rest. We controlled for sex and age and used family-wise error corrected p values in all neuroimaging analyses. Both dose groups reported profound subjective drug effects as measured by the Altered States of Consciousness Rating Scale (5D-ASC) with the high dose inducing significantly larger effects in four out of the 11 scales. After adjusting for global brain perfusion, psilocybin increased relative perfusion in distinct right hemispheric frontal and temporal regions and bilaterally in the anterior insula and decreased perfusion in left hemispheric parietal and temporal cortices and left subcortical regions. Whereas, psilocybin significantly reduced absolute perfusion in frontal, temporal, parietal, and occipital lobes, and bilateral amygdalae, anterior cingulate, insula, striatal regions, and hippocampi. Our analyses demonstrate consistency with both the hyperfrontal hypothesis of psilocybin and the more recent study demonstrating decreased perfusion, depending on analysis method. Importantly, our data illustrate that relative changes in perfusion should be understood and interpreted in relation to absolute signal variations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A nonlinear relationship between cerebral serotonin transporter and 5-HT(2A) receptor binding: an in vivo molecular imaging study in humans

    Erritzoe, David; Holst, Klaus; Frokjaer, Vibe G.

    2010-01-01

    Serotonergic neurotransmission is involved in the regulation of physiological functions such as mood, sleep, memory, and appetite. Within the serotonin transmitter system, both the postsynaptically located serotonin 2A (5-HT2A) receptor and the presynaptic serotonin transporter (SERT) are sensitive...... tomography. Within each individual, a regional intercorrelation for the various brain regions was seen with both markers, most notably for 5-HT2A receptor binding. An inverted U-shaped relationship between the 5-HT2A receptor and the SERT binding was identified. The observed regional intercorrelation...

  8. Estimates of regional cerebral blood flow and 5-HT2A receptor density in impulsive, aggressive dogs with 99mTc-ECD and 123I-5-I-R91150

    Peremans, Kathelijne; Coopman, Frank; Verschooten, Francis; Bree, Henri van; Audenaert, Kurt; Heeringen, Kees van; Blanckaert, Peter; Slegers, Guido; Jacobs, Filip; Otte, Andreas; Dierckx, Rudi; Mertens, John

    2003-01-01

    Impulsive aggression in dogs has an important impact on human public health. Better insight into the pathophysiology of this phenomenon could lead to more adequate diagnosis and treatment. Indirect in vivo research on peripheral body fluids and post-mortem studies in impulsive animals and humans indicate a deficient serotonergic system in general and disturbances in the serotonin-2A (5-HT2A) receptor in particular. In this study, brain perfusion and the 5-HT2A receptors were examined in impulsive, aggressive dogs, in comparison with a group of normally behaving animals. In order to decide which dogs to include in this study, owners were asked to describe the general behaviour of the dogs, the circumstances in which aggression occurred and their conduct during aggressive acts. Finally, 19 dogs were retained for this study, showing, according to different behavioural specialists, disinhibited dominance aggression. Functional imaging studies were performed on all these dogs. Single-photon emission tomography (SPET) was used to measure regional brain perfusion using technetium-99m labelled ethyl cysteinate dimer (ECD). The 5-HT2A receptor binding properties were investigated using the selective radioligand iodine-123 labelled 5-I-R91150. A significant increase in uptake of the 5-HT2A radioligand was noted in all cortical areas. No significant alterations were found in regional cortical perfusion, indicating that the increased binding index was not a consequence of increased tracer delivery. This study supports a role for the serotonergic system in canine impulsive aggression. (orig.)

  9. Estimates of regional cerebral blood flow and 5-HT2A receptor density in impulsive, aggressive dogs with {sup 99m}Tc-ECD and {sup 123}I-5-I-R91150

    Peremans, Kathelijne; Coopman, Frank; Verschooten, Francis; Bree, Henri van [Department of Medical Imaging, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke (Belgium); Audenaert, Kurt; Heeringen, Kees van [Department of Psychiatry and Medical Psychology, Faculty of Medicine, Ghent University Hospital (Belgium); Blanckaert, Peter; Slegers, Guido [Laboratory of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University (Belgium); Jacobs, Filip; Otte, Andreas; Dierckx, Rudi [Division of Nuclear Medicine, Ghent University Hospital (Belgium); Mertens, John [VUB-Cyclotron, Brussels (Belgium)

    2003-11-01

    Impulsive aggression in dogs has an important impact on human public health. Better insight into the pathophysiology of this phenomenon could lead to more adequate diagnosis and treatment. Indirect in vivo research on peripheral body fluids and post-mortem studies in impulsive animals and humans indicate a deficient serotonergic system in general and disturbances in the serotonin-2A (5-HT2A) receptor in particular. In this study, brain perfusion and the 5-HT2A receptors were examined in impulsive, aggressive dogs, in comparison with a group of normally behaving animals. In order to decide which dogs to include in this study, owners were asked to describe the general behaviour of the dogs, the circumstances in which aggression occurred and their conduct during aggressive acts. Finally, 19 dogs were retained for this study, showing, according to different behavioural specialists, disinhibited dominance aggression. Functional imaging studies were performed on all these dogs. Single-photon emission tomography (SPET) was used to measure regional brain perfusion using technetium-99m labelled ethyl cysteinate dimer (ECD). The 5-HT2A receptor binding properties were investigated using the selective radioligand iodine-123 labelled 5-I-R91150. A significant increase in uptake of the 5-HT2A radioligand was noted in all cortical areas. No significant alterations were found in regional cortical perfusion, indicating that the increased binding index was not a consequence of increased tracer delivery. This study supports a role for the serotonergic system in canine impulsive aggression. (orig.)

  10. Deficits in LTP induction by 5-HT2A receptor antagonist in a mouse model for fragile X syndrome.

    Zhao-hui Xu

    Full Text Available Fragile X syndrome is a common inherited form of mental retardation caused by the lack of fragile X mental retardation protein (FMRP because of Fmr1 gene silencing. Serotonin (5-HT is significantly increased in the null mutants of Drosophila Fmr1, and elevated 5-HT brain levels result in cognitive and behavioral deficits in human patients. The serotonin type 2A receptor (5-HT2AR is highly expressed in the cerebral cortex; it acts on pyramidal cells and GABAergic interneurons to modulate cortical functions. 5-HT2AR and FMRP both regulate synaptic plasticity. Therefore, the lack of FMRP may affect serotoninergic activity. In this study, we determined the involvement of FMRP in the 5-HT modulation of synaptic potentiation with the use of primary cortical neuron culture and brain slice recording. Pharmacological inhibition of 5-HT2AR by R-96544 or ketanserin facilitated long-term potentiation (LTP in the anterior cingulate cortex (ACC of WT mice. The prefrontal LTP induction was dependent on the activation of NMDARs and elevation of postsynaptic Ca(2+ concentrations. By contrast, inhibition of 5-HT2AR could not restore the induction of LTP in the ACC of Fmr1 knock-out mice. Furthermore, 5-HT2AR inhibition induced AMPA receptor GluR1 subtype surface insertion in the cultured ACC neurons of Fmr1 WT mice, however, GluR1 surface insertion by inhibition of 5-HT2AR was impaired in the neurons of Fmr1KO mice. These findings suggested that FMRP was involved in serotonin receptor signaling and contributed in GluR1 surface expression induced by 5-HT2AR inactivation.

  11. Yokukansan, a traditional Japanese herbal medicine, enhances the anxiolytic effect of fluvoxamine and reduces cortical 5-HT2A receptor expression in mice.

    Ohno, Rintaro; Miyagishi, Hiroko; Tsuji, Minoru; Saito, Atsumi; Miyagawa, Kazuya; Kurokawa, Kazuhiro; Takeda, Hiroshi

    2018-04-24

    Yokukansan is a traditional Japanese herbal medicine that has been approved in Japan as a remedy for neurosis, insomnia, and irritability in children. It has also been reported to improve behavioral and psychological symptoms in patients with various forms of dementia. To evaluate the usefulness of co-treatment with an antidepressant and an herbal medicine in the psychiatric field, the current study examined the effect of yokukansan on the anxiolytic-like effect of fluvoxamine in mice. The anxiolytic-like effect in mice was estimated by the contextual fear conditioning paradigm. Contextual fear conditioning consisted of two sessions, i.e., day 1 for the conditioning session and day 2 for the test session. The expression levels of 5-HT 1A and 5-HT 2A receptor in the mouse brain regions were quantified by western blot analysis. A single administration of fluvoxamine (5-20 mg/kg, i.p.) before the test session dose-dependently and significantly suppressed freezing behavior in mice. In the combination study, a sub-effective dose of fluvoxamine (5 mg/kg, i.p.) significantly suppressed freezing behavior in mice that had been repeatedly pretreated with yokukansan (0.3 and 1 g/kg, p.o.) once a day for 6 days after the conditioning session. Western blot analysis revealed that the expression level of 5-HT 2A receptor was specifically decreased in the prefrontal cortex of mice that had been administered yokukansan and fluvoxamine. Furthermore, microinjection of the 5-HT 2A receptor antagonist ketanserin (5 nmol/mouse) into the prefrontal cortex significantly suppressed freezing behavior. The present findings indicate that repeated treatment with yokukansan synergistically enhances the anxiolytic-like effect of fluvoxamine in the contextual fear conditioning paradigm in mice in conjunction with a decrease in 5-HT 2A receptor-mediated signaling in the prefrontal cortex. Therefore, combination therapy with fluvoxamine and yokukansan may be beneficial for the treatment of

  12. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding.

    da Cunha-Bang, Sofi; Mc Mahon, Brenda; Fisher, Patrick MacDonald; Jensen, Peter Steen; Svarer, Claus; Knudsen, Gitte Moos

    2016-04-01

    Impulsive aggression has commonly been associated with a dysfunction of the serotonin (5-HT) system: many, but not all, studies point to an inverse relationship between 5-HT and aggression. As cerebral 5-HT4 receptor (5-HT4R) binding has recently been recognized as a proxy for stable brain levels of 5-HT, we here test the hypothesis in healthy men and women that brain 5-HT levels, as indexed by cerebral 5-HT4R, are inversely correlated with trait aggression and impulsivity. Sixty-one individuals (47 men) underwent positron emission tomography scanning with the radioligand [(11)C]SB207145 for quantification of brain 5-HT4R binding. The Buss-Perry Aggression Questionnaire (BPAQ) and the Barratt Impulsiveness Scale were used for assessment of trait aggression and trait impulsivity. Among male subjects, there was a positive correlation between global 5-HT4R and BPAQ total score (P = 0.037) as well as BPAQ physical aggression (P = 0.025). No main effect of global 5-HT4R on trait aggression or impulsivity was found in the mixed gender sample, but there was evidence for sex interaction effects in the relationship between global 5-HT4R and BPAQ physical aggression. In conclusion we found that low cerebral 5-HT levels, as indexed by 5-HT4R binding were associated with high trait aggression in males, but not in females. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Cerebral 5-HT2A receptor binding, but not mGluR2, is increased in tryptophan hydroxylase 2 decrease-of-function mice

    Jørgensen, Christinna Vangsgaard; Jacobsen, Jacob P; Caron, Marc G

    2013-01-01

    Transgenic mice with a knock-in (KI) of a tryptophan hydroxylase 2 (Tph2) R439H mutation, analogous to the Tph2 R441H single-nucleotide polymorphism originally identified in a late life depression cohort, have markedly reduced levels of 5-hydroxytryptamine (5-HT). These Tph2KI mice are therefore...

  14. 5-HT causes splanchnic venodilation.

    Seitz, Bridget M; Orer, Hakan S; Krieger-Burke, Teresa; Darios, Emma S; Thompson, Janice M; Fink, Gregory D; Watts, Stephanie W

    2017-09-01

    Serotonin [5-hydroxytryptamine (5-HT)] causes relaxation of the isolated superior mesenteric vein, a splanchnic blood vessel, through activation of the 5-HT 7 receptor. As part of studies designed to identify the mechanism(s) through which chronic (≥24 h) infusion of 5-HT lowers blood pressure, we tested the hypothesis that 5-HT causes in vitro and in vivo splanchnic venodilation that is 5-HT 7 receptor dependent. In tissue baths for measurement of isometric contraction, the portal vein and abdominal inferior vena cava relaxed to 5-HT and the 5-HT 1/7 receptor agonist 5-carboxamidotryptamine; relaxation was abolished by the 5-HT 7 receptor antagonist SB-269970. Western blot analyses showed that the abdominal inferior vena cava and portal vein express 5-HT 7 receptor protein. In contrast, the thoracic vena cava, outside the splanchnic circulation, did not relax to serotonergic agonists and exhibited minimal expression of the 5-HT 7 receptor. Male Sprague-Dawley rats with chronically implanted radiotelemetry transmitters underwent repeated ultrasound imaging of abdominal vessels. After baseline imaging, minipumps containing vehicle (saline) or 5-HT (25 μg·kg -1 ·min -1 ) were implanted. Twenty-four hours later, venous diameters were increased in rats with 5-HT-infusion (percent increase from baseline: superior mesenteric vein, 17.5 ± 1.9; portal vein, 17.7 ± 1.8; and abdominal inferior vena cava, 46.9 ± 8.0) while arterial pressure was decreased (~13 mmHg). Measures returned to baseline after infusion termination. In a separate group of animals, treatment with SB-269970 (3 mg/kg iv) prevented the splanchnic venodilation and fall in blood pressure during 24 h of 5-HT infusion. Thus, 5-HT causes 5-HT 7 receptor-dependent splanchnic venous dilation associated with a fall in blood pressure. NEW & NOTEWORTHY This research is noteworthy because it combines and links, through the 5-HT 7 receptor, an in vitro observation (venorelaxation) with in vivo events

  15. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    Oliver eStiedl

    2015-08-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.

  16. Permanent Distal Occlusion of Middle Cerebral Artery in Rat Causes Local Increased ETB, 5-HT1B and AT1 Receptor-Mediated Contractility Downstream of Occlusion

    Rasmussen, Marianne N P; Hornbak, Malene; Larsen, Stine S

    2013-01-01

    Background/Aims: In response to experimental stroke, a characteristic functional and expressional upregulation of contractile G-protein-coupled receptors has been uncovered in the affected cerebral vasculature; however, the mechanism initiating this phenomenon remains unknown. Methods: Using...... a model of permanent distal occlusion of rat middle cerebral arteries, we investigated whether there was a regional difference in receptor-mediated contractility of segments located upstream and downstream of the occlusion site. The contractile response to endothelin, angiotensin and 5-hydroxytryptamine...... receptor stimulation was studied by sensitive wire myograph. Results: Only downstream segments exhibited an augmented contractile response to stimulation with each of the three ligands, with the response towards sarafotoxin 6c being especially augmented compared to sham, upstream and contralateral controls...

  17. The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord.

    Saruhashi, Yasuo; Matsusue, Yoshitaka; Fujimiya, Mineko

    2009-09-01

    Experimental spinal cord injury. To determine the role of serotonin (5-HT) and 5-HT transporter in recovery from spinal cord injury. We examined 5-HT and 5-HT transporter of spinal cord immunohistologically and assessed locomotor recovery after extradural compression at the thoracic (T8) spinal cord in 21 rats. Eighteen rats had laminectomy and spinal cord injury, while the remaining three rats received laminectomy only. All rats were evaluated every other day for 4 weeks, using a 0-14 point scale open field test. Extradural compression markedly reduced mean hindlimbs scores from 14 to 1.5 +/- 2.0 (mean +/- standard error of mean). The rats recovered apparently normal walking by 4 weeks. The animals were perfused with fixative 1-3 days, 1, 2 and 4 weeks (three rats in each) after a spinal cord injury. The 5-HT transporter immunohistological study revealed a marked reduction of 5-HT transporter-containing terminals by 1 day after injury. By 4 weeks after injury, 5-HT transporter immunoreactive terminals returned to the control level. The 5-HT immunohistological study revealed a reduction of 5-HT-containing terminals by 1 week after injury. By 4 weeks after injury, 5-HT immunoreactive fibers and terminals returned to the control level. We estimated the recovery of 5-HT transporter and 5-HT neural elements in lumbosacral ventral horn by ranking 5-HT transporter and 5-HT staining intensity and counting 5-HT and 5-HT transporter terminals. The return of 5-HT transporter and 5-HT immunoreactivity of the lumbosacral ventral horn correlated with locomotor recovery, while 5-HT transporter showed closer relationship with locomotor recovery than 5-HT. The presence of 5-HT transporter indicates that the 5-HT fibers certainly function. This study shows that return of the function of 5-HT fibers predict the time course and extent of locomotory recovery after thoracic spinal cord injury.

  18. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    Stiedl, O.; Pappa, E.; Konradssson-Geuken, A.; Ogren, S.O.

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models.

  19. 5-HT loss in rat brain following 3,4-methylenedioxymethamphetamine (MDMA), p-chloroamphetamine and fenfluramine administration and effects of chlormethiazole and dizocilpine.

    Colado, M I; Murray, T K; Green, A R

    1993-03-01

    1. The present study has investigated whether the neurotoxic effects of the relatively selective 5-hydroxytryptamine (5-HT) neurotoxins, 3,4-methylenedioxymethamphetamine (MDMA or 'Ecstasy'), p-chloroamphetamine (PCA) and fenfluramine on hippocampal and cortical 5-HT terminals in rat brain could be prevented by administration of either chlormethiazole or dizocilpine. 2. Administration of MDMA (20 mg kg-1, i.p.) resulted in an approximate 30% loss of cortical and hippocampal 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) content 4 days later. Injection of chlormethiazole (50 mg kg-1) 5 min before and 55 min after the MDMA provided complete protection in both regions, while dizocilpine (1 mg kg-1, i.p.) protected only the hippocampus. 3. Administration of a single dose of chlormethiazole (100 mg kg-1) 20 min after the MDMA also provided complete protection to the hippocampus but not the cortex. This regime also attenuated the sustained hyperthermia (approx +2.5 degrees C) induced by the MDMA injection. 4. Injection of PCA (5 mg kg-1, i.p.) resulted in a 70% loss of 5-HT and 5-HIAA content in hippocampus and cortex 4 days later. Injection of chlormethiazole (100 mg kg-1, i.p.) or dizocilpine (1 mg kg-1, i.p.) 5 min before and 55 min after the PCA failed to protect against the neurotoxicity, nor was protection afforded by chlormethiazole when a lower dose of PCA (2.5 mg kg-1, i.p.) was given which produced only a 30% loss of 5-HT content. Chlormethiazole did prevent the hyperthermia induced by PCA (5 mg kg-1), while the lower dose of PCA (2.5 mg kg-1) did not produce a change in body temperature.5. Neither chlormethiazole nor dizocilpine prevented the neurotoxic loss of hippocampal or cortical 5-HT neurones measured 4 days following administration of fenfluramine (25 mg kg-1, i.p.).6. In general, chlormethiazole and dizocilpine were effective antagonists of the 5-HT-mediated behaviours of head weaving and forepaw treading which appeared following injection of all three

  20. Synthesis and In Vitro Evaluation of Oxindole Derivatives as Potential Radioligands for 5-HT7 Receptor Imaging with PET

    Herth, Matthias Manfred; Volk, Balázs; Pallagi, Katalin

    2012-01-01

    The most recently discovered serotonin (5-HT) receptor subtype, 5-HT(7), is considered to be associated with several CNS disorders. Noninvasive in vivo positron emission tomography (PET) studies of cerebral 5-HT(7) receptors could provide a significant advance in the understanding of the neurobio...

  1. Psychopharmacology of 5-HT1A receptors

    Cowen, Philip J.

    2000-01-01

    Serotonin 1A (5-HT 1A ) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT 1A receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT 1A receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT 1A receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT 1A receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT 1A receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT 1A autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT 1A receptor antagonists

  2. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  3. The 5-HT(4) receptor levels in hippocampus correlates inversely with memory test performance in humans

    Haahr, Mette Ewers; Fisher, Patrick; Holst, Klaus Kähler

    2013-01-01

    The cerebral serotonin (5-HT) system is involved in cognitive functions such as memory and learning and animal studies have repeatedly shown that stimulation of the 5-HT type 4 receptor (5-HT(4) R) facilitates memory and learning and further that the 5-HT(4) R modulates cellular memory processes...... in hippocampus. However, any associations between memory functions and the expression of the 5-HT(4) R in the human hippocampus have not been investigated. Using positron emission tomography with the tracer [(11) C]SB207145 and Reys Auditory Verbal Learning Test we aimed to examine the individual variation...... of the 5-HT4R binding in hippocampus in relation to memory acquisition and consolidation in healthy young volunteers. We found significant, negative associations between the immediate recall scores and left and right hippocampal BP(ND) , (p = 0.009 and p = 0.010 respectively) and between the right...

  4. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission.

    Sengupta, Ayesha; Bocchio, Marco; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2017-02-15

    The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10-20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT 2A and 5-HT 1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT 1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output. SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders

  5. 5HT-1A receptors and anxiety-like behaviours: studies in rats with constitutionally upregulated/downregulated serotonin transporter.

    Bordukalo-Niksic, Tatjana; Mokrovic, Gordana; Stefulj, Jasminka; Zivin, Marko; Jernej, Branimir; Cicin-Sain, Lipa

    2010-12-01

    Altered activity of brain serotonergic (5HT) system has been implicated in a wide range of behaviours and behavioural disorders, including anxiety. Functioning of 5HT-1A receptor has been suggested as a modulator of emotional balance in both, normal and pathological forms of anxiety. Here, we studied serotonergic modulation of anxiety-like behaviour using a genetic rat model with constitutional differences in 5HT homeostasis, named Wistar-Zagreb 5HT (WZ-5HT) rats. The model, consisting of high-5HT and low-5HT sublines, was developed by selective breeding of animals for extreme activities of peripheral (platelet) 5HT transporter, but selection process had affected also central 5HT homeostasis, as evidenced from neurochemical and behavioural studies. Anxiety-like behaviour in WZ-5HT rats was evaluated by two commonly used paradigms: open field and elevated-plus maze. The involvement of 5HT-1A receptors in behavioural response was assessed by measuring mRNA expression in cell bodies (raphe nuclei) and projection regions (frontal cortex, hippocampus) by use of RT-PCR and in situ hybridization, and by measuring functionality of cortical 5HT-1A receptors by use of [(3)H]8-OH-DPAT radioligand binding. Animals from the high-5HT subline exhibit increased anxiety-like behaviour and decreased exploratory activity when exposed to novel environment. No measurable differences in constitutional (baseline) functionality or expression of 5HT-1A receptors between sublines were found. The results support contribution of increased serotonergic functioning to the anxiety-like behaviour. They also validate the high-5HT subline of WZ-5HT rats as a potential model to study mechanisms of anxiety, especially of its nonpathological form, while the low-5HT subline may be useful to model sensation seeking phenotype. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Low 5-HT1B receptor binding in the migraine brain

    Deen, Marie; Hansen, Hanne D; Hougaard, Anders

    2018-01-01

    Background The pathophysiology of migraine may involve dysfunction of serotonergic signaling. In particular, the 5-HT1B receptor is considered a key player due to the efficacy of 5-HT1B receptor agonists for treatment of migraine attacks. Aim To examine the cerebral 5-HT1B receptor binding....... Patients who reported migraine brain regions involved in pain modulation as regions of interest and applied a latent variable model (LVM) to assess the group effect on binding across these regions. Results Our data...... support a model wherein group status predicts the latent variable ( p = 0.038), with migraine patients having lower 5-HT1B receptor binding across regions compared to controls. Further, in a whole-brain voxel-based analysis, time since last migraine attack correlated positively with 5-HT1B receptor...

  7. MDMA ‘ecstasy’ increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI

    Rouine, J; Gobbo, O L; Campbell, M; Gigliucci, V; Ogden, I; McHugh Smith, K; Duffy, P; Behan, B; Byrne, D; Kelly, M E; Blau, C W; Kerskens, C M; Harkin, A

    2013-01-01

    Background and Purpose The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA ‘ecstasy’) to rats. Experimental Approach Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg−1; i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg−1; i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg−1; i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. Key Results MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg−1; i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. Conclusions and Implications MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use. PMID:23517012

  8. Reduced 5-HT2A receptor binding in patients with mild cognitive impairment

    Hasselbalch, S G; Madsen, K; Svarer, C

    2008-01-01

    cerebral 5-HT(2A) receptor binding in patients with mild cognitive impairment (MCI) and related 5-HT(2A) receptor binding to clinical symptoms. Sixteen patients with MCI of the amnestic type (mean age 73, mean MMSE 26.1) and 17 age and sex matched control subjects were studied with MRI and [(18)F......Previous studies of patients with Alzheimer's disease (AD) have described reduced brain serotonin 2A (5-HT(2A)) receptor density. It is unclear whether this abnormality sets in early in the course of the disease and whether it is related to early cognitive and neuropsychiatric symptoms. We assessed...

  9. Cerebral cortices of East african early hominids.

    Falk, D

    1983-09-09

    An endocast of the frontal lobe of a reconstructed skull, which is approximately 2 million years old, from the Koobi Fora region of Kenya appears to represent the oldest human-like cortical sulcal pattern in the fossil record, while the endocast from another skull from the same region produces an endocast that appears apelike in its frontal lobe and similar to endocasts from earlier South African australopithecines. New analysis of paleoanatomical evidence thus indicates that at least two taxa of early hominids coexisted in East Africa.

  10. Serotonin depletion can enhance the cerebrovascular responses induced by cortical spreading depression via the nitric oxide pathway.

    Saengjaroentham, Chonlawan; Supornsilpchai, Weera; Ji-Au, Wilawan; Srikiatkhachorn, Anan; Maneesri-le Grand, Supang

    2015-02-01

    Serotonin (5-HT) is an important neurotransmitter involved in the control of neural and vascular responses. 5-HT depletion can induce several neurological disorders, including migraines. Studies on a cortical spreading depression (CSD) migraine animal model showed that the cortical neurons sensitivity, vascular responses, and nitric oxide (NO) production were significantly increased in 5-HT depletion. However, the involvement of NO in the cerebrovascular responses in 5-HT depletion remains unclear. This study aimed to investigate the role of NO in the CSD-induced alterations of cerebral microvessels in 5-HT depletion. Rats were divided into four groups: control, control with L-NAME treatment, 5-HT depleted, and 5-HT depleted with L-NAME treatment. 5-HT depletion was induced by intraperitoneal injection with para-chlorophenylalanine (PCPA) 3 days before the experiment. The CSD was triggered by KCl application. After the second wave of CSD, N-nitro-l-arginine methyl ester (L-NAME) or saline was intravenously injected into the rats with or without L-NAME treatment groups, respectively. The intercellular adhesion molecules-1 (ICAM-1), cell adhesion molecules-1 (VCAM-1), and the ultrastructural changes of the cerebral microvessels were examined. The results showed that 5-HT depletion significantly increased ICAM-1 and VCAM-1 expressions in the cerebral cortex. The number of endothelial pinocytic vesicles and microvilli was higher in the 5-HT depleted group when compared to the control. Interestingly, L-NAME treatment significantly reduced the abnormalities observed in the 5-HT depleted group. The results of this study demonstrated that an increase of NO production is one of the mechanisms involved in the CSD-induced alterations of the cerebrovascular responses in 5-HT depletion.

  11. Ebselen has lithium-like effects on central 5-HT2A receptor function.

    Antoniadou, I; Kouskou, M; Arsiwala, T; Singh, N; Vasudevan, S R; Fowler, T; Cadirci, E; Churchill, G C; Sharp, T

    2018-02-27

    Lithium's antidepressant action may be mediated by inhibition of inositol monophosphatase (IMPase), a key enzyme in G q protein coupled receptor signalling. Recently, the antioxidant agent ebselen was identified as an IMPase inhibitor. Here we investigated both ebselen and lithium in models of the 5-HT 2A receptor, a G q protein coupled receptor implicated in lithium's actions. 5-HT 2A receptor function was modelled in mice by measuring the behavioural (head-twitches) and cortical immediate early gene (IEG; Arc, c-fos and Erg2 mRNA) responses to 5-HT 2A receptor agonist administration. Ebselen and lithium were administered either acutely or chronically prior to assessment of 5-HT 2A receptor function. Given the SSRI augmenting action of lithium and 5-HT 2A antagonists, ebselen was also tested for this action by co-administration with the SSRI citalopram in microdialysis (extracellular 5-HT) experiments. Acute and repeated administration of ebselen inhibited behavioural and IEG responses to the 5-HT 2A receptor agonist DOI. Repeated lithium also inhibited DOI-evoked behavioural and IEG responses. In comparison, a selective IMPase inhibitor (L-690,330) attenuated the behavioural response to DOI whereas glycogen synthase kinase inhibitor (AR-A014418) did not. Finally, ebselen increased regional brain 5-HT synthesis and enhanced the increase in extracellular 5-HT induced by citalopram. The current data demonstrate lithium-mimetic effects of ebselen in different experimental models of 5-HT 2A receptor function, likely mediated by IMPase inhibition. This evidence of lithium-like neuropharmacological effects of ebselen adds further support for the clinical testing of ebselen in mood disorder, including as an antidepressant augmenting agent. This article is protected by copyright. All rights reserved.

  12. Effect of anxiety on cortical cerebral blood flow and metabolism

    Gur, R.C.; Gur, R.E.; Resnick, S.M.; Skolnick, B.E.; Alavi, A.; Reivich, M.

    1987-01-01

    The relation between anxiety and cortical activity was compared in two samples of normal volunteers. One group was studied with the noninvasive xenon-133 inhalation technique for measuring cerebral blood flow (CBF) and the other with positron emission tomography (PET) using 18 Flurodeoxyglucose ( 18 FDG) for measuring cerebral metabolic rates (CMR) for glucose. The inhalation technique produced less anxiety than the PET procedure, and for low anxiety subjects, there was a linear increase in CBF with anxiety. For higher anxiety subjects, however, there was a linear decrease in CBF with increased anxiety. The PET group manifested a linear decrease in CMR with increased anxiety. The results indicate that anxiety can have systematic effects on cortical activity, and this should be taken into consideration when comparing data from different procedures. They also suggest a physiologic explanation of a fundamental behavioral law that stipulates a curvilinear, inverted-U relationship between anxiety and performance

  13. Preclinical evaluation of [{sup 18}F]2FNQ1P as the first fluorinated serotonin 5-HT{sub 6} radioligand for PET imaging

    Becker, Guillaume [Universite Claude Bernard Lyon 1, CNRS INSERM, Lyon Neuroscience Research Center, Lyon (France); Hospices Civils de Lyon, Lyon (France); Colomb, Julie [Universite Claude Bernard Lyon 1, CNRS, Institute of Chemistry and Biochemistry, Villeurbanne (France); Sgambato-Faure, Veronique; Tremblay, Leon [Universite Claude Bernard Lyon 1, CNRS, Cognitive Neuroscience Center, Bron (France); Billard, Thierry [Universite Claude Bernard Lyon 1, CNRS, Institute of Chemistry and Biochemistry, Villeurbanne (France); CERMEP-Imaging Platform, Groupement Hospitalier Est, Lyon (France); Zimmer, Luc [Universite Claude Bernard Lyon 1, CNRS INSERM, Lyon Neuroscience Research Center, Lyon (France); Hospices Civils de Lyon, Lyon (France); CERMEP-Imaging Platform, Groupement Hospitalier Est, Lyon (France)

    2014-10-21

    Brain serotonin 6 receptor (5-HT{sub 6}) is one of the most recently identified serotonin receptors. It is a potent therapeutic target for psychiatric and neurological diseases, e.g. schizophrenia and Alzheimer's disease. Since no specific fluorinated radioligand has yet been successfully used to study this receptor by positron emission tomography (PET) neuroimaging, the objective of the present study was to study the first 5-HT{sub 6} {sup 18}F-labelled radiotracer. 2FNQ1P, inspired by the quinolone core of a previous radiotracer candidate, GSK215083, was selected according its 5-HT{sub 6} affinity and selectivity and was radiolabelled by {sup 18}F nucleophilic substitution. The cerebral distribution of [{sup 18}F]2FNQ1P was studied in vivo in rats, cats and macaque monkeys. The chemical and radiochemical purities of [{sup 18}F]2FNQ1P were >98 %. In rats, in vitro competition with the 5-HT{sub 6} antagonist, SB258585, revealed that the radioligand was displaced dose dependently. Rat microPET studies showed low brain uptake of [{sup 18}F]2FNQ1P, reversed by the P-glycoprotein inhibitor, cyclosporin. On the contrary, PET scans in cats showed good brain penetration and specific striatal binding blocked after pretreatment with unlabelled 2FNQ1P. PET scans in macaque monkeys confirmed high specific binding in both cortical and subcortical regions, specifically decreased by pretreatment with the 5-HT{sub 6} receptor antagonist, SB258585. 2FNQ1P was initially selected because of its suitable characteristics for 5-HT{sub 6} receptor probing in vitro in terms of affinity and specificity. Although in vivo imaging in rats cannot be considered as predictive of the clinical characteristics of the radiotracer, [{sup 18}F]2FNQ1P appeared to be a suitable 5-HT{sub 6} PET tracer in feline and primate models. These preclinical results encourage us to pursue the clinical development of this first fluorinated 5-HT{sub 6} PET radiotracer. (orig.)

  14. Characterization of the binding of /sup 3/H-norzimeldine, a 5-HT uptake inhibitor, to rat brain homogenates

    Hall, H. (Department of Biochemical Neuropharmacology, Research and Development Laboratories, Astra Laekemedel, Soedertaelje, Sweden)

    1984-01-01

    The binding of radiolabelled norzimeldine, a potent selective 5-HT reuptake inhibitor, to rat brain homogenates is described. /sup 3/H-Norzimeldine binds to a site with high affinity (Ksub(D) = 10.5 nM) in a saturable manner (Bsub(max) = 15.4 pmol/g wet weight in the cerebral cortex). The number of binding sites in the various regions of the brain parallels the capacity of the 5-HT reuptake mechanism. Drugs that inhibit the reuptake of 5-HT are also potent inhibitors of the /sup 3/H-norzimeldine binding, as are the tricyclic antidepressants, which are non-specific inhibitors of the noradrenaline and the 5-HT reuptake. Lesioning experiments using DSP4 (a NA neurotoxin) and p-chloroamphetamine (a 5-HT neurotoxin) suggest that the binding site is located on the presynaptic 5-HT nerve terminal, although a small component of the binding may be to noradrenergic uptake sites as well.

  15. Characterization of the binding of 3H-norzimeldine, a 5-HT uptake inhibitor, to rat brain homogenates

    Hall, H.

    1984-01-01

    The binding of radiolabelled norzimeldine, a potent selective 5-HT reuptake inhibitor, to rat brain homogenates is described. 3 H-Norzimeldine binds to a site with high affinity (Ksub(D) = 10.5 nM) in a saturable manner (Bsub(max) = 15.4 pmol/g wet weight in the cerebral cortex). The number of binding sites in the various regions of the brain parallels the capacity of the 5-HT reuptake mechanism. Drugs that inhibit the reuptake of 5-HT are also potent inhibitors of the 3 H-norzimeldine binding, as are the tricyclic antidepressants, which are non-specific inhibitors of the noradrenaline and the 5-HT reuptake. Lesioning experiments using DSP4 (a NA neurotoxin) and p-chloroamphetamine (a 5-HT neurotoxin) suggest that the binding site is located on the presynaptic 5-HT nerve terminal, although a small component of the binding may be to noradrenergic uptake sites as well.(author)

  16. Characterisation of 5-HT3C, 5-HT3D and 5-HT3E receptor subunits: evolution, distribution and function.

    Holbrook, Joanna D; Gill, Catherine H; Zebda, Noureddine; Spencer, Jon P; Leyland, Rebecca; Rance, Kim H; Trinh, Han; Balmer, Gemma; Kelly, Fiona M; Yusaf, Shahnaz P; Courtenay, Nicola; Luck, Jane; Rhodes, Andrew; Modha, Sundip; Moore, Stephen E; Sanger, Gareth J; Gunthorpe, Martin J

    2009-01-01

    The 5-HT(3) receptor is a member of the 'Cys-loop' family of ligand-gated ion channels that mediate fast excitatory and inhibitory transmission in the nervous system. Current evidence points towards native 5-HT(3) receptors originating from homomeric assemblies of 5-HT(3A) or heteromeric assembly of 5-HT(3A) and 5-HT(3B). Novel genes encoding 5-HT(3C), 5-HT(3D), and 5-HT(3E) have recently been described but the functional importance of these proteins is unknown. In the present study, in silico analysis (confirmed by partial cloning) indicated that 5-HT(3C), 5-HT(3D), and 5-HT(3E) are not human-specific as previously reported: they are conserved in multiple mammalian species but are absent in rodents. Expression profiles of the novel human genes indicated high levels in the gastrointestinal tract but also in the brain, Dorsal Root Ganglion (DRG) and other tissues. Following the demonstration that these subunits are expressed at the cell membrane, the functional properties of the recombinant human subunits were investigated using patch clamp electrophysiology. 5-HT(3C), 5-HT(3D), and 5-HT(3E) were all non-functional when expressed alone. Co-transfection studies to determine potential novel heteromeric receptor interactions with 5-HT(3A) demonstrated that the expression or function of the receptor was modified by 5-HT(3C) and 5-HT(3E), but not 5-HT(3D). The lack of distinct effects on current rectification, kinetics or pharmacology of 5-HT(3A) receptors does not however provide unequivocal evidence to support a direct contribution of 5-HT(3C) or 5-HT(3E) to the lining of the ion channel pore of novel heteromeric receptors. The functional and pharmacological contributions of these novel subunits to human biology and diseases such as irritable bowel syndrome for which 5-HT(3) receptor antagonists have major clinical usage, therefore remains to be fully determined.

  17. Facilitation of acetylcholine release in rat frontal cortex by indeloxazine hydrochloride: involvement of endogenous serotonin and 5-HT4 receptors.

    Yamaguchi, T; Suzuki, M; Yamamoto, M

    1997-12-01

    Effects of indeloxazine hydrochloride, an inhibitor of serotonin (5-HT) and norepinephrine (NE) reuptake with a facilitatory effect on 5-HT release, on acetylcholine (ACh) output in frontal cortex of conscious rats were characterized using an in vivo microdialysis technique. Systemic administration of indeloxazine (3 and 10 mg/kg, i.p.) increased ACh and 5-HT output in a dose-dependent manner. Depletion of endogenous monoamines by reserpine and of 5-HT by p-chlorophenylalanine, but not that of catecholamines by alpha-methyl-p-tyrosine, significantly attenuated the facilitatory effect of indeloxazine on ACh release. When applied locally by reverse dialysis, indeloxazine (10 and 30 microM) and the selective 5-HT reuptake inhibitor citalopram (10 microM), but not the NE reuptake inhibitor maprotiline (30 microM), increased cortical ACh output. Indeloxazine (10 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 microM) and GR113803 (1 microM), while the 5-HT1A antagonist WAY-100135 (100 microM), 5-HT1A/1B/beta-adrenoceptor antagonist (-)propranolol (150 microM), 5-HT2A/2C antagonist ritanserin (10 microM) and 5-HT3 antagonist ondansetron (10 microM) failed to significantly modify this effect. Neither depletion of monoamines nor treatment with serotonergic antagonists significantly changed the basal ACh level, indicating that endogenous monoamines do not tonically activate ACh release. These results suggest that indeloxazine-induced facilitation of ACh release in rat frontal cortex is mediated by endogenous 5-HT and involves at least in part cortical 5-HT4 receptors.

  18. Crossed cerebellar and cerebral cortical diaschisis in basal ganglia hemorrhage

    Lim, Joon Seok; Ryu, Young Hoon; Kim, Hee Joung; Kim, Byung Moon; Lee, Jong Doo; Lee, Byung Hee

    1998-01-01

    The purpose of this study was to evaluate the phenomenon of diaschisis in the cerebellum and cerebral cortex in patients with pure basal ganglia hemorrhage using cerebral blood flow SPECT. Twelve patients with pure basal ganglia hemorrhage were studied with Tc-99m ECD brain SPECT. Asymmetric index (AI) was calculated in the cerebellum and cerebral cortical regions as | C R -C L |/ (C R -C L ) x 200, where C R and C L are the mean reconstructed counts for the right and left ROIs, respectively. Hypoperfusion was considered to be present when AI was greater than mean + 2 SD of 20 control subjects. Mean AI of the cerebellum and cerebral cortical regions in patients with pure basal ganglia hemorrhage was significantly higher than normal controls (p<0.05): Cerebellum (18.68±8.94 vs 4.35±0.94, mean ±SD), thalamus (31.91±10.61 vs 2.57±1.45), basal ganglia (35.94±16.15 vs 4.34±2.08), parietal (18.94±10.69 vs 3.24±0.87), frontal (13.60±10.8 vs 4.02±2.04) and temporal cortex (18.92±11.95 vs 5.13±1.69). Ten of the 12 patients had significant hypoperfusion in the contralateral cerebellum. Hypoperfusion was also shown in the ipsilateral thalamus (n=12), ipsilateral parietal (n=12), frontal (n=6) and temporal cortex (n=10). Crossed cerebellar diaschisis (CCD) and cortical diaschisis may frequently occur in patients with pure basal ganglia hemorrhage, suggesting that CCD can develop without the interruption of corticopontocerebellar pathway

  19. Gaddum and LSD: the birth and growth of experimental and clinical neuropharmacology research on 5-HT in the UK

    Green, A R

    2008-01-01

    The vasoconstrictor substance named serotonin was identified as 5-hydroxytryptamine (5-HT) by Maurice Rapport in 1949. In 1951, Rapport gave Gaddum samples of 5-HT substance allowing him to develop a bioassay to both detect and measure the amine. Gaddum and colleagues rapidly identified 5-HT in brain and showed that lysergic acid diethylamide (LSD) antagonized its action in peripheral tissues. Gaddum accordingly postulated that 5-HT might have a role in mood regulation. This review examines the role of UK scientists in the first 20 years following these major discoveries, discussing their role in developing assays for 5-HT in the CNS, identifying the enzymes involved in the synthesis and metabolism of 5-HT and investigating the effect of drugs on brain 5-HT. It reviews studies on the effects of LSD in humans, including Gaddum's self-administration experiments. It outlines investigations on the role of 5-HT in psychiatric disorders, including studies on the effect of antidepressant drugs on the 5-HT concentration in rodent and human brain, and the attempts to examine 5-HT biochemistry in the brains of patients with depressive illness. It is clear that a rather small group of both preclinical scientists and psychiatrists in the UK made major advances in our understanding of the role of 5-HT in the brain, paving the way for much of the knowledge now taken for granted when discussing ways that 5-HT might be involved in the control of mood and the idea that therapeutic drugs used to alleviate psychiatric illness might alter the function of cerebral 5-HT. PMID:18516072

  20. Gaddum and LSD: the birth and growth of experimental and clinical neuropharmacology research on 5-HT in the UK.

    Green, A R

    2008-08-01

    The vasoconstrictor substance named serotonin was identified as 5-hydroxytryptamine (5-HT) by Maurice Rapport in 1949. In 1951, Rapport gave Gaddum samples of 5-HT substance allowing him to develop a bioassay to both detect and measure the amine. Gaddum and colleagues rapidly identified 5-HT in brain and showed that lysergic acid diethylamide (LSD) antagonized its action in peripheral tissues. Gaddum accordingly postulated that 5-HT might have a role in mood regulation. This review examines the role of UK scientists in the first 20 years following these major discoveries, discussing their role in developing assays for 5-HT in the CNS, identifying the enzymes involved in the synthesis and metabolism of 5-HT and investigating the effect of drugs on brain 5-HT. It reviews studies on the effects of LSD in humans, including Gaddum's self-administration experiments. It outlines investigations on the role of 5-HT in psychiatric disorders, including studies on the effect of antidepressant drugs on the 5-HT concentration in rodent and human brain, and the attempts to examine 5-HT biochemistry in the brains of patients with depressive illness. It is clear that a rather small group of both preclinical scientists and psychiatrists in the UK made major advances in our understanding of the role of 5-HT in the brain, paving the way for much of the knowledge now taken for granted when discussing ways that 5-HT might be involved in the control of mood and the idea that therapeutic drugs used to alleviate psychiatric illness might alter the function of cerebral 5-HT.

  1. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  2. Impaired social behavior in 5-HT3A receptor knockout mice

    Laura A Smit-Rigter

    2010-11-01

    Full Text Available The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 minutes of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain.

  3. Cerebral serotonin release correlates with [11C]AZ10419369 PET measures of 5-HT1B receptor binding in the pig brain

    Jørgensen, Louise M; Weikop, Pia; Svarer, Claus

    2018-01-01

    of extracellular serotonin levels with microdialysis after various acute interventions (saline, escitalopram, fenfluramine). The interventions increased the cerebral extracellular serotonin levels to two to six times baseline, with fenfluramine being the most potent pharmacological enhancer of serotonin release...

  4. Functional MRI study of cerebral cortical activation during volitional swallowing

    Wakasa, Toru; Aiga, Hideki; Yanagi, Yoshinobu; Kawai, Noriko; Sugimoto, Tomosada; Kuboki, Takuo; Kishi, Kanji

    2002-01-01

    The purpose of this study was to investigate the somatotropic distribution and lateralization of motor and sensory cortical activity during swallowing in healthy adult human subjects using functional MR imaging. Nine healthy right-handed adult volunteers (6 men, 3 women; ages 22-38) were examined. Their cortical activities were evoked by having them swallow, five times, a small bolus of water (3 ml) supplied through a plastic catheter. As a positive control, the subjects performed five repetitions of right-handed grasping tasks. Blood oxygenation level-dependent images were obtained using a 1.5 Tesla MR system (Magnetom Vision, Siemens Germany; repetition time/echo time (TR/TE)=0.96/0.66, flip angle (FA)=90 deg). T1 weighted anatomical images were obtained for the same slices in each subject. Cerebral activity was observed most notably in the primary motor cortex and primary somatosensory cortex, followed by the premotor cortex, anterior cingulate cortex, frontal operculum, and insula. The hand-grasping task activated relatively superior parts of the primary motor and somatosensory cortices. The swallowing task, on the other hand, activated the inferior parts of the pre- and postcentral gyri. The hand-grasping activation of motor and sensory cortices was localized absolutely on the contralateral side, whereas swallowing activated the motor cortex either bilaterally or unilaterally. Swallowing activated the sensory cortex almost always bilaterally. This study suggested that fMRI could be used to identify the specific areas of cortical activation caused by various tasks, and to differentiate the locations of cortical activation between tasks. (author)

  5. Functional MRI study of cerebral cortical activation during volitional swallowing

    Wakasa, Toru; Aiga, Hideki; Yanagi, Yoshinobu; Kawai, Noriko; Sugimoto, Tomosada; Kuboki, Takuo; Kishi, Kanji [Okayama Univ. (Japan). Graduate School of Medicine and Dentistry

    2002-12-01

    The purpose of this study was to investigate the somatotropic distribution and lateralization of motor and sensory cortical activity during swallowing in healthy adult human subjects using functional MR imaging. Nine healthy right-handed adult volunteers (6 men, 3 women; ages 22-38) were examined. Their cortical activities were evoked by having them swallow, five times, a small bolus of water (3 ml) supplied through a plastic catheter. As a positive control, the subjects performed five repetitions of right-handed grasping tasks. Blood oxygenation level-dependent images were obtained using a 1.5 Tesla MR system (Magnetom Vision, Siemens Germany; repetition time/echo time (TR/TE)=0.96/0.66, flip angle (FA)=90 deg). T1 weighted anatomical images were obtained for the same slices in each subject. Cerebral activity was observed most notably in the primary motor cortex and primary somatosensory cortex, followed by the premotor cortex, anterior cingulate cortex, frontal operculum, and insula. The hand-grasping task activated relatively superior parts of the primary motor and somatosensory cortices. The swallowing task, on the other hand, activated the inferior parts of the pre- and postcentral gyri. The hand-grasping activation of motor and sensory cortices was localized absolutely on the contralateral side, whereas swallowing activated the motor cortex either bilaterally or unilaterally. Swallowing activated the sensory cortex almost always bilaterally. This study suggested that fMRI could be used to identify the specific areas of cortical activation caused by various tasks, and to differentiate the locations of cortical activation between tasks. (author)

  6. Regional cerebral blood flow in focal cortical epilepsy

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were....... This finding accords with earlier studies. All nine patients studied in the interictal phase showed, either spontaneously or during activation by intermittent light, focal flow increases in areas presumed to comprise the epileptic focus. These interictal hyperemic foci probably reflect subictal neuronal...

  7. Spreading depression and focal venous cerebral ischemia enhance cortical neurogenesis

    Ryo Tamaki

    2017-01-01

    Full Text Available Endogenous neurogenesis can arise from a variety of physiological stimuli including exercise, learning, or “enriched environment” as well as pathological conditions such as ischemia, epilepsy or cortical spreading depression. Whether all these conditions use a common trigger to set off endogenous neurogenesis is yet unclear. We hypothesized that cortical spreading depression (CSD induces neurogenesis in the cerebral cortex and dentate gyrus after cerebral venous ischemia. Forty-two Wistar rats alternatively underwent sham operation (Sham, induction of ten CSDs or venous ischemia provoked via occlusion of two adjacent superficial cortical vein followed by ten induced CSDs (CSD + 2-VO. As an additional control, 15 naïve rats received no intervention except 5-bromo-2′-deoxyuridine (BrdU treatment for 7 days. Sagittal brain slices (40 μm thick were co-stained for BrdU and doublecortin (DCX; new immature neuronal cells on day 9 or NeuN (new mature neuronal cells on day 28. On day 9 after sham operation, cell proliferation and neurogenesis occurred in the cortex in rats. The sole induction of CSD had no effect. But on days 9 and 28, more proliferating cells and newly formed neurons in the ipsilateral cortex were observed in rats subjected to CSD + 2VO than in rats subjected to sham operation. On days 9 and 28, cell proliferation and neurogenesis in the ipsilateral dentate gyrus was increased in sham-operated rats than in naïve rats. Our data supports the hypothesis that induced cortical neurogenesis after CSD + 2-VO is a direct effect of ischemia, rather than of CSD alone.

  8. Central 5-HT Neurotransmission Modulates Weight Loss following Gastric Bypass Surgery in Obese Individuals

    Haahr, M. E.; Hansen, D. L.; Fisher, P. M.

    2015-01-01

    The cerebral serotonin (5-HT) system shows distinct differences in obesity compared with the lean state. Here, it was investigated whether serotonergic neurotransmission in obesity is a stable trait or changes in association with weight loss induced by Roux-in-Y gastric bypass (RYGB) surgery....... In vivo cerebral 5-HT2A receptor and 5-HT transporter binding was determined by positron emission tomography in 21 obese [four men; body mass index (BMI), 40.1 ± 4.1 kg/m(2)] and 10 lean (three men; BMI, 24.6 ± 1.5 kg/m(2)) individuals. Fourteen obese individuals were re-examined after RYGB surgery. First...

  9. 5-HT2C Receptor Desensitization Moderates Anxiety in 5-HTT Deficient Mice: From Behavioral to Cellular Evidence

    Martin, Cédric BP; Martin, Vincent S.; Trigo, José M.; Chevarin, Caroline; Maldonado, Rafael; Fink, Latham H.; Cunningham, Kathryn A.; Hamon, Michel; Lanfumey, Laurence

    2015-01-01

    Background: Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. Methods: Mice lacking the 5-HT reuptake carrier (5-HTT-/-) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR–induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos–induced expression) levels. Results: Although 5-HTT-/- mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR–mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR–mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT-/- mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT-/- mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR–like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT-/- mutants. Conclusions: Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT-/- mice. PMID:25522398

  10. Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT neurons in mice with altered 5-HT homeostasis

    Naozumi eAraragi

    2013-08-01

    Full Text Available Firing activity of serotonin (5-HT neurons in the dorsal raphe nucleus (DRN is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert -/- and tryptophan hydroxylase-2 knockout (Tph2 -/- mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+-8-hydroxy-2-(di-n-propylaminotetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2 -/- mice and Sert -/- mice, respectively. While 5-HT neurons from Tph2 -/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert -/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP, neurons from both Tph2 -/- and Sert -/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.

  11. Evidence that the atypical 5-HT3 receptor ligand, [3H]-BRL46470, labels additional 5-HT3 binding sites compared to [3H]-granisetron.

    Steward, L. J.; Ge, J.; Bentley, K. R.; Barber, P. C.; Hope, A. G.; Lambert, J. J.; Peters, J. A.; Blackburn, T. P.; Barnes, N. M.

    1995-01-01

    1. The radioligand binding characteristics of the 3H-derivative of the novel 5-HT3 receptor antagonist BRL46470 were investigated and directly compared to the well characterized 5-HT3 receptor radioligand [3H]-granisetron, in tissue homogenates prepared from rat cerebral cortex/hippocampus, rat ileum, NG108-15 cells, HEK-5-HT3As cells and human putamen. 2. In rat cerebral cortex/hippocampus, rat ileum, NG108-15 cell and HEK-5-HT3As cell homogenates, [3H]-BRL46470 bound with high affinity (Kd (nM): 1.57 +/- 0.18, 2.49 +/- 0.30, 1.84 +/- 0.27, 3.46 +/- 0.36, respectively; mean +/- s.e. mean, n = 3-4) to an apparently homogeneous saturable population of sites (Bmax (fmol mg-1 protein): 102 +/- 16, 44 +/- 4, 968 +/- 32 and 2055 +/- 105, respectively; mean +/- s.e. mean, n = 3-4) but failed to display specific binding in human putamen homogenates. 3. In the same homogenates of rat cerebral cortex/hippocampus, rat ileum, NG108-15 cells, HEK-5-HT3As cells and human putamen as used for the [3H]-BRL46470 studies, [3H]-granisetron also bound with high affinity (Kd (nM): 1.55 +/- 0.61, 2.31 +/- 0.44, 1.89 +/- 0.36, 2.03 +/- 0.42 and 6.46 +/- 2.58 respectively; mean +/- s.e. mean, n = 3-4) to an apparently homogeneous saturable population of sites (Bmax (fmol mg-1 protein): 39 +/- 4, 20 +/- 2, 521 +/- 47, 870 +/- 69 and 18 +/- 2, respectively; mean +/- s.e. mean, n = 3-4).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8528560

  12. Secondhand cigarette smoke exposure causes upregulation of cerebrovascular 5-HT(1) (B) receptors via the Raf/ERK/MAPK pathway in rats

    Cao, L; Xu, C B; Zhang, Y

    2013-01-01

    Cigarette smoke exposure increases the risk of stroke. Upregulation of 5-hydroxytryptamine 1B (5-HT(1) (B) ) receptors is associated with the pathogenesis of cerebral ischaemia. This study examined the hypothesis that the expression of 5-HT(1) (B) receptors is altered in brain vessels after secon...... secondhand smoke (SHS) exposure.......Cigarette smoke exposure increases the risk of stroke. Upregulation of 5-hydroxytryptamine 1B (5-HT(1) (B) ) receptors is associated with the pathogenesis of cerebral ischaemia. This study examined the hypothesis that the expression of 5-HT(1) (B) receptors is altered in brain vessels after...

  13. 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT

    Tiong Cheng Sia

    2013-08-01

    Full Text Available Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit ? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT. In control animals, peristaltic contractions were blocked temporarily by ondansetron (1-10µM and SDZ-205-557 (1-10µM in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis.

  14. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    Malgorzata S. Martin-Gronert

    2016-04-01

    Full Text Available Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC peptides within the arcuate nucleus of the hypothalamus (ARC. We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.

  15. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    Burris, K.D.; Breeding, M.; Sanders-Bush, E.

    1991-01-01

    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD

  16. Activation of 5-HT7 receptors reverses NMDA-R-dependent LTD by activating PKA in medial vestibular neurons.

    Li, Yan-Hai; Han, Lei; Wu, Kenneth Lap Kei; Chan, Ying-Shing

    2017-09-01

    The medial vestibular nucleus (MVN) is a major output station for neurons that project to the vestibulo-spinal pathway. MVN neurons show capacity for long-term depression (LTD) during the juvenile period. We investigated LTD of MVN neurons using whole-cell patch-clamp recordings. High frequency stimulation (HFS) robustly induced LTD in 90% of type B neurons in the MVN, while only 10% of type A neurons were responsive, indicating that type B neurons are the major contributors to LTD in the MVN. The neuromodulator serotonin (5-HT) is known to modulate LTD in neural circuits of the cerebral cortex and the hippocampus. We therefore aim to determine the action of 5-HT on the LTD of type B MVN neurons and elucidate the relevant 5-HT receptor subtypes responsible for its action. Using specific agonists and antagonists of 5-HT receptors, we found that selective activation of 5-HT 7 receptor in type B neurons in the MVN of juvenile (P13-16) rats completely abolished NMDA-receptor-mediated LTD in a protein kinase A (PKA)-dependent manner. Our finding that 5-HT restricts plasticity of type B MVN neurons via 5-HT 7 receptors offers a mechanism whereby vestibular tuning contributes to the maturation of the vestibulo-spinal circuit and highlights the role of 5-HT in postural control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Radiosynthesis, evaluation and preclinical studies of a new 5HT2A radioligand

    Mertens, J.; Terriere, D.; Baeken, C.; D'Haenan, H.; Flamen, P.; Bossuyt, A.; Leysen, J.

    1998-01-01

    123 I-5-I-R91150, a radioiodinated analogue of R91150 (a ligand (antagonist) of Janssen Research Foundation), showing high affinity and selectivity for 5HT 2A receptors, was developed as a potential in vivo 5HT 2A receptor tracer for SPECT. The applied radiochemistry, whereby the radioiodine was substituted on the 5 - position of the benzamide ring, allowed to obtain the tracer with high specific activity and high purity. In vitro and in vivo rat studies revealed that the new tracer bound reversibly with the required high affinity (Kd=0.1 nM) and high selectivity (a factor ranging from 10000 to at least 50 vis a vis other receptors) to 5HT 2A receptors. In young normal subjects the major part of the 123 I-5-I-R91150 radioactivity in the brain is present in cortical areas. Cortical area to cerebellum activity ratio reaches an equilibrium value of about 1.8 around 90 min. till 4 hours p.i.. This binding was specific and reversible. The cortical activity reflects a distribution in the brain similar to that of the mapping of 5HT 2A receptors from post mortem studies. These findings suggested that 123 I-5-I-R91150 allows imaging and quantitative estimation with SPECT and could be used for further clinical studies. The radiobromine analogue was synthetised as a potential PET tracer. (author)

  18. Characterization of [(11)C]Cimbi-36 as an agonist PET radioligand for the 5-HT(2A) and 5-HT(2C) receptors in the nonhuman primate brain

    Finnema, Sjoerd J; Stepanov, Vladimir; Ettrup, Anders

    2014-01-01

    a more meaningful assessment of available receptors than antagonist radioligands. In the current study we characterized [(11)C]Cimbi-36 receptor binding in the primate brain. On five experimental days, a total of 14 PET measurements were conducted in three female rhesus monkeys. On each day, PET...... agonist radioligand suitable for examination of 5-HT2A receptors in the cortical regions and of 5-HT2C receptors in the choroid plexus of the primate brain....

  19. What would 5-HT do? Regional diversity of 5-HT1 receptor modulation of primary afferent neurotransmission

    Connor, Mark

    2012-01-01

    5-HT (serotonin) is a significant modulator of sensory input to the CNS, but the only analgesics that selectively target G-protein-coupled 5-HT receptors are highly specific for treatment of headache. Two recent papers in BJP shed light on this puzzling situation by showing that primary afferent neurotransmission to the superficial layers of the spinal and trigeminal dorsal is inhibited by different subtypes of the 5-HT1 receptor – 5-HT1B(and 1D) in the trigeminal dorsal horn and 5-HT1A in th...

  20. The effects of manipulation of presynaptic 5-HT nerve terminals of postsynaptic 5-HT1 and 5-HT2 binding sites of the rat brain

    Hall, H.; Wedel, I.

    1985-01-01

    The effects of long-term treatment of rats with alaproclate and amiflamine on the number and kinetics of 5-HT 1 and 5-HT 2 binding sites were investigated using in vitro receptor binding techniques. Some other studies have reported down-regulatory effects of alaproclate and amiflamine on 5-HT 2 binding sites in certain regions of the rat forebrain, but no such effects could be detected in the present study. Induction of a high-affinity binding site for 3 H-5-HT after long-term antidepressant treatment, as has been reported elsewhere, was not obtained in the present study. The results are compared to the effects obtained by treatment of rats with para-chloroamphetamine (PCA), which depletes the presynaptic neurons of monoamines. These different types of treatment do not cause any change in the binding properties of the specific 5-HT binding sites. It is thus concluded that such manipulations of the presynaptic 5-HT neurons do not affect the postsynaptic 5-HT 1 and 5-HT 2 binding sites. (Author)

  1. Evidence for chronically altered cortical serotonin function in human female recreational ecstasy (MDMA) polydrug users

    Di Iorio, Christina R; Watkins, Tristan J; Dietrich, Mary S; Cao, Aize; Blackford, Jennifer U; Rogers, Baxter; Ansari, Mohammed S; Baldwin, Ronald M; Li, Rui; Kessler, Robert M; Salomon, Ronald M; Benningfield, Margaret; Cowan, Ronald L

    2012-01-01

    Context MDMA (ecstasy) is a popular recreational drug that produces loss of serotonin (5-HT) axons in animal models. Whether MDMA produces chronic reductions in 5-HT signaling in humans remains controversial. Objective To determine if MDMA use is associated with chronic reductions in serotonin signaling in female human cerebral cortex as reflected by increased 5-HT2A receptors. Design Cross sectional case-control study comparing 5-HT2A receptor levels in abstinent female MDMA polydrug users to MDMA-naive females; within-group design assessing the association of lifetime MDMA use and 5-HT2A receptors. Subjects had at least 90 days abstinence from MDMA use as verified by hair sampling. Cortical 5-HT2A receptor levels were assayed with the 5HT2A-specific Positron Emission Tomography (PET) radioligand [18F]setoperone. Setting Academic Medical Center Research Laboratory. Participants Volunteer female MDMA users (N=14) and MDMA-naive controls (N=10). Main exclusion criteria were non-drug-related DSM-IV axis I psychiatric disorders and general medical illness. Main Outcome Measure Cortical 5-HT2A receptor non-displaceable binding potential (5-HT2ABPND). Results MDMA users had increased 5-HT2ABPND in occipital-parietal (19.7%), temporal (20.5%), occipito-temporal-parietal (18.3%), frontal (16.6%), and fronto-parietal (18.5%) regions (pMDMA use associated positively with 5-HT2ABPND in fronto-parietal (β=0.665;p=0.007), occipito-temporal (β=0.798;p=0.002), fronto-limbic (β=0.634;p=0.024), and frontal (β=0.691;p=0.008) regions. In contrast, there were no regions in which MDMA use was inversely associated with receptor levels. There were no statistically significant effects of the duration of MDMA abstinence on 5-HT2ABPND. Conclusions Human recreational MDMA use is associated with long-lasting increases in 5-HT2A receptor density. 5-HT2A receptor levels correlate positively with lifetime MDMA use and do not decrease with abstinence. These results suggest that MDMA produces

  2. Enhanced glutamate, IP3 and cAMP activity in the cerebral cortex of Unilateral 6-hydroxydopamine induced Parkinson's rats: Effect of 5-HT, GABA and bone marrow cell supplementation

    Romeo Chinthu

    2011-01-01

    Full Text Available Abstract Parkinson's disease is characterized by progressive cell death in the substantia nigra pars compacta, which leads to dopamine depletion in the striatum and indirectly to cortical dysfunction. Increased glutamatergic transmission in the basal ganglia is implicated in the pathophysiology of Parkinson's disease and glutamate receptor mediated excitotoxicity has been suggested to be one of the possible causes of the neuronal degeneration. In the present study, the effects of serotonin, gamma-aminobutyric acid and bone marrow cells infused intranigrally to substantia nigra individually and in combination on unilateral 6-hydroxydopamine induced Parkinson's rat model was analyzed. Scatchard analysis of total glutamate and NMDA receptor binding parameters showed a significant increase in Bmax (P

  3. Blockade of the high-affinity noradrenaline transporter (NET) by the selective 5-HT reuptake inhibitor escitalopram: an in vivo microdialysis study in mice

    Nguyen, Hai T; Guiard, Bruno P; Bacq, Alexandre; David, Denis J; David, Indira; Quesseveur, Gaël; Gautron, Sophie; Sanchez, Connie; Gardier, Alain M

    2013-01-01

    BACKGROUND AND PURPOSE Escitalopram, the S(+)-enantiomer of citalopram is the most selective 5-HT reuptake inhibitor approved. Although all 5-HT selective reuptake inhibitors (SSRIs) increase extracellular levels of 5-HT ([5-HT]ext). some also enhance, to a lesser extent, extracellular levels of noradrenaline ([NA]ext). However, the mechanisms by which SSRIs activate noradrenergic transmission in the brain remain to be determined. EXPERIMENTAL APPROACH This study examined the effects of escitalopram, on both [5-HT]ext and [NA]ext in the frontal cortex (FCx) of freely moving wild-type (WT) and mutant mice lacking the 5-HT transporter (SERT−/−) by using intracerebral microdialysis. We explored the possibilities that escitalopram enhances [NA]ext, either by a direct mechanism involving the inhibition of the low- or high-affinity noradrenaline transporters, or by an indirect mechanism promoted by [5-HT]ext elevation. The forced swim test (FST) was used to investigate whether enhancing cortical [5-HT]ext and/or [NA]ext affected the antidepressant-like activity of escitalopram. KEY RESULTS In WT mice, a single systemic administration of escitalopram produced a significant increase in cortical [5-HT]ext and [NA]ext. As expected, escitalopram failed to increase cortical [5-HT]ext in SERT−/− mice, whereas its neurochemical effects on [NA]ext persisted in these mutants. In WT mice subjected to the FST, escitalopram increased swimming parameters without affecting climbing behaviour. Finally, escitalopram, at relevant concentrations, failed to inhibit cortical noradrenaline and 5-HT uptake mediated by low-affinity monoamine transporters. CONCLUSIONS AND IMPLICATIONS These experiments suggest that escitalopram enhances, although moderately, cortical [NA]extin vivo by a direct mechanism involving the inhibition of the high-affinity noradrenaline transporter (NET). PMID:22233336

  4. Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: Possible Ca2+-channel inhibition

    Stauderman, K.A.; Gandhi, V.C.; Jones, D.J.

    1992-01-01

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K + -induced [ 3 H]5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K + used to depolarize the synaptosomes and the concentration of external Ca 2+ . Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of [ 3 H]5-HT release induced by the Ca 2+ -ionophore A 23187 or Ca 2+ -independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K + -induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca 2+ channels and Ca 2+ entry

  5. Familial Risk for Major Depression is Associated with Lower Striatal 5-HT4 Receptor Binding

    Madsen, Karine; Torstensen, Eva; Holst, Klaus K

    2014-01-01

    was to determine whether familial risk for MDD is associated with cerebral 5-HT4 receptor binding as measured with [(11)C]SB207145 brain PET imaging. Familial risk is the most potent risk factor of MDD. METHODS: We studied 57 healthy individuals (mean age 36 yrs, range 20-86; 21 women), 26 of which had first......-degree relatives treated for MDD. RESULTS: We found that having a family history of MDD was associated with lower striatal 5-HT4 receptor binding (p = 0.038; in individuals below 40 years, p = 0.013). Further, we found evidence for a "risk-dose effect" on 5-HT4 receptor binding, since the number of first......-degree relatives with a history of MDD binding correlated negatively with 5-HT4 receptor binding in both the striatum (p = 0.001) and limbic regions (p = 0.012). CONCLUSIONS: Our data suggest that the 5-HT4 receptor is involved in the neurobiological mechanism underlying familial risk for depression...

  6. Psychopharmacology of 5-HT{sub 1A} receptors

    Cowen, Philip J

    2000-07-01

    Serotonin{sub 1A} (5-HT{sub 1A}) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT{sub 1A} receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT{sub 1A} receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT{sub 1A} receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT{sub 1A} receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT{sub 1A} receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT{sub 1A} autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT{sub 1A} receptor antagonists.

  7. D-serine deficiency attenuates the behavioral and cellular effects induced by the hallucinogenic 5-HT(2A) receptor agonist DOI

    Santini, Martin A; Balu, Darrick T; Puhl, Matthew D

    2014-01-01

    Both the serotonin and glutamate systems have been implicated in the pathophysiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. Psychedelic drugs act through the serotonin 2A receptor (5-HT2AR), and elicit a head-twitch response (HTR) in mice, which directly...... correlates to 5-HT2AR activation and is absent in 5-HT2AR knockout mice. The precise mechanism of this response remains unclear, but both an intrinsic cortico-cortical pathway and a thalamo-cortical pathway involving glutamate release have been proposed. Here, we used a genetic model of NMDAR hypofunction......RNA. These altered functional responses in SRKO mice were not associated with changes in cortical or hippocampal 5-HT levels or in 5-HT2AR and metabotropic glutamate-2 receptor (mGluR2) mRNA and protein expression. Together, these findings suggest that D-serine-dependent NMDAR activity is involved in mediating...

  8. Endogenous plasma estradiol in healthy men is positively correlated with cerebral cortical serotonin 2A receptor binding

    Frokjaer, Vibe G.; Erritzoe, David; Juul, Anders

    2010-01-01

    the effect of plasma sex hormone levels on neocortical 5-HT2A receptor binding as imaged with [18F]altanserin PET. The effect of endogenous sex-hormone levels was evaluated by multiple linear regression analysis. Results: Mean neocortical 5-HT2A receptor binding was positively correlated with estradiol (p......Background: Sex-hormones influence brain function and are likely to play a role in the gender predisposition to mood and anxiety disorders. Acute fluctuations of sex-hormone levels including hormonal replacement therapy appear to affect serotonergic neurotransmission, but it is unknown if baseline...... levels affect serotonergic neurotransmission. This study was undertaken to examine if baseline levels of endogenous sex hormones are associated with cerebral serotonin 2A (5-HT2A) receptor binding in men. Methods: In a group of 72 healthy men (mean age 37.5 years ±17.4 SD, range 19.6–81.7) we studied...

  9. 5-HT7 Receptor Antagonists with an Unprecedented Selectivity Profile.

    Ates, Ali; Burssens, Pierre; Lorthioir, Olivier; Lo Brutto, Patrick; Dehon, Gwenael; Keyaerts, Jean; Coloretti, Francis; Lallemand, Bénédicte; Verbois, Valérie; Gillard, Michel; Vermeiren, Céline

    2018-04-23

    Selective leads: In this study, we generated a new series of serotonin 5-HT 7 receptor antagonists. Their synthesis, structure-activity relationships, and selectivity profiles are reported. This series includes 5-HT 7 antagonists with unprecedented high selectivity for the 5-HT 7 receptor, setting the stage for lead optimization of drugs acting on a range of neurological targets. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cerebral blood flow in migraine and cortical spreading depression

    Lauritzen, M.

    1987-01-01

    In a series of migraine patients, carotid arteriography was carried out as part of the clinical evalution. Nine patients developed a migrainous attack with focal neurological symptoms and headache after the angiography and during the subsequent, ongoing regional cerebral blood flow rCBF study. rCBF was measured by bolus injection of Xenon/sup 133/ into the internal carotid artery and a gamma camera with 254 collimated scintillation detectors covering the lateral aspect of the hemisphere. This technique depicts rCBF mainly at the level of the superficial cortex, with no depth resolution. The resolution is 1 cm/sup 2/ providing detailed spatial information of the cortical blood flow. Other methods for measuring local blood flow in animal and man employ a radioactive, freely diffusible tracer, in combination with an autoradiographic technique for the assessment of the tissue concentration, the so-called autoradiographic methods. In the series of patients with spontaneous migraine, rCBF was estimated using an in-vivo application of the autoradiographic principle. Xenon/sup 133/ was administered by inhalation and the time course of the arterial concentration curve was assessed by a scintillation detector over the upper right lung, since the arterial curve has been found to follow the shape of the lung curve. The rCBF was studied accompanying cortical spreading depression in rat experiments to evaluate wheter this phenomenon could explain the blood flow changes in migraine. (/sup 14/C) iodoantipyrine was given as an intravenous bolus injection and the brain content of indicator was determined by tissue sample or autoradiography after 10 or 20 seconds of isotope circulation. The conditions of the autoradiographic methods are that the flow remains constant within the period of measuring, and that the region under study is homogenous with regard to flow and lambda. (EG).

  11. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats.

    Martin-Gronert, Malgorzata S; Stocker, Claire J; Wargent, Edward T; Cripps, Roselle L; Garfield, Alastair S; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S H; Cawthorne, Michael A; Arch, Jonathan R S; Heisler, Lora K; Ozanne, Susan E

    2016-04-01

    Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. © 2016. Published by The Company of Biologists Ltd.

  12. Functional Characterization of 5-HT1B Receptor Drugs in Nonhuman Primates Using Simultaneous PET-MR.

    Hansen, Hanne D; Mandeville, Joseph B; Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Knudsen, Gitte M

    2017-11-01

    In the present study, we used a simultaneous PET-MR experimental design to investigate the effects of functionally different compounds (agonist, partial agonist, and antagonist) on 5-HT 1B receptor (5-HT 1B R) occupancy and the associated hemodynamic responses. In anesthetized male nonhuman primates ( n = 3), we used positron emission tomography (PET) imaging with the radioligand [ 11 C]AZ10419369 administered as a bolus followed by constant infusion to measure changes in 5-HT 1B R occupancy. Simultaneously, we measured changes in cerebral blood volume (CBV) as a proxy of drug effects on neuronal activity. The 5-HT 1B R partial agonist AZ10419369 elicited a dose-dependent biphasic hemodynamic response that was related to the 5-HT 1B R occupancy. The magnitude of the response was spatially overlapping with high cerebral 5-HT 1B R densities. High doses of AZ10419369 exerted an extracranial tissue vasoconstriction that was comparable to the less blood-brain barrier-permeable 5-HT 1B R agonist sumatriptan. By contrast, injection of the antagonist GR127935 did not elicit significant hemodynamic responses, even at a 5-HT 1B R cerebral occupancy similar to the one obtained with a high dose of AZ10419369. Given the knowledge we have of the 5-HT 1B R and its function and distribution in the brain, the hemodynamic response informs us about the functionality of the given drug: changes in CBV are only produced when the receptor is stimulated by the partial agonist AZ10419369 and not by the antagonist GR127935, consistent with low basal occupancy by endogenous serotonin. SIGNIFICANCE STATEMENT We here show that combined simultaneous positron emission tomography and magnetic resonance imaging uniquely enables the assessment of CNS active compounds. We conducted a series of pharmacological interventions to interrogate 5-HT 1B receptor binding and function and determined blood-brain barrier passage of drugs and demonstrate target involvement. Importantly, we show how the spatial

  13. Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET

    Ettrup, Anders; Palner, Mikael; Gillings, Nic

    2010-01-01

    PET brain imaging of the serotonin 2A (5-hydroxytryptamine 2A, or 5-HT(2A)) receptor has been widely used in clinical studies, and currently, several well-validated radiolabeled antagonist tracers are used for in vivo imaging of the cerebral 5-HT(2A) receptor. Access to 5-HT(2A) receptor agonist...... PET tracers would, however, enable imaging of the active, high-affinity state of receptors, which may provide a more meaningful assessment of membrane-bound receptors. In this study, we radiolabel the high-affinity 5-HT(2A) receptor agonist 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-[(11)C-OCH(3......)]methoxybenzyl)ethanamine ((11)C-CIMBI-5) and investigate its potential as a PET tracer....

  14. Do dorsal raphe 5-HT neurons encode "beneficialness"?

    Luo, Minmin; Li, Yi; Zhong, Weixin

    2016-11-01

    The neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) affects numerous behavioral and physiological processes. Drugs that alter 5-HT signaling treat several major psychiatric disorders and may lead to widespread abuse. The dorsal raphe nucleus (DRN) in the midbrain provides a majority of 5-HT for the forebrain. The importance of 5-HT signaling propels the search for a general theoretical framework under which the diverse functions of the DRN 5-HT neurons can be interpreted and additional therapeutic solutions may be developed. However, experimental data so far support several seeming irreconcilable theories, suggesting that 5-HT neurons mediate behavioral inhibition, aversive processing, or reward signaling. Here, we review recent progresses and propose that DRN 5-HT neurons encode "beneficialness" - how beneficial the current environmental context represents for an individual. Specifically, we speculate that the activity of these neurons reflects the possible net benefit of the current context as determined by p·R-C, in which p indicates reward probability, R the reward value, and C the cost. Through the widespread projections of these neurons to the forebrain, the beneficialness signal may reconfigure neural circuits to bias perception, boost positive emotions, and switch behavioral choices. The "beneficialness" hypothesis can explain many conflicting observations, and at the same time raises new questions. We suggest additional experiments that will help elucidate the exact computational functions of the DRN 5-HT neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Serotonin 5-HT3 and 5-HT4 ligands: an update of medicinal chemistry research in the last few years.

    Modica, M N; Pittalà, V; Romeo, G; Salerno, L; Siracusa, M A

    2010-01-01

    The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is one of the most studied neurotransmitters in the central nervous system. It acts through the activation of at least fourteen 5-HT receptor subtypes. Over the last two decades, high attention was devoted to the 5-HT(3) and 5-HT(4) receptors due to their colocalization in the gastrointestinal tract and because their ligands are useful in the treatment of intestinal serotonergic system dysfunctions. The focus of this review is to discuss the literature concerning recent advances on 5-HT(3)R and 5-HT(4)R ligands and their structure-activity relationships from a medicinal chemistry perspective. During the last few years, new and significant progresses have been made in the field of novel potent and selective ligands, mixed ligands, agonists, partial agonists, and antagonists, and a number of patents have been filed. Furthermore several ligands targeting the 5-HT(3)R and 5-HT(4)R have been proposed for novel therapeutic indications such as the treatment of various psychiatric disorders.

  16. Positron emission tomography study of pindolol occupancy of 5-HT1A receptors in humans: preliminary analyses

    Martinez, Diana; Mawlawi, Osama; Hwang, Dah-Ren; Kent, Justine; Simpson, Norman; Parsey, Ramin V.; Hashimoto, Tomoki; Slifstein, Mark; Huang Yiyun; Heertum, Ronald van; Abi-Dargham, Anissa; Caltabiano, Stephen; Malizia, Andrea; Cowley, Hugh; Mann, J. John; Laruelle, Marc

    2000-01-01

    Preclinical studies in rodents suggest that augmentation of serotonin reuptake inhibitors (SSRIs) therapy by the 5-hydroxytryptamine 1A (5-HT 1A ) receptor agent pindolol might reduce the delay between initiation of treatment and antidepressant response. This hypothesis is based on the ability of pindolol to potentiate the increase in serotonin (5-HT) transmission induced by SSRIs, an effect achieved by blockade of the 5-HT 1A autoreceptors in the dorsal raphe nuclei (DRN). However, placebo-controlled clinical studies of pindolol augmentation of antidepressant therapy have reported inconsistent results. Here, we evaluated the occupancy of 5-HT 1A receptors following treatment with controlled release pindolol in nine healthy volunteers with positron-emission tomography (PET). Each subject was studied four times: at baseline (scan 1), following 1 week of oral administration of pindolol CR (7.5 mg/day) at peak level, 4 h after the dose (scan 2), and at 10 h following the dose (scan 3), and following one dose of pindolol CR (30 mg) (at peak level, 4 h) (scan 4). Pindolol occupancy of 5-HT 1A receptors was evaluated in the DRN and cortical regions as the decrease in binding potential (BP) of the radiolabelled selective 5-HT 1A antagonist [carbonyl- 11 C]WAY-100635 or [carbonyl- 11 C] N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide abbreviated as [ 11 C]WAY-100635. Pindolol dose-dependently decreased [ 11 C]WAY-100635 BP. Combining all the regions, occupancy was 20 ± 8% at scan 2, 14 ± 8% at scan 3, and 44 ± 8% at scan 4. The results of this study suggest that at doses used in clinical studies of augmentation of the SSRI effect by pindolol (2.5 mg t.i.d.), the occupancy of 5-HT 1A receptors is moderate and highly variable between subjects. This factor might explain the variable results obtained in clinical studies. On the other hand, at each dose tested, pindolol occupancy of 5-HT 1A receptors was higher in the DRN compared to

  17. Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: evidence for direct 5-HT receptor modulation

    Jensen, Jesper Bornø; du Jardin, Kristian Gaarn; Song, Dekun

    2014-01-01

    Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor...... depletion impaired memory performance in rats through one or more of its receptor activities....... partial agonist, 5-HT1A receptor agonist and 5-HT transporter (SERT) inhibitor that enhances memory in normal rats in novel object recognition (NOR) and conditioned fear (Mørk et al., 2013). We hypothesized that vortioxetine's 5-HT receptor mechanisms are involved in its memory effects, and therefore...

  18. Alterations in behaviour, cerebral cortical morphology and cerebral oxidative stress markers following aspartame ingestion.

    Onaolapo, Adejoke Y; Onaolapo, Olakunle J; Nwoha, Polycarp U

    2016-12-01

    The study evaluated changes in open field behaviours, cerebral cortical histomorphology and biochemical markers of oxidative stress following repeated administration of aspartame in mice. Adult mice were assigned into five groups of twelve each. Vehicle (distilled water), or aspartame (20, 40, 80 and 160mg/kg body weight) were administered orally for 28days. Horizontal locomotion, rearing and grooming were assessed after the first and last dose of aspartame. Sections of the cerebral cortex were processed and stained for general histology, and also examined for neuritic plaques using the Bielschwosky's protocol. Glial fibrillary acidic protein (GFAP) and neuron specific enolase (NSE) immunoreactivity were assessed using appropriate antibodies. Aspartate and antioxidant levels were also assayed from cerebral cortex homogenates. Data obtained were analysed using descriptive and inferential statistics. Body weight and food consumption decreased significantly with aspartame consumption. Locomotion, rearing and grooming increased significantly after first dose, and with repeated administration of aspartame. Histological changes consistent with neuronal damage were seen at 40, 80 and 160mg/kg. Neuritic plaque formation was not evident; while GFAP-reactive astrocytes and NSE-reactive neurons increased at 40 and 80mg/kg but decreased at 160mg/kg. Superoxide dismutase and nitric oxide increased with increasing doses of aspartame, while aspartate levels showed no significant difference. The study showed morphological alterations consistent with neuronal injury and biochemical changes of oxidative stress. These data therefore supports the need for caution in the indiscriminate use of aspartame as a non-nutritive sweetener. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. 5-HT4-receptors modulate induction of long-term depression but not potentiation at hippocampal output synapses in acute rat brain slices.

    Matthias Wawra

    Full Text Available The subiculum is the principal target of CA1 pyramidal cells and mediates hippocampal output to various cortical and subcortical regions of the brain. The majority of subicular pyramidal cells are burst-spiking neurons. Previous studies indicated that high frequency stimulation in subicular burst-spiking cells causes presynaptic NMDA-receptor dependent long-term potentiation (LTP whereas low frequency stimulation induces postsynaptic NMDA-receptor-dependent long-term depression (LTD. In the present study, we investigate the effect of 5-hydroxytryptamine type 4 (5-HT4 receptor activation and blockade on both forms of synaptic plasticity in burst-spiking cells. We demonstrate that neither activation nor block of 5-HT4 receptors modulate the induction or expression of LTP. In contrast, activation of 5-HT4 receptors facilitates expression of LTD, and block of the 5-HT4 receptor prevents induction of short-term depression and LTD. As 5-HT4 receptors are positively coupled to adenylate cyclase 1 (AC1, 5-HT4 receptors might modulate PKA activity through AC1. Since LTD is blocked in the presence of 5-HT4 receptor antagonists, our data are consistent with 5-HT4 receptor activation by ambient serotonin or intrinsically active 5-HT4 receptors. Our findings provide new insight into aminergic modulation of hippocampal output.

  20. [11C]WAY-100635 PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy

    Sasai, Taeko; Matsuura, Masato; Itou, Shigeo; Suhara, Tetsuya; Yahata, Noriaki; Okubo, Yoshiro

    2006-01-01

    To understand the role of 5-HT in human temporal lobe epilepsy, here we measured 5-HT 1A receptor binding potential by positron emission tomography (PET) with [carbonyl- 11 C]WAY100635, a selective 5-HT 1A receptor antagonist, in patients with temporal lobe epilepsy and normal controls. Twelve patients with temporal lobe epilepsy and seventeen healthy controls participated in the study. For each subject, we conducted PET and magnetic resonance imaging (MRI), by which we measured the 5-HT 1A receptor binding potential, the R1-value, a relative indicator of cerebral blood flow in regions of interest, and the volume of gray matter. Patients with temporal lobe epilepsy showed significantly reduced 5-HT 1A receptor binding potential in the temporal lobe. The laterality of the reduction was coincided with the epileptogenic foci estimated by a scalp electroencephalography (EEG). In contrast, the R1-value and gray matter volume showed no difference between the patient and control groups. Our study revealed that 5-HT 1A receptor binding was reduced significantly at the epileptogenic foci. We suggest that PET imaging with [carbonyl- 11 C]WAY100635 is potentially a useful non-invasive method for determining the epileptogenic foci. (author)

  1. Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL

    Jouvent, E.; Bousser, M.G.; Chabriat, H.; Jouvent, E.; Bousser, M.G.; Chabriat, H.; Porcher, R.; Viswanathan, A.; Viswanathan, A.; Viswanathan, A.; O'Sullivan, M.; Dichgans, M.; Guichard, J.P.

    2008-01-01

    Brain atrophy represents a key marker of disease progression in cerebrovascular disorders. The 3D changes of cortex morphology occurring during the course of small vessel diseases of the brain (SVDB) remain poorly understood. The objective of this study was to assess the changes affecting depth and surface area of cortical sulci and their clinical and radiological correlates in a cohort of patients with cerebral autosomal dominant arteriolopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic SVDB. Data were obtained from a series of 69 CADASIL patients. Validated methods were used to determine depth and surface area of four cortical sulci. The ratio of brain to intracranial cavity volumes (brain parenchymal fraction-BPF), volume of lacunar lesions (LL) and of white matter hyper-intensities, number of cerebral micro-haemorrhages, and mean apparent diffusion coefficient were also measured. Association between depth and surface area of the cortical sulci and BPF, clinical status and subcortical MRI lesions were tested. Depth and surface area of cortical sulci obtained in 54 patients were strongly correlated with both cognitive score and disability scales. Depth was related to the extent of subcortical lesions, surface area was related only to age. In additional analyses, the depth of the cingular sulcus was independently associated with the volume of LL (P 0.001), and that of the superior frontal sulcus with the mean apparent diffusion coefficient (P 0.003). In CADASIL, important morphological changes of cortical sulci occur in association with clinical worsening,extension of subcortical tissue damage and progression of global cerebral atrophy. These results suggest that the examination of cortical morphology may be of high clinical relevance in SVDB. (authors)

  2. APC sets the Wnt tone necessary for cerebral cortical progenitor development.

    Nakagawa, Naoki; Li, Jingjun; Yabuno-Nakagawa, Keiko; Eom, Tae-Yeon; Cowles, Martis; Mapp, Tavien; Taylor, Robin; Anton, E S

    2017-08-15

    Adenomatous polyposis coli (APC) regulates the activity of β-catenin, an integral component of Wnt signaling. However, the selective role of the APC-β-catenin pathway in cerebral cortical development is unknown. Here we genetically dissected the relative contributions of APC-regulated β-catenin signaling in cortical progenitor development, a necessary early step in cerebral cortical formation. Radial progenitor-specific inactivation of the APC-β-catenin pathway indicates that the maintenance of appropriate β-catenin-mediated Wnt tone is necessary for the orderly differentiation of cortical progenitors and the resultant formation of the cerebral cortex. APC deletion deregulates β-catenin, leads to high Wnt tone, and disrupts Notch1 signaling and primary cilium maintenance necessary for radial progenitor functions. β-Catenin deregulation directly disrupts cilium maintenance and signaling via Tulp3, essential for intraflagellar transport of ciliary signaling receptors. Surprisingly, deletion of β-catenin or inhibition of β-catenin activity in APC-null progenitors rescues the APC-null phenotype. These results reveal that APC-regulated β-catenin activity in cortical progenitors sets the appropriate Wnt tone necessary for normal cerebral cortical development. © 2017 Nakagawa et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Familial Risk for Major Depression is Associated with Lower Striatal 5-HT4 Receptor Binding

    Madsen, Karine; Torstensen, Eva; Holst, Klaus Kähler

    2015-01-01

    was to determine whether familial risk for MDD is associated with cerebral 5-HT4 receptor binding as measured with [(11)C]SB207145 brain PET imaging. Familial risk is the most potent risk factor of MDD. METHODS: We studied 57 healthy individuals (mean age 36 yrs, range 20-86; 21 women), 26 of which had first...

  4. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task.

    Meneses, Alfredo

    2002-05-01

    Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the

  5. Both exogenous 5-HT and endogenous 5-HT, released by fluoxetine, enhance distension evoked propulsion in guinea-pig ileum in vitro

    Rachel M Gwynne

    2014-09-01

    Full Text Available The roles of 5-HT3 and 5-HT4 receptors in the modulation of intestinal propulsion by luminal application of 5-HT and augmentation of endogenous 5-HT effects were studied in segments of guinea-pig ileum in vitro. Persistent propulsive contractions evoked by saline distension were examined using a modified Trendelenburg method. When 5-HT (30 nM, fluoxetine (selective serotonin reuptake inhibitor; 1 nM, 2-methyl-5-HT (5-HT3 receptor agonist; 1 mM or RS 67506 (5-HT4 receptor agonist, 1 µM was infused into the lumen, the pressure needed to initiate persistent propulsive activity fell significantly. A specific 5-HT4 receptor antagonist, SB 207266 (10 nM in lumen, abolished the effects of 5-HT, fluoxetine, and RS 67506, but not those of 2-methyl-5-HT. Granisetron (5-HT3 receptor antagonist; 1 µM in lumen abolished the effect of 5-HT, fluoxetine, RS 67506 and 2-methyl-5-HT. The NK3 receptor antagonist SR 142801 (100 nM in lumen blocked the effects of 5-HT, fluoxetine and 2-methyl-5-HT. SB 207266, granisetron and SR 142801 had no effect by themselves. Higher concentrations of fluoxetine (100 nM and 300 nM and RS 67506 (3 µM and 10 µM had no effect on the distension threshold for propulsive contractions. These results indicate that luminal application of exogenous 5-HT, or increased release of endogenous mucosal 5-HT above basal levels, acts to lower the threshold for propulsive contractions in the guinea-pig ileum via activation of 5-HT3 and 5-HT4 receptors and the release of tachykinins. The results further indicate that basal release of 5-HT is insufficient to alter the threshold for propulsive motor activity.

  6. An immunocapture/scintillation proximity analysis of G alpha q/11 activation by native serotonin (5-HT)2A receptors in rat cortex: blockade by clozapine and mirtazapine.

    Mannoury La Cour, C; Chaput, C; Touzard, M; Millan, M J

    2009-02-01

    Though transduction mechanisms recruited by heterologously expressed 5-HT(2A) receptors have been extensively studied, their interaction with specific subtypes of G-protein remains to be directly evaluated in cerebral tissue. Herein, as shown by an immunocapture/scintillation proximity analysis, 5-HT, the prototypical 5-HT(2A) agonist, DOI, and Ro60,0175 all enhanced [(35)S]GTPgammaS binding to G alpha q/11 in rat cortex with pEC(50) values of 6.22, 7.24 and 6.35, respectively. No activation of G o or G s/olf was seen at equivalent concentrations of DOI. Stimulation of G alpha q/11 by 5-HT (30 microM) and DOI (30 microM) was abolished by the selective 5-HT(2A) vs. 5-HT(2C)/5-HT(2B) antagonists, ketanserin (pK(B) values of 9.11 and 8.88, respectively) and MDL100,907 (9.82 and 9.68). By contrast, 5-HT-induced [(35)S]GTPgammaS binding to G alpha q/11 was only weakly inhibited by the preferential 5-HT(2C) receptor antagonists, RS102,221 (6.94) and SB242,084 (7.39), and the preferential 5-HT(2B) receptor antagonist, LY266,097 (6.66). The antipsychotic, clozapine, which had marked affinity for 5-HT(2A) receptors, blocked the recruitment of G alpha q/11 by 5-HT and DOI with pK(B) values of 8.54 and 8.14, respectively. Its actions were mimicked by the "atypical" antidepressant and 5-HT(2A) receptor antagonist, mirtazapine, which likewise blocked 5-HT and DOI-induced G alpha q/11 protein activation with pK(B) values of 7.90 and 7.76, respectively. In conclusion, by use of an immunocapture/scintillation proximity strategy, this study shows that native 5-HT(2A) receptors in rat frontal cortex specifically recruit G alpha q/11 and that this action is blocked by clozapine and mirtazapine. Quantification of 5-HT(2A) receptor-mediated G alpha q/11 activation in frontal cortex should prove instructive in characterizing the actions of diverse classes of psychotropic agent. 2008 Wiley-Liss, Inc.

  7. Peptide displacement of [3H]5-hydroxytryptamine binding to bovine cortical membranes

    Takeuchi, Y.; Root-Bernstein, R.S.; Shih, J.C.

    1990-01-01

    Chemical studies have demonstrated that peptides such as the encephalitogenic (EAE) peptide of myelin basic protein (MBP) and luteinizing hormone-releasing hormone (LHRH) can bind serotonin (5-hydroxytryptamine, 5-HT) in vitro. The present research was undertaken to determine whether such binding interferes with 5-HT binding to its 5-HT1 receptors on bovine cerebral cortical membranes. EAE peptide and LHRH displaced [ 3 H]5-HT with IC50s of 4.0 x 10(-4) and 1.8 x 10(-3) M respectively. MBP itself also showed apparent displacing ability with an IC50 of 6.0 x 10(-5) M, though it also caused aggregation of cortical membranes that might have interfered with normal receptor binding. These results support previous suggestions that the tryptophan peptide region of MBP may act as a 5-HT receptor in the neural system. We also tested the effects of muramyl dipeptide (N-acetyl-muramyl-L-Ala-D-isoGln, MD), a bacterial cell-wall breakdown product that acts as a slow-wave sleep promoter, binds to LHRH and EAE peptide, and competes for 5-HT binding sites on macrophages. It showed no significant displacement of 5-HT binding to cortical membranes (IC50 greater than 10(-1) M), but its D-Ala analogue did (IC50 = 1.7 x 10(-3) M). Thus, it seems likely that the 5-HT-related effects of naturally occurring muramyl peptides are physiologically limited by receptor types

  8. Effect of growth hormone on glycogenesis in rat cerebral cortical slices

    Visweswaran, P.; Binod Kumar; Azad, V.S.S.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    Incubation of cerebral cortical slices of growth hormone treated diabetic and normal rats with U- 14 C glucose showed a two-fold increase in glycogenesis in diabetic rats. Glucose-6-phosphatase activity was lowered while the activities of phosphoglucomutase and phosphorylase were elevated in the cerebral cortex of diabetic rats treated with growth hormone. However, glycogen synthetase activity was slightly depressed. (author). 13 refs., 2 tabs

  9. Novel pyridylmethylamines as highly selective 5-HT(1A) superagonists.

    Bollinger, Stefan; Hübner, Harald; Heinemann, Frank W; Meyer, Karsten; Gmeiner, Peter

    2010-10-14

    To further improve the maximal serotonergic efficacy and better understand the configurational requirements for 5-HT(1A) binding and activation, we generated and biologically investigated structural variants of the lead structure befiradol. For a bioisosteric replacement of the 3-chloro-4-fluoro moiety, a focused library of 63 compounds by solution phase parallel synthesis was developed. Target binding of our compound collection was investigated, and their affinities for 5-HT(2), α(1), and α(2)-adrenergic as well as D(1)-D(4) dopamine receptors were compared. For particularly interesting test compounds, intrinsic activities at 5-HT(1A) were examined in vitro employing a GTPγS assay. The investigation guided us to highly selective 5HT(1A) superagonists. The benzothiophene-3-carboxamide 8bt revealed almost exclusive 5HT(1A) recognition with a K(i) value of 2.7 nM and a maximal efficacy of 124%. To get insights into the bioactive conformation of our compound collection, we synthesized conformationally constrained bicyclic scaffolds when SAR data indicated a chair-type geometry and an equatorially dispositioned aminomethyl substituent for the 4,4-disubstituted piperidine moiety.

  10. The inhibition of cholera toxin-induced 5-HT release by the 5-HT3 receptor antagonist, granisetron, in the rat

    Turvill, J L; Connor, P; Farthing, M J G

    2000-01-01

    The secretagogue 5-hydroxytryptamine (5-HT) is implicated in the pathophysiology of cholera. 5-HT released from enterochromaffin cells after cholera toxin exposure is thought to activate non-neuronally (5-HT2 dependent) and neuronally (5-HT3 dependent) mediated water and electrolyte secretion. CT-secretion can be reduced by preventing the release of 5-HT. Enterochromaffin cells possess numerous receptors that, under basal conditions, modulate 5-HT release. These include basolateral 5-HT3 receptors, the activation of which is known to enhance 5-HT release. Until now, 5-HT3 receptor antagonists (e.g. granisetron) have been thought to inhibit cholera toxin-induced fluid secretion by blockading 5-HT3 receptors on secretory enteric neurones. Instead we postulated that they act by inhibiting cholera toxin-induced enterochromaffin cell degranulation. Isolated intestinal segments in anaesthetized male Wistar rats, pre-treated with granisetron 75 μg kg−1, lidoocaine 6 mg kg−1 or saline, were instilled with a supramaximal dose of cholera toxin or saline. Net fluid movement was determined by small intestinal perfusion or gravimetry and small intestinal and luminal fluid 5-HT levels were determined by HPLC with fluorimetric detection. Intraluminal 5-HT release was proportional to the reduction in tissue 5-HT levels and to the onset of water and electrolyte secretion, suggesting that luminal 5-HT levels reflect enterochromaffin cell activity. Both lidocaine and granisetron inhibited fluid secretion. However, granisetron alone, and proportionately, reduced 5-HT release. The simultaneous inhibition of 5-HT release and fluid secretion by granisetron suggests that 5-HT release from enterochromaffin cells is potentiated by endogenous 5-HT3 receptors. The accentuated 5-HT release promotes cholera toxin-induced fluid secretion. PMID:10882387

  11. Effects of Constant Flickering Light on Refractive Status, 5-HT and 5-HT2A Receptor in Guinea Pigs.

    Li, Bing; Luo, Xiumei; Li, Tao; Zheng, Changyue; Ji, Shunmei; Ma, Yuanyuan; Zhang, Shuangshuang; Zhou, Xiaodong

    2016-01-01

    To investigate the effects of constant flickering light on refractive development, the role of serotonin (i.e.5-hydroxytryptamine, 5-HT)and 5-HT2A receptor in myopia induced by flickering light in guinea pigs. Forty-five guinea pigs were randomly divided into three groups: control, form deprivation myopia (FDM) and flickering light induced myopia (FLM) groups(n = 15 for each group). The right eyes of the FDM group were covered with semitransparent hemispherical plastic shells serving as eye diffusers. Guinea pigs in FLM group were raised with illumination of a duty cycle of 50% at a flash frequency of 0.5Hz. The refractive status, axial length (AL), corneal radius of curvature(CRC) were measured by streak retinoscope, A-scan ultrasonography and keratometer, respectively. Ultramicroscopy images were taken by electron microscopy. The concentrations of 5-HTin the retina, vitreous body and retinal pigment epithelium (RPE) were assessed by high performance liquid chromatography, the retinal 5-HT2A receptor expression was evaluated by immunohistofluorescence and western blot. The refraction of FDM and FLM eyes became myopic from some time point (the 4th week and the 6th week, respectively) in the course of the experiment, which was indicated by significantly decreased refraction and longer AL when compared with the controls (plight could cause progressive myopia in guinea pigs. 5-HT and 5-HT2A receptor increased both in form deprivation myopia and flickering light induced myopia, indicating that 5-HT possibly involved in myopic development via binding to5-HT2A receptor.

  12. Evaluation of the novel 5-HT4 receptor PET ligand [11C]SB207145 in the Gottingen minipig

    Kornum, B.R.; Lind, N.M.; Gillings, N.

    2009-01-01

    This study investigates 5-hydroxytryptamine 4 (5-HT(4)) receptor binding in the minipig brain with positron emission tomography (PET), tissue homogenate-binding assays, and autoradiography in vitro. The cerebral uptake and binding of the novel 5-HT(4) receptor radioligand [(11)C]SB207145 in vivo...... was modelled and the outcome compared with postmortem receptor binding. Different models for quantification of [(11)C]SB207145 binding were evaluated: One-tissue and two-tissue compartment kinetic modelling, Logan arterial input, and three different reference tissue models. We report that the pig...... model provides stable and precise estimates of the binding potential in all regions. The binding potentials calculated for striatum, midbrain, and cortex from the PET data were highly correlated with 5-HT(4) receptor concentrations determined in brain homogenates from the same regions, except...

  13. 5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: implications for effects of selective serotonin reuptake inhibitors.

    Eriksson, Therese M; Holst, Sarah; Stan, Tiberiu L; Hager, Torben; Sjögren, Benita; Ogren, Sven Öve; Svenningsson, Per; Stiedl, Oliver

    2012-11-01

    This study utilized pharmacological manipulations to analyze the role of direct and indirect activation of 5-HT(7) receptors (5-HT(7)Rs) in passive avoidance learning by assessing emotional memory in male C57BL/6J mice. Additionally, 5-HT(7)R binding affinity and 5-HT(7)R-mediated protein phosphorylation of downstream signaling targets were determined. Elevation of 5-HT by the selective serotonin reuptake inhibitor (SSRI) fluoxetine had no effect by itself, but facilitated emotional memory performance when combined with the 5-HT(1A)R antagonist NAD-299. This facilitation was blocked by the selective 5-HT(7)R antagonist SB269970, revealing excitatory effects of the SSRI via 5-HT(7)Rs. The enhanced memory retention by NAD-299 was blocked by SB269970, indicating that reduced activation of 5-HT(1A)Rs results in enhanced 5-HT stimulation of 5-HT(7)Rs. The putative 5-HT(7)R agonists LP-44 when administered systemically and AS19 when administered both systemically and into the dorsal hippocampus failed to facilitate memory. This finding is consistent with the low efficacy of LP-44 and AS19 to stimulate protein phosphorylation of 5-HT(7)R-activated signaling cascades. In contrast, increasing doses of the dual 5-HT(1A)R/5-HT(7)R agonist 8-OH-DPAT impaired memory, while co-administration with NAD-299 facilitated of emotional memory in a dose-dependent manner. This facilitation was blocked by SB269970 indicating 5-HT(7)R activation by 8-OH-DPAT. Dorsohippocampal infusion of 8-OH-DPAT impaired passive avoidance retention through hippocampal 5-HT(1A)R activation, while 5-HT(7)Rs appear to facilitate memory processes in a broader cortico-limbic network and not the hippocampus alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.

    Röser, Claudia; Jordan, Nadine; Balfanz, Sabine; Baumann, Arnd; Walz, Bernd; Baumann, Otto; Blenau, Wolfgang

    2012-01-01

    Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca(2+) and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7) that share high similarity with mammalian 5-HT(2) and 5-HT(7) receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+)] in a dose-dependent manner (EC(50) = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC(50) = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α) or Cv5-HT(7) in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv5-HT(2α) receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT(7) receptor, and clozapine (1 µM) antagonizes the effects of 5-HT via Cv5-HT(7) in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+)- and cAMP-signalling cascades.

  15. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.

    Claudia Röser

    Full Text Available Secretion in blowfly (Calliphora vicina salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT, which activates both inositol 1,4,5-trisphosphate (InsP(3/Ca(2+ and cyclic adenosine 3',5'-monophosphate (cAMP signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7 that share high similarity with mammalian 5-HT(2 and 5-HT(7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+] in a dose-dependent manner (EC(50 = 24 nM. In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i (EC(50 = 4 nM. We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α or Cv5-HT(7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM activates only the Cv5-HT(2α receptor, 5-carboxamidotryptamine (300 nM activates only the Cv5-HT(7 receptor, and clozapine (1 µM antagonizes the effects of 5-HT via Cv5-HT(7 in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+- and cAMP-signalling cascades.

  16. Serotonin 5HT1A receptor availability and pathological crying after stroke

    Møller, Mette; Andersen, G; Gjedde, A

    2007-01-01

    OBJECTIVES: Post-stroke depression and pathological crying (PC) implicate an imbalance of serotonergic neurotransmission. We claim that PC follows serotonin depletion that raises the binding potential (p(B)) of the 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635, which is reversible...... by selective serotonin re-uptake inhibitor (SSRI) treatment. MATERIALS AND METHODS: We PET scanned patients with acute stroke and PC and age-matched control subjects. Maps of receptor availability were generated from the images of eight cortical regions and raphe nuclei. RESULTS: The maps showed highest...

  17. [18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging

    Lemoine, Laetitia; Verdurand, Mathieu; Vacher, Bernard; Blanc, Elodie; Newman-Tancredi, Adrian; Le Bars, Didier; Zimmer, Luc

    2010-01-01

    The serotonin-1A (5-HT 1A ) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT 1A receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT 1A receptors. Since all clinical PET 5-HT 1A radiopharmaceuticals are antagonists, it is of great interest to develop a 18 F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{ [(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT 1A receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT 1A receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [ 18 F]MPPF, a validated 5-HT 1A antagonist radiopharmaceutical. The chemical and radiochemical purities of [ 18 F]F15599 were >98%. In vitro [ 18 F ]F15599 binding was consistent with the known 5-HT 1A receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [ 18 F ]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [ 18 F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT 1A antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer readily entered the rat and the cat brain and generated few brain radioactive

  18. [18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging.

    Lemoine, Laëtitia; Verdurand, Mathieu; Vacher, Bernard; Blanc, Elodie; Le Bars, Didier; Newman-Tancredi, Adrian; Zimmer, Luc

    2010-03-01

    The serotonin-1A (5-HT(1A)) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT(1A) receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT(1A) receptors. Since all clinical PET 5-HT(1A) radiopharmaceuticals are antagonists, it is of great interest to develop a( 18)F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{[(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT(1A) receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT(1A) receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [(18)F]MPPF, a validated 5-HT(1A) antagonist radiopharmaceutical. The chemical and radiochemical purities of [(18)F]F15599 were >98%. In vitro [(18)F]F15599 binding was consistent with the known 5-HT(1A) receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [(18)F]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [(18)F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT(1A) antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer readily entered the rat and the cat brain and generated few brain

  19. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen......]citalopram in two murine models of depression-related states, olfactory bulbectomy and glucocorticoid receptor heterozygous (GR(+/-)) mice. The olfactory bulbectomy model is characterized by 5-HT system changes, while the GR(+/-) mice have a deficit in hypothalamic-pituitary-adrenal (HPA) system control....... Among post hoc analyzed regions, there was a 14% decrease in 5-HT(4) receptor binding in the olfactory tubercles. The 5-HTT binding was unchanged in the hippocampus and caudate putamen of bulbectomized mice but post hoc analysis showed small decreases in lateral septum and lateral globus pallidus...

  20. Strain differences in basal and post-citalopram extracellular 5-HT in the mouse medial prefrontal cortex and dorsal hippocampus: relation with tryptophan hydroxylase-2 activity.

    Calcagno, E; Canetta, A; Guzzetti, S; Cervo, L; Invernizzi, R W

    2007-11-01

    We used the microdialysis technique to compare basal extracellular serotonin (5-HT) and the response to citalopram in different strains of mice with functionally different allelic forms of tryptophan hydroxylase-2 (TPH-2), the rate-limiting enzyme in brain 5-HT synthesis. DBA/2J, DBA/2N and BALB/c mice carrying the 1473G allele of TPH-2 had less dialysate 5-HT in the medial prefrontal cortex and dorsal hippocampus (DH) (20-40% reduction) than C57BL/6J and C57BL/6N mice carrying the 1473C allele. Extracellular 5-HT estimated by the zero-net flux method confirmed the result of conventional microdialysis. Citalopram, 1.25, 5 and 20 mg/kg, dose-dependently raised extracellular 5-HT in the medial prefrontal cortex of C57BL/6J mice, with maximum effect at 5 mg/kg, but had significantly less effect in DBA/2J and BALB/c mice and in the DH of DBA/2J mice. A tryptophan (TRP) load enhanced basal extracellular 5-HT in the medial prefrontal cortex of DBA/2J mice but did not affect citalopram's ability to raise cortical and hippocampal extracellular 5-HT. The impairment of 5-HT synthesis quite likely accounts for the reduction of basal 5-HT and the citalopram-induced rise in mice carrying the mutated enzyme. These findings might explain why DBA/2 and BALB/c mice do not respond to citalopram in the forced swimming test. Although TRP could be a useful strategy to improve the antidepressant effect of citalopram (Cervo et al. 2005), particularly in subjects with low 5-HT synthesis, the contribution of serotonergic and non-serotonergic mechanisms to TRP's effect remains to be elucidated.

  1. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  2. Structural basis of ligand recognition in 5-HT(3) receptors

    Kesters, D.; Thompson, A.J.; Brams, M.; van Elk, R.; Spurny, R.; Geitmann, M.; Villalgordo, J.M.; Guskov, A.; Danielson, U.H.; Lummis, S.C.R.; Smit, A.B.; Ulens, C.

    2013-01-01

    The 5-HT 3 receptor is a pentameric serotonin-gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti-emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist

  3. 5-HT3-receptorantagonisten als vervangers van metoclopramide en domperidon

    Mouch, Ikrame; Brouwers, J R B J; van 't Riet, E; Nieboer, Peter; Otten, Marten H; Jansman, Frank G A

    2016-01-01

    OBJECTIVE: To investigate whether the anti-emetics metoclopramide and domperidone can be replaced by 5-HT3-antagonists, as side effects restrict use of these dopamine antagonists. DESIGN: Systematic review. METHOD: We searched the Embase and PubMed databases for articles published in the period

  4. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    Asao, Chiaki [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical Sciences, Department of Diagnostic Radiology, Kumamoto (Japan); Yoshimatsu, Shunji [National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Matsukawa, Tetsuya; Imuta, Masanori [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); Sagara, Katsuro [Kumamoto Regional Medical Center, Department of Internal Medicine, Kumamoto (Japan)

    2008-03-15

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  5. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    Asao, Chiaki; Hirai, Toshinori; Yamashita, Yasuyuki; Yoshimatsu, Shunji; Matsukawa, Tetsuya; Imuta, Masanori; Sagara, Katsuro

    2008-01-01

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  6. 5-HT7 receptor activation: procognitive and antiamnesic effects.

    Meneses, A; Perez-Garcia, G; Liy-Salmeron, G; Ponce-López, T; Lacivita, E; Leopoldo, M

    2015-02-01

    The serotonin (5-hydroxytryptamine (5-HT)) 5-HT7 receptor is localized in brain areas mediating memory; however, the role of this receptor on memory remains little explored. First, demonstrating the associative nature of Pavlovian/instrumental autoshaping (P/I-A) task, rats were exposed (three sessions) to CS-US (Pavlovian autoshaping), truly random control, free operant, and presentations of US or CS, and they were compared with rats trained-tested for one session to the P/I-A procedure. Also, effects of the 5-HT7 receptor agonist LP-211 administered intraperitoneally after training was determined on short- (1.5 h) and long-term memory 24 and 48 h) and on scopolamine-induced memory impairment and cAMP production. Autoshaping and its behavioral controls were studied. Other animals were subjected to an autoshaping training session and immediately afterwards were given (intraperitoneal) vehicle or LP-211 (0.1-10 mg/kg) and/or scopolamine (0.2 mg/kg) and tested for short-term memory (STM) and long-term memory (LTM); their brains were extracted for the cAMP ELISA immunoassay. P/I-A group produced the higher %CR. LP-211 did not affect STM; nonetheless, at 0.5 and 1.0 mg/kg, it improved LTM. The 5-HT7 receptor antagonist SB-269970 (SB; 10.0 mg/kg) alone had no effect; nevertheless, the LP-211 (1.0 mg/kg) LTM facilitation was reversed by SB. The scopolamine (0.2 mg/kg) induced-decrement in CR was accompanied by significant increased cAMP production. The scopolamine-induced decrement in CR and increments in cAMP were significantly attenuated by LP-211. Autoshaping is a reliable associative learning task whose consolidation is facilitated by the 5-HT7 receptor agonist LP-211.

  7. Implication of 5-HT(2B) receptors in the serotonin syndrome.

    Diaz, Silvina Laura; Maroteaux, Luc

    2011-09-01

    The serotonin (5-HT) syndrome occurs in humans after antidepressant overdose or combination of drugs inducing a massive increase in extracellular 5-HT. Several 5-HT receptors are known to participate in this syndrome in humans and animal models. The 5-HT(2B) receptor has been proposed as a positive modulator of serotonergic activity, but whether it is involved in 5-HT syndrome has not yet been studied. We analyzed here, a putative role of 5-HT(2B) receptors in this disorder by forced swimming test (FST) and behavioral assessment in the open field. In FST, genetic (5-HT(2B)(-/-) mice) or pharmacological (antagonist RS127445 at 0.5 mg/kg) ablation of 5-HT(2B) receptors facilitated selective 5-HT reuptake inhibitors (SSRI)-induced increase of immobility time as well as expression of other symptoms related to 5-HT syndrome like hind limb abduction and Straub tail. Increase in immobility was also developed in FST by both wild type (WT) and 5-HT(2B)(-/-) mice after the administration of 5-HT(1A), 5-HT(2A) or 5-HT(2C) receptor agonists, 8-OH-DPAT (5 mg/kg), DOI (1 mg/kg), or WAY161503 (5 mg/kg), respectively. In contrast, the 5-HT(2B) receptor agonist BW723C86 (3 mg/kg) or 5-HT(1B) receptor agonist CGS12066A (2 mg/kg) decreased immobility time in both genotypes. The 5-HT syndrome induced by fluoxetine at high doses was blocked in WT and 5-HT(2B)(-/-) mice by administration of 5-HT(1A) and 5-HT(2C) receptor antagonists (WAY100635 0.5 mg/kg and SB242084 0.5 mg/kg) but not by the 5-HT(2A) receptor antagonist MDL100907 (1 mg/kg). By behavioral assessment, we confirmed that 5-HT(2B)(-/-) mice were more prone to develop 5-HT syndrome symptoms after administration of high dose of SSRIs or the 5-HT precursor 5-Hydroxytryptophan, 5-HTP, even if increases in 5-HT plasma levels were similar in both genotypes. This evidence suggests that the presence of 5-HT(2B) receptors hinders acute 5-HT toxicity once high levels of 5-HT are attained. Therefore, differential agonism

  8. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their

  9. The binding characteristics and orientation of a novel radioligand with distinct properties at 5-HT3A and 5-HT3AB receptors

    Thompson, Andrew J; Verheij, Mark H P; Verbeek, Joost; Windhorst, Albert D; de Esch, Iwan J P; Lummis, Sarah C R

    2014-01-01

    VUF10166 (2-chloro-3-(4-methyl piperazin-1-yl)quinoxaline) is a ligand that binds with high affinity to 5-HT3 receptors. Here we synthesise [(3)H]VUF10166 and characterise its binding properties at 5-HT3A and 5-HT3AB receptors. At 5-HT3A receptors [(3)H]VUF10166 displayed saturable binding with a Kd

  10. Receptor⁻Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment.

    Borroto-Escuela, Dasiel O; Narváez, Manuel; Ambrogini, Patrizia; Ferraro, Luca; Brito, Ismel; Romero-Fernandez, Wilber; Andrade-Talavera, Yuniesky; Flores-Burgess, Antonio; Millon, Carmelo; Gago, Belen; Narvaez, Jose Angel; Odagaki, Yuji; Palkovits, Miklos; Diaz-Cabiale, Zaida; Fuxe, Kjell

    2018-06-03

    Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term "heteroreceptor complexes" was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A⁻FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A⁻FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL) rats). Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A⁻5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1⁻15) was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1⁻GalR2⁻5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.

  11. Receptor–Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment

    Dasiel O. Borroto-Escuela

    2018-06-01

    Full Text Available Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term “heteroreceptor complexes” was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A–FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A–FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL rats. Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A–5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1–15 was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1–GalR2–5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.

  12. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    Licht, Cecilie Löe; Kirkegaard, Lisbeth; Zueger, Maha

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen...

  13. Deletion of Munc18-1 in 5-HT Neurons Results in Rapid Degeneration of the 5-HT System and Early Postnatal Lethality

    Dudok, J.J.; Groffen, A.J.A.; Toonen, R.F.G.; Verhage, M.

    2011-01-01

    The serotonin (5-HT) system densely innervates many brain areas and is important for proper brain development. To specifically ablate the 5-HT system we generated mutant mice carrying a floxed Munc18-1 gene and Cre recombinase driven by the 5-HT-specific serotonin reuptake transporter (SERT)

  14. Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes

    Tiryaki, Volkan Mujdat; Ayres, Virginia M; Khan, Adeel A; Ahmed, Ijaz; Shreiber, David I; Meiners, Sally

    2012-01-01

    Cerebral cortical astrocyte responses to polyamide nanofibrillar scaffolds versus poly-L-lysine (PLL)-functionalized planar glass, unfunctionalized planar Aclar coverslips, and PLL-functionalized planar Aclar surfaces were investigated by atomic force microscopy and immunocytochemistry. The physical properties of the cell culture environments were evaluated using contact angle and surface roughness measurements and compared. Astrocyte morphological responses, including filopodia, lamellipodia, and stress fiber formation, and stellation were imaged using atomic force microscopy and phalloidin staining for F-actin. Activation of the corresponding Rho GTPase regulators was investigated using immunolabeling with Cdc42, Rac1, and RhoA. Astrocytes cultured on the nanofibrillar scaffolds showed a unique response that included stellation, cell–cell interactions by stellate processes, and evidence of depression of RhoA. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family, with demonstrable morphological consequences for cerebral cortical astrocytes. PMID:22915841

  15. Deletion of Munc18-1 in 5-HT neurons results in rapid degeneration of the 5-HT system and early postnatal lethality.

    Jacobus J Dudok

    Full Text Available The serotonin (5-HT system densely innervates many brain areas and is important for proper brain development. To specifically ablate the 5-HT system we generated mutant mice carrying a floxed Munc18-1 gene and Cre recombinase driven by the 5-HT-specific serotonin reuptake transporter (SERT promoter. The majority of mutant mice died within a few days after birth. Immunohistochemical analysis of brains of these mice showed that initially 5-HT neurons are formed and the cortex is innervated with 5-HT projections. From embryonic day 16 onwards, however, 5-HT neurons started to degenerate and at postnatal day 2 hardly any 5-HT projections were present in the cortex. The 5-HT system of mice heterozygous for the floxed Munc18-1 allele was indistinguishable from control mice. These data show that deletion of Munc18-1 in 5-HT neurons results in rapid degeneration of the 5-HT system and suggests that the 5-HT system is important for postnatal survival.

  16. Positron emission tomography study of pindolol occupancy of 5-HT{sub 1A} receptors in humans: preliminary analyses

    Martinez, Diana; Mawlawi, Osama; Hwang, Dah-Ren; Kent, Justine; Simpson, Norman; Parsey, Ramin V.; Hashimoto, Tomoki; Slifstein, Mark; Huang Yiyun; Heertum, Ronald van; Abi-Dargham, Anissa; Caltabiano, Stephen; Malizia, Andrea; Cowley, Hugh; Mann, J. John; Laruelle, Marc

    2000-07-01

    Preclinical studies in rodents suggest that augmentation of serotonin reuptake inhibitors (SSRIs) therapy by the 5-hydroxytryptamine{sub 1A} (5-HT{sub 1A}) receptor agent pindolol might reduce the delay between initiation of treatment and antidepressant response. This hypothesis is based on the ability of pindolol to potentiate the increase in serotonin (5-HT) transmission induced by SSRIs, an effect achieved by blockade of the 5-HT{sub 1A} autoreceptors in the dorsal raphe nuclei (DRN). However, placebo-controlled clinical studies of pindolol augmentation of antidepressant therapy have reported inconsistent results. Here, we evaluated the occupancy of 5-HT{sub 1A} receptors following treatment with controlled release pindolol in nine healthy volunteers with positron-emission tomography (PET). Each subject was studied four times: at baseline (scan 1), following 1 week of oral administration of pindolol CR (7.5 mg/day) at peak level, 4 h after the dose (scan 2), and at 10 h following the dose (scan 3), and following one dose of pindolol CR (30 mg) (at peak level, 4 h) (scan 4). Pindolol occupancy of 5-HT{sub 1A} receptors was evaluated in the DRN and cortical regions as the decrease in binding potential (BP) of the radiolabelled selective 5-HT{sub 1A} antagonist [carbonyl-{sup 11}C]WAY-100635 or [carbonyl-{sup 11}C] N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide abbreviated as [{sup 11}C]WAY-100635. Pindolol dose-dependently decreased [{sup 11}C]WAY-100635 BP. Combining all the regions, occupancy was 20 {+-} 8% at scan 2, 14 {+-} 8% at scan 3, and 44 {+-} 8% at scan 4. The results of this study suggest that at doses used in clinical studies of augmentation of the SSRI effect by pindolol (2.5 mg t.i.d.), the occupancy of 5-HT{sub 1A} receptors is moderate and highly variable between subjects. This factor might explain the variable results obtained in clinical studies. On the other hand, at each dose tested, pindolol occupancy of 5

  17. Subcortical cerebral blood flow and metabolic changes elicited by cortical spreading depression in rat

    Mraovitch, S.; Calando, Y.; Goadsby, P.J.; Seylaz, J. (Laboratoire de Recherches Cerebrovasculaire, Paris (France))

    1992-06-01

    Changes in cerebral cortical perfusion (CBF{sub LDF}), local cerebral blood flow (lCBF) and local cerebral glucose utilization (lCGU) elicited by unilateral cortical spreading depression (SD) were monitored and measured in separate groups of rats anesthetized with {alpha}-chloralose. CBF{sub LDF} was recorded with laser Doppler flowmetry, while lCBF and lCGU were measured by the quantitative autoradiographic ({sup 14}C)iodoantipyrine and ({sup 14}C)-2-deoxyglucose methods, respectively. SD elicited a wave of hyperemia after a latency of 2 to 3 min followed by an oligemic phase. Ninety minutes following the onset of SD cortical lCBF and lCGU were essentially the same as on the contralateral side and in sham-treated rats. However, alteration in the lCBF and lCGU in upper and lower brainstem persisted. The present results demonstrate that long-lasting cerebrovascular and metabolic alterations take place within the subcortical regions following SD. These regions provide an attractive site to integrate observations in man concerning spreading depression and the aura of migraine with the other features of the syndrome. 19 refs., 2 figs., 1 tab.

  18. Novel assessment of cortical response to somatosensory stimuli in children with hemiparetic cerebral palsy.

    Maitre, Nathalie L; Barnett, Zachary P; Key, Alexandra P F

    2012-10-01

    The brain's response to somatosensory stimuli is essential to experience-driven learning in children. It was hypothesized that advances in event-related potential technology could quantify the response to touch in somatosensory cortices and characterize the responses of hemiparetic children. In this prospective study of 8 children (5-8 years old) with hemiparetic cerebral palsy, both event-related potential responses to sham or air puff trials and standard functional assessments were used. Event-related potential technology consistently measured signals reflecting activity in the primary and secondary somatosensory cortices as well as complex cognitive processing of touch. Participants showed typical early responses but less efficient perceptual processes. Significant differences between affected and unaffected extremities correlated with sensorimotor testing, stereognosis, and 2-point discrimination (r > 0.800 and P = .001 for all). For the first time, a novel event-related potential paradigm shows that hemiparetic children have slower and less efficient tactile cortical perception in their affected extremities.

  19. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    Klein, A B; Santini, M A; Aznar, S

    2010-01-01

    Changes in brain-derived neurotrophic factor (BDNF) expression have been implicated in the etiology of psychiatric disorders. To investigate pathological mechanisms elicited by perturbed BDNF signaling, we examined mutant mice with central depletion of BDNF (BDNF(2L/2LCk-cre)). A severe impairment...... specific for the serotonin 2A receptor (5-HT(2A)R) in prefrontal cortex was described previously in these mice. This is of much interest, as 5-HT(2A)Rs have been linked to neuropsychiatric disorders and anxiety-related behavior. Here we further characterized the serotonin receptor alterations triggered...... was decreased in hippocampus of BDNF mutants, but unchanged in frontal cortex. Molecular analysis indicated corresponding changes in 5-HT(2A) and 5-HT(1A) mRNA expression but normal 5-HT(2C) content in these brain regions in BDNF(2L/2LCk-cre) mice. We investigated whether the reduction in frontal 5-HT(2A...

  20. Automatic localization of cerebral cortical malformations using fractal analysis.

    De Luca, A; Arrigoni, F; Romaniello, R; Triulzi, F M; Peruzzo, D; Bertoldo, A

    2016-08-21

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  1. Automatic localization of cerebral cortical malformations using fractal analysis

    De Luca, A.; Arrigoni, F.; Romaniello, R.; Triulzi, F. M.; Peruzzo, D.; Bertoldo, A.

    2016-08-01

    Malformations of cortical development (MCDs) encompass a variety of brain disorders affecting the normal development and organization of the brain cortex. The relatively low incidence and the extreme heterogeneity of these disorders hamper the application of classical group level approaches for the detection of lesions. Here, we present a geometrical descriptor for a voxel level analysis based on fractal geometry, then define two similarity measures to detect the lesions at single subject level. The pipeline was applied to 15 normal children and nine pediatric patients affected by MCDs following two criteria, maximum accuracy (WACC) and minimization of false positives (FPR), and proved that our lesion detection algorithm is able to detect and locate abnormalities of the brain cortex with high specificity (WACC  =  85%, FPR  =  96%), sensitivity (WACC  =  83%, FPR  =  63%) and accuracy (WACC  =  85%, FPR  =  90%). The combination of global and local features proves to be effective, making the algorithm suitable for the detection of both focal and diffused malformations. Compared to other existing algorithms, this method shows higher accuracy and sensitivity.

  2. [3H]WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-01-01

    In the presence of a 30 nM prazosin mask, [ 3 H]-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ([ 3 H]WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for [ 3 H] WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at [ 3 H]WB4101-binding sites in the presence of 30 nM prazosin and [ 3 H] lysergic acid diethylamide ([ 3 H]LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of [ 3 H]WB4101 is significantly lower than the Bmax of [ 3 H]LSD in various brain regions. WB4101 competition for [ 3 H] LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of [ 3 H]WB4101 binding derived from saturation experiments. This suggests that [ 3 H]WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by [ 3 H]LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for [ 3 H]WB4101 but compete for multiple [ 3 H]LSD 5-HT1 binding sites. These data indicate that [ 3 H]WB4101 selectively labels the 5-HT1A serotonin receptor, whereas [ 3 H] LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of [ 3 H]WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of [ 3 H]WB4101 binding

  3. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    Darya V. Bazovkina

    2015-01-01

    Full Text Available In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors.

  4. Effect of caffeine on preterm infants' cerebral cortical activity: an observational study.

    Hassanein, Sahar M A; Gad, Ghada I; Ismail, Rania I H; Diab, Mohamed

    2015-01-01

    Our first aim was to investigate the effects of caffeine on preterm infants' respiratory functions and brain cortical activity (conventional and amplitude-integrated electroencephalography (cEEG and aEEG)). Secondary aim was to study its long-term effects on respiratory system and electroencephalographic maturation by 36 weeks post-menstrual age. Prospective observational study on 33 consecutively admitted preterm infants less than 34-weeks-gestation. cEEG and aEEG, cardiopulmonary and sleep state were recorded in 20 preterm infants, before, during and 2-hours after intravenous (IV) caffeine (caffeine Group), and for 13 preterms (control group). Both groups were subjected to assessment of cerebral cortical maturation by cEEG and aEEG at 36-weeks post-menstrual age as an outcome measure. IV caffeine administration significantly increased heart rate (p = 0.000), mean arterial blood pressure (p = 0.000), capillary oxygen saturation (p = 0.003), arousability (p = 0.000) and aEEG continuity (p = 0.002) after half an hour. No clinical seizures were recorded and non-significant difference was found in electrographic seizures activity in cEEG. At 36-weeks post-conceptional age, NICU stay was significantly longer in controls (p = 0.022). aEEG score was significantly higher in caffeine group than the control group, (p = 0.000). Caffeine increases preterm infants' cerebral cortical activity during infusion and results in cerebral cortical maturation at 36weeks, without increase in seizure activity.

  5. 5-HT modulation of pain perception in humans.

    Martin, Sarah L; Power, Andrea; Boyle, Yvonne; Anderson, Ian M; Silverdale, Monty A; Jones, Anthony K P

    2017-10-01

    Although there is clear evidence for the serotonergic regulation of descending control of pain in animals, little direct evidence exists in humans. The majority of our knowledge comes from the use of serotonin (5-HT)-modulating antidepressants as analgesics in the clinical management of chronic pain. Here, we have used an acute tryptophan depletion (ATD) to manipulate 5-HT function and examine its effects of ATD on heat pain threshold and tolerance, attentional manipulation of nociceptive processing and mood in human volunteers. Fifteen healthy participants received both ATD and balanced amino acid (BAL) drinks on two separate sessions in a double-blind cross-over design. Pain threshold and tolerance were determined 4 h post-drink via a heat thermode. Additional attention, distraction and temperature discrimination paradigms were completed using a laser-induced heat pain stimulus. Mood was assessed prior and throughout each session. Our investigation reported that the ATD lowered plasma TRP levels by 65.05 ± 7.29% and significantly reduced pain threshold and tolerance in response to the heat thermode. There was a direct correlation between the reduction in total plasma TRP levels and reduction in thermode temperature. In contrast, ATD showed no effect on laser-induced pain nor significant impact of the distraction-induced analgesia on pain perception but did reduce performance of the painful temperature discrimination task. Importantly, all findings were independent of any effects of ATD on mood. As far as we are aware, it is the first demonstration of 5-HT effects on pain perception which are not confounded by mood changes.

  6. Phosphotidylinositol turnover in vascular, uterine, fundal, and tracheal smooth muscle: effect of serotonin (5HT)

    Cohen, M.L.; Wittenauer, L.A.

    1986-01-01

    In brain, platelets, and aorta, 5HT has been reported to increase phosphotidylinositol turnover, an effect linked to 5HT 2 receptors. The authors examined the effect of 5HT on 3 H-inositol-1-phosphate ( 3 H-I-P) in tissues possessing 5HT 2 receptors that mediate contraction to 5HT (rat jugular vein, aorta, uterus and guinea pig trachea) and in a tissue in which contraction to 5HT is not mediated by 5HT 2 receptors (rat stomach fundus). Tissues were incubated (37 0 C, 95% O 2 , 5% CO 2 ) with 3 H-inositol (90 min), washed, LiCl 2 (10 mM) and 5HT added for 90 min, extracted, and 3 H-I-P eluted from a Dowex-1 column. Basal 3 H-I-P was 10-fold higher in the uterus than in the other tissues. 5HT (10 -6 -10 -4 M) increased 3 H-I-P in the jugular vein, aorta, and uterus but not in the trachea or fundus. Maximum increase was greatest in the jugular vein (8-fold) with an ED 50 of 0.4 μM 5HT. The selective 5HT 2 receptor blocker, LY53857 (10 -8 M) antagonized the increase in 3 H-I-P by 5HT in the jugular vein, aorta and uterus. Pargyline (10 -5 M) added to the trachea and fundus did not unmask an effect of 5HT (10 -4 M). These data suggest that (1) the jugular vein produced the most sensitive response to 5HT-induced increases in 3 H-I-P, (2) increases in 3 H-I-P by 5HT in smooth muscle may be linked to 5HT 2 receptors and (3) activation of 5HT 2 receptors as occurred in the trachea will not always increase 3 H-I-P

  7. A Pharmacological Analysis of an Associative Learning Task: 5-HT1 to 5-HT7 Receptor Subtypes Function on a Pavlovian/Instrumental Autoshaped Memory

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation. PMID:14557609

  8. CT and MRI findings of cerebral ischemic lesions in the cortical and perforating arterial system

    Kameyama, Masakuni; Udaka, Fukashi; Nishinaka, Kazuto; Kodama, Mitsuo; Urushidani, Makoto; Kawamura, Kazuyuki; Inoue, Haruhisa; Kageyama, Taku [Sumitomo Hospital, Osaka (Japan)

    1995-07-01

    It is clinically useful to divide the location of infarction into the cortical and perforating arterial system. Computerized tomography (CT) and magnetic resonance imaging (MRI) now make the point of infarction a simple and useful task in daily practice. The diagnostic modality has also demonstrated that risk factors and clinical manifestations are different for infarction in the cortical as opposed to the perforating system. In this paper, we present various aspects of images of cerebral ischemia according to CT and/or MRI findings. With the advance of imaging mechanics, diagnostic capability of CT or/and MRI for cerebral infarction has markedly been improved. We must consider these points on evaluating the previously reported results. In addition, we always consider the pathological background of these image-findings for the precise interpretation of their clinical significance. In some instances, dynamic study such as PET or SPECT is needed for real interpretations of CT and/or MRI images. We paid special reference to lacunar stroke and striatocapsular infarct. In addition, `branch atheromatous disease (Caplan)` was considered, in particular, for their specific clinical significances. Large striatocapsular infarcts frequently show cortical signs and symptoms such as aphasia or agnosia in spite of their subcortical localization. These facts, although have previously been known, should be re-considered for their pathoanatomical mechanism. (author).

  9. CT and MRI findings of cerebral ischemic lesions in the cortical and perforating arterial system

    Kameyama, Masakuni; Udaka, Fukashi; Nishinaka, Kazuto; Kodama, Mitsuo; Urushidani, Makoto; Kawamura, Kazuyuki; Inoue, Haruhisa; Kageyama, Taku

    1995-01-01

    It is clinically useful to divide the location of infarction into the cortical and perforating arterial system. Computerized tomography (CT) and magnetic resonance imaging (MRI) now make the point of infarction a simple and useful task in daily practice. The diagnostic modality has also demonstrated that risk factors and clinical manifestations are different for infarction in the cortical as opposed to the perforating system. In this paper, we present various aspects of images of cerebral ischemia according to CT and/or MRI findings. With the advance of imaging mechanics, diagnostic capability of CT or/and MRI for cerebral infarction has markedly been improved. We must consider these points on evaluating the previously reported results. In addition, we always consider the pathological background of these image-findings for the precise interpretation of their clinical significance. In some instances, dynamic study such as PET or SPECT is needed for real interpretations of CT and/or MRI images. We paid special reference to lacunar stroke and striatocapsular infarct. In addition, 'branch atheromatous disease (Caplan)' was considered, in particular, for their specific clinical significances. Large striatocapsular infarcts frequently show cortical signs and symptoms such as aphasia or agnosia in spite of their subcortical localization. These facts, although have previously been known, should be re-considered for their pathoanatomical mechanism. (author)

  10. Relation between hippocampal damage and cerebral cortical function in Alzheimer's disease

    Hanyu, Haruo; Asano, Tetsuichi; Kogure, Daiji; Sakurai, Hirofumi; Iwamoto, Toshihiko; Takasaki, Masaru

    2000-01-01

    We investigated the relation between hippocampal damage and cerebral cortical dysfunction in Alzheimer's disease (AD) using MRI and SPECT. Nineteen patients with AD and 10 control subjects were studied. Hippocampal damage (including hippocampal formation, entorhinal cortex, and parahippocampal white matter) was assessed to evaluate the severity of atrophy and the magnetization transfer ratio (MTR) and cerebral cortical dysfunction was evaluated by quantitative cerebral blood flow (CBF) measurements using SPECT with 99mTc-ECD. Compared with controls, patients with AD had significantly more atrophy of the medial temporal lobe and a decrease in MTRs of the hippocampus and parahippocampus. There were significant correlations between the severity of hippocampal damage and regional CBF in temporoparietal lobes. Mini-Mental State Examination scores significantly correlated with the severity of hippocampal damage and regional CBFs in temporoparietal lobes. These results suggest that the functional effect of hippocampal damage occurs in temporoparietal lobes in AD, probably due to neuronal disconnections between hippocampal areas (including the entorhinal cortex) and temporoparietal lobes. (author)

  11. BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures

    Trajkovska, V; Santini, M A; Marcussen, Anders Bue

    2009-01-01

    Both brain-derived neurotrophic factor (BDNF) and the serotonin receptor 2A (5-HT(2A)) have been related to depression pathology. Specific 5-HT(2A) receptor changes seen in BDNF conditional mutant mice suggest that BDNF regulates the 5-HT(2A) receptor level. Here we show a direct effect of BDNF...... on 5-HT(2A) receptor protein levels in primary hippocampal neuronal and mature hippocampal organotypic cultures exposed to different BDNF concentrations for either 1, 3, 5 or 7 days. In vivo effects of BDNF on hippocampal 5-HT(2A) receptor levels were further corroborated in (BDNF +/-) mice...... with reduced BDNF levels. In primary neuronal cultures, 7 days exposure to 25 and 50ng/mL BDNF resulted in downregulation of 5-HT(2A), but not of 5-HT(1A), receptor protein levels. The BDNF-associated downregulation of 5-HT(2A) receptor levels was also observed in mature hippocampal organotypic cultures...

  12. Changes of Serotonin (5-HT, 5-HT2A Receptor, and 5-HT Transporter in the Sprague-Dawley Rats of Depression, Myocardial Infarction and Myocardial Infarction Co-exist with Depression

    Mei-Yan Liu

    2015-01-01

    Conclusions: The concentration of 5-HT2AR in platelet lysate and SERT in serum and platelet may be involved in the pathway of MI with depression. Further studies should examine whether elevated 5-HT2AR and SERT may contribute to the biomarker in MI patients with depression.

  13. Radiosynthesis and in vivo evaluation of a series of substituted {sup 11}C-phenethylamines as 5-HT{sub 2A} agonist PET tracers

    Ettrup, Anders; Santini, Martin A.; Palner, Mikael; Knudsen, Gitte M. [Copenhagen University Hospital, Neurobiology Research Unit, Copenhagen (Denmark); Copenhagen University Hospital, Rigshospitalet, Center for Integrated Molecular Brain Imaging (Cimbi), Copenhagen (Denmark); Hansen, Martin; Paine, James; Kristensen, Jesper; Begtrup, Mikael [University of Copenhagen, Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Copenhagen (Denmark); Copenhagen University Hospital, Rigshospitalet, Center for Integrated Molecular Brain Imaging (Cimbi), Copenhagen (Denmark); Gillings, Nic; Herth, Matthias M.; Madsen, Jacob [Copenhagen University Hospital, Rigshospitalet, PET and Cyclotron Unit, Copenhagen (Denmark); Copenhagen University Hospital, Rigshospitalet, Center for Integrated Molecular Brain Imaging (Cimbi), Copenhagen (Denmark); Lehel, Szabolcs [Copenhagen University Hospital, Rigshospitalet, PET and Cyclotron Unit, Copenhagen (Denmark)

    2011-04-15

    Positron emission tomography (PET) imaging of serotonin 2A (5-HT{sub 2A}) receptors with agonist tracers holds promise for the selective labelling of 5-HT{sub 2A} receptors in their high-affinity state. We have previously validated [{sup 11}C]Cimbi-5 and found that it is a 5-HT{sub 2A} receptor agonist PET tracer. In an attempt to further optimize the target-to-background binding ratio, we modified the chemical structure of the phenethylamine backbone and carbon-11 labelling site of [{sup 11}C]Cimbi-5 in different ways. Here, we present the in vivo validation of nine novel 5-HT{sub 2A} receptor agonist PET tracers in the pig brain. Each radiotracer was injected intravenously into anaesthetized Danish Landrace pigs, and the pigs were subsequently scanned for 90 min in a high-resolution research tomography scanner. To evaluate 5-HT{sub 2A} receptor binding, cortical nondisplaceable binding potentials (BP{sub ND}) were calculated using the simplified reference tissue model with the cerebellum as a reference region. After intravenous injection, all compounds entered the brain and distributed preferentially into the cortical areas, in accordance with the known 5-HT{sub 2A} receptor distribution. The largest target-to-background binding ratio was found for [{sup 11}C]Cimbi-36 which also had a high brain uptake compared to its analogues. The cortical binding of [{sup 11}C]Cimbi-36 was decreased by pretreatment with ketanserin, supporting 5-HT{sub 2A} receptor selectivity in vivo. [{sup 11}C]Cimbi-82 and [{sup 11}C]Cimbi-21 showed lower cortical BP{sub ND}, while [{sup 11}C]Cimbi-27, [{sup 11}C]Cimbi-29, [{sup 11}C]Cimbi-31 and [{sup 11}C]Cimbi-88 gave rise to cortical BP{sub ND} similar to that of [{sup 11}C]Cimbi-5. [{sup 11}C]Cimbi-36 is currently the most promising candidate for investigation of 5-HT{sub 2A} receptor agonist binding in the living human brain with PET. (orig.)

  14. LSD, 5-HT (serotonin), and the evolution of a behavioral assay.

    Appel, James B; West, William B; Buggy, James

    2004-01-01

    Research in our laboratory, supported by NIDA and facilitated by Roger Brown, has indicated that serotonergic neuronal systems are involved in the discriminative stimulus effects of LSD. However, the only compounds that fully antagonize the LSD cue act at both serotonin (5-HT) and dopamine (DA) receptors. In addition, substitution for LSD in standard drug vs. no-drug (DND) discriminations does not necessarily predict either similar mechanisms of action or hallucinogenic potency because 'false positives' occur when animals are given drugs such as lisuride (LHM), quipazine, or, possibly, yohimbine. These effects can be greatly reduced by using drug vs. drug (D-D), drug vs. drug vs. no drug (D-ND), or drug vs. ' other' drug (saline, cocaine, pentobarbital) training procedures. Additional studies, in which drugs were administered directly into the cerebral ventricles or specific brain areas, suggest that structures containing terminal fields of serotonergic neurons might be involved in the stimulus effects of LSD.

  15. Regulation of Hippocampal 5-HT Release by P2X7 Receptors in Response to Optogenetic Stimulation of Median Raphe Terminals of Mice

    Flóra Gölöncsér

    2017-10-01

    Full Text Available Serotonergic and glutamatergic neurons of median raphe region (MRR play a pivotal role in the modulation of affective and cognitive functions. These neurons synapse both onto themselves and remote cortical areas. P2X7 receptors (P2rx7 are ligand gated ion channels expressed by central presynaptic excitatory nerve terminals and involved in the regulation of neurotransmitter release. P2rx7s are implicated in various neuropsychiatric conditions such as schizophrenia and depression. Here we investigated whether 5-HT release released from the hippocampal terminals of MRR is subject to modulation by P2rx7s. To achieve this goal, an optogenetic approach was used to selectively activate subpopulation of serotonergic terminals derived from the MRR locally, and one of its target area, the hippocampus. Optogenetic activation of neurons in the MRR with 20 Hz was correlated with freezing and enhanced locomotor activity of freely moving mice and elevated extracellular levels of 5-HT, glutamate but not GABA in vivo. Similar optical stimulation (OS significantly increased [3H]5-HT and [3H]glutamate release in acute MRR and hippocampal slices. We examined spatial and temporal patterns of [3H]5-HT release and the interaction between the serotonin and glutamate systems. Whilst [3H]5-HT release from MRR neurons was [Ca2+]o-dependent and sensitive to TTX, CNQX and DL-AP-5, release from hippocampal terminals was not affected by the latter drugs. Hippocampal [3H]5-HT released by electrical but not OS was subject to modulation by 5- HT1B/D receptors agonist sumatriptan (1 μM, whereas the selective 5-HT1A agonist buspirone (0.1 μM was without effect. [3H]5-HT released by electrical and optical stimulation was decreased in mice genetically deficient in P2rx7s, and after perfusion with selective P2rx7 antagonists, JNJ-47965567 (0.1 μM, and AZ-10606120 (0.1 μM. Optical and electrical stimulation elevated the extracellular level of ATP. Our results demonstrate for the

  16. Effects of 5-HT on memory and the hippocampus: model and data.

    Meeter, M.; Talamini, L.M.; Schmitt, J.A.J.; Riedel, W.J.

    2006-01-01

    5-Hydroxytryptamine (5-HT) transmission has been implicated in memory and in depression. Both 5-HT depletion and specific 5-HT agonists lower memory performance, while depression is also associated with memory deficits. The precise neuropharmacology and neural mechanisms underlying these effects are

  17. Investigation of the mechanisms mediating MDMA "Ecstasy"-induced increases in cerebro-cortical perfusion determined by btASL MRI.

    Rouine, J; Kelly, M E; Jennings-Murphy, C; Duffy, P; Gorman, I; Gormley, S; Kerskens, C M; Harkin, Andrew

    2015-05-01

    Acute administration of the recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) has previously been shown to increase cerebro-cortical perfusion as determined by bolus-tracking arterial spin labelling (btASL) MRI. The purpose of the current study was to assess the mechanisms mediating these changes following systemic administration of MDMA to rats. Pharmacological manipulation of serotonergic, dopaminergic and nitrergic transmission was carried out to determine the mechanism of action of MDMA-induced increases in cortical perfusion using btASL MRI. Fenfluramine (10 mg/kg), like MDMA (20 mg/kg), increased cortical perfusion. Increased cortical perfusion was not obtained with the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodophenyl-aminopropane hydrochloride (DOI) (1 mg/kg). Depletion of central 5-HT following systemic administration of the tryptophan hydroxylase inhibitor para-chlorophenylalanine (pCPA) produced effects similar to those observed with MDMA. Pre-treatment with the 5-HT receptor antagonist metergoline (4 mg/kg) or with the 5-HT reuptake inhibitor citalopram (30 mg/kg), however, failed to produce any effect alone or influence the response to MDMA. Pre-treatment with the dopamine D1 receptor antagonist SCH 23390 (1 mg/kg) failed to influence the changes in cortical perfusion obtained with MDMA. Treatment with the neuronal nitric oxide (NO) synthase inhibitor 7-nitroindazole (7-NI) (25 mg/kg) provoked no change in cerebral perfusion alone yet attenuated the MDMA-related increase in cortical perfusion. Cortical 5-HT depletion is associated with increases in perfusion although this mechanism alone does not account for MDMA-related changes. A role for NO, a key regulator of cerebrovascular perfusion, is implicated in MDMA-induced increases in cortical perfusion.

  18. Evaluation of the cerebral ventricular system and cortical sulci associated with aging on CT

    Akimoto, Hiroshi; Maki, Yutaka; Ono, Yukio; Nose, Tadao; Yoshizawa, Takashi

    1983-01-01

    This study was attempted to establish a relationship between normal values and aging process of cerebral ventricular size and cortical sulci on computed tomography. A total of two hundred and fifty-eight cases of 126 males and 132 females was selected. The width of the fourth ventricle increased significantly in the fourth decade comparing with in the third decade. The width of the third ventricle increased significantly in the fourth decade compaing with in the third decade at the hypothalamic level and also in the sixth decade comparing with in the fifth decade at the thalamic level. The width of the anterior horn and the body of the lateral ventricles increased gradually with age, and showed a significant increase in the sixth decade comparing with in the fifth decade. The number of cortical sulci increased gradually with age, and increased significantly in the seventh decade comparing with in the sixth decade, especially in the occipital areas. The cortical sulci started to appear initially in the frontal areas during the second decade, subsequently in the central during the third decade and finally in both the parietal and occipital areas during the fourth decade. The width of the cortical sulci was less than 4.5 mm under the fifth decade. It did not exeed 6.2 mm in all of the cases, though widening gradually with age over the fifth decade. (J.P.N.)

  19. Effect of superfused insulin on cerebral cortical glucose utilization in awake goats

    Pelligrino, D.A.; Miletich, D.J.; Albrecht, R.F.

    1987-01-01

    The effect on cortical cerebral glucose utilization (CMR glu ) of intracerebral insulin administration in awake goats was studied. The insulin was superfused in a mock cerebrospinal fluid (CSF) employing chronically implanted cranial windows. Two windows were implanted bilaterally: one window over an equivalent portion of each parietal cortex. With one window used to deliver insulin/CSF and the other used to simultaneously deliver CSF alone (control), changes in CMR glu were assessed using a modification of a sequential 2-[ 3 H]- then 2[ 14 C]deoxy-D-glucose (2DG) technique originally described by Altenau and Agranoff. Initial experiments employing 125 I-insulin demonstrated that the superfusion procedure increased insulin levels only in the outer 1 mm of cortical tissue exposed to insulin containing perfusate. Additional preliminary evaluations, using conditions known to alter CMR glu , generally established that present methods were adequate to induce and detect CMR glu changes. However, it was also shown experimentally and using a mathematical model that 2-[ 3 H]DG test/control tissue ratios could be influenced by subsequent changes in CMR glu and the dephosphorylation rate. Thus 3 H ratios could not be used to establish preexperimental test/control CMR glu relationships as the originally devised model assumed but could be employed to indicate changes in dephosphorylation. The mathematical model allowed for improved estimates of CMR glu changes from 2[ 14 C]DG/2-[ 3 H]DG test over control tissue ratios. Even with these corrections, insulin was estimated to cause no more than an 8-15% increase in cortical CMR glu . A very limited role for insulin, at least in cerebral cortical metabolic regulation, is thus indicated

  20. Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors

    Ceglia, I; Acconcia, S; Fracasso, C; Colovic, M; Caccia, S; Invernizzi, R W

    2004-01-01

    Microdialysis was used to study the acute and chronic effects of escitalopram (S-citalopram; ESCIT) and chronic citalopram (CIT), together with the 5-HT1A receptor antagonist WAY100,635 (N-[2-[methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide trihydrochloride) and the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on extracellular 5-hydroxytryptamine (5-HT) levels in the rat prefrontal cortex. Extracellular 5-HT rose to 234 and 298% of basal values after subcutaneous (s.c.) acute doses of 0.15 and 0.63 mg kg−1 ESCIT. No further increase was observed at 2.5 mg kg−1 ESCIT (290%). The effect of 13-day s.c. infusion of 10 mg kg−1day−1 ESCIT on extracellular 5-HT (422% of baseline) was greater than after 2 days (257% of baseline), whereas exposure to ESCIT was similar. In contrast, the increase in extracellular 5-HT induced by the infusion of CIT for 2 (306%) and 13 days (302%) was similar. However, brain and plasma levels of S-citalopram in rats infused with CIT for 13 days were lower than after 2 days. Acute treatment with 2.5 mg kg−1 ESCIT or 5 mg kg−1 CIT raised extracellular 5-HT by 243 and 276%, respectively, in rats given chronic vehicle but had no effect in rats given ESCIT (10 mg kg−1 day−1) or CIT (20 mg kg−1 day−1) for 2 or 13 days, suggesting that the infused doses had maximally increased extracellular 5-HT. WAY100,635 (0.1 mg kg−1 s.c.) increased extracellular 5-HT levels by 168, 174 and 169% of prechallenge values in rats infused with vehicle or ESCIT for 2 or 13 days, respectively. WAY100,635 enhanced extracellular 5-HT levels to 226, 153 and 164% of prechallenge values in rats infused with vehicle or CIT for 2 and 13 days, respectively. 8-OH-DPAT (0.025 mg kg−1) reduced extracellular 5-HT by 54% in control rats, but had no effect in those given ESCIT and CIT for 13 days. This series of experiments led to the conclusion that chronic treatment with ESCIT desensitizes the 5-HT1A

  1. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-03

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-02

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. Copyright © 2015 the authors 0270-6474/15/3515984-12$15.00/0.

  3. Operant learning and differential-reinforcement-of-low-rate 36-s responding in 5-HT1A and 5-HT1B receptor knockout mice.

    Pattij, T.; Broersen, L.M.; Linde, J. van der; Groenink, L.; Gugten, J. van der; Maes, R.A.A.; Olivier, B.

    2003-01-01

    Previous studies with mice lacking 5-HT(1A) (1AKO) and 5-HT(1B) (1BKO) receptors in hippocampus-dependent learning and memory paradigms, suggest that these receptors play an important role in learning and memory, although their precise role is unclear. In the present study, 1AKO and 1BKO mice were

  4. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese Ay mice

    Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo

    2006-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A y mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A y mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A y mice, but did not increase plasma adiponectin levels

  5. Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor.

    Troppmann, B; Balfanz, S; Baumann, A; Blenau, W

    2010-04-01

    5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT(1) receptor of an insect model for neurobiology, physiology and pharmacology. A cDNA encoding for the Periplaneta americana 5-HT(1) receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. The P. americana 5-HT(1) receptor (Pea5-HT(1)) shares pronounced sequence and functional similarity with mammalian 5-HT(1) receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT(1) was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT(1) receptor. The results presented here should facilitate further analyses of 5-HT(1) receptors in mediating central and peripheral effects of 5-HT in insects.

  6. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  7. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  8. Differential involvement of 5-HT(1A) and 5-HT(1B/1D) receptors in human interferon-alpha-induced immobility in the mouse forced swimming test.

    Zhang, Hongmei; Wang, Wei; Jiang, Zhenzhou; Shang, Jing; Zhang, Luyong

    2010-01-01

    Although Interferon-alpha (IFN-alpha, CAS 9008-11-1) is a powerful drug in treating several viral infections and certain tumors, a considerable amount of neuropsychiatric side-effects such as depression and anxiety are an unavoidable consequence. Combination with the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine (CAS 56296-78-7) significantly improved the situation. However, the potential 5-HT(1A) receptor- and 5-HT(1B) receptor-signals involved in the antidepressant effects are still unclear. The effects of 5-HT(1A) receptor- and 5-HT(1B) receptor signals were analyzed by using the mouse forced swimming test (FST), a predictive test of antidepressant-like action. The present results indicated that (1) fluoxetine (administrated intragastrically, 30 mg/kg; not subactive dose: 15 mg/kg) significantly reduced IFN-alpha-induced increase of the immobility time in the forced swimming test; (2) 5-HT(1A) receptor- and 5-HT(1B) receptor ligands alone or in combination had no effects on IFN-alpha-induced increase of the immobility time in the FST; (3) surprisingly, WAY 100635 (5-HT(1A) receptor antagonist, 634908-75-1) and 8-OH-DPAT(5-HT(1A) receptor agonist, CAS 78950-78-4) markedly enhanced the antidepressant effect of fluoxetine at the subactive dose (15 mg/kg, i. g.) on the IFN-alpha-treated mice in the FST. Further investigations showed that fluoxetine combined with WAY 100635 and 8-OH-DPAT failed to produce antidepressant effects in the FST. (4) Co-application of CGS 12066A (5-HT(1B) receptor agonist, CAS 109028-09-3) or GR 127935 (5-HT(1B/1D) receptor antagonist, CAS 148642-42-6) with fluoxetine had no synergistic effects on the IFN-alpha-induced increase of immobility time in FST. (5) Interestingly, co-administration of GR 127935, WAY 100635 and fluoxetine significantly reduced the IFN-alpha-induced increase in immobility time of FST, being more effective than co-administration of WAY 100635 and fluoxetine. All results suggest that (1) compared to

  9. Measuring endogenous 5-HT release by emission tomography: promises and pitfalls

    Paterson, Louise M; Tyacke, Robin J; Nutt, David J

    2010-01-01

    Molecular in vivo neuroimaging techniques can be used to measure regional changes in endogenous neurotransmitters, evoked by challenges that alter synaptic neurotransmitter concentration. This technique has most successfully been applied to the study of endogenous dopamine release using positron......, with reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT(1A), 5-HT(2A), and 5-HT(4) receptors and the serotonin reuptake transporter...... have been explored for their sensitivity to 5-HT fluctuations, but with mixed outcomes; tracers for these targets cannot reliably image endogenous 5-HT in humans. Shortcomings in our basic knowledge of the mechanisms underlying changes in binding potential are addressed, and suggestions are made...

  10. Relation between clinical findings and progression of cerebral cortical pathology in MM1-type sporadic Creutzfeldt-Jakob disease: proposed staging of cerebral cortical pathology.

    Iwasaki, Yasushi; Tatsumi, Shinsui; Mimuro, Maya; Kitamoto, Tetsuyuki; Hashizume, Yoshio; Yoshida, Mari

    2014-06-15

    In our pathologic observation of the cerebral cortex including the neocortex, hippocampus, and limbic cortex in 43 Japanese patients with MM1-type sporadic Creutzfeldt-Jakob disease, the earliest pathologic finding was spongiform change and next was gliosis. Subsequently, neuropil rarefaction appeared, followed by neuron loss. On the basis of these observations, we propose the following cortical pathologic staging: Stage I, spongiform change; Stage II, hypertrophic astrocytosis; Stage III, neuropil rarefaction; Stage IV, neuron loss; Stage V, status spongiosus; and Stage VI, large cavity formation. We also suggest a more simple staging classification: Stages I and II, mild; Stages III and IV, moderate; and Stages V and VI, severe involvement. Based on statistical analysis of the cases, strong correlation coefficients were obtained between the neocortical and limbic pathologic stage and both total disease duration and brain weight. We estimated that the first observation times of cortical hyperintensity on diffusion-weighted images of magnetic resonance imaging, myoclonus, and periodic sharp wave complexes on the electroencephalogram approximately correspond to the early phase of Stage II of the neocortex. The time to reach the akinetic mutism state approximately corresponds to the middle phase of Stage II of the neocortex. Therefore, we think that approximate clinical manifestations at death, total disease duration, and brain weight can be estimated according to the pathologic stage of the neocortex or limbic cortex. Panencephalopathic-type pathology appeared approximately 12 months after disease onset, and this time approximately corresponds to the middle phase of Stage III of the neocortex. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Development of the 5-HT2CR-Tango System Combined with an EGFP Reporter Gene.

    Watanabe, Yoshihisa; Tsujimura, Atsushi; Aoki, Miku; Taguchi, Katsutoshi; Tanaka, Masaki

    2016-02-01

    The serotonin 2C receptor (5-HT2CR) is a G-protein-coupled receptor implicated in emotion, feeding, reward, and cognition. 5-HT2CRs are pharmacological targets for mental disorders and metabolic and reward system abnormalities, as alterations in 5-HT2CR expression, RNA editing, and SNPs are involved in these disturbances. To date, 5-HT2CR activity has mainly been measured by quantifying inositol phosphate production and intracellular Ca(2+) release, but these assays are not suitable for in vivo analysis. Here, we developed a 5-HT2CR-Tango assay system, a novel analysis tool of 5-HT2CR activity based on the G-protein-coupled receptor (GPCR)-arrestin interaction. With desensitization of activated 5-HT2CR by arrestin, this system converts the 5-HT2CR-arrestin interaction into EGFP reporter gene signal via the LexA transcriptional activation system. For validation of our system, we measured activity of two 5-HT2CR RNA-editing isoforms (INI and VGV) in HEK293 cells transfected with EGFP reporter gene. The INI isoform displayed both higher basal- and 5-HT-stimulated activities than the VGV isoform. Moreover, an inhibitory effect of 5-HT2CR antagonist SB242084 was also detected by 5-HT2CR-Tango system. This novel tool is useful for in vitro high-throughput targeted 5-HT2CR drug screening and can be applied to future in vivo brain function studies associated with 5-HT2CRs in transgenic animal models.

  12. Evaluation of the novel 5-HT4 receptor PET ligand [11C]SB207145 in the Göttingen minipig

    Kornum, Birgitte R; Lind, Nanna M; Gillings, Nic

    2009-01-01

    This study investigates 5-hydroxytryptamine 4 (5-HT(4)) receptor binding in the minipig brain with positron emission tomography (PET), tissue homogenate-binding assays, and autoradiography in vitro. The cerebral uptake and binding of the novel 5-HT(4) receptor radioligand [(11)C]SB207145 in vivo...... was modelled and the outcome compared with postmortem receptor binding. Different models for quantification of [(11)C]SB207145 binding were evaluated: One-tissue and two-tissue compartment kinetic modelling, Logan arterial input, and three different reference tissue models. We report that the pig...... model provides stable and precise estimates of the binding potential in all regions. The binding potentials calculated for striatum, midbrain, and cortex from the PET data were highly correlated with 5-HT(4) receptor concentrations determined in brain homogenates from the same regions, except...

  13. Management of skin cancer by agonists of 5-HT1A and antagonists of 5-HT2A receptors

    Menezes, Ana Catarina da Silva Fernandes Saraiva de

    2015-01-01

    Tese de mestrado, Ciências Biofarmacêuticas, Universidade de Lisboa, Faculdade de Farmácia, 2015 A pele é o maior órgão humano e apresenta funções importantes quer a nível neuroendócrino, quer imunológico. A presença de um análogo do eixo hipotalâmico-hipofisário-adrenal na pele permite reagir a fatores externos de stress e modular as funções da mesma, tais como a melanogénese. A serotonina (5-hidroxitriptamina, 5-HT) é um neuromodelador importante que atua como fator de crescimento no can...

  14. Blockade of MK-801-induced heat shock protein 72/73 in rat brain by antipsychotic and monoaminergic agents targeting D2, 5-HT1A, 5-HT2A and α1-adrenergic receptors.

    Romón, Tamara; Planas, Anna M; Adell, Albert

    2014-02-01

    Noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists can produce positive and negative symptomatology as well as impairment of cognitive function that closely resemble those present in schizophrenia. In rats, these drugs induce a behavioral syndrome (characterized by hyperlocomotion and stereotypies), an enhanced glutamatergic transmission in the medial prefrontal cortex, and damage to retrosplenial cortical neurons in adult rats, which was measured as the induction of the stress protein 72/73 kDa heat shock protein (Hsp72/73). In the present work, we have examined the existence of possible differences among different antipsychotic drugs in their capacity to block immunolabeling of Hsp72/73 in the retrosplenial cortex of the rat induced by the potent NMDA receptor antagonist, MK- 801. In addition, the effects of selective monoaminergic agents were also studied to delineate the particular receptors responsible for the actions of antipsychotic drugs. Pretreatment with clozapine, chlorpromazine, olanzapine, ziprasidone--and to a lesser extent haloperidol-reduced the formation of Hsp72/73 protein in the rat retrosplenial cortex after the administration of MK-801. In addition, antagonism at dopamine D2 (raclopride), 5-HT2 (M100907) and α1- adrenoceptors (prazosin) as well as agonism at 5-HT1A receptors (BAY x 3702) also diminished the MK-801-induced number of cells labeled with Hsp72/73. Each of these effects may contribute to antipsychotic action. The results suggest that the efficacy of atypical antipsychotic drugs in the clinic may result from a combined effect on 5-HT2, 5-HT1A and α1-adrenergic receptors added to the classical dopamine D2 receptor antagonism.

  15. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.

    Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki

    2011-05-01

    We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.

  16. Homocysteine Aggravates Cortical Neural Cell Injury through Neuronal Autophagy Overactivation following Rat Cerebral Ischemia-Reperfusion

    Yaqian Zhao

    2016-07-01

    Full Text Available Elevated homocysteine (Hcy levels have been reported to be involved in neurotoxicity after ischemic stroke. However, the underlying mechanisms remain incompletely understood to date. In the current study, we hypothesized that neuronal autophagy activation may be involved in the toxic effect of Hcy on cortical neurons following cerebral ischemia. Brain cell injury was determined by hematoxylin-eosin (HE staining and TdT-mediated dUTP Nick-End Labeling (TUNEL staining. The level and localization of autophagy were detected by transmission electron microscopy, western blot and immunofluorescence double labeling. The oxidative DNA damage was revealed by immunofluorescence of 8-Hydroxy-2′-deoxyguanosine (8-OHdG. Hcy treatment aggravated neuronal cell death, significantly increased the formation of autophagosomes and the expression of LC3B and Beclin-1 in the brain cortex after middle cerebral artery occlusion-reperfusion (MCAO. Immunofluorescence analysis of LC3B and Beclin-1 distribution indicated that their expression occurred mainly in neurons (NeuN-positive and hardly in astrocytes (GFAP-positive. 8-OHdG expression was also increased in the ischemic cortex of Hcy-treated animals. Conversely, LC3B and Beclin-1 overexpression and autophagosome accumulation caused by Hcy were partially blocked by the autophagy inhibitor 3-methyladenine (3-MA. Hcy administration enhanced neuronal autophagy, which contributes to cell death following cerebral ischemia. The oxidative damage-mediated autophagy may be a molecular mechanism underlying neuronal cell toxicity of elevated Hcy level.

  17. Specific in vivo binding in the rat brain of [18F]RP 62203: A selective 5-HT2A receptor radioligand for positron emission tomography

    Besret, Laurent; Dauphin, Francois; Huard, Cecile; Lasne, Marie-Claire; Vivet, Richard; Mickala, Patrick; Barbelivien, Alexandra; Baron, Jean-Claude

    1996-01-01

    In vivo pharmacokinetic and brain binding characteristics of [ 18 F]RP 62203, a selective high-affinity serotonergic 5-HT 2A receptor antagonist, were assessed in the rat following intravenous injection of trace amount of the radioligand. The radioactive distribution profile observed in the brain 60 min after injection was characterized by greater than fourfold higher uptake in neocortex as compared to cerebellum (0.38 ± 0.07% injected dose/g, % ID/g and 0.08 ± 0.01 ID/g, respectively), consistent with in vivo specific binding to the 5-HT 2A receptor. Furthermore, specific [ 18 F]RP 62203 binding significantly correlated with the reported in vitro distribution of 5-HT 2A receptors, but not with known concentration profiles of dopaminergic D 2 or adrenergic α 1 receptors. Finally, detectable specific binding was abolished by pretreatment with large doses of ritanserin, a selective 5-HT 2A antagonist, which resulted in uniform uptakes across cortical, striatal and cerebellar tissues. Thus, [ 18 F]RP 62203 appears to be a promising selective tool to visualize and quantify 5-HT 2A brain receptors in vivo with positron emission tomography

  18. The love of a lifetime: 5-HT in the cardiovascular system.

    Watts, Stephanie W

    2009-02-01

    Serotonin [5-hydroxytryptamine (5-HT)] is an amine made from the essential amino acid tryptophan. 5-HT serves numerous functions in the body, including mood, satiety, and gastrointestinal function. Less understood is the role 5-HT plays in the cardiovascular system, although 5-HT receptors have been localized to every important cardiovascular organ and 5-HT-induced changes in physiological function attributed to activation of these receptors. This manuscript relates a few scientific stories that test the idea that 5-HT is important to the control of normal vascular tone, more so in the hypertensive condition. Currently, our laboratory is faced with two different lines of experimentation from which one could draw vastly different conclusions as to the ability of 5-HT to modify endogenous vascular tone and blood pressure. Studies point to 5-HT being important in maintaining high blood pressure, but other studies solidly support the ability of 5-HT to reduce elevated blood pressure. This work underscores that our knowledge of the functions of 5-HT in the cardiovascular system is significantly incomplete. As such, this field is an exciting one in which to be, because there are superb questions to be asked.

  19. Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy

    Paul R Albert

    2010-06-01

    Full Text Available Major depression is the most common form of mental illness, and is treated with antidepressant compounds that increase serotonin (5-HT neurotransmission. Increased 5-HT1A autoreceptor levels in the raphe nuclei act as a “brake” to inhibit the 5-HT system, leading to depression and resistance to antidepressants. Several 5-HT1A receptor agonists (buspirone, flesinoxan, ipsapirone that preferentially desensitize 5-HT1A autoreceptors have been tested for augmentation of antidepressant drugs with mixed results. One explanation could be the presence of the C(-1019G 5-HT1A promoter polymorphism that prevents gene repression of the 5-HT1A autoreceptor. Furthermore, down-regulation of 5-HT1A autoreceptor expression, not simply desensitization of receptor signaling, appears to be required to enhance and accelerate antidepressant action. The current review focuses on the transcriptional regulators of 5-HT1A autoreceptor expression, their roles in permitting response to 5-HT1A-targeted treatments and their potential as targets for new antidepressant compounds for treatment-resistant depression.

  20. Systematic review: cardiovascular safety profile of 5-HT(4) agonists developed for gastrointestinal disorders.

    Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; De Maeyer, J H; Stanghellini, V

    2012-04-01

    The nonselective 5-HT(4) receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT(4) agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006-2008 and DDW 2008-2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT(4) agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT(4) agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT(1) receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT(4) agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT(4) agonists with no hERG or 5-HT(1) affinity (renzapride, clebopride, mosapride). 5-HT(4) agonists for GI disorders differ in chemical structure and selectivity for 5-HT(4) receptors. Selectivity for 5-HT(4) over non-5-HT(4) receptors may influence the agent's safety and overall risk-benefit profile. Based on available evidence, highly selective 5-HT(4) agonists may offer improved safety to treat patients with impaired GI motility. © 2012 Blackwell Publishing Ltd.

  1. Systematic review: cardiovascular safety profile of 5-HT4 agonists developed for gastrointestinal disorders

    Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; Maeyer, J H; Stanghellini, V

    2012-01-01

    Summary Background The nonselective 5-HT4 receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). Aim To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT4 agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Methods Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) and ATI-7505 (naronapride) were identified through a systematic search of the Cochrane Library, Medline, Embase and Toxfile. Abstracts from UEGW 2006–2008 and DDW 2008–2010 were searched for these drug names, and pharmaceutical companies approached to provide unpublished data. Results Retrieved articles on pharmacokinetics, human pharmacodynamics and clinical data with these 5-HT4 agonists, are reviewed and summarised nonsystematically. Articles relating to cardiac safety and tolerability of these agents, including any relevant case reports, are reported systematically. Two nonselective 5-HT4 agonists had reports of cardiovascular AEs: cisapride (QT prolongation) and tegaserod (ischaemia). Interactions with, respectively, the hERG cardiac potassium channel and 5-HT1 receptor subtypes have been suggested to account for these effects. No cardiovascular safety concerns were reported for the newer, selective 5-HT4 agonists prucalopride, velusetrag, naronapride, or for nonselective 5-HT4 agonists with no hERG or 5-HT1 affinity (renzapride, clebopride, mosapride). Conclusions 5-HT4 agonists for GI disorders differ in chemical structure and selectivity for 5-HT4 receptors. Selectivity for 5-HT4 over non-5-HT4 receptors may influence the agent's safety and overall risk–benefit profile. Based on available evidence, highly selective 5-HT4 agonists may offer improved safety to treat patients with impaired GI motility. PMID:22356640

  2. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster

    Wolfgang Blenau

    2017-05-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects and deuterostomes (e.g., mammals. In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster, a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT1A, Dm5-HT1B, and Dm5-HT7 couple to cAMP signaling cascades, the Dm5-HT2A receptor leads to Ca2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT2B receptor. Knowledge about this receptor’s pharmacological properties is very limited. This is quite surprising because Dm5-HT2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT2B’s pharmacology, we evaluated the receptor’s response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT2B signaling in vitro and in vivo.

  3. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster.

    Blenau, Wolfgang; Daniel, Stöppler; Balfanz, Sabine; Thamm, Markus; Baumann, Arnd

    2017-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects) and deuterostomes (e.g., mammals). In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster , a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT 1A , Dm5-HT 1B , and Dm5-HT 7 couple to cAMP signaling cascades, the Dm5-HT 2A receptor leads to Ca 2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT 2B receptor. Knowledge about this receptor's pharmacological properties is very limited. This is quite surprising because Dm5-HT 2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT 2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT 2B 's pharmacology, we evaluated the receptor's response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT 2B signaling in vitro and in vivo .

  4. Monoclonal antibody identification of subpopulations of cerebral cortical neurons affected in Alzheimer's disease

    Miller, C.A.; Rudnicka, M.; Hinton, D.R.; Blanks, J.C.; Kozlowski, M.

    1987-01-01

    Neuronal degeneration is one of the hallmarks of Alzheimer's disease (AD). Given the paucity of molecular markers available for the identification of neuronal subtypes, the specificity of neuronal loss within the cerebral cortex has been difficult to evaluate. With a panel of four monoclonal antibodies (mAbs) applied to central nervous system tissues from AD patients, the authors have immunocytochemically identified a population of vulnerable cortical neurons; a subpopulation of pyramidal neurons is recognized by mAbs 3F12 and 44.1 in the hippocampus and neocortex, and clusters of multipolar neurons in the entorhinal cortex reactive with mAb 44.1 show selective degeneration. Closely adjacent stellate-like neurons in these regions, identified by mAb 6A2, show striking preservation in AD. The neurons recognized by mAbs 3F12 and 44.1 do not comprise a single known neurotransmitter system. mAb 3A4 identifies a phosphorylated antigen that is undetectable in normal brain but accumulates early in the course of AD in somas of vulnerable neurons. Antigen 3A4 is distinct from material reactive with thioflavin S or antibody generated against paired helical filaments. Initially, antigen 3A4 is localized to neurons in the entorhinal cortex and subiculum, later in the association neocortex, and, ultimately in cases of long duration, in primary sensory cortical regions. mAb 3F12 recognizes multiple bands of immunoblots of homogenates of normal and AD cortical tissues, whereas mAb 3A4 does not bind to immunoblots containing neurofilament proteins or brain homogenates from AD patients. Ultrastructurally, antigen 3A4 is localized to paired-helical filaments. Using these mAbs, further molecular characterization of the affected cortical neurons is now possible

  5. [{sup 18}F]F15599, a novel 5-HT{sub 1A} receptor agonist, as a radioligand for PET neuroimaging

    Lemoine, Laetitia; Verdurand, Mathieu [Universite de Lyon, Laboratory of Neuropharmacology, Lyon (France); CERMEP - Imagerie du Vivant, PET Department, Lyon (France); Vacher, Bernard; Blanc, Elodie; Newman-Tancredi, Adrian [Centre de Recherches Pierre Fabre, Castres (France); Le Bars, Didier [CERMEP - Imagerie du Vivant, PET Department, Lyon (France); Zimmer, Luc [Universite de Lyon, Laboratory of Neuropharmacology, Lyon (France); CERMEP - Imagerie du Vivant, PET Department, Lyon (France); CERMEP - Imagerie du Vivant, ANIMAGE Department, Lyon (France)

    2010-03-15

    The serotonin-1A (5-HT{sub 1A}) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT{sub 1A} receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT{sub 1A} receptors. Since all clinical PET 5-HT{sub 1A} radiopharmaceuticals are antagonists, it is of great interest to develop a{sup 18}F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{l_brace}[(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl{r_brace}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT{sub 1A} receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT{sub 1A} receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [{sup 18}F]MPPF, a validated 5-HT{sub 1A} antagonist radiopharmaceutical. The chemical and radiochemical purities of [{sup 18}F]F15599 were >98%. In vitro [{sup 18}F ]F15599 binding was consistent with the known 5-HT{sub 1A} receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [{sup 18}F ]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [{sup 18}F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT{sub 1A} antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer

  6. The role of the 5-HT2C receptor in emotional processing in healthy adults

    2010-01-01

    Serotonin (5-HT) has long been implicated in the pathophysiology of depression and anxiety, and the therapeutic effect of treatments. Several drugs useful in treatment produce either acute or neuroadaptive changes in 5-HT2C receptor activity, and there has been growing interest in how alterations in the 5-HT2C receptor might be important in mediating antidepressant and anxiolytic activity. The neuropsychological hypothesis of drug action implies that the clinical effects of medications a...

  7. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action

    Lucas, Guillaume; Rymar, Vladimir V; Du, Jenny

    2007-01-01

    parameters considered to be key markers of antidepressant action, but that are observed only after 2-3 week treatments with classical molecules: desensitization of 5-HT(1A) autoreceptors, increased tonus on hippocampal postsynaptic 5-HT(1A) receptors, and enhanced phosphorylation of the CREB protein...... intake consecutive to a chronic mild stress. These findings point out 5-HT(4) receptor agonists as a putative class of antidepressants with a rapid onset of action. Udgivelsesdato: 2007-Sep-6...

  8. Radioligands for brain 5-HT2 receptor imaging in vivo: why do we need them?

    Busatto, G.F.

    1996-01-01

    Recently, PET and SPET radiotracers with high specificity for 5-HT 2 receptors have been developed. These have been studied in baboons and humans with promising results, displaying a binding profile compatible with the brain distribution of 5-HT 2 receptors. It is predicted that studies with the newly developed 5-HT radioligands will substantially increase knowledge about the pharmacology of brain disorders. (orig./MG)

  9. Analysing coupling architecture in the cortical EEG of a patient with unilateral cerebral palsy

    Kornilov, Maksim V.; Baas, C. Marjolein; van Rijn, Clementina M.; Sysoev, Ilya V.

    2016-04-01

    The detection of coupling presence and direction between cortical areas from the EEG is a popular approach in neuroscience. Granger causality method is promising for this task, since it allows to operate with short time series and to detect nonlinear coupling or coupling between nonlinear systems. In this study EEG multichannel data from adolescent children, suffering from unilateral cerebral palsy were investigated. Signals, obtained in rest and during motor activity of affected and less affected hand, were analysed. The changes in inter-hemispheric and intra-hemispheric interactions were studied over time with an interval of two months. The obtained results of coupling were tested for significance using surrogate times series. In the present proceeding paper we report the data of one patient. The modified nonlinear Granger causality is indeed able to reveal couplings within the human brain.

  10. What do we really know about 5-HT1A receptor signaling in neuronal cells?

    JENNY LUCY FIEDLER

    2016-11-01

    Full Text Available Serotonin (5-HT is a neurotransmitter that plays an important role in neuronal plasticity. Variations in the levels of 5-HT at the synaptic cleft, expression or dysfunction of serotonin receptors may alter brain development and predispose to various mental diseases. Here, we review the transduction pathways described in various cell types transfected with recombinant 5-HT1A receptor (5-HT1AR, specially contrasting with those findings obtained in neuronal cells. The 5-HT1AR is detected in early stages of neural development and is located in the soma, dendrites and spines of hippocampal neurons. The 5-HT1AR differs from other serotonin receptors because it is coupled to different pathways, depending on the targeted cell. The signaling pathway associated with this receptor is determined by Gα isoforms and some cascades involve βγ signaling. The activity of 5-HT1AR usually promotes a reduction in neuronal excitability and firing, provokes a variation in cAMP and Ca2+, levels which may be linked to specific types of behavior and cognition. Furthermore, evidence indicates that 5-HT1AR induces neuritogesis and synapse formation, probably by modulation of the neuronal cytoskeleton through MAPK and PI3K-Akt signaling pathways. Advances in understanding the actions of 5-HT1AR and its association with different signaling pathways in the central nervous system will reveal their pivotal role in health and disease.

  11. Converging evidence for central 5-HT effects in acute tryptophan depletion

    Crockett, Molly; Clark, Luke; Roiser, Jonathan

    2012-01-01

    the validity of ATD.2 Although we agree that ATD's effects on 5-HT activity at the molecular level need further clarification, van Donkelaar et al.2 goes too far in challenging whether ATD exerts its effects through serotonergic mechanisms. There is strong evidence that ATD reduces brain 5-HT and disrupts......Acute tryptophan depletion (ATD), a dietary technique for manipulating brain serotonin (5-HT) function, has advanced our understanding of 5-HT mechanisms in the etiology and treatment of depression and other affective disorders.1 A recent review article in Molecular Psychiatry questioned...

  12. Characterization of rat cerebral cortical beta adrenoceptor subtypes using (-)-[125I]-iodocyanopindolol

    Tiong, A.H.; Richardson, J.S.

    1990-01-01

    (-)-[125I]-Iodocyanopindolol [-(ICYP)], used to characterize beta adrenoceptors on membrane preparations from rat cerebral cortex, was shown to have affinity for both beta adrenoceptors and serotonin receptors. Therefore, 10 microM serotonin was added to the assays to prevent (-)ICYP binding to serotonin receptors. Under these conditions, (-)ICYP binding to the cortical membrane preparation was reversible and saturable, and the association reaction was very slow. The dissociation reaction was also very slow, and revealed two affinity states corresponding to a high and a low affinity state. Scatchard analysis showed a single class of binding sites with an equilibrium dissociation constant (KD) of 20.7 pM, and a maximal density of binding sites (Bmax) of 95.1 fmol/mg membrane protein. Displacement binding analyses revealed a potency series of (-) isoproterenol greater than (-) epinephrine equal to (-) norepinephrine, suggesting a predominance of the beta 1 adrenoceptor subtype. Detailed competition ligand binding studies with the selective beta 1 adrenoceptor antagonist ICI-89406 and the selective beta 2 adrenoceptor antagonist ICI-118551, showed that about 70% of the beta adrenoceptor population in the rat cortex is of the beta 1 subtype with the remainder being of the beta 2 subtype. We conclude that since (-)ICYP binds to both beta adrenoceptors and serotonin receptors, it is important to prevent the binding of (-)ICYP to serotonin receptors by adding a suppressing ligand like excess cold serotonin when assaying beta adrenoceptors. We have presented the first such characterization of rat cerebral cortical beta adrenoceptors with (-)ICYP in this study

  13. In vivo binding of 125I-LSD to serotonin 5-HT2 receptors in mouse brain

    Hartig, P.R.; Scheffel, U.; Frost, J.J.; Wagner, H.N. Jr.

    1985-01-01

    The binding of 125 I-LSD (2-[ 125 I]-lysergic acid diethylamide) was studied in various mouse brain regions following intravenous injection of the radioligand. The high specific activity of 125 I-LSD enabled the injection of low mass doses (14ng/kg), which are well below the threshold for induction of any known physiological effect of the probe. The highest levels of 125 I-LSD binding were found in the frontal cortex, olfactory tubercles, extra-frontal cortex and striatum while the lowest level was found in the cerebellum. Binding was saturable in the frontal cortex but increased linearly in the cerebellum with increasing doses of 125 I-LSD. Serotonergic compounds potently inhibited 125 I-LSD binding in cortical regions, olfactory tubercles, and hypothalamus but had no effect in the cerebellum. Dopaminergic compounds caused partial inhibition of binding in the striatum while adrenergic compounds were inactive. From these studies the authors conclude that 125 I-LSD labels serotonin 5-HT 2 receptor sites in cortical regions with no indication that other receptor sites are labeled. In the olfactory tubercles and hypothalamus, 125 I-LSD labeling occurs predominantly or entirely at serotonic 5-HT 2 sites. In the striatum, 125 I-LSD labels approximately equal proportions of serotonergic and dopaminergic sites. These data indicate that 125 I-LSD labels serotonin receptors in vivo and suggests that appropriate derivatives of 2I-LSD may prove useful for tomographic imaging of serotonin 5-HT 2 receptors in the mammalian cortex

  14. 5HT(1A) and 5HT(1B) receptors of medial prefrontal cortex modulate anxiogenic-like behaviors in rats.

    Solati, Jalal; Salari, Ali-Akbar; Bakhtiari, Amir

    2011-10-31

    Medial prefrontal cortex (MPFC) is one of the brain regions which play an important role in emotional behaviors. The purpose of the present study was to evaluate the role of 5HT(1A) and 5HT(1B) receptors of the MPFC in modulation of anxiety behaviors in rats. The elevated plus maze (EPM) which is a useful test to investigate the effects of anxiogenic or anxiolytic drugs in rodents, was used. Bilateral intra-MPFC administration of 5HT(1A) receptor agonist, 8-OH-DPAT (5, 10, and 50 ng/rat) decreased the percentages of open arm time (OAT%) and open arm entries (OAE%), indicating an anxiogenic response. Moreover, administration of 5HT(1A) receptor antagonist, NAN-190 (0.25, 0.5, and 1 μg/rat) significantly increased OAT% and OAE%. Pre-treatment administration of NAN-190 (0.5 μg/rat), which was injected into the MPFC, reversed the anxiogenic effects of 8-OH-DPAT (5, 10, and 50 ng/rat). Intra-MPFC microinjection of 5HT(1B) receptor agonist, CGS-12066A (0.25, 0.5, and 1 μg/rat) significantly decreased OAT% and OAE%, without any change in locomotor activity, indicating an anxiogenic effect. However, injection of 5HT(1B) receptor antagonist, SB-224289 (0.5, 1, and 2 μg/rat) into the MPFC showed no significant effect. In conclusion, these findings suggest that 5HT(1A) and 5HT(1B) receptors of the MPFC region modulate anxiogenic-like behaviors in rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. MDMA self-administration fails to alter the behavioral response to 5-HT(1A) and 5-HT(1B) agonists.

    Aronsen, Dane; Schenk, Susan

    2016-04-01

    Regular use of the street drug, ecstasy, produces a number of cognitive and behavioral deficits. One possible mechanism for these deficits is functional changes in serotonin (5-HT) receptors as a consequence of prolonged 3,4 methylenedioxymethamphetamine (MDMA)-produced 5-HT release. Of particular interest are the 5-HT(1A) and 5-HT(1B) receptor subtypes since they have been implicated in several of the behaviors that have been shown to be impacted in ecstasy users and in animals exposed to MDMA. This study aimed to determine the effect of extensive MDMA self-administration on behavioral responses to the 5-HT(1A) agonist, 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT), and the 5-HT(1B/1A) agonist, RU 24969. Male Sprague-Dawley rats self-administered a total of 350 mg/kg MDMA, or vehicle, over 20-58 daily self-administration sessions. Two days after the last self-administration session, the hyperactive response to 8-OH-DPAT (0.03-1.0 mg/kg) or the adipsic response to RU 24969 (0.3-3.0 mg/kg) were assessed. 8-OH-DPAT dose dependently increased horizontal activity, but this response was not altered by MDMA self-administration. The dose-response curve for RU 24969-produced adipsia was also not altered by MDMA self-administration. Cognitive and behavioral deficits produced by repeated exposure to MDMA self-administration are not likely due to alterations in 5-HT(1A) or 5-HT(1B) receptor mechanisms.

  16. Autroadiographic characterization of 125I-labeled 2,5-dimethoxy-4-iodophenylisopropylamine (DOI): A phenylisopropylamine derivative labeling both 5HT2 and 5HT1c receptors

    Appel, N.M.; Mitchell, W.M.; Garlick, R.K.; Glennon, R.A.; Titeler, M.; De Souza, E.B.

    1990-01-01

    The best-characterized 5HT 2 radioligands, such as [ 3 H]ketanserin and [ 3 H]spiperone, are antagonists that label both high- and low-affinity states of this receptor. Recently, the radiolabeled phenylisopropylamine hallucinogens DOB and DOI, which are agonists at 5HT 2 receptors, have been demonstrated to label selectively the high-affinity state of brain 5HT 2 receptors. In the present study, the authors determined optimum conditions for autoradiographic visualization of [ 125 I]DOI binding and characterized its pharmacology and guanine nucleotide sensitivity under those conditions. In slide-mounted tissue sections (rat forebrain; two 10 μm sections/slide), (±)[ 125 I]DOI binding was saturable, of high affinity (K D ∼4nM) and displayed a pharmacological profile [R(-)DOI > spiperone > DOB > (±)DOI > ketanserin > S(+)DOI > 5HT > DOM] comparable to that seen in homogenate assays. Consistent with coupling of 5HT 2 receptors to a guanine nucleotide regulatory protein, [ 125 I]DOI binding was inhibited by guanine nucleotides but not by ATP. In autoradiograms, high densities of [ 125 I]DOI binding sites were present in frontal cortex, olfactory tubercle, claustrum, caudate/putamen and mamillary nuclei with lower densities in trigeminal and solitary nuclei. The highest density of [ 125 l]DOI binding was observed in choroid plexus; these binding sites displayed a pharmacological profile characteristic of 5HT 1C receptors. These data suggest that [ 125 I]DOI labels both 5HT 2 and 5HT 1C receptors

  17. Novel selective and potent 5-HT reuptake inhibitors with 5-HT1D antagonist activity: chemistry and pharmacological evaluation of a series of thienopyran derivatives.

    Torrado, Alicia; Lamas, Carlos; Agejas, Javier; Jiménez, Alma; Diaz, Nuria; Gilmore, Jeremy; Boot, John; Findlay, Jeremy; Hayhurst, Lorna; Wallace, Louise; Broadmore, Richard; Tomlinson, Rosemarie

    2004-10-15

    A series of compounds combining the naphthylpiperazine and thienopyran scaffolds has been prepared and evaluated for 5-HT reuptake inhibition with 5-HT1D antagonist activity. The design of these compounds has been based on the 'overlapping type' strategy where two pharmacophores are linked in a single molecule. The resultant dual pharmacological profile has the potential to deliver a more efficient treatment for depression.

  18. Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2017-04-01

    Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.

  19. Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia

    Robert Sweet

    2010-06-01

    Full Text Available Converging lines of evidence indicate that schizophrenia is characterized by impairments of synaptic machinery within cerebral cortical circuits. Efforts to localize these alterations in brain tissue from subjects with schizophrenia have frequently been limited to the quantification of structures that are non-selectively identified (e.g. dendritic spines labeled in Golgi preparations, axon boutons labeled with synaptophysin, or to quantification of proteins using methods unable to resolve relevant cellular compartments. Multiple label fluorescence confocal microscopy represents a means to circumvent many of these limitations, by concurrently extracting information regarding the number, morphology, and relative protein content of synaptic structures. An important adaptation required for studies of human disease is coupling this approach to stereologic methods for systematic random sampling of relevant brain regions. In this review article we consider the application of multiple label fluorescence confocal microscopy to the mapping of synaptic alterations in subjects with schizophrenia and describe the application of a novel, readily automated, iterative intensity/morphological segmentation algorithm for the extraction of information regarding synaptic structure number, size, and relative protein level from tissue sections obtained using unbiased stereological principles of sampling. In this context, we provide examples of the examination of pre- and post-synaptic structures within excitatory and inhibitory circuits of the cerebral cortex.

  20. Increased 20-HETE synthesis explains reduced cerebral blood flow but not impaired neurovascular coupling after cortical spreading depression in rat cerebral cortex

    Fordsmann, Jonas Christoffer; ko, Rebecca; Choi, Hyun B

    2013-01-01

    Cortical spreading depression (CSD) is associated with release of arachidonic acid (AA), impaired neurovascular coupling, and reduced cerebral blood flow (CBF), caused by cortical vasoconstriction. We tested the hypothesis that the released AA is metabolized by the cytochrome P450 enzyme to produce...... neurovascular coupling after CSD. These findings suggest that CSD-induced increments in 20-HETE cause the reduction in CBF after CSD, and that the attenuation of stimulation-induced CBF responses after CSD has a different mechanism. We suggest that blockade of 20-HETE synthesis may be clinically relevant...

  1. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction

    Okabe, Tetsuhiko; Aida, Noriko; Nozawa, Kumiko [Kanagawa Children' s Medical Center, Department of Radiology, Yokohama (Japan); Niwa, Tetsu [Kanagawa Children' s Medical Center, Department of Radiology, Yokohama (Japan); Tokai University School of Medicine, Department of Radiology, Isehara (Japan); Shibasaki, Jun [Kanagawa Children' s Medical Center, Department of Neonatology, Yokohama (Japan); Osaka, Hitoshi [Kanagawa Children' s Medical Center, Department of Neurology, Yokohama (Japan)

    2014-05-15

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [<1 month], n=5; infants [1 month-12 months], n=3; others [≥1 year], n=4) with acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one. (orig.)

  2. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction

    Okabe, Tetsuhiko; Aida, Noriko; Nozawa, Kumiko; Niwa, Tetsu; Shibasaki, Jun; Osaka, Hitoshi

    2014-01-01

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [<1 month], n=5; infants [1 month-12 months], n=3; others [≥1 year], n=4) with acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one. (orig.)

  3. Early magnetic resonance detection of cortical necrosis and acute network injury associated with neonatal and infantile cerebral infarction.

    Okabe, Tetsuhiko; Aida, Noriko; Niwa, Tetsu; Nozawa, Kumiko; Shibasaki, Jun; Osaka, Hitoshi

    2014-05-01

    Knowledge of MRI findings in pediatric cerebral infarction is limited. To determine whether cortical necrosis and network injury appear in the acute phase in post-stroke children and to identify anatomical location of acute network injury and the ages at which these phenomena are seen. Images from 12 children (age range: 0-9 years; neonates [acute middle cerebral artery (MCA) cortical infarction were retrospectively analyzed. Cortical necrosis was defined as hyperintense cortical lesions on T1-weighted imaging that lacked evidence of hemorrhage. Acute network injury was defined as hyperintense lesions on diffusion-weighted imaging that were not in the MCA territory and had fiber connections with the affected cerebral cortex. MRI was performed within the first week after disease onset. Cortical necrosis was only found in three neonates. Acute network injury was seen in the corticospinal tract (CST), thalamus and corpus callosum. Acute network injury along the CST was found in five neonates and one 7-month-old infant. Acute network injury was evident in the thalamus of four neonates and two infants (ages 4 and 7 months) and in the corpus callosum of five neonates and two infants (ages 4 and 7 months). The entire thalamus was involved in three children when infarction of MCA was complete. In acute MCA cortical infarction, MRI findings indicating cortical necrosis or acute network injury was frequently found in neonates and early infants. Response to injury in a developing brain may be faster than that in a mature one.

  4. Early deprivation leads to long-term reductions in motivation for reward and 5-HT1A binding and both effects are reversed by fluoxetine.

    Leventopoulos, Michail; Russig, Holger; Feldon, Joram; Pryce, Christopher R; Opacka-Juffry, Jolanta

    2009-03-01

    Early life stress is a risk factor in aetiology of depression. In rats, early life stress can lead to pro-depressive biomarkers in adulthood. The present study in male Wistar rats investigated the effects of early life deprivation and fluoxetine on motivation for reward, activity in the forced swim test, and brain monoamine receptors, in adulthood. P1-14 pups were isolated for 4 h/day (early deprivation, ED) or were handled for 1 min (CON). They were weaned at PND21 and left undisturbed until 4-6 months old. The ED and CON groups were halved to receive either vehicle or fluoxetine (FLX, 10 mg/kg, 31 days). Thus, four treatment groups were studied: CON-VEH, CON-FLX, ED-VEH and ED-FLX, n = 8 each. On a progressive ratio schedule, ED-VEH animals showed significantly reduced motivation to obtain sucrose versus CON-VEH, and this reward-motivation deficit was reversed by FLX. Activity in the forced swim test was unaffected by ED and increased by FLX. Quantitative autoradiography was used to determine 5-HT1A and 5-HT2C receptor binding with [O-methyl-(3)H]WAY 100635 and [(3)H]mesulergine (added spiperone and 8-OH-DPAT), respectively. In ED-VEH versus CON-VEH, 5-HT1A receptor binding was significantly reduced in anterior cingulate, motor cortex, ventral hippocampal CA1 and dorsal raphé; this was reversed by chronic FLX. Concomitant ED-dependent reductions observed in 5-HT2C (motor and frontal cortices, ventral CA1 and dorsal raphé) and D2 (dorsolateral striatum and accumbens) binding were not reversed by FLX. Because chronic FLX treatment reversed the ED-induced behavioural and 5-HT1A binding deficits, the 5-HT1A receptor is implicated as a selective therapeutic target.

  5. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  6. Changes of Serotonin (5-HT), 5-HT2A Receptor, and 5-HT Transporter in the Sprague-Dawley Rats of Depression,Myocardial Infarction and Myocardial Infarction Co-exist with Depression

    Mei-Yan Liu; Yah-Ping Ren; Wan-Lin Wei; Guo-Xiang Tian; Guo Li

    2015-01-01

    Background:To evaluate whether serotonin (5-HT),5-HT2A receptor (5-HT2AR),and 5-HT transporter (serotonin transporter [SERT]) are associated with different disease states of depression,myocardial infarction (MI) and MI co-exist with depression in Sprague-Dawley rats.Methods:After established the animal model of four groups include control,depression,MI and MI with depression,we measured 5-HT,5-HT2AR and SERT from serum and platelet lysate.Results:The serum concentration of 5-HT in depression rats decreased significantly compared with the control group (303.25 ± 9.99 vs.352.98 ± 13.73;P =0.000),while that in MI group increased (381.78 ± 14.17 vs.352.98 ± 13.73;P =0.000).However,the depression + MI group had no change compared with control group (360.62 ± 11.40 vs.352.98 ± 13.73;P =0.036).The changes of the platelet concentration of 5-HT in the depression,MI,and depression + MI group were different from that of serum.The levels of 5-HT in above three groups were lower than that in the control group (380.40 ± 17.90,387.75 ± 22.28,246.40 ± 18.99 vs.500.29 ± 20.91;P =0.000).The platelet lysate concentration of 5-HT2AR increased in depression group,MI group,and depression + MI group compared with the control group (370.75 ± 14.75,393.47 ± 15.73,446.66 ± 18.86 vs.273.66 ± 16.90;P =0.000).The serum and platelet concentration of SERT in the depression group,MI group and depression + MI group were all increased compared with the control group (527.51 ± 28.32,602.02 ± 23.32,734.76 ± 29.59 vs.490.56 ± 16.90;P =0.047,P =0.000,P =0.000 in each and 906.38 ± 51.84,897.33 ± 60.34,1030.17 ± 58.73 vs.708.62 ± 51.15;P =0.000 in each).Conclusions:The concentration of 5-HT2AR in platelet lysate and SERT in serum and platelet may be involved in the pathway of MI with depression.Further studies should examine whether elevated 5-HT2AR and SERT may contribute to the biomarker in MI patients with depression.

  7. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...

  8. The 5-HT1A Receptor and the Stimulus Effects of LSD in the Rat

    Reissig, C.J.; Eckler, J.R.; Rabin, R.A.; Winter, J.C.

    2005-01-01

    Rationale It has been suggested that the 5-HT1A receptor plays a significant modulatory role in the stimulus effects of the indoleamine hallucinogen lysergic acid diethylamide (LSD). Objectives The present study sought to characterize the effects of several compounds with known affinity for the 5-HT1A receptor on the discriminative stimulus effects of LSD. Methods 12 Male F-344 rats were trained in a two-lever, fixed ratio10, food reinforced task with LSD (0.1 mg/kg; IP; 15 min pretreatment) as a discriminative stimulus. Combination and substitution tests with the 5-HT1A agonists, 8-OH-DPAT, buspirone, gepirone, and ipsapirone, with LSD-induced stimulus control were then performed. The effects of these 5-HT1A ligands were also tested in the presence of the selective 5-HT1A receptor antagonist, WAY-100,635 (0.3 mg/kg; SC; 30 min. pretreatment). Results In combination tests stimulus control by LSD was increased by all 5-HT1A receptor ligands with agonist properties. Similarly, in tests of antagonism, the increase in drug-appropriate responding caused by stimulation of the 5-HT1A receptor was abolished by administration of WAY-100,635. Conclusions These data, obtained using a drug discrimination model of the hallucinogenic effects of LSD, provide support for the hypothesis that the 5-HT1A receptor has a significant modulatory role in the stimulus effects of LSD. PMID:16025319

  9. The 5-HT(1F) receptor agonist lasmiditan as a potential treatment of migraine attacks

    Tfelt-Hansen, Peer C; Olesen, Jes

    2012-01-01

    Lasmiditan is a novel selective 5-HT(1F) receptor agonist. It is both scientifically and clinically relevant to review whether a 5-HT(1F) receptor agonist is effective in the acute treatment of migraine. Two RCTs in the phase II development of lasmiditan was reviewed. In the intravenous placebo...

  10. Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task.

    Perez-García, Georgina S; Meneses, A

    2005-08-30

    This work aimed to evaluate further the role of 5-HT7 receptors during memory formation in an autoshaping Pavlovian/instrumental learning task. Post-training administration of the potential 5-HT7 receptor agonist AS 19 or antagonist SB-269970 enhanced memory formation or had no effect, respectively. The AS 19 facilitatory effect was reversed by SB-269970, but not by the selective 5-HT1A antagonist WAY100635. Amnesia induced by scopolamine (cholinergic antagonist) or dizocilpine (NMDA antagonist) was also reversed by AS 19. Certainly, reservations regarding the selectivity of AS 19 for 5-HT7 and other 5-HT receptors in vivo are noteworthy and, therefore, its validity for use in animal models as a pharmacological tool. Having mentioned that, it should be noticed that together these data are providing further support to the notion of the 5-HT7 receptors role in memory formation. Importantly, this 5-HT7 receptor agonist AS 19 appears to represent a step forward respect to the notion that potent and selective 5-HT7 receptor agonists can be useful in the treatment of dysfunctional memory in aged-related decline and Alzheimer's disease.

  11. The role of the 5-HT1a receptor in central cardiovascular regulation

    G.H. Dreteler

    1991-01-01

    textabstractThe aim of the studies describe~ in this thesis is to further clarify the role of the 5- HT1A receptor in central cardiovascular regulation. The hypotensive action of 5-HT1A receptor agonists is mainly due to differential sympatho-inhibition resulting in an increase in total

  12. Measuring endogenous 5-HT release by emission tomography: promises and pitfalls

    Paterson, Louise M; Tyacke, Robin J; Nutt, David J; Knudsen, Gitte M

    2010-01-01

    Molecular in vivo neuroimaging techniques can be used to measure regional changes in endogenous neurotransmitters, evoked by challenges that alter synaptic neurotransmitter concentration. This technique has most successfully been applied to the study of endogenous dopamine release using positron emission tomography, but has not yet been adequately extended to other neurotransmitter systems. This review focuses on how the technique has been applied to the study of the 5-hydroxytryptamine (5-HT) system. The principles behind visualising fluctuations in neurotransmitters are introduced, with reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT1A, 5-HT2A, and 5-HT4 receptors and the serotonin reuptake transporter have been explored for their sensitivity to 5-HT fluctuations, but with mixed outcomes; tracers for these targets cannot reliably image endogenous 5-HT in humans. Shortcomings in our basic knowledge of the mechanisms underlying changes in binding potential are addressed, and suggestions are made as to how the selection of targets, radiotracers, challenge paradigms, and experimental design might be optimised to improve our chances of successfully imaging endogenous neurotransmitters in the future. PMID:20664611

  13. 5-HT2 and 5-HT7 receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons

    Urszula eSlawinska

    2014-08-01

    Full Text Available There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-OHDPAT (acting on 5-HT1A/7 receptors and quipazine (acting on 5-HT2 receptors, to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor CPG. Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the locomotor activation.

  14. Synthesis and biochemical evaluation of tritium-labeled 1-methyl-N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1H-indazole-3-carboxa mide, a useful radioligand for 5HT3 receptors

    Robertson, D.W.; Bloomquist, W.; Cohen, M.L.; Reid, L.R.; Schenck, K.; Wong, D.T.

    1990-01-01

    The advent of potent, highly selective 5HT3 receptor antagonists has stimulated considerable interest in 5HT3 receptor mediated physiology and pharmacology. To permit detailed biochemical studies regarding interaction of the indazole class of serotonin (5HT) antagonists with 5HT3 receptors in multiple tissues, we synthesized 1-methyl-N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1H-indazole- 3-carboxamide (LY278584, compound 9) in high specific activity, tritium-labeled form. This radioligand was selected as a synthetic target because of its potency as a 5HT3-receptor antagonist, its selectivity for this receptor viz a viz other 5HT-receptor subtypes, and the ability to readily incorporate three tritia via the indazole N-CH3 substituent. Alkylation of N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-1H-indazole-3-carboxamide (8) with sodium hydride and tritium-labeled iodomethane, followed by HPLC purification, resulted in [3H]-9 with a radiochemical purity of 99% and a specific activity of 80.5 Ci/mmol. This radioligand bound with high affinity to a single class of saturable recognition sites in membranes isolated from cerebral cortex of rat brain. The Kd was 0.69 nM and the Bmax was 16.9 fmol/mg of protein. The specific binding was excellent, and accounted for 83-93% of total binding at concentrations of 2 nM or less. The potencies of known 5HT3-receptor antagonists as inhibitors of [3H]-9 binding correlated well with their pharmacological receptor affinities as antagonists of 5HT-induced decreases in heart rate and contraction of guinea pig ileum, suggesting the central recognition site for this radioligand may be extremely similar to or identical with peripheral 5HT3 receptors

  15. Neuroticism and serotonin 5-HT1A receptors in healthy subjects

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell

    2015-01-01

    subjects is unclear. We measured brain serotonin 5-HT1A receptor in 34 healthy subjects in vivo using positron emission tomography (PET) and [carbonyl-(11)C]WAY-100635. Binding potential (BPP) was determined using the golden standard of kinetic compartmental modeling using arterial blood samples...... and radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals...... with low neuroticism. This finding was confirmed with an independent voxel-based whole-brain analysis. Other personality traits did not correlate with 5-HT1A receptor BPP. Previous observations have reported lower serotonin 5-HT1A receptor density in major depression. This neurobiological finding may...

  16. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...

  17. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  18. 5-HT in the enteric nervous system: gut function and neuropharmacology.

    McLean, Peter G; Borman, Richard A; Lee, Kevin

    2007-01-01

    In recent times, the perception of functional gastrointestinal disorders such as irritable bowel syndrome (IBS) has shifted fundamentally. Such disorders are now thought of as serious diseases characterized by perturbations in the neuronal regulation of gastrointestinal function. The concept of visceral hypersensitivity, the characterization of neuronal networks in the 'brain-gut axis' and the identification of several novel 5-HT-mediated mechanisms have contributed to this shift. Here, we review how some of the more promising of these new mechanisms (e.g. those involving 5-HT transporters and the 5-HT(2B), 5-HT(7) and putative 5-HT(1p) receptors) might lead to a range of second-generation therapies that could revolutionize the treatment of functional gastrointestinal disorders, particularly IBS.

  19. Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm.

    Meyer, Jeffrey H; McMain, Shelley; Kennedy, Sidney H; Korman, Lorne; Brown, Gregory M; DaSilva, Jean N; Wilson, Alan A; Blak, Thomas; Eynan-Harvey, Rahel; Goulding, Verdell S; Houle, Sylvain; Links, Paul

    2003-01-01

    Dysfunctional attitudes are negatively biased assumptions and beliefs regarding oneself, the world, and the future. In healthy subjects, increasing serotonin (5-HT) agonism with a single dose of d-fenfluramine lowered dysfunctional attitudes. To investigate whether the converse, a low level of 5-HT agonism, could account for the higher levels of dysfunctional attitudes observed in patients with major depression or with self-injurious behavior, cortex 5-HT(2) receptor binding potential and dysfunctional attitudes were measured in patients with major depressive disorder, patients with a history of self-injurious behavior, and healthy comparison subjects (5-HT(2) receptor density increases during 5-HT depletion). Twenty-nine healthy subjects were recruited to evaluate the effect of d-fenfluramine or of clonidine (control condition) on dysfunctional attitudes. Dysfunctional attitudes were assessed with the Dysfunctional Attitude Scale 1 hour before and 1 hour after drug administration. In a second experiment, dysfunctional attitudes and 5-HT(2) binding potential were measured in 22 patients with a major depressive episode secondary to major depressive disorder, 18 patients with a history of self-injurious behavior occurring outside of a depressive episode, and another 29 age-matched healthy subjects. Cortex 5-HT(2) binding potential was measured with [(18)F]setoperone positron emission tomography. In the first experiment, dysfunctional attitudes decreased after administration of d-fenfluramine. In the second experiment, in the depressed group, dysfunctional attitudes were positively associated with cortex 5-HT(2) binding potential, especially in Brodmann's area 9 (after adjustment for age). Depressed subjects with extremely dysfunctional attitudes had higher 5-HT(2) binding potential, compared to healthy subjects, particularly in Brodmann's area 9. Low levels of 5-HT agonism in the brain cortex may explain the severely pessimistic, dysfunctional attitudes associated

  20. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  1. [carbonyl-11C]Desmethyl-WAY-100635 (DWAY) is a potent and selective radioligand for central 5-HT1A receptors in vitro and in vivo

    Pike, V.W.; McCarron, J.A.; Hirani, E.; Hume, S.P.; Osman, S.; Poole, K.G.; Wikstroem, H.; Mensonidas, M.

    1998-01-01

    In this study we set out to assess the ability of DWAY to enter brain in vivo and to elucidate its possible interaction with 5-HT 1A receptors. Desmethyl-WAY-100635 was labelled efficiently with carbon-11 in high specific radioactivity by reaction of its descyclohexanecarbonyl analogue with [carbonyl- 11 C]cyclohexanecarbonyl chloride. The product was separated in high radiochemical purity by HPLC. Rats were injected intravenously with DWAY, sacrificed and dissected to establish radioactivity content in brain tissues. At 60 min after injection, the ratios of radioactivity concentration in each brain region to that in cerebellum correlated with previous in vitro and in vivo measures of 5-HT 1A receptor density. The highest ratio was about 22 in hippocampus. Radioactivity cleared rapidly from plasma; HPLC analysis revealed that DWAY represented 55% of the radioactivity in plasma at 5 min and 33% at 30 min. Only polar radioactive metabolites were detected. Subsequently, a cynomolgus monkey was injected intravenously with DWAY and examined by PET. Maximal whole brain uptake of radioactivity was 5.7% of the administered dose at 5 min after injection. The image acquired between 9 and 90 min showed high radioactivity uptake in brain regions rich in 5-HT 1A receptors, moderate uptake in raphe nuclei and low uptake in cerebellum. A transient equilibrium was achieved in cortical regions at about 60 min, when the ratio of radioactivity concentration in frontal cortex to tcat in cerebellum reached 6. The corresponding ratio for raphe nuclei was about 3. Radioactive metabolites appeared rapidly in plasma, but these were all more polar than DWAY, which represented 52% of the radioactivity in plasma at 4 min and 20% at 55 min. In a second PET experiment, in which a cynomolgus monkey was pretreated with the selective 5-HT 1A receptor antagonist, WAY-100635, at 25 min before DWAY injection, radioactivity in all brain regions was reduced to that in cerebellum. Autoradiography of

  2. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... parameters of the whisker/infraorbital nerve etwork (IO) targeting the same cortical area. We tested the hypothesis that the relation between increases in CBF and CMRO2 evoked by stimulation and synaptic activity differed for the two activated networks and that activation of two distinct networks activate...

  3. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia.

    Moraga, Ana; Pradillo, Jesús M; García-Culebras, Alicia; Palma-Tortosa, Sara; Ballesteros, Ivan; Hernández-Jiménez, Macarena; Moro, María A; Lizasoain, Ignacio

    2015-05-10

    Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in

  4. Quantitative comparison of cortical and deep grey matter in pathological subtypes of unilateral cerebral palsy.

    Scheck, Simon M; Pannek, Kerstin; Fiori, Simona; Boyd, Roslyn N; Rose, Stephen E

    2014-10-01

    The aim of this study was to quantify grey matter changes in children with unilateral cerebral palsy (UCP), differentiating between cortical or deep grey matter (CDGM) lesions, periventricular white matter (PWM) lesions, and unilateral and bilateral lesions. In a cross-sectional study we obtained high resolution structural magnetic resonance images from 72 children (41 males, 31 females, mean age 10y 9mo [SD 3y 1mo], range 5y 1mo-17y 1mo) with UCP (33 left, 39 right hemiplegia; Manual Ability Classification System level I n=29, II n=43; Gross Motor Function Classification System level I n=46, II n=26), and 19 children with typical development (CTD; eight males, 11 females, mean age 11y 2mo [SD 2y 7mo], range 7y 8mo-16y 4mo). Images were classified by lesion type and analyzed using voxel-based morphometry (VBM) and subcortical volumetric analysis. Deep grey matter volumes were not significantly different between children with CDGM and PWM lesions, with the thalamus, putamen, and globus pallidus being reduced unilaterally in both groups compared with CTD (p≤0.001). Children with CDGM lesions additionally showed widespread cortical changes involving all lobes using VBM (p<0.01). Children with bilateral lesions had reduced thalamus and putamen volumes bilaterally (p<0.001). The thalamic volume was reduced bilaterally in children with unilateral lesions (p=0.004). Lesions to the PWM cause secondary changes to the deep grey matter structures similar to primary changes seen in CDGM lesions. Despite having a unilateral phenotype, grey matter changes are observed bilaterally, even in children with unilateral lesions. © 2014 Mac Keith Press.

  5. 5-HT receptor subtypes as key targets in mediating pigment dispersion within melanophores of teleost, Oreochromis mossambicus.

    Salim, Saima; Ali, Ayesha S; Ali, Sharique A

    2013-02-01

    The presence of distinct class of 5-HT receptors in the melanophores of tilapia (Oreochromis mossambicus) is reported. The cellular responses to 5-HT (5-hydroxytryptamine), 5-HT(1), and 5-HT(2), agonists on isolated scale melanophores were observed with regard to pigment translocation within the cells. It was found that 5-HT exerted rapid and strong concentration dependent pigment granule dispersion within the melanophores. The threshold pharmacological dose of 5-HT that could elicit a measurable response was as low as 4.7×10(-12) M/L. Selective 5-HT(1) and 5-HT(2) agonists, sumatriptan and myristicin were investigated and resulted in dose-dependent pigment dispersion. The dispersing effects were effectively antagonized by receptor specific antagonists. It is suggested that 5-HT-induced physiological effects are mediated via distinct classes of receptors that possibly participate in modulation of pigmentary responses of the fish. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Multicompartmental study of fluorine-18 altanserin binding to brain 5HT2 receptors in humans using positron emission tomography

    Biver, F.; Goldman, S.; Luxen, A.; Monclus, M.; Forestini, M.; Mendlewicz, J.; Lotstra, F.

    1994-01-01

    Serotoninergic type 2 (5HT 2 ) receptors have been implicated in the regulation of many brain functions in humans and may play a role in several neurological and psychiatric diseases. Fluorine-18 altanserin has been proposed as a new radiotracer for the study of 5HT 2 receptors by PET because of its high affinity for 5HT 2 receptors (Ki: 0.13 nM) and its good specificity in in vitro studies. Dynamic PET studies were carried out in 12 healthy volunteers after intravenous injection of 0.1 mCi/kg [ 18 F] altanserin. Ninety minutes after injection, we observed mainly cortical binding. Basal ganglia and cerebellum showed very low uptake and the frontal cortex to cerebellum ratio was about 3. To evaluate the quantitative distribution of this ligand in the brain, we used two different methods of data analysis: a four-compartment model was used to achieve quantitative evaluation of rate constants (K 1 and k 2 through k 6 ) by non-linear regression, and a multiple-time graphical analysis technique for reversible binding was employed for the measurement of k 1 /k 2 and k 3 /k 4 ratios. Using both methods, we found significant differences in binding capacity (estimated by k 3 /k 4 = B max /K d ) between regions, the values increasing as follows: occipital, limbic, parietal, frontal and temporal cortex. After correction of values obtained by the graphical method for the existence of non-specific binding, results generated by the two methods were consistent. (orig.)

  7. CT and MR Studies of Giant Dermoid Cyst Associated to Fat Dissemination at the Cortical and Cisternal Cerebral Spaces

    Alessandro D'Amore

    2013-01-01

    Full Text Available This study focuses on CT and MR studies of adult patient with giant lesion of the posterior cranial fossa associated with micro- and macroaccumulations with density and signal like “fat” at the level of the cortical and cisternal cerebral spaces. This condition is compatible with previous asymptomatic ruptured dermoid cyst. Histological findings confirm the hypothesis formulated using the imaging. We also integrate elements of differential diagnosis by another giant lesion of the posterior cranial fossa.

  8. Paroxetine-induced reduction of sexual incentive motivation in female rats is not modified by 5-HT1B or 5-HT2C antagonists.

    Kaspersen, Helge; Agmo, Anders

    2012-03-01

    Clinical data show that paroxetine causes sexual dysfunction in a substantial proportion of women taking this compound. This work was conducted to determine whether chronic paroxetine reduces sexual incentive motivation in female rats and whether this compound can modify any aspect of paced mating. The role of the 5-HT(1B) and 5-HT(2C) receptors in any potential effects was also evaluated. Ovariectomized female rats were implanted with osmotic minipumps releasing 10 mg/kg per day of paroxetine or vehicle for 28 days. Tests for sexual incentive motivation and paced mating were performed just before implantation and at regular intervals thereafter. The females were primed with estradiol benzoate (25 μg/rat) and progesterone (1 mg/rat) before each of these tests. On days 25-27 of treatment, the females were injected with the 5-HT(1B) antagonist GR125,743 (5 mg/kg), the 5-HT(2C) antagonist SB206,553 (5 mg/kg) and vehicle in counterbalanced order. Preinjection time was 30 min. Paroxetine reduced sexual incentive motivation on day 20 of treatment without affecting any aspect of paced mating. None of the antagonists modified the inhibitory effect of paroxetine on sexual incentive motivation. In the group chronically treated with vehicle, SB206,553 reduced proceptive behaviors in the paced mating test. No other effect was obtained. The effects of paroxetine seen in female rats are similar to those observed in women, suggesting that disturbances of sexual incentive motivation in rats are predictive of sexual dysfunction in women. The 5-HT(1B) and 5-HT(2C) receptors do not seem to be of any importance for paroxetine's inhibitory effect.

  9. Effects of 5-HT and insulin on learning and memory formation in food-deprived snails.

    Aonuma, Hitoshi; Totani, Yuki; Kaneda, Mugiho; Nakamura, Ryota; Watanabe, Takayuki; Hatakeyama, Dai; Dyakonova, Varvara E; Lukowiak, Ken; Ito, Etsuro

    2018-02-01

    The pond snail Lymnaea stagnalis learns conditioned taste aversion (CTA) and consolidates it into long-term memory (LTM). How well they learn and form memory depends on the degree of food deprivation. Serotonin (5-HT) plays an important role in mediating feeding, and insulin enhances the memory consolidation process following CTA training. However, the relationship between these two signaling pathways has not been addressed. We measured the 5-HT content in the central nervous system (CNS) of snails subjected to different durations of food deprivation. One-day food-deprived snails, which exhibit the best learning and memory, had the lowest 5-HT content in the CNS, whereas 5-day food-deprived snails, which do not learn, had a high 5-HT content. Immersing 1-day food-deprived snails in 5-HT impaired learning and memory by causing an increase in 5-HT content, and that the injection of insulin into these snails reversed this impairment. We conclude that insulin rescues the CTA deficit and this may be due to a decrease in the 5-HT content in the CNS of Lymnaea. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Liaison of 3H 5-HT and adenyl cyclasic activation induced by the 5-HT in preparations of brain glial membranes

    Fillion, Gilles; Beaudoin, Dominique; Rousselle, J.-C.; Jacob, Joseph

    1980-01-01

    Purified glial membrane preparations have been isolated from horse brain striatum. Tritiated 5-HT bound to these membranes with a high affinity (K(D)=10 nM); the corresponding bindings is reversible and appears specific of the serotoninergic structure. In parallel, 5-HT activates an adenylate cyclase with a low affinity (K(D)=1 μM). The sites involved in this binding and in this adenylate cyclase activation appear different from the serotoninergic sites reported in the neuronal membrane preparations [fr

  11. Investigations into the binding affinities of different human 5-HT4 receptor splice variants.

    Irving, Helen R; Tochon-Danguy, Nathalie; Chinkwo, Kenneth A; Li, Jian G; Grabbe, Carmen; Shapiro, Marina; Pouton, Colin W; Coupar, Ian M

    2010-01-01

    This study examined whether the drug-receptor-binding sites of 5 selected human 5-HT(4) receptor splice variants [h5-HT4(a), h5-HT4(b), h5-HT4(c), h5-HT4(d) and h5-HT4(g)] display preferential affinities towards agonists. The agonists selected on the basis of chemical diversity and clinical relevance were: 5-HT4 benzamides, renzapride, zacopride and prucalopride; the benzimidazolones, DAU 6236 and BIMU 1; the aromatic ketone, RS67333, and the indole carbazimidamide tegaserod. The rank order of affinities ranging across the splice variants was: tegaserod (pKi: 7.38-7.91) > or = Y-36912 (pKi: 7.03-7.85) = BIMU 1 (pKi: 6.92-7.78) > or = DAU 6236 (pKi: 6.79-7.99) > or = 5-HT (pKi: 5.82-7.29) > or = 5-MeOT (pKi: 5.64-6.83) > or = renzapride (pKi: 4.85-5.56). We obtained affinity values for the 5-HT4(b), (d) and (g) variants for RS67333 (pKi: 7:48-8.29), prucalopride (pKi: 6.86-7.37) and zacopride (pKi: 5.88-7.0). These results indicate that the ligands interact with the same conserved site in each splice variant. Some splice variants have a higher affinity for certain agonists and the direction of selectivity followed a common trend of lowest affinity at the (d) variant. However, this trend was not evident in functional experiments. Our findings suggest that it may be possible to design splice variant selective ligands, which may be of relevance for experimental drugs but may be difficult to develop clinically. 2010 S. Karger AG, Basel.

  12. Mutational analysis of the promoter and the coding region of the 5-HT1A gene

    Erdmann, J.; Noethen, M.M.; Shimron-Abarbanell, D. [Univ. of Bonn (Germany)] [and others

    1994-09-01

    Disturbances of serotonergic pathways have been implicated in many neuropsychiatric disorders. Serotonin (5HT) receptors can be subdivided into at least three major families (5HT1, 5HT2, and 5HT3). Five human 5HT1 receptor subtypes have been cloned, namely 1A, 1D{alpha}, 1D{beta}, 1E, and 1F. Of these, the 5HT1A receptor is the best characterized subtype. In the present study we sought to identify genetic variation in the 5HT1A receptor gene which through alteration of protein function or level of expression might contribute to the genetics of neuropsychiatric diseases. The coding region and the 5{prime} promoter region of the 5HT1A gene from 159 unrelated subjects (45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 controls) were analyzed using SSCA. SSCA revealed the presence of two mutations both located in the coding region of the 5HT1A receptor gene. The first mutation is a rare silent C{r_arrow}T substitution at nucleotide position 549. The second mutation is characterized by a base pair substitution (A{r_arrow}G) at the first position of codon 28 and results in an amino acid exchange (Ile{r_arrow}Val). Since Val28 was found only in a single schizophrenic patient and in none of the other patients or controls, we decided to extend our samples and to use a restriction assay for screening a further 74 schizophrenic, 95 bipolar affective, and 49 patients with Tourette`s syndrome, as well as 185 controls, for the presence of the mutation. In total, the mutation was found in 2 schizophrenic patients, in 3 bipolars, in 1 Tourette patient, and in 5 controls. To our knowledge the Ile-28-Val substitution reported here is the first natural occuring molecular variant which has been identified for a serotonin receptor so far.

  13. Pet imaging of human pituitary 5-HT2 receptors with F-18 setoperone

    Fischman, A.J.; Bonab, A.A.; Babich, J.W. [Massachusetts General Hospital, Boston, MA (United States)] [and others

    1995-05-01

    Serotonin (5-HT) receptors play an important role in the regulation of pituitary function. In particular, 5HT agonists stimulate ACTH, {beta}-endorphin, prolactin and growth hormone secretion but inhibit TSH release. 5-HT binding sites have been identified by autoradiographic studies of rat and human pituitary. In the present investigation, we used PET with F-18 setoperone to image 5-HT2 receptors in normal humans. Setoperone, a piperidine derivative with potent 5-HT2 receptor blocking properties was labelled with F-18 by nucleophilic substitution on the nitro derivative. After HPLC purification, specific activity was between 10,000 and 15,000 mCi/{mu} mole and radiochemical purity was >98%. Six healthy male volunteers were injected with 5-7 mCi of F-18. Setoperone and serial PET images and arterial blood samples were collected over 2 hrs. Specific binding to 5-HT2 receptors in the frontal cortex (FC), striatum (ST) and pituitary (P) was quantitated using the cerebellum (C) as reference. The tracer showed clear retention in FC, ST and P (known to contain a high density of 5-HT2 receptors) relative to C (known to be devoid of 5-HT2 receptors). In all subjects, FC/C, ST/C and P/C ratios increased during the first hr. and remained stable thereafter. For FC and ST, the ratios reached similar values; 3.92{plus_minus}0.73 and 3.53{plus_minus}0.32. For pituitary, a significantly higher ratio, was measured at all times; 6.53{plus_minus}1.82 (p<0.01). These results indicate that F-18 setoperone is an effective PET radiopharmaceutical for imaging 5-HT2 receptors in the human pituitary. Future applications of this agent could provide important new insights into neuroendocrine function.

  14. Distribution of serotonin 5-HT1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia).

    Dos Santos, Tiago Souza; Krüger, Jéssica; Melleu, Fernando Falkenburger; Herold, Christina; Zilles, Karl; Poli, Anicleto; Güntürkün, Onur; Marino-Neto, José

    2015-12-15

    Serotonin 1A receptors (5-HT1ARs), which are widely distributed in the mammalian brain, participate in cognitive and emotional functions. In birds, 5-HT1ARs are expressed in prosencephalic areas involved in visual and cognitive functions. Diverse evidence supports 5-HT1AR-mediated 5-HT-induced ingestive and sleep behaviors in birds. Here, we describe the distribution of 5-HT1ARs in the hypothalamus and brainstem of birds, analyze their potential roles in sleep and ingestive behaviors, and attempt to determine the involvement of auto-/hetero-5-HT1ARs in these behaviors. In 6 pigeons, the anatomical distribution of [(3)H]8-OH-DPAT binding in the rostral brainstem and hypothalamus was examined. Ingestive/sleep behaviors were recorded (1h) in 16 pigeons pretreated with MM77 (a heterosynaptic 5-HT1AR antagonist; 23 or 69 nmol) for 20 min, followed by intracerebroventricular ICV injection of 5-HT (N:8; 150 nmol), 8-OH-DPAT (DPAT, a 5-HT1A,7R agonist, 30 nmol N:8) or vehicle. 5-HT- and DPAT-induced sleep and ingestive behaviors, brainstem 5-HT neuronal density and brain 5-HT content were examined in 12 pigeons, pretreated by ICV with the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (N:6/group). The distribution of brainstem and diencephalic c-Fos immunoreactivity after ICV injection of 5-HT, DPAT or vehicle (N:5/group) into birds provided with or denied access to water is also described. 5-HT1ARs are concentrated in the brainstem 5-HTergic areas and throughout the periventricular hypothalamus, preoptic nuclei and circumventricular organs. 5-HT and DPAT produced a complex c-Fos expression pattern in the 5-HT1AR-enriched preoptic hypothalamus and the circumventricular organs, which are related to drinking and sleep regulation, but modestly affected c-Fos expression in 5-HTergic neurons. The 5-HT-induced ingestivebehaviors and the 5-HT- and DPAT-induced sleep behaviors were reduced by MM77 pretreatment. 5,7-DHT increased sleep per se, decreased tryptophan

  15. Cortical Cerebral Microinfarcts on 3 Tesla MRI in Patients with Vascular Cognitive Impairment.

    Ferro, Doeschka A; van Veluw, Susanne J; Koek, Huiberdina L; Exalto, Lieza G; Biessels, Geert Jan

    2017-01-01

    Cerebral microinfarcts (CMIs) are small ischemic lesions that are a common neuropathological finding in patients with stroke or dementia. CMIs in the cortex can now be detected in vivo on 3 Tesla MRI. To determine the occurrence of CMIs and associated clinical features in patients with possible vascular cognitive impairment (VCI). 182 memory-clinic patients (mean age 71.4±10.6, 55% male) with vascular injury on brain MRI (i.e., possible VCI) underwent a standardized work-up including 3 Tesla MRI and cognitive assessment. A control group consisted of 70 cognitively normal subjects (mean age 70.6±4.7, 60% male). Cortical CMIs and other neuroimaging markers of vascular brain injury were rated according to established criteria. Occurrence of CMIs was higher (20%) in patients compared to controls (10%). Among patients, the presence of CMIs was associated with male sex, history of stroke, infarcts, and white matter hyperintensities. CMI presence was also associated with a diagnosis of vascular dementia and reduced performance in multiple cognitive domains. CMIs on 3 Tesla MRI are common in patients with possible VCI and co-occur with imaging markers of small and large vessel disease, likely reflecting a heterogeneous etiology. CMIs are associated with worse cognitive performance, independent of other markers of vascular brain injury.

  16. Actions of the pyrethroid insecticide bifenthrin on sodium channels expressed in rat cerebral cortical neurons.

    Yang, Lin; Li, Li

    2015-01-01

    Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. Here, we studied the mode of action of bifenthrin on the native sodium channels in cerebral cortical neurons prepared from newborn rat brain, where the toxic effects are largely generated. Bifenthrin caused a pronounced late current that persisted at the end of a depolarizing pulse, a slowly-decaying tail current following repolarization and significant resting modification (25.3% modification at 10 μM). No significant bifenthrin-induced effect was observed at the peak current. Bifenthrin also caused a concentration-dependent hyperpolarizing shift in steady-state activation and inactivation as well as slowed recovery from channel inactivation. Repetitive depolarization increased the potency of bifenthrin with high frequency. There was approximately 64% inhibition of modification upon repetitive activation by 10-Hz trains of depolarizing pulses. These results suggest that bifenthrin binds to and modifies sodium channels in both the closed and open states and exhibits the behavior between type I and type II.

  17. Murine model of acute myocarditis and cerebral cortical neuron edema induced by coxsackievirus B4

    Zhao-Peng Dong

    2018-01-01

    Full Text Available Globally, coxsackievirus B4 (CV-B4 has been continuously isolated and evidence suggests an association with the development of pancreatitis and type I diabetes. In addition, CV-B4 is also associated with myocarditis and severe central nervous system (CNS complications, which remain poorly studied and understood. In the present study, we established an ICR mouse model of CV-B4 infection and examined whether CV-B4 infection resulted in a predisposition to myocarditis and CNS infection. We found high survival in both the treatment and control group, with no significant differences in clinical outcomes observed. However, pathological lesions were evident in both brain and heart tissue of the CV-B4-infected mice. In addition, high viral loads were found in the neural and cardiac tissues as early as 2 d postinfection. Expressions of IFN-γ and IL-6 in sera were significantly higher in CV-B4-infected mice compared to uninfected negative controls, suggesting the involvement of these cytokines in the development of histopathological lesions. Our murine model successfully reproduced the acute myocarditis and cerebral cortical neuron edema induced by CV-B4, and may be useful for the evaluation of vaccine candidates and potential antivirals against CV-B4 infection.

  18. Computational model of cerebral blood flow redistribution during cortical spreading depression

    Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.

    2016-04-01

    In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.

  19. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons.

    Marosi, Krisztina; Kim, Sang Woo; Moehl, Keelin; Scheibye-Knudsen, Morten; Cheng, Aiwu; Cutler, Roy; Camandola, Simonetta; Mattson, Mark P

    2016-12-01

    During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD + /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  20. Targeting to 5-HT1F Receptor Subtype for Migraine Treatment

    Mitsikostas, Dimos D; Tfelt-Hansen, Peer

    2012-01-01

    attacks with efficacy in the same range as oral sumatriptan 100mg, the gold standard for triptans. The LY334370 project withdrew because of toxicity in animals, while lasmiditan is still testing. In this review we present all the available preclinical and clinical data on the 5-HT1F agonists...... inhibited markers associated with electrical stimulation of the TG. Thus 5-HT1F receptor represents an ideal target for anti-migraine drugs. So far two selective 5-HT1F agonists have been tested in human trials for migraine: LY334370 and lasmiditan. Both molecules were efficient in attenuating migraine...

  1. The correlation of the thalamic lesions on MRI with cerebral cortical blood flow in patients with lacunar infarction

    Nabatame, Hidehiko; Nakamura, Kazuo; Matsuda, Minoru; Fujimoto, Naoki; Fukuyama, Hidenao.

    1995-01-01

    We performed MRI and measured cerebral blood flow (CBF) using 123 I-IMP SPECT microsphere model in twenty three right-handed patients with lacunar infarction. Twelve of 23 patients showed chronic deterioration of dysarthria and gait disturbance. The mental function of the patients was evaluated by the Mini-Mental State (MMS) examination. The area of high intensity on T2-weighted images was quantitatively analyzed in the cerebral white matter (WM), lenticular nucleus (LN) and thalamus (THA). The score of MMS was positively correlated with the local CBF in the bilateral frontal, parietal, temporal and occipital cortices (p<0.05). Also, the area of high intensity in the left THA showed a significant negative correlation with local CBF of the bilateral frontal, parietal, temporal and occipital cortices (p<0.001). The high intensity areas of the bilateral LN, right WM and right THA had a significant but weaker negative correlation with local CBF of some cortices. These findings suggest that thalamic lesions on the dominant side play an important role in the reduction of cortical blood flow and the deterioration of mental functions in patients with lacunar infarction. (author)

  2. Initial evaluation of 123I-5-I-R91150, a selective 5-HT2Aligand for single-photon emission tomography, in healthy human subjects

    Busatto, G.F.; Pilowsky, L.S.; Costa, D.C.; Mertens, J.; Terriere, D.; Ell, P.J.; Mulligan, R.; Travis, M.J.; Leysen, J.E.; Lui, D.; Gacinovic, S.; Waddington, W.; Lingford-Hughes, A.; Kerwin, R.W.

    1997-01-01

    The mapping of 5-HT 2 receptors in the brain using functional imaging techniques has been limited by a relative lack of selective radioligands. Iodine-123 labelled 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methox ybenzamide ( 123 I-5-I-R91150 or 123 I-R93274) is a new ligand for single-photon emission tomography (SPET), with high affinity and selectivity for 5-HT 2A receptors. This study reports on preliminary 123 I-5-I-R91150 SPET, whole-body and blood distribution findings in five healthy human volunteers. Maximal brain uptake was approximately 2% of total body counts at 180 min post injection (p.i.). Dynamic SPET sequences were acquired with the brain-dedicated, single-slice multi-detector system SME-810 over 200 min p.i. Early peak uptake (at 5 min p.i.) was seen in the cerebellum, a region free from 5HT 2A receptors. In contrast, radioligand binding in the frontal cortex increased steadily over time, up to a peak at approximately 100-120 min p.i. Frontal cortex-cerebellum activity ratios reached values of 1.4, and remained stable from approximately 100 min p.i. onwards. Multi-slice SPET sequences showed a pattern of regional variation of binding compatible with the autoradiographic data on the distribution of 5-HT 2A receptors in humans (cerebral cortex >striatum >cerebellum). These findings suggest that 123 I-5-I-R91150 may be used for the imaging of 5-HT 2A receptors in the living human brain with SPET. (orig.). With 4 figs., 2 tabs

  3. Abnormality of cerebral cortical glucose metabolism in temporal lobe epilepsy with cognitive function impairment

    Bang-Hung Yang; Tsung-Szu Yeh; Tung-Ping Su; Jyh-Cheng Chen; Ren-Shyan Liu

    2004-01-01

    Objective: People with epilepsy commonly report having problems with their memory. Many indicate that memory difficulties significantly hinder their functioning at work, in school, and at home. Besides, some studies have reported that memory performance as a prognostic factor is of most value in patients with risk of refractory epilepsy and when used in a multidisciplinary setting. However, the cerebral cortical areas involving memory impairment in epilepsy is still unknown. The purpose of this study was to access changes of cerebral glucose metabolism of epilepsy patients using [F-18] fluorodeoxyglucose positron emission tomography (FDG PET). Method: Nine temporal lobe epilepsy patients were studied. Each patient was confirmed with lesions in right mesial temporal lobe by MRI, PET and EEG. Serial cognition function tests were performed. Regional cerebral glucose metabolism (rCMRglc) was measured by PET at 45 minutes after injection of 370 MBq of FDG. Parametric images were generated by grand mean scaling each scan to 50. The images were then transformed into standard stereotactic space. Statistical parametric mapping (SPM2) was applied to find the correlations between verbal memory, figure memory, perception intelligent quotation (PIQ) and rCMRglc in epilepsy patients. The changes of rCMRglc were significant if corrected p value was less than 0.05. Results: There was no significant relationship between figure memory score and verbal memory score. FDG-PET scan showed changes of rCMRglc positive related with verbal memory score in precentral gyms of right frontal lobe (Brodmann area 4, corrected p < 0.001, voxel size 240) and cingulated gyms of right limbic lobe (Brodmann area 32, corrected p=0.002, voxel size 143). No negative relationship was demonstrable between verbal memory and rCMRglc in this study. Besides, significanfiy positive correlation between figure memory was shown in cuneus of right occipital lobe (Brodmann area 18, corrected p < 0.001, voxel size

  4. 5-(sulfonyl)oxy-tryptamines and ethylamino side chain restricted derivatives. Structure-affinity relationships for h5-HT1B and h5-HT1D receptors

    Barf, T; Wikstrom, H; Pauwels, PJ; Palmier, C; Tardif, S; Lundmark, M; Sundell, S

    A number of sulfonic acid ester derivatives of serotonin (5-hydroxytryptamine; 5-HT; 1) were prepared and their affinities are compared to that of the reference compound 5-[[(trifluoromethyl)sulfonyl]oxy]-tryptamine (8b). The structure-affinity relationship (SAFIR) is discussed in terms of in vitro

  5. Differences in the effects of 5-HT1A receptor agonists on forced swimming behavior and brain 5-HT metabolism between low and high aggressive mice

    Veenema, AH; Cremers, TIFH; Jongsma, ME; Steenbergen, PJ; de Boer, SF; Koolhaas, JM; Jongsma, Minke E.

    Rationale: Male wild house- mice genetically selected for long attack latency ( LAL) and short attack latency ( SAL) differ in structural and functional properties of postsynaptic serotonergic- 1A ( 5- HT1A) receptors. These mouse lines also show divergent behavioral responses in the forced swimming

  6. Different distributions of the 5-HT reuptake complex and the postsynaptic 5-HT(2A) receptors in Brodmann areas and brain hemispheres.

    Rosel, Pilar; Arranz, Belén; Urretavizcaya, Mikel; Oros, Miguel; San, Luis; Vallejo, Julio; Navarro, Miguel Angel

    2002-08-30

    The aim of the present study was to determine the distribution of the presynaptic 5-HT reuptake complex and the 5-HT(2A) receptors through Brodmann areas from two control subjects, together with the possible existence of laterality between both brain hemispheres. A left laterality was observed in the postsynaptic 5-HT(2A) binding sites, with significantly higher B(max) values in the left frontal and cingulate cortex. In frontal cortex, [3H]imipramine and [3H]paroxetine binding showed the highest B(max) values in areas 25, 10 and 11. In cingulate cortex, the highest [3H]imipramine and [3H]paroxetine B(max) values were noted in Brodmann area 33 followed by area 24, while postsynaptic 5-HT(2A) receptors were mainly distributed through Brodmann areas 23 and 29. In temporal cortex, the highest [3H]imipramine and [3H]paroxetine B(max) was noted in Brodmann areas 28 and 34, followed by areas 35 and 38. All Brodmann areas from parietal cortex (1, 2, 3, 4, 5, 6, 7, 39, 40 and 43) showed similar presynaptic and postsynaptic binding values. In occipital cortex no differences were observed with regard to the brain hemisphere or to the Brodmann area (17, 18 and 19). These results suggest the need to carefully define the brain hemisphere and the Brodmann areas studied, as well to avoid comparisons between studies including different Brodmann areas or brain hemispheres.

  7. Central 5-HT4 receptor binding as biomarker of serotonergic tonus in humans

    Haahr, M E; Fisher, P M; Jensen, Christian Gaden

    2014-01-01

    levels, is associated with a decline in brain 5-HT4R binding. A total of 35 healthy men were studied in a placebo-controlled, randomized, double-blind study. Participants were assigned to receive 3 weeks of oral dosing with placebo or fluoxetine, 40 mg per day. Brain 5-HT4R binding was quantified...... at baseline and at follow-up with [(11)C]SB207145 positron emission tomography (PET). Three weeks of intervention with fluoxetine was associated with a 5.2% reduction in brain 5-HT4R binding (P=0.017), whereas placebo intervention did not change 5-HT4R binding (P=0.52). Our findings are consistent...

  8. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  9. Effects of serotonin (5-HT)1B receptor ligands on amphetamine-seeking behavior in rats.

    Miszkiel, Joanna; Przegaliński, Edmund

    2013-01-01

    Numerous studies have indicated that serotonin (5-HT)1B receptor ligands affect the behavioral effects of psychostimulants (cocaine, amphetamine), including the reinforcing activities of these drugs. To substantiate a role for those receptors in incentive motivation for amphetamine, we used the extinction/reinstatement model to examine the effects of the 5-HT1B receptor ligands on the reinstatement of extinguished amphetamine-seeking behavior. Rats trained to self-administer amphetamine (0.06 mg/kg/infusion) subsequently underwent the extinction procedure. These rats were then tested for the amphetamine-primed or amphetamine-associated cue-induced reinstatement of extinguished amphetamine-seeking behavior. The 5-HT1B receptor antagonist SB 216641 (5-7.5 mg/kg) attenuated the amphetamine (1.5 mg/kg)- and the amphetamine-associated cue combined with the threshold dose of amphetamine (0.5 mg/kg)-induced reinstatement of amphetamine-seeking behavior. The 5-HT1B receptor agonist CP 94253 (1.25-5 mg/kg) also inhibited the amphetamine-seeking behavior induced by amphetamine (1.5 mg/kg) but not by the cue combined with the threshold dose of amphetamine. The inhibitory effect of CP94253 on amphetamine-seeking behavior remained unaffected by the 5-HT1B receptor antagonist. Our results indicate that tonic activation of 5-HT1B receptors is involved in amphetamine- and cue-induced reinstatement of amphetamine-seeking behavior and that the inhibitory effects of 5-HT1B receptor antagonists on these phenomena are directly related to the motivational aspects of amphetamine abuse. The inhibitory effect of CP 94253 on amphetamine-seeking behavior seems to be unrelated to 5-HT1B receptor activation and may result from a general reduction of motivation.

  10. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera.

    Markus Thamm

    Full Text Available BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera, serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. RESULTS: The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. CONCLUSIONS: This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  11. Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness

    Albert Paul R

    2011-05-01

    Full Text Available Abstract The serotonin-1A (5-HT1A receptor is among the most abundant and widely distributed 5-HT receptors in the brain, but is also expressed on serotonin neurons as an autoreceptor where it plays a critical role in regulating the activity of the entire serotonin system. Over-expression of the 5-HT1A autoreceptor has been implicated in reducing serotonergic neurotransmission, and is associated with major depression and suicide. Extensive characterization of the transcriptional regulation of the 5-HT1A gene (HTR1A using cell culture systems has revealed a GC-rich "housekeeping" promoter that non-selectively drives its expression; this is flanked by a series of upstream repressor elements for REST, Freud-1/CC2D1A and Freud-2/CC2D1B factors that not only restrict its expression to neurons, but may also regulate the level of expression of 5-HT1A receptors in various subsets of neurons, including serotonergic neurons. A separate set of allele-specific factors, including Deaf1, Hes1 and Hes5 repress at the HTR1A C(-1019G (rs6295 polymorphism in serotonergic neurons in culture, as well as in vivo. Pet1, an obligatory enhancer for serotonergic differentiation, has been identified as a potent activator of 5-HT1A autoreceptor expression. Taken together, these results highlight an integrated regulation of 5-HT1A autoreceptors that differs in several aspects from regulation of post-synaptic 5-HT1A receptors, and could be selectively targeted to enhance serotonergic neurotransmission.

  12. Identification of critical residues in loop E in the 5-HT3ASR binding site

    Muthalagi Mani

    2002-06-01

    Full Text Available Abstract Background The serotonin type 3 receptor (5-HT3R is a member of a superfamily of ligand gated ion channels. All members of this family share a large degree of sequence homology and presumably significant structural similarity. A large number of studies have explored the structure-function relationships of members of this family, particularly the nicotinic and GABA receptors. This information can be utilized to gain additional insights into specific structural and functional features of other receptors in this family. Results Thirteen amino acids in the mouse 5-HT3ASR that correspond to the putative E binding loop of the nicotinic α7 receptor were chosen for mutagenesis. Due to the presence of a highly conserved glycine in this region, it has been suggested that this binding loop is comprised of a hairpin turn and may form a portion of the ligand-binding site in this ion channel family. Mutation of the conserved glycine (G147 to alanine eliminated binding of the 5-HT3R antagonist [3H]granisetron. Three tyrosine residues (Y140, Y142 and Y152 also significantly altered the binding of 5-HT3R ligands. Mutations in neighboring residues had little or no effect on binding of these ligands to the 5-HT3ASR. Conclusion Our data supports a role for the putative E-loop region of the 5-HT3R in the binding of 5-HT, mCPBG, d-tc and lerisetron. 5-HT and mCPBG interact with Y142, d-tc with Y140 and lerisetron with both Y142 and Y152. Our data also provides support for the hypothesis that this region of the receptor is present in a loop structure.

  13. Relationship between 5-HT function and impulsivity and aggression in male offenders with personality disorders

    Dolan, M; Anderson, I M; Deakin, J F

    2001-01-01

    BACKGROUND: Reduced serotonergic (5-HT) function and elevated testosterone have been reported in aggressive populations.AIMS: To investigate relationships between impulsivity, aggression, 5-HT function and testosterone in male offenders with personality disorders.METHOD: Sixty male offenders with DSM-III-R personality disorders and 27 healthy staff controls were assessed using the Special Hospital Assessment of Personality and Socialisation (SHAPS), impulsivity and aggression ratings, d-fenfl...

  14. Systematic review: cardiovascular safety profile of 5-HT4 agonists developed for gastrointestinal disorders

    Tack, J; Camilleri, M; Chang, L; Chey, W D; Galligan, J J; Lacy, B E; Müller-Lissner, S; Quigley, E M M; Schuurkes, J; Maeyer, J H; Stanghellini, V

    2012-01-01

    Summary Background The nonselective 5-HT4 receptor agonists, cisapride and tegaserod have been associated with cardiovascular adverse events (AEs). Aim To perform a systematic review of the safety profile, particularly cardiovascular, of 5-HT4 agonists developed for gastrointestinal disorders, and a nonsystematic summary of their pharmacology and clinical efficacy. Methods Articles reporting data on cisapride, clebopride, prucalopride, mosapride, renzapride, tegaserod, TD-5108 (velusetrag) an...

  15. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera).

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+) imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+) concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  16. Conditioned taste aversion: modulation by 5-HT receptor activity and corticosterone

    Boris, Gorzalka; Hanson, Laura; Harrington, J

    2003-01-01

    Two experiments were designed to elucidate the involvement of the hypothalamic-pituitary-adrenal axis and the 5-hydroxytryptamine (5-HT) system in the acquisition of lithium chloride-conditioned taste aversion. In Experiment 1, rats were administered either vehicle or 50 mg/kg nefazodone daily fo......, corticosterone-treated animals required more trials to reach extinction. These results suggest the involvement of both the 5-HT system and the hypothalamic-pituitary-adrenal axis in lithium chloride-conditioned taste aversion....

  17. Antidepressant activity: contribution of brain microdialysis in knock-out mice to the understanding of BDNF/5-HT transporter/5-HT autoreceptor interactions

    Alain M Gardier

    2013-08-01

    Full Text Available Why antidepressants vary in terms of efficacy is currently unclear. Despite the leadership of Selective serotonin reuptake inhibitors (SSRIs in the treatment of depression, the precise neurobiological mechanisms involved in their therapeutic action are poorly understood. A better knowledge of molecular interactions between monoaminergic system, pre- and post-synaptic partners, brain neuronal circuits and regions involved may help to overcome limitations of current treatments and to identify new therapeutic targets. Intracerebral in vivo microdialysis (ICM already provided important information about the brain mechanism of action of antidepressants first in anesthetized rats in the early 90s, and since then in conscious wild-type or knockout mice. The principle of ICM is based on the balance between release of neurotransmitters (e.g., monoamines, and re-uptake by selective transporters (e.g., SERT for serotonin 5-HT. Complementary to electrophysiology, this technique reflects presynaptic monoamines release and intrasynaptic events corresponding to ≈ 80% of whole brain tissue content. The inhibitory role of serotonergic autoreceptors infers that they limit somatodendritic and nerve terminal 5-HT release. It has been proposed that activation of 5-HT1A and 5-HT1B receptor sub-types limit the antidepressant-like activity of Selective Serotonin Reuptake Inhibitors (SSRI. This hypothesis is based partially on results obtained in ICM experiments performed in naïve, non-stressed Rodents. The present review will first remind the principle and methodology of ICM performed in mice. The crucial need of developing animal models that display anxiety and depression-like behaviors, neurochemical and brain morphological phenotypes reminiscent of these mood disorders in Human, will be underlined. Recently developed genetic mouse models have been generated to independently manipulate 5-HT1A auto and hetero-receptors and ICM helped to clarify the role of the

  18. Reproducibility of 5-HT2A receptor measurements and sample size estimations with [18F]altanserin PET using a bolus/infusion approach

    Haugbøl, Steven; Pinborg, Lars H; Arfan, Haroon M

    2006-01-01

    PURPOSE: To determine the reproducibility of measurements of brain 5-HT2A receptors with an [18F]altanserin PET bolus/infusion approach. Further, to estimate the sample size needed to detect regional differences between two groups and, finally, to evaluate how partial volume correction affects...... reproducibility and the required sample size. METHODS: For assessment of the variability, six subjects were investigated with [18F]altanserin PET twice, at an interval of less than 2 weeks. The sample size required to detect a 20% difference was estimated from [18F]altanserin PET studies in 84 healthy subjects....... Regions of interest were automatically delineated on co-registered MR and PET images. RESULTS: In cortical brain regions with a high density of 5-HT2A receptors, the outcome parameter (binding potential, BP1) showed high reproducibility, with a median difference between the two group measurements of 6...

  19. Effect of genetic and pharmacological blockade of GABA receptors on the 5-HT2C receptor function during stress.

    Martin Cédric B P; Gassmann Martin; Chevarin Caroline; Hamon Michel; Rudolph Uwe; Bettler Bernhard; Lanfumey Laurence; Mongeau Raymond

    2014-01-01

    5-HT2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on serotonin (5-HT) release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5-HT2C receptor-induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5-HT tur...

  20. Serotonergic 5-HT6 Receptor Antagonists: Heterocyclic Chemistry and Potential Therapeutic Significance.

    Bali, Alka; Singh, Shalu

    2015-01-01

    The serotonin 5-HT(6) receptor (5- HT(6)R) is amongst the recently discovered serotonergic receptors with almost exclusive localization in the brain. Hence, this receptor is fast emerging as a promising target for cognition enhancement in central nervous system (CNS) diseases such as Alzheimer's disease (cognitive function), obesity, schizophrenia and anxiety. The last decade has seen a surge of literature reports on the functional role of this receptor in learning and memory processes and investigations related to the chemistry and pharmacology of 5-HT(6) receptor ligands, especially 5- HT(6) receptor antagonists. Studies show the involvement of multiple neurotransmitter systems in cognitive enhancement by 5-HT(6)R antagonists including cholinergic, glutamatergic, and GABAergic systems. Several of the 5-HT(6)R ligands are indole based agents bearing structural similarity to the endogenous neurotransmitter serotonin. Based on the pharmacophoric models proposed for these agents, drug designing has been carried out incorporating various heterocyclic replacements for the indole nucleus. In this review, we have broadly summarized the medicinal chemistry and current status of this fairly recent class of drugs along with their potential therapeutic applications.

  1. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT 2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT 2A , 5-HT 2B , and 5-HT 2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT 2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT 2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  2. Behavioral Effects of Systemic, Infralimbic and Prelimbic Injections of a Serotonin 5-HT2A Antagonist in Carioca High- and Low-Conditioned Freezing Rats

    Laura A. León

    2017-07-01

    Full Text Available The role of serotonin (5-hydroxytryptamine [5-HT] and 5-HT2A receptors in anxiety has been extensively studied, mostly without considering individual differences in trait anxiety. Our laboratory developed two lines of animals that are bred for high and low freezing responses to contextual cues that are previously associated with footshock (Carioca High-conditioned Freezing [CHF] and Carioca Low-conditioned Freezing [CLF]. The present study investigated whether ketanserin, a preferential 5-HT2A receptor blocker, exerts distinct anxiety-like profiles in these two lines of animals. In the first experiment, the animals received a systemic injection of ketanserin and were exposed to the elevated plus maze (EPM. In the second experiment, these two lines of animals received microinjections of ketanserin in the infralimbic (IL and prelimbic (PL cortices and were exposed to either the EPM or a contextual fear conditioning paradigm. The two rat lines exhibited bidirectional effects on anxiety-like behavior in the EPM and opposite responses to ketanserin. Both systemic and intra-IL cortex injections of ketanserin exerted anxiolytic-like effects in CHF rats but anxiogenic-like effects in CLF rats. Microinjections of ketanserin in the PL cortex also exerted anxiolytic-like effects in CHF rats but had no effect in CLF rats. These results suggest that the behavioral effects of 5-HT2A receptor antagonism might depend on genetic variability associated with baseline reactions to threatening situations and 5-HT2A receptor expression in the IL and PL cortices.Highlights-CHF and CLF rats are two bidirectional lines that are based on contextual fear conditioning.-CHF rats have a more “anxious” phenotype than CLF rats in the EPM.-The 5-HT2A receptor antagonist ketanserin had opposite behavioral effects in CHF and CLF rats.-Systemic and IL injections either decreased (CHF or increased (CLF anxiety-like behavior.-PL injections either decreased (CHF anxiety

  3. 5-HT2A receptors in the feline brain: 123I-5-I-R91150 kinetics and the influence of ketamine measured with micro-SPECT.

    Waelbers, Tim; Polis, Ingeborgh; Vermeire, Simon; Dobbeleir, André; Eersels, Jos; De Spiegeleer, Bart; Audenaert, Kurt; Slegers, Guido; Peremans, Kathelijne

    2013-08-01

    Subanesthetic doses of ketamine can be used as a rapid-acting antidepressant in patients with treatment-resistant depression. Therefore, the brain kinetics of (123)I-5-I-R91150 (4-amino-N-[1-[3-(4-fluorophenyl)propyl]-4-methylpiperidin-4-yl]-5-iodo-2-methoxybenzamide) and the influence of ketamine on the postsynaptic serotonin-2A receptor (5-hydroxytryptamine-2A, or 5-HT2A) status were investigated in cats using micro-SPECT. This study was conducted on 6 cats using the radioligand (123)I-5-I-R91150, a 5-HT2A receptor antagonist, as the imaging probe. Anesthesia was induced and maintained with a continuous-rate infusion of propofol (8.4 ± 1.2 mg kg(-1) followed by 0.22 mg kg(-1) min(-1)) 75 min after tracer administration, and acquisition of the first image began 15 min after induction of anesthesia. After this first acquisition, propofol (0.22 mg kg(-1) min(-1)) was combined with ketamine (5 mg kg(-1) followed by 0.023 mg kg(-1) min(-1)), and the second acquisition began 15 min later. Semiquantification, with the cerebellum as a reference region, was performed to calculate the 5-HT2A receptor binding indices (parameter for available receptor density) in the frontal and temporal cortices. The binding indices were analyzed with Wilcoxon signed ranks statistics. The addition of ketamine to the propofol continuous-rate infusion resulted in decreased binding indices in the right frontal cortex (1.25 ± 0.22 vs. 1.45 ± 0.16; P = 0.028), left frontal cortex (1.34 ± 0.15 vs. 1.49 ± 0.10; P = 0.028), right temporal cortex (1.30 ± 0.17 vs. 1.45 ± 0.09; P = 0.046), and left temporal cortex (1.41 ± 0.20 vs. 1.52 ± 0.20; P = 0.046). This study showed that cats can be used as an animal model for studying alterations of the 5-HT2A receptor status with (123)I-5-I-R91150 micro-SPECT. Furthermore, an interaction between ketamine and the 5-HT2A receptors resulting in decreased binding of (123)I-5-I-R91150 in the frontal and temporal cortices was demonstrated. Whether the

  4. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor dependent manner

    Garcia-Garcia, Alvaro L.; Canetta, Sarah; Stujenske, Joseph M.; Burghardt, Nesha S.; Ansorge, Mark S.; Dranovsky, Alex; Leonardo, E. David

    2017-01-01

    Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT1A antagonist. Finally, we demonstrate that activation of 5-HT1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT1A receptors under naturalistic conditions. PMID:28761080

  5. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor-dependent manner.

    Garcia-Garcia, A L; Canetta, S; Stujenske, J M; Burghardt, N S; Ansorge, M S; Dranovsky, A; Leonardo, E D

    2017-08-01

    Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT 1A antagonist. Finally, we demonstrate that activation of 5-HT 1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT 1A receptors under naturalistic conditions.Molecular Psychiatry advance online publication, 1 August 2017; doi:10.1038/mp.2017.165.

  6. Cortical somatosensory reorganization in children with spastic cerebral palsy: a multimodal neuroimaging study

    CHRISTOS ePAPADELIS

    2014-09-01

    Full Text Available Although cerebral palsy (CP is among the most common causes of physical disability in early childhood, we know little about the functional and structural changes of this disorder in the developing brain. Here, we investigated with three different neuroimaging modalities (magnetoencephalography (MEG, diffusion tension imaging (DTI, and resting state fMRI whether spastic CP is associated with functional and anatomical abnormalities in the sensorimotor network. Ten children participated in the study: four with diplegic CP (DCP, three with hemiplegic CP (HCP, and three typically-developing (TD children. Somatosensory evoked fields (SEFs were recorded in response to pneumatic stimuli applied to digits D1, D3, and D5 of both hands. Several parameters of water diffusion were calculated from DTI between the thalamus and the precentral and postcentral gyri in both hemispheres. The sensorimotor resting state networks (RSNs were examined by using an independent component analysis method. Tactile stimulation of the fingers elicited the first prominent cortical response at ~50 ms, in all except one child, localized over the primary somatosensory cortex (S1. In five CP children, abnormal somatotopic organization was observed in the affected (or more affected hemisphere. Euclidean distances were markedly different between the two hemispheres in the HCP children, and between DCP and TD children for both hemispheres. DTI analysis revealed decreased fractional anisotropy and increased apparent diffusion coefficient for the thalamocortical pathways in the more affected compared to less affected hemisphere in CP children. Rs-fMRI results indicated absent and/or abnormal sensorimotor RSNs for children with HCP and DCP consistent with the severity and location of their lesions. Our findings suggest an abnormal somatosensory processing mechanism in the sensorimotor network of children with CP possibly as a result of diminished thalamocortical projections.

  7. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy.

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with

  8. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT 3 and 5-HT 4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (Δ I sc ) in GF compared with HM mice. Additionally, 5-HT 3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT 3 receptor antagonist, inhibited 5-HT-evoked Δ I sc in GF mice but not in HM mice. Furthermore, a 5-HT 3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher Δ I sc in GF compared with HM mice. Immunohistochemistry in 5-HT 3A -green fluorescent protein mice localized 5-HT 3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked Δ I sc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT 3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT 3 receptor expression via acetate production. Epithelial 5-HT 3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion. NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT 3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT 3 receptor expression in

  9. 5HT2A receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice.

    Amodeo, D A; Rivera, E; Cook, E H; Sweeney, J A; Ragozzino, M E

    2017-03-01

    Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT 2A receptor activity is altered in autism, while recent work indicates that systemic 5HT 2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT 2A receptors are expressed in the orbitofrontal cortex and striatum. These two regions have been shown to be altered in autism. The present study investigated whether 5HT 2A receptor blockade in the dorsomedial striatum or orbitofrontal cortex in the BTBR mouse strain, an idiopathic model of autism, affects the phenotype related to restricted and repetitive behaviors. Microinfusion of the 5HT 2A receptor antagonist, M100907 into the dorsomedial striatum alleviated a reversal learning impairment and attenuated grooming behavior. M100907 infusion into the orbitofrontal cortex increased perseveration during reversal learning and potentiated grooming. These findings suggest that increased 5HT 2A receptor activity in the dorsomedial striatum may contribute to behavioral inflexibility and stereotyped behaviors in the BTBR mouse. 5HT 2A receptor signaling in the orbitofrontal cortex may be critical for inhibiting a previously learned response during reversal learning and expression of stereotyped behavior. The present results suggest which brain areas exhibit abnormalities underlying repetitive behaviors in an idiopathic mouse model of autism, as well as which brain areas systemic treatment with M100907 may principally act on in BTBR mice to attenuate repetitive behaviors. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  10. [Effect of piperine on 5-HT and synaptophysin expression of rats with irritable bowel syndrome].

    Wu, Shu-Juan; Wang, Ren-Ye; Xue, Ji-Xiong; Pan, Jian-Chun

    2013-12-01

    This study is to explore the amelioration of piperine on chronic acute combining stress rat with depression-like behavior, visceral sensitivity, and its effect on the expression of serotonin (5-HT) and synaptophysin. Forty two SD rats were divided into seven groups: blank group, model group, piperine (12.5, 25, 50 and 100 mgkg-1, ig) and imipramine (10 mgkg-1, ip) groups. The rat model of irritable bowel syndrome was established by chronic acute combining stress, and then to evaluate depression-like behavior and visceral sensitivity. The expressions of 5-HT and synaptophysin in the hippocampus and colon were determined by high performance liquid chromatography (HPLC) and Western blotting, respectively. The duration of immobility of IBS rat in the forced swimming test had been significantly increased, the sucrose consumption of IBS rat had been reduced and visceral sensitivity was obviously elevated in the IBS model group as compared with those in the normal control group (P<0.05, P<0.01). As compared with those in the normal control group, the expression of 5-HT significantly decreased, 5-HIAA/5-HT ratio significantly increased in the hippocampus of IBS model group (P<0.05), but opposite presentations were noted in the colon (P<0.05). As compared with that in the normal control group, the synaptophysin expression in the hippocampus decreased significantly but obviously increased in the colon (P<0.05). Piperine improved the behavior of IBS rats, and reversed the levels of 5-HT and 5-HIAA, and 5-HIAA/5-HT proportion in the hippocampus and colon (P<0.05); besides, they significantly reverse the synaptophysin level in the hippocampus and colon (P<0.05). The presence of depression and visceral sensitivity had been changed in IBS rats, with abnormal expression of 5-HT and synaptophysin in the brain-gut system. Piperine can ameliorate the changes of the behavior and regulation of serotonin and synaptophysin expression in IBS rat model.

  11. 5-HT(1A) receptor antagonism reverses and prevents fluoxetine-induced sexual dysfunction in rats.

    Sukoff Rizzo, Stacey J; Pulicicchio, Claudine; Malberg, Jessica E; Andree, Terrance H; Stack, Gary P; Hughes, Zoë A; Schechter, Lee E; Rosenzweig-Lipson, Sharon

    2009-09-01

    Sexual dysfunction associated with antidepressant treatment continues to be a major compliance issue for antidepressant therapies. 5-HT(1A) antagonists have been suggested as beneficial adjunctive treatment in respect of antidepressant efficacy; however, the effects of 5-HT(1A) antagonism on antidepressant-induced side-effects has not been fully examined. The present study was conducted to evaluate the ability of acute or chronic treatment with 5-HT(1A) antagonists to alter chronic fluoxetine-induced impairments in sexual function. Chronic 14-d treatment with fluoxetine resulted in a marked reduction in the number of non-contact penile erections in sexually experienced male rats, relative to vehicle-treated controls. Acute administration of the 5-HT(1A) antagonist WAY-101405 resulted in a complete reversal of chronic fluoxetine-induced deficits on non-contact penile erections at doses that did not significantly alter baselines. Chronic co-administration of the 5-HT(1A) antagonists WAY-100635 or WAY-101405 with fluoxetine prevented fluoxetine-induced deficits in non-contact penile erections in sexually experienced male rats. Moreover, withdrawal of WAY-100635 from co-treatment with chonic fluoxetine, resulted in a time-dependent reinstatement of chronic fluoxetine-induced deficits in non-contact penile erections. Additionally, chronic administration of SSA-426, a molecule with dual activity as both a SSRI and 5-HT(1A) antagonist, did not produce deficits in non-contact penile erections at doses demonstrated to have antidepressant-like activity in the olfactory bulbectomy model. Taken together, these data suggest that 5-HT(1A) antagonist treatment may have utility for the management of SSRI-induced sexual dysfunction.

  12. AVN-492, A Novel Highly Selective 5-HT6R Antagonist: Preclinical Evaluation.

    Ivachtchenko, Alexandre V; Okun, Ilya; Aladinskiy, Vladimir; Ivanenkov, Yan; Koryakova, Angela; Karapetyan, Ruben; Mitkin, Oleg; Salimov, Ramiz; Ivashchenko, Andrey

    2017-01-01

    Discovery of 5-HT6 receptor subtype and its exclusive localization within the central nervous system led to extensive investigations of its role in Alzheimer's disease, schizophrenia, and obesity. In the present study, we present preclinical evaluation of a novel highly-potent and highly-selective 5-HT6R antagonist, AVN-492. The affinity of AVN-492 to bind to 5-HT6R (Ki = 91 pM) was more than three orders of magnitude higher than that to bind to the only other target, 5-HT2BR, (Ki = 170 nM). Thus, the compound displayed great 5-HT6R selectivity against all other serotonin receptor subtypes, and is extremely specific against any other receptors such as adrenergic, GABAergic, dopaminergic, histaminergic, etc. AVN-492 demonstrates good in vitro and in vivo ADME profile with high oral bioavailability and good brain permeability in rodents. In behavioral tests, AVN-492 shows anxiolytic effect in elevated plus-maze model, prevents an apomorphine-induced disruption of startle pre-pulse inhibition (the PPI model) and reverses a scopolamine- and MK-801-induced memory deficit in passive avoidance model. No anti-obesity effect of AVN-492 was found in a murine model. The data presented here strongly indicate that due to its high oral bioavailability, extremely high selectivity, and potency to block the 5-HT6 receptor, AVN-492 is a very promising tool for evaluating the role the 5-HT6 receptor might play in cognitive and neurodegenerative impairments. AVN-492 is an excellent drug candidate to be tested for treatment of such diseases, and is currently being tested in Phase I trials.

  13. Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task.

    Meneses, Alfredo

    2004-12-06

    There is an important debate regarding the functional role of the 5-HT(1A) and 5-HT(7) receptor in memory systems. Hence, the objective of this paper is to investigate the function of serotonin (5-hydroxytryptamine, 5-HT) in memory consolidation, utilising an autoshaping Pavlovian/instrumental learning test. Specific antagonists at 5-HT(1A) (WAY 100635) and 5-HT(7) (SB-269970 or DR 4004) receptors administered i.p. or s.c.) after training, significantly decreased the improvement of performance produced by the 5-HT(1A/7) agonist 8-OH-DPAT to levels lower than controls'. These same antagonists attenuated the decreased level of performance produced by mCPP, although they decrease the performance levels after p-chloroamphetamine (PCA) lesion of the 5-HT system, which has no effect on its own on the conditioned response. Moreover, SB-269970 or DR 4004 reversed amnesia induced by scopolamine and dizocilpine. These data confirm a role for 5-HT(1A) and 5-HT(7) receptors in memory formation and support the hypothesis that serotonergic, cholinergic, and glutamatergic systems interact in cognitively impaired animals. These findings support a potential role for both 5-HT(1A) and 5-HT(7) receptors in the pathophysiology and/or treatment of schizophrenia, cognitive deficits and the mechanism of action of atypical antipsychotic drugs.

  14. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression

    Sakadžić, Sava; Yuan, Shuai; Dilekoz, Ergin; Ruvinskaya, Svetlana; Vinogradov, Sergei A.; Ayata, Cenk; Boas, David A.

    2009-01-01

    We developed a novel imaging technique that provides real-time two-dimensional maps of the absolute partial pressure of oxygen and relative cerebral blood flow in rats by combining phosphorescence lifetime imaging with laser speckle contrast imaging. Direct measurement of blood oxygenation based on phosphorescence lifetime is not significantly affected by changes in the optical parameters of the tissue during the experiment. The potential of the system as a novel tool for quantitative analysis of the dynamic delivery of oxygen to support brain metabolism was demonstrated in rats by imaging cortical responses to forepaw stimulation and the propagation of cortical spreading depression waves. This new instrument will enable further study of neurovascular coupling in normal and diseased brain. PMID:19340106

  15. Mechanosensory Signaling in Enterochromaffin Cells and 5-HT Release: Potential Implications for Gut Inflammation

    Andromeda Linan Rico

    2016-12-01

    Full Text Available Enterochromaffin cells (EC synthesize 95% of the body 5-HT and release 5-HT in response to mechanical or chemical stimulation. EC cell 5-HT has physiological effects on gut motility, secretion and visceral sensation. Abnormal regulation of 5-HT occurs in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD where 5-HT may represent a key player in the pathogenesis of intestinal inflammation. The focus of this review is on mechanism(s involved in EC cell ‘mechanosensation’ and critical gaps in our knowledge for future research. Much of our knowledge and concepts are from a human BON cell model of EC, although more recent work has included other cell lines, native EC cells from mouse and human and intact mucosa. EC cells are ‘mechanosensors’ that respond to physical forces generated during peristaltic activity by translating the mechanical stimulus (MS into an intracellular biochemical response leading to 5-HT and ATP release. The emerging picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains and tight regulation of 5-HT release by purines. The ‘purinergic hypothesis’ is that MS releases purines to act in an autocrine / paracrine manner to activate excitatory (P2Y1, P2Y4, P2Y6, A2A/A2B or inhibitory (P2Y12, A1, A3 receptors to regulate 5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway, an A2A/A2B–Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and an inhibitory P2Y12 -Gi/o/AC-cAMP pathway. In human IBD, P2X3 is down regulated and A2B is up regulated in EC cells, but the pathophysiological consequences of abnormal mechanosensory or purinergic 5-HT signaling remain unknown. EC cell mechanosensation remains poorly understood.

  16. Refining the Role of 5-HT in Postnatal Development of Brain Circuits

    Anne Teissier

    2017-05-01

    Full Text Available Changing serotonin (5-hydroxytryptamine, 5-HT brain levels during critical periods in development has long-lasting effects on brain function, particularly on later anxiety/depression-related behaviors in adulthood. A large part of the known developmental effects of 5-HT occur during critical periods of postnatal life, when activity-dependent mechanisms remodel neural circuits. This was first demonstrated for the maturation of sensory brain maps in the barrel cortex and the visual system. More recently this has been extended to the 5-HT raphe circuits themselves and to limbic circuits. Recent studies overviewed here used new genetic models in mice and rats and combined physiological and structural approaches to provide new insights on the cellular and molecular mechanisms controlled by 5-HT during late stages of neural circuit maturation in the raphe projections, the somatosensory cortex and the visual system. Similar mechanisms appear to be also involved in the maturation of limbic circuits such as prefrontal circuits. The latter are of particular relevance to understand the impact of transient 5-HT dysfunction during postnatal life on psychiatric illnesses and emotional disorders in adult life.

  17. The 5-HT2A receptor antagonist M100907 produces antiparkinsonian effects and decreases striatal glutamate

    Twum eAnsah

    2011-06-01

    Full Text Available 5-HT plays a regulatory role in voluntary movements of the basal ganglia and have a major impact on disorders of the basal ganglia such as Parkinson’s disease (PD. Clinical studies have suggested that 5-HT2 receptor antagonists may be useful in the treatment of the motor symptoms of PD. We hypothesized that 5-HT2A receptor antagonists may restore motor function by regulating glutamatergic activity in the striatum. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP exhibited decreased performance on the beam-walking apparatus. Peripheral administration of the 5-HT2A receptor antagonist M100907 improved performance of MPTP-treated mice on the beam-walking apparatus. In vivo microdialysis revealed an increase in striatal extracellular glutamate in MPTP-treated mice and local perfusion of M100907 into the dorsal striatum significantly decreased extracellular glutamate levels in saline and MPTP-treated mice. Our studies suggest that blockade of 5-HT2A receptors may represent a novel therapeutic target for the motor symptoms of Parkinson’s disease.

  18. Role of 5-HT5A receptors in the consolidation of memory.

    Gonzalez, Roberto; Chávez-Pascacio, Karla; Meneses, Alfredo

    2013-09-01

    5-HT5 receptor occurs in brain areas implicated in learning and memory. Hence, the effects (0.01-3.0 mg/kg) of SB-6995516 (a 5-HT5A receptor antagonist) in the associative learning task of autoshaping were studied. The results showed that post-training injection of SB-699551 decreased conditioned responses (CR) during short-term (STM; 1.5h; at 0.1mg/kg) and long-term memory (LTM; 24 h; at 3.0 mg/kg) relative to the vehicle animals. Moreover, considering that there are no selective 5-HT5A receptor agonists, next, diverse doses of the serotonin precursor l-tryptophan were studied during STM and LTM, showing that l-tryptophan (5-100mg/kg) facilitated performance, particularly at 50mg/kg. In interactions experiments, l-tryptophan (50 mg/kg) attenuated the impairment effect induced by SB-699551 (either 0.3 or 3.0 mg/kg). All together this evidence suggests that the blockade of 5-HT5A receptor appear to be able to impair STM and LTM (24 h), while its stimulation might facilitate it. Of course further investigation is necessary, meanly with selective 5-HT5A compounds are necessary. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Improvement of ketamine-induced social withdrawal in rats: the role of 5-HT7 receptors.

    Hołuj, Małgorzata; Popik, Piotr; Nikiforuk, Agnieszka

    2015-12-01

    Social withdrawal, one of the core negative symptoms of schizophrenia, can be modelled in the social interaction (SI) test in rats using N-methyl-D-aspartate receptor glutamate receptor antagonists. We have recently shown that amisulpride, an antipsychotic with a high affinity for serotonin 5-HT7 receptors, reversed ketamine-induced SI deficits in rats. The aim of the present study was to further elucidate the potential involvement of 5-HT7 receptors in the prosocial action of amisulpride. Acute administration of amisulpride (3 mg/kg) and SB-269970 (1 mg/kg), a 5-HT7 receptor antagonist, reversed ketamine-induced social withdrawal, whereas sulpiride (20 or 30 mg/kg) and haloperidol (0.2 mg/kg) were ineffective. The 5-HT7 receptor agonist AS19 (10 mg/kg) abolished the prosocial efficacy of amisulpride (3 mg/kg). The coadministration of an inactive dose of SB-269970 (0.2 mg/kg) showed the prosocial effects of inactive doses of amisulpride (1 mg/kg) and sulpiride (20 mg/kg). The anxiolytic chlordiazepoxide (2.5 mg/kg) and the antidepressant fluoxetine (2.5 mg/kg) were ineffective in reversing ketamine-induced SI deficits. The present study suggests that the antagonism of 5-HT7 receptors may contribute towards the mechanisms underlying the prosocial action of amisulpride. These results may have therapeutic implications for the treatment of negative symptoms in schizophrenia and other disorders characterized by social withdrawal.

  20. Contribution of 5-HT2A receptors on diaphragmatic recovery after chronic cervical spinal cord injury.

    Lee, Kun-Ze; Gonzalez-Rothi, Elisa J

    2017-10-01

    Unilateral C2 spinal cord hemisection (C2Hx) interrupts bulbospinal respiratory pathways innervating ipsilateral phrenic motoneurons, resulting in cessation of ipsilateral diaphragm motor output. Plasticity within the spinal neural circuitry controlling the diaphragm can induce partial recovery of phrenic bursting which correlates with the time-dependent return of spinal serotonin (5-HT) immunoreactivity in the vicinity of phrenic motoneurons. The 5-HT 2A receptor subtype is present on phrenic motoneurons and its expression is up-regulated after cervical spinal cord injury; however the functional role of these receptors following injury has not been clearly defined. The present study evaluated the functional role of 5-HT 2A receptors by testing the hypothesis that pharmacologic blockade would attenuate diaphragm activity in rats with chronic cervical spinal cord injury. Bilateral diaphragm electromyography (EMG) was performed in vagal-intact and spontaneously breathing rats before and after intravenous administration of the 5-HT 2A receptor antagonist Ketanserin (1mg/kg). Intravenous ketanserin significantly attenuated ipsilateral diaphragm EMG activity in C2Hx animals but had no impact on diaphragm output in uninjured animals. We conclude that 5-HT 2A receptor activation contributes to the recovery of ipsilateral phrenic motor output after chronic cervical spinal cord injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Role of Hippocampal 5HT3 Receptors in Harmaline-Induced Memory Deficit

    Mohammad Nasehi

    2015-07-01

    Full Text Available Introduction: The plethora of studies indicated that there is a cross talk relationship between harmaline and serotonergic (5-HT system on cognitive and non-cognitive behaviors. Thus, the purpose of this study is to assess the effects of hippocampal 5-HT4 receptor on memory acquisition deficit induced by harmaline.  Methods: Harmaline was injected peritoneally, while 5-HT4 receptor agonist (RS67333 and antagonist (RS23597-190 were injected intra-hippocampal. A single-trial step-down passive avoidance, open field and tail flick tasks were used for measurement of memory, locomotor activity and pain responses, respectively.  Results: The data revealed that pre-training injection of higher dose of harmaline (1 mg/kg, RS67333 (0.5 ng/mouse and RS23597-190 (0.5 ng/mouse decreased memory acquisition process in the adult mice. Moreover, concurrent pre-training administration of subthreshold dose of RS67333 (0.005 ng/mouse or RS23597-190 (0.005 ng/mouse with subthreshold dose of harmaline (0.5 mg/kg, i.p. intensify impairment of memory acquisition. All above interventions did not change locomotion and tail flick behaviors.  Discussion: The results demonstrated that the synergistic effect between both hippocampal 5-HT4 receptor agonist and antagonist with impairment of memory acquisition induced by harmaline, indicating a modulatory effect for hippocampal 5HT4 receptor on Harmaline induced amnesia.

  2. The effect of citalopram hydrobromide on 5-HT2A receptors in the impulsive-aggressive dog, as measured with 123I-5-I-R91150 SPECT

    Peremans, K.; Hoybergs, Y.; Gielen, I.; Audenaert, K.; Vervaet, M.; Heeringen, C. van; Otte, A.; Goethals, I.; Dierckx, R.; Blankaert, P.

    2005-01-01

    Involvement of the serotonergic system in impulsive aggression has been demonstrated in both human and animal studies. The purpose of the present study was to investigate the effect of citalopram hydrobromide (a selective serotonin re-uptake inhibitor) on the 5-HT 2A receptor and brain perfusion in impulsive-aggressive dogs by means of single-photon emission computed tomography. The binding index of the radioligand 123 I-5-I-R91150 was measured before and after treatment with citalopram hydrobromide in nine impulsive-aggressive dogs. Regional perfusion was measured with 99m Tc-ethyl cysteinate dimer (ECD). Behaviour was assessed before treatment and again after 6 weeks of treatment. A correlation was found between decreased binding and behavioural improvement in eight out of nine dogs. The 5-HT 2A receptor binding index was significantly reduced after citalopram hydrobromide treatment in all cortical regions but not in the subcortical area. None of the dogs displayed alterations in perfusion on the post-treatment scans. This study supports previous findings regarding the involvement of the serotonergic system in impulsive aggression in dogs in general. More specifically, the effect of treatment on the 5-HT 2A receptor binding index could be demonstrated and the decreased binding index correlated with behavioural improvement. (orig.)

  3. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    Nonogaki, Katsunori, E-mail: knonogaki-tky@umin.ac.jp [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Kaji, Takao [Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Ohba, Yukie; Sumii, Makiko [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Wakameda, Mamoru; Tamari, Tomohiro [Charles River Laboratories Japan, Inc. (Japan)

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  4. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    Nonogaki, Katsunori; Kaji, Takao; Ohba, Yukie; Sumii, Makiko; Wakameda, Mamoru; Tamari, Tomohiro

    2009-01-01

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese β-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in β-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  5. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-ht2 receptors

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine...... about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure...... but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure...

  6. AUGMENTATIVE EFFECT OF PROSTAGLANDIN E1 ON PENTOBARBITAL HYPNOSIS MEDIATED BY 5-HT IN CHICKS

    Amalendu Chanda

    2012-01-01

    Full Text Available Prostaglandins (PG are present in different tissues specially in brain tissues endowed with different central nervous system activities. Similarly, 5-hydroxytryptamine (5-HT a biogenic amine with its presence in different central and peripheral tissues as neurotransmitter plays an important role in the regulation of physiological functions specially hypnosis, convulsions, analgesia in rats, mice, cats and chicks etc. Pentobarbitone (PB induced sleep appear to be a serotonergic modulator activity in different animals. PGE1 potentiates the pentobarbitone hypnosis also mediated through serotonin. In the present study, PGE1 induced sleeping time in chicks was evaluated. Drugs affecting 5-HT synthesis, metabolism and receptor activity modulate the potentiating response, while adrenergic receptor antagonists did not showed any response. This study suggest that PGE1 potentiate PB induced sleep through serotonergic signaling pathway as PGE1 increased 5-HT synthesis rate in chick brain.

  7. GABA, 5-HT and amino acids in the rotifers Brachionus plicatilis and Brachionus rotundiformis.

    Gallardo, W G; Hagiwara, A; Hara, K; Soyano, K; Snell, T W

    2000-11-01

    gamma-Aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) have been shown to increase the reproduction of the Brachionus plicatilis (NH3L strain). In the present study, the endogenous presence of GABA and 5-HT in the rotifers B. plicatilis (NH3L and Kamiura strains) and Brachionus rotundiformis (Langkawi strain) were confirmed by dot blot immunoassay and high-performance liquid chromatography (HPLC). HPLC showed that GABA and 5-HT concentrations in the three rotifer strains range from 71 to 188 pmol/mg and from 12 to 64 pmol/mg, respectively. A total of 33 amino acids were also detected in B. plicatilis and B. rotundiformis, with glutamic acid, serine, glycine, taurine, threonine, alanine, arginine, proline, valine and isoleucine in high concentrations relative to other amino acids.

  8. Test-retest reliability of the novel 5-HT1B receptor PET radioligand [11C]P943

    Saricicek, Aybala; Chen, Jason; Ruf, Barbara; Planeta, Beata; Labaree, David; Gallezot, Jean-Dominique; Huang, Yiyun; Subramanyam, Kalyani; Maloney, Kathleen; Matuskey, David; Deserno, Lorenz; Neumeister, Alexander; Krystal, John H.; Carson, Richard E.; Bhagwagar, Zubin

    2015-01-01

    [ 11 C]P943 is a novel, highly selective 5-HT 1B PET radioligand. The aim of this study was to determine the test-retest reliability of [ 11 C]P943 using two different modeling methods and to perform a power analysis with each quantification technique. Seven healthy volunteers underwent two PET scans on the same day. Regions of interest (ROIs) were the amygdala, hippocampus, pallidum, putamen, insula, frontal, anterior cingulate, parietal, temporal and occipital cortices, and cerebellum. Two multilinear radioligand quantification techniques were used to estimate binding potential: MA1, using arterial input function data, and the second version of the multilinear reference tissue model analysis (MRTM2), using the cerebellum as the reference region. Between-scan percent variability and intraclass correlation coefficients (ICC) were used to assess test-retest reliability. We also performed power analyses to determine the method that would allow the least number of subjects using within-subject or between-subject study designs. A voxel-wise ICC analysis for MRTM2 BP ND was performed for the whole brain and all the ROIs studied. Mean percent variability between two scans across regions ranged between 0.4 % and 12.4 % for MA1 BP ND , 0.5 % and 11.5 % for MA1 BP P , 16.7 % and 28.3 % for MA1 BP F , and between 0.2 % and 5.4 % for MRTM2 BP ND . The power analyses showed a greater number of subjects were required using MA1 BP F compared with other outcome measures for both within-subject and between-subject study designs. ICC values were the highest using MRTM2 BP ND and the lowest with MA1 BP F in ten ROIs. Small regions and regions with low binding had lower ICC values than large regions and regions with high binding. Reliable measures of 5-HT 1B receptor binding can be obtained using the novel PET radioligand [ 11 C]P943. Quantification of 5-HT 1B receptor binding with MRTM2 BP ND and with MA1 BP P provided the least variability and optimal power for within-subject and

  9. Role of 5-HT3 Receptor on Food Intake in Fed and Fasted Mice

    Li, Bingjin; Shao, Dongyuan; Luo, Yungang; Wang, Pu; Liu, Changhong; Zhang, Xingyi; Cui, Ranji

    2015-01-01

    Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem. PMID:25789930

  10. Attention switching after dietary brain 5-HT challenge in high impulsive subjects.

    Markus, C Rob; Jonkman, Lisa M

    2007-09-01

    High levels of impulsivity have adverse effects on performance in cognitive tasks, particularLy in those tasks that require high attention investment. Furthermore, both animal and human research has indicated that reduced brain serotonin (5-HT) function is associated with increases in impulsive behaviour or decreased inhibition ability, but the effects of 5-HT challenge have not yet been investigated in subjects vulnerable to impulsivity. The present study aimed to investigate whether subjects with high trait impulsivity perform worse than low impulsive subjects in a task switching paradigm in which they have to rapidly shift their attention between two response rules, and to investigate the influence of a 5-HT enhancing diet. Healthy subjects with high ( n = 19) and low (n = 18) trait impulsivity scores participated in a double-blind placebo-controlled study. All subjects performed the attention switch task in the morning following breakfast containing either tryptophan-rich alpha-lactalbumin (4.8 g/100 g TRP) or placebo protein (1.4 g/100 g TRP). Whereas there were no baseline differences between high and low impulsive subjects in task switching abilities, high impulsive subjects made significantly more switch errors and responded slower after dietary 5-HT stimulation, whereas no dietary effects were found on task switching performance in low-impulsive subjects. The deterioration in task switching performance induced by the 5-HT enhancing diet in high impulsive subjects was suggested to be established by general arousal/attention-reducing effects of 5-HT, which might have a larger impact in high impulsive subjects due to either different brain circuitry involved in task switching in this group or lower baseline arousal levels.

  11. Specific in vivo binding in the rat brain of [{sup 18}F]RP 62203: A selective 5-HT{sub 2A} receptor radioligand for positron emission tomography

    Besret, Laurent; Dauphin, Francois; Huard, Cecile; Lasne, Marie-Claire; Vivet, Richard; Mickala, Patrick; Barbelivien, Alexandra; Baron, Jean-Claude

    1996-02-01

    In vivo pharmacokinetic and brain binding characteristics of [{sup 18}F]RP 62203, a selective high-affinity serotonergic 5-HT{sub 2A} receptor antagonist, were assessed in the rat following intravenous injection of trace amount of the radioligand. The radioactive distribution profile observed in the brain 60 min after injection was characterized by greater than fourfold higher uptake in neocortex as compared to cerebellum (0.38 {+-} 0.07% injected dose/g, % ID/g and 0.08 {+-} 0.01 ID/g, respectively), consistent with in vivo specific binding to the 5-HT{sub 2A} receptor. Furthermore, specific [{sup 18}F]RP 62203 binding significantly correlated with the reported in vitro distribution of 5-HT{sub 2A} receptors, but not with known concentration profiles of dopaminergic D{sub 2} or adrenergic {alpha}{sub 1} receptors. Finally, detectable specific binding was abolished by pretreatment with large doses of ritanserin, a selective 5-HT{sub 2A} antagonist, which resulted in uniform uptakes across cortical, striatal and cerebellar tissues. Thus, [{sup 18}F]RP 62203 appears to be a promising selective tool to visualize and quantify 5-HT{sub 2A} brain receptors in vivo with positron emission tomography.

  12. Effect of the 5-HT4 receptor and serotonin transporter on visceral hypersensitivity in rats

    Chi, Yan; Liu, Xin-Guang; Wang, Hua-Hong; Li, Jun-Xia; Li, Yi-Xuan

    2012-01-01

    Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT 4 receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT 4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT 4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg·kg −1 ·day −1 , days 36-42), tegaserod (1 mg·kg −1 ·day −1 , day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT 4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT 4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level

  13. Prostaglandin potentiates 5-HT responses in stomach and ileum innervating visceral afferent sensory neurons

    Kim, Sojin; Jin, Zhenhua; Lee, Goeun [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Yong Seek; Park, Cheung-Seog [Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Jin, Young-Ho, E-mail: jinyh@khu.ac.kr [Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2015-01-02

    Highlights: • Prostaglandin E2 (PGE{sub 2}) effect was tested on visceral afferent neurons. • PGE{sub 2} did not evoke response but potentiated serotonin (5-HT) currents up to 167%. • PGE{sub 2}-induced potentiation was blocked by E-prostanoid type 4 receptors antagonist. • PGE{sub 2} effect on 5-HT response was also blocked by protein kinase A inhibitor KT5720. • Thus, PGE{sub 2} modulate visceral afferent neurons via synergistic signaling with 5-HT. - Abstract: Gastrointestinal disorder is a common symptom induced by diverse pathophysiological conditions that include food tolerance, chemotherapy, and irradiation for therapy. Prostaglandin E{sub 2} (PGE{sub 2}) level increase was often reported during gastrointestinal disorder and prostaglandin synthetase inhibitors has been used for ameliorate the symptoms. Exogenous administration of PGE{sub 2} induces gastrointestinal disorder, however, the mechanism of action is not known. Therefore, we tested PGE{sub 2} effect on visceral afferent sensory neurons of the rat. Interestingly, PGE{sub 2} itself did not evoked any response but enhanced serotonin (5-HT)-evoked currents up to 167% of the control level. The augmented 5-HT responses were completely inhibited by a 5-HT type 3 receptor antagonist, ondansetron. The PGE{sub 2}-induced potentiation were blocked by a selective E-prostanoid type4 (EP{sub 4}) receptors antagonist, L-161,982, but type1 and 2 receptor antagonist AH6809 has no effect. A membrane permeable protein kinase A (PKA) inhibitor, KT5720 also inhibited PGE{sub 2} effects. PGE{sub 2} induced 5-HT current augmentation was observed on 15% and 21% of the stomach and ileum projecting neurons, respectively. Current results suggest a synergistic signaling in visceral afferent neurons underlying gastrointestinal disorder involving PGE{sub 2} potentiation of 5-HT currents. Our findings may open a possibility for screen a new type drugs with lower side effects than currently using steroidal prostaglandin

  14. 5-HT 1A polymorphism and self-transcendence in mood disorders.

    Lorenzi, Cristina; Serretti, Alessandro; Mandelli, Laura; Tubazio, Viviana; Ploia, Cristina; Smeraldi, Enrico

    2005-08-05

    Recently, an association between serotonin 1A receptor binding potential and self-transcendence scores at the temperament and character inventory (TCI) has been reported. We tested involvement of 5-HT(1A) gene in this trait, in a sample of 40 remitted mood disorder patients. Subjects with the 5-HT(1A)*C/C genotype showed significantly lower scores at the total self-transcendence and at the sub-scales of transpersonal identification and spiritual acceptance. Our preliminary results further support the involvement of the serotoninergic pattern in the self-transcendence character trait. (c) 2005 Wiley-Liss, Inc.

  15. Effect of the 5-HT4 receptor and serotonin transporter on visceral hypersensitivity in rats

    Chi Yan

    2012-10-01

    Full Text Available Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT4 receptor and the serotonin transporter (SERT as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05 and increased 5-HT4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05. Treatment with fluoxetine (10 mg·kg-1·day-1, days 36-42, tegaserod (1 mg·kg-1·day-1, day 43, or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01 but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654. These results indicate that both the 5-HT4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level.

  16. Current radiosynthesis strategies for 5-HT2A receptor PET tracers

    Herth, Matthias M; Knudsen, Gitte M

    2015-01-01

    Serotonin 2A receptors have been implicated in various psychophysiological functions and disorders such as depression, Alzheimer's disease, or schizophrenia. Therefore, neuroimaging of this specific receptor is of significant clinical interest, and it is not surprising that many attempts have been...... made to develop a suitable 5-HT2A R positron emission tomography-tracer. In this review, we give an overview on the precursor, reference compound synthesis, and the preparation of promising 5-HT2A R radiopharmaceuticals applied in positron emission tomography. We also highlight possible learning...

  17. Compositions and methods related to serotonin 5-HT1A receptors

    Mukherjee, Jogeshwar [Irvine, CA; Saigal, Neil [Fresno, CA; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably .sup.18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with .sup.18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  18. Altered 5-HT2A Receptor Binding after Recovery from Bulimia-Type Anorexia Nervosa: Relationships to Harm Avoidance and Drive for Thinness

    Bailer, Ursula F; Price, Julie C; Meltzer, Carolyn C; Mathis, Chester A; Frank, Guido K; Weissfeld, Lisa; McConaha, Claire W; Henry, Shannan E; Brooks-Achenbach, Sarah; Barbarich, Nicole C; Kaye, Walter H

    2015-01-01

    Several lines of evidence suggest that a disturbance of serotonin neuronal pathways may contribute to the pathogenesis of anorexia nervosa (AN) and bulimia nervosa (BN). This study applied positron emission tomography (PET) to investigate the brain serotonin 2A (5-HT2A) receptor, which could contribute to disturbances of appetite and behavior in AN and BN. To avoid the confounding effects of malnutrition, we studied 10 women recovered from bulimia-type AN (REC AN–BN, >1 year normal weight, regular menstrual cycles, no binging, or purging) compared with 16 healthy control women (CW) using PET imaging and a specific 5-HT2A receptor antagonist, [18F]altanserin. REC AN–BN women had significantly reduced [18F]altanserin binding potential relative to CW in the left subgenual cingulate, the left parietal cortex, and the right occipital cortex. [18F]altanserin binding potential was positively related to harm avoidance and negatively related to novelty seeking in cingulate and temporal regions only in REC AN–BN subjects. In addition, REC AN–BN had negative relationships between [18F]altanserin binding potential and drive for thinness in several cortical regions. In conclusion, this study extends research suggesting that altered 5-HT neuronal system activity persists after recovery from bulimia-type AN, particularly in subgenual cingulate regions. Altered 5-HT neurotransmission after recovery also supports the possibility that this may be a trait-related disturbance that contributes to the pathophysiology of eating disorders. It is possible that subgenual cingulate findings are not specific for AN–BN, but may be related to the high incidence of lifetime major depressive disorder diagnosis in these subjects. PMID:15054474

  19. Synthesis and Pharmacological Evaluation of [11C]Granisetron and [18F]Fluoropalonosetron as PET Probes for 5-HT3 Receptor Imaging.

    Mu, Linjing; Müller Herde, Adrienne; Rüefli, Pascal M; Sladojevich, Filippo; Milicevic Sephton, Selena; Krämer, Stefanie D; Thompson, Andrew J; Schibli, Roger; Ametamey, Simon M; Lochner, Martin

    2016-11-16

    Serotonin-gated ionotropic 5-HT 3 receptors are the major pharmacological targets for antiemetic compounds. Furthermore, they have become a focus for the treatment of irritable bowel syndrome (IBS) and there is some evidence that pharmacological modulation of 5-HT 3 receptors might alleviate symptoms of other neurological disorders. Highly selective, high-affinity antagonists, such as granisetron (Kytril) and palonosetron (Aloxi), belong to a family of drugs (the "setrons") that are well established for clinical use. To enable us to better understand the actions of these drugs in vivo, we report the synthesis of 8-fluoropalonosetron (15) that has a binding affinity (K i = 0.26 ± 0.05 nM) similar to the parent drug (K i = 0.21 ± 0.03 nM). We radiolabeled 15 by nucleophilic 18 F-fluorination of an unsymmetrical diaryliodonium palonosetron precursor and achieved the radiosynthesis of 1-(methyl- 11 C)-N-granisetron ([ 11 C]2) through N-alkylation with [ 11 C]CH 3 I, respectively. Both compounds [ 18 F]15 (chemical and radiochemical purity >95%, specific activity 41 GBq/μmol) and [ 11 C]2 (chemical and radiochemical purity ≥99%, specific activity 170 GBq/μmol) were evaluated for their utility as positron emission tomography (PET) probes. Using mouse and rat brain slices, in vitro autoradiography with both [ 18 F]15 and [ 11 C]2 revealed a heterogeneous and displaceable binding in cortical and hippocampal regions that are known to express 5-HT 3 receptors at significant levels. Subsequent PET experiments suggested that [ 18 F]15 and [ 11 C]2 are of limited utility for the PET imaging of brain 5-HT 3 receptors in vivo.

  20. A comparison of the effects on central 5-HT function of sibutramine hydrochloride and other weight-modifying agents

    Heal, D J; Cheetham, S C; Prow, M R; Martin, K F; Buckett, W R

    1998-01-01

    Effects on 5-HT function of sibutramine and its active metabolites, BTS 54 354 and BTS 54 505, were compared with fluoxetine, (+)-fenfluramine and (+)-amphetamine.In vitro sibutramine weakly inhibited [3H]-5-HT uptake into brain synaptosomes. BTS 54 354, BTS 54 505 and fluoxetine were powerful [3H]-5-HT uptake inhibitors, whereas (+)-fenfluramine and (+)-amphetamine were very much weaker. Conversely, whilst sibutramine, its metabolites and fluoxetine did not release [3H]-5-HT from brain slices at ⩽10−5M, (+)-fenfluramine and (+)-amphetamine concentration-dependently increased [3H]-5-HT release.Sibutramine and fluoxetine had no effect on 5-hydroxytryptophan (5-HTP) accumulation in either frontal cortex or hypothalamus at doses Sibutramine (10 mg kg−1 i.p.) and fluoxetine (10 mg kg−1 i.p.) produced slow, prolonged increases of extracellular 5-HT in the anterior hypothalamus. In contrast, (+)-fenfluramine (3 mg kg−1 i.p.) and (+)-amphetamine (4 mg kg−1 i.p.) induced rapid, short-lasting increases in extracellular 5-HT.Only (+)-fenfluramine (10 mg kg−1) altered 5-HT2A receptors in rat frontal cortex when given for 14 days, producing a 61% reduction in receptor number and a 18% decrease in radioligand affinity.These results show that sibutramine powerfully enhances central 5-HT function via its secondary and primary amine metabolites; this effect, like that of fluoxetine, is almost certainly mediated through 5-HT uptake inhibition. By contrast, (+)-fenfluramine enhances 5-HT function predominantly by increasing 5-HT release. (+)-Amphetamine, though weaker than (+)-fenfluramine, also enhances 5-HT function by release. PMID:9786502

  1. The circadian oscillator of the cerebral cortex: molecular, biochemical and behavioral effects of deleting the Arntl clock gene in cortical neurons

    Bering, Tenna; Carstensen, Mikkel Bloss; Wörtwein, Gitta

    2018-01-01

    for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly...... prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect...... that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry....

  2. Medullary 5-HT neurons: Switch from tonic respiratory drive to chemoreception during postnatal development

    Cerpa, Veronica J.; Wu, Yuanming; Bravo, Eduardo; Teran, Frida A.; Flynn, Rachel S.; Richerson, George B.

    2016-01-01

    Serotonin (5-HT) neurons contribute to respiratory chemoreception in adult mice, but it is unclear whether they play a similar role in neonatal mice. We studied breathing during development in Lmx1bf/f/p mice, which lack 5-HT neurons. From postnatal days 1–7 (P1–P7), ventilation of Lmx1bf/f/p mice breathing room air was 50% of WT mice (p acidosis until 12 days in vitro (DIV), after which their response increased to reach a plateau around 25 DIV. Neonatal Lmx1bf/f/p mice displayed high mortality and decreased growth rate, and this worsened in hypoxia. Mortality was decreased in hyperoxia. These results indicate that maturation of 5-HT neurons contributes to development of respiratory CO2/pH chemoreception during the first few weeks of life in mice in vivo. A defect in the 5-HT system in early postnatal life decreases survival due in part to hypoxia. PMID:27619736

  3. Genetic variation in 5-hydroxytryptamine transporter expression causes adaptive changes in 5-HT4 receptor levels

    Jennings, Katie Ann; Licht, Cecilie Löe; Bruce, Aynsley

    2012-01-01

    +/+ mice in all brain regions. Compared to wild-type (WT) littermate controls, 5-HTT OE mice had increased 5-HT4 binding density across all brain regions, except amygdala (118-164% of WT) and this difference between genotypes was reduced by the 5-HTT inhibitor, fluoxetine (20 mg/kg twice daily, 3 d...

  4. Spatial memory deficit across aging: current insights of the role of 5-HT7 receptors

    Gregory eBeaudet

    2015-01-01

    Full Text Available Elderly persons often face biological, psychological or social changes over time that may cause discomfort or morbidity. While some cognitive domains remain stable over time, others undergo a decline. Spatial navigation is a complex cognitive function essential for independence, safety and quality of life. While egocentric (body-centered navigation is quite preserved during aging, allocentric (externally-centered navigation — based on a cognitive map using distant landmarks — declines with age. Recent preclinical studies showed that serotonergic 5-HT7 receptors are localized in brain regions associated with allocentric spatial navigation processing. Behavioral assessments with pharmacological or genetic tools have confirmed the role of 5-HT7 receptors in allocentric navigation. Moreover, few data suggested a selective age-related decrease in the expression of 5-HT7 receptors in pivotal brain structures implicated in allocentric navigation such as the hippocampal CA3 region. We aim to provide a short overview of the potential role of 5-HT7 receptors in spatial navigation, and to argue for their interests as therapeutic targets against age-related cognitive decline.

  5. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective

  6. 5-HT radioligands for human brain imaging with PET and SPECT

    Paterson, Louise M; Kornum, Birgitte R; Nutt, David J

    2013-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used...

  7. Pharmacological, neurochemical, and behavioral profile of JB-788, a new 5-HT1A agonist.

    Picard, M; Morisset, S; Cloix, J F; Bizot, J C; Guerin, M; Beneteau, V; Guillaumet, G; Hevor, T K

    2010-09-01

    A novel pyridine derivative, 8-{4-[(6-methoxy-2,3-dihydro-[1,4]dioxino[2,3-b]pyridine-3-ylmethyl)-amino]-butyl}-8-aza-spiro[4.5]decane-7,9-dione hydrochloride, termed JB-788, was designed to selectively target 5-HT(1A) receptors. In the present study, the pharmacological profile of JB-788 was characterized in vitro using radioligands binding tests and in vivo using neurochemical and behavioural experiments. JB-788 bound tightly to human 5-HT(1A) receptor expressed in human embryonic kidney 293 (HEK-293) cells with a K(i) value of 0.8 nM. Its binding affinity is in the same range as that observed for the (+/-)8-OH-DPAT, a reference 5HT(1A) agonist compound. Notably, JB-788 only bound weakly to 5-HT(1B) or 5-HT(2A) receptors and moreover the drug displayed only weak or indetectable binding to muscarinic, alpha(2), beta(1) and beta(2) adrenergic receptors, or dopaminergic D(1) receptors. JB-788 was found to display substantial binding affinity for dopaminergic D(2) receptors and, to a lesser extend to alpha(1) adrenoreceptors. JB-788 dose-dependently decreased forskolin-induced cAMP accumulation in HEK cells expressing human 5-HT(1A), thus acting as a potent 5-HT(1A) receptor agonist (E(max.) 75%, EC(50) 3.5 nM). JB-788 did not exhibit any D(2) receptor agonism but progressively inhibited the effects of quinpirole, a D(2) receptor agonist, in the cAMP accumulation test with a K(i) value of 250 nM. JB-788 induced a weak change in cAMP levels in mouse brain but, like some antipsychotics, transiently increased glycogen contents in various brain regions. Behavioral effects were investigated in mice using the elevated plus-maze. JB-788 was found to increase the time duration spent by animals in anxiogenic situations. Locomotor hyperactivity induced by methamphetamine in mouse, a model of antipsychotic activity, was dose-dependently inhibited by JB-788. Altogether, these results suggest that JB-788 displays pharmacological properties, which could be of interest in the area

  8. Analysis of the 5-HT receptor in rabbit saphenous vein exemplifies the problems of using exclusion criteria for receptor classification.

    Martin, G R; MacLennan, S J

    1990-08-01

    5-Hydroxytryptamine (5-HT) contracts ring preparations of rabbit saphenous vein via direct and indirect components, the latter being compatible with a "tyramine-like" action at sympathetic nerve terminals. Here an attempt was made to establish the identity of the receptor mediating contraction directly, in terms of the currently accepted proposals (Bradley et al. 1986). Results with agonists suggested 5-HT1-like receptor activation: methylsergide behaved as a partial agonist with microcolar affinity and 5-HT effects were mimicked by 5-carboxamidotryptamine (5-CT) and GR43175. The agonist potency order was 5-CT greater than 5-HT greater than methysergide greater than or equal to GR43175, the same as that reported at the 5-HT1-like receptor in dog saphenous vein (Feniuk et al. 1985; Humphrey et al. 1988). Consistent with this, 5-HT effects were resistant to blockade by the selective 5-HT3 receptor antagonist MDL72222 (1.0 mumol/l). In contrast, methiothepin (0.01-0.3 mumol/l), ketanserin (0.3-30.0 mumol/l) and spiperone (0.3-30.0 mumol/l) each produced surmountable antagonism which, although competitive in nature only for methiothepin (pKB = 9.45 +/- 0.09, 17 d.f.), implied 5-HT2 receptor involvement. The possibility that these discrepancies resulted from mixed populations of 5-HT1-like and 5-HT2 receptors can be excluded because; 1). Ketanserin and spiperone blocked the actions of 5-HT and the selective 5-HT1-like receptor agonist GR43175 with equal facility and 2). Responses to all of the agonists studied were similarly antagonised by flesinoxan (pKB approximately 6.4), a simple competitive antagonist at the receptor in rabbit saphenous vein.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan); Nishio, Hiroaki, E-mail: nishio@fupharm.fukuyama-u.ac.jp [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan)

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  10. Radioligands for brain 5-HT{sub 2} receptor imaging in vivo: why do we need them?

    Busatto, G.F. [Section of Clinical Neuropharmacology, Dept. of Psychological Medicine, Inst. of Psychiatry, London (United Kingdom)

    1996-08-01

    Recently, PET and SPET radiotracers with high specificity for 5-HT{sub 2} receptors have been developed. These have been studied in baboons and humans with promising results, displaying a binding profile compatible with the brain distribution of 5-HT{sub 2} receptors. It is predicted that studies with the newly developed 5-HT radioligands will substantially increase knowledge about the pharmacology of brain disorders. (orig./MG)

  11. Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression.

    Szewczyk, Bernadeta; Albert, Paul R; Rogaeva, Anastasia; Fitzgibbon, Heidi; May, Warren L; Rajkowska, Grazyna; Miguel-Hidalgo, Jose J; Stockmeier, Craig A; Woolverton, William L; Kyle, Patrick B; Wang, Zhixia; Austin, Mark C

    2010-09-01

    Serotonin1A (5-HT(1A)) receptors are reported altered in the brain of subjects with major depressive disorder (MDD). Recent studies have identified transcriptional regulators of the 5-HT(1A) receptor and have documented gender-specific alterations in 5-HT(1A) transcription factor and 5-HT(1A) receptors in female MDD subjects. The 5' repressor element under dual repression binding protein-1 (Freud-1) is a calcium-regulated repressor that negatively regulates the 5-HT(1A) receptor gene. This study documented the cellular expression of Freud-1 in the human prefrontal cortex (PFC) and quantified Freud-1 protein in the PFC of MDD and control subjects as well as in the PFC of rhesus monkeys chronically treated with fluoxetine. Freud-1 immunoreactivity was present in neurons and glia and was co-localized with 5-HT(1A) receptors. Freud-1 protein level was significantly decreased in the PFC of male MDD subjects (37%, p=0.02) relative to gender-matched control subjects. Freud-1 protein was also reduced in the PFC of female MDD subjects (36%, p=0.18) but was not statistically significant. When the data was combined across genders and analysed by age, the decrease in Freud-1 protein level was greater in the younger MDD subjects (48%, p=0.01) relative to age-matched controls as opposed to older depressed subjects. Similarly, 5-HT(1A) receptor protein was significantly reduced in the PFC of the younger MDD subjects (48%, p=0.01) relative to age-matched controls. Adult male rhesus monkeys administered fluoxetine daily for 39 wk revealed no significant change in cortical Freud-1 or 5-HT(1A) receptor proteins compared to vehicle-treated control monkeys. Reduced protein expression of Freud-1 in MDD subjects may reflect dysregulation of this transcription factor, which may contribute to the altered regulation of 5-HT(1A) receptors observed in subjects with MDD. These data may also suggest that reductions in Freud-1 protein expression in the PFC may be associated with early onset of

  12. Acute S-ketamine application does not alter cerebral [18F]altanserin binding: a pilot PET study in humans

    Matusch, A.; Rota Kops, E.; Winz, O.H.; Elmenhorst, D.; Herzog, H.; Hurlemann, R.; Zilles, K.; Bauer, A.

    2007-01-01

    Modeling short-term psychotic states with subanaesthetic doses of ketamine provides substantial experimental evidence in support of the glutamate hypothesis of schizophrenia. Ketamine exerts its pharmacological effects both directly via interactions with glutamate receptors and indirectly by stimulating presynaptic release of endogenous serotonin (5-HT). The aim of this feasibility study was to examine whether acute ketamine-induced 5-HT release interferes with the binding of the 5-HT 2A receptor (5-HT 2A R) radioligand [ 18 F]altanserin and positron emission tomography (PET). Two subjects treated with ketamine and one subject treated with placebo underwent [ 18 F]altanserin PET at distribution equilibrium conditions. Robust physiological, psychopathological and cognitive effects were present at ketamine plasma concentrations exceeding 100 μg/l during >70 min. Notwithstanding, we observed stable radioligand binding (changes ±95 % CI of -1.0 ± 1.6 % and +4.1 ± 1.8 % versus -1.2 ± 2.6 %) in large cortical regions presenting high basal uptake of both, [ 18 F]altanserin and ketamine. Marginal decreases of 4 % of radioligand binding were observed in the frontal lobe, and 8 % in a posteriorly specified frontomesial subregion. This finding is not compatible with a specific radioligand displacement from 5-HT2 AR which should occur proportionally throughout the whole brain. Instead, the spatial pattern of these minor reductions was congruent with ketamine-induced increases in cerebral blood flow observed in a previous study using [ 15 O]butanol PET. This may caused by accelerated clearance of unspecifically bound [ 18 F]altanserin from cerebral tissue with increased perfusion. In conclusion, this study suggests that [ 18 F]altanserin PET is not sensitive to acute neurotransmitter fluctuations under ketamine. Advantageously, the stability of [ 18 F]altanserin PET towards acute influences is a prerequisite for its future use to detect sub-acute and chronic effects of

  13. Decreased frontal serotonin 5-HT2a receptor binding index in deliberate self-harm patients

    Audenaert, K.; Laere, K. van; Dierckx, R.A.; Dumont, F.; Slegers, G.; Mertens, J.; Heeringen, C. van

    2001-01-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT 2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT 2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl] -5-iodo-2-methox ybenzamide or 123 I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123 I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT 2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P 2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT 2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT 2a receptors. (orig.)

  14. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  15. Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning.

    Nasehi, Mohammad; Farrahizadeh, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-09-01

    Behavioral studies have suggested a key role for the cannabinoid system in the modulation of conditioned fear memory. Likewise, much of the literature has revealed that the serotonergic system affects Pavlovian fear conditioning and extinction. A high level of functional overlap between the serotonin and cannabinoid systems has also been reported. To clarify the interaction between the hippocampal serotonin (5-HT4) receptor and the cannabinoid CB1 receptor in the acquisition of fear memory, the effects of 5-HT4 agents, arachidonylcyclopropylamide (ACPA; CB1 receptor agonist), and the combined use of these drugs on fear learning were studied in a fear conditioning task in adult male NMRI mice. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing time in both context- and tone-dependent fear conditions, suggesting impairment of the acquisition of fear memory. Pre-training, intra-hippocampal (CA1) microinjection of RS67333, a 5-HT4 receptor agonist, at doses of 0.1 and 0.2 or 0.2 µg/mouse impaired contextual and tone fear memory, respectively. A subthreshold dose of RS67333 (0.005 µg/mouse) did not alter the ACPA response in either condition. Moreover, intra-CA1 microinjection of RS23597 as a 5-HT4 receptor antagonist did not alter context-dependent fear memory acquisition, but it did impair tone-dependent fear memory acquisition. However, a subthreshold dose of the RS23597 (0.01 µg/mouse) potentiated ACPA-induced fear memory impairment in both conditions. Therefore, we suggest that the blockade of hippocampal 5-HT4 serotonergic system modulates cannabinoid signaling induced by the activation of CB1 receptors in conditioned fear. © The Author(s) 2016.

  16. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: Involvement of 5-HT7 receptors

    García-Iglesias, Brenda B.; Mendoza-Garrido, María E.; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.

    2013-01-01

    Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT7-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT7-LI and protein in the PVN, but increased 5-HT7-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex

  17. Synthesis and evaluation of 18F-labeled 5-HT2A receptor agonists as PET ligands

    Herth, Matthias M; Petersen, Ida Nymann; Hansen, Hanne Demant

    2016-01-01

    INTRODUCTION: The serotonin 2A receptor (5-HT2AR) is the most abundant excitatory 5-HT receptor in the human brain and implicated in various brain disorders such as schizophrenia, depression, and Alzheimer's disease. Positron emission tomography (PET) can be used to image specific proteins...... to be potent 5-HT2A agonists. (18)F-labeling of the appropriate precursors was performed using [(18)F]FETos, typically yielding 0.2-2.0GBq and specific activities of 40-120GBq/μmol. PET studies in Danish landrace pigs revealed that [(18)F]1 displayed brain uptake in 5-HT2AR rich regions. However, high uptake...

  18. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience.

    Pokorny, Thomas; Preller, Katrin H; Kraehenmann, Rainer; Vollenweider, Franz X

    2016-04-01

    The mixed serotonin (5-HT) 1A/2A/2B/2C/6/7 receptor agonist psilocybin dose-dependently induces an altered state of consciousness (ASC) that is characterized by changes in sensory perception, mood, thought, and the sense of self. The psychological effects of psilocybin are primarily mediated by 5-HT2A receptor activation. However, accumulating evidence suggests that 5-HT1A or an interaction between 5-HT1A and 5-HT2A receptors may contribute to the overall effects of psilocybin. Therefore, we used a double-blind, counterbalanced, within-subject design to investigate the modulatory effects of the partial 5-HT1A agonist buspirone (20mg p.o.) and the non-hallucinogenic 5-HT2A/1A agonist ergotamine (3mg p.o.) on psilocybin-induced (170 µg/kg p.o.) psychological effects in two groups (n=19, n=17) of healthy human subjects. Psychological effects were assessed using the Altered State of Consciousness (5D-ASC) rating scale. Buspirone significantly reduced the 5D-ASC main scale score for Visionary Restructuralization (VR) (ppsilocybin-induced 5D-ASC main scale scores. The present finding demonstrates that buspirone exerts inhibitory effects on psilocybin-induced effects, presumably via 5-HT1A receptor activation, an interaction between 5-HT1A and 5-HT2A receptors, or both. The data suggest that the modulation of 5-HT1A receptor activity may be a useful target in the treatment of visual hallucinations in different psychiatric and neurological diseases. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  19. Detailed mapping of serotonin 5-HT1B and 5-HT1D receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function

    Leysen, J.E.; Schotte, A.; Jurzak, M.; Luyten, W.H.M.L.; Voorn, P.; Bonaventure, P.

    1997-01-01

    The similar pharmacology of the 5-HT 1B and 5-HT 1D receptors, and the lack of selective compounds sufficiently distinguishing between the two receptor subtypes, have hampered functional studies on these receptors. In order to provide clues for differential functional roles of the two subtypes, we performed a parallel localization study throughout the guinea-pig brain and the trigeminal ganglia by means of quantitative in situ hybridization histochemistry (using [ 35 S]-labelled riboprobes probes for receptor messenger RNA) and receptor autoradiography (using a new radioligand [ 3 H]alniditan).The anatomical patterns of 5-HT 1B and 5-HT 1D receptor messenger RNA were quite different. While 5-HT 1B receptor messenger RNA was abundant throughout the brain (with highest levels in the striatum, nucleus accumbens, olfactory tubercle, cortex, hypothalamus, hippocampal formation, amygdala, thalamus, dorsal raphe and cerebellum), 5-HT 1D receptor messenger RNA exhibited a more restricted pattern; it was found mainly in the olfactory tubercle, entorhinal cortex, dorsal raphe, cerebellum, mesencephalic trigeminal nucleus and in the trigeminal ganglion. The density of 5-HT 1B/1D binding sites (combined) obtained with [ 3 H]alniditan autoradiography was high in the substantia nigra, superior colliculus and globus pallidus, whereas lower levels were detected in the caudate-putamen, hypothalamus, hippocampal formation, amygdala, thalamus and central gray. This distribution pattern was indistinguishable from specific 5-HT 1B receptor labelling in the presence of ketanserin under conditions to occlude 5-HT 1D receptor labelling; hence the latter were below detection level. Relationships between the regional distributions of the receptor messenger RNAs and binding sites and particular neuroanatomical pathways are discussed with respect to possible functional roles of the 5-HT 1B and 5-HT 1D receptors. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-(13)C]Glucose and [1,2-(13)C]Acetate as Substrates

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B

    2017-01-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few...

  1. Is There a Role for Endogenous 5-HT in Gastrointestinal Motility? How Recent Studies Have Changed Our Understanding.

    Spencer, Nick J; Keating, Damien J

    2016-01-01

    Over the past few years, there have been dramatic changes in our understanding of the role of endogenous 5-hydroxytryptamine (5-HT) in the generation of gastrointestinal (GI) motility patterns in the small and large intestine. The idea that endogenous 5-HT played a major role in the generation of peristalsis in the small intestine was first proposed in the mid 1950s, after it was discovered that endogenous 5-HT could be released from the mucosa at a similar time that peristalsis occurred; and that exogenous 5-HT could potently stimulate peristalsis. The fact that exogenous 5-HT stimulated peristalsis and that there was a similarity in timing between the release of 5-HT from the mucosa and the onset of peristalsis led investigators to propose that release of endogenous 5-HT from the mucosa was causally related to the generation of peristalsis. In further support of this, other studies showed that selective 5-HT antagonists could inhibit or block peristalsis, and other motor patterns, such as the migrating motor complex. Taken together, based on these findings, some laboratories believed that endogenous 5-HT (synthesized in the gut wall) was an important mediator, or initiator, of different propulsive motor patterns in the lower GI tract. This notion changed dramatically in the past few years, however, after it was discovered that removal of the mucosa abolished all cyclical release of endogenous 5-HT, but did not block peristalsis, nor the cyclical migrating complex. Furthermore, other laboratories revealed that genetic deletion of the gene tryptophan hydroxylase 1 (TPH-1) (that synthesizes endogenous 5-HT in the mucosa) actually had no inhibitory effect on transit of intestinal contents in live animals. Then, perhaps one of the most startling of all observations was the discovery that selective 5-HT receptor antagonists actually have the same inhibitory effects on peristalsis and the migrating complex in segments of intestine that had been depleted of all

  2. 5-HT receptors as novel targets for optimizing pigmentary responses in dorsal skin melanophores of frog, Hoplobatrachus tigerinus

    Ali, Sharique A; Salim, Saima; Sahni, Tarandeep; Peter, Jaya; Ali, Ayesha S

    2012-01-01

    BACKGROUND AND PURPOSE Biochemical identification of 5-HT has revealed similar projection patterns across vertebrates. In CNS, 5-HT regulates major physiological functions but its peripheral functions are still emerging. The pharmacology of 5-HT is mediated by a diverse range of receptors that trigger different responses. Interestingly, 5-HT receptors have been detected in pigment cells indicating their role in skin pigmentation. Hence, we investigated the role of this monoaminergic system in amphibian pigment cells, melanophores, to further our understanding of its role in pigmentation biology together with its evolutionary significance. EXPERIMENTAL APPROACH Pharmacological profiling of 5-HT receptors was achieved using potent/selective agonists and antagonists. In vitro responses of melanophores were examined by Mean Melanophores Size Index assay. The melanophores of lower vertebrates are highly sensitive to external stimuli. The immediate cellular responses to drugs were defined in terms of pigment translocation within the cells. KEY RESULTS 5-HT exerted strong concentration-dependent pigment dispersion at threshold dose of 1 × 10−6 g·mL−1. Specific 5-HT1 and 5-HT2 receptor agonists, sumatriptan and myristicin. also induced dose-dependent dispersion. Yohimbine and metergoline synergistically antagonized sumatriptan-mediated dispersion, whereas trazodone partially blocked myristicin-induced dispersion. Conversely, 5-HT3 and 5-HT4 receptor agonists, 1 (3 chlorophenyl) biguanide (1,3 CPB) and 5-methoxytryptamine (5-MT), caused a dose-dependent pigment aggregation. The aggregatory effect of 1,3 CPB was completely blocked by ondansetron, whereas L-lysine partially blocked the effect of 5-MT. CONCLUSIONS AND IMPLICATIONS The results suggest that 5-HT-induced physiological effects are mediated via distinct classes of receptors, which possibly participate in the modulation of pigmentary responses in amphibian. PMID:21880033

  3. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry

    Jinping Xu

    2017-06-01

    Full Text Available Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I, 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm2. Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.

  4. Point application with Angong Niuhuang sticker protects hippocampal and cortical neurons in rats with cerebral ischemia

    Dong-shu Zhang

    2015-01-01

    Full Text Available Angong Niuhuang pill, a Chinese materia medica preparation, can improve neurological functions after acute ischemic stroke. Because of its inconvenient application and toxic components (Cinnabaris and Realgar, we used transdermal enhancers to deliver Angong Niuhuang pill by modern technology, which expanded the safe dose range and clinical indications. In this study, Angong Niuhuang stickers administered at different point application doses (1.35, 2.7, and 5.4 g/kg were administered to the Dazhui (DU14, Qihai (RN6 and Mingmen (DU4 of rats with chronic cerebral ischemia, for 4 weeks. The Morris water maze was used to determine the learning and memory ability of rats. Hematoxylin-eosin staining and Nissl staining were used to observe neuronal damage of the cortex and hippocampal CA1 region in rats with chronic cerebral ischemia. The middle- and high-dose point application of Angong Niuhuang stickers attenuated neuronal damage in the cortex and hippocampal CA1 region, and improved the memory of rats with chronic cerebral ischemia with an efficacy similar to interventions by electroacupuncture at Dazhui (DU14, Qihai (RN6 and Mingmen (DU4. Our experimental findings indicate that point application with Angong Niuhuang stickers can improve cognitive function after chronic cerebral ischemia in rats and is neuroprotective with an equivalent efficacy to acupuncture.

  5. Correlating the Metabolic Stability of Psychedelic 5-HT2A Agonists with Anecdotal Reports of Human Oral Bioavailability

    Leth-Petersen, Sebastian; Bundgaard, Christoffer; Hansen, Martin

    2014-01-01

    2,5-Dimethoxyphenethylamines and their N-benzylated derivatives are potent 5-HT2A agonists with psychedelic effects in humans. The N-benzylated derivatives are among the most selective 5-HT2A agonists currently available and their usage as biochemical and brain imaging tools is increasing, yet ve...

  6. A study in male and female 5-HT transporter knockout rats : An animal model for anxiety and depression disorders

    Olivier, J D A; Van Der Hart, M G C; Van Swelm, R P L; Dederen, P J; Homberg, J R; Cremers, T; Deen, P M T; Cuppen, E; Cools, A R; Ellenbroek, B A

    2008-01-01

    Human studies have shown that a reduction of 5-HT transporter (SERT) increases the vulnerability for anxiety and depression. Moreover, women are more vulnerable to develop depression and anxiety disorders than men. For that reason we hypothesized that homozygous 5-HT transporter knockout rat

  7. Extrinsic nerves are not involved in branchial 5-HT dynamics or pulsatile urea excretion in Gulf toadfish, Opsanus beta.

    Cartolano, Maria C; Amador, Molly H B; Tzaneva, Velislava; Milsom, William K; McDonald, M Danielle

    2017-12-01

    Gulf toadfish (Opsanus beta) can switch from continuously excreting ammonia as their primary nitrogenous waste to excreting predominantly urea in distinct pulses. Previous studies have shown that the neurotransmitter serotonin (5-HT) is involved in controlling this process, but it is unknown if 5-HT availability is under central nervous control or if the 5-HT signal originates from a peripheral source. Following up on a previous study, cranial nerves IX (glossopharyngeal) and X (vagus) were sectioned to further characterize their role in controlling pulsatile urea excretion and 5-HT release within the gill. In contrast to an earlier study, nerve sectioning did not result in a change in urea pulse frequency. Total urea excretion, average pulse size, total nitrogen excretion, and percent ureotely were reduced the first day post-surgery in nerve-sectioned fish but recovered by 72h post-surgery. Nerve sectioning also had no effect on toadfish urea transporter (tUT), 5-HT transporter (SERT), or 5-HT 2A receptor mRNA expression or 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) abundance in the gill, all of which were found consistently across the three gill arches except 5-HIAA, which was undetectable in the first gill arch. Our findings indicate that the central nervous system does not directly control pulsatile urea excretion or local changes in gill 5-HT and 5-HIAA abundance. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 5-HT4 receptors mediating enhancement of contractility in canine stomach; an in vitro and in vivo study

    Prins, NH; van der Grijn, A; Lefebvre, RA; Akkermans, LMA; Schuurkes, JAJ

    1 We aimed to study 5-HT4 receptors in canine stomach contractility both in vivo and in vitro. 2 In anaesthetized Beagle dogs, the selective 5-HT4 receptor agonist prucalopride (i.v.) induced dose-dependent tonic stomach contractions under isobaric conditions, an effect that was antagonized by the

  9. Modulation by calcineurin of 5-HT3 receptor function in NG108-15 neuroblastoma x glioma cells

    Boddeke, HWGM; Meigel, [No Value; Boeijinga, P; Arbuckle, J; Docherty, RJ

    1 We have investigated the mechanism of regulation of 5-HT3 receptor channel sensitivity in voltage-clamped (-80 mV) NG108-15 neuroblastoma cells. 2 The 5-HT-induced inward current activated rapidly. The fast onset was followed by a biphasic decay which was characterized by two time constants,

  10. Modulation by calcineurin of 5-HT3receptor function in NG108-15 neuroblastoma x glioma cells

    Boddeke, H.W.G.M.; Meigel, I.; Boeijinga, P.; Arbuckle, J.; Docherty, R.J.

    1996-01-01

    1. We have investigated the mechanism of regulation of 5-HT3receptor channel sensitivity in voltage-clamped (-80 mV) NG108-15 neuroblastoma cells. 2. The 5-HT-induced inward current activated rapidly. The fast onset was followed by a biphasic decay which was characterized by two time constants,

  11. Adaptive Control of Dorsal Raphe by 5-HT4 in the Prefrontal Cortex Prevents Persistent Hypophagia following Stress

    Alexandra Jean

    2017-10-01

    Full Text Available Transient reduced food intake (hypophagia following high stress could have beneficial effects on longevity, but paradoxically, hypophagia can persist and become anorexia-like behavior. The neural underpinnings of stress-induced hypophagia and the mechanisms by which the brain prevents the transition from transient to persistent hypophagia remain undetermined. In this study, we report the involvement of a network governing goal-directed behavior (decision. This network consists of the ascending serotonergic inputs from the dorsal raphe nucleus (DR to the medial prefrontal cortex (mPFC. Specifically, adult restoration of serotonin 4 receptor (5-HT4R expression in the mPFC rescues hypophagia and specific molecular changes related to depression resistance in the DR (5-HT release elevation, 5-HT1A receptor, and 5-HT transporter reductions of stressed 5-HT4R knockout mice. The adult mPFC-5-HT4R knockdown mimics the null phenotypes. When mPFC-5-HT4Rs are overexpressed and DR-5-HT1ARs are blocked in the DR, hypophagia following stress persists, suggesting an antidepressant action of early anorexia.

  12. Adaptive Control of Dorsal Raphe by 5-HT4 in the Prefrontal Cortex Prevents Persistent Hypophagia following Stress.

    Jean, Alexandra; Laurent, Laetitia; Delaunay, Sabira; Doly, Stéphane; Dusticier, Nicole; Linden, David; Neve, Rachael; Maroteaux, Luc; Nieoullon, André; Compan, Valérie

    2017-10-24

    Transient reduced food intake (hypophagia) following high stress could have beneficial effects on longevity, but paradoxically, hypophagia can persist and become anorexia-like behavior. The neural underpinnings of stress-induced hypophagia and the mechanisms by which the brain prevents the transition from transient to persistent hypophagia remain undetermined. In this study, we report the involvement of a network governing goal-directed behavior (decision). This network consists of the ascending serotonergic inputs from the dorsal raphe nucleus (DR) to the medial prefrontal cortex (mPFC). Specifically, adult restoration of serotonin 4 receptor (5-HT 4 R) expression in the mPFC rescues hypophagia and specific molecular changes related to depression resistance in the DR (5-HT release elevation, 5-HT 1A receptor, and 5-HT transporter reductions) of stressed 5-HT 4 R knockout mice. The adult mPFC-5-HT 4 R knockdown mimics the null phenotypes. When mPFC-5-HT 4 Rs are overexpressed and DR-5-HT1ARs are blocked in the DR, hypophagia following stress persists, suggesting an antidepressant action of early anorexia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Kinetic modeling of 11C-SB207145 binding to 5-HT4 receptors in the human brain in vivo

    Marner, Lisbeth; Gillings, Nic; Comley, Robert A

    2009-01-01

    The serotonin 4 receptor (5-HT(4) receptor) is known to be involved in learning and memory. We evaluated for the first time the quantification of a novel 5-HT(4) receptor radioligand, (11)C-SB207145, for in vivo brain imaging with PET in humans. METHODS: For evaluation of reproducibility, 6...

  14. Current position of 5HT3 antagonists and the additional value of NK1 antagonists; a new class of antiemetics

    R. de Wit (Ronald)

    2003-01-01

    textabstractThe advent of the 5HT3 receptor antagonists (5HT3 antagonists) in the 1990s and the combination with dexamethasone has resulted in acute emesis protection in 70% of patients receiving highly emetogenic chemotherapy. Despite complete protection in the acute phase, however, 40% of patients

  15. Functional characterization of 5-HT1B receptor drugs in nonhuman primates using simultaneous PET-MR

    Hansen, Hanne D.; Mandeville, Joseph B.; Sander, Christin Y.

    2017-01-01

    In the present study, we used a simultaneous PET-MR experimental design to investigate the effects of functionally different compounds (agonist, partial agonist, and antagonist) on 5-HT1B receptor (5-HT1BR) occupancy and the associated hemodynamic responses. In anesthetized male nonhuman primates...

  16. Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes

    Filip, Malgorzata; Spampinato, Umberto; McCreary, Andrew C.; Przegalinski, Edmund

    2012-01-01

    The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT2C receptors on the effects of different classes of addictive drugs, illustrated by reference to data using

  17. Role of "Aplysia" Cell Adhesion Molecules during 5-HT-Induced Long-Term Functional and Structural Changes

    Han, Jin-Hee; Lim, Chae-Seok; Lee, Yong-Seok; Kandel, Eric R.; Kaang, Bong-Kiun

    2004-01-01

    We previously reported that five repeated pulses of 5-HT lead to down-regulation of the TM-apCAM isoform at the surface of "Aplysia" sensory neurons (SNs). We here examined whether apCAM down-regulation is required for 5-HT-induced long-term facilitation. We also analyzed the role of the cytoplasmic and extracellular domains by overexpressing…

  18. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera).

    Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang

    2006-09-01

    The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT.

  19. 5-HT6 receptor antagonist attenuates the memory deficits associated with neuropathic pain and improves the efficacy of gabapentinoids.

    Jayarajan, Pradeep; Nirogi, Ramakrishna; Shinde, Anil; Goura, Venkatesh; Babu, Vuyyuru Arun; Yathavakilla, Sumanth; Bhyrapuneni, Gopinadh

    2015-10-01

    Memory deficit is a co-morbid disorder in patients suffering from neuropathic pain. Gabapentin and pregabalin (gabapentinoids) are among the widely prescribed medications for the treatment of neuropathic pain. Memory loss and sedation are the commonly reported side effects with gabapentinoids. Improving the cognitive functions and attenuating drug-induced side effects may play a crucial role in the management of pain. We evaluated the effects of 5-HT6 receptor antagonists on the memory deficits associated with neuropathy. We also studied the effects of 5-HT6 receptor antagonists on the side effects, and the analgesic effects of gabapentinoids. 5-HT6 receptor antagonists attenuated the cognitive deficits in neuropathic rats. Neuropathic rats co-treated with 5-HT6 receptor antagonist and gabapentinoids showed improvement in memory. 5-HT6 receptor antagonists enhanced the analgesic effects of gabapentinoids but had no effect on the motor side effects. The observed effects may not be due to pharmacokinetic interactions. 5-HT6 receptor antagonist attenuate the cognitive deficits associated with neuropathy, and this effect is also seen when co-treated with gabapentinoids. Since, 5-HT6 antagonists improved the effectiveness of gabapentinoids, reduction in the dosage and frequency of gabapentinoids treatment may reduce the side effects. Combining 5-HT6 receptor antagonist with gabapentinoids may offer a novel treatment strategy for neuropathic pain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  20. A study in male and female 5-HT transporter knockout rats: an animal model for anxiety and depression disorders.

    Olivier, J.; Van Der Hart, M.G.C.; Van Swelm, R.P.L.; Dederen, P.J.; Homberg, J.R.; Cremers, T.; Deen, P.M.T.; Cuppen, E.; Cools, A.R.; Ellenbroek, B.A.

    2008-01-01

    Human studies have shown that a reduction of 5-HT transporter (SERT) increases the vulnerability for anxiety and depression. Moreover, women are more vulnerable to develop depression and anxiety disorders than men. For that reason we hypothesized that homozygous 5-HT transporter knockout rat

  1. Mapping cortical thickness of the patients with unilateral end-stage open angle glaucoma on planar cerebral cortex maps.

    Piotr Bogorodzki

    Full Text Available PURPOSE: To estimate and compare cerebral cortex thickness in patients with unilateral end-stage glaucoma with that of age-matched individuals with unaffected vision. METHODS: 14 patients with unilateral end-stage primary open angle glaucoma (POAG and 12 age-matched control individuals with no problems with vision were selected for the study based on detailed ophthalmic examination. For each participant 3D high-resolution structural brain T1-weighted magnetization prepared MR images were acquired on a 3.0 T scanner. Brain cortex thickness was estimated using the FreeSurfer image analysis environment. After warping of subjects' cortical surfaces to FreeSurfer common space, differences between POAG and control groups were inferred at the group analysis level with the General Linear Model. RESULTS: The analysis performed revealed local thinning in the visual cortex areas in the POAG group. Statistically significant differences form 600 mm2 clusters located in the Brodmann area BA19 in the left and right hemisphere. CONCLUSION: Unilateral vision loss due to end-stage neuropathy from POAG is associated with significant thinning of cortical areas employed in vision.

  2. Disturbance of serotonin 5HT2 receptors in remitted patients suffering from hereditary depressive disorder.

    Larisch, R; Klimke, A; Mayoral, F; Hamacher, K; Herzog, H R; Vosberg, H; Tosch, M; Gaebel, W; Rivas, F; Coenen, H H; Müller-Gärtner, H W

    2001-08-01

    The characteristics of 5HT2 receptor binding were investigated in major depression in vivo using positron emission tomography and the radioligand F-18-altanserin. Twelve patients from families with high loading of depression living in a geographically restricted region were examined and compared with normal control subjects. At the time of the PET measurement all patients were remitted; in some of them remission was sustained by antidepressive medication. Binding potential was assessed by Logan's graphical analysis method. The binding of F-18-altanserin was about 38% lower in patients than in healthy controls (p depression rather than by medication. The data suggest that 5HT2 receptors are altered in depression. We present evidence for a reduction of the receptor density, which might be usable as trait marker of subjects susceptible for depressive illness.

  3. 5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology

    Peng, Yao; Mccorvy, John D.; Harpsøe, Kasper

    2018-01-01

    Drugs frequently require interactions with multiple targets—via a process known as polypharmacology—to achieve their therapeutic actions. Currently, drugs targeting several serotonin receptors, including the 5-HT2C receptor, are useful for treating obesity, drug abuse, and schizophrenia. The comp...... the structural basis of polypharmacology at canonical GPCRs and illustrates how understanding characteristic patterns of ligand-receptor interaction and activation may ultimately facilitate drug design at multiple GPCRs....

  4. MDMA-Induced Dissociative State not Mediated by the 5-HT2A Receptor

    Drew J. Puxty

    2017-07-01

    Full Text Available Previous research has shown that a single dose of MDMA induce a dissociative state, by elevating feelings of depersonalization and derealization. Typically, it is assumed that action on the 5-HT2A receptor is the mechanism underlying these psychedelic experiences. In addition, other studies have shown associations between dissociative states and biological parameters (heart rate, cortisol, which are elevated by MDMA. In order to investigate the role of the 5-HT2 receptor in the MDMA-induced dissociative state and the association with biological parameters, a placebo-controlled within-subject study was conducted including a single oral dose of MDMA (75 mg, combined with placebo or a single oral dose of the 5-HT2 receptor blocker ketanserin (40 mg. Twenty healthy recreational MDMA users filled out a dissociative states scale (CADSS 90 min after treatments, which was preceded and followed by assessment of a number of biological parameters (cortisol levels, heart rate, MDMA blood concentrations. Findings showed that MDMA induced a dissociative state but this effect was not counteracted by pre-treatment with ketanserin. Heart rate was the only biological parameter that correlated with the MDMA-induced dissociative state, but an absence of correlation between these measures when participants were pretreated with ketanserin suggests an absence of directional effects of heart rate on dissociative state. It is suggested that the 5-HT2 receptor does not mediate the dissociative effects caused by a single dose of MDMA. Further research is needed to determine the exact neurobiology underlying this effect and whether these effects contribute to the therapeutic potential of MDMA.

  5. Serotonin 5-HT4 receptors: A new strategy for developing fast acting antidepressants?

    Vidal, Rebeca; Castro, Elena; Pilar-Cuéllar, Fuencisla; Pascual-Brazo, Jesús; Díaz, Alvaro; Rojo, María Luisa; Linge, Raquel; Martín, Alicia; Valdizán, Elsa M; Pazos, Angel

    2014-01-01

    The regulation of the activity of brain monoaminergic systems has been the focus of attention of many studies since the first antidepressant drug emerged 50 years ago. The search for novel antidepressants is deeply linked to the search for fast-acting strategies, taking into account that 2-4 weeks of treatment with classical antidepressant are required before clinical remission of the symptoms becomes evident. In the recent years several hypotheses have been proposed on the basis of the existence of alterations in brain synaptic plasticity in major depression. Recent evidences support a role for 5-HT4 receptors in the pathogenesis of depression as well as in the mechanism of action of antidepressant drugs. In fact, chronic treatment with antidepressant drugs appears to modulate, at different levels, the signaling pathway associated to 5-HT4 receptors, as well as their levels of expression in the brain. Moreover, several experimental studies have identified this receptor subtype as a promising new target for fast-acting antidepressant strategy: the administration of partial agonists of this receptor induces a number of responses similar to those observed after chronic treatment with classical antidepressants, but with a rapid onset of action. They include efficacy in behavioral models of depression, rapid desensitization of 5-HT1A autoreceptors, and modifications in the expression of several molecular markers of brain neuroplasticity. Although much work remains to be done in order to clarify the real therapeutic potential of these drugs, the evidences reviewed below support the hypothesis that 5-HT4 receptor partial agonists could behave as rapid and effective antidepressants.

  6. The 5-HT2A receptor binding pattern in the human brain is strongly genetically determined

    Pinborg, Lars H; Arfan, Haroon; Haugbol, Steven

    2007-01-01

    With the appropriate radiolabeled tracers, positron emission tomography (PET) enables in vivo human brain imaging of markers for neurotransmission, including neurotransmitter synthesis, receptors, and transporters. Whereas structural imaging studies have provided compelling evidence that the human...... brain anatomy is largely genetically determined, it is currently unknown to what degree neuromodulatory markers are subjected to genetic and environmental influence. Changes in serotonin 2A (5-HT(2A)) receptors have been reported to occur in various neuropsychiatric disorders and an association between...

  7. An autopsied case of MV2K + C-type sporadic Creutzfeldt-Jakob disease presenting with widespread cerebral cortical involvement and Kuru plaques.

    Iwasaki, Yasushi; Saito, Yufuko; Aiba, Ikuko; Kobayashi, Atsushi; Mimuro, Maya; Kitamoto, Tetsuyuki; Yoshida, Mari

    2017-06-01

    MV2-type sporadic Creutzfeldt-Jakob disease (sCJD), which was previously called "Kuru-plaque variant", was gradually revealed to have a wide spectrum and has been classified into three pathological subtypes: MV2K, MV2C and MV2K + C. We herein describe the detailed clinical findings and neuropathologic observations from an autopsied MV2K + C-type Japanese sCJD case with widespread cerebral cortical pathology and Kuru plaques. In the early stages of the disease, the patient exhibited gait disturbance with ataxia and dysarthria as well as gradual appearance of cognitive dysfunction. Diffusion-weighted images (DWI) on MRI revealed extensive cerebral cortical hyperintensity. Pathologic investigation revealed extensive spongiform change in the cerebral cortex, particularly in the deeper layers. Vacuole size varied, and some were confluent. Prion protein (PrP) immunostaining revealed extensive PrP deposition in the cerebral cortex, basal ganglia, thalamus, cerebellum, brainstem and spinal cord. In the cerebral cortex, synaptic-type, Kuru plaque-like, and coarse plaque-type PrP depositions were mainly observed, along with some perivacuolar-type PrP depositions. Kuru plaques and coarse plaque-type PrP depositions also were observed in the cerebellar cortex. PrP gene analysis revealed no mutations, and polymorphic codon 129 exhibited Met/Val heterozygosity. Western blot analysis revealed a mixture of intermediate-type PrP Sc and type 2 PrP Sc . Based on previous reports regarding MV2-type sCJD and the clinicopathologic findings of the present case, we speculated that it may be possible to clinically distinguish each MV2 subtype. Clinical presentation of the MV2K + C subtype includes predominant cerebral cortical involvement signs with ataxia and DWI hyperintensity of the cerebral cortex on MRI. © 2016 Japanese Society of Neuropathology.

  8. The Effect of Paroxetine on Depressive Symptom with Somatic Disease and Change of Platelet 5-HT Concentration

    郑凯; 史庭慧; 刘晓晴

    2003-01-01

    To study the effect of paroxetine on depressive symptom accompanying somatic disease and the value of platelet 5-HT concentration in the diagnosis of depression, 30 patients with depressive symptom were treated with paroxetine. All patients were evaluated on Zung and HAMD scale and assayed of platelet 5-HT concentration before and after treatment. It was found that patients had a lower level of platelet 5-HT concentration than healthy people (P<0. 01). After six weeks of treatment, depressive and somatic symptoms were both improved (P<0. 01) and platelet 5-HT concentration was even lower (P>0. 05). It was suggested that paroxetine was a good antidepressant and platelet 5-HT concentration was useful in the screening of depression.

  9. 5-HT modulation of hyperpolarization-activated inward current and calcium- dependent outward current in a crustacean motor neuron

    Kiehn, O.; Harris-Warrick, R. M.

    1992-01-01

    1. Serotonergic modulation of a hyperpolarization-activated inward current, I(h), and a calcium-dependent outward current, I(o(Ca)), was examined in the dorsal gastric (DG) motor neuron, with the use of intracellular recording techniques in an isolated preparation of the crab stomatogastric....... The time course of activation of I(h) was well fitted by a single exponential function and strongly voltage dependent. 5-HT increased the rate of activation of I(h). 5- HT also slowed the rate of deactivation of the I(h) tail on repolarization to -50 mV. 6. The activation curve for the conductance (G...... reduced or eliminated the 5-HT response in the depolarizing range, suggesting that 5-HT specifically reduces I(o(Ca)). 11. These results demonstrate that 5-HT has dual effects on the DG motor neuron, in the crab stomatogastric ganglion. We suggest that changes in the two conductances are responsible...

  10. Effects of electroacupuncture on the cortical extracellular signal regulated kinase pathway in rats with cerebral ischaemia/reperfusion.

    Wu, Chunxiao; Li, Chun; Zhou, Guoping; Yang, Lu; Jiang, Guimei; Chen, Jing; Li, Qiushi; Zhan, Zhulian; Xu, Xiuhong; Zhang, Xin

    2017-12-01

    To explore the effects of electroacupuncture (EA) on the phosphorylated extracellular signal regulated kinase (p-ERK) pathway of the cerebral cortex in a rat model of focal cerebral ischaemia/reperfusion (I/R). 160 adult Sprague-Dawley rats underwent middle carotid artery occlusion (MCAO) to establish I/R injury and were randomly divided into four groups (n=40 each) that remained untreated (I/R group) or received EA at LU5, LI4, ST36 and SP6 (I/R+EA group), the ERK inhibitor PD98059 (I/R+PD group), or both interventions (I/R+PD+EA groups). An additional 40 rats undergoing sham surgery formed a healthy control group. Eight rats from each group were sacrificed at the following time points: 2 hours, 6 hours, 1 day, 3 days and 1 week. Neurological function was assessed using neurological deficit scores, morphological examination was performed following haematoxylin-eosin staining of cortical tissues, and apoptotic indices were calculated after terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labelling. Cortical protein and mRNA expression of p-ERK and ERK were measured by immunohistochemistry and real-time quantitative PCR, respectively. Compared with the I/R group, neurological deficit scores and apoptotic indices were lower in the I/R+EA group at 1 and 3 days, whereas mRNA/protein expression of ERK/p-ERK was higher in the EA group at all time points studied. Our results suggest that EA can alleviate neurological deficits and reduce cortical apoptosis in rats with I/R injury. These anti-apoptotic effects may be due to upregulation of p-ERK. Moreover, apoptosis appeared to peak at 1 day after I/R injury, which might therefore represent the optimal time point for targeting of EA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Profiles of cortical tissue depolarization in cat focal cerebral ischemia in relation to calcium ion homeostasis and nitric oxide production.

    Ohta, K; Graf, R; Rosner, G; Heiss, W D

    1997-11-01

    Cortical depolarization was investigated in a topographic gradient of ischemic density after 1-hour transient middle cerebral artery occlusion in halothane-anesthetized cats. A laser Doppler flow probe, an ion-selective microelectrode, and a nitric oxide (NO) electrode measured regional CBF (rCBF), direct current (DC) potential, extracellular Ca2+ concentration ([Ca2+]o), and NO concentration in ectosylvian and suprasylvian gyri of nine animals. Recordings revealed 12 of 18 sites with persistent negative shifts of the DC potential, severe rCBF reduction, and a drop of [Ca2+]o characteristic for core regions of focal ischemia. Among these sites, two types were distinguished by further analysis. In Type 1 (n = 5), rapid, negative DC shifts resembled anoxic depolarization as described for complete global ischemia. In this type, ischemia was most severe (8.9 +/- 2.5% of control rCBF), [Ca2+]o dropped fast and deepest (0.48 +/- 0.20 mmol/L), and NO concentration increased transiently (36.1 +/- 24.0 nmol/L at 2.5 minutes), and decreased thereafter. In Type 2 (n = 7), the DC potential fell gradually over the first half of the ischemic episode, rCBF and [Ca2+]o reductions were smaller than in Type 1 (16.2 +/- 8.2%; 0.77 +/- 0.41 mmol/L), and NO increased continuously during ischemia (53.1 +/- 60.4 nmol/L at 60 minutes) suggesting that in this type NO most likely exerts its diverse actions on ischemia-threatened tissue. In the remaining six recording sites, a third type (Type 3) attributable to the ischemic periphery was characterized by minimal DC shifts, mild ischemia (37.2 +/- 13.3%), nonsignificant alterations of [Ca2+]o, but decreased NO concentrations during middle cerebral artery occlusion. Reperfusion returned the various parameters to baseline levels within 1 hour, the recovery of [Ca2+]o and NO concentration being delayed in Type 1. An NO synthase inhibitor (N(G)-nitro-L-arginine, 50 mg/kg intravenously; four animals) abolished NO elevation during ischemia. In

  12. Extended N-Arylsulfonylindoles as 5-HT6 Receptor Antagonists: Design, Synthesis & Biological Evaluation

    Gonzalo Vera

    2016-08-01

    Full Text Available Based on a known pharmacophore model for 5-HT6 receptor antagonists, a series of novel extended derivatives of the N-arylsulfonyindole scaffold were designed and identified as a new class of 5-HT6 receptor modulators. Eight of the compounds exhibited moderate to high binding affinities and displayed antagonist profile in 5-HT6 receptor functional assays. Compounds 2-(4-(2-methoxyphenylpiperazin-1-yl-1-(1-tosyl-1H-indol-3-ylethanol (4b, 1-(1-(4-iodophenylsulfonyl-1H-indol-3-yl-2-(4-(2-methoxyphenylpiperazin-1-ylethanol (4g and 2-(4-(2-methoxyphenylpiperazin-1-yl-1-(1-(naphthalen-1-ylsulfonyl-1H-indol-3-ylethanol (4j showed the best binding affinity (4b pKi = 7.87; 4g pKi = 7.73; 4j pKi = 7.83. Additionally, compound 4j was identified as a highly potent antagonist (IC50 = 32 nM in calcium mobilisation functional assay.

  13. Functional expression of the 5-HT1c receptor in neuronal and nonneuronal cells

    Julius, D.; MacDermott, A.B.; Jessel, T.M.; Huang, K.; Molineaux, S.; Schieren, I.; Axel, R.

    1988-01-01

    The isolation of the genes encoding the multiple serotonin receptor subtypes and the ability to express these receptors in new cellular environments will help to elucidate the molecular mechanisms of action of serotonin in the mammalian brain. The cloning of most neurotransmitter receptors has required the purification of receptor, the determination of partial protein sequence, and the synthesis of oligonucleotide probes with which to obtain cDNA or genomic clones. However, the serotonin receptors have not been purified and antibodies have not been generated. The authors therefore designed a cDNA expression system that permits the identification of functional cDNA clones encoding serotonin receptors in the absence of protein sequence information. They have combined cloning in RNA expression vectors with an electrophysiological assay in oocytes to isolate a functional cDNA clone encoding the entire 5-HT 1c receptor. The sequence of this clone reveals that the 5-HT 1c receptor belongs to a family of G-protein-coupled receptors that are thought to traverse the membrane seven times. Mouse fibroblasts transformed with this clone bind serotonergic ligands and respond to serotonin with an elevation in intracellular calcium. Moreover, in situ hybridization and Northern blot analysis indicate that the 5-HT 1c receptor mRNA is expressed in a wide variety of neurons in the rat central nervous system, suggesting that this receptor plays a prominent role in neuronal function

  14. Identification of 5HT2-receptors on longitudinal muscle of the guinea pig ileum

    Engel, G.; Hoyer, D.; Kalkman, H.O.; Wick, M.B.

    1984-01-01

    In binding experiments with the radioligands [ 3 H]Ketanserin (HKet) and [ 125 I]LSD (ILSD) 21 compounds were investigated using rat brain cortex membranes. The pK/sub D/-values of the compounds were virtually independent of the radioligand used and their rank order was consistent with classification of the binding sites as being of the 5-HT 2 -type. In contrast, in the longitudinal muscle of the guinea pig ileum in the presence of 0.3 microM cinanserin, ILSD labelled sites which were quite different to those in the cortex. In a functional test antagonism of the 5HT induced contraction of the guinea-pig ileum was measured in the presence of 1 microM atropine. The pharmacological inhibition constants (IC 50 -values) of 8 compounds correlated well with the dissociation constants for HKet binding in the cortex and did not correlate with the data from ILSD binding in the guinea pig ileum. It is concluded that the ileum contains postjunctional 5HT 2 -receptors which mediate contraction. The nature of the ILSD binding sites in the ileum remains to be elucidated

  15. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-05

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Review article: the many potential roles of intestinal serotonin (5-hydroxytryptamine, 5-HT) signalling in inflammatory bowel disease.

    Coates, M D; Tekin, I; Vrana, K E; Mawe, G M

    2017-09-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important mediator of every major gut-related function. Recent investigations also suggest that 5-HT can influence the development and severity of inflammation within the gut, particularly in the setting of inflammatory bowel disease (IBD). To review the roles that the intestinal serotonin signalling system plays in gut function, with a specific focus on IBD. We reviewed manuscripts from 1952 to 2017 that investigated and discussed roles for 5-HT signalling in gastrointestinal function and IBD, as well as the influence of inflammation on 5-HT signalling elements within the gut. Inflammation appears to affect every major element of intestinal 5-HT signalling, including 5-HT synthesis, release, receptor expression and reuptake capacity. Importantly, many studies (most utilising animal models) also demonstrate that modulation of selective serotonergic receptors (via agonism of 5-HT 4 R and antagonism of 5-HT 3 R) or 5-HT signal termination (via serotonin reuptake inhibitors) can alter the likelihood and severity of intestinal inflammation and/or its complicating symptoms. However, there are few human studies that have studied these relationships in a targeted manner. Insights discussed in this review have strong potential to lead to new diagnostic and therapeutic tools to improve the management of IBD and other related disorders. Specifically, strategies that focus on modifying the activity of selective serotonin receptors and reuptake transporters in the gut could be effective for controlling disease activity and/or its associated symptoms. Further studies in humans are required, however, to more completely understand the pathophysiological mechanisms underlying the roles of 5-HT in this setting. © 2017 John Wiley & Sons Ltd.

  17. Oppositional effects of serotonin receptors 5-HT1a, 2 and 2c in the regulation of adult hippocampal neurogenesis

    Friederike Klempin

    2010-07-01

    Full Text Available Serotonin (5-HT appears to play a major role in controlling adult hippocampal neurogenesis and thereby it is relevant for theories linking failing adult neurogenesis to the pathogenesis of major depression and the mechanisms of action of antidepressants. Serotonergic drugs lack acute effects on adult neurogenesis in many studies, which suggests a surprising long latency phase. Here we report that the selective serotonin reuptake inhibitor fluoxetine, which has no acute effect on precursor cell proliferation, causes the well-described increase in net neurogenesis upon prolonged treatment partly by promoting the survival and maturation of new postmitotic neurons. We hypothesized that this result is the cumulative effect of several 5-HT-dependent events in the course of adult neurogenesis. Thus, we used specific agonists and antagonists to 5-HT1a, 2, and 2c receptor subtypes to analyze their impact on different developmental stages. We found that 5-HT exerts acute and opposing effects on proliferation and survival or differentiation of precursor cells by activating the diverse receptor subtypes on different stages within the neuronal lineage in vivo. This was confirmed in vitro by demonstrating that 5-HT1a receptors are involved in self-renewal of precursor cells, whereas 5-HT2 receptors effect both proliferation and promote neuronal differentiation. We propose that under acute conditions 5-HT2 effects counteract the positive proliferative effect of 5-HT1a receptor activation. However, prolonged 5-HT2c receptor activation fosters an increase in late stage progenitor cells and early postmitotic neurons, leading to a net increase in adult neurogenesis. Our data indicate that serotonin does not show effect latency in the adult dentate gyrus. Rather, the delayed response to serotonergic drugs with respect to endpoints downstream of the immediate receptor activity is largely due to the initially antagonistic and un-balanced action of different 5-HT

  18. Pindolol antagonises G-protein activation at both pre- and postsynaptic serotonin 5-HT1A receptors: a.

    Newman-Tancredi, A; Chaput, C; Touzard, M; Millan, M J

    2001-04-01

    The arylalkylamine, pindolol, may potentiate the clinical actions of antidepressant agents. Although it is thought to act via blockade of 5-HT1A autoreceptors, its efficacy at these sites remains controversial. Herein, we evaluated the actions of pindolol at 5-HT1A autoreceptors and specific populations of postsynaptic 5-HT1A receptors employing [35S]GTPgammaS autoradiography, a measure of receptor-mediated G-protein activation. Both 8-OH-DPAT (1 microM) and 5-HT (10 microM) elicited a pronounced increase in [35S]GTPyS binding in the dorsal raphe nucleus, which contains serotonergic cell bodies bearing 5-HT1A autoreceptors. Pindolol abolished their actions. In the dentate gyrus, lateral septum and entorhinal cortex, structures enriched in postsynaptic 5-HT1A receptors, 8-OH-DPAT (1 microM) and 5-HT (10 microM) also elicited a marked increase in [35S]GTPgammaS binding which was likewise blocked by pindolol. The antagonism of 5-HT-induced [35S]GTPgammaS labelling in the dentate gyrus was shown to be concentration-dependent, yielding a pIC50 of 5.82. Pindolol did not, itself, affect [35S]GTPgammaS binding in any brain region examined. In conclusion, these data suggest that, as characterised by [35S]GTPgammaS autoradiography, and compared with 5-HT and 8-OH-DPAT, pindolol possesses low efficacy at both pre- and postsynaptic 5-HT1A receptors.

  19. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Impaired cerebral microcirculation induced by ammonium chloride in rats is due to cortical adenosine release

    Bjerring, Peter Nissen; Bjerrum, Esben Jannik; Larsen, Fin Stolze

    2018-01-01

    BACKGROUND: Liver failure results in hyperammonaemia, impaired regulation of cerebral microcirculation, encephalopathy and death. However, the key mediator that alters cerebral microcirculation remains unidentified. In this study we show that topical ammonium significantly increases periarteriolar......: In patients with liver failure disturbances in the brain function is caused in part by ammonia toxicity. In our project we have studied how ammonia, through adenosine release, affects the blood flow in the brain of rats. In our experimental model we demonstrated that the detrimental effect of ammonia on blood...... flow regulation was counteracted by blocking the adenosine receptors in the brain. With this observation we have identified a novel potential treatment target. If we can confirm our findings in a future clinical study it might help patients suffering from liver failure and the severe condition called...

  1. Actions of 5-hydroxytryptamine and 5-HT1A receptor ligands on rat dorso-lateral septal neurones in vitro.

    Van den Hooff, P; Galvan, M

    1992-08-01

    1. The actions of 5-hydroxytryptamine (5-HT) and some 5-HT1A receptor ligands on neurones in the rat dorso-lateral septal nucleus were recorded in vitro by intracellular recording techniques. 2. In the presence of tetrodotoxin (1 microM) to block any indirect effects, bath application of 5-HT (0.3-30 microM) hyperpolarized the neurones in a concentration-dependent manner and reduced membrane resistance. The hyperpolarization did not exhibit desensitization and was sometimes followed by a small depolarization. 3. The 5-HT1A receptor ligands, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), N,N-dipropyl-5-carboxamidotryptamine (DP-5-CT) and buspirone but not the non-selective 5-HT1 receptor agonist, 1-m-trifluoromethylphenylpiperazine (TFMPP), also hyperpolarized the neurones. 4. 5-HT, 8-OH-DPAT and DP-5-CT appeared to act as full agonists whereas buspirone behaved as a partial agonist. The estimated EC50S were: DP-5-CT 15 nM, 8-OH-DPAT 110 nM, 5-HT 3 microM and buspirone 110 nM. 5. At a concentration of 3 microM, the putative 5-HT1A receptor antagonists, spiperone, methiothepin, NAN-190 (1-(2-methoxyphenyl)-4-[4-(2-pthalimido)butyl]piperazine) and MDL 73005EF (8-[2-(2,3-dihydro-1,4-benzodioxin-2-yl-methylamino)ethyl]-8- azaspiro[4,5]decane-7,9-dione methyl sulphonate), produced a parallel rightward shift in the concentration-response curve to 5-HT with no significant reduction in the maximum response. The estimated pA2 values were: NAN-190 6.79, MDL 73005EF 6.59, spiperone 6.54 and methiothepin 6.17.6. The 5-HT2/5-HTlc receptor antagonist, ketanserin (3 microM) and the 5HT3 receptor antagonist, tropisetron (3 microM) did not antagonize the 5-HT-induced hyperpolarizations; however, ketanserin blocked the depolarization which sometimes followed the hyperpolarization.7. It is concluded that the 5-HT-induced membrane hyperpolarization of rat dorso-lateral septal neurones is mediated by 5-HTA receptors.

  2. Reproducibility of 5-HT2A receptor measurements and sample size estimations with [18F]altanserin PET using a bolus/infusion approach

    Haugboel, Steven; Pinborg, Lars H.; Arfan, Haroon M.; Froekjaer, Vibe M.; Svarer, Claus; Knudsen, Gitte M.; Madsen, Jacob; Dyrby, Tim B.

    2007-01-01

    To determine the reproducibility of measurements of brain 5-HT 2A receptors with an [ 18 F]altanserin PET bolus/infusion approach. Further, to estimate the sample size needed to detect regional differences between two groups and, finally, to evaluate how partial volume correction affects reproducibility and the required sample size. For assessment of the variability, six subjects were investigated with [ 18 F]altanserin PET twice, at an interval of less than 2 weeks. The sample size required to detect a 20% difference was estimated from [ 18 F]altanserin PET studies in 84 healthy subjects. Regions of interest were automatically delineated on co-registered MR and PET images. In cortical brain regions with a high density of 5-HT 2A receptors, the outcome parameter (binding potential, BP 1 ) showed high reproducibility, with a median difference between the two group measurements of 6% (range 5-12%), whereas in regions with a low receptor density, BP 1 reproducibility was lower, with a median difference of 17% (range 11-39%). Partial volume correction reduced the variability in the sample considerably. The sample size required to detect a 20% difference in brain regions with high receptor density is approximately 27, whereas for low receptor binding regions the required sample size is substantially higher. This study demonstrates that [ 18 F]altanserin PET with a bolus/infusion design has very low variability, particularly in larger brain regions with high 5-HT 2A receptor density. Moreover, partial volume correction considerably reduces the sample size required to detect regional changes between groups. (orig.)

  3. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy.

    Whitney, Daniel G; Singh, Harshvardhan; Miller, Freeman; Barbe, Mary F; Slade, Jill M; Pohlig, Ryan T; Modlesky, Christopher M

    2017-01-01

    Nonambulatory children with severe cerebral palsy (CP) have underdeveloped bone architecture, low bone strength and a high degree of fat infiltration in the lower extremity musculature. The present study aims to determine if such a profile exists in ambulatory children with mild CP and if excess fat infiltration extends into the bone marrow. Ambulatory children with mild spastic CP and typically developing children (4 to 11years; 12/group) were compared. Magnetic resonance imaging was used to estimate cortical bone, bone marrow and total bone volume and width, bone strength [i.e., section modulus (Z) and polar moment of inertia (J)], and bone marrow fat concentration in the midtibia, and muscle volume, intermuscular, subfascial, and subcutaneous adipose tissue (AT) volume and intramuscular fat concentration in the midleg. Accelerometer-based activity monitors worn on the ankle were used to assess physical activity. There were no group differences in age, height, body mass, body mass percentile, BMI, BMI percentile or tibia length, but children with CP had lower height percentile (19th vs. 50th percentile) and total physical activity counts (44%) than controls (both pChildren with CP also had lower cortical bone volume (30%), cortical bone width in the posterior (16%) and medial (32%) portions of the shaft, total bone width in the medial-lateral direction (15%), Z in the medial-lateral direction (34%), J (39%) and muscle volume (39%), and higher bone marrow fat concentration (82.1±1.8% vs. 80.5±1.9%), subfascial AT volume (3.3 fold) and intramuscular fat concentration (25.0±8.0% vs. 16.1±3.3%) than controls (all pfat infiltration estimates, except posterior cortical bone width, were still present (all pchildren with CP compared to controls emerged (pchildren with mild spastic CP exhibit an underdeveloped bone architecture and low bone strength in the midtibia and a greater infiltration of fat in the bone marrow and surrounding musculature compared to typically

  4. Specific labelling of serotonin 5-HT(1B) receptors in rat frontal cortex with the novel, phenylpiperazine derivative, [3H]GR125,743. A pharmacological characterization.

    Millan, M J; Newman-Tancredi, A; Lochon, S; Touzard, M; Aubry, S; Audinot, V

    2002-04-01

    Although several tritiated agonists have been used for radiolabelling serotonin (5-hydroxytryptamine, 5-HT)(1B) receptors in rats, data with a selective, radiolabelled antagonist have not been presented. Inasmuch as [3H]GR125,743 specifically labels cloned, human and native guinea pig 5-HT(1B) receptors and has been employed for characterization of cerebral 5-HT(1B) receptor in the latter species [Eur. J. Pharmacol. 327 (1997) 247.], the present study evaluated its utility for characterization of native, cerebral 5-HT(1B) sites in the rat. In homogenates of frontal cortex, [3H]GR125,743 (0.8 nM) showed rapid association (t(1/2)=3.4 min), >90% specific binding and high affinity (K(d)=0.6 nM) for a homogeneous population of receptors with a density (B(max)) of 160 fmol/mg protein. In competition binding studies, affinities were determined for 15 chemically diverse 5-HT(1B) agonists, including 2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indole-3-yl]ethylamine (L694,247; pK(i), 10.4), 5-carboxamidotryptamine (5-CT; 9.7), 3-[3-(2-dimethylamino-ethyl)-1H-indol-6-yl]-N-(4-methoxybenzyl)acrylamide (GR46,611; 9.6), 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU24,969; 9.5), dihydroergotamine (DHE; 8.6), 5-H-pyrrolo[3,2-b]pyridin-5-one,1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl (CP93,129; 8.4), anpirtoline (7.9), sumatriptan (7.4), 1-[2-(3-fluorophenyl)ethyl]-4-[3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl]piperazine (L775,606; 6.4) and (minus sign)-1(S)-[2-[4-(4-methoxyphenyl)piperazin-1-yl]ethyl]-N-methyl-3,4-dihydro-1H-2-benzopyran-6-carboxamide (PNU109,291; <5.0). Similarly, affinities were established for 13 chemically diverse antagonists, including N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-(4-pyridyl)benzamide (GR125,743; pK(i), 9.1), (-)cyanopindolol (9.0), (-)-tertatolol (8.2), N-(4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiozol-3-yl)biphenyl-4-carboxamide (GR127,935; 8.2), N-[3

  5. h5-HT1B receptor-mediated constitutive Gαi3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-01-01

    Serotonin 5-HT1B receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5′-0-(3-[35S]thio)-triphosphate ([35S]GTPγS) binding strategy, we characterised Gαi3 subunit activation by h5-HT1B receptors stably expressed in Chinese hamster ovary (CHO) cells. The agonists, 5-HT, alniditan and BMS181,101, stimulated Gαi3, whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT1B receptor ligand, S18127, modestly stimulated Gαi3 and reversed the actions of both 5-HT and methiothepin. S18127 (1 μM) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. Isotopic dilution experiments ([35S]GTPγS versus GTPγS) revealed high-affinity [35S]GTPγS binding to Gαi3 subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [35S]GTPγS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPγS for Gαi3 subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. h5-HT1B receptor-mediated Gαi3 subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [35S]GTPγS binding, basal Gαi3 activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Gαi3 activation. In conclusion, at h5-HT1B receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Gαi3, and its reversal by S18127, reveals constitutive activation of this Gα subunit; (ii) constitutive Gαi3 activation can be quantified by isotopic dilution [35S]GTPγS binding and (iii) decreasing NaCl concentrations enhances Gαi3 activation and leads to protean agonist properties of 5-HT: that is a switch to inhibition of Gαi3. PMID:12684263

  6. h5-HT(1B) receptor-mediated constitutive Galphai3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT.

    Newman-Tancredi, Adrian; Cussac, Didier; Marini, Laetitia; Touzard, Manuelle; Millan, Mark J

    2003-03-01

    1. Serotonin 5-HT(1B) receptors couple to G-proteins of the Gi/o family. However, their activation of specific G-protein subtypes is poorly characterised. Using an innovative antibody capture/guanosine-5'-0-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding strategy, we characterised Galpha(i3) subunit activation by h5-HT(1B) receptors stably expressed in Chinese hamster ovary (CHO) cells. 2. The agonists, 5-HT, alniditan and BMS181,101, stimulated Galpha(i3), whereas methiothepin and SB224,289 behaved as inverse agonists. The selective 5-HT(1B) receptor ligand, S18127, modestly stimulated Galpha(i3) and reversed the actions of both 5-HT and methiothepin. S18127 (1 micro M) also produced parallel, dextral shifts of the 5-HT and methiothepin isotherms. 3. Isotopic dilution experiments ([(35)S]GTPgammaS versus GTPgammaS) revealed high-affinity [(35)S]GTPgammaS binding to Galpha(i3) subunits in the absence of receptor ligands indicating constitutive activity. High-affinity [(35)S]GTPgammaS binding was increased 2.8-fold by 5-HT with an increase in the affinity of GTPgammaS for Galpha(i3) subunits. In contrast, methiothepin halved the number of high-affinity binding sites and decreased their affinity. 4. h5-HT(1B) receptor-mediated Galpha(i3) subunit activation was dependent on the concentration of NaCl. At 300 mM, 5-HT stimulated [(35)S]GTPgammaS binding, basal Galpha(i3) activation was low and methiothepin was inactive. In contrast, at 10 mM NaCl, basal activity was enhanced and the inverse agonist activity of methiothepin was accentuated. Under these conditions, 5-HT decreased Galpha(i3) activation. 5. In conclusion, at h5-HT(1B) receptors expressed in CHO cells: (i) inverse agonist induced inhibition of Galpha(i3), and its reversal by S18127, reveals constitutive activation of this Galpha subunit; (ii) constitutive Galpha(i3) activation can be quantified by isotopic dilution [(35)S]GTPgammaS binding and (iii) decreasing NaCl concentrations enhances Galpha(i3

  7. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates.

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B; Andersen, Jens V; Aldana, Blanca I; Nissen, Jakob D; Schousboe, Arne; Waagepetersen, Helle S

    2017-03-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U- 13 C]glucose or [1,2- 13 C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13 C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13 C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13 C-labeling observed with [U- 13 C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2- 13 C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13 C-labeling (%) data obtained from

  8. THYROID HORMONE TREATED ASTROCYTES INDUCE MATURATION OF CEREBRAL CORTICAL NEURONS THROUGH MODULATION OF PROTEOGLYCAN LEVELS

    Romulo Sperduto Dezonne

    2013-08-01

    Full Text Available Proper brain neuronal circuitry formation and synapse development is dependent on specific cues, either genetic or epigenetic, provided by the surrounding neural environment. Within these signals, thyroid hormones (T3 and T4 play crucial role in several steps of brain morphogenesis including proliferation of progenitor cells, neuronal differentiation, maturation, migration, and synapse formation. The lack of thyroid hormones during childhood is associated with several impair neuronal connections, cognitive deficits, and mental disorders. Many of the thyroid hormones effects are mediated by astrocytes, although the mechanisms underlying these events are still unknown. In this work, we investigated the effect of 3, 5, 3’-triiodothyronine-treated (T3-treated astrocytes on cerebral cortex neuronal differentiation. Culture of neural progenitors from embryonic cerebral cortex mice onto T3-treated astrocyte monolayers yielded an increment in neuronal population, followed by enhancement of neuronal maturation, arborization and neurite outgrowth. In addition, real time PCR assays revealed an increase in the levels of the heparan sulfate proteoglycans, Glypican 1 (GPC-1 and Syndecans 3 e 4 (SDC-3 e SDC-4, followed by a decrease in the levels of the chondroitin sulfate proteoglycan, Versican. Disruption of glycosaminoglycan chains by chondroitinase AC or heparanase III completely abolished the effects of T3-treated astrocytes on neuronal morphogenesis. Our work provides evidence that astrocytes are key mediators of T3 actions on cerebral cortex neuronal development and identified potential molecules and pathways involved in neurite extension; which might eventually contribute to a better understanding of axonal regeneration, synapse formation and neuronal circuitry recover.

  9. Left-right cortical asymmetries of regional cerebral blood flow during listening to words

    Nishizawa, Y; Olsen, T S; Larsen, B

    1982-01-01

    1. Regional cerebral blood flow (rCBF) was measured during rest and during listening to simple words. The xenon-133 intracarotid technique was used and results were obtained from 254 regions of seven right hemispheres and seven left hemispheres. The measurements were performed just after carotid...... of the entire hemisphere. The focal rCBF increases were localized to the superior part of the temporal regions, the prefrontal regions, the frontal eye fields, and the orbitofrontal regions. Significant asymmetries were found in particular in the superior temporal region with the left side showing a more...

  10. Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome.

    Zou, Bai-cang; Dong, Lei; Wang, Yan; Wang, Sheng-hao; Cao, Ming-bo

    2007-12-05

    The 5-hydroxytryptamine7 receptor (5-HT(7) receptor, 5-HT(7)R) plays an important role in the regulation of smooth muscle relaxation and visceral sensation and might be involved in the pathogenesis of the gastrointestinal dyskinesia, abdominal pain and visceral paresthesia in irritable bowel syndrome (IBS). The aim of this study was to investigate the role of the 5-HT(7) receptor in the pathogenesis of IBS. A rat model of irritable bowel syndrome with diarrhea (IBS-D) was established by colonic instillation of acetic acid and restraint stress. A rat model with irritable bowel syndrome with constipation (IBS-C) was established by stomach irrigated with 0 - 4 degrees C cool water daily for 14 days. The content and distribution of 5-HT in the brain and gut were examined by immunohistochemistry and the mRNA expression of the 5-HT(7) receptor was determined by fluorescent quantitative reverse transcription polymerase chain reaction. The accumulation of cyclic adenosine monophosphate (cAMP) in all the same tissues was measured by radioimmunity. The models of IBS were reliable by identification. The immunohistochemistry results showed that there were significantly more 5-HT positive cells in the IBS-D group than in the control group in the hippocampus, hypothalamus, jejunum, ileum, proximate colon and distal colon (P intestine is related to the IBS pathogenesis. The up-regulated expression of the 5-HT(7) receptor in the brain and colon might play an important role in the pathogenesis of IBS-C.

  11. Synthesis and pharmacological evaluation of a new series of radiolabeled ligands for 5-HT7 receptor PET neuroimaging

    Colomb, Julie; Becker, Guillaume; Forcellini, Elsa; Meyer, Sandra; Buisson, Lauriane; Zimmer, Luc; Billard, Thierry

    2014-01-01

    Introduction: The brain serotonin-7 receptor (5-HT 7 ) is the most recently discovered serotonin receptor. It is targeted by several drug-candidates in psychopharmacology and neuropharmacology. In these fields, positron emission tomography (PET) is a molecular imaging modality offering great promise for accelerating the development process from preclinical discovery to clinical phases. We recently described fluorinated 5-HT 7 radioligands, inspired by the structure of SB269970, the prototypical 5-HT 7 antagonist. Although these results were promising, it appeared that the radiotracer-candidates suffered, among other drawbacks, from too low a 5-HT 7 receptor affinity. Methods: In the present study, seven structural analogs of SB269970 were synthesized using design strategies aiming to improve their radiopharmacological properties. Their 5-HT 7 binding properties were investigated by cellular functional assay. The nitro-precursors of the analogs were radiolabeled by [ 18 F-]nucleophilic substitution, and in vitro autoradiography was performed in rat brain, followed by in vivo microPET. Result: The chemical and radiochemical purity of the fluorine radiotracers was > 99% with specific activity in the 40–129 GBq/μmol range. The seven derivatives presented heterogeneous binding affinities toward 5-HT 7 and 5-HT 1A receptors. While [ 18 F]2F3P3 had promising characteristics in vitro, it showed poor brain penetration in vivo, partially reversed after pharmacological inhibition of P-glycoprotein. Conclusions: These results indicated that, while chemical modification of these series improved several radiotracer-candidates in terms of 5-HT 7 receptor affinity and specificity toward 5-HT 1A receptors, other physicochemical modulations would be required in order to increase brain penetration

  12. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor

    Walterscheid, Jeffrey P.; Nghiem, Dat X.; Kazimi, Nasser; Nutt, Leta K.; McConkey, David J.; Norval, Mary; Ullrich, Stephen E.

    2006-01-01

    Exposure to UV radiation induces skin cancer and suppresses the immune response. To induce immune suppression, the electromagnetic energy of UV radiation must be absorbed by an epidermal photoreceptor and converted into a biologically recognizable signal. Two photoreceptors have been recognized: DNA and trans-urocanic acid (UCA). Trans-UCA is normally found in the outermost layer of skin and isomerizes to the cis isomer upon exposure to UV radiation. Although UCA was identified as a UV photoreceptor years ago, and many have documented its ability to induce immune suppression, its exact mode of action remains elusive. Particularly vexing has been the identity of the molecular pathway by which cis-UCA mediates immune suppression. Here we provide evidence that cis-UCA binds to the serotonin [5-hydroxytryptamine (5-HT)] receptor with relatively high affinity (Kd = 4.6 nM). Anti-cis-UCA antibody precipitates radiolabeled 5-HT, and the binding is inhibited by excess 5-HT and/or excess cis-UCA. Similarly, anti-5-HT antibody precipitates radiolabeled cis-UCA, and the binding is inhibited by excess 5-HT or excess cis-UCA. Calcium mobilization was activated when a mouse fibroblast line, stably transfected with the human 5-HT2A receptor, was treated with cis-UCA. Cis-UCA-induced calcium mobilization was blocked with a selective 5-HT2A receptor antagonist. UV- and cis-UCA-induced immune suppression was blocked by antiserotonin antibodies or by treating the mice with 5-HT2A receptor antagonists. Our findings identify cis-UCA as a serotonin receptor ligand and indicate that the immunosuppressive effects of cis-UCA and UV radiation are mediated by activation of the 5-HT2A receptor. PMID:17085585

  13. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease

    Ferguson, Marcus C.; Nayyar, Tultul; Deutch, Ariel Y.; Ansah, Twum A.

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT2A/C receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT2A receptor antagonist M100907 and the selective 5-HT2C receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited...

  14. Pharmacological profile of DA-6886, a novel 5-HT4 receptor agonist to accelerate colonic motor activity in mice.

    Lee, Min Jung; Cho, Kang Hun; Park, Hyun Min; Sung, Hyun Jung; Choi, Sunghak; Im, Weonbin

    2014-07-15

    DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Novel 2-aminotetralin and 3-aminochroman derivatives as selective serotonin 5-HT7 receptor agonists and antagonists.

    Holmberg, Pär; Sohn, Daniel; Leideborg, Robert; Caldirola, Patrizia; Zlatoidsky, Pavel; Hanson, Sverker; Mohell, Nina; Rosqvist, Susanne; Nordvall, Gunnar; Johansson, Anette M; Johansson, Rolf

    2004-07-29

    The understanding of the physiological role of the G-protein coupled serotonin 5-HT(7) receptor is largely rudimentary. Therefore, selective and potent pharmacological tools will add to the understanding of serotonergic effects mediated through this receptor. In this report, we describe two compound classes, chromans and tetralins, encompassing compounds with nanomolar affinity for the 5-HT(7) receptor and with good selectivity. Within theses classes, we have discovered both agonists and antagonists that can be used for further understanding of the pharmacology of the 5-HT(7) receptor.

  16. Peripheral and spinal 5-HT receptors participate in the pronociceptive and antinociceptive effects of fluoxetine in rats.

    Cervantes-Durán, C; Rocha-González, H I; Granados-Soto, V

    2013-11-12

    The role of 5-HT receptors in fluoxetine-induced nociception and antinociception in rats was assessed. Formalin produced a typical pattern of flinching and licking/lifting behaviors. Local peripheral ipsilateral, but not contralateral, pre-treatment with fluoxetine (0.3-3 nmol/paw) increased in a dose-dependent fashion 0.5% formalin-induced nociception. In contrast, intrathecal pretreatment with fluoxetine (0.3-3 nmol/rat) prevented nociception induced by formalin. The peripheral pronociceptive effect of fluoxetine was prevented by the 5-HT2A (ketanserin, 3-10 pmol/paw), 5-HT2B (3-(2-[4-(4-fluorobenzoyl)-1-piperidinyl]ethyl)-2,4(1H,3H)-quinazolinedione(+) tartrate, RS-127445, 3-10 pmol/paw), 5-HT2C (8-[5-(2,4-dimethoxy-5-(4-trifluoromethylphenylsulphonamido) phenyl-5-oxopentyl]1,3,8-triazaspiro[4.5] decane-2,4-dione hydrochloride, RS-102221, 3-10 pmol/paw), 5-HT3 (ondansetron, 3-10 nmol/paw), 5-HT4 ([1-[2-methylsulphonylamino ethyl]-4-piperidinyl]methyl 1-methyl-1H-indole-3-carboxylate, GR-113808, 3-100 fmol/paw), 5-HT6 (4-iodo-N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]benzene-sulfonamide hydrochloride, SB-258585, 3-10 pmol/paw) and 5-HT7 ((R)-3-(2-(2-(4-methylpiperidin-1-yl) ethyl) pyrrolidine-1-sulfonyl) phenol hydrochloride, SB-269970, 0.3-1 nmol/paw), but not by the 5-HT1A (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate, WAY-100635, 0.3-1 nmol/paw), 5-HT1B/1D (N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-1,1'-biphenyl-4-carboxamide hydrochloride hydrate, GR-127935, 0.3-1 nmol/paw), 5-HT1B (1'-methyl-5-[[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]carbonyl]-2,3,6,7-tetrahydrospiro[furo[2,3-f]indole-3,4'-piperidine hydrochloride, SB-224289, 0.3-1 nmol/paw), 5-HT1D (4-(3-chlorophenyl)-α-(diphenylmethyl)-1-piperazineethanol hydrochloride, BRL-15572, 0.3-1nmol/paw) nor 5-HT5A ((N-[2-(dimethylamino)ethyl]-N-[[4'-[[(2-phenylethyl)amino]methyl][1,1'-biphenyl]-4

  17. Labeling and preliminary in vivo evaluation of the 5-HT7 receptor selective agonist [(11)C]E-55888

    Hansen, Hanne D; Andersen, Valdemar L; Lehel, Szabolcs

    2015-01-01

    E-55888 has been identified as a selective serotonin 7 (5-HT7) receptor agonist. In this study, we describe the synthesis, radiolabeling and in vivo evaluation of [(11)C]E-55888 as a radioligand for positron emission tomography (PET) imaging. [(11)C]E-55888 was obtained by N-methylation of an app...... neither be displaced by the structurally different 5-HT7 receptor ligand SB-269970 nor by self-block with unlabeled E-55888. Based on these data, [(11)C]E-55888 does not show promise as a PET radioligand for imaging the 5-HT7 receptor in vivo....

  18. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system

    Passchier, J.; Waarde, A. van

    2001-01-01

    The 5-HT 1A subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT 1A receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl- 11 C] WAY-100635 (WAY), [carbonyl- 11 C]desmethyl-WAY-100635 (DWAY), p-[ 18 F]MPPF and [ 11 C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT 1A receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  19. Reversal of sibutramine-induced anorexia with a selective 5-HT(2C) receptor antagonist.

    Higgs, Suzanne; Cooper, Alison J; Barnes, Nicholas M

    2011-04-01

    The monoamine reuptake inhibitor sibutramine reduces food intake but the receptor subtypes mediating the effects of sibutramine on feeding remain to be clearly identified. The involvement of the 5-HT(2C) receptor subtype in the satiety-enhancing effects of sibutramine was investigated by examining the effects of co-administration of sibutramine with the selective 5-HT(2C) receptor antagonist SB 242084 Microstructural analyses of licking for a glucose solution by non-deprived, male rats were performed over a range of doses of sibutramine to identify a selective satiety-enhancing dose (experiment 1). Similar analyses were performed after administration of a vehicle control, two doses of SB 242084 alone or two doses of SB 242084 in combination with sibutramine (experiment 2). Sibutramine at doses of 1-3 mg/kg selectively reduced glucose consumption via a reduction in the number of bouts of licking. Non-selective effects to increase latency to lick were only observed at the higher dose of 6 mg/kg. Co-administration of sibutramine (3 mg/kg) with SB 242084 (1 or 3 mg/kg) reversed the effect of sibutramine on bout number whereas either dose of SB 242084 alone had no significant effect. We confirm behaviourally selective effects of sibutramine on feeding and provide further support for the satiety-enhancing effects of sibutramine. Our data also provide evidence for the involvement of the 5-HT(2C) receptor in the satiety-enhancing effects of sibutramine although additional targets may have an impact, and further investigation of the molecular mechanisms underlying the efficacy of sibutramine as an anorectic is warranted.

  20. Detailed mapping of serotonin 5-HT{sub 1B} and 5-HT{sub 1D} receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function

    Leysen, J.E. [Graduate School Neurosciences, Amsterdam (Netherlands); Schotte, A.; Jurzak, M.; Luyten, W.H.M.L. [Department of Biochemical Pharmacology, Janssen Research Foundation, Beerse (Belgium); Voorn, P.; Bonaventure, P. [Graduate School Neurosciences, Amsterdam (Netherlands)

    1997-10-17

    The similar pharmacology of the 5-HT{sub 1B} and 5-HT{sub 1D} receptors, and the lack of selective compounds sufficiently distinguishing between the two receptor subtypes, have hampered functional studies on these receptors. In order to provide clues for differential functional roles of the two subtypes, we performed a parallel localization study throughout the guinea-pig brain and the trigeminal ganglia by means of quantitative in situ hybridization histochemistry (using [{sup 35}S]-labelled riboprobes probes for receptor messenger RNA) and receptor autoradiography (using a new radioligand [{sup 3}H]alniditan).The anatomical patterns of 5-HT{sub 1B} and 5-HT{sub 1D} receptor messenger RNA were quite different. While 5-HT{sub 1B} receptor messenger RNA was abundant throughout the brain (with highest levels in the striatum, nucleus accumbens, olfactory tubercle, cortex, hypothalamus, hippocampal formation, amygdala, thalamus, dorsal raphe and cerebellum), 5-HT{sub 1D} receptor messenger RNA exhibited a more restricted pattern; it was found mainly in the olfactory tubercle, entorhinal cortex, dorsal raphe, cerebellum, mesencephalic trigeminal nucleus and in the trigeminal ganglion. The density of 5-HT{sub 1B/1D} binding sites (combined) obtained with [{sup 3}H]alniditan autoradiography was high in the substantia nigra, superior colliculus and globus pallidus, whereas lower levels were detected in the caudate-putamen, hypothalamus, hippocampal formation, amygdala, thalamus and central gray. This distribution pattern was indistinguishable from specific 5-HT{sub 1B} receptor labelling in the presence of ketanserin under conditions to occlude 5-HT{sub 1D} receptor labelling; hence the latter were below detection level. Relationships between the regional distributions of the receptor messenger RNAs and binding sites and particular neuroanatomical pathways are discussed with respect to possible functional roles of the 5-HT{sub 1B} and 5-HT{sub 1D} receptors. (Copyright (c

  1. Carbon balance studies of glucose metabolism in rat cerebral cortical synaptosomes

    Bauer, U; Brand, K

    1982-07-01

    Synaptosomes were isolated from rat cerebral cortex and incubated with (U-/sup 14/C)-, (1-/sup 14/C)- or (6-/sup 14/C)glucose. Glucose utilization and the metabolic partitioning of glucose carbon in products were determined by isotopic methods. From the data obtained a carbon balance was constructed, showing lactate to be the main product of glucose metabolism, followed by CO/sup 2/, amino acids and pyruvate. Measuring the release of /sup 14/CO/sup 2/ from glucose labelled in three different positions allowed the construction of a flow diagram of glucose carbon atoms in synaptosomes, which provides information about the contribution of the various pathways of glucose metabolism. Some 2% of glucose utilized was calculated to be degraded via the pentose phosphate pathway. Addition of chlorpromazine, imipramine or haloperidol at concentrations of 10(-5) M reduced glucose utilisation by 30% without changing the distribution pattern of radioactivity in the various products.

  2. Effects of activated ACM on expression of signal transducers in cerebral cortical neurons of rats.

    Wang, Xiaojing; Li, Zhengli; Zhu, Changgeng; Li, Zhongyu

    2007-06-01

    To explore the roles of astrocytes in the epileptogenesis, astrocytes and neurons were isolated, purified and cultured in vitro from cerebral cortex of rats. The astrocytes were activated by ciliary neurotrophic factor (CNTF) and astrocytic conditioned medium (ACM) was collected to treat neurons for 4, 8 and 12 h. By using Western blot, the expression of calmodulin dependent protein kinase II (CaMK II), inducible nitric oxide synthase (iNOS) and adenylate cyclase (AC) was detected in neurons. The results showed that the expression of CaMK II, iNOS and AC was increased significantly in the neurons treated with ACM from 4 h to 12 h (PACM and such signal pathways as NOS-NO-cGMP, Ca2+/CaM-CaMK II and AC-cAMP-PKA might take part in the signal transduction of epileptogenesis.

  3. Effect of fasting and different diets on 14C incorporation from U-14C glucose into glycogen and carbon dioxide by cerebral cortical slices of rats

    Visweswaran, P.; Binod Kumar; Sinha, A.P.; Suraiya, A.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    There are some reports regarding change in the glycogen level due to fasting. Here an attempt is made by keeping the albino rats under fasting or feeding different diets on the rate of 14 C incorporation into glycogen and carbon dioxide from U- 14 C glucose. Our study reveals that the above conditions do not alter any significant change in the glycogen and carbon dioxide in the cerebral cortical slices of albino rats. (author). 8 refs., 1 tab

  4. Cortical serotonin-S2 receptor binding in Lewy body dementia, Alzheimer's and Parkinson's diseases.

    Cheng, A V; Ferrier, I N; Morris, C M; Jabeen, S; Sahgal, A; McKeith, I G; Edwardson, J A; Perry, R H; Perry, E K

    1991-11-01

    The binding of the selective 5-HT2 antagonist [3H]ketanserin has been investigated in the temporal cortex of patients with Alzheimer's disease (SDAT), Parkinson's disease (PD), senile dementia of Lewy body type (SDLT) and neuropathologically normal subjects (control). 5-HT2 binding was reduced in SDAT, PD with dementia and SDLT. SDAT showed a 5-HT2 receptor deficit across most of the cortical layers. A significant decrease in 5-HT2 binding in the deep cortical layers was found in those SDLT cases without hallucinations. SDLT cases with hallucinations only showed a deficit in one upper layer. There was a significant difference in cortical layers III and V between SDLT without hallucinations and SDLT with hallucinations. The results confirm an abnormality of serotonin binding in various forms of dementia and suggest that preservation of 5-HT2 receptor in the temporal cortex may differentiate hallucinating from non-hallucinating cases of SDLT.

  5. Novel spirotetracyclic zwitterionic dual H(1)/5-HT(2A) receptor antagonists for the treatment of sleep disorders.

    Gianotti, Massimo; Botta, Maurizio; Brough, Stephen; Carletti, Renzo; Castiglioni, Emiliano; Corti, Corrado; Dal-Cin, Michele; Delle Fratte, Sonia; Korajac, Denana; Lovric, Marija; Merlo, Giancarlo; Mesic, Milan; Pavone, Francesca; Piccoli, Laura; Rast, Slavko; Roscic, Maja; Sava, Anna; Smehil, Mario; Stasi, Luigi; Togninelli, Andrea; Wigglesworth, Mark J

    2010-11-11

    Histamine H(1) and serotonin 5-HT(2A) receptors mediate two different mechanisms involved in sleep regulation: H(1) antagonists are sleep inducers, while 5-HT(2A) antagonists are sleep maintainers. Starting from 9'a, a novel spirotetracyclic compound endowed with good H(1)/5-HT(2A) potency but poor selectivity, very high Cli, and a poor P450 profile, a specific optimization strategy was set up. In particular, we investigated the possibility of introducing appropriate amino acid moieties to optimize the developability profile of the series. Following this zwitterionic approach, we were able to identify several advanced leads (51, 65, and 73) with potent dual H(1)/5-HT(2A) activity and appropriate developability profiles. These compounds exhibited efficacy as hypnotic agents in a rat telemetric sleep model with minimal effective doses in the range 3-10 mg/kg po.

  6. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    Rabie Mohammadi

    2016-07-01

    Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus.

  7. Hyperintensity on diffusion weighted image along ipsilateral cortical spinal tract after cerebral ischemic stroke: A diffusion tensor analysis

    Liu Xiang; Tian Wei; Li Lilin; Kolar, Balasubramanya; Qiu Xing; Chen, Feng; Dogra, Vikram S.

    2012-01-01

    Purpose: Hyperintensity along the ipsilateral cortical spinal tract (CST) on a diffusion weighted imaging (DWI) has been reported to may be associated with motor disability after brain infarction and can be misdiagnosed as a new infarction. However, the underlying patho-physiology related to this finding is not clear. The goal of our study was to analyze the diffusion tensor imaging (DTI) changes in patients with this hyperintensity. Materials and methods: Eight patients (50 ± 10 years) who exhibited hyperintensity on DWI along ipsilateral CST from 3 to 21 days after stroke onset were reviewed as positive group, including 5 patients with serial DTI examinations. Twelve patients without hyperintensity during the matched examination time were classified as reference group. The apparent diffusion coefficient (ADC), fractional anisotropy (FA), and eigenvalues and their ratios (ipsilateral/contralateral value) in cerebral peduncle were measured, their correlation with motor function scale at eight months after stroke onset were evaluated. Results: The serial examinations showed that hyperintensity could eventually disappear. Both the ipsilateral ADC and FA values were significantly decreased (p < 0.05) compared to the contralateral side. The ipsilateral FA significantly correlated with motor function scale in both groups (r = 0.875, 0.738; p = 0.004, 0.006 respectively). Conclusions: The hyperintensity on DWI is a transient pathological process of Wallerian degeneration after ischemic stroke, its diffusion characteristics include concurrent significant decrease of ipsilateral ADC and FA. The ipsilateral FA value has the potential to predict neurological motor function outcome in such patients.

  8. The brain 5-HT4 receptor binding is down-regulated in the Flinders Sensitive Line depression model and in response to paroxetine administration

    Licht, Cecilie Löe; Marcussen, Anders Bue; Wegener, Gregers

    2009-01-01

    The 5-hydroxytryptamine (5-HT(4)) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT(4) receptor [(3)H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiography....... In the Flinders Sensitive Line, the 5-HT(4) receptor and 5-HT transporter binding were decreased in the dorsal and ventral hippocampus, and the changes in binding were directly correlated within the dorsal hippocampus. Chronic but not acute paroxetine administration caused a 16-47% down-regulation of 5-HT(4......) receptor binding in all regions evaluated including the basal ganglia and hippocampus, while 5-HT depletion increased the 5-HT(4) receptor binding in the dorsal hippocampus, hypothalamus, and lateral globus pallidus. In comparison, the 5-HT(2A) receptor binding was decreased in the frontal and cingulate...

  9. Role of N-Arachidonoyl-Serotonin (AA-5-HT in Sleep-Wake Cycle Architecture, Sleep Homeostasis, and Neurotransmitters Regulation

    Eric Murillo-Rodríguez

    2017-05-01

    Full Text Available The endocannabinoid system comprises several molecular entities such as endogenous ligands [anandamide (AEA and 2-arachidonoylglycerol (2-AG], receptors (CB1 and CB2, enzymes such as [fatty acid amide hydrolase (FAHH and monoacylglycerol lipase (MAGL], as well as the anandamide membrane transporter. Although the role of this complex neurobiological system in the sleep–wake cycle modulation has been studied, the contribution of the blocker of FAAH/transient receptor potential cation channel subfamily V member 1 (TRPV1, N-arachidonoyl-serotonin (AA-5-HT in sleep has not been investigated. Thus, in the present study, varying doses of AA-5-HT (5, 10, or 20 mg/Kg, i.p. injected at the beginning of the lights-on period of rats, caused no statistical changes in sleep patterns. However, similar pharmacological treatment given to animals at the beginning of the dark period decreased wakefulness (W and increased slow wave sleep (SWS as well as rapid eye movement sleep (REMS. Power spectra analysis of states of vigilance showed that injection of AA-5-HT during the lights-off period diminished alpha spectrum across alertness in a dose-dependent fashion. In opposition, delta power spectra was enhanced as well as theta spectrum, during SWS and REMS, respectively. Moreover, the highest dose of AA-5-HT decreased wake-related contents of neurotransmitters such as dopamine (DA, norepinephrine (NE, epinephrine (EP, serotonin (5-HT whereas the levels of adenosine (AD were enhanced. In addition, the sleep-inducing properties of AA-5-HT were confirmed since this compound blocked the increase in W caused by stimulants such as cannabidiol (CBD or modafinil (MOD during the lights-on period. Additionally, administration of AA-5-HT also prevented the enhancement in contents of DA, NE, EP, 5-HT and AD after CBD of MOD injection. Lastly, the role of AA-5-HT in sleep homeostasis was tested in animals that received either CBD or MOD after total sleep deprivation (TSD. The

  10. Hyperthyroidism enhances 5-HT-induced contraction of the rat pulmonary artery: role of calcium-activated chloride channel activation.

    Oriowo, Mabayoje A; Oommen, Elsie; Khan, Islam

    2011-11-01

    Experimentally-induced hyperthyroidism in rodents is associated with signs and symptoms of pulmonary hypertension. The main objective of the present study was to investigate the effect of thyroxine-induced pulmonary hypertension on the contractile response of the pulmonary artery to 5-HT and the possible underlying signaling pathway. 5-HT concentration-dependently contracted artery segments from control and thyroxine-treated rats with pD(2) values of 5.04 ± 0.19 and 5.34 ± 0.14, respectively. The maximum response was significantly greater in artery segments from thyroxine-treated rats. Neither BW 723C86 (5-HT(2B)-receptor agonist) nor CP 93129 (5-HT(1B)-receptor agonist) contracted ring segments of the pulmonary artery from control and thyroxine-treated rats at concentrations up to 10(-4)M. There was no significant difference in the level of expression of 5-HT(2A)-receptor protein between the two groups. Ketanserin (3 × 10(-8)M) produced a rightward shift of the concentration-response curve to 5-HT in both groups with equal potency (-logK(B) values were 8.1 ± 0.2 and 7.9 ± 0.1 in control and thyroxine-treated rats, respectively). Nifedipine (10(-6)M) inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. The calcium-activated chloride channel blocker, niflumic acid (10(-4)M) also inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. It was concluded that hyperthyroidism enhanced 5-HT-induced contractions of the rat pulmonary artery by a mechanism involving increased activity of calcium-activated chloride channels. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Intrahippocampal LSD accelerates learning and desensitizes the 5-HT(2A) receptor in the rabbit, Romano et al.

    Romano, Anthony G; Quinn, Jennifer L; Li, Luchuan; Dave, Kuldip D; Schindler, Emmanuelle A; Aloyo, Vincent J; Harvey, John A

    2010-10-01

    Parenteral injections of d-lysergic acid diethylamide (LSD), a serotonin 5-HT(2A) receptor agonist, enhance eyeblink conditioning. Another hallucinogen, (±)-1(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), was shown to elicit a 5-HT(2A)-mediated behavior (head bobs) after injection into the hippocampus, a structure known to mediate trace eyeblink conditioning. This study aims to determine if parenteral injections of the hallucinogens LSD, d,l-2,5-dimethoxy-4-methylamphetamine, and 5-methoxy-dimethyltryptamine elicit the 5-HT(2A)-mediated behavior of head bobs and whether intrahippocampal injections of LSD would produce head bobs and enhance trace eyeblink conditioning. LSD was infused into the dorsal hippocampus just prior to each of eight conditioning sessions. One day after the last infusion of LSD, DOI was infused into the hippocampus to determine whether there had been a desensitization of the 5-HT(2A) receptor as measured by a decrease in DOI-elicited head bobs. Acute parenteral or intrahippocampal LSD elicited a 5-HT(2A) but not a 5-HT(2C)-mediated behavior, and chronic administration enhanced conditioned responding relative to vehicle controls. Rabbits that had been chronically infused with 3 or 10 nmol per side of LSD during Pavlovian conditioning and then infused with DOI demonstrated a smaller increase in head bobs relative to controls. LSD produced its enhancement of Pavlovian conditioning through an effect on 5-HT(2A) receptors located in the dorsal hippocampus. The slight, short-lived enhancement of learning produced by LSD appears to be due to the development of desensitization of the 5-HT(2A) receptor within the hippocampus as a result of repeated administration of its agonist (LSD).

  12. Toward Biophysical Probes for the 5-HT3 Receptor: Structure−Activity Relationship Study of Granisetron Derivatives

    2010-01-01

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT3A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT3A receptors in mammalian cells. PMID:20146481

  13. Toward biophysical probes for the 5-HT3 receptor: structure-activity relationship study of granisetron derivatives.

    Vernekar, Sanjeev Kumar V; Hallaq, Hasan Y; Clarkson, Guy; Thompson, Andrew J; Silvestri, Linda; Lummis, Sarah C R; Lochner, Martin

    2010-03-11

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT(3)A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT(3)A receptors in mammalian cells.

  14. Novel aza-analogous ergoline derived scaffolds as potent serotonin 5-HT6 and dopamine D2 receptor ligands

    Krogsgaard-Larsen, Niels; Jensen, Anders A.; Schrøder, T.J.

    2014-01-01

    By introducing distal substituents on a tetracyclic scaffold resembling the ergoline structure, two series of analogues were achieved exhibiting subnanomolar receptor binding affinities for the dopamine D2 and serotonin 5-HT6 receptor subtype, respectively. While the 5-HT6 ligands were antagonists......, the D2 ligands displayed intrinsic activities ranging from full agonism to partial agonism with low intrinsic activity. These structures could potentially be interesting for treatment of neurological diseases such as schizophrenia, Parkinson’s disease, and cognitive deficits....

  15. Activation of 5-HT2 receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat.

    Nair, Sunila G; Gudelsky, Gary A

    2004-09-15

    The role of 5-HT2 receptors in the regulation of acetylcholine (ACh) release was examined in the medial prefrontal cortex and dorsal hippocampus using in vivo microdialysis. The 5-HT(2A/2C) agonist +/-1-(2,5-dimethoxy-4-iodophenyl) -2- aminopropane hydrochloride (DOI) (1 and 2 mg/kg, i.p.) significantly increased the extracellular concentration of ACh in both brain regions, and this response was attenuated in rats treated with the 5-HT(2A/2B/2C) antagonist LY-53,857 (3 mg/kg, i.p.). Treatment with LY-53,857 alone did not significantly alter ACh release in either brain region The 5-HT(2C) agonist 6-chloro-2-(1-piperazinyl)-pyrazine) (MK-212) (5 mg/kg, i.p.) significantly enhanced the release of ACh in both the prefrontal cortex and hippocampus, whereas the 5-HT2 agonist mescaline (10 mg/kg, i.p.) produced a 2-fold increase in ACh release only in the prefrontal cortex. Intracortical, but not intrahippocampal, infusion of DOI (100 microM) significantly enhanced the release of ACh, and intracortical infusion of LY-53,857 (100 microM) significantly attenuated this response. These results suggest that the release of ACh in the prefrontal cortex and hippocampus is influenced by 5-HT2 receptor mechanisms. The increase in release of ACh induced by DOI in the prefrontal cortex, but not in the hippocampus, appears to be due to 5-HT2 receptor mechanisms localized within this brain region. Furthermore, it appears that the prefrontal cortex is more sensitive than the dorsal hippocampus to the stimulatory effect of 5-HT2 agonists on ACh release.

  16. Exploring 6-(substituted sulfonyl)imidazopyridines as a potential scaffold for the design of 5-HT6 ligands

    Heloire, V.M.; Furman, C.; Melnyk, P.; Carato, P.

    2013-01-01

    Cognitive dysfunction is a characteristic of various forms of dementia such as Alzheimer's disease. We have focused on the 5-HT 6 receptor in order to identify potent ligands. Herein we report the design of a novel series of 6-sulfonylimidazole derivatives substituted with an alkylamino chain at the 2- or 3-position, their synthesis, and their ability to interact with 5-HT 6 receptors as evaluated in radioligand binding assays. (author)

  17. Evaluation of 3-Ethyl-3-(phenylpiperazinylbutyl)oxindoles as PET Ligands for the Serotonin 5-HT7 Receptor

    Herth, Matthias M; Andersen, Valdemar L; Hansen, Hanne D

    2015-01-01

    We have investigated several oxindole derivatives in the pursuit of a 5-HT7 receptor PET ligand. Herein the synthesis, chiral separation, and pharmacological profiling of two possible PET candidates toward a wide selection of CNS-targets are detailed. Subsequent (11)C-labeling and in vivo evaluat...... evaluation in Danish landrace pigs showed that both ligands displayed high brain uptake. However, neither of the radioligands could be displaced by the 5-HT7 receptor selective inverse agonist SB-269970....

  18. Selective labelling of 5-HT{sub 7} receptor recognition sites in rat brain using [{sup 3}H]5-carboxamidotryptamine

    Stowe, R.L.; Barnes, N.M. [Department of Pharmacology, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    1998-12-01

    The aim of the present study was to establish a radioligand binding assay to selectively label the native 5-HT{sub 7} receptor expressed in rat brain. In rat whole brain (minus cerebellum and striatum) homogenate, ({+-})-pindolol (10 {mu}M)-insensitive [{sup 3}H]5-CT ([{sup 3}H]5-carboxamidotryptamine; 0.5 nM) specific binding (defined by 5-HT, 10 {mu}M) displayed a pharmacological profile similar to the recombinant 5-HT{sub 7} receptor, although the Hill coefficients for competition curves generated by methiothepin, ritanserin, sumatriptan, clozapine and pimozide were significantly less than unity. In homogenates of rat hypothalamus, ({+-})-pindolol (10 {mu}M)-insensitive [{sup 3}H]5-CT recognition sites also resembled, pharmacologically, the 5-HT{sub 7} receptor, although pimozide still generated Hill coefficients significantly less than unity. Subsequent studies were performed in the additional presence of WAY100635 (100 nM) to prevent [{sup 3}H]5-CT binding to residual, possibly, 5-HT{sub 1A} sites. Competition for this [{sup 3}H]5-CT binding indicated the labelling in whole rat brain homogenate of a homogenous population of sites with the pharmacological profile of the 5-HT{sub 7} receptor. Saturation studies also indicated that ({+-})-pindolol (10 {mu}M)/WAY 100635 (100 nM)-insensitive [{sup 3}H]5-CT binding to homogenates of whole rat brain was saturable and to an apparently homogenous population of sites which were labelled with nanomolar affinity (B{sub max}=33.2{+-}0.7 fmol mg{sup -1} protein, pK{sub d}=8.78{+-}0.05, mean{+-}S.E.M., n=3). The development of this 5-HT{sub 7} receptor binding assay will aid investigation of the rat native 5-HT{sub 7} receptor. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Selective labelling of 5-HT7 receptor recognition sites in rat brain using [3H]5-carboxamidotryptamine

    Stowe, R.L.; Barnes, N.M.

    1998-01-01

    The aim of the present study was to establish a radioligand binding assay to selectively label the native 5-HT 7 receptor expressed in rat brain. In rat whole brain (minus cerebellum and striatum) homogenate, (±)-pindolol (10 μM)-insensitive [ 3 H]5-CT ([ 3 H]5-carboxamidotryptamine; 0.5 nM) specific binding (defined by 5-HT, 10 μM) displayed a pharmacological profile similar to the recombinant 5-HT 7 receptor, although the Hill coefficients for competition curves generated by methiothepin, ritanserin, sumatriptan, clozapine and pimozide were significantly less than unity. In homogenates of rat hypothalamus, (±)-pindolol (10 μM)-insensitive [ 3 H]5-CT recognition sites also resembled, pharmacologically, the 5-HT 7 receptor, although pimozide still generated Hill coefficients significantly less than unity. Subsequent studies were performed in the additional presence of WAY100635 (100 nM) to prevent [ 3 H]5-CT binding to residual, possibly, 5-HT 1A sites. Competition for this [ 3 H]5-CT binding indicated the labelling in whole rat brain homogenate of a homogenous population of sites with the pharmacological profile of the 5-HT 7 receptor. Saturation studies also indicated that (±)-pindolol (10 μM)/WAY 100635 (100 nM)-insensitive [ 3 H]5-CT binding to homogenates of whole rat brain was saturable and to an apparently homogenous population of sites which were labelled with nanomolar affinity (B max =33.2±0.7 fmol mg -1 protein, pK d =8.78±0.05, mean±S.E.M., n=3). The development of this 5-HT 7 receptor binding assay will aid investigation of the rat native 5-HT 7 receptor. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders

    Goldberg, Jeremy; Anderson, George M.; Zwaigenbaum, Lonnie; Hall, Geoffrey B. C.; Nahmias, Claude; Thompson, Ann; Szatmari, Peter

    2009-01-01

    Parents (N = 19) of children with autism spectrum disorders (ASD) and adult controls (N = 17) underwent positron emission tomography (PET) using [[superscript 18]F]setoperone to image cortical serotonin type-2 (5-HT2) receptors. The 5-HT2 binding potentials (BPs) were calculated by ratioing [[superscript 18]F]setoperone intensity in regions of…

  1. Fingerprint-Based Machine Learning Approach to Identify Potent and Selective 5-HT2BR Ligands

    Krzysztof Rataj

    2018-05-01

    Full Text Available The identification of subtype-selective GPCR (G-protein coupled receptor ligands is a challenging task. In this study, we developed a computational protocol to find compounds with 5-HT2BR versus 5-HT1BR selectivity. Our approach employs the hierarchical combination of machine learning methods, docking, and multiple scoring methods. First, we applied machine learning tools to filter a large database of druglike compounds by the new Neighbouring Substructures Fingerprint (NSFP. This two-dimensional fingerprint contains information on the connectivity of the substructural features of a compound. Preselected subsets of the database were then subjected to docking calculations. The main indicators of compounds’ selectivity were their different interactions with the secondary binding pockets of both target proteins, while binding modes within the orthosteric binding pocket were preserved. The combined methodology of ligand-based and structure-based methods was validated prospectively, resulting in the identification of hits with nanomolar affinity and ten-fold to ten thousand-fold selectivities.

  2. 5-HT modulation by acute tryptophan depletion of human instrumental contingency judgements.

    Chase, Henry W; Crockett, Molly J; Msetfi, Rachel M; Murphy, Robin A; Clark, Luke; Sahakian, Barbara J; Robbins, Trevor W

    2011-02-01

    The concept of 'depressive realism', that depression leads to more accurate perception of causal control, has been influential in the field of depression research, but remains controversial. Recent work testing contingency learning has suggested that contextual processing might determine realism-like effects. Serotonin (5-hydroxytryptamine, (5-HT)), which is implicated in the pathophysiology of depression, might also influence contextual processing. Using acute tryptophan depletion (ATD), we tested the hypothesis that dysfunctional serotoninergic neurotransmission influences contingency judgements in dysphoric subjects via an effect on contextual processing. We employed a novel contingency learning task to obtain separate measures (ratings) of the causal effect of participants' responses and efficacy of the background context over an outcome. Participants, without a history of depression, completed this task on and off ATD in a double-blind, placebo-controlled, within-subjects design. As with other work on contingency learning, the effects of ATD were related to baseline mood levels. Although no overall effects of ATD were observed, the subgroup of participants with low Beck depression inventory (BDI) scores showed reduced ratings of contextual control and improved accuracy of contingency judgements under positive contingencies following ATD, compared to placebo. High BDI participants demonstrated low accuracy in contingency judgements, regardless of serotoninergic status. No effect of ATD on contingency judgements was observed in the group as a whole, but effects were observed in a subgroup of participants with low BDI scores. We discuss these data in light of the context processing hypothesis, and prior research on 5-HT and depressive realism.

  3. [Clinical observasion of acupuncture in patients with depression and its impact on serum 5-HT].

    Zhou Xiufang; Li, Yan; Zhou, Zhenhua; Pan, Shuaiguo

    2015-02-01

    To observe the clinical effect of acupuncture for depression and to discuss its impact on the content of 5-HT in patients with depression. Eighty patients with depression were randomly divided into an acupuncture group and a western medication group,40 cases in each one. Acupuncture was applied in the acupuncture group,Siman(KI 14),Shenshu(BL 23),Guanyuan(CV 4),Dazhui(GV 14),Yinlingquan(SP 9), Zusanli(ST 36),Taichong(LR 3),Yanglingquan(GB 34) and Jingming(BL 1) were selected, the intensive moxibustion was applied at G(uanyuan(CV 4). Fluoxetine was treated with oral administration in the western medication group. The treatments of six weeks were required in each group. The Hamilton depression rating scale (HAMD) was applied to evaluate efficacy and serum 5-HT was detected before and after treatment in the two groups. After treatment,the scores of HAMD were decreased obviously in the two groups compared with those before treatment (scores in the acupuncture group: 24. 48 ± 0. 28 vs 8. 95 ± 2. 24; scores in the western medication group: 24. 14±0. 24 vs 10. 29±1. 30),and the differences were statistically significant (both Pstatistic significance between the two groups(P >0.05). The efficacy of acupuncture for depression is superior to that of western medication with fluoxetine.

  4. Stimulation of 5-HT2A receptors recovers sensory responsiveness in acute spinal neonatal rats.

    Swann, Hillary E; Kauer, Sierra D; Allmond, Jacob T; Brumley, Michele R

    2017-02-01

    Quipazine is a 5-HT 2A -receptor agonist that has been used to induce motor activity and promote recovery of function after spinal cord injury in neonatal and adult rodents. Sensory stimulation also activates sensory and motor circuits and promotes recovery after spinal cord injury. In rats, tail pinching is an effective and robust method of sacrocaudal sensory afferent stimulation that induces motor activity, including alternating stepping. In this study, responsiveness to a tail pinch following treatment with quipazine (or saline vehicle control) was examined in spinal cord transected (at midthoracic level) and intact neonatal rats. Rat pups were secured in the supine posture with limbs unrestricted. Quipazine or saline was administered intraperitoneally and after a 10-min period, a tail pinch was administered. A 1-min baseline period prior to tail-pinch administration and a 1-min response period postpinch was observed and hind-limb motor activity, including locomotor-like stepping behavior, was recorded and analyzed. Neonatal rats showed an immediate and robust response to sensory stimulation induced by the tail pinch. Quipazine recovered hind-limb movement and step frequency in spinal rats back to intact levels, suggesting a synergistic, additive effect of 5-HT-receptor and sensory stimulation in spinal rats. Although levels of activity in spinal rats were restored with quipazine, movement quality (high vs. low amplitude) was only partially restored. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. Published by Elsevier Ltd.

  6. Enhanced Stress Response in 5-HT1AR Overexpressing Mice: Altered HPA Function and Hippocampal Long-Term Potentiation.

    Pilar-Cuéllar, Fuencisla; Vidal, Rebeca; Díaz, Álvaro; Garro-Martínez, Emilio; Linge, Raquel; Castro, Elena; Haberzettl, Robert; Fink, Heidrun; Bert, Bettina; Brosda, Jan; Romero, Beatriz; Crespo-Facorro, Benedicto; Pazos, Ángel

    2017-11-15

    Postsynaptic 5-HT 1A receptors (5-HT 1A R) play an important role in anxiety and stress, although their contribution is still controversial. Previous studies report that mice overexpressing postsynaptic 5-HT 1A Rs show no changes in basal anxiety, though the influence of stress conditions has not been addressed yet. In this study, we used this animal model to evaluate the role of 5-HT 1A Rs in anxiety response after pre-exposure to an acute stressor. Under basal conditions, 5-HT 1A R overexpressing animals presented high corticosterone levels and a lower mineralocorticoid/glucocorticoid receptor ratio. After pre-exposure to a single stressor, they showed a high anxiety-like response, associated with a blunted increase in corticosterone levels and higher c-Fos activation in the prefrontal cortex. Moreover, these mice also presented a lack of downregulation of hippocampal long-term potentiation after stress exposure. Therefore, higher postsynaptic 5-HT 1A R activation might predispose to a high anxious phenotype and an impaired stress coping behavior.

  7. Trait aggression and trait impulsivity are not related to frontal cortex 5-HT2A receptor binding in healthy individuals

    da Cunha-Bang, Sophie; Stenbæk, Dea Siggaard; Holst, Klaus

    2013-01-01

    age 47.0±18.7, range 23-86) to determine if trait aggression and trait impulsivity were related to frontal cortex 5-HT2A receptor binding (5-HT2AR) as measured with [(18)F]-altanserin PET imaging. Trait aggression and trait impulsivity were assessed with the Buss-Perry Aggression Questionnaire (AQ...... and the AQ or BIS-11 total scores. Also, there was no significant interaction between gender and frontal cortex 5-HT2AR in predicting trait aggression and trait impulsivity. This is the first study to examine how 5-HT2AR relates to trait aggression and trait impulsivity in a large sample of healthy......Numerous studies indicate that the serotonergic (5-HT) transmitter system is involved in the regulation of impulsive aggression and there is from post-mortem, in vivo imaging and genetic studies evidence that the 5-HT2A receptor may be involved. We investigated 94 healthy individuals (60 men, mean...

  8. Serotonin Signaling through Prefrontal Cortex 5-HT1A Receptors during Adolescence Can Determine Baseline Mood-Related Behaviors.

    Garcia-Garcia, Alvaro L; Meng, Qingyuan; Canetta, Sarah; Gardier, Alain M; Guiard, Bruno P; Kellendonk, Christoph; Dranovsky, Alex; Leonardo, E David

    2017-01-31

    Lifelong homeostatic setpoints for mood-related behaviors emerge during adolescence. Serotonin (5-HT) plays an important role in refining the formation of brain circuits during sensitive developmental periods. In rodents, the role of 5-HT 1A receptors in general and autoreceptors in particular has been characterized in anxiety. However, less is known about the role of 5-HT 1A receptors in depression-related behavior. Here, we show that whole-life suppression of heteroreceptor expression results in a broad depression-like behavioral phenotype accompanied by physiological and cellular changes within medial prefrontal cortex-dorsal raphe proper (mPFC-DRN) circuitry. These changes include increased basal 5-HT in a mPFC that is hyporesponsive to stress and decreased basal 5-HT levels and firing rates in a DRN hyperactivated by the same stressor. Remarkably, loss of heteroreceptors in the PFC at adolescence is sufficient to recapitulate this depression-like behavioral syndrome. Our results suggest that targeting mPFC 5-HT 1A heteroreceptors during adolescence in humans may have lifelong ramifications for depression and its treatment. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Serotonin Signaling through Prefrontal Cortex 5-HT1A Receptors during Adolescence Can Determine Baseline Mood-Related Behaviors

    Alvaro L. Garcia-Garcia

    2017-01-01

    Full Text Available Lifelong homeostatic setpoints for mood-related behaviors emerge during adolescence. Serotonin (5-HT plays an important role in refining the formation of brain circuits during sensitive developmental periods. In rodents, the role of 5-HT1A receptors in general and autoreceptors in particular has been characterized in anxiety. However, less is known about the role of 5-HT1A receptors in depression-related behavior. Here, we show that whole-life suppression of heteroreceptor expression results in a broad depression-like behavioral phenotype accompanied by physiological and cellular changes within medial prefrontal cortex-dorsal raphe proper (mPFC-DRN circuitry. These changes include increased basal 5-HT in a mPFC that is hyporesponsive to stress and decreased basal 5-HT levels and firing rates in a DRN hyperactivated by the same stressor. Remarkably, loss of heteroreceptors in the PFC at adolescence is sufficient to recapitulate this depression-like behavioral syndrome. Our results suggest that targeting mPFC 5-HT1A heteroreceptors during adolescence in humans may have lifelong ramifications for depression and its treatment.

  10. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect.

  11. Convergent [18]F-labeling and evaluation of N-benzyl-phenethylamines as 5-HT2A receptor PET ligands

    Petersen, Ida Nymann; Villadsen, Jonas; Hansen, Hanne Demant

    2016-01-01

    Positron emission tomography (PET) investigations of the 5-HT2A receptor (5-HT2AR) system can be used as a research tool in diseases such as depression, Alzheimer's disease and schizophrenia. We have previously developed a (11)C-labeled agonist PET ligand ([(11)C]Cimbi-36), and the aim of this st......Positron emission tomography (PET) investigations of the 5-HT2A receptor (5-HT2AR) system can be used as a research tool in diseases such as depression, Alzheimer's disease and schizophrenia. We have previously developed a (11)C-labeled agonist PET ligand ([(11)C]Cimbi-36), and the aim...... of this study was to identify a (18)F-labeled analogue of this PET-ligand. Thus, we developed a convergent radiochemical approach giving easy access to 5 different (18)F-labeled ligands structurally related to Cimbi-36 from a common (18)F-labeled intermediate. After intravenous injection, all ligands entered...... the pig brain. However, since within-scan intervention with ketanserin, a known orthosteric 5-HT2A receptor antagonist, did not result in significant blocking, the radioligands seem unsuitable for neuroimaging of the 5-HT2AR in vivo....

  12. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats.

    Cadirci, Elif; Halici, Zekai; Bayir, Yasin; Albayrak, Abdulmecit; Karakus, Emre; Polat, Beyzagul; Unal, Deniz; Atamanalp, Sabri S; Aksak, Selina; Gundogdu, Cemal

    2013-10-01

    Sepsis is a complex pathophysiological event involving metabolic acidosis, systemic inflammatory response syndrome, tissue damage and multiple organ dysfunction syndrome. Although many new mechanisms are being investigated to enlighten the pathophysiology of sepsis, there is no effective treatment protocol yet. Presence of 5-HT7 receptors in immune tissues prompted us to hypothesize that these receptors have roles in inflammation and sepsis. We investigated the effects of 5-HT7 receptor agonists and antagonists on serum cytokine levels, lung oxidative stress, lung histopathology, nuclear factor κB (NF-κB) positivity and lung 5-HT7 receptor density in cecal ligation and puncture (CLP) induced sepsis model of rats. Agonist administration to septic rats increased survival time; decreased serum cytokine response against CLP; decreased oxidative stress and increased antioxidant system in lungs; decreased the tissue NF-κB immunopositivity, which is high in septic rats; and decreased the sepsis-induced lung injury. In septic rats, as a result of high inflammatory response, 5-HT7 receptor expression in lungs increased significantly and agonist administration, which decreased inflammatory response and related mortality, decreased the 5-HT7 receptor expression. In conclusion, all these data suggest that stimulation of 5-HT7 receptors may be a new therapeutic target for prevention of impaired inflammatory response related lung injury and mortality. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Effects of combined administration of 5-HT1A and/or 5-HT1B receptor antagonists and paroxetine or fluoxetine in the forced swimming test in rats.

    Tatarczyńska, Ewa; Kłodzińska, Aleksandra; Chojnacka-Wójcik, Ewa

    2002-01-01

    Clinical data suggest that coadministration of pindolol, a 5-HT1A/5-HT1B/beta-adrenoceptor antagonist, and selective serotonin reuptake inhibitors (SSRIs) may shorten the time of onset of a clinical action and may increase beneficial effects of the therapy of drug-resistant depression. Effects of combined administration of SSRIs and 5-HT receptor ligands are currently evaluated in animal models for the detection of an antidepressant-like activity; however, the obtained results turned out to be inconsistent. The aim of the present study was to investigate effects of a 5-HT1A antagonist (WAY 100635), 5-HT1B antagonists (SB 216641 and GR 127935) or pindolol, given in combination with paroxetine or fluoxetine (SSRIs), in the forced swimming test in rats (Porsolt test). When given alone, paroxetine (10 and 20 mg/kg), fluoxetine (10 and 20 mg/kg), WAY 100635 (0.1 and 1 mg/kg), SB 216641 (2 mg/kg), GR 127935 (10 and 20 mg/kg) and pindolol (4 and 8 mg/kg) did not shorten the immobility time of rats in that test. Interestingly, SB 216641 administered alone at a dose of 4 mg/kg produced a significant reduction of the immobility time in that test. A combination of paroxetine (20 mg/kg) and WAY 100635 or pindolol failed to reveal a significant interaction; on the other hand, when paroxetine was given jointly with SB 216641 (2 mg/kg) or GR 127935 (10 and 20 mg/kg), that combination showed a significant antiimmobility action in the forced swimming test in rats. The active behaviors in that test did not reflect increased general activity because combined administration of both the 5-HT1B antagonists and paroxetine failed to alter the locomotor activity of rats, measured in the open field test. Coadministration of fluoxetine and all the antagonists used did not affect the behavior of rats in the forced swimming test. The obtained results seem to indicate that blockade of 5-HT1B receptors, but not 5-HT1A ones, can facilitate the antidepressant-like effect of paroxetine in the

  14. Cellullar insights into cerebral cortical development: focusing on the locomotion mode of neuronal migration

    Takeshi eKawauchi

    2015-10-01

    Full Text Available The mammalian brain consists of numerous compartments that are closely connected with each other via neural networks, comprising the basis of higher order brain functions. The highly specialized structure originates from simple pseudostratified neuroepithelium-derived neural progenitors located near the ventricle. A long journey by neurons from the ventricular side is essential for the formation of a sophisticated brain structure, including a mammalian-specific six-layered cerebral cortex. Neuronal migration consists of several contiguous steps, but the locomotion mode comprises a large part of the migration. The locomoting neurons exhibit unique features; a radial glial fiber-dependent migration requiring the endocytic recycling of N-cadherin and a neuron-specific migration mode with dilation/swelling formation that requires the actin and microtubule organization possibly regulated by cyclin-dependent kinase 5 (Cdk5, Dcx, p27kip1, Rac1 and POSH. Here I will introduce the roles of various cellular events, such as cytoskeletal organization, cell adhesion and membrane trafficking, in the regulation of the neuronal migration, with particular focus on the locomotion mode.

  15. Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics.

    Blasi, Giuseppe; Selvaggi, Pierluigi; Fazio, Leonardo; Antonucci, Linda Antonella; Taurisano, Paolo; Masellis, Rita; Romano, Raffaella; Mancini, Marina; Zhang, Fengyu; Caforio, Grazia; Popolizio, Teresa; Apud, Jose; Weinberger, Daniel R; Bertolino, Alessandro

    2015-06-01

    Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype-phenotype relationships.

  16. Role of 5-HT1-7 receptors in short- and long-term memory for an autoshaping task: intrahippocampal manipulations.

    Liy-Salmeron, Gustavo; Meneses, Alfredo

    2007-05-25

    It was previously reported that brain areas containing serotonin (5-hydroxytryptamine, 5-HT) receptors mediate memory consolidation as well as short (STM)- and long-term memory (LTM). Here the effects of systemic and intrahippocampal administration of 5-HT agonists and antagonists on an autoshaping learning task were explored, which requires hippocampal translation and transduction as well as 5-HT receptors expression. As previously reported ketamine (glutamatergic antagonist) and two well-known amnesic drugs, scopolamine (cholinergic antagonist) and dizocilpine (NMDA antagonist) impaired STM but not LTM; dizocilpine even improved the latter. Since ketamine produces hallucinations and impairs memory in humans, we address the question if well-known antipsychotic haloperidol and clozapine might affect STM deficit. Indeed, systemic administration of clozapine5-HT(1A/2A/6/7) receptors, systemic and intrahippocampal administration of 5-HT drugs were further explored. The ketamine STM-induced deficit was blocked by 8-OHDPAT (5-HT(1A/7) agonist) and SB-399885 (a 5-HT(6) antagonist) but not by 5-HT(1B), 5-HT(2) and 5-HT(7) antagonists, thus implicating 5-HT(1A/7) and 5-HT(6) receptors. These data also suggest that ketamine (at 10 mg/kg) represents a reliable pharmacological tool to explore memory deficits related to hippocampus and schizophrenia.

  17. [Effect of (+/-)-pindolol on the central 5-HT1A receptor by the use of in vivo microdialysis and hippocampal slice preparations].

    Tsuji, Keiichiro

    2002-06-01

    Although it is suggested that (+/-)-pindolol, a beta-adrenergic/5-HT1A receptor antagonist, may enhance the efficacy of selective serotonin reuptake inhibitors (SSRI), the results of double-blind studies are contradictory and recent animal studies suggest that (+/-)-pindolol may act as a partial agonist to the 5-HT1A receptor. In this study we have investigated the effect of (+/-)-pindolol on both pre- and postsynaptic 5-HT1A receptors using in vivo microdialysis and hippocampal slice preparations. (+/-)-pindolol and flesinoxan, a 5-HT1A receptor full agonist, significantly decreased the extracellular levels of 5-HT in the raphe and prefrontal cortex. The 5-HT and other 5-HT1A receptor agonists, flesinoxan and 8-hydroxy-2- (di-n-propylamino)tetralon (8-OH-DPAT), significantly decreased the population excitatory postsynaptic potential (EPSP) in the CA3-CA1 excitatory synapse in a dose-dependent manner. The effect of 5-HT and other 5-HT1A receptor agonists accompanied the increase in paired-pulse facilitation (ppf) induced by short-interval two stimuli and were reversed by the coadministration of the 5-HT1A receptor agonist, NAN-190, but not by (+/-)-pindolol. (+/-)-pindolol also suppressed the EPSP, but this effect was not reversed by NAN-190. These results suggest that (+/-)-pindolol acts as a partial agonist to the somatodendritic 5-HT1A receptor in the raphe, whereas it may have no action on the postsynaptic 5-HT1A receptor in the hippocampus.

  18. Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala.

    Guo, Ji-Dong; O'Flaherty, Brendan M; Rainnie, Donald G

    2017-11-01

    The basolateral amygdala (BLA) is a key site for crossmodal association of sensory stimuli and an important relay in the neural circuitry of emotion. Indeed, the BLA receives substantial glutamatergic inputs from multiple brain regions including the prefrontal cortex and thalamic nuclei. Modulation of glutamatergic transmission in the BLA regulates stress- and anxiety-related behaviors. Serotonin (5-HT) also plays an important role in regulating stress-related behavior through activation of both pre- and postsynaptic 5-HT receptors. Multiple 5-HT receptors are expressed in the BLA, where 5-HT has been reported to modulate glutamatergic transmission. However, the 5-HT receptor subtype mediating this effect is not yet clear. The aim of this study was to use patch-clamp recordings from BLA neurons in an ex vivo slice preparation to examine 1) the effect of 5-HT on extrinsic sensory inputs, and 2) to determine if any pathway specificity exists in 5-HT regulation of glutamatergic transmission. Two independent input pathways into the BLA were stimulated: the external capsule to mimic cortical input, and the internal capsule to mimic thalamic input. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs) induced by stimulation of both pathways. The decrease was associated with an increase in the paired-pulse ratio and coefficient of variation of eEPSC amplitude, suggesting 5-HT acts presynaptically. Moreover, the effect of 5-HT in both pathways was mimicked by the selective 5-HT 1B receptor agonist CP93129, but not by the 5-HT 1A receptor agonist 8-OH DPAT. Similarly the effect of exogenous 5-HT was blocked by the 5-HT 1B receptor antagonist GR55562, but not affected by the 5-HT 1A receptor antagonist WAY 100635 or the 5-HT 2 receptor antagonists pirenperone and MDL 100907. Together these data suggest 5-HT gates cortical and thalamic glutamatergic inputs into the BLA by activating presynaptic 5-HT 1B receptors

  19. Repeated 7-Day Treatment with the 5-HT2C Agonist Lorcaserin or the 5-HT2A Antagonist Pimavanserin Alone or in Combination Fails to Reduce Cocaine vs Food Choice in Male Rhesus Monkeys.

    Banks, Matthew L; Negus, S Stevens

    2017-04-01

    Cocaine use disorder is a global public health problem for which there are no Food and Drug Administration-approved pharmacotherapies. Emerging preclinical evidence has implicated both serotonin (5-HT) 2C and 2A receptors as potential mechanisms for mediating serotonergic attenuation of cocaine abuse-related neurochemical and behavioral effects. Therefore, the present study aim was to determine whether repeated 7-day treatment with the 5-HT 2C agonist lorcaserin (0.1-1.0 mg/kg per day, intramuscular; 0.032-0.1 mg/kg/h, intravenous) or the 5-HT 2A inverse agonist/antagonist pimavanserin (0.32-10 mg/kg per day, intramuscular) attenuated cocaine reinforcement under a concurrent 'choice' schedule of cocaine and food availability in rhesus monkeys. During saline treatment, cocaine maintained a dose-dependent increase in cocaine vs food choice. Repeated pimavanserin (3.2 mg/kg per day) treatments significantly increased small unit cocaine dose choice. Larger lorcaserin (1.0 mg/kg per day and 0.1 mg/kg/h) and pimavanserin (10 mg/kg per day) doses primarily decreased rates of operant behavior. Coadministration of ineffective lorcaserin (0.1 mg/kg per day) and pimavanserin (0.32 mg/kg per day) doses also failed to significantly alter cocaine choice. These results suggest that neither 5-HT 2C receptor activation nor 5-HT 2A receptor blockade are sufficient to produce a therapeutic-like decrease in cocaine choice and a complementary increase in food choice. Overall, these results do not support the clinical utility of 5-HT 2C agonists and 5-HT 2A inverse agonists/antagonists alone or in combination as candidate anti-cocaine use disorder pharmacotherapies.

  20. Synthesis and evaluation of 18F-labeled 5-HT2A receptor agonists as PET ligands

    Herth, Matthias M.; Petersen, Ida Nymann; Hansen, Hanne Demant; Hansen, Martin; Ettrup, Anders; Jensen, Anders A.; Lehel, Szabolcs; Dyssegaard, Agnete; Gillings, Nic; Knudsen, Gitte M.

    2016-01-01

    Introduction: The serotonin 2A receptor (5-HT 2A R) is the most abundant excitatory 5-HT receptor in the human brain and implicated in various brain disorders such as schizophrenia, depression, and Alzheimer's disease. Positron emission tomography (PET) can be used to image specific proteins and processes in the human brain and several 5-HT 2A R PET antagonist radioligands are available. In contrast to an antagonist radioligand, an agonist radioligand should be able to image the population of functional receptors, i.e., those capable of inducing neuroreceptor signaling. Recently, we successfully developed and validated the first 5-HT 2A R agonist PET tracer, [ 11 C]Cimbi-36, for neuroimaging in humans and herein disclose some of our efforts to develop an 18 F-labeled 5-HT 2A R agonist PET-ligand. Methods and results: Three fluorine containing derivatives of Cimbi-36 were synthesized and found to be potent 5-HT 2A agonists. 18 F-labeling of the appropriate precursors was performed using [ 18 F]FETos, typically yielding 0.2–2.0 GBq and specific activities of 40–120 GBq/μmol. PET studies in Danish landrace pigs revealed that [ 18 F]1 displayed brain uptake in 5-HT 2A R rich regions. However, high uptake in bone was also observed. No blocking effect was detected during a competition experiment with a 5-HT 2A R selective antagonist. [ 18 F]2 and [ 18 F]3 showed very low brain uptake. Conclusion: None of the investigated 18 F-labeled Cimbi-36 derivatives [ 18 F]1, [ 18 F]2 and [ 18 F]3 show suitable tracer characteristics for in vivo PET neuroimaging of the 5-HT 2A R. Although for [ 18 F]1 there was reasonable brain uptake, we suggest that a large proportion radioactivity in the brain was due to radiometabolites, which would explain why it could not be displaced by a 5-HT 2A R antagonist.

  1. 5-HT2A receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress

    Minal Jaggar

    2017-12-01

    Full Text Available Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin2A (5-HT2A receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC and hippocampus in 5-HT2A receptor knockout (5-HT2A−/− and wild-type mice of both sexes. While 5-HT2A−/− male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-HT2A−/− female mice with a hyperlipidemic baseline phenotype. 5-HT2A−/− male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes (Crh, Crhr1, Nr3c1, and Nr3c2, trophic factors (Bdnf, Igf1 and immediate early genes (IEGs (Arc, Fos, Fosb, Egr1-4 in the PFC and hippocampus were altered in 5-HT2A−/− mice both under baseline and CUS conditions. Our results support a role for the 5-HT2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT2A receptor to stress-evoked changes is sexually dimorphic. Keywords: 5-HT2A−/− mice, Prefrontal cortex, Hippocampus, Gene expression, Sexual dimorphism, Despair

  2. Novel mixed ligand technetium complexes as 5-HT1A receptor imaging agents

    Leon, A.; Rey, A.; Mallo, L.; Pirmettis, I.; Papadopoulos, M.; Leon, E.; Pagano, M.; Manta, E.; Incerti, M.; Raptopoulou, C.; Terzis, A.; Chiotellis, E.

    2002-01-01

    The synthesis, characterization and biological evaluation of two novel 3 + 1 mixed ligand 99m Tc-complexes, bearing the 1-(2-methoxyphenylpiperazine) moiety, a fragment of the true 5-HT 1A antagonist WAY 100635, is reported. Complexes at tracer level 99m TcO[(CH 3 CH 2 ) 2 NCH 2 CH 2 N(CH 2 CH 2 S) 2 ][o-CH 3 OC 6 H 4 N(CH 2 CH 2 ) 2 NCH 2 CH 2 S], 99m Tc-1, and 99m TcO[((CH 3 ) 2 CH) 2 NCH 2 CH 2 N(CH 2 CH 2 S) 2 ][o-CH 3 OC 6 H 4 N (CH 2 CH 2 ) 2 NCH 2 CH 2 S], 99m Tc-2, were prepared using 99m Tc-glucoheptonate as precursor. For structural characterization, the analogous oxorhenium complexes, Re-1 and Re-2, were prepared by ligand exchange reaction using ReOCl 3 (PPh 3 ) 2 as precursor, and characterized by elemental analysis and spectroscopic methods. Complex Re-1 was further characterized by crystallographic analysis. Labeling was performed with high yield (>85%) and radiochemical purity (>90%) using very low ligand concentration. The structure of 99m Tc complexes was established by comparative HPLC using the well-characterized oxorhenium analogues as references. In vitro binding assays demonstrated the affinity of these complexes for 5-HT 1A receptors (IC 50 : 67 and 45 nM for Re-1 and Re-2 respectively). Biological studies in mice showed the ability of 99m Tc-1 and 99m Tc-2 complexes to cross the intact blood-brain barrier (1.4 and 0.9% dose/g, respectively at 1 min post-inj.). The distribution of these complexes in various regions in rat brain is inhomogeneous. The highest ratio between areas reach and poor in 5-HT 1A receptors was calculated for complex Tc-1 at 60 min p.i. (hippocampus/cerebellum = 1.7).

  3. Novel mixed ligand technetium complexes as 5-HT1A receptor imaging agents.

    León, A; Rey, A; Mallo, L; Pirmettis, I; Papadopoulos, M; León, E; Pagano, M; Manta, E; Incerti, M; Raptopoulou, C; Terzis, A; Chiotellis, E

    2002-02-01

    The synthesis, characterization and biological evaluation of two novel 3 + 1 mixed ligand 99mTc-complexes, bearing the 1-(2-methoxyphenylpiperazine) moiety, a fragment of the true 5-HT1A antagonist WAY 100635, is reported. Complexes at tracer level 99mTcO[(CH3CH2)2NCH2CH2N(CH2CH2S)2][o-CH3OC6H4N(CH2CH2)2NCH2CH2S], 99mTc-1, and 99mTcO[((CH3)2CH)2NCH2CH2N(CH2CH2S)2][o-CH3OC6H4N (CH2CH2)2NCH2CH2S], 99mTc-2, were prepared using 99mTc-glucoheptonate as precursor. For structural characterization, the analogous oxorhenium complexes, Re-1 and Re-2, were prepared by ligand exchange reaction using ReOCl3(PPh3)2 as precursor, and characterized by elemental analysis and spectroscopic methods. Complex Re-1 was further characterized by crystallographic analysis. Labeling was performed with high yield (>85%) and radiochemical purity (>90%) using very low ligand concentration. The structure of 99mTc complexes was established by comparative HPLC using the well-characterized oxorhenium analogues as references. In vitro binding assays demonstrated the affinity of these complexes for 5-HT1A receptors (IC50 : 67 and 45 nM for Re-1 and Re-2 respectively). Biological studies in mice showed the ability of 99mTc-1 and 99mTc-2 complexes to cross the intact blood-brain barrier (1.4 and 0.9% dose/g, respectively at 1 min post-inj.). The distribution of these complexes in various regions in rat brain is inhomogeneous. The highest ratio between areas reach and poor in 5-HT1A receptors was calculated for complex Tc-1 at 60 min p.i. (hippocampus/cerebellum = 1.7).

  4. Novel mixed ligand technetium complexes as 5-HT{sub 1A} receptor imaging agents

    Leon, A.; Rey, A. E-mail: arey@bilbo.edu.uy; Mallo, L.; Pirmettis, I.; Papadopoulos, M.; Leon, E.; Pagano, M.; Manta, E.; Incerti, M.; Raptopoulou, C.; Terzis, A.; Chiotellis, E

    2002-02-01

    The synthesis, characterization and biological evaluation of two novel 3 + 1 mixed ligand {sup 99m}Tc-complexes, bearing the 1-(2-methoxyphenylpiperazine) moiety, a fragment of the true 5-HT{sub 1A} antagonist WAY 100635, is reported. Complexes at tracer level {sup 99m}TcO[(CH{sub 3}CH{sub 2}){sub 2}NCH{sub 2}CH{sub 2}N(CH{sub 2}CH{sub 2}S){sub 2}][o-CH{sub 3}OC{sub 6}H{sub 4}N(CH{sub 2}CH{sub 2}){sub 2}NCH{sub 2}= CH{sub 2}S], {sup 99m}Tc-1, and {sup 99m}TcO[((CH{sub 3}){sub 2}CH){sub 2}NCH{sub 2}CH{sub 2}N(CH{sub 2}CH{sub 2}S){sub 2}][o-CH{sub 3}OC{sub 6}H{sub 4}N (CH{sub 2}CH{sub 2}){sub 2}NCH{sub 2}CH{sub 2}S], {sup 99m}Tc-2, were prepared using {sup 99m}Tc-glucoheptonate as precursor. For structural characterization, the analogous oxorhenium complexes, Re-1 and Re-2, were prepared by ligand exchange reaction using ReOCl{sub 3}(PPh{sub 3}){sub 2} as precursor, and characterized by elemental analysis and spectroscopic methods. Complex Re-1 was further characterized by crystallographic analysis. Labeling was performed with high yield (>85%) and radiochemical purity (>90%) using very low ligand concentration. The structure of {sup 99m}Tc complexes was established by comparative HPLC using the well-characterized oxorhenium analogues as references. In vitro binding assays demonstrated the affinity of these complexes for 5-HT{sub 1A} receptors (IC{sub 50} : 67 and 45 nM for Re-1 and Re-2 respectively). Biological studies in mice showed the ability of {sup 99m}Tc-1 and {sup 99m}Tc-2 complexes to cross the intact blood-brain barrier (1.4 and 0.9% dose/g, respectively at 1 min post-inj.). The distribution of these complexes in various regions in rat brain is inhomogeneous. The highest ratio between areas reach and poor in 5-HT{sub 1A} receptors was calculated for complex Tc-1 at 60 min p.i. (hippocampus/cerebellum = 1.7)

  5. Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: implications for the neural substrates of emotion regulation.

    Albaugh, Matthew D; Ducharme, Simon; Collins, D Louis; Botteron, Kelly N; Althoff, Robert R; Evans, Alan C; Karama, Sherif; Hudziak, James J

    2013-05-01

    Recent functional connectivity studies have demonstrated that, in resting humans, activity in a dorsally-situated neocortical network is inversely associated with activity in the amygdalae. Similarly, in human neuroimaging studies, aspects of emotion regulation have been associated with increased activity in dorsolateral, dorsomedial, orbital and ventromedial prefrontal regions, as well as concomitant decreases in amygdalar activity. These findings indicate the presence of two countervailing systems in the human brain that are reciprocally related: a dorsally-situated cognitive control network, and a ventrally-situated limbic network. We investigated the extent to which this functional reciprocity between limbic and dorsal neocortical regions is recapitulated from a purely structural standpoint. Specifically, we hypothesized that amygdalar volume would be related to cerebral cortical thickness in cortical regions implicated in aspects of emotion regulation. In 297 typically developing youths (162 females, 135 males; 572 MRIs), the relationship between cortical thickness and amygdalar volume was characterized. Amygdalar volume was found to be inversely associated with thickness in bilateral dorsolateral and dorsomedial prefrontal, inferior parietal, as well as bilateral orbital and ventromedial prefrontal cortices. Our findings are in line with previous work demonstrating that a predominantly dorsally-centered neocortical network is reciprocally related to core limbic structures such as the amygdalae. Future research may benefit from investigating the extent to which such cortical-limbic morphometric relations are qualified by the presence of mood and anxiety psychopathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-06

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. The pharmacology of TD-8954, a potent and selective 5-HT4 receptor agonist with gastrointestinal prokinetic properties

    David T Beattie

    2011-05-01

    Full Text Available This study evaluated the in vitro and in vivo pharmacological properties of TD-8954, a potent and selective 5-HT4 receptor agonist. TD-8954 had high affinity (pKi = 9.4 for human recombinant 5-HT4(c (h5-HT4(c receptors, and selectivity (> 2,000-fold over all other 5-HT receptors and non-5-HT receptors, ion channels, enzymes and transporters tested (n = 78. TD-8954 produced an elevation of cAMP in HEK-293 cells expressing the h5-HT4(c receptor (pEC50 = 9.3, and contracted the guinea pig colonic longitudinal muscle/myenteric plexus (LMMP preparation (pEC50 = 8.6. TD-8954 had moderate intrinsic activity (IA in the in vitro assays. In conscious guinea pigs, subcutaneous (s.c. administration of TD 8954 (0.03 - 3 mg/kg increased the colonic transit of carmine red dye, reducing the time taken for its excretion. Following intraduodenal (i.d. dosing to anesthetized rats, TD 8954 (0.03 - 10 mg/kg evoked a dose-dependent relaxation of the esophagus. Following oral administration to conscious dogs, TD 8954 (10 and 30 µg/kg produced an increase in contractility of the antrum, duodenum and jejunum. In a single ascending oral dose study in healthy human subjects, TD-8954 (0.1 - 20 mg increased bowel movement frequency and reduced the time to first stool. It is concluded that TD-8954 is a potent and selective 5-HT4 receptor agonist in vitro, with robust in vivo stimulatory activity in the gastrointestinal (GI tract of guinea pigs, rats, dogs and humans. TD-8954 may have clinical utility in patients with disorders of reduced GI motility.

  8. The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat.

    Dawson, Patrick; Opacka-Juffry, Jolanta; Moffatt, James D; Daniju, Yusuf; Dutta, Neelakshi; Ramsey, John; Davidson, Colin

    2014-01-03

    5-APB, commonly marketed as 'benzofury' is a new psychoactive substance and erstwhile 'legal high' which has been implicated in 10 recent drug-related deaths in the UK. This drug was available on the internet and in 'head shops' and was one of the most commonly sold legal highs up until its recent UK temporary ban (UK Home Office). Despite its prominence, very little is known about its pharmacology. This study was undertaken to examine the pharmacology of 5-APB in vitro. We hypothesised that 5-APB would activate the dopamine and 5-HT systems which may underlie its putative stimulant and hallucinogenic effects. Autoradiographic studies showed that 5-APB displaced both [(125)I] RTI-121 and [(3)H] ketanserin from rat brain tissue suggesting affinity at the dopamine transporter and 5-HT2 receptor sites respectively. Voltammetric studies in rat accumbens brain slices revealed that 5-APB slowed dopamine reuptake, and at high concentrations caused reverse transport of dopamine. 5-APB also caused vasoconstriction of rat aorta, an effect antagonised by the 5-HT2A receptor antagonist ketanserin, and caused contraction of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist RS-127445. These data show that 5-APB interacts with the dopamine transporter and is an agonist at the 5-HT2A and 5-HT2B receptors in the rat. Thus 5-APB's pharmacology is consistent with it having both stimulant and hallucinogenic properties. In addition, 5-APB's activity at the 5-HT2B receptor may cause cardiotoxicity. © 2013.

  9. In silico Analysis and Experimental Validation of Lignan Extracts from Kadsura longipedunculata for Potential 5-HT1AR Agonists.

    Yaxin Zheng

    Full Text Available Kadsura longipedunculata (KL has been widely used for the treatment of insomnia in traditional Chinese medicine. The aim of this study was to explore the mechanism of the sedative and hypnotic effects of KL.The content of KL was evaluated by HPLC-TOF-MS, and a potential target was found and used to construct its 3D structure to screen for potential ligands among the compounds in KL by using bioinformatics analysis, including similarity ensemble approach (SEA docking, homology modeling, molecular docking and ligand-based pharmacophore. The PCPA-induced insomnia rat model was then applied to confirm the potential targets related to the sedative effects of KL by performing the forced swimming test (FST, the tail suspension test (TST and the measurement of target-related proteins using western blotting and immunofluorescence.Bioinformatics analysis showed that most of lignan compounds in KL were optimal ligands for the 5-HT1A receptor (5-HT1AR, and they were found to be potential targets related to sedative effects; the main lignan content of KL extracts was characterized by HPLC-TOF-MS, with 7 proposed lignans detected. Administration of KL could significantly reduce FST and TST immobility time in the PCPA-induced 5HT-depleted insomnia rat model. The expressions of proteins related to the 5-HT1AR pathway were regulated by extracts of KL in a concentration-dependent manner, indicating that extracts of KL had 5-HT1AR agonist-like effects.In silico analysis and experimental validation together demonstrated that lignan extracts from KL can target 5-HT1AR in insomniac rats, which could shed light on its use as a potential 5-HT1AR agonist drug.

  10. An assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning.

    Lindner, Mark D; Hodges, Donald B; Hogan, John B; Orie, Anitra F; Corsa, Jason A; Barten, Donna M; Polson, Craig; Robertson, Barbara J; Guss, Valerie L; Gillman, Kevin W; Starrett, John E; Gribkoff, Valentin K

    2003-11-01

    Antagonists of serotonin 6 (5-HT6) receptors have been reported to enhance cognition in animal models of learning, although this finding has not been universal. We have assessed the therapeutic potential of the specific 5-HT6 receptor antagonists 4-amino-N-(2,6-bis-methylamino-pyrimidin-4-yl)-benzenesulfonamide (Ro 04-6790) and 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046) in rodent models of cognitive function. Although mice express the 5-HT6 receptor and the function of this receptor has been investigated in mice, all reports of activity with 5-HT6 receptor antagonists have used rat models. In the present study, receptor binding revealed that the pharmacological properties of the mouse receptor are different from the rat and human receptor: Ro 04-6790 does not bind to the mouse 5-HT6 receptor, so all in vivo testing included in the present report was conducted in rats. We replicated previous reports that 5-HT6 receptor antagonists produce a stretching syndrome previously shown to be mediated through cholinergic mechanisms, but Ro 04-6790 and SB-271046 failed to attenuate scopolamine-induced deficits in a test of contextual fear conditioning. We also failed to replicate the significant effects reported previously in both an autoshaping task and in a version of the Morris water maze. The results of our experiments are not consistent with previous reports that suggested that 5-HT6 antagonists might have therapeutic potential for cognitive disorders.

  11. Disturbance of serotonin 5HT2 receptors in remitted patients suffering from hereditary depressive disorder

    Larisch, R.; Vosberg, H.; Tosch, M.; Mueller-Gaertner, H.W.; Klimke, A.; Gaebel, W.; Mayoral, F.; Rivas, F.; Hamacher, K.; Coenen, H.H.; Herzog, H.R.

    2001-01-01

    Aim: The characteristics of 5HT 2 receptor binding were investigated in major depression in vivo using positron emission tomography and the radioligand F-18-altanserin. Methods: Twelve patients from families with high loading of depression living in a geographically restricted region were examined and compared with normal control subjects. At the time of the PET measurement all patients wer