WorldWideScience

Sample records for cerebral cortex

  1. Cerebral cortex modulation of pain

    Institute of Scientific and Technical Information of China (English)

    Yu-feng XIE; Fu-quan HUO; Jing-shi TANG

    2009-01-01

    Pain is a complex experience encompassing sensory-discriminative, affective-motivational and cognitiv e-emotional com-ponents mediated by different mechanisms. Contrary to the traditional view that the cerebral cortex is not involved in pain perception, an extensive cortical network associated with pain processing has been revealed using multiple methods over the past decades. This network consistently includes, at least, the anterior cingulate cortex, the agranular insular cortex, the primary (SⅠ) and secondary somatosensory (SⅡ) cortices, the ventrolateral orbital cortex and the motor cortex. These corti-cal structures constitute the medial and lateral pain systems, the nucleus submedius-ventrolateral orbital cortex-periaque-ductal gray system and motor cortex system, respectively. Multiple neurotransmitters, including opioid, glutamate, GABA and dopamine, are involved in the modulation of pain by these cortical structures. In addition, glial cells may also be in-volved in cortical modulation of pain and serve as one target for pain management research. This review discusses recent studies of pain modulation by these cerebral cortical structures in animals and human.

  2. The Age of Human Cerebral Cortex Neurons

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  3. Spindle Bursts in Neonatal Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Jenq-Wei Yang

    2016-01-01

    Full Text Available Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i the functional properties of spindle bursts, (ii the mechanisms underlying their generation, (iii the synchronous patterns and cortical networks associated with spindle bursts, and (iv the physiological and pathophysiological role of spindle bursts during early cortical development.

  4. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    Science.gov (United States)

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development.

  5. Early GABAergic circuitry in the cerebral cortex.

    Science.gov (United States)

    Luhmann, Heiko J; Kirischuk, Sergei; Sinning, Anne; Kilb, Werner

    2014-06-01

    In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual developmental shift of GABA action from excitatory to inhibitory and the maturation of cortical synaptic connections, GABA becomes more important in synchronizing neuronal network activity.

  6. Emprego dos gangliosidos do cortex cerebral nas neuropatias perifericas

    Directory of Open Access Journals (Sweden)

    James Pitagoras De Mattos

    1981-12-01

    Full Text Available Os autores registram a experiência pessoal com o emprego de gangliosídios do cortex cerebral nas neuropatias periféricas. O ensaio clínico e eletromiográfico revelou-se eficaz em 30 dos 40 casos tratados. Enfatizam os melhores resultados em casos de paralisias faciais periféricas.

  7. Microglia in the Cerebral Cortex in Autism

    Science.gov (United States)

    Tetreault, Nicole A.; Hakeem, Atiya Y.; Jiang, Sue; Williams, Brian A.; Allman, Elizabeth; Wold, Barbara J.; Allman, John M.

    2012-01-01

    We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had…

  8. High membrane protein oxidation in the human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Matthias Granold

    2015-04-01

    Full Text Available Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old animals, and adult rat hippocampus and cortex subjected or not subjected to cerebral ischemia. Most tissues showed relatively similar levels of protein oxidation. However, human cortex was affected by severe membrane protein oxidation, while exhibiting lower than average cytoplasmic protein oxidation. In contrast, ex vivo autooxidation of murine cortical tissue primarily induced aqueous protein oxidation, while in vivo biological aging or cerebral ischemia had no major effect on brain protein oxidation. The unusually high levels of membrane protein oxidation in the human cortex were also not predicted by lipid peroxidation, as the levels of isoprostane immunoreactivity in human samples were considerably lower than in rodent tissues. Our results indicate that the aged human cortex is under steady pressure from specific and potentially detrimental membrane protein oxidation. The pronounced difference between humans, mice and rats regarding the primary site of cortical oxidation might have contributed to the unresolved difficulties in translating into therapies the wealth of data describing successful antioxidant neuroprotection in rodents.

  9. Changes in Cerebral Cortex of Children Treated for Medulloblastoma

    International Nuclear Information System (INIS)

    Purpose: Children with medulloblastoma undergo surgery, radiotherapy, and chemotherapy. After treatment, these children have numerous structural abnormalities. Using high-resolution magnetic resonance imaging, we measured the thickness of the cerebral cortex in a group of medulloblastoma patients and a group of normally developing children. Methods and Materials: We obtained magnetic resonance imaging scans and measured the cortical thickness in 9 children after treatment of medulloblastoma. The measurements from these children were compared with the measurements from age- and gender-matched normally developing children previously scanned. For additional comparison, the pattern of thickness change was compared with the cortical thickness maps from a larger group of 65 normally developing children. Results: In the left hemisphere, relatively thinner cortex was found in the perirolandic region and the parieto-occipital lobe. In the right hemisphere, relatively thinner cortex was found in the parietal lobe, posterior superior temporal gyrus, and lateral temporal lobe. These regions of cortical thinning overlapped with the regions of cortex that undergo normal age-related thinning. Conclusion: The spatial distribution of cortical thinning suggested that the areas of cortex that are undergoing development are more sensitive to the effects of treatment of medulloblastoma. Such quantitative methods may improve our understanding of the biologic effects that treatment has on the cerebral development and their neuropsychological implications

  10. [Macro- and microscopic systematization of cerebral cortex malformations in children].

    Science.gov (United States)

    Milovanov, A P; Milovanova, O A

    2011-01-01

    For the first time in pediatric pathologicoanatomic practice the complete systematization of cerebral cortex malformations is represented. Organ, macroscopic forms: microencephaly, macroencephaly, micropolygyria, pachygyria, schizencephaly, porencephaly, lissencephaly. Histic microdysgenesis of cortex: type I includes isolated abnormalities such as radial (IA) and tangential (I B) subtypes of cortical dislamination; type II includes sublocal cortical dislamination with immature dysmorphic neurons (II A) and balloon cells (II B); type III are the combination focal cortical dysplasia with tuberous sclerosis of the hippocampus (III A), tumors (III B) and malformations of vessels, traumatic and hypoxic disorders (III C). Band heterotopias. Subependimal nodular heterotopias. Tuberous sclerosis. Cellular typification of cortical dysplasia: immature neurons and balloon cells.

  11. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex.

    Science.gov (United States)

    Herbst, Eric A F; Holloway, Graham P

    2016-07-01

    The present study investigated the impact of acute exercise on stimulating mitochondrial respiratory function in mouse cerebral cortex. Where pyruvate-stimulated respiration was not affected by acute exercise, glutamate respiration was enhanced following the exercise bout. Additional assessment revealed that this affect was dependent on the presence of malate and did not occur when substituting glutamine for glutamate. As such, our results suggest that glutamate oxidation is enhanced with acute exercise through activation of the malate-aspartate shuttle. PMID:27184881

  12. Emergence of Complex Wave Patterns in Primate Cerebral Cortex

    OpenAIRE

    Townsend, Rory G.; Solomon, Selina S.; Chen, Spencer C.; Pietersen, Alexander N.J.; Martin, Paul R.; Solomon, Samuel G.; Gong, Pulin

    2015-01-01

    Slow brain rhythms are attributed to near-simultaneous (synchronous) changes in activity in neuron populations in the brain. Because they are slow and widespread, synchronous rhythms have not been considered crucial for information processing in the waking state. Here we adapted methods from turbulence physics to analyze δ-band (1–4 Hz) rhythms in local field potential (LFP) activity, in multielectrode recordings from cerebral cortex in anesthetized marmoset monkeys. We found that synchrony c...

  13. Serine racemase expression in mouse cerebral cortex after permanent focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Li-zhen WANG; Xing-zu ZHU

    2004-01-01

    AIM: To study the alterations of the expressions of serine racemase in C57BL/6 mouse brain after permanent focal cerebral ischemia. METHODS: The mRNA level and the protein level of serine racemase were assayed by semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. The amount of D-serine and L-serine were measured by HPLC. RESULTS: High levels of serine racemase were constitutively expressed in the normal cortex of mouse. At early stage after middle cerebral artery occlusion (MCAO), no significant change in expression of serine racemase was observed in temporoparietal cortex in ipsilateral hemisphere. However,delayed transient decreases of serine racemase in both mRNA and protein levels were detected from d 6 to d 10 after ischemia. Correspondingly, D-serine concentration also declined in the ipsilateral cortex during this period when compared with the D-serine level in the contralateral cortex. CONCLUSION:Delayed decreases in serine racemase expression and D-serine level occurred in the temporoparietal cortex at the late stage after focal cerebral ischemia.

  14. Metabolic effects of perinatal asphyxia in the rat cerebral cortex.

    Science.gov (United States)

    Souza, Samir Khal; Martins, Tiago Leal; Ferreira, Gustavo Dias; Vinagre, Anapaula Sommer; Silva, Roselis Silveira Martins da; Frizzo, Marcos Emilio

    2013-03-01

    We reported previously that intrauterine asphyxia acutely affects the rat hippocampus. For this reason, the early effects of this injury were studied in the cerebral cortex, immediately after hysterectomy (acute condition) or following a recovery period at normoxia (recovery condition). Lactacidemia and glycemia were determined, as well as glycogen levels in the muscle, liver and cortex. Cortical tissue was also used to assay the ATP levels and glutamate uptake. Asphyxiated pups exhibited bluish coloring, loss of movement, sporadic gasping and hypertonia. However, the appearance of the controls and asphyxiated pups was similar at the end of the recovery period. Lactacidemia and glycemia were significantly increased by asphyxia in both the acute and recovery conditions. Concerning muscle and hepatic glycogen, the control group showed significantly higher levels than the asphyxic group in the acute condition and when compared with groups of the recovery period. In the recovery condition, the control and asphyxic groups showed similar glycogen levels. However, in the cortex, the control groups showed significantly higher glycogen levels than the asphyxic group, in both the acute and recovery conditions. In the cortical tissue, asphyxia reduced ATP levels by 70 % in the acute condition, but these levels increased significantly in asphyxic pups after the recovery period. Asphyxia did not affect glutamate transport in the cortex of both groups. Our results suggest that the cortex uses different energy resources to restore ATP after an asphyxia episode followed by a reperfusion period. This strategy could sustain the activity of essential energy-dependent mechanisms. PMID:23196669

  15. Mapping the human cerebral cortex using 3-D medial manifolds

    Science.gov (United States)

    Szekely, Gabor; Brechbuehler, Christian; Kuebler, Olaf; Ogniewicz, Robert; Budinger, Thomas F.

    1992-09-01

    Novel imaging technologies provide a detailed look at structure and function of the tremendously complex and variable human brain. Optimal exploitation of the information stored in the rapidly growing collection of acquired and segmented MRI data calls for robust and reliable descriptions of the individual geometry of the cerebral cortex. A mathematical description and representation of 3-D shape, capable of dealing with form of variable appearance, is at the focus of this paper. We base our development on the Medial Axis Transformation (MAT) customarily defined in 2-D although the concept generalizes to any number of dimensions. Our implementation of the 3-D MAT combines full 3-D Voronoitesselation generated by the set of all border points with regularization procedures to obtain geometrically and topologically correct medial manifolds. The proposed algorithm was tested on synthetic objects and has been applied to 3-D MRI data of 1 mm isotropic resolution to obtain a description of the sulci in the cerebral cortex. Description and representation of the cortical anatomy is significant in clinical applications, medical research, and instrumentation developments.

  16. A multi-modal parcellation of human cerebral cortex.

    Science.gov (United States)

    Glasser, Matthew F; Coalson, Timothy S; Robinson, Emma C; Hacker, Carl D; Harwell, John; Yacoub, Essa; Ugurbil, Kamil; Andersson, Jesper; Beckmann, Christian F; Jenkinson, Mark; Smith, Stephen M; Van Essen, David C

    2016-08-11

    Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease. PMID:27437579

  17. Chandelier neurons within the rabbits' cerebral cortex. A Golgi study.

    Science.gov (United States)

    Müller-Paschinger, I B; Tömböl, T; Petsche, H

    1983-01-01

    This study has been carried out by light microscopy on 3 Golgi-Kopsch impregnated brains of young adult rabbits. It is shown that chandelier cells exist within the rabbits' cerebral cortex. In the rabbit, the chandelier cell is a medium ranged bipolar interneuron in layer II/III with a characteristic axon which forms a plexus with a diameter of about 350-500 micrometers in the horizontal and 200-350 micrometers in the vertical direction; the end of each ramulus forms the typical "candlestick", a little vertical string of 1-6 boutons on an axon fibre. These boutons form contacts with all parts of pyramidal cells in layer II and the upper part of layer III. Similarities and differences with respect to previous descriptions of these cells in other species are discussed. PMID:6837931

  18. Cholinergic Mechanisms in the Cerebral Cortex: Beyond Synaptic Transmission.

    Science.gov (United States)

    Ovsepian, Saak V; O'Leary, Valerie B; Zaborszky, Laszlo

    2016-06-01

    Functional overviews of cholinergic mechanisms in the cerebral cortex have traditionally focused on the release of acetylcholine with modulator and transmitter effects. Recently, however, data have emerged that extend the role of acetylcholine and cholinergic innervations to a range of housekeeping and metabolic functions. These include regulation of amyloid precursor protein (APP) processing with production of amyloid β (Aβ) and other APP fragments and control of the phosphorylation of microtubule-associated protein (MAP) tau. Evidence has been also presented for receptor-ligand like interactions of cholinergic receptors with soluble Aβ peptide and MAP tau, with modulator and signaling effects. Moreover, high-affinity binding of Aβ to the neurotrophin receptor p75 (p75NTR) enriched in basalo-cortical cholinergic projections has been implicated in clearance of Aβ and nucleation of amyloid plaques. Here, we critically evaluate these unorthodox cholinergic mechanisms and discuss their role in neuronal physiology and the biology of Alzheimer's disease. PMID:26002948

  19. Cerebral cortex: a target and source of insulin?

    Science.gov (United States)

    Csajbók, Éva A; Tamás, Gábor

    2016-08-01

    Recent results suggest that insulin is synthesised by a subpopulation of neurons in the cerebral cortex and neural progenitor cells of the hippocampus. Supplementing the slow supply of insulin to the brain by pancreatic beta cells, the insulin locally released by neurons provides a rapid means of regulating local microcircuits, effectively modulating synaptic transmission and on-demand energy homeostasis of neural networks. Modulation of insulin production by brain neurons via glucagon-like peptide 1 (GLP-1) agonists might be useful in counteracting diabetes, obesity and neurodegenerative diseases. Replacement of lost pancreatic beta cells by autologous transplantation of insulin-producing neural progenitor cells could be a viable therapy for diabetes. PMID:27207082

  20. Tyrosine promotes oxidative stress in cerebral cortex of young rats.

    Science.gov (United States)

    Sgaravatti, Angela M; Vargas, Bethânia A; Zandoná, Bernardo R; Deckmann, Kátia B; Rockenbach, Francieli J; Moraes, Tarsila B; Monserrat, José M; Sgarbi, Mirian B; Pederzolli, Carolina D; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir; Dutra-Filho, Carlos Severo

    2008-10-01

    Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II, where tyrosine levels are highly elevated in tissues and physiological fluids of affected patients. In tyrosinemia type II, high levels of tyrosine are correlated with eyes, skin and central nervous system disturbances. Considering that the mechanisms of brain damage in these disorders are poorly known, in the present study, we investigated whether oxidative stress is elicited by l-tyrosine in cerebral cortex homogenates of 14-day-old Wistar rats. The in vitro effect of 0.1-4.0mM l-tyrosine was studied on the following oxidative stress parameters: total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), ascorbic acid content, reduced glutathione (GSH) content, spontaneous chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), thiol-disulfide redox state (SH/SS ratio), protein carbonyl content, formation of DNA-protein cross-links, and the activities of the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glucose-6-phosphate dehydrogenase (G6PDH). TRAP, TAR, ascorbic acid content, SH/SS ratio and CAT activity were significantly diminished, while formation of DNA-protein cross-link was significantly enhanced by l-tyrosine in vitro. In contrast, l-tyrosine did not affect the other parameters of oxidative stress evaluated. These results indicate that l-tyrosine decreases enzymatic and non-enzymatic antioxidant defenses, changes the redox state and stimulates DNA damage in cerebral cortex of young rats in vitro. This suggests that oxidative stress may represent a pathophysiological mechanism in tyrosinemic patients, in which this amino acid accumulates.

  1. [Investigation of the Cerebral Cortex Using Magnetoencephalography(MEG)].

    Science.gov (United States)

    Kakigi, Ryusuke

    2015-04-01

    Cortical neurons are excited by signals from the thalamus that are conducted via thalamocortical fibers. As the cortex receives these signals, electric currents are conducted through the apical dendrites of pyramidal cells in the cerebral cortex. These electric currents generate magnetic fields. These electric and magnetic currents can be recorded by electroencephalography (EEG) and magnetoencephalography (MEG), respectively. The spatial resolution of MEG is higher than that of EEG because magnetic fields, unlike electric fields, are not affected by current conductivity. MEG also has several advantages over functional magnetic resonance imaging (fMRI). It (1) is completely non-invasive; (2) measures neuronal activity rather than blood flow or metabolic changes; (3) has a higher temporal resolution than fMRI on the order of milliseconds; (4) enables the measurement of stimulus-evoked and event-related responses; (5) enables the analysis of frequency (i.e., brain rhythm) response, which means that physiological changes can be analyzed spatiotemporally; and (6) enables the detailed analysis of results from an individual subject, which eliminates the need to average results over several subjects. This latter advantage of MEG therefore enables the analysis of inter-individual differences.

  2. Salient features of synaptic organisation in the cerebral cortex.

    Science.gov (United States)

    Somogyi, P; Tamás, G; Lujan, R; Buhl, E H

    1998-05-01

    The neuronal and synaptic organisation of the cerebral cortex appears exceedingly complex, and the definition of a basic cortical circuit in terms of defined classes of cells and connections is necessary to facilitate progress of its analysis. During the last two decades quantitative studies of the synaptic connectivity of identified cortical neurones and their molecular dissection revealed a number of general rules that apply to all areas of cortex. In this review, first the precise location of postsynaptic GABA and glutamate receptors is examined at cortical synapses, in order to define the site of synaptic interactions. It is argued that, due to the exclusion of G protein-coupled receptors from the postsynaptic density, the presence of extrasynaptic receptors and the molecular compartmentalisation of the postsynaptic membrane, the synapse should include membrane areas beyond the membrane specialisation. Subsequently, the following organisational principles are examined: 1. The cerebral cortex consists of: (i) a large population of principal neurones reciprocally connected to the thalamus and to each other via axon collaterals releasing excitatory amino acids, and, (ii) a smaller population of mainly local circuit GABAergic neurones. 2. Differential reciprocal connections are also formed amongst GABAergic neurones. 3. All extrinsic and intracortical glutamatergic pathways terminate on both the principal and the GABAergic neurones, differentially weighted according to the pathway. 4. Synapses of multiple sets of glutamatergic and GABAergic afferents subdivide the surface of cortical neurones and are often co-aligned on the dendritic domain. 5. A unique feature of the cortex is the GABAergic axo-axonic cell, influencing principal cells through GABAA receptors at synapses located exclusively on the axon initial segment. The analysis of these salient features of connectivity has revealed a remarkably selective array of connections, yet a highly adaptable design of

  3. Does Cell Lineage in the Developing Cerebral Cortex Contribute to its Columnar Organization?

    OpenAIRE

    Costa, Marcos R.; Cecilia Hedin-Pereira

    2010-01-01

    Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such ...

  4. Retinoic acid influences neuronal migration from the ganglionic eminence to the cerebral cortex

    OpenAIRE

    Crandall, James E.; Goodman, Timothy; McCarthy, Deirdre M.; Duester, Gregg; Bhide, Pradeep G.; Dräger, Ursula C.; McCaffery, Peter

    2011-01-01

    The ganglionic eminence contributes cells to several forebrain structures including the cerebral cortex, for which it provides GABAergic interneurons. Migration of neuronal precursors from the retinoic-acid rich embryonic ganglionic eminence to the cerebral cortex is known to be regulated by several factors, but retinoic acid has not been previously implicated. We found retinoic acid to potently inhibit cell migration in slice preparations of embryonic mouse forebrains, which was reversed by ...

  5. Ethanol induces heterotopias in organotypic cultures of rat cerebral cortex.

    Science.gov (United States)

    Mooney, Sandra M; Siegenthaler, Julie A; Miller, Michael W

    2004-10-01

    Abnormalities in the migration of cortical neurons to ectopic sites can be caused by prenatal exposure to ethanol. In extreme cases, cells migrate past the pial surface and form suprapial heterotopias or 'warts'. We used organotypic slice cultures from 17-day-old rat fetuses to examine structural and molecular changes that accompany wart formation. Cultures were exposed to ethanol (0, 200, 400 or 800 mg/dl) and maintained for 2-32 h. Fixed slices were sectioned and immunolabeled with antibodies directed against calretinin, reelin, nestin, GFAP, doublecortin, MAP-2 and NeuN. Ethanol promoted the widespread infiltration of the marginal zone (MZ) with neurons and the focal formation of warts. The appearance of warts is time- and concentration-dependent. Heterotopias comprised migrating neurons and were not detected in control slices. Warts were associated with breaches in the array of Cajal-Retzius cells and with translocation of reelin-immunoexpression from the MZ to the outer limit of the wart. Ethanol also altered the morphology of the radial glia. Thus, damage to the integrity of superficial cortex allows neurons to infiltrate the MZ, and if the pial-subpial glial barrier is also compromised these ectopic neurons can move beyond the normal cerebral limit to form a wart.

  6. Surface Reconstruction and Optimization of Cerebral Cortex for Application Use.

    Science.gov (United States)

    Shin, Dong Sun; Park, Sang Kyu

    2016-03-01

    For the purposes of virtual surgery, medical education, medical communication, and realistic surface models of anatomic structures are required. In the most involved method, surface models can be made using segmentation and three-dimensional reconstruction procedures. Such models, however, are computationally expensive, and can be difficult to use. Therefore, optimization is often performed manually, but this is a time-consuming job that requires considerable artistic talent. In this article, the authors describe a method that uses Maya and ZBrush to construct optimized surface models of anatomic structures. The authors take 235 anatomic images generated from a cadaver, and perform segmentation and surface reconstruction using Photoshop and Mimics. Reconstructed surface models of the cerebral cortex are then optimized and divided by a morphing technique in Maya and ZBrush for use in medical applications. The optimized surface models do not require significant storage space, and are easily manufactured and modified. The resulting surface models can be displayed off-line and on-line in real time, as well as on smart phones. Using commercial software with the specialized functions described in this study, it is expected that the efficiencies produced by the proposed method will enable researchers to conveniently create surface models from serially sectioned images such as computed tomographs and magnetic resonance images. The surface models created in this research will also have widespread applications in both medical education and communication. PMID:26854785

  7. Sleep-active cells in the cerebral cortex and their role in slow-wave activity

    OpenAIRE

    Gerashchenko, Dmitry; Wisor, Jonathan P.; Kilduff, Thomas S.

    2011-01-01

    We recently identified neurons in the cerebral cortex that become activated during sleep episodes with high slow-wave activity (SWA). The distinctive properties of these neurons are the ability to produce nitric oxide and their long-range projections within the cortex. In this review, we discuss how these characteristics of sleep-active cells could be relevant to SWA production in the cortex. We also discuss possible models of the role of nNOS cells in SWA production.

  8. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    International Nuclear Information System (INIS)

    Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased

  9. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Rashedinia, Marzieh; Lari, Parisa [Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Abnous, Khalil, E-mail: Abnouskh@mums.ac.r [Pharmaceutical Research Center, Department of Medicinal Chemistry, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Hosseinzadeh, Hossein, E-mail: Hosseinzadehh@mums.ac.ir [Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2013-10-01

    Acrolein, a member of reactive α,β-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including β-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased.

  10. BrdU-labelled neurons regeneration after cerebral cortex injury in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yue-lin; QIU Shu-dong; ZHANG Peng-bo; SHI Wei

    2006-01-01

    @@ Mechanical injuries to the external regions of the brain including the cerebral cortex and other parts of the telencephalon are common yet relatively untreatable.1 The predicament in recovery from brain injury is that the adult central nervous system is generally thought to be incapable of replacing dead neurons. As the subventricular zone (SVZ) is now known to be neurogenic and is in close proximity to the cerebral cortex and other functionally important forebrain areas, the neurogeny of SVZ brings hope to the repair of brain injury.2,3 Because of the high frequency of injuries to the cerebral cortex and its functional importance in humans, many laboratories have studied the results of unilateral aspiration or percussion injury of the cerebral cortex.4-6 However,little is known about the response of endogenous neural stem/progenitor cells following loss of the cerebral cortex that commonly occurred in the neurosurgery. We have characterized the time course of the proliferation of neural stem/progenitor cells in the SVZ in brain to loss of cortical cells.

  11. Regulation of cerebral cortex development by Rho GTPases: insights from in vivo studies

    Directory of Open Access Journals (Sweden)

    Roberta eAzzarelli

    2015-01-01

    Full Text Available The cerebral cortex is the site of higher human cognitive and motor functions. Histologically, it is organized into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection neurons and inhibitory interneurons. The stereotyped cellular distribution of cortical neurons is crucial for the formation of functional neural circuits and it is predominantly established during embryonic development. Cortical neuron development is a multiphasic process characterized by sequential steps of neural progenitor proliferation, cell cycle exit, neuroblast migration and neuronal differentiation. This series of events requires an extensive and dynamic remodeling of the cell cytoskeleton at each step of the process. As major regulators of the cytoskeleton, the family of small Rho GTPases has been shown to play essential functions in cerebral cortex development. Here we review in vivo findings that support the contribution of Rho GTPases to cortical projection neuron development and we address their involvement in the etiology of cerebral cortex malformations.

  12. Amygdala kindling potentiates seizure-stimulated immediate-early gene expression in rat cerebral cortex.

    Science.gov (United States)

    Duman, R S; Craig, J S; Winston, S M; Deutch, A Y; Hernandez, T D

    1992-11-01

    Kindling induces long-term adaptations in neuronal function that lead to a decreased threshold for induction of seizures. In the present study, the influence of amygdala kindling on levels of mRNA for the immediate-early genes (IEGs) c-fos, c-jun, and NGF1-A were examined both before and after an acute electroconvulsive seizure (ECS). Although amygdala kindling did not significantly influence resting levels of c-fos mRNA in cerebral cortex, ECS-stimulated levels of c-fos mRNA (examined 45 min after ECS) were approximately twofold greater in the cerebral cortex of kindled rats relative to sham-treated controls. The influence of kindling on IEG expression was dependent on the time course of kindling, as ECS-stimulated levels of c-fos mRNA were not significantly increased in stage 2 kindled animals. ECS-stimulated levels of c-jun and NGF1-A mRNA were also significantly increased in cerebral cortex of kindled rats relative to sham-treated controls. The influence of kindling on IEG expression was long-lasting because an acute ECS stimulus significantly elevated levels of c-fos and c-jun mRNA in the cerebral cortex of animals that were kindled 5 months previously. In contrast to these effects in cerebral cortex, kindling did not influence ECS-stimulated levels of c-fos mRNA in hippocampus. Finally, immunohistochemical studies revealed lamina-specific changes in the cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Computational Image Analysis Reveals Intrinsic Multigenerational Differences between Anterior and Posterior Cerebral Cortex Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Mark R. Winter

    2015-10-01

    Full Text Available Time-lapse microscopy can capture patterns of development through multiple divisions for an entire clone of proliferating cells. Images are taken every few minutes over many days, generating data too vast to process completely by hand. Computational analysis of this data can benefit from occasional human guidance. Here we combine improved automated algorithms with minimized human validation to produce fully corrected segmentation, tracking, and lineaging results with dramatic reduction in effort. A web-based viewer provides access to data and results. The improved approach allows efficient analysis of large numbers of clones. Using this method, we studied populations of progenitor cells derived from the anterior and posterior embryonic mouse cerebral cortex, each growing in a standardized culture environment. Progenitors from the anterior cortex were smaller, less motile, and produced smaller clones compared to those from the posterior cortex, demonstrating cell-intrinsic differences that may contribute to the areal organization of the cerebral cortex.

  14. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex

    OpenAIRE

    Richard D. Hoge; Atkinson, Jeff; Gill, Brad; Crelier, Gérard R.; Marrett, Sean; Pike, G Bruce

    1999-01-01

    The aim of this study was to test the hypothesis that, within a specific cortical unit, fractional changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) are coupled through an invariant relationship during physiological stimulation. This aim was achieved by simultaneously measuring relative changes in these quantities in human primary visual cortex (V1) during graded stimulation with patterns designed to selectively activate different populations of V1...

  15. THE EFFECT OF LIGUSTRAZINE ON NEUROGENESIS IN CORTEX AFTER FOCAL CEREBRAL ISCHEMIA IN RATS

    Institute of Scientific and Technical Information of China (English)

    Qiu Fen; Liu Yong; Zhang Pengbo; Kang Qianyan; Tian Yingfang; Chen Xinlin; Zhao Jianjun; Qi Cunfang

    2006-01-01

    Objective To explore the effect of Ligustrazine on neurogenesis in cortex after focal cerebral ischemia in rats. Methods Focal cerebral ischemia was induced by left middle cerebral arteryocclusion with asuture. Two hours later, injection of Ligustrazine (80 mg/kg, 1 time/d) was performed peritoneally. Four hours after the ischemia,5-bromodeoxyuridine (BrdU) (50 mg/kg, 1 time/d) was injected peritoneally. At 7 d, 14 d and 21 d after ischemia,BrdU positive cells in the cortex were observed by immunohistochemical staining. Results In ischemic model group, at 7 day, sparsely-distributed BrdU positive cells were observed in the Ⅱ - Ⅵ layers of the ipsilateral cortex, with a band-like distribution in ischemic penumbra. With the prolongation of ischemia, the number of BrdU positive cells increased.In Ligustrazine group, BrdU positive cells were also observed in the Ⅱ - Ⅵ layers of the cortex, with an intense distribution in ischemic penumbra. The numbers of BrdU positive cells at 7 d, 14 d and 21 d were more than those in ischemic model group respectively. Conclusion Ligustrazine increases the proliferated cells in cortex after focal cerebral ischemia in rats. The results suggest that it may be useful for promoting self-repair after ischemia.

  16. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex.

    Science.gov (United States)

    Coffman, Keith A; Dum, Richard P; Strick, Peter L

    2011-09-20

    The cerebellum has a medial, cortico-nuclear zone consisting of the cerebellar vermis and the fastigial nucleus. Functionally, this zone is concerned with whole-body posture and locomotion. The vermis classically is thought to be included within the "spinocerebellum" and to receive somatic sensory input from ascending spinal pathways. In contrast, the lateral zone of the cerebellum is included in the "cerebro-cerebellum" because it is densely interconnected with the cerebral cortex. Here we report the surprising result that a portion of the vermis receives dense input from the cerebral cortex. We injected rabies virus into lobules VB-VIIIB of the vermis and used retrograde transneuronal transport of the virus to define disynaptic inputs to it. We found that large numbers of neurons in the primary motor cortex and in several motor areas on the medial wall of the hemisphere project to the vermis. Thus, our results challenge the classical view of the vermis and indicate that it no longer should be considered as entirely isolated from the cerebral cortex. Instead, lobules VB-VIIIB represent a site where the cortical motor areas can influence descending control systems involved in the regulation of whole-body posture and locomotion. We argue that the projection from the cerebral cortex to the vermis is part of the neural substrate for anticipatory postural adjustments and speculate that dysfunction of this system may underlie some forms of dystonia. PMID:21911381

  17. The determination of projection neuron identity in the developing cerebral cortex

    OpenAIRE

    Leone, Dino P.; Srinivasan, Karpagam; Chen, Bin; Alcamo, Elizabeth; McConnell, Susan K.

    2008-01-01

    Here we review the mechanisms that determine projection neuron identity during cortical development. Pyramidal neurons in the mammalian cerebral cortex can be classified into two major classes: corticocortical projection neurons, which are concentrated in the upper layers of the cortex, and subcortical projection neurons, which are found in the deep layers. Early progenitor cells in the ventricular zone produce deep layer neurons that express transcription factors including Sox5, Fezf2, and C...

  18. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2016-08-30

    Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness. PMID:27528671

  19. High membrane protein oxidation in the human cerebral cortex

    OpenAIRE

    Matthias Granold; Bernd Moosmann; Irina Staib-Lasarzik; Thomas Arendt; Adriana del Rey; Kristin Engelhard; Christian Behl; Parvana Hajieva

    2014-01-01

    Oxidative stress is thought to be one of the main mediators of neuronal damage in human neurodegenerative disease. Still, the dissection of causal relationships has turned out to be remarkably difficult. Here, we have analyzed global protein oxidation in terms of carbonylation of membrane proteins and cytoplasmic proteins in three different mammalian species: aged human cortex and cerebellum from patients with or without Alzheimer's disease, mouse cortex and cerebellum from young and old anim...

  20. Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex

    DEFF Research Database (Denmark)

    Skytt, Dorte Marie; Madsen, Karsten Kirkegaard; Pajecka, Kamilla;

    2010-01-01

    Astrocyte cultures were prepared from cerebral cortex of new-born and 7-day-old mice and additionally, the cultures from new-born animals were passaged as secondary cultures. The cultures were characterized by immunostaining for the astrocyte markers glutamine synthetase (GS), glial fibrillary...

  1. An automated pipeline for cortical surface generation and registration of the cerebral cortex

    Science.gov (United States)

    Li, Wen; Ibanez, Luis; Gelas, Arnaud; Yeo, B. T. Thomas; Niethammer, Marc; Andreasen, Nancy C.; Magnotta, Vincent A.

    2011-03-01

    The human cerebral cortex is one of the most complicated structures in the body. It has a highly convoluted structure with much of the cortical sheet buried in sulci. Based on cytoarchitectural and functional imaging studies, it is possible to segment the cerebral cortex into several subregions. While it is only possible to differentiate the true anatomical subregions based on cytoarchitecture, the surface morphometry aligns closely with the underlying cytoarchitecture and provides features that allow the surface of the cortex to be parcellated based on the sulcal and gyral patterns that are readily visible on the MR images. We have developed a fully automated pipeline for the generation and registration of cortical surfaces in the spherical domain. The pipeline initiates with the BRAINS AutoWorkup pipeline. Subsequently, topology correction and surface generation is performed to generate a genus zero surface and mapped to a sphere. Several surface features are then calculated to drive the registration between the atlas surface and other datasets. A spherical diffeomorphic demons algorithm is used to co-register an atlas surface onto a subject surface. A lobar based atlas of the cerebral cortex was created from a manual parcellation of the cortex. The atlas surface was then co-registered to five additional subjects using a spherical diffeomorphic demons algorithm. The labels from the atlas surface were warped on the subject surface and compared to the manual raters. The average Dice overlap index was 0.89 across all regions.

  2. Cerebellar networks with the cerebral cortex and basal ganglia.

    Science.gov (United States)

    Bostan, Andreea C; Dum, Richard P; Strick, Peter L

    2013-05-01

    The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent findings from neuroanatomical, behavioral, and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that cerebellar output reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, which suggests that the two subcortical structures are part of a densely interconnected network. Taken together, these findings elucidate the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia. PMID:23579055

  3. Reduced Numbers of Somatostatin Receptors in the Cerebral Cortex in Alzheimer's Disease

    Science.gov (United States)

    Flint Beal, M.; Mazurek, Michael F.; Tran, Vinh T.; Chattha, Geetinder; Bird, Edward D.; Martin, Joseph B.

    1985-07-01

    Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatinlike immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.

  4. Effect of propofol pretreatment on apoptosis in rat brain cortex after focal cerebral ischemia and reperfusion

    Institute of Scientific and Technical Information of China (English)

    Haiyan Xu; Chengwei Zhang; Chunxiao Zhang

    2011-01-01

    The present study aimed to observe cortical expression of Bcl-2 and Bax, cysteine-dependent aspartate directed proteases-3 activity and apoptotic cell death in a rat model of middle cerebral artery occlusion pretreated with propofol. Results showed that, propofol pretreatment significantly reduced oxidative stress levels and attenuated neuronal apoptosis in the cortex of rats. Propofol pretreatment upregulated Bcl-2 expression, and downregulated Bax expression and cysteine-dependent aspartate directed proteases-3 activity. These findings indicate that propofol pretreatment inhibits cell apoptosis during focal cerebral ischemia/reperfusion injury. This neuroprotective effect is most likely achieved through the Bcl-2/Bax/cysteine-dependent aspartate directed proteases-3 pathway.

  5. Amino acid incorporation into the protein of mitochondrial preparations from cerebral cortex and spinal cord.

    Science.gov (United States)

    Bachelard, H S

    1966-07-01

    1. Washed guinea-pig cerebral-cortex mitochondria incorporate [(14)C]leucine into their protein at a rate comparable with the rates reported for liver or heart mitochondria only if the mitochondria are separated from myelin and nerve endings by density-gradient centrifugation. 2. The non-mitochondrial components (myelin and nerve endings) of brain mitochondrial preparations incorporated [(14)C]leucine at a negligible rate. 3. The mitochondria do not require an exogenous supply of energy or a full supply of amino acids to support the process. 4. The incorporation rate was linear up to 2hr. aerobic incubation at 30 degrees and was inhibited by chloramphenicol, only slightly by actinomycin D and not by penicillin or pretreatment with ribonuclease. The observed incorporation is considered to be unlikely to be due to contaminating cytoplasmic ribosomes or bacteria. 5. The process was also studied in mitochondrial preparations from rabbit cerebral cortex and spinal cord.

  6. Small scale module of the rat granular retrosplenial cortex: an example of minicolumn-like structure of the cerebral cortex

    Directory of Open Access Journals (Sweden)

    Noritaka eIchinohe

    2012-01-01

    Full Text Available Structures associated with the small scale module called minicolumn can be observed frequently in the cerebral cortex. However, the description of functional characteristics remains obscure. A significant confounding factor is the marked variability both in the definition of a minicolumn and in the diagnostic markers for identifying a minicolumn (see for review, Jones, 2000, DeFelipe et al., 2003; Rockland and Ichinohe, 2004. Within a minicolumn, cell columns are easily visualized by conventional Nissl staining. Dendritic bundles were first discovered with Golgi methods, but are more easily seen with MAP2-immunohistochemisty. Myelinated axon bundles can be seen by Tau-immunohistochemistry or myelin staining. Axon bundles of double bouquet cell can be seen by calbindin-immunohistochemistry. The spatial interrelationship among these morphological elements is more complex than expected and is neither clear nor unanimously agreed upon. In this review, I would like to focus first on the minicolumnar structure found in layers 1 and 2 of the rat granular retrosplenial cortex (GRS. This modular structure was first discovered as a combination of prominent apical dendritic bundles from layer 2 pyramidal neurons and spatially-matched thalamocortical patchy inputs (Wyss et al., 2000. Further examination showed more intricate components of this modular structure, which will be reviewed in this paper. Second, the postnatal development of this structure and potential molecular players for its formation will be reviewed. Thirdly, I will discuss how this modular organization is transformed in mutant rodents with a disorganized layer structure in the cerebral cortex (i.e., reeler mouse and Shaking Rat Kawasaki. Lastly, the potential significance of this type of module will be discussed.

  7. Sleep-active neuronal nitric oxide synthase-positive cells of the cerebral cortex: a local regulator of sleep?

    OpenAIRE

    Wisor, Jonathan P.; Gerashchenko, Dmitry; Kilduff, Thomas S.

    2011-01-01

    Our recent report demonstrated that a small subset of GABAergic interneurons in the cerebral cortex of rodents expresses Fos protein, a marker for neuronal activity, during slow wave sleep (Gerashchenko et al., 2008). The population of sleep-active neurons consists of strongly immunohistochemically-stained cells for the enzyme neuronal nitric oxide synthase. By virtue of their widespread localization within the cerebral cortex and their widespread projections to other cortical cell types, cor...

  8. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls

    OpenAIRE

    Naveau, Elise; Pinson, Anneline; GERARD, Arlette; Nguyen, Laurent; Charlier, Corinne; Thomé, Jean-Pierre; Zoeller, Robert Thomas; Bourguignon, Jean-Pierre; Parent, Anne-Simone

    2014-01-01

    Polychlorinated biphenyls (PCBs) are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH) action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell...

  9. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex

    OpenAIRE

    Tzu-Yu Lin; Yu-Wan Lin; Cheng-Wei Lu; Shu-Kuei Huang; Su-Jane Wang

    2013-01-01

    Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K(+) channel blocker 4-aminopyr...

  10. RTTN Mutations Link Primary Cilia Function to Organization of the Human Cerebral Cortex

    OpenAIRE

    Kheradmand Kia, Sima; Verbeek, Elly; Engelen, Erik; Schot, Rachel; Poot, Raymond A.; de Coo, Irenaeus F.M.; Lequin, Maarten H.; Poulton, Cathryn J.; Pourfarzad, Farzin; Grosveld, Frank G.; Brehm, António; de Wit, Marie Claire Y.; Oegema, Renske; Dobyns, William B.; Verheijen, Frans W.

    2012-01-01

    Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified ...

  11. Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons

    OpenAIRE

    Christophe Heinrich; Robert Blum; Sergio Gascón; Giacomo Masserdotti; Pratibha Tripathi; Rodrigo Sánchez; Steffen Tiedt; Timm Schroeder; Magdalena Götz; Benedikt Berninger

    2010-01-01

    Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be d...

  12. Immunohistochemical investigation of neuronal injury in cerebral cortex of cobra-envenomed rats

    OpenAIRE

    T. R. RAHMY; I.A. Hassona

    2004-01-01

    The immunohistochemical expression of neuron-specific enolase, NSE (a cytoplasmic glycolytic enzyme of the neurons), synaptophysin, SYN (a major membrane glycoprotein of synaptic vesicles), and Bcl-2 (anti-apoptotic protein) were determined in cerebral cortex of rats envenomed with neurotoxic venom from Egyptian cobra. Male rats were intramuscularly (IM) injected with a single injection of either physiological saline solution or ½ LD50 or LD50 of cobra venom and sacrificed 24, 48, or 72 hr af...

  13. Somatostatin content and receptors in the cerebral cortex of depressed and control subjects.

    OpenAIRE

    Charlton, B G; Leake, A; Wright, C.; Fairbairn, A F; McKeith, I G; Candy, J M; Ferrier, I. N.

    1988-01-01

    Somatostatin-like immunoreactivity is reduced in the cerebrospinal fluid in depression and this is presumed to reflect alterations in cerebral somatostatinergic systems. We have examined this hypothesis by measuring this immunoreactivity and somatostatin receptors in post-mortem cortical tissue from depressed patients and control subjects. There was no significant difference in the temporal and occipital cortex in somatostatin-like immunoreactivity or in somatostatin receptor affinity and bin...

  14. Development of the human cerebral cortex: a histochemical study.

    Science.gov (United States)

    Tiu, Sau Cheung; Yew, David T; Chan, Wood Yee

    2003-01-01

    In recent years, improvement in diagnostic techniques has led to better recognition of "disorders of cortical development". These disorders constitute a significant cause of epilepsy, mental retardation, developmental delay and neurological deficits in childhood, and may also contribute to the pathogenesis of psychological and neurodegenerative diseases in adults. Hitherto, however, few systematic studies of the human fetal cortex have been performed, and little is known about the ontogenetic processes of the neocortex in man. The aim of the study is to establish an understanding of the developmental events that occur in the second and third trimesters of gestation, by investigating the biochemical patterns of development of the human neocortex during this period. The temporal and spatial patterns of expression of the neuronal markers gamma-aminobutyric acid (GABA), choline acetyltransferase (ChAT), dopamine beta hydroxylase (DBH), dopamine receptor DR1 and synaptophysin, as well as the glial cell markers glial fibrillary acidic protein (GFAP), S100B and excitatory amino acid transporter protein GLT-1 are delineated in the fetal cortex using immunohistochemistry. Results of this study showed that different neuronal and glial cell proteins follow different developmental patterns and many show inter- or intra-regional variations in expression. Details of these patterns are described and discussed. The early expression of these proteins suggests that they play important roles in the developmental processes of cell proliferation, migration and differentiation. Both neurotransmitters and glial cell proteins probably function outside the confines of synapses in the fetal brain, as paracrine/autocrine factors. Early developmental events seem to be dictated by an innate programme, whereas late events may be more susceptible to extrinsic influences. It is hoped that knowledge of the normal developmental process can lead to better understanding of the causes and mechanisms

  15. Mouse embryos and chimera cloned from neural cells in the postnatal cerebral cortex.

    Science.gov (United States)

    Makino, Hatsune; Yamazaki, Yukiko; Hirabayashi, Takahiro; Kaneko, Ryosuke; Hamada, Shun; Kawamura, Yoshimi; Osada, Tomoharu; Yanagimachi, Ryuzo; Yagi, Takeshi

    2005-01-01

    Cloning of mice has been achieved by transferring nuclei of various types of somatic cell nuclei into enucleated oocytes. However, all attempts to produce live cloned offspring using the nuclei of neurons from adult cerebral cortex have failed. Previously we obtained cloned mice using the nuclei of neural cells collected from fetal cerebral cortex. Here, we attempted to generate cloned mice using differentiated neurons from the cerebral cortex of postnatal (day 0-4) mice. Although we were unable to obtain live cloned pups, many fetuses reached day 10.5 days of development. These fetuses showed various abnormalities such as spherical omission of the neuroepithelium, collapsed lumen of neural tube, and aberrant expressions of marker proteins of neurons. We produced chimeric mice in which some hair cells and kidney cells were originated from differentiated neurons. In chimeric fetuses, LacZ-positive donor cells were in all three germ cell layers. However, chimeras with large contribution of donor-derived cells were not obtained. These results indicate that nuclei of differentiated neurons have lost their developmental totipotency. In other words, the conventional nuclear transfer technique does not allow nuclei of differentiated neurons to undergo complete genomic reprogramming required for normal embryonic development.

  16. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice.

    Science.gov (United States)

    Dono, R; Texido, G; Dussel, R; Ehmke, H; Zeller, R

    1998-08-01

    Fibroblast growth factor-2 (FGF-2) has been implicated in various signaling processes which control embryonic growth and differentiation, adult physiology and pathology. To analyze the in vivo functions of this signaling molecule, the FGF-2 gene was inactivated by homologous recombination in mouse embryonic stem cells. FGF-2-deficient mice are viable, but display cerebral cortex defects at birth. Bromodeoxyuridine pulse labeling of embryos showed that proliferation of neuronal progenitors is normal, whereas a fraction of them fail to colonize their target layers in the cerebral cortex. A corresponding reduction in parvalbumin-positive neurons is observed in adult cortical layers. Neuronal defects are not limited to the cerebral cortex, as ectopic parvalbumin-positive neurons are present in the hippocampal commissure and neuronal deficiencies are observed in the cervical spinal cord. Physiological studies showed that FGF-2-deficient adult mice are hypotensive. They respond normally to angiotensin II-induced hypertension, whereas neural regulation of blood pressure by the baroreceptor reflex is impaired. The present genetic study establishes that FGF-2 participates in controlling fates, migration and differentiation of neuronal cells, whereas it is not essential for their proliferation. The observed autonomic dysfunction in FGF-2-deficient adult mice uncovers more general roles in neural development and function. PMID:9687490

  17. Effect of Electroacupuncture on Expression of p53 Protein in Cerebral Cortex of Rats with Global Cerebral Ischemia/Reperfusion Injury

    Institute of Scientific and Technical Information of China (English)

    卜渊; 耿德勤; 葛巍; 徐兴顺; 曾因明

    2004-01-01

    Objective: To observe the effect of electroacupuncture (EA) on expression of p53 protein in cerebral cortex of senile rats with global cerebral ischemia/reperfusion (IR) injury and to explore its mechanism. Methods: The cerebral IR injury rat model was established referring to Pulsinelli 4-vessel occlusion method. Thirty-six SD rats were randomly and evenly divided into the control group, the IR group and the IR plus EA (IR-EA) group. The animals in the control group were subjected to electrocauterization of vertebral arteries in bilateral flank orifice alone with the general carotid arteries unoccluded.To rats in the IR-EA group, immediately and 24h, 48h, 72h after cerebral IR, EA treatment on bilateral acupoint "Zusanli"(ST36) was applied once a day, lasting for 60 minutes. After the final treatment, all the rats were sacrificed and their brains were taken to examine p53 protein expression by the immunohistochemical method. Results: Cells with positive p53 immunoreactivity in the cerebral cortex of rats in the IR group was significantly higher than that in the control group ( P<0.05), while that in the IR-EA group was significantly lower than that in the IR group (P<0.05). Conclusion: EA could remarkably reduce expression of p53 protein in the cerebral cortex of senile rats with global cerebral IR injury, which might be one of the means for EA to inhibit neuronal apoptosis after cerebral IR injury.

  18. Pine pollen inhibits cell apoptosis-related protein expression in the cerebral cortex of mice with arsenic poisoning.

    Science.gov (United States)

    Luo, Yanhong; Wei, Yaodong; Wang, Taizhong; Chen, Dongzhu; Lu, Tiansheng; Wu, Ruibo; Si, Keke

    2012-04-25

    Previous studies have demonstrated that pine pollen can inhibit cerebral cortical cell apoptosis in mice with arsenic poisoning. The present study sought to detect the influence of pine pollen on apoptosis-related proteins. Immunohistochemistry, western blotting and enzyme-linked immunosorbent assays were used to measure the levels of apoptosis-related proteins in the cerebral cortex of mice with arsenic poisoning. Results indicated that pine pollen suppressed cell apoptosis in the cerebral cortex of arsenic-poisoned mice by reducing Bax, Bcl-2 protein expression and increasing p53 protein expression.

  19. Pine pollen inhibits cell apoptosis-related protein expression in the cerebral cortex of mice with arsenic poisoning★

    Science.gov (United States)

    Luo, Yanhong; Wei, Yaodong; Wang, Taizhong; Chen, Dongzhu; Lu, Tiansheng; Wu, Ruibo; Si, Keke

    2012-01-01

    Previous studies have demonstrated that pine pollen can inhibit cerebral cortical cell apoptosis in mice with arsenic poisoning. The present study sought to detect the influence of pine pollen on apoptosis-related proteins. Immunohistochemistry, western blotting and enzyme-linked immunosorbent assays were used to measure the levels of apoptosis-related proteins in the cerebral cortex of mice with arsenic poisoning. Results indicated that pine pollen suppressed cell apoptosis in the cerebral cortex of arsenic-poisoned mice by reducing Bax, Bcl-2 protein expression and increasing p53 protein expression. PMID:25722672

  20. Pine pollen inhibits cell apoptosis-related protein expression in the cerebral cortex of mice with arsenic poisoning

    Institute of Scientific and Technical Information of China (English)

    Yanhong Luo; Yaodong Wei; Taizhong Wang; Dongzhu Chen; Tiansheng Lu; Ruibo Wu; Keke Si

    2012-01-01

    Previous studies have demonstrated that pine pollen can inhibit cerebral cortical cell apoptosis in mice with arsenic poisoning. The present study sought to detect the influence of pine pollen on apoptosis-related proteins. Immunohistochemistry, western blotting and enzyme-linked immuno-sorbent assays were used to measure the levels of apoptosis-related proteins in the cerebral cortex of mice with arsenic poisoning. Results indicated that pine pollen suppressed cell apoptosis in the cerebral cortex of arsenic-poisoned mice by reducing Bax, Bcl-2 protein expression and increasing p53 protein expression.

  1. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex.

    Science.gov (United States)

    Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang; Woitzik, Johannes; Scheel, Michael; Wiesenthal, Dirk; Martus, Peter; Winkler, Maren K L; Hartings, Jed A; Fabricius, Martin; Speckmann, Erwin-Josef; Gorji, Ali

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating channels initiates spreading depression of brain activity. In contrast, epileptic seizures show modest ion translocation and sustained depolarization below the inactivation threshold for action potential generating channels. Such modest sustained depolarization allows synchronous, highly frequent neuronal firing; ictal epileptic field potentials being its electrocorticographic and epileptic seizure its clinical correlate. Nevertheless, Leão in 1944 and Van Harreveld and Stamm in 1953 described in animals that silencing of brain activity induced by spreading depolarization changed during minimal electrical stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We here report on such spreading convulsions in monopolar subdural recordings in 2 of 25 consecutive aneurismal subarachnoid haemorrhage patients in vivo and neocortical slices from 12 patients with intractable temporal lobe epilepsy in vitro. The in vitro results suggest that γ-aminobutyric acid-mediated inhibition protects from spreading convulsions. Moreover, we describe arterial pulse artefacts mimicking epileptic field potentials in three patients with subarachnoid haemorrhage that ride on the slow potential peak. Twenty-one of the 25 subarachnoid haemorrhage patients (84%) had 656 spreading depolarizations in contrast to only three patients (12%) with 55 ictal epileptic events isolated from spreading depolarizations. Spreading depolarization frequency and depression

  2. Enhanced metabolic capacity of the frontal cerebral cortex after Pavlovian conditioning.

    Science.gov (United States)

    Bruchey, A K; Gonzalez-Lima, F

    2008-03-18

    While Pavlovian conditioning alters stimulus-evoked metabolic activity in the cerebral cortex, less is known about the effects of Pavlovian conditioning on neuronal metabolic capacity. Pavlovian conditioning may increase prefrontal cortical metabolic capacity, as suggested by evidence of changes in cortical synaptic strengths, and evidence for a shift in memory initially processed in subcortical regions to more distributed prefrontal cortical circuits. Quantitative cytochrome oxidase histochemistry was used to measure cumulative changes in brain metabolic capacity associated with both cued and contextual Pavlovian conditioning in rats. The cued conditioned group received tone-foot-shock pairings to elicit a conditioned freezing response to the tone conditioned stimulus, while the contextually conditioned group received pseudorandom tone-foot-shock pairings in an excitatory context. Untrained control group was handled daily, but did not receive any tone presentations or foot shocks. The cued conditioned group had higher cytochrome oxidase activity in the infralimbic and anterior cingulate cortex, and lower cytochrome oxidase activity in dorsal hippocampus than the other two groups. A significant increase in cytochrome oxidase activity was found in anterior cortical areas (medial, dorsal and lateral frontal cortex; agranular insular cortex; lateral and medial orbital cortex and prelimbic cortex) in both conditioned groups, as compared with the untrained control group. In addition, no differences in cytochrome oxidase activity in the somatosensory regions and the amygdala were detected among all groups. The findings indicate that cued and contextual Pavlovian conditioning induces sustained increases in frontal cortical neuronal metabolic demand resulting in regional enhancement in the metabolic capacity of anterior cortical regions. Enhanced metabolic capacity of these anterior cortical areas after Pavlovian conditioning suggests that the frontal cortex may play a

  3. Immuno-localisation of anti-thyroid antibodies in adult human cerebral cortex.

    Science.gov (United States)

    Moodley, Kogie; Botha, Julia; Raidoo, Deshandra Munsamy; Naidoo, Strinivasen

    2011-03-15

    Expression of thyroid-stimulating hormone receptor (TSH-R) has been demonstrated in adipocytes, lymphocytes, bone, kidney, heart, intestine and rat brain. Immuno-reactive TSH-R has been localised in rat brain and human embryonic cerebral cortex but not in adult human brain. We designed a pilot study to determine whether anti-thyroid auto-antibodies immuno-localise in normal adult human cerebral cortex. Forensic samples from the frontal, motor, sensory, occipital, cingulate and parieto-occipito-temporal association cortices were obtained from five individuals who had died of trauma. Although there were no head injuries, the prior psychiatric history of patients was unknown. The tissues were probed with commercial antibodies against both human TSH-R and human thyroglobulin (TG). Anti-TSH-R IgG immuno-localised to cell bodies and axons of large neurones in all 6 regions of all 5 brains. The intensity and percentage of neurones labelled were similar in all tissue sections. TSH-R immuno-label was also observed in vascular endothelial cells in the cingulate gyrus. Although also found in all 5 brains and all six cortical regions, TG localised exclusively in vascular smooth muscle cells and not on neurones. Although limited by the small sample size and number of brain areas examined, this is the first study describing the presence of antigenic targets for anti-TSH-R IgG on human cortical neurons, and anti-TG IgG in cerebral vasculature. PMID:21196016

  4. Retrograde Cerebral Perfusion Results in Better Perfusion to the Striatum Than the Cerebral Cortex During Deep Hypothermic Circulatory Arrest: A Microdialysis Study.

    Science.gov (United States)

    Liang, Meng-Ya; Chen, Guang-Xian; Tang, Zhi-Xian; Rong, Jian; Yao, Jian-ping; Wu, Zhong-Kai

    2016-03-01

    It remains controversial whether contemporary cerebral perfusion techniques, utilized during deep hypothermic circulatory arrest (DHCA), establish adequate perfusion to deep structures in the brain. This study aimed to investigate whether selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion (RCP) can provide perfusion equally to various anatomical positions in the brain using metabolic evidence obtained from microdialysis. Eighteen piglets were randomly assigned to 40 min of circulatory arrest (CA) at 18°C without cerebral perfusion (DHCA group, n = 6) or with SACP (SACP group, n = 6) or RCP (RCP group, n = 6). Microdialysis parameters (glucose, lactate, pyruvate, and glutamate) were measured every 30 min in cortex and striatum. After 3 h of reperfusion, brain tissue was harvested for Western blot measurement of α-spectrin. After 40 min of CA, the DHCA group showed marked elevations of lactate and glycerol and a reduction in glucose in the microdialysis perfusate (all P spectrin expression in brain tissue were similar between cortex and striatum in the SACP group (all P > 0.05). In the RCP group, the cortex exhibited lower glucose, higher lactate, and higher glycerol in the perfusate and higher α-spectrin expression in brain tissue compared with the striatum (all P 0.05). In summary, SACP provided uniform and continuous cerebral perfusion to most anatomical sites in the brain, whereas RCP resulted in less sufficient perfusion to the cortex but better perfusion to the striatum. PMID:26333187

  5. Inorganic Arsenic Induces NRF2-Regulated Antioxidant Defenses in Both Cerebral Cortex and Hippocampus in Vivo.

    Science.gov (United States)

    Zhang, Yang; Duan, Xiaoxu; Li, Jinlong; Zhao, Shuo; Li, Wei; Zhao, Lu; Li, Wei; Nie, Huifang; Sun, Guifang; Li, Bing

    2016-08-01

    Inorganic arsenic is reported to induce the reactive oxygen species-mediated oxidative stress, which is supposed to be one of the main mechanisms of arsenic-related neurological diseases. Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of antioxidant defense systems, up-regulates the expression of target genes to fight against oxidative damages caused by harmful substances, including metals. In the present study, mice were used as a model to investigate the oxidative stress levels and the expressions of NRF2-regulated antioxidant substances in both cerebral cortex and hippocampus with 5, 10 and 20 mg/kg NaAsO2 exposure intra-gastrically. Our results showed that acute NaAsO2 treatment resulted in decreased total anti-oxidative capacity (T-AOC) and increased maleic dialdehyde production in the nervous system. We also detected rapidly elevation of NRF2 protein levels by enhancement of Nrf2 transcription, especially at 20 mg/kg NaAsO2 exposure group. In the meantime, mRNA and protein levels of Nrf2 encoding antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) were consistently elevated time- and dose-dependently both in the cerebral cortex and hippocampus. Taken together, the presence study demonstrated the activation of NRF2 pathway, an early antioxidant defensive response, in both cerebral cortex and hippocampus upon inorganic arsenic (iAs) exposure in vivo. A better knowledge on the roles of NRF2 pathway in maintaining cellular redox homeostasis would be helpful for the strategies on improvement of neurotoxicity related to this metalloid. PMID:27165637

  6. Alteration of rat fetal cerebral cortex development after prenatal exposure to polychlorinated biphenyls.

    Directory of Open Access Journals (Sweden)

    Elise Naveau

    Full Text Available Polychlorinated biphenyls (PCBs are environmental contaminants that persist in environment and human tissues. Perinatal exposure to these endocrine disruptors causes cognitive deficits and learning disabilities in children. These effects may involve their ability to interfere with thyroid hormone (TH action. We tested the hypothesis that developmental exposure to PCBs can concomitantly alter TH levels and TH-regulated events during cerebral cortex development: progenitor proliferation, cell cycle exit and neuron migration. Pregnant rats exposed to the commercial PCB mixture Aroclor 1254 ended gestation with reduced total and free serum thyroxine levels. Exposure to Aroclor 1254 increased cell cycle exit of the neuronal progenitors and delayed radial neuronal migration in the fetal cortex. Progenitor cell proliferation, cell death and differentiation rate were not altered by prenatal exposure to PCBs. Given that PCBs remain ubiquitous, though diminishing, contaminants in human systems, it is important that we further understand their deleterious effects in the brain.

  7. Effect of camphor essential oil on rat cerebral cortex activity as manifested by fractal dimension changes

    Directory of Open Access Journals (Sweden)

    Grbić G.

    2008-01-01

    Full Text Available The aim of our study was to investigate the effect of camphor essential oil on rat cerebral cortex activity by fractal analysis. Fractal dimension (FD values of the parietal electrocortical activity were calculated before and after intra-peritoneal administration of camphor essential oil (450-675 μl/kg in anesthetized rats. Camphor oil induced seizure-like activity with single and multiple spiking of high amplitudes in the parietal electrocorticogram and occasional clonic limb convulsions. The FD values of cortical activity after camphor oil administration increased on the average. Only FD values of cortical ECoG sequences were lower than those before camphor oil administration.

  8. Effect of. beta. -endorphin on catecholamine levels in rat hypothalamus and cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Slavnov, V.N.; Valueva, G.V.; Markov, V.V.; Luchitskii, E.V.

    1986-10-01

    The authors studied the effect of beta-endorphin on catecholamine concentrations in the hypothalmus and cerebral cortex in rats, as a contribution to the explanation of the mechanism of action of this peptide on certain pituitary trophic functions. Concentrations of dopamine, noradrenalin, and adrenalin were determined by a radioenzymatic method. A Mark 3 scintillation system was used for radiometric investigation of the samples. The results of these experiments indicate that beta-endorphin has a marked effect on brain catecholamine levels mainly in the hypothalamus.

  9. Hypoosmotic swelling modifies glutamate-glutamine cycle in the cerebral cortex and in astrocyte cultures

    OpenAIRE

    Hyzinski-García, María C.; Vincent, Melanie Y.; Haskew-Layton, Renée E.; Dohare, Preeti; Keller, Richard W.; Mongin, Alexander A.

    2011-01-01

    In our previous work, we found that perfusion of the rat cerebral cortex with hypoosmotic medium triggers massive release of the excitatory amino acid L-glutamate but decreases extracellular levels of L-glutamine (R.E. Haskew-Layton et al., PLoS ONE, 3: e3543). The release of glutamate was linked to activation of volume-regulated anion channels (VRAC), while mechanism(s) responsible for alterations in extracellular glutamine remained unclear. When mannitol was added to the hypoosmotic medium ...

  10. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys.

    Science.gov (United States)

    Dum, Richard P; Levinthal, David J; Strick, Peter L

    2009-11-11

    Classically, the spinothalamic (ST) system has been viewed as the major pathway for transmitting nociceptive and thermoceptive information to the cerebral cortex. There is a long-standing controversy about the cortical targets of this system. We used anterograde transneuronal transport of the H129 strain of herpes simplex virus type 1 in the Cebus monkey to label the cortical areas that receive ST input. We found that the ST system reaches multiple cortical areas located in the contralateral hemisphere. The major targets are granular insular cortex, secondary somatosensory cortex and several cortical areas in the cingulate sulcus. It is noteworthy that comparable cortical regions in humans consistently display activation when subjects are acutely exposed to painful stimuli. We next combined anterograde transneuronal transport of virus with injections of a conventional tracer into the ventral premotor area (PMv). We used the PMv injection to identify the cingulate motor areas on the medial wall of the hemisphere. This combined approach demonstrated that each of the cingulate motor areas receives ST input. Our meta-analysis of imaging studies indicates that the human equivalents of the three cingulate motor areas also correspond to sites of pain-related activation. The cingulate motor areas in the monkey project directly to the primary motor cortex and to the spinal cord. Thus, the substrate exists for the ST system to have an important influence on the cortical control of movement. PMID:19906970

  11. Effect of Magnesium on Nitric Oxide Synthase of Neurons in Cortex during Early Period of Cerebral Ischemia

    Institute of Scientific and Technical Information of China (English)

    SUN Xiu; MEI Yuanwu; TONG E'tang

    2000-01-01

    To investigate the effect of magnesium on nitric oxide synthase (NOS) of neurons in cortex during early cerebral ischemic period, a rat model of middle cerebral artery occlusion (MCAO) was established. The results showed that the NOS activity of neurons in cortex was increased significantly at 15 min after MCAO, reached its peak at 30 min after MCAO and returned to normal levels at 60 min after MCAO. The NOS activity of neurons in the magnesium-treated group was decreased significantly as compared with that in the ischemic group at 15 min and 30min after MCAO respectively. The results suggested that magnesium could inhibit the elevated NOS activity of neurons in cortex induced by cerebral ischemia.

  12. Melatonin reduces traumatic brain injur y-induced oxidative stress in the cerebral cortex and blood of rats

    Institute of Scientific and Technical Information of China (English)

    Nilgnenol; Mustafa Nazrolu

    2014-01-01

    Free radicals induced by traumatic brain injury have deleterious effects on the function and antioxidant vitamin levels of several organ systems including the brain. Melatonin possesses antioxidant effect on the brain by maintaining antioxidant enzyme and vitamin levels. We in-vestigated the effects of melatonin on antioxidant ability in the cerebral cortex and blood of traumatic brain injury rats. Results showed that the cerebral cortex β-carotene, vitamin C, vita-min E, reduced glutathione, and erythrocyte reduced glutathione levels, and plasma vitamin C level were decreased by traumatic brain injury whereas they were increased following melatonin treatment. In conclusion, melatonin seems to have protective effects on traumatic brain inju-ry-induced cerebral cortex and blood toxicity by inhibiting free radical formation and supporting antioxidant vitamin redox system.

  13. A role for PDGF-C/PDGFRα signaling in the formation of the meningeal basement membranes surrounding the cerebral cortex.

    Science.gov (United States)

    Andrae, Johanna; Gouveia, Leonor; Gallini, Radiosa; He, Liqun; Fredriksson, Linda; Nilsson, Ingrid; Johansson, Bengt R; Eriksson, Ulf; Betsholtz, Christer

    2016-01-01

    Platelet-derived growth factor-C (PDGF-C) is one of three known ligands for the tyrosine kinase receptor PDGFRα. Analysis ofPdgfcnull mice has demonstrated roles for PDGF-C in palate closure and the formation of cerebral ventricles, but redundancy with other PDGFRα ligands might obscure additional functions. In search of further developmental roles for PDGF-C, we generated mice that were double mutants forPdgfc(-/-)andPdgfra(GFP/+) These mice display a range of severe phenotypes including spina bifida, lung emphysema, abnormal meninges and neuronal over-migration in the cerebral cortex. We focused our analysis on the central nervous system (CNS), where PDGF-C was identified as a critical factor for the formation of meninges and assembly of the glia limitans basement membrane. We also present expression data onPdgfa,PdgfcandPdgfrain the cerebral cortex and microarray data on cerebral meninges. PMID:26988758

  14. Effects of Cortical Spreading Depression on Synaptic Activity, Blood Flow and Oxygen Consumption in Rat Cerebral Cortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard

    2010-01-01

    As the title of this thesis indicates I have during my PhD studied the effects of cortical spreading depression (CSD) on synaptic activity, blood flow and oxygen consumption in rat cerebral cortex. This was performed in vivo using an open cranial window approach in anesthetized rats. I applied...... Laser-Doppler Flowmetry for measurements of cerebral blood flow, glass microelectrodes for recording of synaptic activity – local field potentials – and ongoing cortical electrical activity and a Clark type electrode for measurements of tissue partial pressure of oxygen (tpO2). Offline calculations...... of cerebral metabolic rate of oxygen (CMRO2) were performed using a compartment model as described Gjedde1. In the first study we characterized the frequency dependency of evoked responses of the transcallosal fiber network (TC) in the somatosensory cortex concerning: synaptic activity, cerebral blood flow...

  15. Astrocytic response in hippocampus and cerebral cortex in an experimental epilepsy model.

    Science.gov (United States)

    Girardi, Elena; Ramos, Alberto Javier; Vanore, Gabriela; Brusco, Alicia

    2004-02-01

    Astrocytes are very sensitive to alterations in the brain environment and respond showing a phenomenon known as astroglial reaction. S100beta is an astroglial derived neurotrophic factor, seems to be involved in neuroplasticity. The aim of this work was to study the astrocytic response in rat hippocampus and cerebral cortex after repetitive seizures induced by 3-mercaptopropionic acid (MP) administration. Immunocytochemical studies were performed to analyze GFAP and S100beta expression. Both studied areas showed hypertrophied astrocytes with enlarged processes and increased soma size. Astrocyte hyperplasia was observed only in the cerebral cortex. A significant decrease in the astrocytic S100beta immunostaining occurs after MP treatment. These results indicate that MP administration induces an astroglial reaction with reduced intracellular S100beta level. The observed reduction in astroglial S100beta could be related to the release of this factor to the extracellular space, where it may produce neurotrophic or deleterious effects accordingly to the concentration achieved. The mechanism of this remains to be elucidated.

  16. Causal interactions between the cerebral cortex and the autonomic nervous system.

    Science.gov (United States)

    Yu, XiaoLin; Zhang, Chong; Zhang, JianBao

    2014-05-01

    Mental states such as stress and anxiety can cause heart disease. On the other hand, meditation can improve cardiac performance. In this study, the heart rate variability, directed transfer function and corrected conditional entropy were used to investigate the effects of mental tasks on cardiac performance, and the functional coupling between the cerebral cortex and the heart. When subjects tried to decrease their heart rate by volition, the sympathetic nervous system was inhibited and the heart rate decreased. When subjects tried to increase their heart rate by volition, the parasympathetic nervous system was inhibited and the sympathetic nervous system was stimulated, and the heart rate increased. When autonomic nervous system activity was regulated by mental tasks, the information flow from the post-central areas to the pre-central areas of the cerebral cortex increased, and there was greater coupling between the brain and the heart. Use of directed transfer function and corrected conditional entropy techniques enabled analysis of electroencephalographic recordings, and of the information flow causing functional coupling between the brain and the heart.

  17. Does Cell Lineage in the Developing Cerebral Cortex Contribute to its Columnar Organization?

    Science.gov (United States)

    Costa, Marcos R.; Hedin-Pereira, Cecilia

    2010-01-01

    Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone (VZ) could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighboring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell–cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits. PMID:20676384

  18. Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex.

    Science.gov (United States)

    Sgaravatti, Angela M; Magnusson, Alessandra S; de Oliveira, Amanda S; Rosa, Andréa P; Mescka, Caroline Paula; Zanin, Fernanda R; Pederzolli, Carolina D; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir; Dutra-Filho, Carlos Severo

    2009-09-01

    Tyrosine levels are abnormally elevated in tissues and physiological fluids of patients with inborn errors of tyrosine catabolism especially in tyrosinemia type II which is caused by deficiency of tyrosine aminotransferase (TAT) and provokes eyes, skin and central nervous system disturbances. We have recently reported that tyrosine promoted oxidative stress in vitro but the exact mechanisms of brain damage in these disorder are poorly known. In the present study, we investigated the in vivo effect of L-tyrosine (500 mg/Kg) on oxidative stress indices in cerebral cortex homogenates of 14-day-old Wistar rats. A single injection of L-tyrosine decreased glutathione (GSH) and thiol-disulfide redox state (SH/SS ratio) while thiobarbituric acid-reactive substances, protein carbonyl content and glucose-6-phosphate dehydrogenase activity were enhanced. In contrast, the treatment did not affect ascorbic acid content, and the activities of superoxide dismutase, catalase and glutathione peroxidase. These results indicate that acute administration of L-tyrosine may impair antioxidant defenses and stimulate oxidative damage to lipids and proteins in cerebral cortex of young rats in vivo. This suggests that oxidative stress may represent a pathophysiological mechanism in hypetyrosinemic patients.

  19. Propofol Compared to Isoflurane Inhibits Mitochondrial Metabolism in Immature Swine Cerebral Cortex

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Atkinson, D. B.; Ledee, Dolena R.; Kayser, Ernst-Bernhard; Morgan, Phil G.; Sedensky, Margaret M.; Isern, Nancy G.; Des Rosiers, Christine; Portman, Michael A.

    2014-01-08

    Anesthetics used in infants and children are implicated in development of neurocognitive disorders. Although propofol induces neuroapoptosis in developing brain, the underlying mechanisms require elucidation and may have an energetic basis. We studied substrate utilization in an immature swine model anesthetized with either propofol or isoflurane for 4 hours. Piglets were infused with 13-Carbon labeled glucose and leucine in the common carotid artery in order to assess citric acid cycle (CAC) metabolism in the parietal cortex. The anesthetics produced similar systemic hemodynamics and cerebral oxygen saturation by near-infrared-spectroscopy. Compared to isoflurane, propofol depleted ATP and glycogen stores. Propofol also decreased pools of the CAC intermediates, citrate and α-ketoglutarate, while markedly increasing succinate along with decreasing mitochondrial complex II activity. Propofol also inhibited acetyl-CoA entry into the CAC through pyruvate dehydrogenase, while promoting glycolytic flux with marked accumulation of lactate. Although oxygen supply appeared similar between the anesthetic groups, propofol yielded a metabolic phenotype which resembled a hypoxic state. Propofol impairs substrate flux through the CAC in the immature cerebral cortex. These impairments occurred without systemic metabolic perturbations which typically accompany propofol infusion syndrome. These metabolic abnormalities may play a role in neurotoxity observed with propofol in the vulnerable immature brain.

  20. Does cell lineage in the developing cerebral cortex contribute to its columnar organization?

    Directory of Open Access Journals (Sweden)

    Marcos R Costa

    2010-06-01

    Full Text Available Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighbouring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell-cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits.

  1. Manatee cerebral cortex: cytoarchitecture of the caudal region in Trichechus manatus latirostris.

    Science.gov (United States)

    Marshall, C D; Reep, R L

    1995-01-01

    In several brains of the Florida manatee, Trichechus manatus latirostris, the architecture of caudal regions of cerebral cortex was examined in order to complete a map of cortical areas in the brain of this unique herbivore. Through observation of sections stained for Nissl substance, myelinated axons, acetylcholinesterase and cytochrome oxidase, we have identified 11 new cortical areas based on qualitative cytoarchitectural appearance and measurements of laminar thicknesses, for a total of 24 such cortical areas in manatee cerebral cortex. Some areas exhibit poorly differentiated laminae while in others there are 6 clearly demarcated layers, often with sublaminar organization. Some previously identified areas were found to extend into the region caudal to the vertically oriented lateral fissure. As in other mammalian brains, cortical areas in manatees are organized in concentric rings of allocortex, mesocortex, and isocortex. Putative functional roles have been assigned to most of the identified areas based on location, architecture, behavioral and anatomical considerations, and extrapolation from other taxa in which functional mapping has been done. PMID:7866767

  2. Effects of insulin-induced hypoglycemia on somatostatin level and binding in rat cerebral cortex and hippocampus

    OpenAIRE

    Rodríguez Sánchez, María Nelly; Colás Escudero, Begoña; Prieto Villapún, Juan Carlos; Arilla Ferreiro, Eduardo

    1989-01-01

    The effects of severe insulin-induced hypoglycemia on somatostatin level and specific binding in the cerebral cortex and hippocampus were examined using 125I-Tyr11-somatostatin as a ligand. Severe insulin-induced hypoglycemia did not affect the level of somatostatin-like immunoreactivity in the brain areas studied. However, the number (but not the affinity) of specific somatostatin receptors was significantly decreased in membrane preparation from the hippocampus but not in the cerebral corte...

  3. Directing astroglia from the cerebral cortex into subtype specific functional neurons.

    Directory of Open Access Journals (Sweden)

    Christophe Heinrich

    2010-05-01

    Full Text Available Astroglia from the postnatal cerebral cortex can be reprogrammed in vitro to generate neurons following forced expression of neurogenic transcription factors, thus opening new avenues towards a potential use of endogenous astroglia for brain repair. However, in previous attempts astroglia-derived neurons failed to establish functional synapses, a severe limitation towards functional neurogenesis. It remained therefore also unknown whether neurons derived from reprogrammed astroglia could be directed towards distinct neuronal subtype identities by selective expression of distinct neurogenic fate determinants. Here we show that strong and persistent expression of neurogenic fate determinants driven by silencing-resistant retroviral vectors instructs astroglia from the postnatal cortex in vitro to mature into fully functional, synapse-forming neurons. Importantly, the neurotransmitter fate choice of astroglia-derived neurons can be controlled by selective expression of distinct neurogenic transcription factors: forced expression of the dorsal telencephalic fate determinant neurogenin-2 (Neurog2 directs cortical astroglia to generate synapse-forming glutamatergic neurons; in contrast, the ventral telencephalic fate determinant Dlx2 induces a GABAergic identity, although the overall efficiency of Dlx2-mediated neuronal reprogramming is much lower compared to Neurog2, suggesting that cortical astroglia possess a higher competence to respond to the dorsal telencephalic fate determinant. Interestingly, however, reprogramming of astroglia towards the generation of GABAergic neurons was greatly facilitated when the astroglial cells were first expanded as neurosphere cells prior to transduction with Dlx2. Importantly, this approach of expansion under neurosphere conditions and subsequent reprogramming with distinct neurogenic transcription factors can also be extended to reactive astroglia isolated from the adult injured cerebral cortex, allowing for the

  4. Safety of Direct Local Cooling (15° C) of the Cerebral Cortex with the Chillerstrip™ During Focal Cerebral Ischemia in Monkeys

    Science.gov (United States)

    Nemoto, Edwin M.; Jungreis, Charles; Jovin, Tudor; Rao, Gutti; Robinson, Timothy; Sanders, Todd; Casey, Kate; Kirkman, John

    Direct cooling of the cerebral cortex with the ChillerStrip™ to 15°C followed by spontaneous rewarming to 37°C is safe. Direct cooling of the brain reduces the severity of the ischemic insult as judged by the reduction in the hyperemia after reperfusion which appeared to be directly related to the temperature of the brain.

  5. Expression of bone morphogenetic protein 7 in the cerebral cortex of rats after ischemic-hypoxic injury

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Some researches demonstrate that exogenous bone morphogenetic protein 7 (BMP-7) can protect ischemic cerebral nerve tissue and promote recovery of motor energy function; however, there is lack of direct evidences of endogenous BMP-7 effect.OBJECTIVE: To observe the expression of endogenous BMP-7 in nerve tissue with ischemic-hypoxic injury and investigate the possible effects on damaged nerve tissue.DESIGN: Observational contrast animal study.SETTING: Department of Anatomy and Histoembryology, Peking University Health Science Center.MATERIALS: The experiment was carried out in the Nerve Researching Laboratory of Anatomy Department, Peking University Health Science Center from October 2006 to March 2007. A total of 25 adult male SD rats weighing 250 - 300 g and several newborn SD rats were selected from Experimental Animal Center, Peking University Health Science Center. Rabbit-anti-BMP-7 polyclonal antibody was provided by Wuhan Boster Company.METHODS: ① Adult rats were randomly divided into ischemia group (n =10), sham operation group (n =10) and normal group (n =5). Right external-internal carotid artery occlusion was used to infarct middle cerebral artery of adult rats in the ischemia group so as to copy focal cerebral infarction models. Line cork was inserted in crotch of internal and external carotid artery of adult rats in the sham operation group, while adult rats in the normal group were not given any treatments. ② Cerebral cortex of newborn rats was separated to obtain cell suspension. Cells which were cultured for 10 days were divided into control group and hypoxia/reoxygenation group. And then, cells in the hypoxia/reoxygenation group were cultured in hypoxic incubator for 4 hours and given reoxygenation for 24 hours.MAIN OUTCOME MEASURES: Immunohistochemical method was used to measure expression of BMP-7 in cerebral cortex at 24 hours after ischemia/reperfusion culture and in primary hypoxic culture.RESULTS: ① At 24 hours after

  6. RTTN Mutations Link Primary Cilia Function to Organization of the Human Cerebral Cortex

    Science.gov (United States)

    Kheradmand Kia, Sima; Verbeek, Elly; Engelen, Erik; Schot, Rachel; Poot, Raymond A.; de Coo, Irenaeus F.M.; Lequin, Maarten H.; Poulton, Cathryn J.; Pourfarzad, Farzin; Grosveld, Frank G.; Brehm, António; de Wit, Marie Claire Y.; Oegema, Renske; Dobyns, William B.; Verheijen, Frans W.; Mancini, Grazia M.S.

    2012-01-01

    Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified as a centrosome-associated protein. The Drosophila melanogaster homolog of Rotatin, Ana3, is needed for structural integrity of centrioles and basal bodies and maintenance of sensory neurons. We show that Rotatin colocalizes with the basal bodies at the primary cilium. Cultured fibroblasts from affected individuals have structural abnormalities of the cilia and exhibit downregulation of BMP4, WNT5A, and WNT2B, which are key regulators of cortical patterning and are expressed at the cortical hem, the cortex-organizing center that gives rise to Cajal-Retzius (CR) neurons. Interestingly, we have shown that in mouse embryos, Rotatin colocalizes with CR neurons at the subpial marginal zone. Knockdown experiments in human fibroblasts and neural stem cells confirm a role for RTTN in cilia structure and function. RTTN mutations therefore link aberrant ciliary function to abnormal development and organization of the cortex in human individuals. PMID:22939636

  7. Both Myosin-10 isoforms are required for radial neuronal migration in the developing cerebral cortex.

    Science.gov (United States)

    Ju, Xing-Da; Guo, Ye; Wang, Nan-Nan; Huang, Ying; Lai, Ming-Ming; Zhai, Yan-Hua; Guo, Yu-Guang; Zhang, Jian-Hua; Cao, Rang-Juan; Yu, Hua-Li; Cui, Lei; Li, Yu-Ting; Wang, Xing-Zhi; Ding, Yu-Qiang; Zhu, Xiao-Juan

    2014-05-01

    During embryonic development of the mammalian cerebral cortex, postmitotic cortical neurons migrate radially from the ventricular zone to the cortical plate. Proper migration involves the correct orientation of migrating neurons and the transition from a multipolar to a mature bipolar morphology. Herein, we report that the 2 isoforms of Myosin-10 (Myo10) play distinct roles in the regulation of radial migration in the mouse cortex. We show that the full-length Myo10 (fMyo10) isoform is located in deeper layers of the cortex and is involved in establishing proper migration orientation. We also demonstrate that fMyo10-dependent orientation of radial migration is mediated at least in part by the netrin-1 receptor deleted in colorectal cancer. Moreover, we show that the headless Myo10 (hMyo10) isoform is required for the transition from multipolar to bipolar morphologies in the intermediate zone. Our study reveals divergent functions for the 2 Myo10 isoforms in controlling both the direction of migration and neuronal morphogenesis during radial cortical neuronal migration. PMID:23300110

  8. Effect of Transcranial Magnetic Stimulation on the Expression of c-Fos and Brain-derived Neurotrophic Factor of the Cerebral Cortex in Rats with Cerebral Infarct

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaoqiao; MEI Yuanwu; LIU Chuanyu; YU Shanchun

    2007-01-01

    The effect of transcranial magnetic stimulation (TMS) on the neurological functional recovery and expression of c-Fos and brain-derived neurotrophic factor (BDNF) of the cerebral cortex in rats with cerebral infarction was investigated. Cerebral infarction models were established by using left middle cerebral artery occlusion (MCAO) and were randomly divided into a model group (n=40) and a TMS group (n=40). TMS treatment (2 times per day, 30 pulses per time) with a frequency of 0.5 Hz and magnetic field intensity of 1.33 Tesla was carried out in TMS group after MCAO. Modified neurological severity score (NSS) were recorded before and 1, 7, 14, 21, and 28 day(s) after MCAO. The expression of c-Fos and BDNF was immunohistochemically detected 1, 7,14, 21, and 28 day(s) after infarction respectively. Our results showed that a significant recovery of NSS (P<0.05) was found in animals treated by TMS on day 7, 14, 21, and 28 as compared with the animals in the model group. The positive expression of c-Fos and BDNF was detected in the cortex surrounding the infarction areas, while the expression of c-Fos and BDNF increased significantly in TMS treatment group in comparison with those in model group 7, 14, 21, and 28 days (P<0.05) and 7,14, 21 days (P<0.01) after infarction, respectively. It is concluded that TMS has therapeutic effect on cerebral infarction and this may have something to do with TMS's ability to promote the expression of c-Fos and BDNF of the cerebral cortex in rats with cerebral infarction.

  9. Alterations of the cerebral cortex in sporadic small vessel disease: A systematic review of in vivo MRI data.

    Science.gov (United States)

    Peres, Roxane; De Guio, François; Chabriat, Hugues; Jouvent, Eric

    2016-04-01

    Cerebral small vessel diseases of the brain are a major determinant of cognitive impairment in the elderly. In small vessel diseases, the most easily identifiable lesions, both at post-mortem evaluation and magnetic resonance imaging, lie in subcortical areas. However, recent results obtained post-mortem, particularly in severe cases, have highlighted the burden of cortex lesions such as microinfarcts and diffuse neuronal loss. The recent development of image post-processing methods allows now assessing in vivo multiple aspects of the cerebral cortex. This systematic review aimed to analyze in vivo magnetic resonance imaging studies evaluating cortex alterations at different stages of small vessel diseases. Studies assessing the relationships between small vessel disease magnetic resonance imaging markers obtained at the subcortical level and cortex estimates were reviewed both in community-dwelling elderly and in patients with symptomatic small vessel diseases. Thereafter, studies analyzing cortex estimates in small vessel disease patients compared with healthy subjects were evaluated. The results support that important cortex alterations develop along the course of small vessel diseases independently of concomitant neurodegenerative processes. Easy detection and quantification of cortex changes in small vessel diseases as well as understanding their underlying mechanisms are challenging tasks for better understanding cognitive decline in small vessel diseases. PMID:26787108

  10. Effect of electric acupuncture on the expression of NgR in the cerebral cortex,the medulla oblongata,and the spinal cord of hypertensive rats after cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    谭峰

    2014-01-01

    Objective To observe the effect of electric acupuncture(EA)on the Nogo receptors(NgR)protein expression in the cerebral cortex,the medulla oblongata,and the spinal cord of cerebral ischemia-reperfusion(I/R)stroke-prone renovascular hypertensive rats(RHRSP)with middle cerebral artery occlusion(MCAO)at different time points,and to investigate its possible mecha-

  11. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A

    Directory of Open Access Journals (Sweden)

    Mathew Jobin

    2012-02-01

    Full Text Available Abstact Background Gamma amino butyric acid (GABA, the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. Methods In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Results Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P Aά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P Aά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Conclusions Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.

  12. Network and external perturbation induce burst synchronisation in cat cerebral cortex

    Science.gov (United States)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Batista, Antonio M.; Baptista, Murilo S.; Viana, Ricardo L.

    2016-05-01

    The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cognitive regions. We have built a network of networks, in which networks are connected among themselves according to the connections observed in the cat cortical areas aiming to study how inputs drive the synchronous behaviour in this cat brain-like network. We show that without external perturbations it is possible to observe high level of bursting synchronisation between neurons within almost all areas, except for the auditory area. Bursting synchronisation appears between neurons in the auditory region when an external perturbation is applied in another cognitive area. This is a clear evidence that burst synchronisation and collective behaviour in the brain might be a process mediated by other brain areas under stimulation.

  13. Activin A maintains cerebral cortex neuronal survival and increases voltage-gated Na+ neuronal current

    Institute of Scientific and Technical Information of China (English)

    Jingyan Ge; Yinan Wang; Haiyan Liu; Fangfang Chen; Xueling Cui; Zhonghui Liu

    2010-01-01

    Activin A,which was first described in 1986,has been shown to maintain hippocampal neuronal survival.Activin A increases intracellular free Ca2+via L-type Ca2+channels.Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion.The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a tong period,and that activin A was shown to increase voltage-gated Na+current(INa)in Neure-2a cells,which was recorded by patch clamp technique.The present study revealed a novel mechanism for activin A,as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase.

  14. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  15. Magnetic stimulation at Neiguan (PC6) acupoint increases connections between cerebral cortex regions

    Institute of Scientific and Technical Information of China (English)

    Hong-li Yu; Gui-zhi Xu; Lei Guo; Ling-di Fu; Shuo Yang; Shuo Shi; Hua Lv

    2016-01-01

    Stimulation at speciifc acupoints can activate cortical regions in human subjects. Previous studies have mainly focused on a single brain region. However, the brain is a network and many brain regions participate in the same task. The study of a single brain region alone cannot clearly explain any brain-related issues. Therefore, for the present study, magnetic stimulation was used to stimulate the Neiguan (PC6) acu-point, and 32-channel electroencephalography data were recorded before and after stimulation. Brain functional networks were constructed based on electroencephalography data to determine the relationship between magnetic stimulation at the PC6 acupoint and cortical excitabil-ity. Results indicated that magnetic stimulation at the PC6 acupoint increased connections between cerebral cortex regions.

  16. MRI in chronic toluene abuse: low signal in the cerebral cortex on T2-weighted images

    International Nuclear Information System (INIS)

    MRI may be helpful in showing brain toxicity associated with chronic toluene inhalation. We report clinical and MRI findings over 3 years in a man with gradual neurologic decline secondary to toluene abuse. Cerebral atrophy most prominently involved the corpus callosum and cerebellar vermis. On T2-weighted images, loss of gray-white matter contrast, diffuse supratentorial white matter high-signal lesions, and low signal in the basal ganglia and midbrain were seen. In addition, MRI showed abnormal labor cortical low signal on T2-weighted images, most prominent in the primary motor and visual cortex. This cortical T2 shortening, not previously described in this condition, may reflect iron deposition. (orig.)

  17. The subcellular distribution and properties of hexokinases in the guinea-pig cerebral cortex.

    Science.gov (United States)

    Bachelard, H S

    1967-07-01

    1. Hexokinase activities were estimated in primary subcellular fractions from guinea-pig cerebral cortex and in sucrose-density-gradient subfractions of the mitochondrial and microsomal fractions. 2. Appreciable activities were observed in mitochondrial, microsomal and soluble fractions. The activity in the mitochondrial fraction was associated with the mitochondria rather than with myelin or nerve endings and that in the microsomal fraction was associated with membrane fragments. 3. Most of the mitochondrial activity was extracted in soluble form by osmotic ;shock'. The activity of the mitochondrial extract differed from the soluble activity in kinetic properties and in electrophoretic behaviour. 4. No evidence was obtained for the presence of a high-K(m) glucokinase in the brain. 5. The results are discussed in terms of relevance to considerations of glucose utilization by the brain.

  18. EFFECT OF ELECTROACUPUNCTURE ON NOREPINEPHRINE LEVEL AND APOPTOSIS IN CEREBRAL CORTEX TISSUE IN RATS WITH CEREBRAL ISCHEMIA-REPERFUSION

    Institute of Scientific and Technical Information of China (English)

    邹晓静; 施静; 刘敬; 李伶俐; 刘晓春

    2004-01-01

    Objective: To investigate the underlying neurobiological mechanism of the protective effect of electroacupuncture (EA) during cerebral ischemia-reperfusion (CI-R). Methods: In the first part of the study, 15 SD rats were evenly randomized into control group, CI-R-48h model group and CI-R-48h+EA group. The cortical apoptosis and expression of Bcl-2 and Bax proteins in each group were detected by flow cytometer (FCM). In the second part of the study, 75 SD rats were evenly randomized into control, CI-R-3min, CI-R-3min+EA, CI-R-48h and CI-R-48h+EA groups. Cortical norepinephrine (NE) concentration was detected by fluorescence spectrometer. CI-R model was established by occlusion of the bilateral common carotid arteries and reperfusion. EA (4~16 Hz, 1~3 V) was applied after reperfusion respectively. Results: In the first part of this study, results indicated that the number of the apoptotic neurons and the apoptosis rate of CI-R-48h group were significantly higher than those of control group; while comparison between CI-R-48h+EA and CI-R-48h groups showed that the number of the apoptotic neurons and the apoptosis rate of the former group were significantly lower than those of the later group (P<0.05). In comparison with control group, after CI-48h, Bax expression was up-regulated significantly and Bcl-2 down-regulated markedly (P<0.05). Comparison between CI-R-48h and CI-R-48h+EA group indicated that Bax expression of the later group was significantly lower than that of the former group, while Bcl-2 expression of CI-R-48h+EA group was significantly higher than that of CI-R-48h group (P<0.05), suggesting that EA could reverse CI induced reactions of these two indexes. In the second part of the study, in comparison with control group, NE concentration in cerebral cortex of CI-R-3min group increased significantly (P<0.05); while NE content of CI-R-3min+EA group was significantly lower than that of CI-R-3min group (P<0.05). No significant difference was found between

  19. The complexity of the calretinin-expressing progenitors in the human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Nevena V Radonjic

    2014-08-01

    Full Text Available The complex structure and function of the cerebral cortex critically depend on the balance of excitation and inhibition provided by the pyramidal projection neurons and GABAergic interneurons, respectively. The calretinin-expressing (CalR+ cell is a subtype of GABAergic cortical interneurons that is more prevalent in humans than in rodents. In rodents, CalR+ interneurons originate in the caudal ganglionic eminence (CGE from Gsx2+ progenitors, but in humans it has been suggested that a subpopulation of CalR+ cells can also be generated in the cortical ventricular/subventricular zone (VZ/SVZ. The progenitors for cortically generated CalR+ subpopulation in primates are not yet characterized. Hence, the aim of this study was to identify patterns of expression of the transcription factors (TFs that commit cortical stem cells to the CalR fate, with a focus on Gsx2. First, we studied the expression of Gsx2 and its downstream effectors, Ascl1 and Sp8 in the cortical regions of the fetal human forebrain at midgestation. Next, we established that a subpopulation of cells expressing these TFs are proliferating in the cortical SVZ, and can be co-labeled with CalR. The presence and proliferation of Gsx2+ cells, not only in the ventral telencephalon (GE as previously reported, but also in the cerebral cortex suggests cortical origin of a subpopulation of CalR+ neurons in humans. In vitro treatment of human cortical progenitors with Sonic hedgehog (Shh, an important morphogen in the specification of interneurons, decreased levels of Ascl1 and Sp8 proteins, but did not affect Gsx2 levels. Taken together, our ex-vivo and in vitro results on human fetal brain suggest complex endogenous and exogenous regulation of TFs implied in the specification of different subtypes of CalR+ cortical interneurons.

  20. Computerized method for automated measurement of thickness of cerebral cortex for 3-D MR images

    Science.gov (United States)

    Arimura, Hidetaka; Yoshiura, Takashi; Kumazawa, Seiji; Koga, Hiroshi; Sakai, Shuji; Mihara, Futoshi; Honda, Hiroshi; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu

    2006-03-01

    Alzheimer's disease (AD) is associated with the degeneration of cerebral cortex, which results in focal volume change or thinning in the cerebral cortex in magnetic resonance imaging (MRI). Therefore, the measurement of the cortical thickness is important for detection of the atrophy related to AD. Our purpose was to develop a computerized method for automated measurement of the cortical thickness for three-dimensional (3-D) MRI. The cortical thickness was measured with normal vectors from white matter surface to cortical gray matter surface on a voxel-by-voxel basis. First, a head region was segmented by use of an automatic thresholding technique, and then the head region was separated into the cranium region and brain region by means of a multiple gray level thresholding with monitoring the ratio of the first maximum volume to the second one. Next, a fine white matter region was determined based on a level set method as a seed region of the rough white matter region extracted from the brain region. Finally, the cortical thickness was measured by extending normal vectors from the white matter surface to gray matter surface (brain surface) on a voxel-by-voxel basis. We applied the computerized method to high-resolution 3-D T1-weighted images of the whole brains from 7 clinically diagnosed AD patients and 8 healthy subjects. The average cortical thicknesses in the upper slices for AD patients were thinner than those for non-AD subjects, whereas the average cortical thicknesses in the lower slices for most AD patients were slightly thinner. Our preliminary results suggest that the MRI-based computerized measurement of gray matter atrophy is promising for detecting AD.

  1. Oxidative metabolic activity of cerebral cortex after fluid-percussion head injury in the cat.

    Science.gov (United States)

    Duckrow, R B; LaManna, J C; Rosenthal, M; Levasseur, J E; Patterson, J L

    1981-05-01

    To assess the metabolic and vascular effects of head trauma, fluid-percussion pressure waves were transmitted to the brains of anesthetized, paralyzed, and artificially ventilated cats. Changes in the redox state of cytochrome a,a3, and relative local blood volume were measured in situ by dual-wavelength reflection spectrophotometry of the cortical surface viewed through an acrylic cranial window implanted within the closed skull. Initial fluid-percussion impacts of 0.5 to 2.8 atm peak pressure produced consistent transient oxidation of cytochrome a,a3 and increases of cortical blood volume. These changes occurred despite the presence of transient posttraumatic hypotension i some cases. Also, impact-induced alterations of vascular tone occurred, independent of the presence or absence of transient hypertension in the posttraumatic period. These data demonstrate that hypoxia does not play a role in the immediate posttraumatic period in cerebral cortex, and are consistent with the idea that after injury there is increased cortical energy conservation. These data also support the concept that head trauma alters the relationship of metabolism and cerebral circulation in the period immediately after injury. PMID:7229699

  2. Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex.

    Science.gov (United States)

    Nobs, Lionel; Baranek, Constanze; Nestel, Sigrun; Kulik, Akos; Kapfhammer, Josef; Nitsch, Cordula; Atanasoski, Suzana

    2014-05-01

    Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2-immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100β+ astrocytes in cortices of 3-month-old mice. Analysis of cyclin D1-deficient mice reveals a cell and stage-specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8-month-old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100β+ astrocytes remains unchanged in the mutant.

  3. Promotion of proliferation in the developing cerebral cortex by EphA4 forward signaling

    Science.gov (United States)

    North, Hilary A.; Zhao, Xiumei; Kolk, Sharon M.; Clifford, Meredith A.; Ziskind, Daniela M.; Donoghue, Maria J.

    2009-01-01

    Summary Eph receptors are widely expressed during cerebral cortical development, yet a role for Eph signaling in the generation of cells during corticogenesis has not been shown. Cortical progenitor cells selectively express one receptor, EphA4, and reducing EphA4 signaling in cultured progenitors suppressed proliferation, decreasing cell number. In vivo, EphA4-/- cortex had a reduced area, fewer cells and less cell division compared with control cortex. To understand the effects of EphA4 signaling in corticogenesis, EphA4-mediated signaling was selectively depressed or elevated in cortical progenitors in vivo. Compared with control cells, cells with reduced EphA4 signaling were rare and mitotically inactive. Conversely, overexpression of EphA4 maintained cells in their progenitor states at the expense of subsequent maturation, enlarging the progenitor pool. These results support a role for EphA4 in the autonomous promotion of cell proliferation during corticogenesis. Although most ephrins were undetectable in cortical progenitors, ephrin B1 was highly expressed. Our analyses demonstrate that EphA4 and ephrin B1 bind to each other, thereby initiating signaling. Furthermore, overexpression of ephrin B1 stimulated cell division of neighboring cells, supporting the hypothesis that ephrin B1-initiated forward signaling of EphA4 promotes cortical cell division. PMID:19542359

  4. Numeric and symbolic knowledge representation of cerebral cortex anatomy: methods and preliminary results.

    Science.gov (United States)

    Dameron, O; Gibaud, B; Morandi, X

    2004-06-01

    The human cerebral cortex anatomy describes the brain organization at the scale of gyri and sulci. It is used as landmarks for neurosurgery as well as localization support for functional data analysis or inter-subject data comparison. Existing models of the cortex anatomy either rely on image labeling but fail to represent variability and structural properties or rely on a conceptual model but miss the inner 3D nature and relations of anatomical structures. This study was therefore conducted to propose a model of sulco-gyral anatomy for the healthy human brain. We hypothesized that both numeric knowledge (i.e., image-based) and symbolic knowledge (i.e., concept-based) have to be represented and coordinated. In addition, the representation of this knowledge should be application-independent in order to be usable in various contexts. Therefore, we devised a symbolic model describing specialization, composition and spatial organization of cortical anatomical structures. We also collected numeric knowledge such as 3D models of shape and shape variation about cortical anatomical structures. For each numeric piece of knowledge, a companion file describes the concept it refers to and the nature of the relationship. Demonstration software performs a mapping between the numeric and the symbolic aspects for browsing the knowledge base. PMID:15118839

  5. Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex

    Science.gov (United States)

    Ulloa, Antonio; Horwitz, Barry

    2016-01-01

    A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were “non-task-specific” (NS) neurons that served as noise generators to “task-specific” neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional

  6. Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex.

    Science.gov (United States)

    Ulloa, Antonio; Horwitz, Barry

    2016-01-01

    A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were "non-task-specific" (NS) neurons that served as noise generators to "task-specific" neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional

  7. Stem/progenitor cells in the cerebral cortex of the human preterm: a resource for an endogenous regenerative neuronal medicine?

    Directory of Open Access Journals (Sweden)

    Laura Vinci

    2016-04-01

    Full Text Available The development of the central nervous system represents a very delicate period of embryogenesis. Premature interruption of neurogenesis in human preterm newborns can lead to motor deficits, including cerebral palsy, and significant cognitive, behavioral or sensory deficits in childhood. Preterm infants also have a higher risk of developing neurodegenerative diseases later in life. In the last decade, great importance has been given to stem/progenitor cells and their possible role in the development and treatment of several neurological disorders. Several studies, mainly carried out on experimental models, evidenced that immunohistochemistry may allow the identification of different neural and glial precursors inside the developing cerebral cortex. However, only a few studies have been performed on markers of human stem cells in the embryonic period.This review aims at illustrating the importance of stem/progenitor cells in cerebral cortex during pre- and post-natal life. Defining the immunohistochemical markers of stem/progenitor cells in the human cerebral cortex during development may be important to develop an “endogenous” target therapy in the perinatal period. Proceedings of the 2nd International Course on Perinatal Pathology (part of the 11th International Workshop on Neonatology · October 26th-31st, 2015 · Cagliari (Italy · October 31st, 2015 · Stem cells: present and future Guest Editors: Gavino Faa, Vassilios Fanos, Antonio Giordano

  8. Effects of low dose x-ray on development and differentiation of cerebral cortex, 13. Observation of construction of cerebral cortex in mice irradiated at 17 days of gestational age

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, K.; Hayashi, Y.; Ito, Y.; Kameyama, Y. (Nagoya Univ. (Japan). Research Inst. of Environmental Medicine)

    1980-03-01

    ICR mice were irradiated with 25 or 100 R of x-ray at 17 days of pregnancy, and /sup 3/H-thymidine was injected immediately after the irradiation. The brain of progenies which were born from irradiated ICR mice was extracted 4 weeks after their birth, and histoautoradiography of the cerebram were made. Distribution of nerve cells labelled strongly with /sup 3/H-thymidine was observed, and the construction of cerebral cortex was discussed. Abnormality in parietal region of new cerebral cortex in which nerve cells labelled strongly with /sup 3/H-thymidine distributed was not found, but a count of nerve cells distributing tended to decrease according to exposure dose.

  9. [The modulation of cerebral cortex and subcortical nuclei on NRM and their role in acupuncture analgesia].

    Science.gov (United States)

    Liu, X

    1996-01-01

    The vast research have demonstrated that the acupuncture analgesia is effected through a physiological mechanism brought about by the nervous system, particularly the central nervous system. We combined the acupuncture effects and theory of channels and collaterals with the new advance of pain neurophysiology, and centred attention on nucleus raphe magnus (NRM), that is one of the origins of the important descending inhibitory pathways of the intrinsic analgesic systems in brain. The unit discharges of NRM neurons and their nociceptors/ph responses were recorded extracellularly with glass microelectrode at 1495 neurons on 634 wastar rats. The modulation of cerebral cortex, the head of N. caudatum (NCa), N. Accumbens (N. Ac), N lateral habenular (NHa) and Periaquaeductal gray matter (PAG) on NRM and their role in acupuncture analgesia were studied by central locational stimulation, lesion and microinjection. The result were as follows: 1. The most NRM neurons could respond to noxious stimulation of tail tip with increasing or decreasing firing rate. Electroacupuncture (EA) at "Zusanli" could activate the NRM neuron, increasing discharges, and inhibit their nociceptive responses, producing analgesia. 2. The activity of NRM neuron was modulated by PAG, NAc, and NCa. Stimulation at one of them can activate neuron of NRM, increasing firing rate, and induce analgesia. When the lesion or microinjection naloxone were made in PAG, NAc or NCa, EA analgesia could be weakened or lost, even the nociceptive responses might be increased. It is suggest that the nuclei participated in EA analgesia with their endogenous opiate like substance, and were playing an important role. It is also indicated that the electroacupuncture was used on the patients with some nuclei lesion or pathological changes should be careful to avoid making patients feel more painful. 3. Somatosensory area II (Sm II) of cerebral cortex participated in EA analgesia. The analgesic effects of EA at "Zusanli

  10. The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs.

    Science.gov (United States)

    Falk, Dean; Lepore, Frederick E; Noe, Adrianne

    2013-04-01

    Upon his death in 1955, Albert Einstein's brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein's entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein's sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein's brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein's brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein's parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein's brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein's brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci.

  11. Tyrosine inhibits creatine kinase activity in cerebral cortex of young rats.

    Science.gov (United States)

    de Andrade, Rodrigo Binkowski; Gemelli, Tanise; Rojas, Denise Bertin; Funchal, Cláudia; Dutra-Filho, Carlos Severo; Wannmacher, Clovis Milton Duval

    2011-09-01

    Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II, where tyrosine levels are highly elevated in tissues and physiological fluids of affected patients. Tyrosinemia type II is a disorder of autosomal recessive inheritance characterized by neurological symptoms similar to those observed in patients with creatine deficiency syndromes. Considering that the mechanisms of brain damage in these disorders are poorly known, in the present study our main objective was to investigate the in vivo and in vitro effects of different concentrations and preincubation times of tyrosine on cytosolic and mitochondrial creatine kinase activities of the cerebral cortex from 14-day-old Wistar rats. The cytosolic CK was reduced by 15% at 1 mM and 32% at 2 mM tyrosine. Similarly, the mitochondrial CK was inhibited by 15% at 1 mM and 22% at 2 mM tyrosine. We observed that the inhibition caused by tyrosine was concentration-dependent and was prevented by reduced glutathione. Results also indicated that mitochondrial, but not cytosolic creatine kinase activity was inhibited by tyrosine in a time-dependent way. Finally, a single injection of L-Tyrosine methyl ester administered i.p. decreased cytosolic (31%) and mitochondrial (18%) creatine kinase activities of brain cortex from rats. Considering that creatine kinase is an enzyme dependent of thiol residues for its function and tyrosine induces oxidative stress, the results suggest that the inhibition caused by tyrosine might occur by oxidation of essential sulfhydryl groups of the enzyme. In case this also occurs in patients with tyrosinemia, it is possible that creatine kinase inhibition may contribute to the neurological dysfunction characteristic of tyrosinemia.

  12. Effects of microgravity on muscle and cerebral cortex: a suggested interaction

    Science.gov (United States)

    D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.

    The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.

  13. Rich club organization of macaque cerebral cortex and its role in network communication.

    Directory of Open Access Journals (Sweden)

    Logan Harriger

    Full Text Available Graph-theoretical analysis of brain connectivity data has revealed significant features of brain network organization across a range of species. Consistently, large-scale anatomical networks exhibit highly nonrandom attributes including an efficient small world modular architecture, with distinct network communities that are interlinked by hub regions. The functional importance of hubs motivates a closer examination of their mutual interconnections, specifically to examine the hypothesis that hub regions are more densely linked than expected based on their degree alone, i.e. forming a central rich club. Extending recent findings of rich club topology in the cat and human brain, this report presents evidence for the existence of rich club organization in the cerebral cortex of a non-human primate, the macaque monkey, based on a connectivity data set representing a collation of numerous tract tracing studies. Rich club regions comprise portions of prefrontal, parietal, temporal and insular cortex and are widely distributed across network communities. An analysis of network motifs reveals that rich club regions tend to form star-like configurations, indicative of their central embedding within sets of nodes. In addition, rich club nodes and edges participate in a large number of short paths across the network, and thus contribute disproportionately to global communication. As rich club regions tend to attract and disperse communication paths, many of the paths follow a characteristic pattern of first increasing and then decreasing node degree. Finally, the existence of non-reciprocal projections imposes a net directional flow of paths into and out of the rich club, with some regions preferentially attracting and others dispersing signals. Overall, the demonstration of rich club organization in a non-human primate contributes to our understanding of the network principles underlying neural connectivity in the mammalian brain, and further supports

  14. Exposure to brominated flame retardant PBDE-99 affects cytoskeletal protein expression in the neonatal mouse cerebral cortex

    DEFF Research Database (Denmark)

    Alm, Henrik; Kultima, Kim; Scholz, Birger;

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are environmental contaminants found in human and animal tissues worldwide. Neonatal exposure to the flame retardant 2,2', 4,4',5-pentabromodiphenyl ether (PBDE-99) disrupts normal brain development in mice, and results in disturbed spontaneous behavior in the...... adult. The mechanisms underlying the late effects of early exposure are not clear. To gain insight into the initial neurodevelopmental damage inflicted by PBDE-99, we investigated the short-term effects of PBDE-99 on protein expression in the developing cerebral cortex of neonatal mice, and the......-3 activity. These results indicate that the permanent neurological damage induced by PBDE-99 during the brain growth spurt involve detrimental effects on cytoskeletal regulation and neuronal maturation in the developing cerebral cortex....

  15. Effect of orphanin FQ and morphine on sodium channel current in somatosensory area of rat cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Lei Yang; Yurong Li; Shuwei Jia; Yunhong Zhang; Lanwei Cui; Lihui Qu

    2007-01-01

    BACKGROUND: Some experiments have demonstrated that injecting orphanin FQ (OFQ) into lateral ventricle, which can obviously decrease the pain threshold. It is indicated that OFQ is an anti-opiate substance. However, whether OFQ has effects on sensory neuron ion channel in cerebral cortex needs to be further studied.OBJECTIVE: To investigate the effects of OFQ, morphine or their combination on sodium channel current of somatosensory neurons in rat cerebral cortex.DESIGN: Repeated measurement trial.SETTING: Department of Physiology, Harbin Medical University.MATERIALS: Fifty healthy Wistar rats, aged 12-16 days, of either gender, were provided by the Experimental Animal Center, Second Hospital Affiliated to Harbin Medical University. OFQ was purchased from Sigma-Aldrich Company, and morphine was provided by the Shenyang First Pharmaceutical Factory.PC2C patch clamp amplifier and LabmasterTLlwere purchased from Yibo Life Science Instrument Co.,Ltd.of Huazhong University of Science and Techgnology.METHODS: This experiment was carried out in the Department of Physiology (provincial laboratory),Harbin Medical University between January 2005 and May 2006. Cortical neurons were acutely isolated from rats, and prepared into cell suspension following culture. ①Sodium channel current of somatosensory neurons in rat cerebral cortex was recorded before and after administration by whole-cell Patch clamptechnique after 50 nmol/L OFQ being added to extracellular fluid.②The amplitude of sodium channel current of somatosensory neurons in rat cerebral cortex was recorded before and after administration by the same method after 20 I mol/L morphine being added to extracellular fluid, and then the change of sodium channel current was recorded after 50 nmol/L OFQ being added.MAIN OUTCOME MEASURES: The amplitude of sodium channel current of somatosensory neurons in rat cerebral cortex following the administration of OFQ, morphine separately or their combination

  16. Htr2a gene and 5-HT2A receptor expression in the cerebral cortex studied using genetically modified mice

    Directory of Open Access Journals (Sweden)

    Rodrigo Andrade

    2010-08-01

    Full Text Available Serotonin receptors of the 5-HT2A subtype are robustly expressed in the cerebral cortex where they have been implicated in the pathophysiology and therapeutics of mental disorders and the actions of hallucinogens. Much less is known, however, about the specific cell types expressing 5-HT2A receptors in cortex. In the current study we use immunohistochemical and electrophysiological approaches in genetically modified mice to address the expression of the Htr2a gene and 5-HT2A receptors in cortex. We first use an EGFP expressing BAC transgenic mice and identify three main Htr2A gene expressing neuronal populations in cortex. The largest of these cell populations corresponds to layer V pyramidal cells of the anterior cortex, followed by GABAergic interneurons of the middle layers, and nonpyramidal cells of the subplate/Layer VIb. We then use 5-HT2A receptor knockout mice to identify an antibody capable of localizing 5-HT2A receptors in brain and use it to map these receptors. We find strong laminar expression of 5-HT2A receptors in cortex, especially along a diffuse band overlaying layer Va. This band exhibits a strong anteroposterior gradient that closely matches the localization of Htr2A expressing pyramidal cells of layer V. Finally we use electrophysiological and immunohistochemical approaches to show that most, but not all, GABAergic interneurons of the middle layers are parvalbumin expressing Fast-spiking interneurons and that these cells are depolarized and excited by serotonin, most likely through the activation of 5-HT2A receptors. These results clarify and extend our understanding of the cellular distribution of 5-HT2A receptors in the cerebral cortex.

  17. Two separate subtypes of early non-subplate projection neurons in the developing cerebral cortex of rodents

    OpenAIRE

    Ana Espinosa; Cristina Gil-Sanz; Yuchio Yanagawa; Alfonso Fairén

    2009-01-01

    The preplate of the cerebral cortex contains projection neurons that connect the cortical primordium with the subpallium. These are collectively named pioneer neurons. After preplate partition, most of these pioneer neurons become subplate neurons. Certain preplate neurons, however, never associate with the subplate but rather with the marginal zone. In the present overview, we propose a novel classification of non-subplate pioneer neurons in rodents into two subtypes. In rats, the neurons of...

  18. Two Separate Subtypes of Early Non-Subplate Projection Neurons in the Developing Cerebral Cortex of Rodents

    OpenAIRE

    Espinosa, Ana; Gil-Sanz, Cristina; Yanagawa, Yuchio; Fairén, Alfonso

    2009-01-01

    The preplate of the cerebral cortex contains projection neurons that connect the cortical primordium with the subpallium. These are collectively named pioneer neurons. After preplate partition, most of these pioneer neurons become subplate neurons. Certain preplate neurons, however, never associate with the subplate but rather with the marginal zone. In the present overview, we propose a novel classification of non-subplate pioneer neurons in rodents into two subtypes. In rats, the neurons of...

  19. Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices

    Directory of Open Access Journals (Sweden)

    Torres I.L.S.

    2001-01-01

    Full Text Available It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 µCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells.

  20. Effects of sericin on heme oxygenase-1 expression in the hippocampus and cerebral cortex of type 2 diabetes mellitus rats

    Institute of Scientific and Technical Information of China (English)

    Zhihona Chen; Yaqiang He; Wenliang Fu; Jingfeng Xue

    2011-01-01

    Previous studies have demonstrated that sericin effectively reduces blood glucose, and protects islet cells, as well as the gonads and kidneys. However, whether sericin improves diabetes mellitus-induced structural and functional problems in the central nervous system remains poorly understood. Rat models of type 2 diabetes mellitus were established by intraperitoneal injection of streptozotocin. The present study observed histological changes in the hippocampus and cerebral cortex, as well as heme oxygenase-1 expression, and explored sericin effects on the central nervous system in diabetic rats. Pathological damage to neural cells in the rat hippocampus and cerebral cortex was relieved following intragastric administration of sericin at a dose of 2.4 g/kg for 35 consecutive days. Heme oxygenase-1 protein and mRNA expressions were decreased in the hippocampus and cerebral cortex of diabetes mellitus rats after sericin treatment. The results suggest that sericin plays a protective effect on the nervous system by decreasing the high expression of heme oxygenase-1 following diabetes mellitus.

  1. Cellular and synaptic localization of EAAT2a in human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Marcello eMelone

    2011-01-01

    Full Text Available We used light and electron microscopic immunocytochemical techniques to analyze the distribution, cellular and synaptic localization of EAAT2, the main glutamate transporter, in normal human neocortex. EAAT2a immunoreactivity was in all layers and consisted of small neuropilar puncta and rare cells. In white matter EAAT2a+ cells were numerous. Electron microscopic studies showed that in gray matter ∼77% of immunoreactive elements were astrocytic processes, ∼14% axon terminals, ∼2.8% dendrites, whereas ∼5% were unidentifiable. In white matter, ∼81% were astrocytic processes, ∼17% were myelinated axons and ∼2.0% were unidentified. EAAT2a immunoreactivity was never in microglial cells and oligodendrocytes. Pre-embedding electron microscopy showed that ∼67% of EAAT2a expressed at (or in the vicinity of asymmetric synapses was in astrocytes, ∼17% in axon terminals, while ∼13% was both in astrocytes and in axons. Post-embeddeding electron microscopy studies showed that in astrocytic processes contacting asymmetric synapses and in axon terminals, gold particle density was ∼25.1 and ∼2.8 particles/µm2, respectively, and was concentrated in a membrane region extending for ∼300 nm from the active zone edge. Besides representing the first detailed description of EAAT2a in human cerebral cortex, these findings may contribute to understanding its role in the pathophysiology of neuropsychiatric diseases.

  2. Using Individualized Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in Alzheimer's Patients

    Science.gov (United States)

    Kim, Hee-Jong; Shin, Jeong-Hyeon; Han, Cheol E.; Kim, Hee Jin; Na, Duk L.; Seo, Sang Won; Seong, Joon-Kyung

    2016-01-01

    Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are “small world.” There were significant difference between NC and AD group in characteristic path lengths (z = −2.97, p brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC dataset. PMID:27635121

  3. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  4. Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats.

    Science.gov (United States)

    de Andrade, Rodrigo Binkowski; Gemelli, Tanise; Rojas, Denise Bertin; Funchal, Cláudia; Dutra-Filho, Carlos Severo; Wannmacher, Clovis Milton Duval

    2012-05-01

    Tyrosine levels are abnormally elevated in tissues and physiological fluids of patients with inborn errors of tyrosine catabolism, especially in tyrosinemia type II, which is caused by deficiency of tyrosine aminotransferase and provokes eyes, skin, and central nervous system disturbances. Considering that the mechanisms of brain damage in these disorders are poorly known, in this study, we investigated the in vivo and in vitro effects of tyrosine on some parameters of energy metabolism in cerebral cortex of 14-day-old Wistar rats. We observed that 2 mM tyrosine inhibited in vitro the pyruvate kinase (PK) activity and that this inhibition was prevented by 1 mM reduced glutathione with 30, 60, and 90 min of preincubation. Moreover, administration of tyrosine methyl ester (TME) (0.5 mg/g of body weight) decreased the activity of PK and this reduction was prevented by pre-treatment with creatine (Cr). On the other hand, tyrosine did not alter adenylate kinase (AK) activity in vitro, but administration of TME enhanced AK activity not prevented by Cr pre-treatment. Finally, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions and this diminution was prevented by Cr pre-treatment. The results suggest that tyrosine alters essential sulfhydryl groups necessary for CK and PK functions, possibly through oxidative stress. In case this also occurs in the patients, it is possible that energy metabolism alterations may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias.

  5. Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex

    International Nuclear Information System (INIS)

    Calcium (45Ca2+) efflux was studied from preloaded cortex in cats immobilized under local anesthesia, and exposed to a 3.0-mW/cm2 450-MHz field, sinusoidally amplitude modulated at 16 Hz modulation depth 85%). Tissue dosimetry showed a field of 33 V/m in the interhemispheric fissure (rate of energy deposition 0.29 W/kg). Field exposure lasted 60 min. By comparison with controls, efflux curves from field exposed brains were disrupted by waves of increased 45Ca2+ efflux. These waves were irregular in amplitude and duration, but many exhibited periods of 20-30 min. They continued into the postexposure period. Binomial probability analysis indicates that the field-exposed efflux curves constitute a different population from controls at a confidence level of 0.96. In about 70% of cases, initiation of field exposure was followed by increased end-tidal CO2 excretion for about 5 min. However, hypercapnea induced by hypoventilation did not elicit increased 45Ca2+ efflux. Thus this increase with exposure does not appear to arise as a secondary effect of raised cerebral CO2 levels. Radioactivity measurements in cortical samples after superfusion showed 45Ca2+ penetration at about 1.7 mm/hr, consistent with diffusion of the ion in free solution

  6. The effect of intervention according to muscle contraction type on the cerebral cortex of the elderly

    Science.gov (United States)

    Kang, Jeong-il; Jeong, Dae-Keun; Choi, Hyun

    2016-01-01

    [Purpose] Here we investigated the activity of the cerebral cortex after resistance training in the elderly. We evaluated the clinical neuropsychological basis of 2 contractile types, and determined the usefulness of a movement-related cortical potential (MRCP) from an electroencephalography (EEG). [Subjects and Methods] The subjects were 11 females and 11 males aged between 65 and 70 years. The subjects were randomly assigned into a group that performed an eccentric contraction exercise (experimental group I, n=11) and a group that performed a concentric contraction exercise (experimental group II, n=11). We measured activities of the rectus femoris, vastus medialis, and vastus lateralis in the non-dominant lower extremity by using surface electromyography (EMG), and measured brain activity using EEG before conducting an intervention. An intervention was conducted 40 minutes per session, once a day, 3 times a week for 4 weeks. [Results] After the intervention, activity in C4, the Cz area and rectus femoris were significantly different. [Conclusion] Our results demonstrate that MRCP from an EEG has the advantage of being non-invasive and cost-effective. Nonetheless, prospective studies are needed to reveal the specific mechanism underlying eccentric contraction exercise, which can provide baseline data for research related to aging and neural plasticity. PMID:27799694

  7. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex.

    Science.gov (United States)

    El-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel M; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2015-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation, and axonal degeneration. Current therapies are limited to immunomodulators and antiinflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2(+) oligodendrocyte progenitor cells and CA II(+) mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR-knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin.

  8. Manatee cerebral cortex: cytoarchitecture of the frontal region in Trichechus manatus latirostris.

    Science.gov (United States)

    Reep, R L; Johnson, J I; Switzer, R C; Welker, W I

    1989-01-01

    Members of the order Sirenia are unique among mammals in being the only totally aquatic herbivores. They display correspondingly specialized physiological, behavioral and anatomical features. There have been few reports concerning sirenian neuroanatomy, and most of these have consisted of gross anatomical observations. Our interest in Sirenia stems from the desire to understand neuroanatomical specializations in the context of behavior and the effort to elucidate trends in mammalian brain evolution. The architecture of frontal regions of cerebral cortex was investigated in several brains of the Florida manatee, Trichechus manatus latirostris. Through observation of sections stained for Nissl substance or myelinated fibers, several distinct cortical areas were identified on the basis of laminar organization. These range from areas with poorly defined laminae to those having 6 well-defined layers, some of which exhibit sublayers. Two cortical areas exhibit pronounced cell clusters in layer VI, and these stain positively for acetylcholinesterase and cytochrome oxidase. We hypothesize that these clusters may be involved in perioral tactile bristle function. Certain of our findings are consistent with previous observations in the literature on the brains of dugongs. On the basis of their lamination patterns, these frontal cortical areas appear to be organized into concentric zones of allocortex, mesocortex and isocortex. PMID:2611642

  9. RP58 Regulates the Multipolar-Bipolar Transition of Newborn Neurons in the Developing Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Chiaki Ohtaka-Maruyama

    2013-02-01

    Full Text Available Accumulating evidence suggests that many brain diseases are associated with defects in neuronal migration, suggesting that this step of neurogenesis is critical for brain organization. However, the molecular mechanisms underlying neuronal migration remain largely unknown. Here, we identified the zinc-finger transcriptional repressor RP58 as a key regulator of neuronal migration via multipolar-to-bipolar transition. RP58−/− neurons exhibited severe defects in the formation of leading processes and never shifted to the locomotion mode. Cre-mediated deletion of RP58 using in utero electroporation in RP58flox/flox mice revealed that RP58 functions in cell-autonomous multipolar-to-bipolar transition, independent of cell-cycle exit. Finally, we found that RP58 represses Ngn2 transcription to regulate the Ngn2-Rnd2 pathway; Ngn2 knockdown rescued migration defects of the RP58−/− neurons. Our findings highlight the critical role of RP58 in multipolar-to-bipolar transition via suppression of the Ngn2-Rnd2 pathway in the developing cerebral cortex.

  10. Activity-Dependent Callosal Axon Projections in Neonatal Mouse Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tagawa

    2012-01-01

    Full Text Available Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-documented role of sensory-driven neuronal activity, recent studies using in utero electroporation demonstrated an essential role of spontaneous neuronal activity generated in neonatal cortical circuits. Both presynaptic and postsynaptic neuronal activities are critically involved in the axon development. Studies have begun to reveal intracellular signaling pathway which works downstream of neuronal activity. We also review several distinct patterns of neuronal activity observed in the developing cerebral cortex, which might play roles in activity-dependent circuit construction. Such neuronal activity during the neonatal period can be disrupted by genetic factors, such as mutations in ion channels. It has been speculated that abnormal activity caused by such factors may affect activity-dependent circuit construction, leading to some developmental disorders. We discuss a possibility that genetic mutation in ion channels may impair callosal axon projections through an activity-dependent mechanism.

  11. Lettuce glycoside B ameliorates cerebral ischemia reperfusion injury by increasing nerve growth factor and neurotrophin-3 expression of cerebral cortex in rats

    Directory of Open Access Journals (Sweden)

    Heqin Zhan

    2014-01-01

    Full Text Available Aims: The aim of the study was to investigate the effects of LGB on cerebral ischemia-reperfusion (I/R injury in rats and the mechanisms of action of LGB. Materials and Methods: The study involved extracting LGB from P. laciniata, exploring affects of LGB on brain ischemia and action mechanism at the molecular level. The cerebral ischemia reperfusion injury of middle cerebral artery occlusion was established. We measured brain histopathology and brain infarct rate to evaluate the effects of LGB on brain ischemia injury. The expressions of nerve growth factor (NGF and neurotrophin-3 (NT-3 were also measured to investigate the mechanisms of action by the real-time polymerase chain reaction and immunohistochemistry. Statistical analysis: All results were mentioned as mean ± standard deviation. One-way analysis of variance was used to determine statistically significant differences among the groups. Values of P < 0.05 were considered to be statistically significant. Results: Intraperitoneal injection of LGB at the dose of 12, 24, and 48 mg/kg after brain ischemia injury remarkably ameliorated the morphology of neurons and brain infarct rate (P < 0.05 , P < 0.01. LGB significantly increased NGF and NT-3 mRNA (messenger RNA and both protein expression in cerebral cortex at the 24 and 72 h after drug administration (P < 0.05, P < 0.01. Conclusions: LGB has a neuroprotective effect in cerebral I/R injury and this effect might be attributed to its upregulation of NGF and NT-3 expression ability in the brain cortex during the latter phase of brain ischemia.

  12. Effect of a low-dose x-ray irradiation on the development and differentiation of the cerebral cortex, (15)

    International Nuclear Information System (INIS)

    Mice of 17 day's gestation received x-rays of 10 R, 25 R, or 100 R, and those of 13 or 15 day's gestation received 10 R in a single exposure. These irradiated fetuses were examined for the weight of the brain, thickness of the cerebral cortex, density of the cortical cells and branching of the pyramidal cells in the fifth layer of the cortex 12 weeks after birth. Decrease in the thickness of the cortex was observed in the mice which received 100 R at 17 day's gestation. A decrease in the branching index of the pyramidal cells was found in the mice which received 100 R. Although a decreasing tendency of the branching index was also recognized in those which received 10 R at 13 days of gestation, showing no statistically significant difference. (Ueda, J.)

  13. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Zongjun Guo; Lumin Wang

    2012-01-01

    A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.

  14. Hemodynamic changes in a rat parietal cortex after endothelin-1-induced middle cerebral artery occlusion monitored by optical coherence tomography

    Science.gov (United States)

    Liu, Jian; Ma, Yushu; Dou, Shidan; Wang, Yi; La, Dongsheng; Liu, Jianghong; Ma, Zhenhe

    2016-07-01

    A blockage of the middle cerebral artery (MCA) on the cortical branch will seriously affect the blood supply of the cerebral cortex. Real-time monitoring of MCA hemodynamic parameters is critical for therapy and rehabilitation. Optical coherence tomography (OCT) is a powerful imaging modality that can produce not only structural images but also functional information on the tissue. We use OCT to detect hemodynamic changes after MCA branch occlusion. We injected a selected dose of endothelin-1 (ET-1) at a depth of 1 mm near the MCA and let the blood vessels follow a process first of occlusion and then of slow reperfusion as realistically as possible to simulate local cerebral ischemia. During this period, we used optical microangiography and Doppler OCT to obtain multiple hemodynamic MCA parameters. The change trend of these parameters from before to after ET-1 injection clearly reflects the dynamic regularity of the MCA. These results show the mechanism of the cerebral ischemia-reperfusion process after a transient middle cerebral artery occlusion and confirm that OCT can be used to monitor hemodynamic parameters.

  15. Redox homeostasis is compromised in vivo by the metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency in rat cerebral cortex and liver.

    Science.gov (United States)

    da Rosa, M S; Seminotti, B; Amaral, A U; Fernandes, C G; Gasparotto, J; Moreira, J C F; Gelain, D P; Wajner, M; Leipnitz, G

    2013-12-01

    3-Hydroxy-3-methylglutaryl-CoA lyase (HL) deficiency is a disorder biochemically characterized by the predominant accumulation of 3-hydroxy-3-methylglutarate (HMG), 3-methylglutarate (MGA), 3-methylglutaconate and 3-hydroxyisovalerate in tissues and biological fluids of the affected patients. Neurological symptoms and hepatopathy are commonly found in HL deficiency, especially during metabolic crises. Since the mechanisms of tissue damage in this disorder are not well understood, in the present study we evaluated the ex vivo effects of acute administration of HMG and MGA on important parameters of oxidative stress in cerebral cortex and liver from young rats. In vivo administration of HMG and MGA provoked an increase of carbonyl and carboxy-methyl-lysine formation in cerebral cortex, but not in liver, indicating that these metabolites induce protein oxidative damage in the brain. We also verified that HMG and MGA significantly decreased glutathione concentrations in both cerebral cortex and liver, implying a reduction of antioxidant defenses. Furthermore, HMG and MGA increased 2',7'-dichlorofluorescin oxidation, but did not alter nitrate and nitrite content in cerebral cortex and liver, indicating that HMG and MGA effects are mainly mediated by reactive oxygen species. HMG and MGA also increased the activities of superoxide dismutase and catalase in cerebral cortex and liver, whereas MGA decreased glutathione peroxidase activity in cerebral cortex. Our present data showing a disruption of redox homeostasis in cerebral cortex and liver caused by in vivo administration of HMG and MGA suggest that this pathomechanism may possibly contribute to the brain and liver abnormalities observed in HL-deficient patients. PMID:24127998

  16. Executive function and cerebral blood flow on dorsolateral prefrontal cortex in cases of subcortical infarction

    International Nuclear Information System (INIS)

    In order to clarify the extent of dysexecutive function of patients with subcortical infarctions, participants of this study underwent neuropsychological tests and single photon emission computerized tomography (SPECT). These participants were categorized into two groups; patients with basal ganglia lesions (BG group) (n=5) and those with white matter lesions (WM group) (n=12). Participants were administered executive function tests as a part of a comprehensive neuropsychological battery. Administered executive measures included the Wisconsin Card Sorting Test (WCST), the Ruff Figural Fluency Test (RFFT), the Controlled Oral Word Association Test (COWAT), and the Trait Making Test; Parts A and B. There were no group differences in their age, years of education and global cognitive performance. Student's t-tests were conducted to determine group differences in executive function. As a result, the number of total errors, the number of perseverative errors and the number of categories completed on the WCST were significantly worse for the BG group than for the WM group. These groups did not differ on other measures administered. In addition, all participants underwent SPECT, and their results were compared with the normal control data. Hypoperfusion was found on parts of the bilateral frontal, temporal, and parietal lobes for the BG and WM groups. These tendencies stood out in the right hemisphere of the BG group. The BG group exhibited decreased cerebral blood flow (CBF) on the area of right side dorsolateral prefrontal cortex (DLPFC) (e.g., Brodmann area 44). These analyses revealed that individuals with BG lesions showed significant executive declines that might be associated with decreased CBF in the subcortical-frontal system. It may support the idea that BG is connected with DLPFC via frontal-subcortical neuronal circuit. Patients with BG lesions may experience dysexecutive function due to the phenomenon of diaschisis from the disruption of this circuit. (author)

  17. Molecular and histological changes in cerebral cortex and lung tissues under the effect of tramadol treatment.

    Science.gov (United States)

    Awadalla, Eatemad A; Salah-Eldin, Alaa-Eldin

    2016-08-01

    Tramadol abuse is one of the most frequent health problems in Egypt and worldwide. In most cases, tramadol abused by men face a problem with premature ejaculation. Tramadol like other opioids induces a decrease in plasma antioxidant levels, which may reflect a failure of the antioxidant defense mechanism against oxidative damage. The present work aimed to study the possible deleterious effects of oral administration of tramadol on brain and lung tissues in rats. Twenty adult male albino rats were divided into two groups; a control administered with normal saline and tramadol-treated (40mg/kg b.w.) group for 20 successive days. At the end of experimental period, blood was collected and specimens from brains and lungs were taken for histopathological and molecular studies. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities were measured in serum of control and tramadol-treated groups. Brain and lung specimens were histopathological evaluated using light microscopy. The expression levels of apoptotic related genes; Bcl-2, Bax and Caspase-3 were study in brain and lung tissues using RT-PCR analysis. We recorded a significant increase MDA level, while antioxidant enzymes; GSH, SOD and CAT were significantly decreased after tramadol-treatment. The obtained results revealed that tramadol induced a remarkable histomorphological changes in rats' brains (cerebral cortex and hippocampus) and severe histopathological changes in rats' lung when compared to that of control. On molecular level, the expression of the pro-apoptotic Bax and Caspase-3 showed a significant increase whereas the anti-apoptotic Bcl-2 decreased markedly indicating that tramadol is harmful at cellular level and can induce apoptotic changes in brain tissues. Our data confirmed the risk of increased oxidative stress, neuronal and pulmonary damage due to tramadol abuse. Although tramadol is reported to be effective in pain management, its toxicity should

  18. Skilled Bimanual Training Drives Motor Cortex Plasticity in Children With Unilateral Cerebral Palsy.

    Science.gov (United States)

    Friel, Kathleen M; Kuo, Hsing-Ching; Fuller, Jason; Ferre, Claudio L; Brandão, Marina; Carmel, Jason B; Bleyenheuft, Yannick; Gowatsky, Jaimie L; Stanford, Arielle D; Rowny, Stefan B; Luber, Bruce; Bassi, Bruce; Murphy, David L K; Lisanby, Sarah H; Gordon, Andrew M

    2016-10-01

    Background Intensive bimanual therapy can improve hand function in children with unilateral spastic cerebral palsy (USCP). We compared the effects of structured bimanual skill training versus unstructured bimanual practice on motor outcomes and motor map plasticity in children with USCP. Objective We hypothesized that structured skill training would produce greater motor map plasticity than unstructured practice. Methods Twenty children with USCP (average age 9.5; 12 males) received therapy in a day camp setting, 6 h/day, 5 days/week, for 3 weeks. In structured skill training (n = 10), children performed progressively more difficult movements and practiced functional goals. In unstructured practice (n = 10), children engaged in bimanual activities but did not practice skillful movements or functional goals. We used the Assisting Hand Assessment (AHA), Jebsen-Taylor Test of Hand Function (JTTHF), and Canadian Occupational Performance Measure (COPM) to measure hand function. We used single-pulse transcranial magnetic stimulation to map the representation of first dorsal interosseous and flexor carpi radialis muscles bilaterally. Results Both groups showed significant improvements in bimanual hand use (AHA; P < .05) and hand dexterity (JTTHF; P < .001). However, only the structured skill group showed increases in the size of the affected hand motor map and amplitudes of motor evoked potentials (P < .01). Most children who showed the most functional improvements (COPM) had the largest changes in map size. Conclusions These findings uncover a dichotomy of plasticity: the unstructured practice group improved hand function but did not show changes in motor maps. Skill training is important for driving motor cortex plasticity in children with USCP.

  19. Molecular and histological changes in cerebral cortex and lung tissues under the effect of tramadol treatment.

    Science.gov (United States)

    Awadalla, Eatemad A; Salah-Eldin, Alaa-Eldin

    2016-08-01

    Tramadol abuse is one of the most frequent health problems in Egypt and worldwide. In most cases, tramadol abused by men face a problem with premature ejaculation. Tramadol like other opioids induces a decrease in plasma antioxidant levels, which may reflect a failure of the antioxidant defense mechanism against oxidative damage. The present work aimed to study the possible deleterious effects of oral administration of tramadol on brain and lung tissues in rats. Twenty adult male albino rats were divided into two groups; a control administered with normal saline and tramadol-treated (40mg/kg b.w.) group for 20 successive days. At the end of experimental period, blood was collected and specimens from brains and lungs were taken for histopathological and molecular studies. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities were measured in serum of control and tramadol-treated groups. Brain and lung specimens were histopathological evaluated using light microscopy. The expression levels of apoptotic related genes; Bcl-2, Bax and Caspase-3 were study in brain and lung tissues using RT-PCR analysis. We recorded a significant increase MDA level, while antioxidant enzymes; GSH, SOD and CAT were significantly decreased after tramadol-treatment. The obtained results revealed that tramadol induced a remarkable histomorphological changes in rats' brains (cerebral cortex and hippocampus) and severe histopathological changes in rats' lung when compared to that of control. On molecular level, the expression of the pro-apoptotic Bax and Caspase-3 showed a significant increase whereas the anti-apoptotic Bcl-2 decreased markedly indicating that tramadol is harmful at cellular level and can induce apoptotic changes in brain tissues. Our data confirmed the risk of increased oxidative stress, neuronal and pulmonary damage due to tramadol abuse. Although tramadol is reported to be effective in pain management, its toxicity should

  20. Using Individualized Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in Alzheimer's Patients.

    Science.gov (United States)

    Kim, Hee-Jong; Shin, Jeong-Hyeon; Han, Cheol E; Kim, Hee Jin; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung

    2016-01-01

    Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are "small world." There were significant difference between NC and AD group in characteristic path lengths (z = -2.97, p < 0.01) and small-worldness values (z = 4.05, p < 0.01). Clustering coefficients in AD was smaller than that of NC but there was no significant difference (z = 1.81, not significant). We further observed that the AD patients had significantly disrupted structural connectivity. We also show that the coordinated variance of cortical thickness is distributed more randomly from one region to other regions in AD patients when compared to NC subjects. Our proposed SCN may provide surface-based measures for understanding interaction between two brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC

  1. Using Individualized Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in Alzheimer's Patients.

    Science.gov (United States)

    Kim, Hee-Jong; Shin, Jeong-Hyeon; Han, Cheol E; Kim, Hee Jin; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung

    2016-01-01

    Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are "small world." There were significant difference between NC and AD group in characteristic path lengths (z = -2.97, p < 0.01) and small-worldness values (z = 4.05, p < 0.01). Clustering coefficients in AD was smaller than that of NC but there was no significant difference (z = 1.81, not significant). We further observed that the AD patients had significantly disrupted structural connectivity. We also show that the coordinated variance of cortical thickness is distributed more randomly from one region to other regions in AD patients when compared to NC subjects. Our proposed SCN may provide surface-based measures for understanding interaction between two brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC

  2. LPS-induced microglial secretion of TNFα increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex.

    Science.gov (United States)

    Nimmervoll, Birgit; White, Robin; Yang, Jenq-Wei; An, Shuming; Henn, Christopher; Sun, Jyh-Jang; Luhmann, Heiko J

    2013-07-01

    During the pre- and neonatal period, the cerebral cortex reveals distinct patterns of spontaneous synchronized activity, which is critically involved in the formation of early networks and in the regulation of neuronal survival and programmed cell death (apoptosis). During this period, the cortex is also highly vulnerable to inflammation and in humans prenatal infection may have a profound impact on neurodevelopment causing long-term neurological deficits. Using in vitro and in vivo multi-electrode array recordings and quantification of caspase-3 (casp-3)-dependent apoptosis, we demonstrate that lipopolysaccharide-induced inflammation causes rapid alterations in the pattern of spontaneous burst activities, which subsequently leads to an increase in apoptosis. We show that these inflammatory effects are specifically initiated by the microglia-derived pro-inflammatory cytokine tumor necrosis factor α and the chemokine macrophage inflammatory protein 2. Our data demonstrate that inflammation-induced modifications in spontaneous network activities influence casp-3-dependent cell death in the developing cerebral cortex.

  3. Protective effect and its mechanism of curcumin on ischemia-reperfusion injury of cerebral cortex in rats

    OpenAIRE

    Liu, Li; Bo-tao TAN; Li, Yu; Yu, Gang

    2013-01-01

    Objective  To investigate the effect of curcumin pretreatment on the expression of uncoupling protein 2 (UCP2) and mitochondrial transcription factor A (MTFA) in rats' cerebral cortex against focal ischemia reperfusion injury. Methods  Eighty male SD rats weighed 220g–300g were randomly divided into 4 groups: sham-operated group, ischemia/reperfusion (I/R) group, curcumine 50mg/kg+I/R (low dose) group, and curcumine 100mg/kg+I/R (high dose) group. The common carotid artery, external carotid a...

  4. Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex

    OpenAIRE

    Miao, W.; T.H. Bao; Han, J. H.; Yin, M.; Yan, Y.; Wang, W. W.; Zhu, Y. H.

    2015-01-01

    MicroRNAs (miRNAs) may be important mediators of the profound molecular and cellular changes that occur after traumatic brain injury (TBI). However, the changes and possible roles of miRNAs induced by voluntary exercise prior to TBI are still not known. In this report, the microarray method was used to demonstrate alterations in miRNA expression levels in the cerebral cortex of TBI mice that were pretrained on a running wheel (RW). Voluntary RW exercise prior to TBI: i) significantly decrease...

  5. Protective effect and its mechanism of curcumin on ischemia-reperfusion injury of cerebral cortex in rats

    Directory of Open Access Journals (Sweden)

    Li LIU

    2013-03-01

    Full Text Available Objective  To investigate the effect of curcumin pretreatment on the expression of uncoupling protein 2 (UCP2 and mitochondrial transcription factor A (MTFA in rats' cerebral cortex against focal ischemia reperfusion injury. Methods  Eighty male SD rats weighed 220g–300g were randomly divided into 4 groups: sham-operated group, ischemia/reperfusion (I/R group, curcumine 50mg/kg+I/R (low dose group, and curcumine 100mg/kg+I/R (high dose group. The common carotid artery, external carotid artery and internal carotid artery on the right side were exposed in the sham-operated group. Animals of the other groups were subjected to a 2-hour period of right middle cerebral artery occlusion, followed by 24 hours of reperfusion, and then they were sacrificed. Curcumin was administered (ip in a dose of 50mg/kg (low dose group or 100mg/kg (high dose group for 5 days, respectively, prior to arterial occlusion. The pathological changes in neurons and their mitochondria in the cerebral cortex supplied by middle cerebral artery were observed with Nissl staining and electron microscope, respectively. The expressions of UCP2 and MTFA in corresponding cotex were assessed by immunohistochemistry and RT-PCR. Results  Compared with sham-operated group, animals in I/R group presented edema of neurons in the corresponding cortex, reduction in the number of Nissl bodies, and swelling of mitochondria with broken, even lysis of cristae. Low dose and high dose of curcumin pretreatment before brain ischemia significantly alleviated the loss of neurons and the damage of mitochondria, accompanied with an increase in the expression of UCP2 and TFAM (P<0.05, and the changes appeared a dose-dependent manner (P<0.05. Conclusions  Curcumin may prevent neurons from focal cerebral ischemia reperfusion injury by up-regulating UCP2 and MTFA. Regulation of mitochondrial biogenesis may probably be a potential target of curcumin as a neuroprotective drug.

  6. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex.

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    Full Text Available Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K(+ channel blocker 4-aminopyridine (4-AP, and this phenomenon was prevented by the chelating extracellular Ca(2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca(2+ concentration. Involvement of the Cav2.1 (P/Q-type channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2 and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK

  7. Differential visually-induced gamma-oscillations in human cerebral cortex

    OpenAIRE

    Asano, Eishi; Nishida, Masaaki; Fukuda, Miho; Rothermel, Robert; Juhasz, Csaba; Sood, Sandeep

    2008-01-01

    Using intracranial electrocorticography, we determined how cortical gamma-oscillations (50–150Hz) were induced by different visual tasks in nine children with focal epilepsy. In all children, full-field stroboscopic flash-stimuli induced gamma-augmentation in the anterior-medial occipital cortex (starting on average at 31-msec after stimulus presentation) and subsequently in the lateral-polar occipital cortex; minimal gamma-augmentation was noted in the inferior occipital-temporal cortex; occ...

  8. A pattern formed by preferential orientation of tangential fibres in layer I of the rabbit's cerebral cortex.

    Science.gov (United States)

    Fleischhauer, K; Laube, A

    1977-12-01

    1. The tangential organization of layer I has been studied in frozen sections impregnated according to a modified Liesegang method and in Bodian impregnated paraffin sections cut tangentially to the dorsal surface of the rabbit's cerebral cortex. 2. It is shown that sublamina tangentialis of layer I contains a system of parallel nerve fibres forming a distinct pattern in the tangential plane. 3. This pattern has been reconstructed for a large region of the dorsal surface of the cerebral cortex including the striate areas as well as the peristriate, parietal and precentral agranular regions and parts of the retrosplenial area. 4. In most parts of the region investigated, the tangential fibres of layer I are oriented in an antero-medial to postero-lateral direction, forming an angle of about 50 degrees with the sagittal plane. 5. Deviations from this pattern are found in the furrows formed by the lateral sulcus and the frontal impression and also in the caudal part of the retrosplenial area. In these regions, which are characterized by comparatively steep changes of the cortical relief, the fibres course in a more sagittal direction.

  9. Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex.

    Science.gov (United States)

    Ye, Tao; Ip, Jacque P K; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    During cerebral cortex development, pyramidal neurons migrate through the intermediate zone and integrate into the cortical plate. These neurons undergo the multipolar-bipolar transition to initiate radial migration. While perturbation of this polarity acquisition leads to cortical malformations, how this process is initiated and regulated is largely unknown. Here we report that the specific upregulation of the Rap1 guanine nucleotide exchange factor, RapGEF2, in migrating neurons corresponds to the timing of this polarity transition. In utero electroporation and live-imaging studies reveal that RapGEF2 acts on the multipolar-bipolar transition during neuronal migration via a Rap1/N-cadherin pathway. Importantly, activation of RapGEF2 is controlled via phosphorylation by a serine/threonine kinase Cdk5, whose activity is largely restricted to the radial migration zone. Thus, the specific expression and Cdk5-dependent phosphorylation of RapGEF2 during multipolar-bipolar transition within the intermediate zone are essential for proper neuronal migration and wiring of the cerebral cortex. PMID:25189171

  10. A pattern formed by preferential orientation of tangential fibres in layer I of the rabbit's cerebral cortex.

    Science.gov (United States)

    Fleischhauer, K; Laube, A

    1977-12-01

    1. The tangential organization of layer I has been studied in frozen sections impregnated according to a modified Liesegang method and in Bodian impregnated paraffin sections cut tangentially to the dorsal surface of the rabbit's cerebral cortex. 2. It is shown that sublamina tangentialis of layer I contains a system of parallel nerve fibres forming a distinct pattern in the tangential plane. 3. This pattern has been reconstructed for a large region of the dorsal surface of the cerebral cortex including the striate areas as well as the peristriate, parietal and precentral agranular regions and parts of the retrosplenial area. 4. In most parts of the region investigated, the tangential fibres of layer I are oriented in an antero-medial to postero-lateral direction, forming an angle of about 50 degrees with the sagittal plane. 5. Deviations from this pattern are found in the furrows formed by the lateral sulcus and the frontal impression and also in the caudal part of the retrosplenial area. In these regions, which are characterized by comparatively steep changes of the cortical relief, the fibres course in a more sagittal direction. PMID:603078

  11. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    Science.gov (United States)

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders.

  12. The contribution of CXCL12-expressing radial glia cells to neuro-vascular patterning during human cerebral cortex development

    Directory of Open Access Journals (Sweden)

    Mariella eErrede

    2014-10-01

    Full Text Available This study was conducted on human developing brain by laser confocal and transmission electron microscopy to make a detailed analysis of important features of blood-brain barrier microvessels and possible control mechanisms of vessel growth and differentiation during cerebral cortex vascularization. The blood-brain barrier status of cortex microvessels was examined at a defined stage of cortex development, at the end of neuroblast waves of migration and before cortex lamination, with blood-brain barrier-endothelial cell markers, namely tight junction proteins (occludin and claudin-5 and influx and efflux transporters (Glut-1 and P-glycoprotein, the latter supporting evidence for functional effectiveness of the fetal blood-brain barrier. According to the well-known roles of astroglia cells on microvessel growth and differentiation, the early composition of astroglia/endothelial cell relationships was analysed by detecting the appropriate astroglia, endothelial, and pericyte markers. GFAP, chemokine CXCL12, and connexin 43 (Cx43 were utilized as markers of radial glia cells, CD105 (endoglin as a marker of angiogenically activated endothelial cells, and proteoglycan NG2 as a marker of immature pericytes. Immunolabeling for CXCL12 showed the highest level of the ligand in radial glial fibres in contact with the growing cortex microvessels. These specialized contacts, recognizable on both perforating radial vessels and growing collaterals, appeared as CXCL12-reactive en passant, symmetrical and asymmetrical vessel-specific RG fibre swellings. At the highest confocal resolution, these RG varicosities showed a CXCL12-reactive dot-like content whose microvesicular nature was confirmed by ultrastructural observations. A further analysis of radial glial varicosities reveals colocalization of CXCL12 with connexin Cx43, which is possibly implicated in vessel-specific chemokine signalling.

  13. THE EFFECT OF LIGUSTRAZINE ON NEUROGENESIS IN CORTEX AFTER FOCAL CEREBRAL ISCHEMIA IN RATS

    Institute of Scientific and Technical Information of China (English)

    邱芬; 刘勇; 张蓬勃; 康前雁; 田英芳; 陈新林; 赵建军; 祁存芳

    2006-01-01

    It has been demonstrated that there are neuralstemcells that can self-renewand differentiate intomultiple cell types[1-3]in central nervous system ofadult mammals.After cerebral ischemia,these cellscan proliferate,migrate,differentiate and partici-pate in the repair of ischemic cerebral injuries[4-6].Neural stemcells play a very i mportant role in alle-viating ischemic cerebral injuries and promotingfunctional recovery.Ligustrazine,an active ingre-dient of Ligustici,can help dilate blood vessels,i m-prove m...

  14. A comparison of the apoptotic effect of Delta(9)-tetrahydrocannabinol in the neonatal and adult rat cerebral cortex.

    Science.gov (United States)

    Downer, Eric J; Gowran, Aoife; Campbell, Veronica A

    2007-10-17

    The maternal use of cannabis during pregnancy results in a number of cognitive deficits in the offspring that persist into adulthood. The endocannabinoid system has a role to play in neurodevelopmental processes such as neurogenesis, migration and synaptogenesis. However, exposure to phytocannabinoids, such as Delta(9)-tetrahydrocannabinol, during gestation may interfere with these events to cause abnormal patterns of neuronal wiring and subsequent cognitive impairments. Aberrant cell death evoked by Delta(9)-tetrahydrocannabinol may also contribute to cognitive deficits and in cultured neurones Delta(9)-tetrahydrocannabinol induces apoptosis via the CB(1) cannabinoid receptor. In this study we report that Delta(9)-tetrahydrocannabinol (5-50 microM) activates the stress-activated protein kinase, c-jun N-terminal kinase, and the pro-apoptotic protease, caspase-3, in in vitro cerebral cortical slices obtained from the neonatal rat brain. The proclivity of Delta(9)-tetrahydrocannabinol to impact on these pro-apoptotic signalling molecules was not observed in in vitro cortical slices obtained from the adult rat brain. In vivo, subcutaneous administration of Delta(9)-tetrahydrocannabinol (1-30 mg/kg) activated c-jun N-terminal kinase, caspase-3 and cathepsin-D, and induced DNA fragmentation in the cerebral cortex of neonatal rats. In contrast, in vivo administration of Delta(9)-tetrahydrocannabinol to adult rats was not associated with the apoptotic pathway in the cerebral cortex. The data provide evidence which supports the hypothesis that the neonatal rat brain is more vulnerable to the neurotoxic influence of Delta(9)-tetrahydrocannabinol, suggesting that the cognitive deficits that are observed in humans exposed to marijuana during gestation may be due, in part, to abnormal engagement of the apoptotic cascade during brain development.

  15. Selective reduction of cerebral cortex GABA neurons in a late gestation model of fetal alcohol spectrum disorder.

    Science.gov (United States)

    Smiley, John F; Saito, Mariko; Bleiwas, Cynthia; Masiello, Kurt; Ardekani, Babak; Guilfoyle, David N; Gerum, Scott; Wilson, Donald A; Vadasz, Csaba

    2015-09-01

    Fetal alcohol spectrum disorders (FASD) are associated with cognitive and behavioral deficits, and decreased volume of the whole brain and cerebral cortex. Rodent models have shown that early postnatal treatments, which mimic ethanol toxicity in the third trimester of human pregnancy, acutely induce widespread apoptotic neuronal degeneration and permanent behavioral deficits. However, the lasting cellular and anatomical effects of early ethanol treatments are still incompletely understood. This study examined changes in neocortex volume, thickness, and cellular organization that persist in adult mice after postnatal day 7 (P7) ethanol treatment. Post mortem brain volumes, measured by both MRI within the skull and by fluid displacement of isolated brains, were reduced 10-13% by ethanol treatment. The cerebral cortex showed a similar reduction (12%) caused mainly by lower surface area (9%). In spite of these large changes, several features of cortical organization showed little evidence of change, including cortical thickness, overall neuron size, and laminar organization. Estimates of total neuron number showed a trend level reduction of about 8%, due mainly to reduced cortical volume but unchanged neuron density. However, counts of calretinin (CR) and parvalbumin (PV) subtypes of GABAergic neurons showed a striking >30% reduction of neuron number. Similar ethanol effects were found in male and female mice, and in C57BL/6By and BALB/cJ mouse strains. Our findings indicate that the cortex has substantial capacity to develop normal cytoarchitectonic organization after early postnatal ethanol toxicity, but there is a selective and persistent reduction of GABA cells that may contribute to the lasting cognitive and behavioral deficits in FASD.

  16. A Laboratory Exercise Demonstrating the Limited Circumstances in which the Cerebral Cortex is Engaged in Over Ground Locomotion.

    Science.gov (United States)

    Buford, John A

    2005-01-01

    For neuroscience, memorable demonstrations of principles in action are crucial. Neural control of walking is particularly difficult to understand because the interaction of the cerebral cortex with a central pattern generator (CPG) makes the mode of control context-dependent. Beginning students tend to consider corticospinal control the basis of all movement, so they may not distinguish the limited circumstances in which the cerebral cortex bypasses the CPG to control leg movements directly for walking. The demonstration described here is designed to show that cortical involvement in normal walking is minimal unless visual control of foot placement is required. Cortical involvement in motor control is assessed by probing for spare attention while a student volunteer performs three different tasks: sitting, walking down a hallway, and walking through an obstacle course. Simple math quizzes with 20 oral questions are the probes. The class observes the demonstration and discusses the results. To evaluate learning, a multiple-choice question was administered two months after the demonstration, as well as 14 months later to cohorts from the previous year's class. The demonstration succeeded: quiz scores were similar for sitting and level walking, but lower for the obstacle course. Two months later, 86% of students correctly answered the multiple choice question; 42% of the previous year's cohorts answered correctly after 14 months. The demonstration shows that the cortex is engaged by walking through an obstacle course, not walking on a flat indoor surface. Initially, most students learned this distinction well, but after a year, many reverted to the idea that the corticospinal tract controls details of leg movements during walking. Thus this result emphasizes the need for review of advanced concepts. Overall, the experience was fun and could easily fit into basic or clinical neuroscience courses. PMID:23494163

  17. Cerebral Oedema, Blood-Brain Barrier Breakdown and the Decrease in Na(+),K(+)-ATPase Activity in the Cerebral Cortex and Hippocampus are Prevented by Dexamethasone in an Animal Model of Maple Syrup Urine Disease.

    Science.gov (United States)

    Rosa, Luciana; Galant, Leticia S; Dall'Igna, Dhébora M; Kolling, Janaina; Siebert, Cassiana; Schuck, Patrícia F; Ferreira, Gustavo C; Wyse, Angela T S; Dal-Pizzol, Felipe; Scaini, Giselli; Streck, Emilio L

    2016-08-01

    Maple syrup urine disease (MSUD) is a rare metabolic disorder associated with acute and chronic brain dysfunction. This condition has been shown to lead to macroscopic cerebral alterations that are visible on imaging studies. Cerebral oedema is widely considered to be detrimental for MSUD patients; however, the mechanisms involved are still poorly understood. Therefore, we investigated whether acute administration of branched-chain amino acids (BCAA) causes cerebral oedema, modifies the Na(+),K(+)-ATPase activity, affects the permeability of the blood-brain barrier (BBB) and alters the levels of cytokines in the hippocampus and cerebral cortex of 10-day-old rats. Additionally, we investigated the influence of concomitant administration of dexamethasone on the alterations caused by BCAA. Our results showed that the animals submitted to the model of MSUD exhibited an increase in the brain water content, both in the cerebral cortex and in the hippocampus. By investigating the mechanism of cerebral oedema, we discovered an association between H-BCAA and the Na(+),K(+)-ATPase activity and the permeability of the BBB to small molecules. Moreover, the H-BCAA administration increases Il-1β, IL-6 and TNF-α levels in the hippocampus and cerebral cortex, whereas IL-10 levels were decreased in the hippocampus. Interestingly, we showed that the administration of dexamethasone successfully reduced cerebral oedema, preventing the inhibition of Na(+),K(+)-ATPase activity, BBB breakdown and the increase in the cytokines levels. In conclusion, these findings suggest that dexamethasone can improve the acute cerebral oedema and brain injury associated with high levels of BCAA, either through a direct effect on brain capillary Na(+),K(+)-ATPase or through a generalized effect on the permeability of the BBB to all compounds. PMID:26133302

  18. Effects of anisodamine on altered [Ca2+]i and cerebral cortex ultrastructure following acute cerebral ischemia/reperfusion injury in rabbits

    Institute of Scientific and Technical Information of China (English)

    Daixing Zhou; Chengye Zhan; Puzhen Deng

    2008-01-01

    BACKGROUND: Calcium ion (Ca2+) overload plays an important role in cerebral ischemia/reperfusion injury. Anisodamine, a type of alkaloid, can protect the myocardium from ischemia and reperfusion injury by inhibiting intracellular calcium [Ca2+]I overload.OBJECTIVE: To investigate effects of anisodamine on [Ca2+]I concentration and cortex ultrastructure following acute cerebral ischcmia/reperfusion in rabbits.DESIGN, TIME AND SETTING: Randomized and controlled trial was performed at the Department of Emergency, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology from September to December 2006.MATERIALS: Forty healthy rabbits were used to establish models of acute cerebral ischemia/reperfusion. Anisodamine was provided by Lianyungang Dongfeng Pharmaceutical Factory; Fura-2 was purchased from Nanjing Jiancheng Bioengineering Institute; dual-wave length fluorescent spectrophotometry system and DM-300 software were provided by Bio-Rad, USA; OPTON-EM10C transmission electron microscope was product of Siemens, Germany.METHODS: Forty rabbits were randomly divided into the following groups: sham operation, ischemia, ischemia/reperfusion, and anisodamine, with ten rabbits in each group. Models of complete cerebral ischemia injury were established. In addition, blood was collected from the femoral artery of rats in the ischemia/reperfusion and anisodamine groups to induce hypotension and establish reperfusion injury models. The bilateral common carotid artery clamp was removed from the anisodamine group 20 minutes alter ischemia, and anisodamine (10 mg/kg body mass) was injected via the femoral vein. Rabbits in the sham operation group underwent only venous cannulation.MAIN OUTCOME MEASURES: [Ca2+]I concentration was determined using a dual-wave length fluorescent spectrophotometry system, and cortical ultrastructure was observed following uranyl-lead citrate staining.RESULTS: The levels of [Ca2+]I in the ischemia and ischemia

  19. Evolutionary appearance of von Economo’s neurons in the mammalian cerebral cortex

    OpenAIRE

    Alessandro Vercelli

    2014-01-01

    von Economo’s neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like socia...

  20. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: Preliminary evidence for the energetic effects of an intention-based biofield treatment modality on human neurophysiology

    NARCIS (Netherlands)

    Pike, C.; Vernon, D.; Hald, L.A.

    2014-01-01

    Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anteri

  1. Cl(-) conduction of GABAA receptor complex of synaptic membranes in the cortex of rats at the middle stage of chronic cerebral epileptization (pharmacological kindling).

    Science.gov (United States)

    Rebrov, I G; Karpova, M N; Andreev, A A; Klishina, N Yu; Kalinina, M V; Kusnetzova, L V

    2007-11-01

    Experiments on Wistar rats showed a decrease in basal and muscimol-stimulated 36Cl(-) entry into synaptoneurosomes isolated from the cerebral cortex during the middle stage of kindling (30 mg/kg pentylenetetrazole intraperitoneally for 14 days) characterized by the development of convulsions of higher (2 points) severity in comparison with the previous stage.

  2. AT WHAT AGE IS THE DEVELOPING CEREBRAL-CORTEX OF THE RAT COMPARABLE TO THAT OF THE FULL-TERM NEWBORN HUMAN BABY

    NARCIS (Netherlands)

    ROMIJN, HJ; HOFMAN, MA; GRAMSBERGEN, A

    1991-01-01

    By means of a comparative study of experimental data from the literature we estimated at what age the rat cerebral cortex corresponds to that of the full-term newborn human infant with regard to the degree of maturation. As a result of this study we suggest that the 12-13-day-old rat pup fulfills th

  3. Remodeling of motor cortex function in acute cerebral infarction patients following human urinary kallidinogenase A functional magnetic resonance imaging evaluation after 6 months

    Institute of Scientific and Technical Information of China (English)

    Xuezhu Song; Lixin Han; Yan Liu

    2012-01-01

    A total of 29 patients were treated within 48 hours after acute subcortical cerebral infarction with Xuesaitong or Xuesaitong plus human urinary kallidinogenase for 14 days. Neurological deficits, activity of daily living, and evaluations of distal upper limb motor functions at the 6-month follow-up showed that patients treated with Xuesaitong plus human urinary kallidinogenase recovered better than with Xuesaitong alone. In addition, functional MRI revealed that activation sites were primarily at the ipsilesional side of injury in all patients. Human urinary kallidinogenase induced hyperactiva-tion of the ipsilesional primary sensorimotor cortex, premotor cortex, supplementary motor area, and contralesional posterior parietal cortex. Results showed that human urinary kallidinogenase improved symptoms of neurological deficiency by enhancing remodeling of long-term cortical motor function in patients with acute cerebral infarction.

  4. Attenuation of γ-aminobutyric acid (GABA) transaminase activity contributes to GABA increase in the cerebral cortex of mice exposed to β-cypermethrin.

    Science.gov (United States)

    Han, Y; Cao, D; Li, X; Zhang, R; Yu, F; Ren, Y; An, L

    2014-03-01

    The current study investigated the γ-aminobutyric acid (GABA) levels and GABA metabolic enzymes (GABA transaminase (GABA(T)) and glutamate decarboxylase (GAD)) activities at 2 and 4 h after treatment, using a high-performance liquid chromatography with ultraviolet detectors and colorimetric assay, in the cerebral cortex of mice treated with 20, 40 or 80 mg/kg β-cypermethrin by a single oral gavage, with corn oil as vehicle control. In addition, GABA protein (4 h after treatment), GABA(T) protein (2 h after treatment) and GABA receptors messenger RNA (mRNA) expression were detected by immunohistochemistry, Western blot and real-time quantitative reverse transcriptase polymerase chain reaction, respectively. β-Cypermethrin (80 mg/kg) significantly increased GABA levels in the cerebral cortex of mice, at both 2 and 4 h after treatment, compared with the control. Also, GABA immunohistochemistry results suggested that the number of positive granules was increased in the cerebral cortex of mice 4 h after exposure to 80 mg/kg β-cypermethrin when compared with the control. Furthermore, the results also showed that GABA(T) activity detected was significantly decreased in the cerebral cortex of mice 2 h after β-cypermethrin administration (40 or 80 mg/kg). No significant changes were found in GAD activity, or the expression of GABA(T) protein and GABAB receptors mRNA, in the cerebral cortex of mice, except that 80 mg/kg β-cypermethrin caused a significant decrease, compared with the vehicle control, in GABAA receptors mRNA expression 4 h after administration. These results suggested that attenuated GABA(T) activity induced by β-cypermethrin contributed to increased GABA levels in the mouse brain. The downregulated GABAA receptors mRNA expression is most likely a downstream event.

  5. Effects of melatonin on learning abilities, cholinergic fibers and nitric oxide synthase expression in rat cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Bin Xu; Junpao Chen; Hailing Zhao

    2006-01-01

    BACKGROUND: Melatonin is a kind of hormones derived from pineal gland. Recent researches demonstrate that melatonin is characterized by anti-oxidation, anti-senility and destroying free radicals. While, effect and pathogenesis of pineal gland on learning ability should be further studied.OBJ ECTIVE: To investigate the effects of pinealectomy on learning abiliy, distribution of cholinesterase and expression of neuronal nitric oxide synthase (nNOS) in cerebral cortex of rats and probe into the effect of melatonin on learning ability, central cholinergic system and nNOS expression.DESIGN: Randomized grouping design and animal study.SETTING: Department of Neurology, the 187 Hospital of Chinese PLA.MATERIALS: A total of 12 male SD rats, of normal learning ability testing with Y-tape maze, of clean grade,weighing 190-210 g, aged 6 weeks, were selected in this study.METHODS: The experiment was carried out in the Department of Neurology, Zhujiang Hospital from July 1997to June 2000. All SD rats were divided into experimental group (n =6,pinealectomy) and control group (n =6, sham operation). Seven days later, rats in both two groups were continuously fed for 33 days. ①Learning ability test: The learning ability of rats was tested by trisection Y-type maze and figured as attempting times. ②Expression of acetylcholinesterase (AchE) was detected by enzyme histochemistry and nNOS was measured by SABC method. ③ Quantitative analysis of AchE fibers: AchE fibers density in unit area (surface density)was surveyed with Leica Diaplan microscope and Leica Quantimet 500+ image analytic apparatus and quantitative parameter was set up for AchE fibers covering density (μm2) per 374 693.656 μm2, moreover, the AchE fibers density was measured in Ⅱ -Ⅳ layers of motor and somatosensory cortex (showing three layers per field of vision at one time), in radiative, lacunaria and molecular layers of CA1, CA2 and CA3 areas, and in lamina multiforms of dentate gyrus. Three tissue slices

  6. Growth of the Developing Cerebral Cortex Is Controlled by MicroRNA-7 through the p53 Pathway

    Directory of Open Access Journals (Sweden)

    Andrew Pollock

    2014-05-01

    Full Text Available Proper growth of the mammalian cerebral cortex is crucial for normal brain functions and is controlled by precise gene-expression regulation. Here, we show that microRNA-7 (miR-7 is highly expressed in cortical neural progenitors and describe miR-7 sponge transgenic mice in which miR-7-silencing activity is specifically knocked down in the embryonic cortex. Blocking miR-7 function causes microcephaly-like brain defects due to reduced intermediate progenitor (IP production and apoptosis. Upregulation of miR-7 target genes, including those implicated in the p53 pathway, such as Ak1 and Cdkn1a (p21, is responsible for abnormalities in neural progenitors. Furthermore, ectopic expression of Ak1 or p21 and specific blockade of miR-7 binding sites in target genes using protectors in vivo induce similarly reduced IP production. Using conditional miRNA sponge transgenic approaches, we uncovered an unexpected role for miR-7 in cortical growth through its interactions with genes in the p53 pathway.

  7. An enhanced role and expanded developmental origins for gamma-aminobutyric acidergic interneurons in the human cerebral cortex.

    Science.gov (United States)

    Clowry, Gavin J

    2015-10-01

    Human beings have considerably expanded cognitive abilities compared with all other species and they also have a relatively larger cerebral cortex compared with their body size. But is a bigger brain the only reason for higher cognition or have other features evolved in parallel? Humans have more and different types of GABAergic interneurons, found in different places, than our model species. Studies are beginning to show differences in function. Is this expanded repertoire of functional types matched by an evolution of their developmental origins? Recent studies support the idea that generation of interneurons in the ventral telencephalon may be more complicated in primates, which have evolved a large and complex outer subventricular zone in the ganglionic eminences. In addition, proportionally more interneurons appear to be produced in the caudal ganglionic eminence, the majority of which populate the superficial layers of the cortex. Whether or not the cortical proliferative zones are a source of interneurogenesis, and to what extent and of what significance, is a contentious issue. As there is growing evidence that conditions such as autism, schizophrenia and congenital epilepsy may have developmental origins in the failure of interneuron production and migration, it is important we understand fully the similarities and differences between human development and our animal models.

  8. Two-dimensional electrophoretogram of acute brain injury-associated proteins Comparison between Injured and normal cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Xuejun Li; Xianrui Yuan; Cui Li; Zefeng Peng; Dun Yuan

    2008-01-01

    cerebral cortex; ②differential protein expression. RESULTS:①Two-dimensional electrophoresis of protein from cerebral cortex:two-dimensional gel electrophoretogram,which is considered to have high resolution and consistent duplication,was performed on injured cortical tissues and normal cortical tissues.The image analysis system detected 21 differential protein pots.②Differential protein spot expressions:mass spectrometry resulted in 17 differential protein spots that related to metabolic response,oxidative stress response,and signal transduction.CONCLUSION:MALDI/TOF MS and ESI-Qq TOF MS are exceptional methods for evaluating differential protein expression.Results from this study indicated 17 different craniocerebral injury-associated proteins.

  9. Application of alcian blue in the electron microscopic study of mouse and human cerebral cortex nerve cells.

    Science.gov (United States)

    Castejón, H V; Castejón, O J; Viloria, M E

    1976-01-01

    Alcian blue is a cationic dye which has been used in the histochemical field for the demonstration of polyanions especially carboxylated and sulphated. The results obtained in neurons when this dye was applied to human and mouse cerebral cortex and studied with the electron microscope are the object of the present report. The CNS of normal adult mice was fixed by vascular perfusion with 2% glutaraldehyde-0.1 M sodium cacodylate-0.1 M sucrose at pH = 6.8 followed by the same fixative with the addition of 0.5% alcian blue. After perfusion, brain cortex was taken out, sectioned into small blocks and immersed in a fresh similar mixture and subsequently in OSO4. Blocks were dehydrated and embedded in araldite. Ultrathin sections were doubly stained with uranyl and lead salts. Human brain cortex taken from patients with cerebral edema was fixed by immersion with 6.5% glutaraldehyde-0.1 M sodium phosphate, pH = 7.4 followed by embedding in warm agar and sectioning in slices of 30 mum thickness which were impregnated by immersion in a mixture of 1% alcian blue-acetate buffer-3% glutaraldehyde at pH = 3.5 for 9 to 15 h at 4 degrees C and subsequently immersed in 1% buffered OSO4-0.1 M sucrose, pH = 7.4 for 2 h at 4 degrees S. Sections were dehydrated and embedded in araldite. Ultrathin sections were doubly stained by uranyl and lead salts. We have denominated the complete procedure in both instances GABOUL technique. The submicroscopic study of both tissues, at nerve cells, revealed the presence of an electron dense homogeneous substance thoroughly dispersed at the hyaloplasmic matrix of perikarya, processes and even synaptic endings. This substance was more evident around free and attached ribosomes, GOLGI apparatus, complex vesicles, dense bodies, microtubules, subsurface cisternae and synaptic vesicles. Canaliculi of endoplasmic reticulum and even the perinuclear cistern also showed a moderate content. It is suggested that this electron dense substance, being

  10. Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex

    OpenAIRE

    Martin, Lee J.; Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.

    2008-01-01

    Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. B...

  11. Early asymmetry of gene transcription between embryonic human left and right cerebral cortex

    OpenAIRE

    Sun, Tao; Patoine, Christina; Abu-Khalil, Amir; Visvader, Jane; Sum, Eleanor; Cherry, Timothy J.; Orkin, Stuart H.; Geschwind, Daniel H.; Walsh, Christopher A.

    2005-01-01

    The human left and right cerebral hemispheres are anatomically and functionally asymmetric. To test whether human cortical asymmetry has a molecular basis, we studied gene expression levels between the left and right embryonic hemispheres using Serial Analysis of Gene Expression (SAGE), and identified and verified 27 differentially expressed genes, suggesting that human cortical asymmetry is accompanied by early, striking transcriptional asymmetries. LMO4 is consistently more highly expressed...

  12. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.

    Science.gov (United States)

    Jackson, Andrew; Fetz, Eberhard E

    2007-11-01

    We describe a small, chronically implantable microwire array for obtaining long-term unit recordings from the cortex of unrestrained nonhuman primates. After implantation, the depth of microwires can be individually adjusted to maintain large-amplitude action potential recordings from single neurons over many months. We present data recorded from the primary motor cortex of two monkeys by autonomous on-board electronic circuitry. Waveforms of individual neurons remained stable for recording periods of several weeks during unrestrained behavior. Signal-to-noise ratios, waveform stability, and rates of cell loss indicate that this method may be particularly suited to experiments investigating the neural correlates of processes extending over multiple days, such as learning and plasticity. PMID:17855584

  13. Output of Neurogliaform Cells to Various Neuron Types in the Human and Rat Cerebral Cortex

    OpenAIRE

    Oláh, Szabolcs; Komlósi, Gergely; Szabadics, János; Varga, Csaba; Tóth, Éva; Barzó, Pál; Tamás, Gábor

    2007-01-01

    Neurogliaform cells in the rat elicit combined GABAA and GABAB receptor-mediated postsynaptic responses on cortical pyramidal cells and establish electrical synapses with various interneuron types. However, the involvement of GABAB receptors in postsynaptic effects of neurogliaform cells on other GABAergic interneurons is not clear. We measured the postsynaptic effects of neurogliaform cells in vitro applying simultaneous whole-cell recordings in human and rat cortex. Single action potentials...

  14. Diffusion tensor imaging detects early cerebral cortex abnormalities in neuronal architecture induced by bilateral neonatal enucleation: An experimental model in the ferret

    Directory of Open Access Journals (Sweden)

    Andrew S Bock

    2010-10-01

    Full Text Available Diffusion tensor imaging (DTI is a technique that non-invasively provides quantitative measures of water translational diffusion, including fractional anisotropy (FA, that are sensitive to the shape and orientation of cellular elements, such as axons, dendrites and cell somas. For several neurodevelopmental disorders, histopathological investigations have identified abnormalities in the architecture of pyramidal neurons at early stages of cerebral cortex development. To assess the potential capability of DTI to detect neuromorphological abnormalities within the developing cerebral cortex, we compare changes in cortical FA with changes in neuronal architecture and connectivity induced by bilateral enucleation at postnatal day 7 (BEP7 in ferrets. We show here that the visual callosal pattern in BEP7 ferrets is more irregular and occupies a significantly greater cortical area compared to controls at adulthood. To determine whether development of the cerebral cortex is altered in BEP7 ferrets in a manner detectable by DTI, cortical FA was compared in control and BEP7 animals on postnatal day 31. Visual cortex, but not rostrally-adjacent non-visual cortex, exhibits higher FA than control animals, consistent with BEP7 animals possessing axonal and dendritic arbors of reduced complexity than age-matched controls. Subsequent to DTI, Golgi staining and analysis methods were used to identify regions, restricted to visual areas, in which the orientation distribution of neuronal processes is significantly more concentrated than in control ferrets. Together, these findings suggest that DTI can be of utility for detecting abnormalities associated with neurodevelopmental disorders at early stages of cerebral cortical development, and that the neonatally-enucleated ferret is a useful animal model system for systematically assessing the potential of this new diagnostic strategy.

  15. An analysis of von Economo neurons in the cerebral cortex of cetaceans, artiodactyls, and perissodactyls.

    Science.gov (United States)

    Raghanti, Mary Ann; Spurlock, Linda B; Treichler, F Robert; Weigel, Sara E; Stimmelmayr, Raphaela; Butti, Camilla; Thewissen, J G M Hans; Hof, Patrick R

    2015-07-01

    Von Economo neurons (VENs) are specialized projection neurons with a characteristic spindle-shaped soma and thick basal and apical dendrites. VENs have been described in restricted cortical regions, with their most frequent appearance in layers III and V of the anterior cingulate cortex, anterior insula, and frontopolar cortex of humans, great apes, macaque monkeys, elephants, and some cetaceans. Recently, a ubiquitous distribution of VENs was reported in various cortical areas in the pygmy hippopotamus, one of the closest living relatives of cetaceans. That finding suggested that VENs might not be unique to only a few species that possess enlarged brains. In the present analysis, we assessed the phylogenetic distribution of VENs within species representative of the superordinal clade that includes cetartiodactyls and perissodactyls, as well as afrotherians. In addition, the distribution of fork cells that are often found in close proximity to VENs was also assessed. Nissl-stained sections from the frontal pole, anterior cingulate cortex, anterior insula, and occipital pole of bowhead whale, cow, sheep, deer, horse, pig, rock hyrax, and human were examined using stereologic methods to quantify VENs and fork cells within layer V of all four cortical regions. VENs and fork cells were found in each of the species examined here with species-specific differences in distributions and densities. The present results demonstrated that VENs and fork cells were not restricted to highly encephalized or socially complex species, and their repeated emergence among distantly related species seems to represent convergent evolution of specialized pyramidal neurons. The widespread phylogenetic presence of VENs and fork cells indicates that these neuron morphologies readily emerged in response to selective forces,whose variety and nature are yet to be identified.

  16. Visual space and object space in the cerebral cortex of retinal disease patients.

    Directory of Open Access Journals (Sweden)

    Elfi Goesaert

    Full Text Available The lower areas of the hierarchically organized visual cortex are strongly retinotopically organized, with strong responses to specific retinotopic stimuli, and no response to other stimuli outside these preferred regions. Higher areas in the ventral occipitotemporal cortex show a weak eccentricity bias, and are mainly sensitive for object category (e.g., faces versus buildings. This study investigated how the mapping of eccentricity and category sensitivity using functional magnetic resonance imaging is affected by a retinal lesion in two very different low vision patients: a patient with a large central scotoma, affecting central input to the retina (juvenile macular degeneration, and a patient where input to the peripheral retina is lost (retinitis pigmentosa. From the retinal degeneration, we can predict specific losses of retinotopic activation. These predictions were confirmed when comparing stimulus activations with a no-stimulus fixation baseline. At the same time, however, seemingly contradictory patterns of activation, unexpected given the retinal degeneration, were observed when different stimulus conditions were directly compared. These unexpected activations were due to position-specific deactivations, indicating the importance of investigating absolute activation (relative to a no-stimulus baseline rather than relative activation (comparing different stimulus conditions. Data from two controls, with simulated scotomas that matched the lesions in the two patients also showed that retinotopic mapping results could be explained by a combination of activations at the stimulated locations and deactivations at unstimulated locations. Category sensitivity was preserved in the two patients. In sum, when we take into account the full pattern of activations and deactivations elicited in retinotopic cortex and throughout the ventral object vision pathway in low vision patients, the pattern of (deactivation is consistent with the retinal loss.

  17. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  18. Culturated rat cerebral cortex explants and their application in the study of SPECT scan radiopharaceuticals

    International Nuclear Information System (INIS)

    In this thesis mechanics that result in the distinct localization of radiopharmaceuticals within the brain have been investigated. In order to 'get more insight' in uptake and binding of radiopharmaceuticals bu brain tissue, use has been made of the tissue culture technique. Tissue culture privides the opportunity of doing experiments with brain tissue under stable conditions, in the absence of a blood-brain barrier, and without interference by cerebral blood flow. The present thesis is presented in two sections. The first part focusses on longterm culture of 'organotypic' cerebral neocortex tissue, obtained from neonatal rat brain and explanted into a chemically defined medium. Procedures were developed which enabled culturing of this tissue without the occurence of central necrosis and with the preservation of a characteristic histiotypic organization. Morphological characteristics of the cultures were described and measured at various ages in vitro. In the second part, the cultures were used to study mechanisms that might contribute to the tissue uptake of radiopharmaceuticals which are in clinical use for SPECT brain imaging. (author). 369 refs.; 50 figs.; 13 tabs

  19. Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity

    Science.gov (United States)

    Richner, Thomas J.; Thongpang, Sanitta; Brodnick, Sarah K.; Schendel, Amelia A.; Falk, Ryan W.; Krugner-Higby, Lisa A.; Pashaie, Ramin; Williams, Justin C.

    2014-02-01

    Objective. Spatial localization of neural activity from within the brain with electrocorticography (ECoG) and electroencephalography remains a challenge in clinical and research settings, and while microfabricated ECoG (micro-ECoG) array technology continues to improve, complementary methods to simultaneously modulate cortical activity while recording are needed. Approach. We developed a neural interface utilizing optogenetics, cranial windowing, and micro-ECoG arrays fabricated on a transparent polymer. This approach enabled us to directly modulate neural activity at known locations around micro-ECoG arrays in mice expressing Channelrhodopsin-2. We applied photostimuli varying in time, space and frequency to the cortical surface, and we targeted multiple depths within the cortex using an optical fiber while recording micro-ECoG signals. Main results. Negative potentials of up to 1.5 mV were evoked by photostimuli applied to the entire cortical window, while focally applied photostimuli evoked spatially localized micro-ECoG potentials. Two simultaneously applied focal stimuli could be separated, depending on the distance between them. Photostimuli applied within the cortex with an optical fiber evoked more complex micro-ECoG potentials with multiple positive and negative peaks whose relative amplitudes depended on the depth of the fiber. Significance. Optogenetic ECoG has potential applications in the study of epilepsy, cortical dynamics, and neuroprostheses.

  20. ADAM17 is critical for multipolar exit and radial migration of neuronal intermediate progenitor cells in mice cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Qingyu Li

    Full Text Available The radial migration of neuronal progenitor cells is critical for the development of cerebral cortex layers. They go through a critical step transforming from multipolar to bipolar before outward migration. A Disintegrin and Metalloprotease 17 (ADAM17 is a transmembrane protease which can process many substrates involved in cell-cell interaction, including Notch, ligands of EGFR, and some cell adhesion molecules. In this study, we used in utero electroporation to knock down or overexpress ADAM17 at embryonic day 14.5 (E14.5 in neuronal progenitor cells to examine the role of ADAM17 in cortical embryonic neurogenesis. Our results showed that the radial migration of ADAM17-knocked down cells were normal till E16.5 and reached the intermediate zone (IZ. Then most transfected cells stopped migration and stayed at the IZ to inner cortical plate (CP layer at E18.5, and there was higher percentage of multipolar cells at IZ layer in the ADAM17-knocked down group compared to the cells in control group. Marker staining revealed that those ADAM17-knocked down cells differentiated normally from neural stem cells (NSCs to neuronal intermediate progenitor cells (nIPCs but did not differentiate into mature neurons. The migration and multipolar exit defects caused by ADAM17 knockdown could be partially rescued by over-expressing an shRNA resistant ADAM17, while overexpressing ADAM17 alone did not affect the radial migration. Taken together, our results showed for the first time that, ADAM17 is critical in regulating the multipolar-stage exit and radial migration of the nIPCs during telencephalon cortex development in mice.

  1. ADAM17 is critical for multipolar exit and radial migration of neuronal intermediate progenitor cells in mice cerebral cortex.

    Science.gov (United States)

    Li, Qingyu; Zhang, Zhengyu; Li, Zengmin; Zhou, Mei; Liu, Bin; Pan, Le; Ma, Zhixing; Zheng, Yufang

    2013-01-01

    The radial migration of neuronal progenitor cells is critical for the development of cerebral cortex layers. They go through a critical step transforming from multipolar to bipolar before outward migration. A Disintegrin and Metalloprotease 17 (ADAM17) is a transmembrane protease which can process many substrates involved in cell-cell interaction, including Notch, ligands of EGFR, and some cell adhesion molecules. In this study, we used in utero electroporation to knock down or overexpress ADAM17 at embryonic day 14.5 (E14.5) in neuronal progenitor cells to examine the role of ADAM17 in cortical embryonic neurogenesis. Our results showed that the radial migration of ADAM17-knocked down cells were normal till E16.5 and reached the intermediate zone (IZ). Then most transfected cells stopped migration and stayed at the IZ to inner cortical plate (CP) layer at E18.5, and there was higher percentage of multipolar cells at IZ layer in the ADAM17-knocked down group compared to the cells in control group. Marker staining revealed that those ADAM17-knocked down cells differentiated normally from neural stem cells (NSCs) to neuronal intermediate progenitor cells (nIPCs) but did not differentiate into mature neurons. The migration and multipolar exit defects caused by ADAM17 knockdown could be partially rescued by over-expressing an shRNA resistant ADAM17, while overexpressing ADAM17 alone did not affect the radial migration. Taken together, our results showed for the first time that, ADAM17 is critical in regulating the multipolar-stage exit and radial migration of the nIPCs during telencephalon cortex development in mice. PMID:23755270

  2. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Audet, M.A.; Doucet, G.; Oleskevich, S.; Descarries, L.

    1988-08-15

    The regional and laminar distribution of the noradrenaline (NA) innervation in the adult rat cerebral cortex was quantified in radioautographs of semithin sections from whole hemisphere slices incubated with tritiated catecholamines and a monoamine oxidase inhibitor. Uptake-labeled axonal varicosities (aggregates of silver grains) were counted with the help of a computerized image analyzer in seven cytoarchitectonic areas of the rostral half of the cortex: Cg3, rostral AID, Cg2, Fr1, Par1, caudal AID, and Pir (prepiriform) according to Zilles's nomenclature. Both dopamine (DA) and NA terminals were detected after incubation with (3H)DA and citalopram or with (3H)NA alone. In the presence of desipramine (DMI), DA terminals alone were demonstrated; the number of NA terminals was then obtained by subtraction from counts in adjacent slices incubated with or without DMI. These counts suggested that DA and NA varicosities were fully visualized only after labeling with their respective tritiated amine. Similar numbers of labeled NA varicosities as inferred after (3H)NA incubation with or without DMI were observed after (3H)NA incubation in the presence of benztropine (BZ). This indicated that NA terminals were then maximally detected to the exclusion of the DA ones, and the latter approach was adopted for the acquisition of normative data. Since the average diameter of the labeled NA varicosities was known from earlier measurements in electron microscope radioautographs, the initial counts of labeled sites/mm2 of histological section could be expressed as numbers of varicosities/mm3 of tissue following a double correction for incomplete detection at the chosen duration of radioautographic exposure and section thickness.

  3. Spatiotemporal characteristics of cerebral blood volume changes in different microvascular compartments evoked by sciatic nerve stimulation in rat somatosensory cortex

    Science.gov (United States)

    Li, Pengcheng; Luo, Qingming; Luo, Weihua; Chen, Shanbin; Cheng, Haiying; Zeng, Shaoqun

    2003-07-01

    The spatio-temporal characteristics of changes in cerebral blood volume associated with neuronal activity were investigated in the hindlimb somatosensory cortex of α-chloralose/urethan anesthetized rats (n=10) with optical imaging at 570nm through a thinned skull. Activation of cortex was carried out by electrical stimulation of the contralateral sciatic nerve with 5Hz, 0.3V pulses (0.5ms) for duration of 2s. The stimulation evoked a monophasic optical reflectance decrease at cortical parenchyma and arteries sites rapidly after the onset of stimulation, whereas no similar response was observed at vein compartments. The optical signal changes reached 10% of the peak response 0.70+/-0.32s after stimulation onset and no significant time lag in this 10% start latency time was observed between the response at cortical parenchyma and arteries compartments. The evoked optical reflectance decrease reached the peak (0.25%+/-0.047%) 2.66+/-0.61s after the stimulus onset at parenchyma site, 0.40+/-0.20s earlier (P<0.05) than that at arteries site (0.50+/-0.068% 3.06+/-0.70s). Variable location within the cortical parenchyma and arteries compartment themselves didn"t affect the temporal characteristics of the evoked signal significantly. These results suggest that the sciatic nerve stimulation evokes a local blood volume increase at both capillaries (cortical parenchyma) and arterioles rapidly after the stimulus onset but the evoked blood volume increase in capillaries could not be entirely accounted for by the dilation of arterioles.

  4. Role of mitochondrial calcium uniporter in regulating mitochondrial fission in the cerebral cortexes of living rats.

    Science.gov (United States)

    Liang, Nan; Wang, Peng; Wang, Shilei; Li, Shuhong; Li, Yu; Wang, Jinying; Wang, Min

    2014-06-01

    The mitochondrial calcium uniporter (MCU) transports Ca2+ from the cytoplasm to the mitochondrial matrix and thus maintains Ca2+ homeostasis. Previous studies have reported that inhibition of MCU by ruthenium red (RR) protects the brain from ischemia/reperfusion (I/R) injury and that mitochondrial fission plays an important role in I/R injury. However, it is still not known whether MCU affects mitochondrial fission. In the present study, treatment with RR was found to decrease the concentration of free calcium in the mitochondria, calcineurin enzyme activity and dynamin-related protein 1 expression, and treatment with spermine was found to have the opposite effect in organisms subjected to occlusion of the middle cerebral artery lasting 2 h followed by 24 h reperfusion. These results indicate that MCU may be related to mitochondrial fission via modulating mitochondrial Ca2+ uptake and this relationship between MCU and mitochondrial fission may protect the brain from I/R injury.

  5. Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation

    DEFF Research Database (Denmark)

    Friberg, L; Olsen, T S; Roland, P E;

    1985-01-01

    This study is an attempt to reveal projection areas for vestibular afferents to the human brain. Changes in regional cerebral blood flow (rCBF) were measured over 254 cortical regions during caloric vestibular stimulation with warm water (44 degrees C). rCBF was measured when the external auditory...... meatus was irrigated with water at body temperature as a control to vestibular stimulation. During vestibular stimulation there was only a single cortical area, located in the superior temporal region, which showed a consistent focal activation in the hemisphere contralateral to the stimulated side....... On the rCBF display this area was located in the superior temporal region posterior to the auditory area, probably in the superior temporal gyrus. It is suggested that this area represents the primary projection area of the vestibular nerve and that it is the activation of this area during caloric...

  6. The expression of thyroid hormone transporters in the human fetal cerebral cortex during early development and in N-Tera-2 neurodifferentiation

    OpenAIRE

    Chan, S Y; Martín-Santos, A; Loubière, L.S.; González, A.M.; Stieger, B.; Logan, A; McCabe, C.J.; Franklyn, J A; Kilby, M. D.

    2011-01-01

    Associations of neurological impairment with mutations in the thyroid hormone (TH) transporter, MCT8, and with maternal hypothyroxinaemia, suggest that THs are crucial for human fetal brain development. It has been postulated that TH transporters regulate the cellular supply of THs within the fetal brain during development. This study describes the expression of TH transporters in the human fetal cerebral cortex (7–20 weeks gestation) and during retinoic acid induced neurodifferentiation of t...

  7. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention

    OpenAIRE

    Meltzer, Benjamin; Reichenbach, Chagit S.; Braiman, Chananel; Nicholas D Schiff; Hudspeth, A J; Reichenbach, Tobias

    2015-01-01

    The brain’s analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortic...

  8. The Fezf2–Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex

    OpenAIRE

    Chen, Bin; Wang, Song S.; HATTOX, ALEXIS M.; Rayburn, Helen; Nelson, Sacha B.; McConnell, Susan K.

    2008-01-01

    Pyramidal neurons in the deep layers of the cerebral cortex can be classified into two major classes: callosal projection neurons and long-range subcortical neurons. We and others have shown that a gene expressed specifically by subcortical projection neurons, Fezf2, is required for the formation of axonal projections to the spinal cord, tectum, and pons. Here, we report that Fezf2 regulates a decision between subcortical vs. callosal projection neuron fates. Fezf2−/− neurons adopt the fate o...

  9. Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates

    Directory of Open Access Journals (Sweden)

    Pedro Furtado De Mattos Ribeiro

    2014-04-01

    Full Text Available The olfactory bulb is an evolutionarily old structure that antedates the appearance of a six-layered mammalian cerebral cortex. As such, the neuronal scaling rules that apply to scaling the mass of the olfactory bulb as a function of its number of neurons might be shared across mammalian groups, as we have found to be the case for the ensemble of non-cortical, non-cerebellar brain structures. Alternatively, the neuronal scaling rules that apply to the olfactory bulb might be distinct in those mammals that rely heavily on olfaction. The group previously referred to as Insectivora includes small mammals, some of which are now placed in Afrotheria, a base group in mammalian radiation, and others in Eulipotyphla, a group derived later, at the base of Laurasitheria. Here we show that the neuronal scaling rules that apply to building the olfactory bulb differ across eulipotyphlans and other mammals such that eulipotyphlans have more neurons concentrated in an olfactory bulb of similar size than afrotherians, glires and primates. Most strikingly, while the cerebral cortex gains neurons at a faster pace than the olfactory bulb in glires, and afrotherians follow this trend, it is the olfactory bulb that gains neurons at a faster pace than the cerebral cortex in eulipotyphlans, which contradicts the common view that the cerebral cortex is the fastest expanding structure in brain evolution. Our findings emphasize the importance of not using brain structure size as a proxy for numbers of neurons across mammalian orders, and are consistent with the notion that different selective pressures have acted upon the olfactory system of eulipotyphlans, glires and primates, with eulipotyphlans relying more on olfaction for their behavior than glires and primates. Surprisingly, however, the neuronal scaling rules for primates predict that the human olfactory bulb has as many neurons as the larger eulipotyphlan olfactory bulbs, which questions the classification of

  10. Asymmetric activation of the anterior cerebral cortex in recipients of IRECA: preliminary evidence for the energetic effects of an intention-based treatment modality on human neurophysiology.

    OpenAIRE

    Pike, C.; Vernon, D.; Hald, L.

    2014-01-01

    Objectives: Neurophysiologic studies of mindfulness link the health benefits of meditation to activation of the left-anterior cerebral cortex. The similarity and functional importance of intention and attentional stance in meditative and biofield therapeutic practices suggest that modulation of recipient anterior asymmetric activation may mediate the energetic effects of intention-based biofield treatments as well. The aim of the current study was to test this hypothesis by using a treatment ...

  11. Effects of percutaneous midband pulse current stimulation in hepatic region on free radical and nissl bodies in cerebral cortex of rats with exercise-induced fatigue

    OpenAIRE

    Zhang, Jia; Chang-lin HUANG

    2015-01-01

    Objective To investigate the effects of percutaneous midband pulse current stimulation in hepatic region on anti-exercise fatigue ability and the free radicals and nissl bodies in cerebral cortex tissue of rats with exercise-induced fatigue. Methods Seventy-two 8-week old male Wistar rats were randomly divided into 4 groups (18 each): control group (CG), fatigue group (FG), stimulation before fatigue group (SBF) and stimulation after fatigue group (SAF). Animals in FG, SBF and SAF group were ...

  12. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention

    OpenAIRE

    Benjamin eMeltzer; Reichenbach, Chagit S.; Chananel eBraiman; Schiff, Nicholas D.; Hudspeth, A. J.; Tobias eReichenbach

    2015-01-01

    The brain's analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortic...

  13. Effects of Chloroquine on GFAP, PCNA and Cyclin D1 in Hippocampus and Cerebral Cortex of Rats with Seizures Induced by Pentylenetetrazole

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shuhua; ZHU Changgeng; LIU Qingying; WANG Wei

    2005-01-01

    The effects of chloroquine on glial fibrillary acidic protein (GFAP), proliferation cell nuclear antigen (PCNA) and Cyclin D1 in hippocampus and cerebral cortex of rats with seizures induced by pentylenetetrazole (PTZ) were observed in the present study. Forty-eight male adult Sprague-Dawley (SD) rats were randomly divided into control group, chloroquine intervening group, and PTZ group. The behavior and electroencephalogram (EEG) were observed and recor ded. GFAP and PCNA were examined with immunohistochemistry. The content of Cyclin D1 in hippocampus and cerebral cortex was inspected with Western blot. The results showed no seizure activity in the control group, severe seizure activity in the PTZ group (Ⅳ-Ⅴ degree), and slight seizure activity ( Ⅰ - Ⅲ degree) in the chloroquine intervening group (P<0. 05). EEG recordings showed no epileptic spikes in the control group, high amplitude with fast frequency in the PTZ group, low-amplitude and slow frequency in the chloroquine intervening group. The expression of GFAP and the positive index of PCNA in the PTZ group were higher than those of control group (P <0.05 and P<0.01, respectively). No differences in GFAP expression and PCNA index were observed between chloroquine intervening and control groups (P>0.05). The content of Cyclin D1 in hippocampus and cerebral cortex was significantly higher in the PTZ group than in control and chloroquine intervening groups (P< 0.05). Therefore, it is considered that chloroquine, by inhibiting the functions and proliferation of glial cells in the hippocampus and cerebral cortex, can alleviate the seizure activities. These results suggest that chloroquine may be an ideal anticonvulsant in preventing and treating epilepsy.

  14. Thickness of the Human Cerebral Cortex is Associated with Metrics of Cerebrovascular Health in a Normative Sample of Community Dwelling Older Adults

    OpenAIRE

    Leritz, Elizabeth C.; Salat, David H.; Williams, Victoria J.; Schnyer, David M.; Rudolph, James L.; Lipsitz, Lewis; Fischl, Bruce; McGlinchey, Regina E.; Milberg, William P.

    2010-01-01

    We examined how wide ranges in levels of risk factors for cerebrovascular disease are associated with thickness of the human cerebral cortex in 115 individuals ages 43–83 with no cerebrovascular or neurologic history. Cerebrovascular risk factors included blood pressure, cholesterol, body mass index, creatinine, and diabetes-related factors. Variables were submitted into a principal components analysis that confirmed four orthogonal factors (Blood Pressure, Cholesterol, Cholesterol/Metabolic ...

  15. Evaluation of Cerebral Cortex Function in Clients with Bipolar Mood Disorder I (BMD I) Compared With BMD II Using QEEG Analysis

    OpenAIRE

    Ali Khaleghi; Ali Sheikhani; MohammadReza Mohammadi; Ali Moti-Nasrabadi

    2015-01-01

    Objective: Early diagnosis of type I and type II bipolar mood disorder is very challenging particularly in adolescence. Hence, we aimed to investigate the cerebral cortex function in these patients, using quantitative electroencephalography analysis to obtain significant differences between them.Methods: Thirty- eight adolescents (18 patients with bipolar disorder I and 20 with BMD II) participated in this study. We recorded the electroencephalogram signals based on 10-20 international system...

  16. Evolutionary appearance of von Economo's neurons in the mammalian cerebral cortex.

    Science.gov (United States)

    Cauda, Franco; Geminiani, Giuliano Carlo; Vercelli, Alessandro

    2014-01-01

    von Economo's neurons (VENs) are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI) cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months. VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the "social brain." VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain. However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the "global Workspace" architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication) between salience-related insular and cingulate and other widely separated brain areas. Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the functional magnetic resonance imaging data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental

  17. Evolutionary appearance of Von Economo’s Neurons in the mammalian cerebral cortex

    Directory of Open Access Journals (Sweden)

    Franco eCauda

    2014-03-01

    Full Text Available Von Economo’s neurons (VENs are large, spindle-shaped projection neurons in layer V of the frontoinsular (FI cortex, and the anterior cingulate cortex. During human ontogenesis, the VENs can first be differentiated at late stages of gestation, and increase in number during the first eight postnatal months.VENs have been identified in humans, chimpanzee, bonobos, gorillas, orangutan and, more recently, in the macaque. Their distribution in great apes seems to correlate with human-like social cognitive abilities and self-awareness. VENs are also found in whales, in a number of different cetaceans, and in the elephant. This phylogenetic distribution may suggest a correlation among the VENs, brain size and the social brain. VENs may be involved in the pathogenesis of specific neurological and psychiatric diseases, such as autism, callosal agenesis and schizophrenia. VENs are selectively affected in a behavioral variant of frontotemporal dementia in which empathy, social awareness and self-control are seriously compromised, thus associating VENs with the social brain.However, the presence of VENs has also been related to special functions such as mirror self-recognition. Areas containing VENs have been related to motor awareness or sense-of-knowing, discrimination between self and other, and between self and the external environment. Along this line, VENs have been related to the global Workspace architecture: in accordance the VENs have been correlated to emotional and interoceptive signals by providing fast connections (large axons = fast communication between salience-related insular and cingulate and other widely separated brain areas.Nevertheless, the lack of a characterization of their physiology and anatomical connectivity allowed only to infer their functional role based on their location and on the fMRI data. The recent finding of VENs in the anterior insula of the macaque opens the way to new insights and experimental investigatio

  18. Creatine and pyruvate prevent the alterations caused by tyrosine on parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex of Wistar rats.

    Science.gov (United States)

    de Andrade, Rodrigo Binkowski; Gemelli, Tanise; Rojas, Denise Bertin; Bonorino, Narielle Ferner; Costa, Bruna May Lopes; Funchal, Cláudia; Dutra-Filho, Carlos Severo; Wannmacher, Clovis Milton Duval

    2015-01-01

    Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II. In this disease caused by tyrosine aminotransferase deficiency, eyes, skin, and central nervous system disturbances are found. In the present study, we investigated the chronic effect of tyrosine methyl ester (TME) and/or creatine plus pyruvate on some parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex homogenates of 21-day-old Wistar. Chronic administration of TME induced oxidative stress and altered the activities of adenylate kinase and mitochondrial and cytosolic creatine kinase. Total sulfhydryls content, GSH content, and GPx activity were significantly diminished, while DCFH oxidation, TBARS content, and SOD activity were significantly enhanced by TME. On the other hand, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions but enhanced AK activity. In contrast, TME did not affect the carbonyl content and PK activity in cerebral cortex of rats. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by TME administration on the oxidative stress and the enzymes of phosphoryltransfer network, except in mitochondrial CK, AK, and SOD activities. These results indicate that chronic administration of TME may stimulate oxidative stress and alter the enzymes of phosphoryltransfer network in cerebral cortex of rats. In case this also occurs in the patients affected by these disorders, it may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias, and creatine and pyruvate supplementation could be beneficial to the patients.

  19. Expression of estrogen receptor (ER) -α and -β transcripts in the neonatal and adult rat cerebral cortex, cerebellum, and olfactory bulb

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present study expression of estrogen receptor subtype -α (ERα) and -β (ERβ) in the cerebral cortex, cerebellum, and olfactory bulb was investigated and compared between neonatal (1~ 3-days-old) and adult (250~350g) rats, using reverse transcription-polymerase chain reaction (RT-PCR). No ERα transcripts were detectable in the adult cerebellum and olfactory bulb, whereas very weak expression of ERα was present in the adult cerebral cortex. No significant difference in ERβ transcripts was detectable between the neonatal and adult rats. While transcripts for both ER subtypes were co-expressed in these brain areas of neonatal rats, although ERα expression was significantly weaker than ERβ. Even in the cerebral cortex known to contain both ER subtypes in adult rats, ERα transcripts in neonatal rats were much higher than in adult. These observations provide evidence for the existence of different expression patterns of ERα/ERβ transcripts in these three brain areas between the neonatal and adult rats, suggesting that each ER subtype may play a distinct role in the regulation of differentiation, development, and functions of the brain by estrogen.

  20. Structure of the cerebral cortex. Intrinsec organization and comparative analysis of the neocortex | Estructura de la corteza cerebral. Organización intrínseca y análisis comparativo del neocórtex

    OpenAIRE

    Valverde, Facundo

    2002-01-01

    We review our present knowledge on the intrinsic organization of the neocortex based on studies carried out with the Golgi method in several mammalian species. An outline is presented on certain general aspects of the termination of specific afferent fibers in layer IV in insectivora, rodents, carnivora and primates. The principal components of the cerebral cortex have been classified in two broad types: pyramidal cells, which account for nearly 70% of the total population, and intrinsic neur...

  1. PiB fails to map amyloid deposits in cerebral cortex of aged dogs with Canine Cognitive Dysfunction

    DEFF Research Database (Denmark)

    Fast, Rikke; Rodell, Anders; Gjedde, Albert;

    2013-01-01

    to the understanding of AD. However, the sensitivity of the biomarker Pittsburgh Compound B (PiB) to the presence of Aβ in humans and in other mammalian species is in doubt. To test the sensitivity and assess the distribution of Aβ in dog brain, we mapped the brains of dogs with signs of CCD (n = 16) and a control......]PiB in the cerebellum, compared to the cerebral cortex. Retention in the cerebellum is at variance with evidence from brains of humans with AD. To confirm the lack of sensitivity, we stained two dog brains with the immunohistochemical marker 6E10, which is sensitive to the presence of both Aβ and Aβ precursor protein......Dogs with Canine Cognitive Dysfunction (CCD) accumulate amyloid beta (Aβ) in the brain. As the cognitive decline and neuropathology of these old dogs share features with Alzheimer's disease (AD), the relation between Aβ and cognitive decline in animal models of cognitive decline is of interest...

  2. MicroRNA function is required for neurite outgrowth of mature neurons in the mouse postnatal cerebral cortex

    Directory of Open Access Journals (Sweden)

    Janet eHong

    2013-09-01

    Full Text Available The structure of the postnatal mammalian cerebral cortex is an assembly of numerous mature neurons that exhibit proper neurite outgrowth and axonal and dendritic morphology. While many protein coding genes are shown to be involved in neuronal maturation, the role of microRNAs (miRNAs in this process is also becoming evident. We here report that blocking miRNA biogenesis in differentiated neurons results in microcephaly-like phenotypes in the postnatal mouse brain. The smaller brain defect is not caused by defective neurogenesis, altered neuronal migration or significant neuronal cell death. Surprisingly, a dramatic increase in neuronal packing density within the postnatal brain is observed. Loss of miRNA function causes shorter neurite outgrowth and smaller soma size of mature neurons in vitro. Our results reveal the impact of miRNAs on normal development of neuronal morphology and brain function. Because neurite outgrowth is critical for neuroregeneration, our studies further highlight the importance of miRNAs in the treatment of neurodegenerative diseases.

  3. Astrocytic adaptation during cerebral angiogenesis follows the new vessel formation induced through chronic hypoxia in adult mouse cortex

    Science.gov (United States)

    Masamoto, Kazuto; Kanno, Iwao

    2014-03-01

    We examined longitudinal changes of the neuro-glia-vascular unit during cerebral angiogenesis induced through chronic hypoxia in the adult mouse cortex. Tie2-GFP mice in which the vascular endothelial cells expressed green fluorescent proteins (GFP) were exposed to chronic hypoxia, while the spatiotemporal developments of the cortical capillary sprouts and the neighboring astrocytic remodeling were characterized with repeated two-photon microscopy. The capillary sprouts appeared at early phases of the hypoxia adaptation (1-2 weeks), while the morphological changes of the astrocytic soma and processes were not detected in this phase. In the later phases of the hypoxia adaptation (> 2 weeks), the capillary sprouts created a new connection with existing capillaries, and its neighboring astrocytes extended their processes to the newly-formed vessels. The findings show that morphological adaptation of the astrocytes follow the capillary development during the hypoxia adaptation, which indicate that the newly-formed vessels provoke cellular interactions with the neighboring astrocytes to strengthen the functional blood-brain barrier.

  4. A nuclear localized protein ZCCHC9 is expressed in cerebral cortex and suppresses the MAPK signal pathway

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The CCHC-type zinc finger motif has numerous biological activities (such as DNA binding and RNA binding) and can also mediate protein-protein interaction. This article gives a primary report about the human ZCCHC9 gene. Protein ZCCHC9 contains four CCHC motifs and is highly conserved in humans, mice, and rats. The whole cDNA sequence of the ZCCHC9 gene has been amplified by PCR and a number of plasmids have been constructed for further study. The results show that ZCCHC9 is localized in the nucleus, and especially concentrated in the nucleolus. It is highly expressed in the brain and testicles of the mouse. This has been confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). In situ hybridization of the mouse brain indicates that ZCCHC9 is mainly expressed in the cerebral cortex. Reporter gene assay shows that ZCCHC9 suppresses the transcription activities of NF-kappa B and SRE,and may play roles in the Mitogen-Activated Protein Kinase (MAPK) signaling transduction pathway.

  5. Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans.

    Directory of Open Access Journals (Sweden)

    Eva María Medina-Rodríguez

    Full Text Available During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs, a cell type that is a significant proportion of the total cells (3-8% in the adult central nervous system (CNS of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.

  6. Brain banks as key part of biochemical and molecular studies on cerebral cortex involvement in Parkinson's disease.

    Science.gov (United States)

    Ravid, Rivka; Ferrer, Isidro

    2012-04-01

    Exciting developments in basic and clinical neuroscience and recent progress in the field of Parkinson's disease (PD) are partly a result of the availability of human specimens obtained through brain banks. These banks have optimized the methodological, managerial and organizational procedures; standard operating procedures; and ethical, legal and social issues, including the code of conduct for 21st Century brain banking and novel protocols. The present minireview focuses on current brain banking organization and management, as well as the likely future direction of the brain banking field. We emphasize the potentials and pitfalls when using high-quality specimens of the human central nervous system for advancing PD research. PD is a generalized disease in which α-synuclein is not a unique component but, instead, is only one of the players accounting for the complex impairment of biochemical/molecular processes involved in metabolic pathways. This is particularly important in the cerebral cortex, where altered cognition has a complex neurochemical substrate. Mitochondria and energy metabolism impairment, abnormal RNA, microRNA, protein synthesis, post-translational protein modifications and alterations in the lipid composition of membranes and lipid rafts are part of these complementary factors. We have to be alert to the possible pitfalls of each specimen and its suitability for a particular study. Not all samples qualify for the study of DNA, RNA, proteins, post-translational modifications, lipids and metabolomes, although the use of carefully selected samples and appropriate methods minimizes pitfalls and errors and guarantees high-quality reserach.

  7. Ultrastructure of focal cerebral cortex tissue from rats with focal cortical dysplasia

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND:Developing a model of focal cortical dysplasia in microgyrus and observing the ultrastructure of focal tissue is of important significance for analyzing the pathology of cortical developmental disorder and the factors of structural changes. OBJECTIVE:This study was to observe the pathological characteristics of focal tissue around the microgyrus of rats with cortical developmental disorder using an electron microscope,so as to analyze the causes associated with cerebral cortical developmental disorder. DESIGN:A randomized controlled animal experiment. SETTING:The First Affiliated Hospital of Chongqing Medical University. MATERIALS:This study was carried out in the Chongqing Key Laboratory of Neurology,Room for Electron Microscope of Chongqing Medical University,and Laboratory Animal Center,Research Institute of Surgery,Daping Hospital,Third Military Medical University of Chinese PLA between January 2004 and August 2006.Eighteen healthy newborn male Wistar rats,weighing 3.0 - 6.0 g,provided by the Laboratory Animal Center,Daping Hospital,Third Military Medical University of Chinese PLA,were involved in this study.The protocol was carried out in accordance with animal ethics guidelines for the use and care of animals.Probes (Chongqing Wire & Cable Factory,China) were made of copper core wire with diameter of 1 mm.METHODS:The rats were randomly divided into 3 groups with 6 in each:normal control group,liquid nitrogen injured group and sham-operation group.①In the liquid nitrogen injured group,a blunt probe frozen by liquid nitrogen was placed on fronto-parietal crinial bone of rats for 8 s.A 3 - 5 cm of microgyrus was induced in the unilateral cerebral sensory cortical area.In the sham-operation group,probe was placed at the room temperature.In the normal control group,rats were untouched.② The conscious state and electrical activity of brain of rats in each group were observed.③ 2-3 mm thickness of hippocampal tissue with coronary section was taken

  8. Expression of c-Fos protein and nitricoxide synthase in neurons of cerebral cortex from fetal rats in hypoxia and protective role of Angelica sinensis

    Institute of Scientific and Technical Information of China (English)

    Hong Yu; Hongxian Zhao; Yuling Wu

    2006-01-01

    BACKGROUND: Both c-Fos protein and nitricoxide synthase (NOS) have been used as general indexes in relative research about neurons, but it is lack of reports that c-Fos protein and NOS are applied synchronously to study the neurons of hypoxic fetal rats in uterus.OBJECTIVE: To study the effect of hypoxia in uterus on the expression of c-Fos protein and NOS in neurons of cerebral cortex from fetal rats and whether Angelica sinensis has the protective effect on these neurons in hypoxia.DESIGN: Randomized control experiment.SETTING: Department of Histology and Embryology, Luzhou Medical College.MATERIALS: Twelve adult female Wistar rats in oestrum and 1 male Wistar rat with bodymass from 220 to 250 g were chosen. Parenteral solution of Angelica sinensis mainly contained angelica sinensis, 10 mL/ampoule, was provided by Department of Agent of the Second Hospital Affiliated to Hubei Medical University (batch number: 01062310).METHODS: This experiment was completed in the Department of Histology and Embryology of Luzhou Medical College from September 2003 to June 2004. ① Twelve adult female Wistar rats in oestrum and 1 male Wistar rat were housed in one rearing cage. Vaginal embolus was performed on conceive female rat at 8:00 am next day.On the 15th conceiving day,all conceiving rats were divided randomly into three groups:control group, hypoxia group and Angelica group with 4 in each group. Rats in hypoxia group and Angelica group were modeled with hypotonic hypoxia in uterus. Angelica group: Rats were injected with 8 mL/kg Angelica sinensis injection through caudal veins before hypoxia.Hypoxia group:Rats were injected with the same volume of saline.Control group:Rats were not modeled and fed with normal way. ② Twenty embryos of rats were chosen randomly from each group and then routinely embedded in paraffin. Paraffin sections were cut from the brain of embryos to anterior fontanelle. Double-label staining was used to detect the expression of nNOS and c-Fos in

  9. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Jielu Tan; Xiangrong Zheng; Shanshan Zhang; Yujia Yang; Xia Wang; Xiaohe Yu; Le Zhong

    2014-01-01

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  10. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex.

    Science.gov (United States)

    Monier, Anne; Adle-Biassette, Homa; Delezoide, Anne-Lise; Evrard, Philippe; Gressens, Pierre; Verney, Catherine

    2007-05-01

    Microglial cells penetrate into and scatter throughout the human cortical grey and white matter according to a specific spatiotemporal pattern during the first 2 trimesters of gestation. Routes of entry were quantitatively and qualitatively different from those identified in the diencephalon. Starting at 4.5 gestational weeks, amoeboid microglial cells, characterized by different antibodies as Iba1, CD68, CD45, and MHC-II, entered the cerebral wall from the ventricular lumen and the leptomeninges. Migration was mainly radial and tangential toward the immature white matter, subplate layer, and cortical plate, whereas pial cells populated the prospective layer I. The intraparenchymal vascular route of entry was detectable only from 12 gestational weeks. Interestingly, microglial cells accumulated in restricted laminar bands particularly at 19 to 24 gestational weeks among the corona radiata fibers rostrally, extending caudally in the immature white matter to reach the visual radiations. This accumulation of proliferating MIB1-positive microglia (as shown by MIB1-Iba1 double immunolabeling) was located at the site of white matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes and in injury to the developing brain. PMID:17483694

  11. [Postsynaptic reactions of cerebral cortex neurons, activated by nociceptive afferents during stimulation of the Raphe nuclei].

    Science.gov (United States)

    Labakhua, T Sh; Dzhanashiia, T K; Gedevanishvili, G I; Dzhokhadze, L D; Tkemaladze, T T; Abzianidze, I V

    2012-01-01

    On cats, we studied the influence of stimulation of the Raphe nuclei (RN) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulation of the ventroposteromedial--VPN--nucleus of the thalamus) afferent inputs. 6 cells, selectively excited by stimulation of nocciceptors and 9 cells, activated by both the above nociceptive and non-nociceptive influences (nociceptive and convergent neurons, respectively) were recorded intracellular. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the letter of significant duration, up to 200-300 ms) compleх. Conditioning stimulation of the RN which preceded test stimulus applied to the tooth pulp or VPM nucleus by 100 to 800 ms, induced 40-60 % decrease of the IPSP amplitude only, while maхimal effect of influence, in both cases, was noted within intervals of 300-800 ms between conditioning and test stimulus. During stimulation of the RN, serotonin released via receptor and second messengers, provides postsynaptic modulation of GABAergic system, decreasing the IPSP amplitude which occurs after stimulation of both the tooth pulp and VPM thalamic nucleus. This process may be realized trough either pre- or postsynaptic mechanisms.

  12. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex

    Science.gov (United States)

    McCreery, Douglas; Cogan, Stuart; Kane, Sheryl; Pikov, Victor

    2016-06-01

    Objective. To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. Approach. ‘Utah’-type intracortical microelectrode arrays were implanted into cats’ sensorimotor cortex for 275-364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson’s product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). Main results. S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ˜80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. Significance. Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode’s electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes’ long-term functionality.

  13. Patterns of Spontaneous Local Network Activity in Developing Cerebral Cortex: Relationship to Adult Cognitive Function.

    Directory of Open Access Journals (Sweden)

    Alejandro Peinado

    Full Text Available Detecting neurodevelopμental disorders of cognition at the earliest possible stages could assist in understanding them mechanistically and ultimately in treating them. Finding early physiological predictors that could be visualized with functional neuroimaging would represent an important advance in this regard. We hypothesized that one potential source of physiological predictors is the spontaneous local network activity prominent during specific periods in development. To test this we used calcium imaging in brain slices and analyzed variations in the frequency and intensity of this early activity in one area, the entorhinal cortex (EC, in order to correlate early activity with level of cognitive function later in life. We focused on EC because of its known role in different types of cognitive processes and because it is an area where spontaneous activity is prominent during early postnatal development in rodent models of cortical development. Using rat strains (Long-Evans, Wistar, Sprague-Dawley and Brattleboro known to differ in cognitive performance in adulthood we asked whether neonatal animals exhibit corresponding strain-related differences in EC spontaneous activity. Our results show significant differences in this activity between strains: compared to a high cognitive-performing strain, we consistently found an increase in frequency and decrease in intensity in neonates from three lower performing strains. Activity was most different in one strain considered a model of schizophrenia-like psychopathology. While we cannot necessarily infer a causal relationship between early activity and adult cognition our findings suggest that the pattern of spontaneous activity in development could be an early predictor of a developmental trajectory advancing toward sub-optimal cognitive performance in adulthood. Our results further suggest that the strength of dopaminergic signaling, by setting the balance between excitation and inhibition, is a

  14. Probabilistic map of critical functional regions of the human cerebral cortex: Broca's area revisited.

    Science.gov (United States)

    Tate, Matthew C; Herbet, Guillaume; Moritz-Gasser, Sylvie; Tate, Joseph E; Duffau, Hugues

    2014-10-01

    The organization of basic functions of the human brain, particularly in the right hemisphere, remains poorly understood. Recent advances in functional neuroimaging have improved our understanding of cortical organization but do not allow for direct interrogation or determination of essential (versus participatory) cortical regions. Direct cortical stimulation represents a unique opportunity to provide novel insights into the functional distribution of critical epicentres. Direct cortical stimulation (bipolar, 60 Hz, 1-ms pulse) was performed in 165 consecutive patients undergoing awake mapping for resection of low-grade gliomas. Tasks included motor, sensory, counting, and picture naming. Stimulation sites eliciting positive (sensory/motor) or negative (speech arrest, dysarthria, anomia, phonological and semantic paraphasias) findings were recorded and mapped onto a standard Montreal Neurological Institute brain atlas. Montreal Neurological Institute-space functional data were subjected to cluster analysis algorithms (K-means, partition around medioids, hierarchical Ward) to elucidate crucial network epicentres. Sensorimotor function was observed in the pre/post-central gyri as expected. Articulation epicentres were also found within the pre/post-central gyri. However, speech arrest localized to ventral premotor cortex, not the classical Broca's area. Anomia/paraphasia data demonstrated foci not only within classical Wernicke's area but also within the middle and inferior frontal gyri. We report the first bilateral probabilistic map for crucial cortical epicentres of human brain functions in the right and left hemispheres, including sensory, motor, and language (speech, articulation, phonology and semantics). These data challenge classical theories of brain organization (e.g. Broca's area as speech output region) and provide a distributed framework for future studies of neural networks.

  15. Structural changes in pyramidal cell dendrites and synapses in the unaffected side of the sensorimotor cortex following transcranial magnetic stimulation and rehabilitation training in a rat model of focal cerebral infarct

    Institute of Scientific and Technical Information of China (English)

    Chuanyu Liu; Surong Zhou; Xuwen Sun; Zhuli Liu; Hongliang Wu; Yuanwu Mei

    2011-01-01

    Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of focal cerebral infarct. The present study was designed to explore the mechanisms underlying improved motor function via transcranial magnetic stimulation and rehabilitation training following cerebral infarction. Results showed that rehabilitation training or transcranial magnetic stimulation alone reduced neurological impairment in rats following cerebral infarction, as well as significantly increased synaptic curvatures and post-synaptic density in the non-injured cerebral hemisphere sensorimotor cortex and narrowed the synapse cleft width. In addition, the percentage of perforated synapses increased. The combination of transcranial magnetic stimulation and rehabilitation resulted in significantly increased total dendritic length, dendritic branching points, and dendritic density in layer V pyramidal cells of the non-injured cerebral hemisphere motor cortex.These results demonstrated that transcranial magnetic stimulation and rehabilitation training altered structural parameters of pyramidal cell dendrites and synapses in the non-injured cerebral hemisphere sensorimotor cortex, thereby improving the ability to compensate for neurological functions in rats following cerebral infarction.

  16. Riluzole-Triggered GSH Synthesis via Activation of Glutamate Transporters to Antagonize Methylmercury-Induced Oxidative Stress in Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Yu Deng

    2012-01-01

    Full Text Available Objective. This study was to evaluate the effect of riluzole on methylmercury- (MeHg- induced oxidative stress, through promotion of glutathione (GSH synthesis by activating of glutamate transporters (GluTs in rat cerebral cortex. Methods. Eighty rats were randomly assigned to four groups, control group, riluzole alone group, MeHg alone group, and riluzole + MeHg group. The neurotoxicity of MeHg was observed by measuring mercury (Hg absorption, pathological changes, and cell apoptosis of cortex. Oxidative stress was evaluated via determining reactive oxygen species (ROS, 8-hydroxy-2-deoxyguanosine (8-OHdG, malondialdehyde (MDAs, carbonyl, sulfydryl, and GSH in cortex. Glutamate (Glu transport was studied by measuring Glu, glutamine (Gln, mRNA, and protein of glutamate/aspartate transporter (GLAST and glutamate transporter-1 (GLT-1. Result. (1 MeHg induced Hg accumulation, pathological injury, and apoptosis of cortex; (2 MeHg increased ROS, 8-OHdG, MDA, and carbonyl, and inhibited sulfydryl and GSH; (3 MeHg elevated Glu, decreased Gln, and downregulated GLAST and GLT-1 mRNA expression and protein levels; (4 riluzole antagonized MeHg-induced downregulation of GLAST and GLT-1 function and expression, GSH depletion, oxidative stress, pathological injury, and apoptosis obviously. Conclusion. Data indicate that MeHg administration induced oxidative stress in cortex and that riluzole could antagonize this situation through elevation of GSH synthesis by activating of GluTs.

  17. The effects of kinesio taping on potential in chronic low back pain patients anticipatory postural control and cerebral cortex.

    Science.gov (United States)

    Bae, Sea Hyun; Lee, Jeong Hun; Oh, Kyeong Ae; Kim, Kyung Yoon

    2013-11-01

    [Purpose] This study aimed to examine the effects of kinesio tape applied to chronic low back pain (CLBP) patients on anticipatory postural control and cerebral cortex potential. [Subjects and Methods] Twenty patients whose low back pain had continued for more than 12 weeks were selected and assigned to a control group (n=10) to which ordinary physical therapy was applied and an experimental group (n=10) to which kinesio tape was applied. Anticipatory postural control was evaluated using electromyography, and movement-related cortical potential (MRCP) was assessed using electroencephalography. Clinical evaluation was performed using a visual analogue scale and the Oswestry disability index. [Results] According to the analysis results for anticipatory postural control, there were significant decreases in the transversus abdominis (TrA) muscle and the external oblique muscle in both groups. Among them, the TrA of the experimental group exhibited the greatest differences. According to the results of a between-group comparison, there was significant difference in the TrA between the two groups. There was also a significant decrease in the MRCP of both groups. In particular, changes in the movement monitoring potential (MMP) of the experimental group were greatest at Fz, C3, Cz, and C4. According to the between-group comparison, there were significant differences in MMP at F3, C3, and Cz. Both groups saw VAS and ODI significantly decrease. Among them, the ODI of the experimental group underwent the greatest change. [Conclusion] Kinesio tape applied to CLBP patients reduced their pain and positively affected their anticipatory postural control and MRCP.

  18. The Effects of Kinesio Taping on Potential in Chronic Low Back Pain Patients Anticipatory Postural Control and Cerebral Cortex

    Science.gov (United States)

    Bae, Sea Hyun; Lee, Jeong Hun; Oh, Kyeong Ae; Kim, Kyung Yoon

    2013-01-01

    [Purpose] This study aimed to examine the effects of kinesio tape applied to chronic low back pain (CLBP) patients on anticipatory postural control and cerebral cortex potential. [Subjects and Methods] Twenty patients whose low back pain had continued for more than 12 weeks were selected and assigned to a control group (n=10) to which ordinary physical therapy was applied and an experimental group (n=10) to which kinesio tape was applied. Anticipatory postural control was evaluated using electromyography, and movement-related cortical potential (MRCP) was assessed using electroencephalography. Clinical evaluation was performed using a visual analogue scale and the Oswestry disability index. [Results] According to the analysis results for anticipatory postural control, there were significant decreases in the transversus abdominis (TrA) muscle and the external oblique muscle in both groups. Among them, the TrA of the experimental group exhibited the greatest differences. According to the results of a between-group comparison, there was significant difference in the TrA between the two groups. There was also a significant decrease in the MRCP of both groups. In particular, changes in the movement monitoring potential (MMP) of the experimental group were greatest at Fz, C3, Cz, and C4. According to the between-group comparison, there were significant differences in MMP at F3, C3, and Cz. Both groups saw VAS and ODI significantly decrease. Among them, the ODI of the experimental group underwent the greatest change. [Conclusion] Kinesio tape applied to CLBP patients reduced their pain and positively affected their anticipatory postural control and MRCP. PMID:24396190

  19. Differential binding of /sup 3/H-imipramine and /sup 3/H-mianserin in rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Dumbrille-Ross, A.; Tang, S.W.; Coscina, D.V.

    1981-11-16

    Drug competition profiles, effect of raphe lesion, and sodium dependency of the binding of two antidepressant drugs /sup 3/H-imipramine and /sup 3/H-mianserin to rat cerebral cortex homogenate were compared to examine whether the drugs bound to a common ''antidepressant receptor.'' Of the neurotransmitters tested, only serotonin displaced binding of both /sup 3/H-imipramine and /sup 3/H-mianserin. /sup 3/H-Mianserin binding was potently displaced by serotonin S/sub 2/ antagonists and exhibited a profile similar to that of /sup 3/H-spiperone binding. In the presence of the serotonin S/sub 2/ antagonist spiperone, antihistamines (H/sub 1/) potently displaced /sup 3/H-mianserin binding. /sup 3/H-Imipramine binding was displaced potently by serotonin uptake inhibitors. The order of potency of serotonergic drugs in displacing /sup 3/H-imipramine binding was not similar to their order in displacing /sup 3/H-spiperone or -3H-serotonin binding. Prior midbrain raphe lesions greatly decreased the binding of /sup 3/H-imipramine but did not alter binding of /sup 3/H-mianserin. Binding of /sup 3/H-imipramine but not /sup 3/H-mianserin was sodium dependent. These results show that /sup 3/H-imipramine and /sup 3/H-mianserin bind to different receptors. /sup 3/H-Imipramine binds to a presynaptic serotonin receptor which is probably related to a serotonin uptake recognition site, the binding of which is sodium dependent. /sup 3/H-Mianserin binds to postsynaptic receptors, possibly both serotonin S/sub 2/ and histamine H/sub 1/ receptors, the binding of which is sodium independent.

  20. LIN7A depletion disrupts cerebral cortex development, contributing to intellectual disability in 12q21-deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Ayumi Matsumoto

    Full Text Available Interstitial deletion of 12q21 has been reported in four cases, which share several common clinical features, including intellectual disability (ID, low-set ears, and minor cardiac abnormalities. Comparative genomic hybridization (CGH analysis using the Agilent Human Genome CGH 180K array was performed with the genomic DNA from a two-year-old Japanese boy with these symptoms, as well as hypoplasia of the corpus callosum. Consequently, a 14 Mb deletion at 12q21.2-q21.33 (nt. 77 203 574-91 264 613 bp, which includes 72 genes, was detected. Of these, we focused on LIN7A, which encodes a scaffold protein that is important for synaptic function, as a possible responsible gene for ID, and we analyzed its role in cerebral cortex development. Western blotting analyses revealed that Lin-7A is expressed on embryonic day (E 13.5, and gradually increases in the mouse brain during the embryonic stage. Biochemical fractionation resulted in the enrichment of Lin-7A in the presynaptic fraction. Suppression of Lin-7A expression by RNAi, using in utero electroporation on E14.5, delayed neuronal migration on postnatal day (P 2, and Lin-7A-deficient neurons remained in the lower zone of the cortical plate and the intermediate zone. In addition, when Lin-7A was silenced in cortical neurons in one hemisphere, axonal growth in the contralateral hemisphere was delayed; development of these neurons was disrupted such that one half did not extend into the contralateral hemisphere after leaving the corpus callosum. Taken together, LIN7A is a candidate gene responsible for 12q21-deletion syndrome, and abnormal neuronal migration and interhemispheric axon development may contribute to ID and corpus callosum hypoplasia, respectively.

  1. Changes in synapse quantity and growth associated protein 43 expression in the motor cortex of focal cerebral ischemic rats following catalpol treatment

    Institute of Scientific and Technical Information of China (English)

    Dong Wan; Huifeng Zhu; Yong Luo; Peng Xie

    2011-01-01

    The present study investigated the effects of catalpol, the main constituent of the Chinese herb Rehmannia root, on neurons following brain ischemia. A rat model of focal permanent brain ischemia was established using electrocoagulation. The rats were intraperitoneally injected with catalpol, at a dose of 5 mg/kg, daily for 1 week. Results showed that the number of neuronal synapses in the motor cortex and growth associated protein 43 expression were increased following catalpol treatment, indicating that catalpol might contribute to neuroplasticity and ameliorate functional neurological deficits induced by cerebral ischemia.

  2. Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates

    OpenAIRE

    Ribeiro, Pedro F. M.; Manger, Paul R.; Catania, Kenneth C.; Kaas, Jon H.; Herculano-Houzel, Suzana

    2014-01-01

    The olfactory bulb is an evolutionarily old structure that antedates the appearance of a six-layered mammalian cerebral cortex. As such, the neuronal scaling rules that apply to scaling the mass of the olfactory bulb as a function of its number of neurons might be shared across mammalian groups, as we have found to be the case for the ensemble of non-cortical, non-cerebellar brain structures. Alternatively, the neuronal scaling rules that apply to the olfactory bulb might be distinct in those...

  3. G protein-linked receptors labeled by [3H]histamine in guinea pig cerebral cortex. I. Pharmacological characterization [corrected].

    Science.gov (United States)

    Sinkins, W G; Kandel, M; Kandel, S I; Schunack, W; Wells, J W

    1993-04-01

    Binding of histamine to washed membranes from guinea pig cerebral cortex can be described empirically as two classes of distinct and independent sites (log IP1 = -8.45 +/- 0.02, R1;t = 98 +/- 6 pmol/g of protein; log KP2 = -6.34 +/- 0.22, R2.t = 990 +/- 60 pmol/g of protein). At 1.4 nm [3H]histamine, the kinetics of association and dissociation are biexponential. The values of k-Pj/k+Pj calculated for parallel one-step processes agree well with the corresponding values of KPj. Both k-p1 and k-P2 are increased by 0.1 mM guanylylimidodiphosphate; apparent capacity at equilibrium is reduced for both classes of sites, with little or no change in KP1 or KP2. Twenty-six H2 and H3 agonists and antagonists block access of [3H]histamine to the same sites, and the binding patterns reveal either one or two hyperbolic terms [i.e., sigma nj = 1 F' jKj/(Kj+[L])]. Two terms are required for six agonists and six antagonists, and F'2 varies widely from ligand to ligand. Also, the quantity log (K2/K1) is correlated with F'1 among agonists but with F'2 among antagonists (K1 < K2). The pharmacological selectivity is suggestive of both H2 and H3 receptors. An H2 specificity emerges from the appropriate values of Kj for 12 H2 agonists (i.e., K1 when n = 1 and K2 when n = 2; p = 0.00045), although a specificity distinct from that of H2 receptors is found with H2 antagonists. An H3 specificity emerges from the inhibitory potencies (IC50) of eight H3 agonists (p = 0.00025) and eight H3 antagonists (p = 0.0019); also, the sites labeled by [3H]histamine resemble H3 receptors reportedly labeled by N alpha-[3H]methylhistamine and (R)-alpha-[3H]methylhistamine. Ligand-dependent differences in F'2 are inconsistent with the notion of distinct and independent sites, and the tendency of antagonists to promote the sites of weaker affinity (F'2) argues against a ligand-regulated equilibrium between two states. The physical significance of the binding parameters is therefore unclear. The failure to

  4. PiB fails to map amyloid deposits in cerebral cortex of aged dogs with canine cognitive dysfunction

    Directory of Open Access Journals (Sweden)

    Rikke eFast

    2013-12-01

    Full Text Available Dogs with Canine Cognitive Dysfunction (CCD accumulate amyloid beta (Aβ in the brain. As the cognitive decline and neuropathology of these old dogs share features with Alzheimer’s disease (AD, the relation between Aβ and cognitive decline in animal models of cognitive decline is of interest to the understanding of AD. However, the sensitivity of the biomarker Pittsburgh Compound B (PiB to the presence of Aβ in humans and in other mammalian species is in doubt. To test the sensitivity and assess the distribution of Aβ in dog brain, we mapped the brains of dogs with signs of CCD (n=16 and a control group (n=4 of healthy dogs with radioactively labeled PiB ([11C]PiB. Structural MRI brain scans were obtained from each dog. Tracer washout analysis yielded parametric maps of PIB retention in brain. In the CCD group, dogs had significant retention of [11C]PiB in the cerebellum, compared to the cerebral cortex. Retention in the cerebellum is at variance with evidence from brains of humans with AD. To confirm the lack of sensitivity, we stained two dog brains with the immunohistochemical marker 6E10, which is sensitive to the presence of both Aβ and Aβ precursor protein (AβPP. The 6E10 stain revealed intracellular material positive for Aβ or AβPP, or both, in Purkinje cells. The brains of the two groups of dogs did not have significantly different patterns of [11C]PiB binding, suggesting that the material detected with 6E10 is AβPP rather than Aβ. As the comparison with the histological images revealed no correlation between the [11C]PiB and Aβ and AβPP deposits in post-mortem brain, the marked intracellular staining implies intracellular involvement of amyloid processing in the dog brain. We conclude that PET maps of [11C]PiB retention in brain of dogs with CCD fundamentally differ from the images obtained in most humans with AD.

  5. Human arachnoid granulations Part I: a technique for quantifying area and distribution on the superior surface of the cerebral cortex

    Directory of Open Access Journals (Sweden)

    Holman David W

    2007-07-01

    Full Text Available Abstract Background The arachnoid granulations (AGs are herniations of the arachnoid membrane into the dural venous sinuses on the surface of the brain. Previous morphological studies of AGs have been limited in scope and only one has mentioned surface area measurements. The purpose of this study was to investigate the topographic distribution of AGs on the superior surface of the cerebral cortex. Methods En face images were taken of the superior surface of 35 formalin-fixed human brains. AGs were manually identified using Adobe Photoshop, with a pixel location containing an AG defined as 'positive'. A set of 25 standard fiducial points was marked on each hemisphere for a total of 50 points on each image. The points were connected on each hemisphere to create a segmented image. A standard template was created for each hemisphere by calculating the average position of the 25 fiducial points from all brains. Each segmented image was mapped to the standard template using a linear transformation. A topographic distribution map was produced by calculating the proportion of AG positive images at each pixel in the standard template. The AG surface area was calculated for each hemisphere and for the total brain superior surface. To adjust for different brain sizes, the proportional involvement of AGs was calculated by dividing the AG area by the total area. Results The total brain average surface area of AGs was 78.53 ± 13.13 mm2 (n = 35 and average AG proportional involvement was 57.71 × 10-4 ± 7.65 × 10-4. Regression analysis confirmed the reproducibility of AG identification between independent researchers with r2 = 0.97. The surface AGs were localized in the parasagittal planes that coincide with the region of the lateral lacunae. Conclusion The data obtained on the spatial distribution and en face surface area of AGs will be used in an in vitro model of CSF outflow. With an increase in the number of samples, this analysis technique can be used

  6. Alteration in IGF-I binding in the cerebral cortex and cerebellum of neonatal rats during protein-calorie malnutrition.

    Science.gov (United States)

    Maheshwari, H G; Mermelstein, S; vonSchlegell, A S; Shambaugh, G E

    1997-03-01

    Neonatal brain development in the rat is adversely affected by malnutrition. Alterations in tissue binding of IGF-I in the malnourished brain were tested in rat pups from mothers who were fed a 20% protein diet (C) or a 4% protein diet (M) starting from day 21 of gestation and continued throughout suckling. IGF-I binding in both cortex and cerebellum decreased progressively in C and M groups from day 6 to day 13. At day 9, 11, and 13, the binding was significantly greater (p < 0.02) in M compared to C groups. To investigate whether these changes might be related to the alteration in receptor activity, membranes were incubated with 125I-IGF in the presence of excess insulin with or without unlabeled IGF-I. In the absence of insulin, specific IGF-I binding in the M group was increased by 41.8 +/- 13.8% (mean +/- SEM p < 0.05) relative to C group. Insulin produced a consistent but incomplete inhibition of binding in both C and M, of 75% and 67% respectively. In addition, the specific IGF-I binding in the presence of insulin was increased in M group by 70.2 +/- 9.4% relative to C, p < 0.05. To characterize the nature of this binding, cerebral cortical membranes, from both groups, incubated with 125I-IGF-I were cross-linked, and electrophoresed on 6% and 10% SDS-PAGE gels under reducing conditions. Autoradiography of the 6% gel showed two specific bands at 115 kD and 240 kD, consistent with monomeric and dimeric forms of the IGF-I receptor, which were inhibited by excess insulin. In contrast, a 10% gel showed an additional band at 35 kD (IGF-binding protein) that was not inhibited by insulin. In both gels, membrane preparations from the M group showed a heightened intensity of the bands relative to C. The increase in binding protein relative to the receptor suggests a disequilibrium that may limit the availability of exogenous IGF-I to the tissues.

  7. Nitrate and nitrite anion concentration in the intact cerebral cortex of preterm and nearterm fetal sheep: indirect index of in vivo nitric oxide formation.

    Science.gov (United States)

    Reynolds, J D; Zeballos, G A; Penning, D H; Kimura, K A; Atkins, B; Brien, J F

    1998-04-01

    Pregnant sheep with a microdialysis probe implanted in the fetal cerebral cortex were used to determine if nitrate and nitrite anions (nitrate/nitrite) could be quantitated in the microdialysate as an indirect index of in vivo nitric oxide formation. Pregnant ewes (term, about 147 days) were surgically instrumented at gestational day (GD) 90 (n = 3; preterm) and GD 121 (n = 3; nearterm). Three days later, following an overnight probe equilibration period, five dialysate samples were collected continuously on ice at 1-h intervals (infusion rate of 1 (microl/min). The nitrate/nitrite concentration was determined by reducing a 10-microl aliquot of each dialysate fraction with hot acidic vanadium followed by chemiluminescence quantitation of the nitric oxide product. The lower limit of quantitative sensitivity of the method is 25 picomoles. Nitrate/nitrite concentration was 16.6+/-7.3 microM for the preterm fetus and 19.7+/-1.9 microM for the nearterm fetus. The data demonstrate that nitrate/nitrite, as an index of in vivo nitric oxide formation, can be quantitated in microdialysate samples collected from the intact fetal sheep cerebral cortex. PMID:9741385

  8. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Niara da Silva Medeiros

    2015-01-01

    Full Text Available Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS, protein oxidation (carbonyl, sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings.

  9. Ganoderma lucidum spore powder modulates Bcl-2 and Bax expression in the hippocampus and cerebral cortex, and improves learning and memory in pentylenetetrazole-kindled rats

    Institute of Scientific and Technical Information of China (English)

    Shuang Zhao; Shengchang Zhang; Shuqiu Wang

    2011-01-01

    We studied the effects of Ganoderma lucidum spore powder on Bax and Bcl-2 expression and neuronal apoptosis in pentylenetetrazole-kindled epileptic rats. Sixty adult rats were randomly divided into a control group, an epileptic group (kindled) and three medication groups ( 150, 300,450 mg/kg given to kindled rats). Bax and Bcl-2 immunohistochemistry and TUNEL labeling show ed that the number of Bax- and TUNEL-positive cells in the hippocampus and cerebral cortex decreased significantly in the high-dose medication group, while the number of Bcl-2immunoreactive cells increased. The Morris water maze test showed that high-dose treatment significantly shortened escape latency and increased spatial probe trial performance. Our findings indicate that a high dose of Ganoderma lucidum spore powder upregulates the expressionof antiapoptotic Bcl-2 protein in the hippocampus and cerebral cortex, inhibits proapoptotic Bax expression, and decreases seizure-induced neuronal apoptosis. Further,Ganoderma lucidum appears to protect against epilepsy-related learning and memory impairments.

  10. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring.

    Directory of Open Access Journals (Sweden)

    Sérgio Gomes da Silva

    Full Text Available Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task. Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation and associative (spatial learning mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning and increases BDNF levels and cell numbers in the hippocampal formation of offspring.

  11. Influence of the midbrain reticular formation irradiation with luminescent incoherent light on evoked potential of cerebral cortex in cats

    Science.gov (United States)

    Malinovskaya, Svetlana L.; Abakarov, Asadulla; Monich, Victor A.

    1996-11-01

    In acute experiments on cats it is shown, that direct, of- low-intensity incoherent light exposure on midbrain reticular formation, cases brain cortex projection areas functional state changes, which find expression in shifting amplitude of both positive and negative components of cortex evoked potentials on visual stimuli.

  12. Effects of movement training on synaptic interface structure in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere in cerebral infarction rats

    Institute of Scientific and Technical Information of China (English)

    Min Yang; Jiyan Cheng

    2008-01-01

    BACKGROUND: Movement is an effective way to provide sensory, movement and reflectivity afferent stimulation to the central nervous system. Movement plays an important role in functional recombination and compensation in the brain. OBJECTIVE: To observe movement training effects on texture parameters of synaptic interfaces in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere and on motor function in cerebral infarction rats. DESIGN, TIME AND SETTING: This neural morphology and pathology randomized controlled animal experiment was performed at the Center Laboratory, Affiliated Hospital of Luzhou Medical College, China from November 2004 to April 2005. MATERIALS: A total of 32 healthy male Wistar rats aged 8 weeks were equally and randomly assigned into model and movement training groups. METHODS: Rat models of right middle cerebral artery occlusion were established using the suture occlusion method in both groups. Rats in the movement training group underwent balance training, screen training, and rotating rod training starting on day 5 after surgery, for 40 minutes every day, 6 days per week, for 4 weeks. MAIN OUTCOME MEASURES: Texture parameters of synaptic interfaces were determined using a transmission electron microscope and image analyzer during week 5 following model induction. The following parameters were measured: synaptic cleft width; postsynaptic density thickness; synaptic interface curvature; and active zone length. Motor function was assessed using balance training, screen training, and rotating rod training. The lower score indicated a better motor function. RESULTS: The postsynaptic density thickness, synaptic interface curvature, and active zone length were significantly increased in the sensorimotor cortex and hippocampal CA3 area of the ischemic hemisphere of rats from the movement training group compared with the model group (P < 0.05 or 0.01). Curved synapses and perforated synapses were seen in the sensorimotor cortex

  13. Changes in proprotein convertase subtilisin/kexin type 9 mRNA expression in rat cortex after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Shuqin Zhan; An Zhou; Jingquan Lan; Tao Yang

    2011-01-01

    Oxidized low density lipoprotein is a risk factor for cerebrovascular disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can increase the level of low density lipoprotein. Therefore, this study assumed that PCSK9 plays important roles in ischemic cerebrovascular disease. The present study established transient focal cerebral ischemia models after 100 minutes of middle cerebral artery occlusion. In situ hybridization demonstrated that PCSK9 mRNA expression increased gradually with prolonged reperfusion time in ischemic cortices. This indicated that transient focal cerebral ischemia upregulated PCSK9 mRNA expression in ischemic cortices.

  14. Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

    Science.gov (United States)

    Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-oka, Kazuhito

    2016-06-01

    14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects.

  15. Acute liver failure in rats activates glutamine-glutamate cycle but declines antioxidant enzymes to induce oxidative stress in cerebral cortex and cerebellum.

    Directory of Open Access Journals (Sweden)

    Santosh Singh

    Full Text Available BACKGROUND AND PURPOSE: Liver dysfunction led hyperammonemia (HA causes a nervous system disorder; hepatic encephalopathy (HE. In the brain, ammonia induced glutamate-excitotoxicity and oxidative stress are considered to play important roles in the pathogenesis of HE. The brain ammonia metabolism and antioxidant enzymes constitute the main components of this mechanism; however, need to be defined in a suitable animal model. This study was aimed to examine this aspect in the rats with acute liver failure (ALF. METHODS: ALF in the rats was induced by intraperitoneal administration of 300 mg thioacetamide/Kg. b.w up to 2 days. Glutamine synthetase (GS and glutaminase (GA, the two brain ammonia metabolizing enzymes vis a vis ammonia and glutamate levels and profiles of all the antioxidant enzymes vis a vis oxidative stress markers were measured in the cerebral cortex and cerebellum of the control and the ALF rats. RESULTS: The ALF rats showed significantly increased levels of ammonia in the blood (HA but little changes in the cortex and cerebellum. This was consistent with the activation of the GS-GA cycle and static levels of glutamate in these brain regions. However, significantly increased levels of lipid peroxidation and protein carbonyl contents were consistent with the reduced levels of all the antioxidant enzymes in both the brain regions of these ALF rats. CONCLUSION: ALF activates the GS-GA cycle to metabolize excess ammonia and thereby, maintains static levels of ammonia and glutamate in the cerebral cortex and cerebellum. Moreover, ALF induces oxidative stress by reducing the levels of all the antioxidant enzymes which is likely to play important role, independent of glutamate levels, in the pathogenesis of acute HE.

  16. Knockdown of α-synuclein in cerebral cortex improves neural behavior associated with apoptotic inhibition and neurotrophin expression in spinal cord transected rats.

    Science.gov (United States)

    Wang, You-Cui; Feng, Guo-Ying; Xia, Qing-Jie; Hu, Yue; Xu, Yang; Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Hang-Ping; Wang, Ting-Hua; Zhou, Xue

    2016-04-01

    Spinal cord injury (SCI) often causes severe functional impairment with poor recovery. The treatment, however, is far from satisfaction, and the mechanisms remain unclear. By using proteomics and western blot, we found spinal cord transection (SCT) resulted in a significant down-regulation of α-synuclein (SNCA) in the motor cortex of SCT rats at 3 days post-operation. In order to detect the role of SNCA, we used SNCA-ORF/shRNA lentivirus to upregulate or knockdown SNCA expression. In vivo, SNCA-shRNA lentivirus injection into the cerebral cortex motor area not only inhibited SNCA expression, but also significantly enhanced neurons' survival, and attenuated neuronal apoptosis, as well as promoted motor and sensory function recovery in hind limbs. While, overexpression SNCA exhibited the opposite effects. In vitro, cortical neurons transfected with SNCA-shRNA lentivirus gave rise to an optimal neuronal survival and neurite outgrowth, while it was accompanied by reverse efficiency in SNCA-ORF group. In molecular level, SNCA silence induced the upregulation of Bcl-2 and the downregulation of Bax, and the expression of NGF, BDNF and NT3 was substantially upregulated in cortical neurons. Together, endogenous SNCA play a crucial role in motor and sensory function regulation, in which, the underlying mechanism may be linked to the regulation of apoptosis associated with apoptotic gene (Bax, Bcl2) and neurotrophic factors expression (NGF, BDNF and NT3). These finds provide novel insights to understand the role of SNCA in cerebral cortex after SCT, and it may be as a novel treatment target for SCI repair in future clinic trials. PMID:26822976

  17. Liquid-Diet with Alcohol Alters Maternal, Fetal and Placental Weights and the Expression of Molecules Involved in Integrin Signaling in the Fetal Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Ujjwal K. Rout

    2010-11-01

    Full Text Available Maternal alcohol consumption during pregnancy causes wide range of behavioral and structural deficits in children, commonly known as Fetal Alcohol Syndrome (FAS. Children with FAS may suffer behavioral deficits in the absence of obvious malformations. In rodents, the exposure to alcohol during gestation changes brain structures and weights of offspring. The mechanism of FAS is not completely understood. In the present study, an established rat (Long-Evans model of FAS was used. The litter size and the weights of mothers, fetuses and placentas were examined on gestation days 18 or 20. On gestation day 18, the effects of chronic alcohol on the expression levels of integrin receptor subunits, phospholipase-Cγ and N-cadherin were examined in the fetal cerebral cortices. Presence of alcohol in the liquid-diet reduced the consumption and decreased weights of mothers and fetuses but increased the placental weights. Expression levels of β1 and α3 integrin subunits and phospholipase-Cγ2 were significantly altered in the fetal cerebral cortices of mothers on alcohol containing diet. Results show that alcohol consumption during pregnancy even with protein, mineral and vitamin enriched diet may affect maternal and fetal health, and alter integrin receptor signaling pathways in the fetal cerebral cortex disturbing the development of fetal brains.

  18. The steady-state response of the cerebral cortex to the beat of music reflects both the comprehension of music and attention

    Directory of Open Access Journals (Sweden)

    Benjamin eMeltzer

    2015-08-01

    Full Text Available The brain's analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortical functions such as speech comprehension and attention. It remains unclear, however, whether the cortex also responds to the natural rhythmic structure of music and how the response, if present, is influenced by higher cognitive processes. Here we employ electroencephalography (EEG to show that the cortex responds to the beat of music and that this steady-state response reflects musical comprehension and attention. We show that the cortical response to the beat is weaker when subjects listen to a familiar tune than when they listen to an unfamiliar, nonsensical musical piece. Furthermore, we show that in a task of intermodal attention there is a larger neural response at the beat frequency when subjects attend to a musical stimulus than when they ignore the auditory signal and instead focus on a visual one. Our findings may be applied in clinical assessments of auditory processing and music cognition as well as in the construction of auditory brain-machine interfaces.

  19. Coupling of cerebral blood flow and oxygen metabolism is conserved for chromatic and luminance stimuli in human visual cortex

    OpenAIRE

    Leontiev, Oleg; Buracas, Giedrius T.; Liang, Christine; Ances, Beau M.; Perthen, Joanna E.; Shmuel, Amir; Buxton, Richard B.

    2012-01-01

    The ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation...

  20. Increased 20-HETE synthesis explains reduced cerebral blood flow but not impaired neurovascular coupling after cortical spreading depression in rat cerebral cortex

    DEFF Research Database (Denmark)

    Fordsmann, Jonas Christoffer; ko, Rebecca; Choi, Hyun B;

    2013-01-01

    Cortical spreading depression (CSD) is associated with release of arachidonic acid (AA), impaired neurovascular coupling, and reduced cerebral blood flow (CBF), caused by cortical vasoconstriction. We tested the hypothesis that the released AA is metabolized by the cytochrome P450 enzyme to produce...

  1. Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep

    OpenAIRE

    Nima eDehghani; Hatsopoulos, Nicholas G.; Haga, Zach D.; Rebecca eParker; Bradley eGreger; Eric eHalgren; Sydney S Cash; Alain eDestexhe

    2012-01-01

    Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and ...

  2. Effects of percutaneous midband pulse current stimulation in hepatic region on free radical and nissl bodies in cerebral cortex of rats with exercise-induced fatigue

    Directory of Open Access Journals (Sweden)

    Jia ZHANG

    2015-06-01

    Full Text Available Objective To investigate the effects of percutaneous midband pulse current stimulation in hepatic region on anti-exercise fatigue ability and the free radicals and nissl bodies in cerebral cortex tissue of rats with exercise-induced fatigue. Methods Seventy-two 8-week old male Wistar rats were randomly divided into 4 groups (18 each: control group (CG, fatigue group (FG, stimulation before fatigue group (SBF and stimulation after fatigue group (SAF. Animals in FG, SBF and SAF group were used to reproduce the swimming-exhaustion models. Midband current stimulation (1024Hz, 10mA, current cycle 1sec for 20 minutes was given to the rats of group SBF before swimming, and to those in group SAF after exhaustion. At the weekend of the 1st, 3rd and 5th week after modeling, the exhaustive swimming time of rats in all but CG group was observed. Cerebral cortex tissue was harvested for the estimation of the level of lipid peroxidation, including SOD, MDA, GSH-Px and SOD/MDA, and the histopathological changes in nissl bodies in neurons were observed. Results At the 1st weekend after modeling, no significant difference was found in all the indexes among the 4 groups, while at the 3rd weekend, the exhaustive time was obviously longer in SAF group than in FG group, and also in SAF group than in FG and SBF group at the 5th weekend (P<0.05. At the 5th weekend, the SOD and GSH-Px levels and SOD/MDA contents were obviously lower in FG and SBF group than in CG and SAF group, and the MDA content was obviously higher in FG and SBF group than in CG and SAF group (P<0.05. As regarding the nissl bodies in neurons, it is observed that the ratio of number/area was obviously higher in SAF group than in FG and SBF group at the 5th weekend (P<0.01. Conclusion Percutaneous stimulation of hepatic region with midband pulse current can effectively reduce the lipid peroxidation damage of cerebral cortex tissue and decrease the dissolution and loss of nissl bodies in

  3. Molecular adaptations of apoptotic pathways and signaling partners in the cerebral cortex of human cocaine addicts and cocaine-treated rats.

    Science.gov (United States)

    Alvaro-Bartolomé, M; La Harpe, R; Callado, L F; Meana, J J; García-Sevilla, J A

    2011-11-24

    Cocaine induces apoptotic effects in cultured cells and in the developing brain, but the aberrant activation of cell death in the adult brain remains inconclusive, especially in humans. This postmortem human brain study examined the status of canonical apoptotic pathways, signaling partners, and the cleavage of poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, in prefrontal cortex (PFC) of a small but well-characterized cohort of cocaine abusers (n=10). For comparison, the chosen targets were also quantified in the cerebral cortex of cocaine-treated rats. In the PFC of cocaine abusers, FS7-associated cell surface antigen (Fas) receptor aggregates and Fas-associated death domain (FADD) adaptor were reduced (-26% and -66%, respectively) as well as the content of mitochondrial cytochrome c (-61%). In the same brain samples of cocaine abusers, the proteolytic cleavage of PARP-1 was increased (+39%). Nuclear PARP-1 degradation, possibly a consequence of increased mitochondrial oxidative stress, involved the activation of apoptosis-inducing factor (AIF) and not that of caspase-3. In the PFC of cocaine abusers, several signaling molecules associated with cocaine/dopamine and/or apoptotic pathways were not significantly altered, with the exception of anti-apoptotic truncated DARPP-32 (t-DARPP), a truncated isoform of dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), whose content was decreased (-28%). Chronic exposure to cocaine in rats, including withdrawal for 3 days, did not alter Fas-FADD receptor complex, cytochrome c, caspase-3/fragments, AIF, PARP-1 cleavage, and associated signaling in the cerebral cortex. Chronic cocaine and abstinence, however, increased the content of t-DARPP (+39% and +47%) in rat brain cortex. The major findings indicate that cocaine addiction in humans is not associated with abnormal activation of extrinsic and intrinsic apoptotic pathways in PFC. The downregulation of Fas-FADD receptor complex and cytochrome c

  4. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    Directory of Open Access Journals (Sweden)

    Saba Pierluigi

    2005-05-01

    Full Text Available Abstract Background Previous studies by our group suggest that extracellular dopamine (DA and noradrenaline (NA may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC. This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC, occipital cortex (Occ, and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT blocker desipramine (DMI, 100 μM, multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant

  5. The human cerebral cortex is neither one nor many: Neuronal distribution reveals two quantitatively different zones in the grey matter, three in the white matter, and explains local variations in cortical folding

    Directory of Open Access Journals (Sweden)

    Pedro F. M. Ribeiro

    2013-09-01

    Full Text Available The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital that differ in how neurons distributed across their grey matter volume and in three zones (prefrontal, occipital, and non-occipital that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non

  6. Morphological properties of nociceptive and non-nociceptive neurons in primary somatic cerebral cortex (SI) of cat

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With the techniques of intracellular recording and labelling, we investigated pain sensation and modulation of the somatic cortical cortex at the neuron's level. After observing the evoked potentials from stimulating the saphenous nerves (SN) of 654 neurons in SI area of the cats, we labelled 30 of the neurons with Neurobiotin to preserve the distribution and the morphologic characteristics of the neurons in the cortex. Based on the tridimensional reconstruction in addition to the eletrophysiological functions, we found clear morphological distinctions between nociceptive and non-nociceptive neurons (P<0.01). This result provided new experimental material to illustrate the function of nociceptive neurons in somatosensory cortex (SI) and presented further evidence to support the "specificity theory" of pain sensation in terms of morphology.

  7. Characterization of the Fiber Connectivity Profile of the Cerebral Cortex in Schizotypal Personality Disorder: A Pilot Study.

    Science.gov (United States)

    Liu, Kai; Zhang, Teng; Zhang, Qing; Sun, Yueji; Wu, Jianlin; Lei, Yi; Chu, Winnie C W; Mok, Vincent C T; Wang, Defeng; Shi, Lin

    2016-01-01

    Schizotypal personality disorder (SPD) is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs) by combining the techniques of brain surface morphometry and white matter tractography. Diffusion and structural MR data were collected from 20 subjects with SPD (all males; age, 19.7 ± 0.9 years) and 18 healthy controls (all males; age, 20.3 ± 1.0 years). To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD) value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA 9 and BA 10) and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected). Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02). Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis. PMID:27303358

  8. Characterization of the fiber connectivity profile of the cerebral cortex in schizotypal personality disorder: A pilot study

    Directory of Open Access Journals (Sweden)

    Kai eLiu

    2016-05-01

    Full Text Available Schizotypal personality disorder (SPD is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs by combining the techniques of brain surface morphometry and white matter (WM tractography. Diffusion and structural MR data were collected from twenty subjects with SPD (all males; age, 19.7 ± 0.9 yrs and eighteen healthy controls (all males; age, 20.3 ± 1.0 yrs. To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA9 and BA10 and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected. Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02. Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis.

  9. Characterization of the Fiber Connectivity Profile of the Cerebral Cortex in Schizotypal Personality Disorder: A Pilot Study.

    Science.gov (United States)

    Liu, Kai; Zhang, Teng; Zhang, Qing; Sun, Yueji; Wu, Jianlin; Lei, Yi; Chu, Winnie C W; Mok, Vincent C T; Wang, Defeng; Shi, Lin

    2016-01-01

    Schizotypal personality disorder (SPD) is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs) by combining the techniques of brain surface morphometry and white matter tractography. Diffusion and structural MR data were collected from 20 subjects with SPD (all males; age, 19.7 ± 0.9 years) and 18 healthy controls (all males; age, 20.3 ± 1.0 years). To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD) value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA 9 and BA 10) and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected). Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02). Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis.

  10. Binding of transcription factors to Presenilin 1 and 2 promoter cis-acting elements varies during the development of mouse cerebral cortex.

    Science.gov (United States)

    Kumar, Ashish; Thakur, M K

    2016-08-15

    Previously, we reported differential expression of Presenilin (PS)1 and 2 and epigenetic modifications of their gene promoter in the cerebral cortex of mice during development. We identified the crucial role of DNA methylation and H3K9/14 acetylation in stage specific PS expression during brain development. Interestingly, we noted differential DNA methylation in putative binding sites of transcription factors considered pivotal for brain development. This prompted us to study the binding of transcription factors to cis-acting elements of PS1 and PS2 promoter in the cerebral cortex of mice during development. In-silico analysis revealed various cis-acting elements of PS1 and PS2 promoter and their putative transcription factors. We selected those cis-acting elements that were proven by wet lab experiments to interact with the transcription factors crucial for brain development. Electrophoretic mobility shift assay revealed that the binding of nuclear proteins to PS1 promoter cis-acting elements like HSF-1, Cdx1, Ets-1 and Sp1 significantly increased at embryonic day (E) 12.5, postnatal day (P) 45 and 20 weeks (w) as compared to P0. The binding pattern of these factors correlated well with the PS1 expression profile, indicating their cumulative influence on PS1 gene transcription. For PS2 promoter, the binding of Nkx2.2 and HFH-2 was high at prenatal stages (E12.5 and E18.5) while that of Cdx1 and NF-κB was maximum at postnatal stages (P45 and 20w). Taken together, our study shows that the binding of HSF-1, Cdx1, Ets-1 and Sp1 to PS1 promoter and that of Nkx2.2, HFH-2, Cdx1 and NF-κB to PS2 promoter regulate their differential expression during brain development. PMID:27177724

  11. Attenuation by methyl mercury and mercuric sulfide of pentobarbital induced hypnotic tolerance in mice through inhibition of ATPase activities and nitric oxide production in cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Chuu, Jiunn-Jye; Huang, Zih-Ning; Yu, Hsun-Hsin; Chang, Liang-Hao [College of Engineering, Southern Taiwan University, Institute of Biotechnology, Tainan (China); Lin-Shiau, Shoei-Yn [College of Medicine, National Taiwan University, Institute of Pharmacology, Taipei (China)

    2008-06-15

    This study is aimed at exploring the possible mechanism of hypnosis-enhancing effect of HgS or cinnabar (a traditional Chinese medicine containing more than 95% HgS) in mice treated with pentobarbital. We also examined whether the effect of HgS is different from that of the well-known methyl mercury (MeHg). After a short period (7 days) of oral administration to mice, a nontoxic dose (0.1 g/kg) of HgS not only significantly enhanced pentobarbital-induced hypnosis but also attenuated tolerance induction; while a higher dose (1 g/kg) of HgS or cinnabar exerted an almost irreversible enhancing effect on pentobarbital-hypnosis similar to that of MeHg (2 mg/kg) tested, which was still effective even after 10 or 35 days cessation of administration. To study comparatively the effects of different mercury forms from oral administration of MeHg and HgS on membrane ATPase activities of experimental mice, analysis of the Hg content in the cerebral cortex revealed that correlated with the decrease of Na{sup +}/K{sup +}-ATPase and Ca{sup 2+}-ATPase activities. Furthermore, NO levels of blood but not that of cerebral cortex were also decreased by mercuric compounds. Although pentobarbital alone enhanced cytochrome p450-2C9 in time dependent manner, all of mercurial compounds tested had no such effect. All of these findings indicated that the mercurial compounds including cinnabar, HgS and MeHg exert a long-lasting enhancing hypnotic activity without affecting pentobarbital metabolism, which provides evidence-based sedative effect of cinnabar used in Chinese traditional medicine for more than 2,000 years. The nontoxic HgS dosing (0.1 g/kg/day) for consecutive 7 days is perhaps useful for delaying or preventing pentobarbital-tolerance. (orig.)

  12. Evaluation of Cerebral Cortex Function in Clients with Bipolar Mood Disorder I (BMD I Compared With BMD II Using QEEG Analysis

    Directory of Open Access Journals (Sweden)

    Ali Khaleghi

    2015-10-01

    Full Text Available Objective: Early diagnosis of type I and type II bipolar mood disorder is very challenging particularly in adolescence. Hence, we aimed to investigate the cerebral cortex function in these patients, using quantitative electroencephalography analysis to obtain significant differences between them.Methods: Thirty- eight adolescents (18 patients with bipolar disorder I and 20 with BMD II participated in this study. We recorded the electroencephalogram signals based on 10-20 international system by 21 electrodes in eyes open and eyes closed condition resting conditions. Forty seconds segments were selected from each recorded signals with minimal noise and artifacts. Periodogram Welch was used to estimate power spectrum density from each segment. Analysis was performed in five frequency bands (delta, theta, alpha, beta and gamma, and we assessed power, mean, entropy, variance and skewness of the spectrums, as well as mean of the thresholded spectrum and thresholded spectrogram. We only used focal montage for comparison. Eventually, data were analyzed by independent Mann-Whitney test and independent t test.Results: We observed significant differences in some brain regions and in all frequency bands. There were significant differences in prefrontal lobe, central lobe, left parietal lobe, occipital lobe and temporal lobe between BMD I and BMD II (P < 0.05. In patients with BMD I, spectral entropy was compared to patients with BMD II. The most significant difference was observed in the gamma frequency band. Also, the power and entropy of delta frequency band was larger in the left parietal lobe in the BMD I patients compared to BMD II patients (P < 0.05. In the temporal lobe, significant differences were observed in the spectrum distribution of beta and gamma frequency bands (P < 0.05.Conclusion: The QEEG and entropy measure are simple and available tools to help detect cerebral cortex deficits and distinguish BMD I from BMD II.

  13. Effects of Vision Restoration Training on Early Visual Cortex in Patients With Cerebral Blindness Investigated With Functional Magnetic Resonance Imaging

    NARCIS (Netherlands)

    Raemaekers, M.; Bergsma, D.P.; Wezel, van R.J.A.; Wildt, van der G.J.; Berg, van den A.V.

    2011-01-01

    Cerebral blindness is a loss of vision as a result of postchiasmatic damage to the visual pathways. Parts of the lost visual field can be restored through training. However, the neuronal mechanisms through which training effects occur are still unclear. We therefore assessed training-induced changes

  14. Repetitive Transcranial Magnetic Stimulation Changes Cerebral Oxygenation on the Left Dorsolateral Prefrontal Cortex in Bulimia Nervosa: A Near-Infrared Spectroscopy Pilot Study.

    Science.gov (United States)

    Sutoh, Chihiro; Koga, Yasuko; Kimura, Hiroshi; Kanahara, Nobuhisa; Numata, Noriko; Hirano, Yoshiyuki; Matsuzawa, Daisuke; Iyo, Masaomi; Nakazato, Michiko; Shimizu, Eiji

    2016-01-01

    Previous studies showed that food craving in eating disorders can be weakened with high-frequency repetitive transcranial magnetic stimulation (rTMS) on the left dorsolateral prefrontal cortex (DLPFC). The aims of this study were to assess cerebral oxygenation change induced with rTMS and to assess the short-term impact of rTMS on food craving and other bulimic symptoms in patients with bulimia nervosa (BN). Eight women diagnosed with BN according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria participated in this study. We measured haemoglobin concentration changes in the DLPFC with near-infrared spectroscopy during cognitive tasks measuring self-regulatory control in response to food photo stimuli, both at baseline and after a single session of rTMS. Subjective ratings for food cravings demonstrated significant reduction. A significant decrease in cerebral oxygenation of the left DLPFC was also observed after a single session of rTMS. Measurement with NIRS after rTMS intervention may be applicable for discussing the mechanisms underlying rTMS modulation in patients with BN.

  15. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI

    NARCIS (Netherlands)

    de Vries, Paulien M.; de Jong, Bauke M.; Bohning, Daryl E.; Walker, John A.; George, Mark S.; Leenders, Klaus L.

    2009-01-01

    The left parietal cortex contributes to goal-directed hand movement. In this study, we targeted this region with transcranial magnetic stimulation (TMS) to assess the effects on a wider distributed circuitry related to motor control. Ten healthy subjects underwent 3 Tesla functional magnetic resonan

  16. Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep.

    Directory of Open Access Journals (Sweden)

    Nima eDehghani

    2012-08-01

    Full Text Available Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes, monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes in epileptic patients. In neuronal avalanches defined from units (up to 160 single units, the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs and in particular LFP negative peaks (nLFPs among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices. In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.

  17. 5-azacytidine and purine nucleotide synthesis in guinea-pig cerebral cortex slices by salvage pathway from adenine

    International Nuclear Information System (INIS)

    The effect of the cytostatic, immunosuppressive and antiviral drug 5-azacytidine was studied on the synthesis of purine nucleotides and the total RNA fraction by the salvage pathway of adenine in in vitro experiments on slices from the brain cortex while the azapyrimidine nucleoside only decreased the specific radioactivity of nucleotide adenine and quanine in a relatively high resulting concentration (10-2M), no differences were found between the slices of the brain cortex incubated with and without 5-azacytidine. The comparison of the specific radioactivities of adenine of the total RNA fraction gave a similar picture. No substantial differences were observed between the levels of adenine nucleotides and the total RNA fraction in slices incubated with and without 5-azacytidine. (author)

  18. Towards a sharable numeric and symbolic knowledge base on cerebral cortex anatomy: lessons learned from a prototype.

    Science.gov (United States)

    Dameron, Olivier; Gibaud, Bernard; Burgun, Anita; Morandi, Xavier

    2002-01-01

    We propose a knowledge base that combines numeric and symbolic knowledge about sulco-gyral brain cortex. This knowledge base is implemented using Web technologies. It is intended to be easily reusable in various application contexts such as teaching, decision support in neurosurgery and sharing of neuroimaging data for research purposes. Our analysis shows that (1) a formal representation of taxonomy and mereotopology, and (2) use of identity criteria to represent symbolic concepts, are needed to serve those applications. PMID:12463812

  19. Towards a sharable numeric and symbolic knowledge base on cerebral cortex anatomy: lessons learned from a prototype.

    OpenAIRE

    Dameron, Olivier; Gibaud, Bernard; Burgun, Anita; Morandi, Xavier

    2002-01-01

    We propose a knowledge base that combines numeric and symbolic knowledge about sulco-gyral brain cortex. This knowledge base is implemented using Web technologies. It is intended to be easily reusable in various application contexts such as teaching, decision support in neurosurgery and sharing of neuroimaging data for research purposes. Our analysis shows that (1) a formal representation of taxonomy and mereotopology, and (2) use of identity criteria to represent symbolic concepts, are neede...

  20. Nerve growth factor downregulates c-jun mRNA and Caspase-3 in striate cortex of rats after transient global cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Dacheng Jin; Tiemin Wang; Xiubin Fang

    2006-01-01

    BACKGROUND: Immediate early gene (LEG) c-jun is a sensitive marker for functional status of nerve cells.Caspase-3 is a cysteine protease,which is a critical regulator of apoptosis. The effect of exogenous nerve growth factor (NGF) on the expression of c-jun Mrna and Caspase-3 protein in striate cortex of rats with transient global cerebral ischemia/reperfusion (IR) is unclear.OBJECTIVE: To study the protective effect of exogenous NGF on the brain of rats with transient global cerebral IR and its effecting pathway by observing the expression of c-jun Mrna and Caspase-3 protein.DESIGN: Randomized controlled animal trial.SETTING: Department of Neural Anatomy, Institute of Brain,China Medical University.MATERTALS:Eighteen healthy male SD rats of clean grade, aged 1 to 3 months, with body mass of 250 to 300 g, were involved in this study. NGF was provided by Dalian Svate Pharmaceutical Co.,Ltd, c-jun in situ hybridization detection kit, Caspase-3 antibody and SABC kit were purchased from Boster Biotechnology Co. ,Ltd.METHODS: This trial was carried out in the Department of Neural Anatomy, Institute of Brain, China Medical University during September 2003 to April 2005. ①Experimental animals were randomized into three groups with 6 in each: sham-operation group,IR group and NGF group. ②After the rats were anesthetized,the bilateral common carotid arteries and right external carotid arteries of rats were bluntly dissected and bilateral common carotid arteries were clamped for 30 minutes with bulldog clamps. Reperfusion began after buldog clamps were removed. Normal saline of 1mL and NGF (1×106 U/L) of 1 Ml was injected into the common carotid artery of rats via right external carotid arteries in the IR group and NGF group respectively.The injection was conducted within 30 minutes, and then the right external carotid arteries were ligated. In the sham-operation group, occlusion of bilateral common carotid arteries and administration of drugs were phosphate buffer

  1. A Cognição Social e o Córtex Cerebral Social Cognition and the Brain Cortex

    Directory of Open Access Journals (Sweden)

    Judith Butman

    2001-01-01

    Full Text Available A cognição social é o processo que orienta condutas frente a outros indivíduos da mesma espécie. Várias estruturas cerebrais têm um papel chave para controlar as condutas sociais: o córtex pré-frontal ventromedial, a amígdala, o córtex somatosensorial direito e a ínsula. O córtex pré-frontal ventromedial está comprometido com o raciocínio social e com a tomada de decisões; a amígdala com o julgamento social de faces; o córtex somatosensorial direito, com a empatia e com a simulação; enquanto que a insula, com a resposta autonômica. Estes achados estão de acordo com a hipótese do marcador somático, um mecanismo específico por meio do qual adquirimos, representamos ou memorizamos os valores de nossas ações. Estas estruturas cerebrais atuam como mediadores entre as representações perceptuais dos estímulos sensoriais e a recuperação do conhecimento que o estímulo pode ativar. O sistema límbico é a zona limítrofe; nela, a psicologia se encontra com a neurologia. A correta sincronização destas zonas e estruturas, no adulto, é a chave para uma situação livre de patologia.Social cognition refers to the processes that subserve behavior in response to other individuals of the same species. Several brain structures play a key role in guiding social behaviors: ventromedial prefrontal cortex, amygdala, right somatosensory cortex and insula. The ventromedial prefrontal cortex is most directly involved in social reasoning and decision making; the amygdala in social judgment of faces, the right somatosensory cortex in empathy and simulation and the insula in autonomic responses. These findings are corresponding to the somatic marker hypothesis, particular mechanism by which we acquire, represent and retrieve the values of our actions. These brain structures appear to mediate between perceptual representation of social stimuli and retrieval of knowledge that such stimuli can trigger. The limbic system is the border zone

  2. Coupling of cerebral blood flow and oxygen metabolism is conserved for chromatic and luminance stimuli in human visual cortex.

    Science.gov (United States)

    Leontiev, Oleg; Buracas, Giedrius T; Liang, Christine; Ances, Beau M; Perthen, Joanna E; Shmuel, Amir; Buxton, Richard B

    2013-03-01

    The ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation in the capacity for oxygen metabolism. The goal of this study was to test whether CBF/CMRO(2) coupling differed when these subpopulations of neurons were preferentially stimulated, using chromatic and luminance stimuli to preferentially stimulate either the blob or interblob regions. A dual-echo spiral arterial spin labeling (ASL) technique was used to measure CBF and BOLD responses simultaneously in 7 healthy human subjects. When the stimulus contrast levels were adjusted to evoke similar CBF responses (mean 65.4% ± 19.0% and 64.6% ± 19.9%, respectively for chromatic and luminance contrast), the BOLD responses were remarkably similar (1.57% ± 0.39% and 1.59% ± 0.35%) for both types of stimuli. We conclude that CBF-CMRO(2) coupling is conserved for the chromatic and luminance stimuli used, suggesting a consistent coupling for blob and inter-blob neuronal populations despite the difference in CO concentration. PMID:23238435

  3. Diffusion-Weighted MRI in Creutzfeldt-Jakob Disease: Focus on the Cerebral Cortex and Chronologic Change

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun; Song, Chang Joon; Lee, In Ho [Chungnam National University, Daejeon (Korea, Republic of); Yu, In Kyu [Eulji University Hospital, Seoul (Korea, Republic of); Choi, See Sung [Wonkwang University Hospital, Iksan (Korea, Republic of)

    2010-08-15

    To evaluate high cortical signal intensity and chronologic changes for diffusion-weighted MR imaging (DWI) in sporadic Creutzfeldt-Jakob disease. We retrospectively analyzed the DWI results of 16 patients with probable CJD (according to WHO criteria) and evaluated the distribution, extent and bilaterality of the lesions in the cortex, basal ganglia and thalamus. We also reviewed the chronologic changes of the lesions by evaluating the followup MR examination results in 8 of 16 patients. Cortical abnormalities were present in 15 (94%) of 16 patients. Isolated cortical involvement was present in 6 patients (40%), while the combined involvement of the cortex and basal ganglia was present in 9 patients (60%). The distribution of the lesions was bilateral in 12 patients and predominantly on the right side in 8 patients. Upon follow-up MR imaging, the cortical lesions showed progress in terms of extent and signal intensity. Basal ganglia abnormalities were present in 9 of 15 patients. Moreover, 4 of 6 patients who had no abnormal signal intensity in the basal ganglia on the initial MR imaging results, showed abnormally high signal intensity upon follow-up MR imaging. The characteristically high cortical signal intensities on DWI in an elderly patient with rapidly progressive dementia should point to the diagnosis of early phase CJD and might be useful for the differential diagnosis.

  4. Progesterone Induces the Growth and Infiltration of Human Astrocytoma Cells Implanted in the Cerebral Cortex of the Rat

    Directory of Open Access Journals (Sweden)

    Liliana Germán-Castelán

    2014-01-01

    Full Text Available Progesterone (P4 promotes cell proliferation in several types of cancer, including brain tumors such as astrocytomas, the most common and aggressive primary intracerebral neoplasm in humans. In this work, we studied the effects of P4 and its intracellular receptor antagonist, RU486, on growth and infiltration of U373 cells derived from a human astrocytoma grade III, implanted in the motor cortex of adult male rats, using two treatment schemes. In the first one, fifteen days after cells implantation, rats were daily subcutaneously treated with vehicle (propylene glycol, 160 μL, P4 (1 mg, RU486 (5 mg, or P4 + RU486 (1 mg and 5 mg, resp. for 21 days. In the second one, treatments started 8 weeks after cells implantation and lasted for 14 days. In both schemes we found that P4 significantly increased the tumor area as compared with the rest of the treatments, whereas RU486 blocked P4 effects. All rats treated with P4 showed tumor infiltration, while 28.6% and 42.9% of the animals treated with RU486 and P4 + RU486, respectively, presented it. Our data suggest that P4 promotes growth and migration of human astrocytoma cells implanted in the motor cortex of the rat through the interaction with its intracellular receptor.

  5. Spatial frequency-based analysis of mean red blood cell speed in single microvessels: investigation of microvascular perfusion in rat cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Joonas Autio

    Full Text Available BACKGROUND: Our previous study has shown that prenatal exposure to X-ray irradiation causes cerebral hypo-perfusion during the postnatal development of central nervous system (CNS. However, the source of the hypo-perfusion and its impact on the CNS development remains unclear. The present study developed an automatic analysis method to determine the mean red blood cell (RBC speed through single microvessels imaged with two-photon microscopy in the cerebral cortex of rats prenatally exposed to X-ray irradiation (1.5 Gy. METHODOLOGY/PRINCIPAL FINDINGS: We obtained a mean RBC speed (0.9±0.6 mm/sec that ranged from 0.2 to 4.4 mm/sec from 121 vessels in the radiation-exposed rats, which was about 40% lower than that of normal rats that were not exposed. These results were then compared with the conventional method for monitoring microvascular perfusion using the arteriovenous transit time (AVTT determined by tracking fluorescent markers. A significant increase in the AVTT was observed in the exposed rats (1.9±0.6 sec as compared to the age-matched non-exposed rats (1.2±0.3 sec. The results indicate that parenchyma capillary blood velocity in the exposed rats was approximately 37% lower than in non-exposed rats. CONCLUSIONS/SIGNIFICANCE: The algorithm presented is simple and robust relative to monitoring individual RBC speeds, which is superior in terms of noise tolerance and computation time. The demonstrative results show that the method developed in this study for determining the mean RBC speed in the spatial frequency domain was consistent with the conventional transit time method.

  6. Protection of Cactus Polysaccharide against H2O2-induced damage in the rat cerebral cortex and hippocampus Differences In time of administration

    Institute of Scientific and Technical Information of China (English)

    Xianju Huang; Qin Li; Lianjun Guo; Zankai Yan

    2008-01-01

    BACKGROUND: Pharmacological research has shown that cactus polysaccharide (CP) has anti-oxidant, anti-inflammatory, antitumor, anti-aging, and immune-stimulating activities. It may also provide protective effects against oxidative stress injuries in the rat brain.OBJECTIVE: To validate the effects of CP on H2O2-induced oxidative stress injuries in the ratcerebral cortex and hippocampal slices 30 minutes prior to injury, as well as 30 minutes and 2.5 hours after injury.DESIGN: A randomized controlled experiment.SETTINGS: Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology; Department of Pharmacology, College of Medical Science, Yangtze University.MATERIALS: A total of 50 male Sprague Dawley (SD) rats, normal grade and weighing 200-300 g, were provided by the Laboratory Animal Center of Tongji Medical College, Huazhong University of Science and Technology. The protocol was performed in accordance with ethical guidelines for the use and care of ani-mals. Cactus polysaccharide, a dried needle crystal, was extracted from Opuntia milpa alta at the Chemistry and Environment Engineering School of Yangtze University. The following chemicals and instruments were used: 2,3,5-triphenyl tetrazolium chloride (Sigma, St Louis, Missouri, USA); lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione (GSH), and total antioxidant competence (T-AOC) assays (Jiancheng-Bioeng Institute, Nanjing); McIllwain tissue chopper (Mickle Laboratory Engineering, USA); and ELISA reader and Magellan software (TECAN, Austria).METHODS: This experiment was performed at the Department of Pharmacology, Medical College of Yangtze University, between March and June 2006. All rats were sacrificed after anesthesia. The cerebral cortex and hippocampus were dissected. Several cerebral cortex and hippocampus slices were selected as controls, while other sections were co-incubated with H2O2 for 30 minutes to induce an oxidative stress injury. The

  7. Spatio-temporal characteristics of cerebral blood volume changes in different microvascular compartments evoked by sciatic nerve stimulation in rat somatosensory cortex

    Science.gov (United States)

    Li, Pengcheng; Luo, Qingming; Luo, Weihua; Chen, Shangbin; Chen, Haiying; Zeng, Shaoqun

    2003-10-01

    The spatio-temporal characteristics of changes in cerebral blood volume associated with neuronal activity were investigated in the hindlimb somatosensory cortex of α-chloralose/urethan anesthetized rats (n=10) with optical imaging at 570nm through a thinned skull. Activation of cortex was carried out by electrical stimulation of the contralateral sciatic nerve with 5Hz, 0.3V pulses (0.5ms) for duration of 2s. The stimulation evoked a monophasic optical reflectance decrease at cortical parenchyma and arteries sites rapidly after the onset of stimulation, whereas no similar response was observed at vein compartments. The optical signal changes reached 10% of the peak response 0.70+/-0.32s after stimulation onset and no significant time lag in this 10% start latency time was observed between the response at cortical parenchyma and arteries compartments. The evoked optical reflectance decrease reached the peak (0.25%+/-0.047%)2.66+/-0.61s after the stimulus onset at parenchyma site, 0.40+/-0.20s earlier (P<0.05) than that at arteries site (0.50%+/-0.068% 3.06+/-0.70s). Variable location within the cortical parenchyma and arteries compartment themselves didn"t affect the temporal characteristics of the evoked signal significantly. These results suggest that the sciatic nerve stimulation evokes a local blood volume increase at both capillaries (cortical parenchyma) and arterioles rapidly after the stimulus onset but the evoked blood volume increase in capillaries could not be entirely accounted for by the dilation of arterioles.

  8. Regional differences of relationships between atrophy and glucose metabolism of cerebral cortex in patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Aim: The purpose of this paper is to estimate a correlation between the extent of atrophy and the decline in the brain function measured with PET study among the patients with Alzheimer's disease by each brain lobe. Materials and Methods: Two groups, the normal controls (male: 8, female: 22 age: 62.4±4.9) and the patients with Alzheimer's disease (male: 6, female: 24, age: 65.9±7.2) participated in this study. The extent of atrophy was evaluated from the extracted gyrus on 2D-projection magnetic resonance imaging (MRI) and the cerebral cortical glucose metabolism was assessed on 2D-projection positron emission tomography (PET) image, and then a relationship between the cerebral atrophy and the function was evaluated by each brain lobe extracted automatically. 2D-projection of PET and MR images were made by means of the Mollweide method which keeps the area of the brain surface. In order to extract brain lobes from each subject automatically, the bitmap with different value by each brain lobe was made from a standard brain image and was automatically transformed to match each subject's brain image by using SPM99. A correlation image was generated between 2D-projection images of glucose metabolism and the area of the sulcus and the gyrus extracted from the correlation between MR and PET images clustered by K-means method. Results: The glucose metabolism of Alzheimer's disease was lower than that of normal control subjects at the frontal, parietal, and temporal lobes with the same extent of atrophy as that of the normal. There was high correlation between the area of gyrus and the glucose metabolism, and the correlation tendency of the Alzheimer's disease was steeper than that of the normal control at the parietal lobe. Conclusions: Combined analysis of regional morphology and function may be useful to distinguish pathological process such as early stage of Alzheimer's disease from normal physiological aging

  9. A segmentation algorithm of cerebral cortex based on dual edge detections and regional growing%基于双重边缘检测和区域生长的大脑皮层分割算法

    Institute of Scientific and Technical Information of China (English)

    刘宁; 罗洪艳; 谭立文; 李敏; 文丽丽

    2012-01-01

    目的 设计一种数字人脑切片图像自动分割算法,以实现对大脑皮层的准确分割.方法 采用RGB空间彩色边缘检测与Canny算子边缘检测,联合种子点自动选择的区域生长算法,提取并分割大脑皮层,并与手工分割结果进行对比分析.结果 自动分割的大脑皮层边缘完整、清晰、平滑,与手工分割结果的吻合度较高.结论采用该方法可较为准确地分割数字人脑切片图像中的大脑皮层.%Objective To design a automatic segmentation algorithm for digital cross-section slice images of human brain, in order to segment the cerebral cortex accurately. Methods Cerebral cortex was obtained and extracted from gray matter using RGB space edge detection, Canny operator detection and regional growing algorithm. A comparative analysis between the segmentation results of automatic algorithm and manual method was performed. Results Highly coincident to that segmented by manual method, cerebral cortex segmented by automatic algorithm was characterized by complete, clear and smooth edge. Conclusion This algorithm is suitable for the segmentation of cerebral cortex in digital cross-section slice images.

  10. Hyperthermia-induced seizures alter adenosine A1 and A2A receptors and 5'-nucleotidase activity in rat cerebral cortex.

    Science.gov (United States)

    León-Navarro, David Agustín; Albasanz, José L; Martín, Mairena

    2015-08-01

    Febrile seizure is one of the most common convulsive disorders in children. The neuromodulator adenosine exerts anticonvulsant actions through binding adenosine receptors. Here, the impact of hyperthermia-induced seizures on adenosine A1 and A2A receptors and 5'-nucleotidase activity has been studied at different periods in the cerebral cortical area by using radioligand binding, real-time PCR, and 5'-nucleotidase activity assays. Hyperthermic seizures were induced in 13-day-old rats using a warmed air stream from a hair dryer. Neonates exhibited rearing and falling over associated with hindlimb clonus seizures (stage 5 on Racine scale criteria) after hyperthermic induction. A significant increase in A1 receptor density was observed using [(3) H]DPCPX as radioligand, and mRNA coding A1 was observed 48 h after hyperthermia-induced seizures. In contrast, a significant decrease in A2A receptor density was detected, using [(3) H]ZM241385 as radioligand, 48 h after hyperthermia-evoked convulsions. These short-term changes in A1 and A2A receptors were also accompanied by a loss of 5'-nucleotidase activity. No significant variations either in A1 or A2A receptor density or 5'-nucleotidase were observed 5 and 20 days after hyperthermic seizures. Taken together, both regulation of A1 and A2A receptors and loss of 5'-nucleotidase in the cerebral cortex suggest the existence of a neuroprotective mechanism against seizures. Febrile seizure is one of the most common convulsive disorders in children. The consequences of hyperthermia-induced seizures (animal model of febrile seizures) on adenosine A1 and A2A receptors and 5'-nucleotidase activity have been studied at different periods in cerebral cortical area. A significant increase in A1 receptor density and mRNA coding A1 was observed 48 h after hyperthermia-induced seizures. In contrast, a significant decrease in A2A receptor density and 5'-nucleotidase activity was detected 48 h after convulsions evoked by hyperthermia

  11. Zbtb20-Induced CA1 Pyramidal Neuron Development and Area Enlargement in the Cerebral Midline Cortex of Mice

    DEFF Research Database (Denmark)

    Nielsen, Jakob V; Blom, Jonas B; Noraberg, Jens;

    2010-01-01

    Expression of the transcriptional repressor Zbtb20 is confined to the hippocampal primordium of the developing dorsal midline cortex in mice. Here, we show that misexpression of Zbtb20 converts projection neurons of the subiculum and postsubiculum (dorsal presubiculum) to CA1 pyramidal neurons...... that are innervated by Schaffer collateral projections in ectopic strata oriens and radiatum. The Zbtb20-transformed neurons express Bcl11B, Satb2, and Calbindin-D28k, which are markers of adult CA1 pyramidal neurons. Downregulation of Zbtb20 expression by RNA interference impairs the normal maturation of CA1...... pyramidal neurons resulting in deficiencies in Calbindin-D28k expression and in reduced apical dendritic arborizations in stratum lacunosum moleculare. Overall, the results show that Zbtb20 is required for various aspects of CA1 pyramidal neuron development such as the postnatal extension of apical...

  12. Effect of chronic usage of tramadol on motor cerebral cortex and testicular tissues of adult male albino rats and the effect of its withdrawal: histological, immunohistochemical and biochemical study

    Science.gov (United States)

    Ghoneim, Fatma M; Khalaf, Hanaa A; Elsamanoudy, Ayman Z; Helaly, Ahmed N

    2014-01-01

    This study was designed to demonstrate the histopathological and biochemical changes in rat cerebral cortex and testicles due to chronic usage of tramadol and the effect of withdrawal. Thirty adult male rats weighing 180-200 gm were classified into three groups; group I (control group) group II (10 rats received 50 mg/kg/day of tramadol intraperitoneally for 4 weeks) and group III (10 rats received the same dose as group II then kept 4 weeks later to study the effect of withdrawal). Histological and immunohistochemical examination of cerebral cortex and testicular specimens for Bax (apoptotic marker) were carried out. Testicular specimens were examined by electron microscopy. RT-PCR after RNA extraction from both specimens was done for the genes of some antioxidant enzymes .Also, malondialdehyde (MDA) was measured colourimetrically in tissues homogenizate. The results of this study demonstrated histological changes in testicular and brain tissues in group II compared to group I with increased apoptotic index proved by increased Bax expression. Moreover in this group increased MDA level with decreased gene expression of the antioxidant enzymes revealed oxidative stress. Group III showed signs of improvement but not returned completely normal. It could be concluded that administration of tramadol have histological abnormalities on both cerebral cortex and testicular tissues associated with oxidative stress in these organs. Also, there is increased apoptosis in both organs which regresses with withdrawal. These findings may provide a possible explanation for delayed fertility and psychological changes associated with tramadol abuse. PMID:25550769

  13. The Role of Neonatal Carnitine Palmitoyl Transferase Deficiency Type II on Proliferation of Neuronal Progenitor Cells and Layering of the Cerebral Cortex in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Heepeel Chang

    2007-06-01

    Full Text Available Neonatal Carnitine Palmitoyl Transferase Deficiency Type II, characterized by the absence of CPT II enzyme, is one of the lethal disorders of mitochondrial fatty acid oxidation. CPT II regulates the conversion of long chain fatty acids, so that its product, acyl-CoA esters, can enter the Krebs cycle and generate energy. Neonatal mutations of CPT II lead to severe disruption of the metabolism of long-chain fatty acids and result in dysmorphic features, cystic renal dysplasia, and neuronal migration defects. Examination of the brain from an approximately 15-week gestation human fetus with CPT II deficiency revealed premature formation of cerebral cortical gyri and sulci and significantly lower levels of neuronal cell proliferation in the ventricular and subventricular zones as compared to the reference cases. We used immunohistochemical markers to further characterize the effect of CPT II deficiency on progenitor cell proliferation and layering of neurons. These studies demonstrated a premature generation of layer 5 cortical neurons. In addition, both the total number and percentage of progenitor cells proliferating in the ventricular zone were markedly reduced in the CPT II case in comparison to a reference case. Our results indicate that CPT II deficiency alters the normal program of cellular proliferation and differentiation in the cortex, with early differentiation of progenitor cells associated with premature cortical maturation.

  14. Leucine-rich α2-glycoprotein is a novel biomarker of neurodegenerative disease in human cerebrospinal fluid and causes neurodegeneration in mouse cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Masakazu Miyajima

    Full Text Available Leucine-rich α2-glycoprotein (LRG is a protein induced by inflammation. It contains a leucine-rich repeat (LRR structure and easily binds with other molecules. However, the function of LRG in the brain during aging and neurodegenerative diseases has not been investigated. Here, we measured human LRG (hLRG concentration in the cerebrospinal fluid (CSF and observed hLRG expression in post-mortem human cerebral cortex. We then generated transgenic (Tg mice that over-expressed mouse LRG (mLRG in the brain to examine the effects of mLRG accumulation. Finally, we examined protein-protein interactions using a protein microarray method to screen proteins with a high affinity for hLRG. The CSF concentration of hLRG increases with age and is significantly higher in patients with Parkinson's disease with dementia (PDD and progressive supranuclear palsy (PSP than in healthy elderly people, idiopathic normal pressure hydrocephalus (iNPH patients, and individuals with Alzheimer's disease (AD. Tg mice exhibited neuronal degeneration and neuronal decline. Accumulation of LRG in the brains of PDD and PSP patients is not a primary etiological factor, but it is thought to be one of the causes of neurodegeneration. It is anticipated that hLRG CSF levels will be a useful biomarker for the early diagnosis of PDD and PSP.

  15. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure.

    Science.gov (United States)

    Ujčíková, H; Brejchová, J; Vošahlíková, M; Kagan, D; Dlouhá, K; Sýkora, J; Merta, L; Drastichová, Z; Novotný, J; Ostašov, P; Roubalová, L; Parenti, M; Hof, M; Svoboda, P

    2014-01-01

    Large number of extracellular signals is received by plasma membrane receptors which, upon activation, transduce information into the target cell interior via trimeric G-proteins (GPCRs) and induce activation or inhibition of adenylyl cyclase enzyme activity (AC). Receptors for opioid drugs such as morphine (micro-OR, delta-OR and kappa-OR) belong to rhodopsin family of GPCRs. Our recent results indicated a specific up-regulation of AC I (8-fold) and AC II (2.5-fold) in plasma membranes (PM) isolated from rat brain cortex exposed to increasing doses of morphine (10-50 mg/kg) for 10 days. Increase of ACI and ACII represented the specific effect as the amount of ACIII-ACIX, prototypical PM marker Na, K-ATPase and trimeric G-protein alpha and beta subunits was unchanged. The up-regulation of ACI and ACII faded away after 20 days since the last dose of morphine. Proteomic analysis of these PM indicated that the brain cortex of morphine-treated animals cannot be regarded as being adapted to this drug because significant up-regulation of proteins functionally related to oxidative stress and alteration of brain energy metabolism occurred. The number of delta-OR was increased 2-fold and their sensitivity to monovalent cations was altered. Characterization of delta-OR-G-protein coupling in model HEK293 cell line indicated high ability of lithium to support affinity of delta-OR response to agonist stimulation. Our studies of PM structure and function in context with desensitization of GPCRs action were extended by data indicating participation of cholesterol-enriched membrane domains in agonist-specific internalization of delta-OR. In HEK293 cells stably expressing delta-OR-G(i)1alpha fusion protein, depletion of PM cholesterol was associated with the decrease in affinity of G-protein response to agonist stimulation, whereas maximum response was unchanged. Hydrophobic interior of isolated PM became more "fluid", chaotically organized and accessible to water molecules

  16. Neurofisiologia e plasticidade no córtex cerebral pela estimulação magnética transcraniana repetitiva Plasticity of the human cerebral cortex as revealed by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Joaquim Brasil Neto

    2004-01-01

    Full Text Available Um velho dogma da biologia afirma que só existiria capacidade de reorganização cortical (neuroplasticidade em animais muito jovens; no adulto, tal capacidade seria pequena ou mesmo inexistente. Aqui, revisamos estudos realizados em animais e em humanos que demonstram uma capacidade de reorganização cortical nos sistemas sensoriais e motores em indivíduos adultos. Destacamos os estudos realizados com a técnica de estimulação magnética transcraniana. O córtex cerebral asulto é capaz de reorganização após lesões do sistema nervoso periférico ou central ou no contexto do aprendizado.An old biological dogma states that a potencial for cortical reorganization (neuroplasticity exists nly in young animals, being lost in adlt life. Here we review studies carried out both in animals and humans, whixh demonstrate cortical reorganization in sensory and motor systems in adult subjects. We particulary emphasiza human studies carried out with the aid of transcranial magnetic stimulation. The adult cortex is capable of reorganization after peripheral or central nervous system lesions and as a result of learning.

  17. Neuroprotective potential of Bacopa monnieri and Bacoside A against dopamine receptor dysfunction in the cerebral cortex of neonatal hypoglycaemic rats.

    Science.gov (United States)

    Thomas, Roshni Baby; Joy, Shilpa; Ajayan, M S; Paulose, C S

    2013-11-01

    Neonatal hypoglycaemia initiates a series of events leading to neuronal death, even if glucose and glycogen stores return to normal. Disturbances in the cortical dopaminergic function affect memory and cognition. We recommend Bacopa monnieri extract or Bacoside A to treat neonatal hypoglycaemia. We investigated the alterations in dopaminergic functions by studying the Dopamine D1 and D2 receptor subtypes. Receptor-binding studies revealed a significant decrease (p Bacoside A ameliorated the dopaminergic and cAMP imbalance as effectively as the glucose therapy. The upregulated Bax expression in the present study indicates the high cell death in hypoglycaemic neonatal rats. Enzyme assay of SOD confirmed cortical cell death due to free radical accumulation. The gene expression of SOD in the cortex was significantly downregulated (p < 0.001). Bacopa treatment showed a significant reversal in the altered gene expression parameters (p < 0.001) of Bax and SOD. Our results suggest that in the rat experimental model of neonatal hypoglycaemia, Bacopa extract improved alterations in D1, D2 receptor expression, cAMP signalling and cell death resulting from oxidative stress. This is an important area of study given the significant motor and cognitive impairment that may arise from neonatal hypoglycaemia if proper treatment is not implemented.

  18. Experimental study on alteration of adrenergic receptors activity in neuronal membranes protein of cerebral cortex following brain trauma in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-wei; XU Ru-xiang; QI Yi-long; CHEN Chang-cai

    2001-01-01

    Objective: To define the course of changes taken by α1 and β adrenergic receptors (AR) activity after traumatic brain injury (TBI) and explore the approach for secondary brain injury (SBI) management. Methods: The neuronal membrane protein of cortex were extracted from the rats subject to traumatic brain injury, and the changes of α1- and β-AR activities in the neuronal membranes were examined by radio ligand binding assay (RLBA). Results: α1- and β-AR activities underwent obvious changes, reaching their peak values at 24 h after TBI. α1-AR binding density (Bmax) reduced by 22.6%while the ligand affinity increased by 66.7%, and for β-AR, however, Bmax increased by 116.9% and the ligand affinity reduced by 50.7%. Their antagonists could counteract the changes ofα1- and β-AR activity. Conclusion: The patterns of changes varies between α1- and β-AR activity after TBI, suggesting their different roles in the neuronal membranes after brain trauma, and timely administration of AR antagonists is potentially beneficial in TBI management.

  19. 5HT{sub 2} receptors in cerebral cortex of migraineurs studied using PET and {sup 18}F-fluorosetoperoene

    Energy Technology Data Exchange (ETDEWEB)

    Chabriat, H.; Tehindrazanarivelo, A.; Vera, P.; Samson, Y.; Pappata, S.; Boullais, N.; Bousser, M.G. [Hospital Saint Antoine, Paris (France)

    1995-04-01

    Since the brain 5HT{sub 2} might be implicated in migraine pathogenesis, the authors have used positron emission tomography and {sup 18}F-fluorosetoperone, a 5HT{sub 2} specific radioligand, to investigate in vivo the cortical 5HT{sub 2} receptors in migraine subjects. Nine migraineurs who had either migraine with and without aura or only migraine without aura were studied between attacks. 12 unmedicated healthy subjects of similar mean age were used as controls. Brain radioactivity was measured after {sup 18}F-setoperone IV injection for 90 min. A decrease of the regional specific distribution volumes (SDV) of the ligand was observed both in migraineurs and in controls. The age adjusted group means of SDV did not differ between patients and controls for the whole and for the right or left frontal, temporal, parietal and occipital cortex. These results suggest that cortical 5HT{sub 2} receptors may be unaltered between attacks in migraine sufferers. 30 refs., 4 figs., 2 tabs.

  20. Kainate-enhanced release of D-(3H)aspartate from cerebral cortex and striatum: reversal by baclofen and pentobarbital

    Energy Technology Data Exchange (ETDEWEB)

    Potashner, S.J.; Gerard, D.

    1983-06-01

    A study was made of the actions of the excitant neurotoxin, kainic acid, on the uptake and the release of D-(2,3-3H)aspartate (D-ASP) in slices of guinea pig cerebral neocortex and striatum. The slices took up D-ASP, reaching concentrations of the amino acid in the tissue which were 14-23 times that in the medium. Subsequently, electrical stimulation of the slices evoked a Ca2+-dependent release of a portion of the D-ASP. Kainic acid (10(-5)-10(-3) M) produced a dose-dependent inhibition of D-ASP uptake. The electrically evoked release of D-ASP was increased 1.6-2.0 fold by 10(-5) and 10(-4)M kainic acid. The kainate-enlarged release was Ca2+-dependent. Dihydrokainic acid, an analogue of kainic acid with little excitatory or toxic action, did not increase D-ASP release but depressed D-ASP uptake. Attempts were made to block the action of kainic acid with baclofen and pentobarbital, compounds which depress the electrically evoked release of L-glutamate (L-GLU) and L-aspartate (L-ASP). Baclofen (4 X 10(-6)M), an antispastic drug, and pentobarbital (10(-4)M), an anesthetic agent, each inhibited the electrically evoked release of D-ASP and prevented the enhancement of the release above control levels usually produced by 10(-4)M kainic acid. It is proposed that 10(-5) and 10(-4)M kainic acid may enhance the synaptic release of L-GLU and L-ASP from neurons which use these amino acids as transmitters. This action is prevented by baclofen and pentobarbital. In view of the possibility that cell death in Huntington's disease could involve excessive depolarization of striatal and other cells by glutamate, baclofen might be effective in delaying the loss of neurons associated with this condition.

  1. 青春期氰戊菊酯暴露对小鼠大脑皮层性激素的影响%Effects of fenvalerate exposure during puberty on gonadal hormone in cerebral cortex of mice

    Institute of Scientific and Technical Information of China (English)

    刘萍; 孟秀红; 王华; 姬艳丽; 陈远华; 张程; 徐德祥

    2011-01-01

    . Cerebral cortex was excised. The remained mice were killed after four weeks , whose cerebral cortex was also excised. Protein expression of StAR,testosterone synthetic enzymes, androgen receptor ( AR ), two estrogen receptors( ERa and ERβ )in cerebral cortex were analyzed by Western blot. The content of testosterone ( T ) and estradiol ( E2 ) in cerebral cortex were measured by radioimmunoassay ( RIA ). Results Pubertal fenvalerate ( 30 mg/kg ) exposure markedly decreased T and E2 in cerebral cortex of male mice, whereas the level was significantly elevated in females. In agreement with above results, pubertal fenvalerate exposure obviously downregulated protein expression of 17β-HSD in cerebral cortex of males , and upregulated 17β-HSD expression in cerebral cortex of females. Additionally, pubertal fenvalerate exposure for two weeks and four weeks significantly enhanced the protein expression of AR in cerebral cortex of females, whereas in males, the protein expression of AR and ERβ in cerebral cortex was markedly upregulated in pubertal fenvalerate exposure for four weeks. Conclusion Pubertal fenvalerate exposure disrupts T and E2 synthesis and AR expression in cerebral cortex of mice. These alterations of steroids and the receptors in cerebral cortex might be detrimental to neurobehavioral development.

  2. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats.

    Science.gov (United States)

    Györffy, Balázs A; Gulyássy, Péter; Gellén, Barbara; Völgyi, Katalin; Madarasi, Dóra; Kis, Viktor; Ozohanics, Olivér; Papp, Ildikó; Kovács, Péter; Lubec, Gert; Dobolyi, Árpád; Kardos, József; Drahos, László; Juhász, Gábor; Kékesi, Katalin A

    2016-08-01

    An increasing number of studies have revealed associations between pre- and perinatal immune activation and the development of schizophrenia and autism spectrum disorders (ASDs). Accordingly, neuroimmune crosstalk has a considerably large impact on brain development during early ontogenesis. While a plethora of heterogeneous abnormalities have already been described in established maternal immune activation (MIA) rodent and primate animal models, which highly correlate to those found in human diseases, the underlying molecular background remains obscure. In the current study, we describe the long-term effects of MIA on the neocortical pre- and postsynaptic proteome of adolescent rat offspring in detail. Molecular differences were revealed in sub-synaptic fractions, which were first thoroughly characterized using independent methods. The widespread proteomic examination of cortical samples from offspring exposed to maternal lipopolysaccharide administration at embryonic day 13.5 was conducted via combinations of different gel-based proteomic techniques and tandem mass spectrometry. Our experimentally validated proteomic data revealed more pre- than postsynaptic protein level changes in the offspring. The results propose the relevance of altered synaptic vesicle recycling, cytoskeletal structure and energy metabolism in the presynaptic region in addition to alterations in vesicle trafficking, the cytoskeleton and signal transduction in the postsynaptic compartment in MIA offspring. Differing levels of the prominent signaling regulator molecule calcium/calmodulin-dependent protein kinase II in the postsynapse was validated and identified specifically in the prefrontal cortex. Finally, several potential common molecular regulators of these altered proteins, which are already known to be implicated in schizophrenia and ASD, were identified and assessed. In summary, unexpectedly widespread changes in the synaptic molecular machinery in MIA rats were demonstrated which

  3. Protection of Cactus Polysaccharide against H2O2-induced damage in the rat cerebral cortex and hippocampus Differences In time of administration

    Institute of Scientific and Technical Information of China (English)

    Xianju Huang; Qin Li; Lianjun Guo; Zankai Yan

    2008-01-01

    BACKGROUND: Pharmacological research has shown that cactus polysaccharide (CP) has anti-oxidant, anti-inflammatory, antitumor, anti-aging, and immune-stimulating activities. It may also provide protective effects against oxidative stress injuries in the rat brain.OBJECTIVE: To validate the effects of CP on H2O2-induced oxidative stress injuries in the ratcerebral cortex and hippocampal slices 30 minutes prior to injury, as well as 30 minutes and 2.5 hours after injury.DESIGN: A randomized controlled experiment.SETTINGS: Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology; Department of Pharmacology, College of Medical Science, Yangtze University.MATERIALS: A total of 50 male Sprague Dawley (SD) rats, normal grade and weighing 200-300 g, were provided by the Laboratory Animal Center of Tongji Medical College, Huazhong University of Science and Technology. The protocol was performed in accordance with ethical guidelines for the use and care of ani-mals. Cactus polysaccharide, a dried needle crystal, was extracted from Opuntia milpa alta at the Chemistry and Environment Engineering School of Yangtze University. The following chemicals and instruments were used: 2,3,5-triphenyl tetrazolium chloride (Sigma, St Louis, Missouri, USA); lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione (GSH), and total antioxidant competence (T-AOC) assays (Jiancheng-Bioeng Institute, Nanjing); McIllwain tissue chopper (Mickle Laboratory Engineering, USA); and ELISA reader and Magellan software (TECAN, Austria).METHODS: This experiment was performed at the Department of Pharmacology, Medical College of Yangtze University, between March and June 2006. All rats were sacrificed after anesthesia. The cerebral cortex and hippocampus were dissected. Several cerebral cortex and hippocampus slices were selected as controls, while other sections were co-incubated with H2O2 for 30 minutes to induce an oxidative stress injury. The

  4. Gene expression of fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: differences across development and with different DHA brain status.

    Science.gov (United States)

    Pélerin, Hélène; Jouin, Mélanie; Lallemand, Marie-Sylvie; Alessandri, Jean-Marc; Cunnane, Stephen C; Langelier, Bénédicte; Guesnet, Philippe

    2014-11-01

    Specific mechanisms for maintaining docosahexaenoic acid (DHA) concentration in brain cells but also transporting DHA from the blood across the blood-brain barrier (BBB) are not agreed upon. Our main objective was therefore to evaluate the level of gene expression of fatty acid transport and fatty acid binding proteins in the cerebral cortex and at the BBB level during the perinatal period of active brain DHA accretion, at weaning, and until the adult age. We measured by real time RT-PCR the mRNA expression of different isoforms of fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs), fatty acid binding proteins (FABPs) and the fatty acid transporter (FAT)/CD36 in cerebral cortex and isolated microvessels at embryonic day 18 (E18) and postnatal days 14, 21 and 60 (P14, P21 and P60, respectively) in rats receiving different n-3 PUFA dietary supplies (control, totally deficient or DHA-supplemented). In control rats, all the genes were expressed at the BBB level (P14 to P60), the mRNA levels of FABP5 and ACSL3 having the highest values. Age-dependent differences included a systematic decrease in the mRNA expressions between P14-P21 and P60 (2 to 3-fold), with FABP7 mRNA abundance being the most affected (10-fold). In the cerebral cortex, mRNA levels varied differently since FATP4, ACSL3 and ACSL6 and the three FABPs genes were highly expressed. There were no significant differences in the expression of the 10 genes studied in n-3 deficient or DHA-supplemented rats despite significant differences in their brain DHA content, suggesting that brain DHA uptake from the blood does not necessarily require specific transporters within cerebral endothelial cells and could, under these experimental conditions, be a simple passive diffusion process. PMID:25123062

  5. Spared Primary Motor Cortex and the Presence of MEP in Cerebral Palsy Dictate the Responsiveness to tDCS During Gait Training

    Directory of Open Access Journals (Sweden)

    Luanda Collange Grecco

    2016-07-01

    Full Text Available The current priority of investigations involving transcranial direct current stimulation (tDCS and neurorehabilitation is to identify biomarkers associated with the positive results of the interventions such that respondent and non-respondent patients can be identified in the early phases of treatment. The aims were to determine whether; 1 present motor evoked potential (MEP and, 2 injuries involving the primary motor cortex, are associated with tDCS-enhancement in functional outcome following gait training in children with cerebral palsy (CP. We reviewed the data from our parallel, randomized, sham-controlled, double-blind studies. Fifty-six children with spastic CP received gait training (either treadmill training or virtual reality training and tDCS (active or sham. Univariate and multivariate logistic regression analyses were employed to identify clinical, neurophysiologic and neuroanatomic predictors associated with the responsiveness to treatment with tDCS. MEP presence during the initial evaluation and the subcortical injury were associated with positive effects in the functional results. The logistic regression revealed that present MEP was a significant predictor for the six-minute walk test (p=0.003 and gait speed (p=0.028, whereas the subcortical injury was a significant predictor of gait kinematics (p=0.013 and gross motor function (p = 0.021. In this preliminary study involving children with CP, two important prediction factors of good responses to anodal tDCS combined with gait training were identified. Apparently, MEP (integrity of the corticospinal tract and subcortical location of the brain injury exerted different influences on aspects related to gait, such as velocity and kinematics.

  6. A phosphatidylinositol lipids system, lamellipodin, and Ena/VASP regulate dynamic morphology of multipolar migrating cells in the developing cerebral cortex.

    Science.gov (United States)

    Yoshinaga, Satoshi; Ohkubo, Takahiro; Sasaki, Shinji; Nuriya, Mutsuo; Ogawa, Yukino; Yasui, Masato; Tabata, Hidenori; Nakajima, Kazunori

    2012-08-22

    In the developing mammalian cerebral cortex, excitatory neurons are generated in the ventricular zone (VZ) and subventricular zone; these neurons migrate toward the pial surface. The neurons generated in the VZ assume a multipolar morphology and remain in a narrow region called the multipolar cell accumulation zone (MAZ) for ∼24 h, in which they extend and retract multiple processes dynamically. They eventually extend an axon tangentially and begin radial migration using a migratory mode called locomotion. Despite the potential biological importance of the process movement of multipolar cells, the molecular mechanisms remain to be elucidated. Here, we observed that the processes of mouse multipolar cells were actin rich and morphologically resembled the filopodia and lamellipodia in growth cones; thus, we focused on the actin-remodeling proteins Lamellipodin (Lpd) and Ena/vasodilator-stimulated phosphoprotein (VASP). Lpd binds to phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P₂] and recruits Ena/VASP, which promotes the assembly of actin filaments, to the plasma membranes. In situ hybridization and immunohistochemistry revealed that Lpd is expressed in multipolar cells in the MAZ. The functional silencing of either Lpd or Ena/VASP decreased the number of primary processes. Immunostaining and a Förster resonance energy transfer analysis revealed the subcellular localization of PI(3,4)P₂ at the tips of the processes. A knockdown experiment and treatment with an inhibitor for Src homology 2-containing inositol phosphatase-2, a 5-phosphatase that produces PI(3,4)P₂ from phosphatidylinositol (3,4,5)-triphosphate, decreased the number of primary processes. Our observations suggest that PI(3,4)P₂, Lpd, and Ena/VASP are involved in the process movement of multipolar migrating cells.

  7. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  8. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    International Nuclear Information System (INIS)

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of [3H] norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 x 10-5-10-3 M, enhanced potassium stimulated [3H] norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of [3H] norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABAA receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABAA agonist muscimol, 10-4 M, mimicked the effect of GABA, but the GABAB agonist (±)baclofen, 10-4 M, did not affect the release of [3H] norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABAA, but not GABAB, receptors. In contrast to the results that would be predicted for an event involving GABAA receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10-8 and 10-4 M. Thus these receptors may constitute a subclass of GABAA receptors. These results support a role of GABA uptake and GABAA receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat

  9. Computational analysis of cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Hidemasa; Abe, Osamu; Ohtomo, Kuni [University of Tokyo, Department of Radiology, Graduate School of Medicine, Tokyo (Japan)

    2010-08-15

    Magnetic resonance imaging (MRI) has been used in many in vivo anatomical studies of the brain. Computational neuroanatomy is an expanding field of research, and a number of automated, unbiased, objective techniques have been developed to characterize structural changes in the brain using structural MRI without the need for time-consuming manual measurements. Voxel-based morphometry is one of the most widely used automated techniques to examine patterns of brain changes. Cortical thickness analysis is also becoming increasingly used as a tool for the study of cortical anatomy. Both techniques can be relatively easily used with freely available software packages. MRI data quality is important in order for the processed data to be accurate. In this review, we describe MRI data acquisition and preprocessing for morphometric analysis of the brain and present a brief summary of voxel-based morphometry and cortical thickness analysis. (orig.)

  10. 液质联用蛋白组学技术分析脑组织脂筏样品的属性*%Properties of Lipid Rafts from Cerebral Cortex Based on HPLC MS/MS Proteomics

    Institute of Scientific and Technical Information of China (English)

    聂坤; 张雪竹; 赵岚; 贾玉洁; 韩景献

    2013-01-01

      目的验证蔗糖密度梯度超速离心法提取脑组织脂筏的有效性。方法用蔗糖密度梯度超速离心法提取小鼠脑组织脂筏,采用免疫印迹法、双酶胆固醇检测法结合光散射度分析样品的脂筏属性,采用液质联用蛋白组学技术和生物信息学手段,对脂筏中的蛋白质细胞定位进行分析。结果超速离心法提取的脑组织脂筏具有典型的高散色度、高胆固醇和高表达Flotillin-1的脂筏特性;液质联用蛋白组学分析从脂筏样本中鉴定出647种蛋白质,这些蛋白质细胞定位大多是细胞膜、内质网、细胞骨架和细胞浆等常见的脂筏蛋白来源,这种脂筏样品是含有杂质的混合物,鉴定出的647种总蛋白中,有21%是细胞核、线粒体和核糖体等非脂筏来源蛋白。结论超速离心法是提取脑组织脂筏的有效方法,但应用中要考虑杂蛋白的影响。%Objective To verify the validity of the sucrose density gradient ultracentrifugation method for lipid rafts from cerebral cortex. Methods Extract lipid rafts from cerebral cortex in mouse were extracted by the sucrose density gradi-ent ultracentrifugation method. The properties of lipid rafts were detected by Western blotting method, double enzyme and light scattering methods. HPLC MS/MS proteomics and bioinformatics were used to locate proteins of lipid rafts in cells. Re-sults Lipid rafts from cerebral cortex were provided with the model properties of lipid rafts such as high light scattering and cholesterol and high expression of Flotillin-1. HPLC MS/MS proteomics identified total 647 proteins. Most of these pro-teins were from plasma membrane, endoplasmic reticulum, cytoskeleton and cytosol, however, there were 21% proteins among total 647 proteins were from nucleus, mitochondria and ribosomes. Conclusion The sucrose density gradient ultra-centrifugation method is a effective method to extract lipid rafts from cerebral cortex, however

  11. Changes of MCT2 expression in cerebral cortex after formalin-induced rat pain model%MCT2在福尔马林致痛模型大鼠大脑皮质中的表达变化

    Institute of Scientific and Technical Information of China (English)

    宋开琴; 康承巧; 孙善全; 黄娟; 徐进; 李文娟; 蒋锦

    2014-01-01

    目的:观察疼痛应激时,大脑第一躯体感觉皮质后肢区(primary somatosensory cortex hindlimb region,S1HL)神经元单羧酸转运蛋2(monocarboxylate transporters 2,MCT2)的表达变化,以探讨MCT2参与疼痛调制的机制。方法应用免疫组织化学(IHC)、Western blot和计算机图像分析法检测福尔马林致痛大鼠模型大脑S1HL内MCT2的表达变化。结果与正常组相比,模型鼠S1HL内MCT2阳性神经元的数量及IOD在1 h时增加,3 d时达高峰,到7 d时有所下降,但仍然高于正常水平(P<0.05)。Western blot结果显示,MCT2蛋白表达变化与MCT2阳性神经元的数量和IOD变化趋势一致。结论在疼痛应激状态下,大脑S1HL神经元MCT2的表达增强,提示MCT2参与了疼痛的产生、传递和调制过程。%Objective To investigate the changeofmonocarboxylate transporters 2( MCT2) expression in cerebral cortex primary somatosensory cortex hindlimb region(S1HL)under the condition of pain stimulation, so as to explore the involvement of MCT2 in the pain adjustment mechanism in a rat pain model. Methods Immunohistochemical staining(IHC), Western blot and Computing- image analysis system were used to detect the changes of MCT2 expression in the cerebral cortex S1HL of the formalin-induced rat pain model. Results Compared with the control group, the number and IOD of MCT2-positive neurons in the cerebral cortex S1HL of formalin-treated rats began to increase at 1h,reaching the highest level on 3d and declined on 7d ,but still higher than those in the control group (P<0.05).The Western blot showed that the alteration tendency of MCT2 expression was consistent with those of the number and IOD of MCT2-positive neurons. Conclusion Our results indicated that MCT2 is up-regulated under the condition of pain stimulation, which might be involved in the formalin-induced pain and behavior regulation.

  12. On the Parallel Between Zipf's Law and 1/f Processes\\in Chaotic Systems Possessing Coexisting Attractors --A Possible Mechanism for language Formation in the Cerebral Cortex--

    Science.gov (United States)

    Nicolis, J. S.; Tsuda, I.

    1989-08-01

    A chaotic dynamics model of creating Markovian strings of symbols as well as sequences of "words" is exposed, and its relevance to Zipf's law in experimental linguistics is discussed. Recent developments of brain science and linguistics suggest a preliminary theory of language formation by means of chaotic dynamics both in groups of cerebral neurons and the thalamocortical pacemaker itself.

  13. Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. : ErbB signaling in human astrocytes

    OpenAIRE

    Sharif, Ariane; Duhem-Tonnelle, Véronique; Allet, Cécile; Baroncini, Marc; Loyens, Anne; Kerr-Conte, Julie; Collier, Francis; Blond, Serge; Ojeda, Sergio; Junier, Marie-Pierre; Prévot, Vincent

    2009-01-01

    Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron-glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of...

  14. Expression of Zonula Occludens-1 in Cerebral Cortex Following Traumatic Brain Injury%闭锁小带蛋白-1在脑外伤后皮质中的表达变化

    Institute of Scientific and Technical Information of China (English)

    王涛; 孟颖; 邹冬华; 李正东; 陈忆九; 陶陆阳

    2015-01-01

    目的:观察闭锁小带蛋白-1(zonula occludens-1,ZO-1)在脑外伤后皮质中不同时段的表达变化。方法建立小鼠脑外伤模型,分为脑外伤后1h、3h、6h、12h、24h、3d、7d组,同时设立假手术组及正常对照组。脑皮质中伊文思蓝(Evans blue,EB)含量检测评估血脑屏障通透性,Western印迹法和免疫组织化学染色法检测损伤皮质区ZO-1的表达。结果脑外伤后1 h皮质中EB含量开始增加,伤后1~3 d达高峰,伤后7 d接近正常。 Western印迹法显示,ZO-1在损伤1 h后表达下调,损伤1~3 d达到最低值,损伤7 d后明显回升,但仍低于假手术组和正常对照组。免疫组织化学染色显示,正常脑皮质血管中ZO-1呈强阳性表达,损伤后表达逐渐减弱,损伤3 d后阳性表达几乎消失,之后逐渐恢复。结论 ZO-1在脑外伤后皮质区呈先降低后升高的表达规律,与脑外伤后血脑屏障通透性变化规律呈负相关,为推断脑外伤损伤时间提供了新指标。%Objective To observe the time-course expression of zonula occludens-1 (ZO-1) in cerebral cortex after traumatic brain injury (TBI). Methods The TBI model of mouse was established. The mice were divided in 1 h, 3 h, 6 h, 12 h, 24 h, 3 d, 7 d after TBI, shamand control groups. The permeability of the blood brain barrier was evaluated by measuring the extravasation of Evans blue (EB) dye. The expression of Z O-1 in cerebral cortex in the injured area was detected by western blotting and im-munohistochemistry. Results The extravasation of EBdye of injured cortex gradually increased from 1 h, peaked at 1-3 d and approximately decreased to normal at 7 d after TBI. western blotting revealed that the expression of Z O-1 gradually decreased after 1 h, was at the lowest at 1-3 d, and then significantly increased after 7 d but was still lower than that of normal and shamgroups. The result of immunohisto-chemistry showed that Z O-1 had strong

  15. 先天性HCMV感染胎鼠大脑皮层ET-1 mRNA的研究%Study on endothelin-1 mRNA of cerebral cortex of fetal mouse following congenital human cytomegalovirus infection

    Institute of Scientific and Technical Information of China (English)

    袁中玉; 王明丽; 陈贵海; 李京培

    2001-01-01

    目的 对先天性人巨细胞病毒(HCMV)感染的胎鼠大脑皮层内皮素-1(ET-1)mRNA进行测定,以探讨先天性HCMV感染致脑损害的机制。方法 在建立先天性HCMV中枢神经系统(CNS)感染胎鼠模型的基础上,用逆转录-聚合酶链式反应(RT-PCR)测定受不同病毒剂量感染的胎鼠大脑皮层ET-1mRNA,并用地高辛标记的ET-1寡核苷酸探针对大脑皮层细胞印片进行原位杂交以检测相应mRNA转录量及胞内定位。结果 在大脑皮层组织的上清液中HCMV分离阳性;病理学研究证实受染胎鼠大脑皮层表现为侵袭性脑膜脑炎性改变,并在神经细胞内发现特异性核内嗜碱性包涵体。RT-PCR和原位杂交研究发现,受染胎鼠大脑皮层内ET-1mRNA转录量增加,以1.0ml和0.5ml组为显著,而0.25ml组与正常对照组比较无明显差别。结论 HCMV可经胎盘垂直传播至胎鼠脑组织。先天性HCMV感染可刺激受染胎鼠CNSET-1mRNA的转录,且与母鼠所接种的病毒量存在一定的量效关系。这些结果提示,ET-1在先天性HCMV感染脑损害过程中,早期可导致组织缺血性改变,而晚期则与受损大脑皮层的功能恢复有关。这对了解先天性HCMV感染致CNS损伤的机理将提供有价值的参考依据,同时也为临床防治和优生优育提供一种有价值的手段。%Objective To explore mechanisms of brain damage followingcongenitally infected human cytomegalovirus, the transcription of endothelin-1 (ET-1) mRNA of fetal mouse cerebral cortex (HCMV) were analyzed. Methods On the basis of developing congenital HCMV infective fetal model, reverse transcriptase-polymerase chain reaction (RT-PCR) was used to determine ET-1 mRNA of fetal mouse cerebral cortex infected by different inoculum size meanwhile the intracellular location of mRNA's was conducted with in situ hybridization by digoxigenin labelled ET-1 mRNA oligonucleotide probe. Virus isolation and sections coated

  16. GABAA Receptor-Mediated Bidirectional Control of Synaptic Activity, Intracellular Ca2+, Cerebral Blood Flow, and Oxygen Consumption in Mouse Somatosensory Cortex In Vivo

    DEFF Research Database (Denmark)

    Jessen, Sanne Barsballe; Brazhe, Alexey; Lind, Barbara Lykke;

    2015-01-01

    concentrations of THIP suppressed ΔCBF and ΔCMRO2 at high stimulation frequencies. Zolpidem had similar but less-pronounced effects, with similar dependence on drug concentration and stimulation frequency. Our present findings suggest that slight increases in both synaptic and extrasynaptic GABAAR activity might......Neural activity regulates local increases in cerebral blood flow (ΔCBF) and the cortical metabolic rate of oxygen (ΔCMRO2) that constitutes the basis of BOLD functional neuroimaging signals. Glutamate signaling plays a key role in brain vascular and metabolic control; however, the modulatory effect...

  17. Effect of acute administration of Pistacia lentiscus L. essential oil on rat cerebral cortex following transient bilateral common carotid artery occlusion

    Directory of Open Access Journals (Sweden)

    Quartu Marina

    2012-01-01

    Full Text Available Abstract Background Ischemia/reperfusion leads to inflammation and oxidative stress which damages membrane highly polyunsaturated fatty acids (HPUFAs and eventually induces neuronal death. This study evaluates the effect of the administration of Pistacia lentiscus L. essential oil (E.O., a mixture of terpenes and sesquiterpenes, on modifications of fatty acid profile and endocannabinoid (eCB congener concentrations induced by transient bilateral common carotid artery occlusion (BCCAO in the rat frontal cortex and plasma. Methods Adult Wistar rats underwent BCCAO for 20 min followed by 30 min reperfusion (BCCAO/R. 6 hours before surgery, rats, randomly assigned to four groups, were gavaged either with E.O. (200 mg/0.45 ml of sunflower oil as vehicle or with the vehicle alone. Results BCCAO/R triggered in frontal cortex a decrease of docosahexaenoic acid (DHA, the membrane highly polyunsaturated fatty acid most susceptible to oxidation. Pre-treatment with E.O. prevented this change and led further to decreased levels of the enzyme cyclooxygenase-2 (COX-2, as assessed by Western Blot. In plasma, only after BCCAO/R, E.O. administration increased both the ratio of DHA-to-its precursor, eicosapentaenoic acid (EPA, and levels of palmytoylethanolamide (PEA and oleoylethanolamide (OEA. Conclusions Acute treatment with E.O. before BCCAO/R elicits changes both in the frontal cortex, where the BCCAO/R-induced decrease of DHA is apparently prevented and COX-2 expression decreases, and in plasma, where PEA and OEA levels and DHA biosynthesis increase. It is suggested that the increase of PEA and OEA plasma levels may induce DHA biosynthesis via peroxisome proliferator-activated receptor (PPAR alpha activation, protecting brain tissue from ischemia/reperfusion injury.

  18. Presence of D4 dopamine receptors in human prefrontal cortex: a postmortem study Presença de receptores dopaminérgicos D4 em córtex cerebral humano: um estudo post-mortem

    Directory of Open Access Journals (Sweden)

    Donatella Marazziti

    2007-06-01

    Full Text Available OBJECTIVE: The aim of our study was to explore the presence and the distribution of D4 dopamine receptors in postmortem human prefrontal cortex, by means of the binding of [³H]YM-09151-2, an antagonist that has equal affinity for D2, D3 and D4 receptors. It was therefore necessary to devise a unique assay method in order to distinguish and detect the D4 component. METHOD: Frontal cortex samples were harvested postmortem, during autopsy sessions, from 5 subjects. In the first assay, tissue homogenates were incubated with increasing concentrations of [³H]YM-09151-2, whereas L-745870, which has a high affinity for D4 and a low affinity for D2/D3 receptors, was used as the displacer. In the second assay, raclopride, which has a high affinity for D2/D3 receptors and a low affinity for D4 receptors, was used to block D2/D3. The L-745870 (500 nM was added to both assays in order to determine the nonspecific binding. RESULTS: Our experiments revealed the presence of specific and saturable binding of [³H]YM-09151-2. The blockade of D2 and D3 receptors with raclopride ensured that the D4 receptors were labeled. The mean maximum binding capacity was 88 ± 25 fmol/mg protein, and the dissociation constant was 0.8 ± 0.4 nM. DISCUSSION AND CONCLUSIONS: Our findings, although not conclusive, suggest that the density of D4 receptors is low in the human prefrontal cortex.OBJETIVO: O objetivo deste estudo foi quantificar a presença e a distribuição de receptores dopaminérgicos do tipo 4 (D4 no córtex cerebral humano em amostras post-mortem através do bloqueio com ³H-YM-09151-2 - um antagonista com afinidade equivalente pelos receptores D2, D3 e D4 - e do desenvolvimento de um método para a detecção específica do componente D4. MÉTODO: Foram obtidas amostras de córtex cerebral de cinco cadáveres. Em um primeiro ensaio, os homogeneizados de tecido cerebral foram incubados em concentrações crescentes de ³H-YM-09151-2, enquanto que o L-745

  19. Clinical Neuroimaging of cerebral ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawara, Jyoji [Nakamura Memorial Hospital, Sapporo (Japan)

    1999-06-01

    Notice points in clinical imaging of cerebral ischemia are reviewed. When cerebral blood flow is determined in acute stage of cerebral embolism (cerebral blood flow SPECT), it is important to find area of ischemic core and ischemic penumbra. When large cortex area is assigned to ischemic penumbra, thrombolytic therapy is positively adapted, but cautious correspondence is necessary when ischemic core is recognized. DWI is superior in the detection of area equivalent to ischemic core of early stage, but, in imaging of area equivalent to ischemic penumbra, perfusion image or distribution image of cerebral blood volume (CBV) by MRI need to be combined. Luxury perfusion detected by cerebral blood flow SPECT in the cases of acute cerebral embolism suggests vascular recanalization, but a comparison with CT/MRI and continuous assessment of cerebral circulation dynamics were necessary in order to predict brain tissue disease (metabolic abnormality). In hemodynamic cerebral ischemia, it is important to find stage 2 equivalent to misery perfusion by quantification of cerebral blood flow SPECT. Degree of diaschisis can indicate seriousness of brain dysfunction for lacuna infarct. Because cerebral circulation reserve ability (perfusion pressure) is normal in all areas of the low cerebral blood flow by diaschisis mechanism, their areas are easily distinguished from those of hemodynamic cerebral ischemia. (K.H.)

  20. 脑缺血后大脑皮质神经生长因子和脑源性神经营养因子的改变%The Change of Nerve Growth Factor and Brain Derived Neurotrophic Factor in Neurons of Cerebral Cortex of Adult Rat Following Local Ischemia

    Institute of Scientific and Technical Information of China (English)

    曾兢; 王廷华; 张晓; 米兰兰; 高礼

    2001-01-01

    【内容摘要】目的探讨脑缺血后大脑皮质神经生长因子(NGF)、脑源性神经营养因子(BDNF)的变化。方法采用免疫组织化学ABC法观察NGF和BDNF的改变。结果 NGF、BDNF样免疫阳性反应物主要分布于大脑皮质第3、5层的神经元。脑缺血1小时后,NGF、BDNF在皮质神经元的表达明显增加。结论 NGF、BDNF与脑缺血后大脑皮质神经细胞的损伤修复有关。%Objective To acquire knowledge about the change of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in neurons of cerebral cortex of adult rat following local ischemia. Methods Using specific antiserums of NGF and BDNF by immunohistochemical ABC method. Results NGF-like and BDNF-like immunoreactions distributed mainly in the neurons of the third and fifth layers in cerebral cortex. After local ischemia, the average gray degrees of NGF and BDNF in neurons of cerebral cortex both decreased on the operated side more than on the un-operated side. Conclusion This experiment demonstrated that the levels of NGF and BDNF in neurons of cerebral cortex following ischemia were upregulated apparently, suggesting that NGF and BDNF may play an important role in the process of neurons' reaction after ischemia.

  1. The expression of cholecystokinin and prolactin in cerebral cortex of developing rats with seizure induced by acute heat stress%发育期热水浴诱发惊厥大鼠大脑皮层催乳素和胆囊收缩素蛋白表达的研究

    Institute of Scientific and Technical Information of China (English)

    陈大庆; 倪宏; 水泉祥; 丁振尧; 李上淼

    2009-01-01

    Objective To analyze the distribution of cholecystokinin (CCK) and prolactin (PRL) positive cells in rat' s brain following heat stress (HS) and febrile convulsion ( FC). Methods Acute heat stress model of seizure induced by warm water was developed in this study. Adjacent section immunohistochemical staining method was used to observe expression of CCK and PRL in cerebral cortex. Results (1) There were similar distributions of CCK and PRL positive cells in cerebral cortex of HS group. (2) Both HS and FC rats showed more positive neurons in cerebral cortex than those in control group (P < 0. 01). There were significant more CCK positive neurons in cerebral cortex than that in HS group(P <0. 01) .however,no significant difference of PRL positive neurons was found in piriform cortex and entorhinal cortex between HS and FC group(P>0.05) ,but the difference was significant in perirhinal cortex and parietal cortex. (3)Correlation and regression analysis of the data of CCK and PRL positive units demonstrated that the immunoreactive intensity of CCK and PRL had a positive linear correlation in cerebral cortex of HS group ( Y = 7. 939 +1. 36X, r = 0. 97, P < 0. 01), but no correlation was found in cerebral cortex of FC group ( r = 0. 47, P >0.05). Conclusion (1) CCK may involve in anti-convulsant mechanisms in response to FC. (2) There may be a synergistic action of PRL and CCK in the central control of HS.%目的 探讨急性热应激(HS)和热性惊厥(FC)对大脑皮层胆囊收缩素(CCK)和催乳素(PRL)定位表达的影响.方法 采用热水浴诱导21 日龄大鼠FC模型,应用免疫组织化学技术,对HS和FC大鼠CCK和PRL在大脑皮层的定位表达进行比较分析.结果 (1)HS组CCK和PRL阳性细胞在大脑皮层分布极为相似,免疫染色有共深或共浅的倾向.(2)HS组和FC组大脑皮层CCK、PRL阳性细胞数明显高于对照组(P<0.01).FC组大鼠大脑皮层各区CCK阳性细胞数明显高于HS组(P<0.01).FC组大鼠大

  2. Effect of epileptogenic agents on the incorporation of /sup 3/H-glycine into proteins in the cat's cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Rojik, I.; Feher, O.

    1982-06-01

    Filter paper strips soaked in /sup 3/H-glycine solution were applied to acoustic cortex of cats, anaesthetized with Nembutal and pretreated with epileptogenic agents (Metrazol, G-penicillin, and 3-amino-pyridine) and cycloheximide. The untreated contralateral hemisphere served as control. After 1 h incubation, both cortical samples were excised simultaneously and fixed in Bouin solution for autoradiography. Incorporation was blocked by cycloheximide. There was no glycine incorporation on the penicillin-treated side, while pyramidal cells were intensively labelled in layers II-V of the mirror focus. 3-Aminopyridine produced the same result. Metrazol as convulsant proved to be far weaker than the previous two. The intensity of incorporation was significantly more intensive in the mirror focus than in the primary one. Penicillin and 3-aminopyridine, while provoking cortical seizures, seem to inhibit glycine incorporation into a neuron-specific, function-dependent protein contained by the labelled cells in the autoradiogram.

  3. 双环己酮草酰二腙诱导的精神分裂症样小鼠大脑皮质体积及有髓神经纤维的体视学观测%Stereological observation of cerebral cortex volume and myelinated fibers in cerebral cortices of cuprizone-induced schizophrenia-like mice

    Institute of Scientific and Technical Information of China (English)

    彭超; 程国华; 王芸; 李永德; 陈林; 卢伟; 孔吉明; 肖岚; 唐勇

    2013-01-01

    目的 探讨双环己酮草酰二腙(cuprizone,CPZ)诱导的精神分裂症样小鼠大脑皮质体积及其内有髓神经纤维的改变.方法 将6周龄的雄性C57BL/6小鼠分为CPZ组和对照组,CPZ组小鼠用含0.2% CPZ混合饲料饲育,对照组小鼠用标准的实验室饲料饲育.6周后进行行为学实验以证实精神分裂症样动物模型造模成功.然后运用透射电镜技术和体视学方法对小鼠大脑皮质体积和大脑皮质内有髓神经纤维进行定量研究.结果 行为学实验中CPZ组小鼠出现精神分裂症样表现,体视学定量研究中CPZ组与对照组小鼠相比大脑皮质总体积没有显著性改变(P>0.05).与对照组小鼠相比,CPZ组小鼠大脑皮质有髓神经纤维长度密度和总长度分别显著性降低了64.3%和68.9% (P <0.01),有髓神经纤维平均直径显著性增加了17.8% (P <0.01).直径为0.2~<0.4 μm、0.4~<0.6 μm和0.6~ <0.8 μm的大脑皮质有髓神经纤维总长度与对照组小鼠相比分别显著性减少了4.317、3.313 km和0.940 km(P <0.01),CPZ组小鼠其他直径段大脑皮质有髓神经纤维总长度与对照组小鼠相比无显著性差异(P>0.05).结论 CPZ组小鼠存在大脑皮质有髓神经纤维总长度的降低和平均直径的增加,有髓神经纤维总长度的降低主要是由小直径纤维丢失造成的.%Objective To investigate the changes of cerebral cortex volume and myelinated fibers in the cerebral cortices of cuprizone ( CPZ) -induced schizophrenia-like mice. Methods Six-week old male C57BL/6 mice were divided into a CPZ group arid a control group. The mice in the CPZ group were fed with mixed standard rodent chow containing 0. 2% CPZ, while those in the control group were fed with standard lab chow. After six weeks, behavioral tests were performed to confirm the success of schizophrenia-like animal model. Then the cerebral cortex volume and myelinated fibers in the cerebral cortices were

  4. Effect of destruction of central noradrenergic and serotonergic nerve terminals by systemic neurotoxins on the long-term effects of antidepressants on. beta. -adrenoceptors and 5-HT/sub 2/ binding sites in the rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Hall, H.; Ross, S.B.; Saellemark, M. (Astra Pharmaceuticals AB, Soedertaelje (Sweden))

    1984-01-01

    The dependence of intact noradrenergic and serotonergic nerve terminals for the decrease in the number of ..beta..-adrenoceptors and 5-HT/sub 2/ binding sites in the cerebral cortex produced by long-term treatment of rats with antidepressant drugs was examined. Noradrenergic nerve terminals were destroyed with the selective noradrenaline neurotoxin DSP4, and serotonergic nerve terminals were destroyed with p-chloroamphetamine (PCA). It was found that lesioning of the noradrenergic nerve terminals abolished the decrease in ..beta..-adrenoceptors produced by desipramine, mianserin and zimeldine and partially antagonized that of the ..beta..-adrenoceptor agonist clenbuterol. PCA pretreatment did not antagonize the long-term effects on the ..beta..-adrenoceptor produced by these compounds. Lesioning of serotonergic nerve terminals affected the down-regulation of 5-HT/sub 2/ binding sites produced by long-term treatment with mianserin, desipramine and amiflamine. DSP4 pretreatment partially abolished the down-regulation of 5-HT/sub 2/ binding sites produced by long-term treatment with desipramine, while the effects of mianserin and amiflamine were inaffected by pretreatment with DSP4.

  5. Memantine treatment reduces the expression of the K(+)/Cl(-) cotransporter KCC2 in the hippocampus and cerebral cortex, and attenuates behavioural responses mediated by GABA(A) receptor activation in mice.

    Science.gov (United States)

    Molinaro, Gemma; Battaglia, Giuseppe; Riozzi, Barbara; Di Menna, Luisa; Rampello, Liborio; Bruno, Valeria; Nicoletti, Ferdinando

    2009-04-10

    A 7-day treatment with memantine (25 mg/kg, i.p.), a drug that is currently prescribed for the treatment of Alzheimer's disease, increased the levels of brain-derived neurotrophic factor (BDNF) and reduced the expression of the neuron-specific K(+)/Cl(-) co-transporter, KCC2, in the hippocampus and cerebral cortex of mice. Knowing that KCC2 maintains low intracellular Cl(-) concentrations, which drive Cl(-) influx in response to GABA(A) receptor activation, we monitored the behavioural response to the GABA(A) receptor enhancer, diazepam, in mice pre-treated for 7 days with saline or 25 mg/kg of memantine. Memantine treatment substantially attenuated motor impairment induced by an acute challenge with diazepam (6 mg/kg, i.p.), as assessed by the rotarod test and the horizontal wire test. We suggest that a prolonged treatment with memantine induces changes in the activity of GABA(A) receptors that might contribute to the therapeutic and/or toxic effects of the drug.

  6. Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism.

    Directory of Open Access Journals (Sweden)

    Christina R Muratore

    Full Text Available The folate and vitamin B12-dependent enzyme methionine synthase (MS is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years was observed. Further analysis revealed alternative splicing of MS mRNA, including deletion of folate-binding domain exons and age-dependent deletion of exons from the cap domain, which protects vitamin B12 (cobalamin from oxidation. Although three species of MS were evident at the protein level, corresponding to full-length and alternatively spliced mRNA transcripts, decreasing mRNA levels across the lifespan were not associated with significant changes in MS protein or methionine levels. MS mRNA levels were significantly lower in autistic subjects, especially at younger ages, and this decrease was replicated in cultured human neuronal cells by treatment with TNF-α, whose CSF levels are elevated in autism. These novel findings suggest that rather than serving as a housekeeping enzyme, MS has a broad and dynamic role in coordinating metabolism in the brain during development and aging. Factors adversely affecting MS activity, such as oxidative stress, can be a source of risk for neurological disorders across the lifespan via their impact on methylation reactions, including epigenetic regulation of gene expression.

  7. Alpha-actinin expression at different differentiating time points from temporal lobe cerebral cortex neural stem cells to neuron-like cells using energy dispersive X-ray analysis

    Institute of Scientific and Technical Information of China (English)

    Bo YU; Hua Li; Zhe Du; Yang Hong; Meng Sang; Yuxiu Shi

    2009-01-01

    BACKGROUND: Alpha-actinin (a-actinin) plays a key role in neuronal growth cone migration during directional differentiation from neural stem cells (NSCs) to neurons.OBJECTIVE: To detect in situ microdistribution and quantitative expression of a-actinin during directional differentiation of NSCs to neurons in the temporal lobe cerebral cortex of neonatal rats.DESIGN, TIME AND SETTING: Between January 2006 and December 2008, culture and directional differentiation of NSCs were performed at Department of Histology and Embryology, Preclinical Medical College, China Medical University. Immune electron microscopy was performed at Department of Histology and Embryology and Department of Electron Micrology, Preclinical Medical College, China Medical University. Spectrum analysis was performed at Laboratory of Electron Microscopy, Mental Research Institute, Chinese Academy of Sciences.MATERIALS: Basic fibroblast growth factor, epidermal growth factor, brain-derived nerve growth factor, type-1 insulin like growth factor, and a-actinin antibody were provided by Gibco BRL, USA; rabbit-anti-rat nestin monoclonal antibody, rabbit-anti-rat neuron specific enolase polyclonal antibody, and EDAX-9100 energy dispersive X-ray analysis were provided by PHILIPS Company, Netherlands.METHODS: NSCs, following primary and passage culture, were differentiated with serum culture medium (DMEM/F12+10% fetal bovine serum+2 ng/mL brain-derived nerve growth factor+2 ng/mL type-1 insulin like growth factor).MAIN OUTCOME MEASURES: Expression of a-actinin in neuron-like cells was quantitatively and qualitatively detected with immunocytochemistry using energy dispersive X-ray analysis. RESULTS: Immunocytochemistry, combined with electron microscopy, indicated that positive a-actinin expression was like a spheroid particle with high electron density. In addition, the expression was gradually concentrated from the nuclear edge to the cytoplasm and expanded into developing neurites, during

  8. Cultivation of Cerebral Cortex Neuronal Cells of Newborn BALB/c Mice%新生BALB/c小鼠大脑皮质神经元细胞培养方法的建立

    Institute of Scientific and Technical Information of China (English)

    辛岗; 苏芸; 王革非; 许燕璇; 李康生

    2011-01-01

    Objective: To establish a method for cultivation of cerebral cortex neuronal cells of newborn BALB/c mice. Methods: The cortexes from newborn(less than 24 h) BALB/c mice were obtained and digested by 0.25% trypsin, and then dissociated into single cell suspension. About 1×106 cells were seeded onto each 35 mm dish which was coated by poly-L-lysine overnight previously. After cultivated in seeding medium for 6 h, the neuron cells were cultured in neurobasal medium containing B27, FBS, and glutamine. Cytosine arabinofurannside was added to the cultures at a final concentration of 5 mg/mL on 40 h. Results: The neuron cells showed a typical morphorlogy at day 5. As indicated by indirect immunofluorescence using antibodies against neuron specific βⅢ tubulin, the purity of the neuronal cultures was 93%. Conlusion: The optimized method to culture neuron from BALB/c mice was established.%目的:经改良和优化,建立高纯度BALB/c小鼠大脑皮质神经元培养的方法.方法:采用L-多聚赖氨酸包被细胞培养板,取新生BALB/c小鼠(出生24 h内)大脑皮质组织,经0.25%胰酶消化后吹打成单个细胞,按1×106/孔接种于35 mm的六孔板中,用神经元细胞培养种植液培养6 h后换神经元细胞培养饲养液,培养40 h时加入阿糖胞苷抑制神经胶质细胞的生长,随时观察神经元培养情况.结果:培养5 d的神经元细胞形态最为典型;经免疫荧光方法鉴定,神经元细胞纯度为93%.结论:经方法改良与优化,获得了高纯度的原代培养小鼠大脑皮质神经元细胞.

  9. Dynamic changes of apoptosis in rat cerebral cortex neurons after hypoxia%大鼠大脑皮层神经元缺氧后细胞凋亡情况的动态观察

    Institute of Scientific and Technical Information of China (English)

    邹哲华; 陶陶; 徐坚; 刘智; 罗开俭

    2012-01-01

    Objective To observe the dynamic changes of apoptosis in rat cerebral cortex neurons after hypoxia. Methods Rat cerebral cortex neurons were primarily cultured from SD rats born within 24 h and then identified by immunocytochemical assay. Then the identified cells were cultured in the medium containing 100 μmol/L CoCl2 to simulate hypoxic condition. The cells cultivated in normal condition served as normal control ( normoxia group). Ultrastructural changes of the neurons were observed by transmission electron microscopy (TEM) . Neuronal apoptosis were observed by TUNEL assay. Results TEM displayed that the morphology of neurons was normal, so was the structure of chromatin, endoplasmic reticulum and mitochondria in normoxia group, while, cellular edema, organelle damage or disappearance were seen in the hypoxia group. TUNEL showed that obvious apoptosis were found in hypoxic cells, with significant difference with normoxia group ( P < 0. 01). The apoptosis reached its peak in 48 h after hypoxia (0. 187 ±0. 007) , significantly higher than those in 12, 24 and 72 h (P <0. 01). Conclusion Apoptosis is a dynamic process in hypoxic-ischemic brain injury, and an important pattern of neuronal death. Intervention for neuronal apoptosis should be performed in an appropriate time window to effectively treat hypoxic-ischemic encephalopathy.%目的 观察大鼠大脑皮层神经元缺氧后细胞凋亡动态变化.方法 制备大鼠大脑皮层神经元体外原代培养模型,免疫细胞化学鉴定大鼠大脑皮层神经元,透射电镜下观察不同时间点各实验组神经元超微结构的变化,TUNEL法观察不同时间点各实验组神经元凋亡情况.结果 正常对照组神经元透射电镜下形态及染色质正常、内质网、线粒体等结构正常,缺氧组神经元水肿,细胞器破坏或消失;TUNEL法检测神经元凋亡:缺氧后各组神经元凋亡明显增加,与相应正常对照组相比有显著差异(P<0.01),缺氧48 h

  10. 先天性甲状腺功能减退症新生大鼠大脑蛋白质差异表达的研究%Proteomic changes in cerebral cortex of neonatal rats with experimental congenital hypothyroidism

    Institute of Scientific and Technical Information of China (English)

    刘春蓉; 于保国; 刘燕青; 刘亚敏; 杨术旺; 张永亮

    2011-01-01

    Objective To screen differentially expressed brain proteins with proteomic method in cerebral cortex of neonatal rats with congenital hypothyroidism. Method From the 13th day of gestation,pregnant Wistar rats from the experimental group were given intragastrically with 2. 5 ml of 1%propylthiouracil daily. Cerebral cortex specimens were collected from the control and hypothyroidism neonatal rats. Two-directional electrophoresis (2-DE) was applied to analyze protein expression diversities between the euthyroid and hypothyroidism neonatal rat cerebral cortex. Protein spots with significantly different expression were screened and identified by mass spectrometry. Radioimmunoassay (RIA) was used to analyze serum FT3 , FT4 levels of each groups. Result The body weight of hypothyroid neonatal rats were lower than those in the corresponding control group (t = -8.07, P <0. 01 ). The FT3 levels of hypothyroid neonatal rats were lower than those in the corresponding control group ( t = 5. 39, P < 0. 01 ). The FT4 levels of hypothyroid neonatal rats were lower than those in the corresponding control group (t = 7.62, P < 0. 01 ).Stable 2-DE maps of normal and CH neonatal rat were constantly obtained. The maps were analyzed by software. Seven protein spots with high reproducibility, high resolution and significantly different expression were chosen and identified by mass spectrometry, including collapsing response mediator protein 2, actin related protein 2/3 complex subunit 5, ubiquitin-conjugating enzyme E2-25K, ATP synthase subunit d, CuZn superoxide dismutase, synuclein alpha, and nucleoside diphosphate kinase. Conclusion The value of this research is demonstrated here by the identification of several proteins known to be associated with nerve synapse structures formation, cell survival, metabolism, cell signal transduction, neural differentiation and nerve growth in the central nervous system. Furthermore this study identified several proteins except for collapsing

  11. 燃煤型氟中毒仔鼠大脑皮质超微结构改变%Ultrastructure changes in cerebral cortex of offspring rats with coal burning fluorosis

    Institute of Scientific and Technical Information of China (English)

    桂传枝; 冉龙艳; 官志忠

    2011-01-01

    Objective To duplicate the animal model with coal burning fluorosis and to observe the influence of fluo-rosis on the ultrastructure changes of cerebral cortex. Methods Thirty-two SD rats were randomly divided into a control group and a high-fluoride exposed group. The exposed group were fed with the corn polluted in drying processes by burning coal containing high level of fluoride from the endemic fluorosis area to produce the animal model of fluorosis. After six months,the rats mated and their filial generation were observed at age of 30 days and fluoride contents in urine,bone, and brain of the offspring rats were detected by fluorine ion choose electrode. The ultrastructure of cerebral cortex of offspring rats were examined by H-7650 transmission electronic microscope. Results Compared with the offspring rats in the control group,the rats in high-fluoride exposed group had significantly increased fluoride contents in urine (8. 52 ±1.61 vs 0. 98 ±0. 26 mg/L) ,bone( 1874 ±544 vs 1 124 ±395 mg/kg) ,and brain(0. 74 ±0. 26 vs 0. 36 ±0. 12 mg/kg) (P <0. 05 or P < 0. 01). But the weight of body mass and brain tissue, and the organosomatic index of the brain of the rats of the exposed group were significantly decreased(P < 0. 15 or P<0. 01). The nerve cell nuclear envelope local absence,amalgamation of synaptic cleft,and nebulousness of mitochondria in presynaptic membrane and synaptic structure were observed in the high-fluoride exposed rats. Conclusion Chronic fluorosis could be induced in rats feeding with the corn polluted with high level of fluoride and result in increases of urinary fluoride,skeletal fluoride,and fluoride in brain tissue,decreases of the weight of body and brain tissue,and changes of ultrastructure of cerebral cortex in offspring rats with maternal fluoride exposure.%目的 复制燃煤型氟中毒仔鼠模型并观察其对大脑皮质超微结构影响.方法 32只SD大鼠随机分为对照组、高氟组;高氟组以地氟病区燃

  12. Cerebral Hypoxia

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Cerebral Hypoxia Information Page Synonym(s): Hypoxia, Anoxia Table of Contents ( ... Trials Organizations Publicaciones en Español What is Cerebral Hypoxia? Cerebral hypoxia refers to a condition in which ...

  13. Frontoparietal cortical atrophy with gliosis in the gray matter of cerebral cortex: case report Atrofia cortical frontoparietal com gliose na substância cinzenta do córtex cerebral: relato de caso

    Directory of Open Access Journals (Sweden)

    Paulo Roberto de Brito-Marques

    2002-06-01

    região periventricular, centro semi-oval bilateral, e alta hiperintensidade de sinal na região da cápsula interna esquerda, além de leve atrofia bilateral nos lobos frontoparietais. Tomografia cerebral por emissão de fóton único revelou hipoperfusão de intensidade moderada nos lobos frontais e severa nos parietais, especialmente à esquerda. Os achados de necrópsia evidenciaram atrofia cortical, sendo severa nos lobos frontais, moderada nos parietais e leve no terço posterior dos temporais. Havia também leve atrofia no neostriado. Do ponto de vista histopatológico, existia na camada cortical severa perda neuronal com intensa gliose gemioscítica e grau variável de status spongiosus. As colorações por hematoxilina-eosina e Bielschowsky não revelaram células baloniformes (células de Pick e corpúsculos argirofílicos (corpos de Pick, degeneração neurofibrilar ou placa senil. As reações imuno-histoquímicas foram negativas para anti-ubiquitina, anti-tau, anti-beta amilóide e proteína anti-prion.

  14. 地西泮预处理对缺氧小鼠脑皮质硫化氢含量的影响%Effect of pretreatment with diazepam on content of H2S in mice cortex underwent cerebral hypoxia

    Institute of Scientific and Technical Information of China (English)

    倪云成; 汪燕; 张云倩; 马黎娜; 金培培; 许鹏程

    2013-01-01

    Objective To observe the effect of pretreatment with diazepam on the content of H2S in adult mice cortex underwent cerebral hypoxia.Methods Eighty Kunming adult mice were equally randomized into 5 groups of C (blank control),H (hypoxia model control),D4,D8 and D16(injected intraperitoneally with diazepam 4,8 and 16mg/kg at 30minutes before hypoxia,respectively).Hypoxia model was established by atmospheric hypoxia method.The occurrence time of mouth breathing was recorded.All mice were sacrificed at 24 h after hypoxia for determining the contents of water in brain tissue and H2S in the cortex.Results Compared with group H,the occurrence time of mouth breathing was prolonged and the content of water in brain was decreased in groups of D4,D8 and D16(P<0.05),the content of H2 S in the cortex was increased in group D16 (P<0.05).Conclusion Pretreatment of diazepam 16 mg/kg is helpful in protecting brain tissue from further hypoxia damage by increasing the release of H2S.%目的 观察地西泮预处理对缺氧小鼠脑皮质硫化氢(H2S)含量的影响.方法 80只昆明种小鼠随机均分为五组.其中的四组采用常压缺氧方法建立缺氧模型,分为单纯缺氧组和缺氧前30 min分别腹腔注射地西泮4、8、16 mg/kg三个预处理组(D4组、D8组、D16组);对照组不做任何处理.记录各组小鼠缺氧后出现张口呼吸的时间.24 h后将各组小鼠断头取脑,分别测定脑含水量和皮质中H2S的含量.结果 与单纯缺氧组比较,D4、D8、D16组出现张口呼吸的时间延长(P<0.05),脑含水量降低(P<0.05),D16组脑皮质H2S含量升高(P<0.05).结论 地西泮16mg/kg预处理可以促进缺氧小鼠脑皮质H2S生成,对缺氧脑损伤起保护作用.

  15. The discovery of motor cortex and its background.

    Science.gov (United States)

    Gross, Charles G

    2007-01-01

    In 1870 Gustav Fritsch and Edvard Hitzig showed that electrical stimulation of the cerebral cortex of a dog produced movements. This was a crucial event in the development of modern neuroscience because it was the first good experimental evidence for a) cerebral cortex involvement in motor function, b) the electrical excitability of the cortex, c) topographic representation in the brain, and d) localization of function in different regions of the cerebral cortex. This paper discusses their experiment and some developments in the previous two centuries that led to it including the ideas of Thomas Willis and Emanuel Swedenborg, the widespread interest in electricity and the localizations of function of Franz Joseph Gall, John Hughlings Jackson, and Paul Broca. We also consider the subsequent study of the motor cortex by David Ferrier and others.

  16. Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2001-02-01

    Full Text Available In order to study the effects of bee venom Herbal Acupuncture on neurotransmitters in the rat brain cortex, herbal acupuncture with bee venom group and normal saline group was performed at LI4 bilaterally of the rat. the average optical density of neurotransmitters from the cerebral cortex was analysed 30 minutes after the herbal aqupuncture, by the immunohistochemistry. The results were as follows: 1. The density of NADPH-diaphorase in bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex and perirhinal cortex compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in bee venom group had significant changes at the insular cortex, retrosplenial cortex and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

  17. A radial glia-specific role of RhoA in double cortex formation

    DEFF Research Database (Denmark)

    Cappello, Silvia; Böhringer, Christian R J; Bergami, Matteo;

    2012-01-01

    The positioning of neurons in the cerebral cortex is of crucial importance for its function as highlighted by the severe consequences of migrational disorders in patients. Here we show that genetic deletion of the small GTPase RhoA in the developing cerebral cortex results in two migrational diso...

  18. Tuberculoma cerebral Cerebral tuberculoma

    OpenAIRE

    ELIZABETH CLARA BARROSO; TÂNIA REGINA BRÍGIDO DE OLIVEIRA; ANA MARIA DANTAS DO AMARAL; VALÉRIA GÓES FERREIRA PINHEIRO; ANA LÚCIA DE OLIVEIRA SOUSA

    2002-01-01

    Relata-se o caso de paciente com crises convulsivas de início recente. A tomografia computadorizada cerebral evidenciou imagem sugestiva de lesão expansiva metastática frontoparietal direita. A investigação de tumor primário ou outra doença foi negativa e o exame histopatológico do tecido cerebral diagnosticou tuberculoma. As convulsões foram controladas com a associação de hidantoína 300mg/dia ao esquema específico, utilizado por 18 meses. A tuberculose do sistema nervoso central representa ...

  19. Effects of sevoflurane and isoflurane on proliferation of neural stem cells in rat cerebral cortex%七氟醚和异氟醚对大鼠大脑皮质神经干细胞增殖的影响

    Institute of Scientific and Technical Information of China (English)

    林函; 刘劲; 李纯; 王佩芳; 高雅静; 马晓晓; 王春满; 梅虹霞; 连庆泉

    2013-01-01

    Objective To evaluate the effects of sevoflurane and isoflurane on the proliferation of neural stem cells in rat cerebral cortex.Methods The neural stem cells were isolated from Sprague-Dawley rats at 15 days of gestation and cultured at a density of (1-2) × 106 cells/ml.The cells of 3rd generation were seeded in 6-well plates coated with poly-lysine and randomly divided into 3 groups (n =24 wells each) using a random number table:control group (group C),sevoflurane group (group S) and isoflurane group (group Ⅰ).In S and Ⅰ groups,the cells were exposed to 4.9% sevoflurane and 2.8% isoflurane in a mixture of 5% CO2-95% O2 for 6 h,respectively.The cells were exposed to a mixture of 5 % CO2-95 % O2 for 6 h in group C.After 6 h of exposure,the plates were removed and the cells were continuously incubated for 2 h in an incubator at 37 ℃.The proliferation of cells was detected by immunocytochemistry and microplate method.The expression of proliferation-related genes such as signal transducers and activators of transcription 3 (STAT3),Sox2,Notchl and P21 mRNA was detected using quantitative real-time PCR.The expression of total STAT3 protein and phosphorylated STAT3 protein (p-STAT3) was determined using Western blot.Results Compared with C group,the rate of proliferation was significantly decreased,and the expression of p-STAT3 was down-regulated in I and S groups,and the expression of STAT3 mRNA was down-regulated in Ⅰ group (P < 0.05),and no significant change was found in the expression of STAT3 mRNA in S group (P > 0.05).There was no significant difference in the expression of Sox2,Notch1 and P21 mRNA and total STAT3 protein between the three groups (P > 0.05).Conclusion Sevoflurane and isoflurane both can inhibit the proliferation of neural stem cells in the rat cerebral cortex,and the mechanism may be that sevoflurane inhibits activation of STAT3 protein,however,isoflurane not only inhibits the activation of STAT3 protein,but also inhibit

  20. Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping

    DEFF Research Database (Denmark)

    Seyedi Vafaee, Manouchehr; Vang, Kim; Bergersen, Linda H;

    2012-01-01

    Rates of cerebral blood flow (CBF) and glucose consumption (CMR(glc)) rise in cerebral cortex during continuous stimulation, while the oxygen-glucose index (OGI) declines as an index of mismatched coupling of oxygen consumption (cerebral metabolic rate of oxygen-CMRO(2)) to CBF and CMR(glc). To t...

  1. Is the brain cortex a fractal?

    Science.gov (United States)

    Kiselev, Valerij G; Hahn, Klaus R; Auer, Dorothee P

    2003-11-01

    The notion of fractal has been largely used to describe geometrical properties of complex objects in biology and medicine. In the present study the question is addressed whether the human cerebral cortex is self-similar in a statistical sense, which is commonly referred to as being a fractal. A new calculational method is presented, which is volumetric and based on the fast Fourier transform (FFT) of segmented three-dimensional high-resolution magnetic resonance images. The analysis covers a wide range of spatial scales from the size of the whole cortex to the ultimate pixel size. Results obtained in six subjects confirm the fractal nature of the human cerebral cortex down to a spatial scale of 3 mm. The obtained fractal dimension is D = 2.80 +/- 0.05, which is in reasonable agreement with previously reported results. Deployment of FFT enables a simple interpretation of the results and yields a high performance, which is necessary to analyze the entire cortex. Thus the FFT-based analysis of segmented MR images offers a comprehensive approach to study neurodevelopmental and neurodegenerative changes in the fractal geometry of the cerebral cortex. PMID:14642486

  2. 碱性成纤维细胞生长因子对慢性酒精中毒大鼠自由基与脂质过氧化作用的影响%Effects of bFGF on free radical and lipid peroxidation in cerebral cortex and liver tissue of rat model of alcoholism

    Institute of Scientific and Technical Information of China (English)

    黄俊杰; 王彩冰; 黄丽娟; 何显教; 黄彦峰; 赵善民; 李倩茗; 黄巨恩

    2012-01-01

    OBJECTIVE To study the effects of basic fibroblast growth factor (bFGF) on the superoxide dismutase (SOD) , malondialdehyde (MDA) and hydroxyl radical (OH.) in cerebral cortex and liver tissue of rat model of alcoholism. METHODS The rat model of alcoholism was established by perfusing stomach with alcohol. Wistar rats were randomly divided into of model of control group, model of alcoholism group, normal saline (NS) and bFGF treatment group. The SOD, MDA and (OH.) in cerebral cortex and liver tissue were detected. RESULTS MDA and (OH.) in cerebral cortex and liver tissue of rat model of alcoholism were significantly increased than those in control group, but the activities of SOD was significantly decreased than those in control group.After bFGF intervention, MDA and (OH.) in cerebral cortex and liver tissue of the bFGF group were significantly decreased compared with the NS group and model of alcoholism group respectively. But the activities of SOD were significantly increased. CONCLUSION bFGF possesses the reliable function of eliminating free radicals in cerebral cortex and liver tissue in alcohol induced alcoholism model rats. bFGF can protect alcoholic brain damage and liver damage in rats.%目的 观察碱性成纤维细胞生长因子(bFGF)对慢性酒精中毒大鼠脑和肝组织超氧化物歧化酶(SOD)活力、丙二醛(MDA)含量和羟自由基含量的影响,探讨bFGF对慢性酒精中毒所致的脑损伤、肝损伤的保护作用.方法 选择成年Wistar雄性大鼠,采用白酒灌胃建立慢性酒精中毒模型,慢性酒精中毒模型建立成功的大鼠随机抽签法分为酒精中毒组、生理盐水(NS)对照组和bFGF治疗组,每组10只.另10只不灌白酒作为正常对照组.bFGF治疗组大鼠按12μg/kg剂量肌肉注射bFGF,共14d.各组大鼠到d 14后取出各组大鼠脑、肝组织制成匀浆,测定脑、肝组织SOD活力、MDA含量和抑制羟自由基能力.结果 与正常对照组相比,慢性酒精中毒后大鼠

  3. Cerebral Palsy

    Science.gov (United States)

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  4. Increased stress vulnerability after a prefrontal cortex lesion in female rats

    NARCIS (Netherlands)

    Gerrits, M; Westenbroek, C; Fokkema, DS; Jongsma, ME; Den Boer, JA; Ter Horst, GJ

    2003-01-01

    Neuroimaging studies in patients suffering from affective disorders have shown decreased volume and reduced regional cerebral blood flow in multiple areas of the prefrontal cortex, including the medial prefrontal cortex and the orbitofrontal cortex. This aberrant brain activity is among other things

  5. Malaria cerebral Cerebral malaria

    Directory of Open Access Journals (Sweden)

    Carlos Hugo Zapata Zapata

    2003-03-01

    Full Text Available La malaria Cerebral (MC es la complicación más frecuente de la malaria por P. falciparum; aproximadamente el 90% de las personas que la han padecido se recuperan completamente sin secuelas neurológicas. Aún no se conoce con claridad su patogénesis pero se han postulado cuatro hipótesis o mecanismos posibles: 1 citoadherencia y secuestro de glóbulos rojos parasitados en la microvasculatura cerebral; 2 formación de rosetas y aglutinación de glóbulos rojos parasitados; 3 producción de citoquinas y activación de segundos mensajeros y, 4 apertura de la barrera hematoencefálica. Sin embargo, queda un interrogante sin resolver aún: ¿qué proceso se lleva a cabo para que el parásito, desde el espacio microvascular, pueda interferir transitoriamente con la función cerebral? Recientemente se ha utilizado el precursor de la proteína b-Amiloide como un marcador de daño neuronal en MC; este precursor será de gran ayuda en futuras investigaciones realizadas en nuestro medio que aporten información para comprender la patogénesis de la MC. Is the most common complication of P. falciparum malaria; nearly 90% of people who have suffered CM can recover without neurological problems. Currently there are four hypotheses that explain pathogenesis of CM: cytoadherence and sequestering of parasitized red blood cells to cerebral capillaries; rosette formation and parasitized red blood cells agglutination; production of cytokines and activation of second messengers and opening of the blood-brain barrier. However the main question remains to be answered; how the host-parasite interaction in the vascular space interferes transiently with cerebral function? Recently, the beta amyloid precursor peptide has been employed as marker of neural injury in CM. It is expected that the beta amyloid precursor peptide will help to understand the pathogenesis of CM in complicated patients of endemic areas of Colombia.

  6. 阿尔茨海默病患者精神行为与异生皮质血流水平的关系%Associations between the behavioral psychological symptoms in Alzheimer's disease and cerebral blood flow in cerebral heteroplasia cortex

    Institute of Scientific and Technical Information of China (English)

    傅红梅; 瞿正万; 唐震; 陈美娣; 施玲华; 陈峰; 江琦; 朱莉娜; 蔡正宜

    2011-01-01

    Objective To explore the relationship between behavioral psychological symptoms in Alzheimer' s dementia(AD) patients and region-specific alterations in cerebral blood flow. Methods 60 patients with AD randomly selected from a psychiatric outpatient department and 30 randomly selected healthy elderly community controls were administered the Mini-Mental State Exam (MMSE). All subjects underwent a perfusion CT scan to assess blood perfusion in brain regions of interest. The AD subjects were administered the behavioral patholigy in alzheimer' s disease(BEHAVE-AD) Rating Scale classified as mild, moderate or severe based on the results of the Clinical Dementia Rating scale. Results The most incidence was conduct disorder and the next was delusion.The score was 81.7% and 58.3% in turn. The conduct disorder score was higher in the severe demented group than in the mildly and moderate demented group(P<0. 05). The delusion score was higher in the moderate demented group than that in the mildly demented group(P<0.05). The time to peak(TTP)scores in the four groups of subjects were significantly different in the bilateral hippocampal formation, anteroinferior subiculum and entorhinal area. The TTP score was significantly higher in the moderately demented group than that in the mildly demented group and the control group(P<0. 05 ). Correlation analysis identified a positive correlation between conduct disorder, delusions and TTP in cerebral heteroplasia cortex (P < 0. 05 ), also identified a negative correlation between mood disorder and TTP(P<0. 05 ). Conclusion The conduct disorder,delusions and mood disorder in AD are associated with the chronicity ischemia of cerebral heteroplasia cortex leading to neural conduction disorders.%目的 探讨不同程度阿尔茨海默病(AD)患者大脑异生皮质区CT血流灌注水平及其与精神行为的相关性.方法 随机选择60例AD患者及30例健康老人,进行简易智能状态量表(MMSE)检查,并选取海

  7. Comparison of reference gene mRNA expressions of cerebral cortex and liver in the aged and the young rats%老年和青年大鼠大脑皮质及肝脏内参基因mRNA表达的对比分析

    Institute of Scientific and Technical Information of China (English)

    杨磊; 张煜; 赵超建; 史阳; 石如玲

    2013-01-01

    目的 对比分析老年和青年大鼠大脑皮质及肝脏内参基因的转录表达情况,探讨老年大鼠大脑皮质、肝脏基因转录分析中内参基因的选择.方法 以老年和青年SD大鼠为研究对象,用反转录PCR方法测定3-磷酸甘油醛脱氢酶(GAPDH)、β-肌动蛋白(β-actin)、18S核糖体RNA (18S rRNA)在老年和青年大鼠大脑皮质、肝脏中的表达稳定性.结果 老年大脑皮质GAPDH和β-aetin mRNA表达水平与青年相比差异无统计学意义,以GAPDH更为稳定,老年大脑皮质18S rRNA mRNA表达降低;老年肝脏β-actin和GAPDH mRNA表达水平与青年相比差异无统计学意义,以8-actin更为稳定,老年肝脏18S rRNA mRNA表达升高.内参基因在老年大脑皮质的变异系数由小到大依次为GAPDH< 18S rRNA<β-actin,在老年肝脏依次为β-actin< GAPDH< 18S rRNA.内参基因在青年大脑皮质的变异系数依次为β-actin<GAPDH< 18S rRNA,在青年肝脏依次为β-actin< 18S rRNA< GAPDH.结论 GAPDH在老年大鼠大脑皮质中表达最为稳定,β-aetin在老年大鼠肝脏中表达最为稳定.%OBJECTIVE To select the suitable reference genes for transcription expression analysis of aged rat cerebral cortex and liver,to evaluate three reference gene mRNA expressions of cerebral cortex and liver in the aged and the young rats.METHODS Reverse transcription-polymerase chain reaction was used to examine the mRNA levels of GAPDH,β-actin and 18S rRNA of cerebral cortex and liver in aged and young rats.RESULTS In cerebral cortex,there were no significant differences in GAPDH and β-actin mRNA levels between aged and young rats,and mRNA expression of GAPDH was more stable than that of β-actin,but 18S rRNA mRNA level of aged rats increased significantly.In liver,there were no significant differences in β-actin and GAPDH mRNA levels between aged and young rats,and mRNA expression of β-actin was more stable than that of GAPDH,but 18S rRNA mRNA level of aged

  8. Acute hypoxia increases the cerebral metabolic rate

    DEFF Research Database (Denmark)

    Vestergaard, Mark Bitsch; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob;

    2016-01-01

    imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N......-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.......058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration...

  9. 疼痛性冷刺激和非痛温热刺激口腔时对大脑皮层反应强度的影响%Effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water

    Institute of Scientific and Technical Information of China (English)

    杨秀文; 刘洪臣; 李科; 金真; 刘刚

    2014-01-01

    Objective We used functional magnetic resonance imaging (fMRI) to explore the effects of noxious coldness and non-noxious warmth on the magnitude of cerebral cortex activation during intraoral stimulation with water. Methods Six male and female subjects were subjected to whole-brain fMRI during the phasic delivery of non-noxious hot (23 ℃) and noxious cold (4 ℃) water intraoral stimulation. A block-design blood oxygenation level-dependent fMRI scan covering the entire brain was also carried out. Results The activated cortical areas were as follows: left pre-/post-central gyrus, insula/ operculum, anterior cingulate cortex (ACC), orbital frontal cortex (OFC), midbrain red nucleus, and thalamus. The activated cortical areas under cold condition were as follows: left occipital lobe, premotor cortex/Brodmann area (BA) 6, right motor language area BA44, lingual gyrus, parietal lobule (BA7, 40), and primary somatosensory cortex SⅠ. Comparisons of the regional cerebral blood flow response magnitude were made among stereotactically concordant brain regions that showed significant responses under the two conditions of this study. Compared with non-noxious warmth, more regions were activated in noxious coldness, and the magnitude of activation in areas produced after non-noxious warm stimulation significantly increased. However, ACC only significantly increased the magnitude of activation under noxious coldness stimulation. Conclusion Results suggested that a similar network of regions was activated common to the perception of pain and nopain produced by either non-noxious warmth or noxious coldness stimulation. Non-noxious warmth also activated more brain regions and significantly increased the response magnitude of cerebral-cortex activation compared with noxious coldness. Noxious coldness stimulation further significantly increased the magnitude of activation in ACC areas compared with noxious warmth.%目的:探索疼痛性冷刺激和非痛温热刺激口腔时

  10. 额叶皮层神经干细胞定向诱导分化类神经元的超微结构观察%Study on the ultrastructure of directional differentiation neuron-like cells of temporal lobe cerebral cortex neuron stem cell (NSC)

    Institute of Scientific and Technical Information of China (English)

    喻博; 刘云会; 刘冬娟; 石玉秀; 刘跃华; 杨蓓; 杜喆

    2008-01-01

    目的 研究大鼠额叶皮层神经干细胞(NSC)定向诱导分化类神经元细胞过程中的超微结构变化.方法 取Wistar出生24h新生鼠额叶脑组织加入神经生长因子进行干细胞的原代及继代培养SABC Nestin鉴定并定向培养,于1、3、7d进行扫描电镜观察.结果 神经干细胞诱导分化第7天的类神经元细胞扫描电镜观察可见胞体饱满,有树枝状分支,末端见鸭蹼状膨大的生长;透射电镜下观察可见细胞胞质中有大量的粗面内质网、线粒体与高尔基复体,脂滴糖原颗粒及微丝、微管,核膜、核仁清楚.结论 大脑额叶皮层神经干细胞经定向诱导分化形态学上能够分化成类神经元细胞结构.%Objective To evaluate the ultrastructure on frontal lobe cerebral cortex neuron stem cell ( NSC)in the process of directional differentiation neuron-like cells.Method Newborn Wistar animal in 24 hour was used,and the frontal lobe cerebral cortex tissue was scraped,primary generation and secondary culture with nerve nutrition factor were conducted.Immunochemistry SABC method was used to identify Nestin.Scan electron microscope(SEM)sample was prepared and observed on cover glass which taken from the raise board contain directional differentiation neuron at 1,3,7 day.Results Nearly mature,full soma,dendritic branches,duck palm shape apical cone on the terminal were obviously observed on SEM at 7 days.Some synapse type structure appeared on the cell surface.Organelles,massive RER,Golgi apparatus and the fat drop glycogen pellet was rich on TEM at 7 days.Microfilament and microtubule were in line,big and round nucleolus were clear.All these neuron-like cells characteristic were obvious and easy to see.Conclusions This study indicates that the frontal lobe cerebral cortex nerve stem cell can be directional induced differentiate to neuron-like cells.

  11. 音乐电针对SAMP8小鼠行为学及大脑皮层NEP、IDE表达的影响%Effect of Music Electro-acupuncture Intervention on the Behavior and the Expression of NEP and IDE in Cerebral Cortex of SAMP8

    Institute of Scientific and Technical Information of China (English)

    许安萍; 李志刚; 唐银杉; 莫雨平; 姚海江; 赛因朝克图

    2014-01-01

    目的:探讨音乐电针治疗阿尔茨海默病( AD )的可能作用机制。方法:将SAMP8小鼠随机分为模型组、药物组和音乐电针组,SAMR1小鼠作为正常组。药物组给予盐酸多奈哌齐0.92mg/kg灌胃给药;音乐电针组电针“百会”、“印堂”穴20 min后,点刺“水沟”穴。采用Morris水迷宫测定小鼠学习记忆能力,免疫组化法检测小鼠大脑皮层NEP及IDE的表达。结果:音乐电针改善模型小鼠学习记忆能力与药物比较,无显著性差异( P>0.05),并能显著提高大脑皮层NEP及IDE表达( P<0.05)。结论:音乐电针具有改善AD学习记忆障碍的作用,其机制可能与促进Aβ降解酶表达有关。%Objective:To observe the influence of music electro -acupuncture ( EA ) on the behavior and the expression of NEP and IDE in cerebral cortex of SAMP 8, so as to explore its mechanism underlying relief of Alzheimer’s Disease(AD).Methods:SAMP8 mice were randomly divided into model , medication and music EA groups.SAMR1 mice were used as the control group .Mice of the medication group were treated by oral administration of donepezil(0.92mg/kg).Music EA was applied to “Baihui”(GV20) and “Yintang”(EX-HN3) for 20min, and then swift pricked “Shuigou”(GV26).The learning memory ability of mice was detec-ted by using Morris Water Maze .The expression levels of NEP and IDE in cerebral cortex were assayed by im-munohistochemistry .Results:Compared with the model group , the learning memory ability of the music EA group improved obviously as well as the medication group ( P>0 .05 );The expression levels of NEP and IDE in cerebral cortex were increased obviously ( P<0 .05 ) .Conclusion:Music EA can effectively improve learning memory ability of SAMP8 mice which may be closely associated with their effects on improving the expression of NEP and IDE in cerebral cortex .

  12. Tuberculoma cerebral Cerebral tuberculoma

    Directory of Open Access Journals (Sweden)

    ELIZABETH CLARA BARROSO

    2002-01-01

    Full Text Available Relata-se o caso de paciente com crises convulsivas de início recente. A tomografia computadorizada cerebral evidenciou imagem sugestiva de lesão expansiva metastática frontoparietal direita. A investigação de tumor primário ou outra doença foi negativa e o exame histopatológico do tecido cerebral diagnosticou tuberculoma. As convulsões foram controladas com a associação de hidantoína 300mg/dia ao esquema específico, utilizado por 18 meses. A tuberculose do sistema nervoso central representa 5-15% das formas extrapulmonares e é reconhecida como de alta letalidade. Apresentação tumoral como a relatada é rara, particularmente em imunocompetentes. Quando tratada, pode ter bom prognóstico e deve entrar sempre no diagnóstico diferencial de massas cerebrais.It is reported a case of a previously healthy man with seizures of sudden onset. A contrast head computerized tomogram (CT showed a right frontoparietal expanding lesion suggesting to be metastatic. No prior disease was found on investigation. The histologic exam of the brain revealed tuberculoma. The seizures were controlled with Hidantoin 300 mg/day and antituberculosis chemotherapy for 18 months. Central nervous system tuberculosis (5-15% of the extrapulmonary forms is highly lethal. The case reported herein is specially rare in immunocompetent patients. It may have good prognosis and should be considered in the differential diagnosis of brain tumours.

  13. 类叶升麻苷对阿尔采末病小鼠皮层 caspase-3基因表达的影响%Effects of acteoside on expression of caspase-3 in cerebral cortex of mouse models of Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    彭晓明; 高莉; 霍仕霞; 闫明

    2014-01-01

    目的:探讨类叶升麻苷(acteoside,AS)对阿尔采末病(Alzheimer’s disease,AD)小鼠皮层组织中 Caspase-3基因表达的影响。方法将昆明(kunming,KM)小鼠随机分为正常组,模型组,vitamin E(VitE)组,类叶升麻苷低、中、高剂量组。除正常组外,其余各组小鼠均腹腔注射60 mg·kg -1· d -1的 D-半乳糖和灌胃5 mg·kg -1·d -1的三氯化铝,连续造模60 d 以制备 AD 模型。然后给以30、60、120 mg·kg -1·d -1的 AS 治疗30 d,期间造模继续。给药完成后,利用跳台法测定小鼠的学习和记忆能力,化学比色法测定小鼠血清及脑组织中的 AChE 活性;HE 染色观察各组小鼠皮层组织结构变化;免疫组化分析小鼠皮层组织中 caspase-3基因表达的变化。结果与模型组相比,AS 给药组小鼠的学习记忆能力有所改善,其下台潜伏期和错误次数均明显延长和减少(P <0.05或 P <0.01),血清和脑组织中 AChE 活性明显降低(P <0.05或 P <0.01),皮层组织中神经细胞的形态和数量明显改善(P <0.01),且皮层组织中 caspase-3基因表达明显下调(P <0.05或 P <0.01)。结论AS 对 D-半乳糖联合三氯化铝诱导的小鼠脑损伤具有明显保护作用,其保护机制可能是通过抑制小鼠皮层组织 caspase-3基因表达,进而维持皮层组织神经细胞的正常形态及数量。%Aim To investigate the effect of acteoside (AS)on the expression of caspase-3 in cerebral cortex of mouse models of Alzheimer’s disease(AD).Meth-ods Kunming (KM)strain mice were assigned into control group,model group,positive control group (VitE)and acteoside group.Every group was induced by a combination of D-galactose(i.p.60mg·kg -1 · d -1 )and AlCl3 (i.g.5mg·kg -1 ·d -1 )for 60ds ex-cept for control group,then mice were treated by dif-ferent concentrations(30,60,1 20 mg·kg -1 ·d -1 )of acteoside for 30ds.During the

  14. EFFECTS OF CULTURED ASTROCYTES FROM RAT CEREBRAL CORTEX ON THE DEVELOPMENT OF PC12 CELLS%星形神经胶质细胞对PC12细胞生长发育的影响

    Institute of Scientific and Technical Information of China (English)

    莫永炎; 陈瑗; 周玫; 张宝

    2000-01-01

    在神经系统的生长发育过程中,星形胶质细胞对神经元生长发育的作用是一项重要的研究课题。本文以体外培养的SD大鼠大脑皮质星形胶质细胞与PC12神经元按不同细胞数目比例(50:1~1:1)共同培养,并用其制备的条件培养液培养PC12细胞,用快速灵敏的MTT比色法测定PC12神经元的细胞活力,用光学相差显微镜观察PC12细胞形态学变化。结果显示,星形胶质细胞条件培养液可增强PC12细胞活力(MTT测定的 OD值由0.255±0.012提高到0.510±0.036,P<0.001,且细胞折光性较对照组强),却不能促使PC12神经元突起的生出。将星形胶质细胞与PC12细胞按30:1~1:1的比例共同培养时,既可提高PC12细胞折光性和光晕又可促使其突起的生长;如按50:1~40:1的比例共同培养时,只观察到提高PC12细胞折光性和光晕,而无促使其突起生长发育的作用。本文结果提示,PC12神经元细胞活力的提高与星形胶质细胞分泌到条件培养液中的可溶性因子有关,而PC12神经元突起生长发育可能是和与星形胶质细胞的直接接触以及二者的细胞数且比有关。%To investigate effects of cultured astrocytes from Sprague Dawley rat cerebral cortex on the development of PC12 cellsderived from rat pheochromocytoma, PC12 cells were cocultured with astrocyte according to different astrocytes/neurons ratio(50:1~1:1) , or with serum-free conditioned medium of astrocytes(ACM). The vitality of PC12 cells was measured by sensi-tive MTT method and their morphologic features were observed by Olympus light microscope. The results showed: (1) WhenPC12 cells were cultured with ACM, compared with the control group, the vitality of PC12 cells was increased significantly (0.255+0. 012 vs 0. 510±0. 036, P<0. 001) and the morphological changes were not obvious in the experimental group. (2) WhenPC12 cells were cocultured with astrocyte in the ratio of 30: 1

  15. Effects of cultured astrocytes from rat cerebral cortex onthe neurite development of PC12 cells%星形神经胶质细胞对PC12神经元突起生长发育的影响

    Institute of Scientific and Technical Information of China (English)

    莫永炎; 邵紫韫; 陈瑗; 周玫; 张宝

    2004-01-01

    背景:星形细胞对神经元有提供营养、支持及调节突触活性作用,但它对神经元发育的影响还尚不清楚.目的:探讨体外培养的Sprague Dawley大鼠大脑皮质星形细胞对PC12神经元突起生长发育的作用.设计:完全随机设计,对照实验研究.方法:以培养的星形细胞与PC12神经元按不同细胞数目比例(50:1~1:1)共同培养,并用其制备的条件培养液培养PG12细胞.主要观察指标:用快速灵敏的MTT'比色法测定PC12神经元的细胞活力,用光学相差显微镜观察PC12细胞形态学变化.结果:①星形细胞条件培养液可增强PG12细胞活力(MTT测定的A值由0.255±0.012提高到0.510±0.036,P<0.001),却不能促使PC12神经元突起的生出.②当将星形细胞与PC12细胞按30:1~1:1的比例共同培养时,既可提高PC12细胞折光性和光晕又可促使其突起的生长;但按50:1~40:1的比例共同培养时,只观察到提高PC12细胞折光性和光晕,而无促使其突起生长发育的作用.结论:PC12神经元细胞活力的提高与星形细胞分泌到条件培养液中的可溶性因子有关,而PC12神经元突起生长发育可能是和与星形细胞的直接接触以及二者的细胞数目比有关.%BACKGROUND: Although astrocytes are kown to provide structural andtrophic support to neurons and modulate synaptic activity, their role is farfrom being completely understood.OBJECTIVE: To investigate effects of cultured astrocytes fromSprague-Dawley rat cerebral cortex on the neurite development of PC12 cellsderived from rat pheochromocytoma.DESIGN: Completely randomized controlled trial.METHODS: PC12 cells were co-cultured with astrocyte according to dif-ferent astrocytes/neurons ratio(50: 1 -1: 1), or cultured with serum-freeconditioned medium of astrocytes (ACM).MAIN OUTCOME MEASURES: The vitality of PC12 cells was measuredby sensitive MTT method and their morphologic features were observed byOlympus light microscope.RFSULTS: When PC

  16. Alterations in cortical thickness and neuronal density in the frontal cortex of Albert Einstein.

    Science.gov (United States)

    Anderson, B; Harvey, T

    1996-06-01

    Neuronal density, neuron size, and the number of neurons under 1 mm2 of cerebral cortical surface area were measured in the right pre-frontal cortex of Albert Einstein and five elderly control subjects. Measurement of neuronal density used the optical dissector technique on celloidin-embedded cresyl violet-stained sections. The neurons counted provided a systematic random sample for the measurement of cell body cross-sectional area. Einstein's cortex did not differ from the control subjects in the number of neurons under 1 mm2 of cerebral cortex or in mean neuronal size. Because Einstein's cortex was thinner than the controls he had a greater neuronal density.

  17. Cerebral Palsy

    Science.gov (United States)

    ... 1 • 2 • 3 For Teens For Kids For Parents MORE ON THIS TOPIC Cerebral Palsy: Keith's Story Physical Therapy I Have Cerebral Palsy. Can I Babysit? Body Image and Self-Esteem Contact Us Print Resources Send to a friend ...

  18. Cerebral oxygenation and hyperthermia

    Directory of Open Access Journals (Sweden)

    Anthony Richard Bain

    2014-03-01

    Full Text Available Hyperthermia is associated with marked reductions in cerebral blood flow (CBF. Increased distribution of cardiac output to the periphery, increases in alveolar ventilation and resultant hypocapnia each contribute to the fall in CBF during passive hyperthermia; however, their relative contribution remains a point of contention, and probably depends on the experimental condition (e.g. posture and degree of hyperthermia. The hyperthermia-induced hyperventilatory response reduces arterial CO2 pressure (PaCO2 causing cerebral vasoconstriction and subsequent reductions in flow. During supine passive hyperthermia, the majority of recent data indicate that reductions in PaCO2 may be the primary, if not sole, culprit for reduced CBF. On the other hand, during more dynamic conditions (e.g. hemorrhage or orthostatic challenges, an inability to appropriately decrease peripheral vascular conductance presents a condition whereby adequate cerebral perfusion pressure may be compromised secondary to reductions in systemic blood pressure. Although studies have reported maintenance of pre-frontal cortex oxygenation (assessed by near-infrared spectroscopy during exercise and severe heat stress, the influence of cutaneous blood flow is known to contaminate this measure. This review discusses the governing mechanisms associated with changes in CBF and oxygenation during moderate to severe (i.e. 1.0°C to 2.0°C increase in body core temperature levels of hyperthermia. Future research directions are provided.

  19. Compartmentalised energy metabolism supporting glutamatergic neurotransmission in response to increased activity in the rat cerebral cortex: A 13C MRS study in vivo at 14.1 T.

    Science.gov (United States)

    Sonnay, Sarah; Duarte, João Mn; Just, Nathalie; Gruetter, Rolf

    2016-05-01

    Many tissues exhibit metabolic compartmentation. In the brain, while there is no doubt on the importance of functional compartmentation between neurons and glial cells, there is still debate on the specific regulation of pathways of energy metabolism at different activity levels. Using (13)C magnetic resonance spectroscopy (MRS) in vivo, we determined fluxes of energy metabolism in the rat cortex under α-chloralose anaesthesia at rest and during electrical stimulation of the paws. Compared to resting metabolism, the stimulated rat cortex exhibited increased glutamate-glutamine cycle (+67 nmol/g/min, +95%, P chloralose anaesthesia is associated to similar enhancement of neuronal and glial oxidative metabolism. PMID:26823472

  20. Cerebral palsy.

    Science.gov (United States)

    Graham, H Kerr; Rosenbaum, Peter; Paneth, Nigel; Dan, Bernard; Lin, Jean-Pierre; Damiano, Diane L; Becher, Jules G; Gaebler-Spira, Deborah; Colver, Allan; Reddihough, Dinah S; Crompton, Kylie E; Lieber, Richard L

    2016-01-01

    Cerebral palsy is the most common cause of childhood-onset, lifelong physical disability in most countries, affecting about 1 in 500 neonates with an estimated prevalence of 17 million people worldwide. Cerebral palsy is not a disease entity in the traditional sense but a clinical description of children who share features of a non-progressive brain injury or lesion acquired during the antenatal, perinatal or early postnatal period. The clinical manifestations of cerebral palsy vary greatly in the type of movement disorder, the degree of functional ability and limitation and the affected parts of the body. There is currently no cure, but progress is being made in both the prevention and the amelioration of the brain injury. For example, administration of magnesium sulfate during premature labour and cooling of high-risk infants can reduce the rate and severity of cerebral palsy. Although the disorder affects individuals throughout their lifetime, most cerebral palsy research efforts and management strategies currently focus on the needs of children. Clinical management of children with cerebral palsy is directed towards maximizing function and participation in activities and minimizing the effects of the factors that can make the condition worse, such as epilepsy, feeding challenges, hip dislocation and scoliosis. These management strategies include enhancing neurological function during early development; managing medical co-morbidities, weakness and hypertonia; using rehabilitation technologies to enhance motor function; and preventing secondary musculoskeletal problems. Meeting the needs of people with cerebral palsy in resource-poor settings is particularly challenging. PMID:27188686

  1. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons

    Directory of Open Access Journals (Sweden)

    Rodrigo eSiqueira Kazu

    2014-11-01

    Full Text Available Quantitative analysis of the cellular composition of rodent, primate, insectivore and afrotherian brains has shown that nonneuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of artiodactyls, a group within the order Cetartiodactyla, believed to be a relatively recent radiation from the common Eutherian ancestor. We find that artiodactyls share nonneuronal scaling rules with all groups analyzed previously. Artiodactyls share with afrotherians and rodents, but not with primates, the neuronal scaling rules that apply to the cerebral cortex and cerebellum. The neuronal scaling rules that apply to the remaining brain areas are however distinct in artiodactyls. Importantly, we show that the folding index of the cerebral cortex scales with the number of neurons in the cerebral cortex in distinct fashions across artiodactyls, afrotherians, rodents, and primates, such that the artiodactyl cerebral cortex is more convoluted than primate cortices of similar numbers of neurons. Our findings suggest that the scaling rules found to be shared across modern afrotherians, glires and artiodactyls applied to the common Eutherian ancestor, such as the relationship between the mass of the cerebral cortex as a whole and its number of neurons. In turn, the distribution of neurons along the surface of the cerebral cortex, which is related to its degree of gyrification, appears to be a clade-specific characteristic. If the neuronal scaling rules for artiodactyls extend to all cetartiodactyls, we predict that the large cerebral cortex of cetaceans will still have fewer neurons than the human cerebral cortex.

  2. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S. [Samsung Medical Center, Seoul (Korea, Republic of); Lee, Kyung Han; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-03-15

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  3. 心肺复苏后大鼠皮质区凋亡相关性微小RNA的表达变化%Expression changes in apoptosis-related microRNA in cerebral cortex after cardiopulmonary resuscitation in rat models of cardiac arrest induced by asphyxia

    Institute of Scientific and Technical Information of China (English)

    任妙丹; 何爱文; 陈寿权; 李章平; 乔江华; 李东芳; 李惠萍; 黄唯佳; 程俊彦

    2014-01-01

    Objective To observe the expression changes in apoptosis-related microRNA(miRNA) in cerebral cortex after cardiac arrest-cardiopulmonary resuscitation(CA-CPR)in rats and explore the factors that may affect the mechanism of CPR. Methods 24 clean male Sprague-Dawley(SD)rats were randomly divided into three groups,the normal control group,sham operation group and CA-CPR group(each n=8). The animal model of CA induced by asphyxia was established and CPR was performed. In the normal control group,no special management was performed. In the sham operation group,only abdominal cavity anesthesia,tracheotomy,vascular puncture and electrocardiogram(ECG)were performed without clamping the trachea and resuscitating. Normal feeding in normal control group and 24 hours after tracheotomy in sham operation group,at 24 hours after recovery of spontaneous circulation(ROSC)in CA-CPR group,cerebral cortex specimens were obtained for detection of the expression of miRNA by using real time fluorescence quantitative reverse transcription - polymerase chain reaction(RT-PCR). Flow cytometry(FCM)was used to detect the neurocyte apoptotic rate. Results Compared between normal control and sham operation groups,there were no significant differences in the expression of apoptosis-related miRNA and neurocyte apoptosis rate of cerebral cortex(both P>0.05). Compared with sham operation group,in CA-CPR group, 16 miRNA expressions were up-regulated,including Let-7c,miR-15a,miR-21,miR-24,miR-29,miR-29b, miR-34a, miR-103, miR-200a, miR-200b, miR-200c, miR-210, miR-326, miR-338-3p, miR-494 and miR-497,and there were 22 down-regulated,being Let-7a,Let-7b,Let-7d,Let-7e,miR-19a,miR-19b-1, miR-20a,miR-20b,miR-23a,miR-23b,miR-25,miR-98,miR-107,miR-122a,miR-125a,miR-125b, miR-145,miR-181a,miR-181c,miR-335,miR-384-5p and miR-422a. Eight miRNA had significant changes at 24 hours after ROSC,in which miR-15a,miR-21,miR-34a,miR-497 were up-regulated respectively for 6.831±2.625,8.122±3.442,5.349±2.010,6.590±3

  4. Cerebral hypoxia

    Science.gov (United States)

    ... the veins ( deep vein thrombosis ) Lung infections (pneumonia) Malnutrition When to Contact a Medical Professional Cerebral hypoxia ... References Bernat JL. Coma, vegetative state, and brain death. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  5. Cerebral Paragonimiasis.

    Science.gov (United States)

    Miyazaki, I

    1975-01-01

    The first case of cerebral paragonimiasis was reported by Otani in Japan in 1887. This was nine years after Kerbert's discovery of the fluke in the lungs of Bengal tigers and seven years after a human pulmonary infection by the fluke was demonstrated by Baelz and Manson. The first case was a 26-year-old man who had been suffering from cough and hemosputum for one year. The patient developed convulsive seizures with subsequent coma and died. The postmortem examination showed cystic lesions in the right frontal and occipital lobes. An adult fluke was found in the occipital lesion and another was seen in a gross specimen of normal brain tissue around the affected occipital lobe. Two years after Otani's discovery, at autopsy a 29-year-old man with a history of Jacksonian seizure was reported as having cerebral paragonimiasis. Some time later, however, it was confirmed that the case was actually cerebral schistosomiasis japonica. Subsequently, cases of cerebral paragonimiasis were reported. However, the majority of these cases were not confirmed histologically. It was pointed out that some of these early cases were probably not Paragonimus infection. After World War II, reviews as well as case reports were published. Recently, investigations have been reported from Korea, with a clinicla study on 62 cases of cerebral paragonimiasis seen at the Neurology Department of the National Medical Center, Seoul, between 1958 and 1964. In 1971 Higashi described a statistical study on 105 cases of cerebral paragonimiasis that had been treated surgically in Japan.

  6. The change of pathology and expression of caspase-3 in cerebral cortex and hippocampus and cerebellum of alcoholism rats%大鼠酒精中毒后大脑皮质、海马、小脑的病理学改变及caspase-3的异常表达

    Institute of Scientific and Technical Information of China (English)

    贾明月; 朱丹; 陈嘉峰

    2012-01-01

    目的 探讨大鼠慢性酒精中毒后大脑皮质、海马、小脑的病理学改变及caspase-3的异常表达.方法 选用健康雄性Wistar大鼠随机分为两组,其中酒精中毒组30只;盐水对照组20只.酒精中毒组每日每只大鼠分别按8ml/kg灌胃2w,随后再按照10ml/kg灌胃1w,按12ml/kg灌胃1w,共灌胃4w.每日灌胃两次,其间隔均为6h,酒精浓度为50%.对照组用等量的生理盐水灌胃.并对两组大鼠进行体重、一般生物学特征、HE染色、TUNEL染色、免疫组化caspase-3的检测.结果 造模成功后,两组大鼠的体重存在的统计学差异;HE染色后酒精组大鼠大脑皮质、海马、小脑锥体细胞数目减少,部分神经元变性、坏死;TUNEL法测定酒精组大鼠凋亡细胞数量明显多于对照组(P<0.05),酒精组大鼠大脑皮质、海马、小脑的caspase-3表达明显高于对照组(P<0.05).结论 慢性酒精中毒可引起大鼠大脑皮质、海马及小脑的病理学改变,出现神经细胞凋亡,引起与凋亡相对应部位caspase-3阳性表达,并参与大鼠酒精中毒后凋亡机制的发生、发展.%Objective To discuse the change of pathology and expression of caspase-3 in cerebral cortex, hippocampus and cerebellum of alcoholism rats. Methods There were 50 male healthy Wistar rats divided into 2 groups randomly, alcoholism group,30 rats,saline control group,20 rats. Alcoholic group;every rat was fed with 8ml/kg50% alcohol twice a day, and two weeks later, increased to 10ml/kg for one week, then 12ml/kg for one week. The interval of time was 6 hours of all. Control group: every rat was fed with the same dosage of 0.9% sodium chloride at the same time for four weeks. During the experiment, we measured their weight, observed their general condition, HE dyes, TUNEL dying and expression of caspase-3 by SP dying method. Results After 4 weeks,the alcoholic group rats appeared malnutrition,emaciated,moreover,some also appeared the performance of

  7. 不同电针刺激对SAMP8小鼠学习记忆能力及大脑皮层 APP、ApoE mRNA表达的影响%Effect of Electroacupuncture Intervention on Learning-memory Ability, APP and ApoE mRNA Expression in Cerebral Cortex of SAMP8

    Institute of Scientific and Technical Information of China (English)

    许安萍; 唐银杉; 陈万顺; 莫雨平; 姚海江; 赛因朝克图; 李志刚

    2014-01-01

    目的:探讨脉冲电针和音乐电针治疗阿尔茨海默病( AD)的可能作用机制,并比较两种电针的疗效差异。方法:将SAMP8小鼠随机分为模型组、脉冲电针组和音乐电针组, SAMR1小鼠作为正常组。两电针组均给予电针百会穴、印堂穴20 min后,点刺水沟穴。治疗结束后,以Morris水迷宫测定小鼠学习记忆能力,实时荧光定量PCR法测定小鼠大脑皮层中APP、ApoE mRNA表达量。结果:与模型组比较,音乐电针组、脉冲电针组逃避潜伏期分别在第4天、第5天明显下降(P<0.05),目标象限游泳时间均增加(P<0.05);脉冲电针组、音乐电针组大脑皮层APP mRNA表达量均显著下降(P<0.05)。结论:脉冲电针和音乐电针均可改善SAPM8小鼠学习记忆能力;脉冲电针和音乐电针可能通过下调APP mRNA表达发挥抗痴呆作用。%Objective:To observe the influence of music electroacupuncture ( EA ) and pulse EA on learning memory ability and APP and ApoE mRNA expression in cerebral cortex of SAMP 8, so as to explore their mech-anisms underlying relief of Alzheimer ’s Disease(AD).Methods:SAMP8 mice were randomly divided into mod-el , pulse EA and music EA groups .SAMR1 mice were used as the control group .EA was applied to “Baihui”(GV20) and“Yintang”(EX-HN3), and then swift pricked “Shuigou”(GV26).The learning memory ability of mice was detected by using Morris Water Maze .APP and ApoE mRNA expression level in cerebral cortex were assayed by fluorescent quantitative real -time PCR.Results:Compared with the model group , the escapel-atency of music EA was decreased considerably on the fourth day ( P<0 .05 ) , but pulse EA was on the fifth day , as well as the level of APP mRNA expression was down -regulated obviously in pulse EA and music EA . Conclusion:Both pulse EA and music EA can effectively improve learning memory ability of SAMP 8 mice which may be closely associated

  8. Cerebral palsy - resources

    Science.gov (United States)

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/disorders/cerebral_palsy/cerebral_palsy. ...

  9. Cerebral Palsy (For Parents)

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Cerebral Palsy KidsHealth > For Parents > Cerebral Palsy Print A A ... kids who are living with the condition. About Cerebral Palsy Cerebral palsy is one of the most common ...

  10. Co-administration of creatine plus pyruvate prevents the effects of phenylalanine administration to female rats during pregnancy and lactation on enzymes activity of energy metabolism in cerebral cortex and hippocampus of the offspring.

    Science.gov (United States)

    Bortoluzzi, Vanessa Trindade; de Franceschi, Itiane Diehl; Rieger, Elenara; Wannmacher, Clóvis Milton Duval

    2014-08-01

    Phenylketonuria (PKU) is the most frequent inborn error of metabolism. It is caused by deficiency in the activity of phenylalanine hydroxylase, leading to accumulation of phenylalanine and its metabolites. Untreated maternal PKU or hyperphenylalaninemia may result in nonphenylketonuric offspring with low birth weight and neonatal sequelae, especially microcephaly and intellectual disability. The mechanisms underlying the neuropathology of brain injury in maternal PKU syndrome are poorly understood. In the present study, we evaluated the possible preventive effect of the co-administration of creatine plus pyruvate on the effects elicited by phenylalanine administration to female Wistar rats during pregnancy and lactation on some enzymes involved in the phosphoryltransfer network in the brain cortex and hippocampus of the offspring at 21 days of age. Phenylalanine administration provoked diminution of body, brain cortex an hippocampus weight and decrease of adenylate kinase, mitochondrial and cytosolic creatine kinase activities. Co-administration of creatine plus pyruvate was effective in the prevention of those alterations provoked by phenylalanine, suggesting that altered energy metabolism may be important in the pathophysiology of maternal PKU. If these alterations also occur in maternal PKU, it is possible that pyruvate and creatine supplementation to the phenylalanine-restricted diet might be beneficial to phenylketonuric mothers.

  11. The mGlu2/3 Receptor Agonists LY354740 and LY379268 Differentially Regulate Restraint-Stress-Induced Expression of c-Fos in Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    M. M. Menezes

    2013-01-01

    Full Text Available Metabotropic glutamate 2/3 (mGlu2/3 receptors have emerged as potential therapeutic targets due to the ability of mGlu2/3 receptor agonists to modulate excitatory transmission at specific synapses. LY354740 and LY379268 are selective and potent mGlu2/3 receptor agonists that show both anxiolytic- and antipsychotic-like effects in animal models. We compared the efficacy of LY354740 and LY379268 in attenuating restraint-stress-induced expression of the immediate early gene c-Fos in the rat prelimbic (PrL and infralimbic (IL cortex. LY354740 (10 and 30 mg/kg, i.p. showed statistically significant and dose-related attenuation of stress-induced increase in c-Fos expression, in the rat cortex. By contrast, LY379268 had no effect on restraint-stress-induced c-Fos upregulation (0.3–10 mg/kg, i.p.. Because both compounds inhibit serotonin 2A receptor (5-HT2AR-induced c-Fos expression, we hypothesize that LY354740 and LY379268 have different in vivo properties and that 5-HT2AR activation and restraint stress induce c-Fos through distinct mechanisms.

  12. Reduced basal and novelty-induced levels of activity-regulated cytoskeleton associated protein (Arc) and c-Fos mRNA in the cerebral cortex and hippocampus of APPswe/PS1ΔE9 transgenic mice

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2013-01-01

    to a novel open field environment was compromised in different neocortical areas and the hippocampal formation in APP/PS1ΔE9 transgenic mice characterized by pronounced accumulation and deposition of beta amyloid (Aβ). Notably, the basal level of Arc and c-fos mRNA in the neocortex was significantly lower...... in APP/PS1ΔE9 compared to wild-type mice. Novelty exposure induced an increase in Arc and c-Fos mRNA in the medial prefrontal cortex (mPFC), parietal cortex, and hippocampal formation in both APP/PS1ΔE9 transgenic and wild-type mice. However, novelty-induced IEG expression did not reach the same levels...... in APP/PS1ΔE9 as in the wild-type mice. In contrast, synaptophysin levels did not differ between mutant and wild type mice, suggesting that the observed effect was not due to a general decrease in the number of presynapses. These data suggest a reduction in basal and novelty-induced neuronal activity...

  13. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a bas

  14. 高分辨 MR 结构成像幼儿皮层特征参数与智力发育相关性的初步研究%Preliminary study of high resolution MR structural imaging of cerebral cortex in infants and correlated with intelligence deve-lopment

    Institute of Scientific and Technical Information of China (English)

    曲海波; 吕粟; 肖媛; 张文静; 宁刚; 杨海波

    2014-01-01

    Objective:Using high resolution MRI structural images (sMRI),surface-based morphometry (SBM)for cortex measurement,to analyze the parameters including cortical thickness (CT),surface area (SA)and average curvature (AV)148 cerebral regions,and to study the relationship of cortical morphological parameters (e.g.cortical thickness)and level of intelligence development in infants.Methods:13 healthy infants were included in the study,their level of intelligence development was evaluated.A siemens 3.0T MR scanner was used to acquire the high resolution 3D T1 WI structural images of brain.The parameters including CT,SA,AV acquired in 148 cerebral regions based on SBM were obtained,the correla-tion of each cortex parameter and the level of intelligence development was analyzed.Results:After analyzing the cortex pa-rameters of all cerebral regions and correlated with intelligence development level scale,it was found that correlation of SA and intelligence development level scores were more concentrated at language and social related regions,ie,gyrus frontalis inferior sulcus region,mostly showed negative correlation.For example,the SA of right gyrus frontalis inferior and the cor-related score coefficient was r=0.646 (P =0.017);the correlated coefficient with the language score was r =0.576 (P =0.039);the cerebral region showed AV correlated with intelligence score was concentrated at gyrus temporalis inferior and parietal inferior,mostly showed negative correlation,for example,the correlated coefficient of AV in gyrus temposalis inferi-or and fine action score was r=0.716 (P =0.002);the correlated region of CT and intelligence was mainly in the regions of language and recognition of human face,which was the cerebral region anterior to sulcus collateralis,showing negative cor-relation.For example,CT anterior to right sulcus collateralis related to language score,r = -0.765 (P =0.002).Conclu-sion:Based on high resolution MRI,taking infant cortex parameters measured by SBM

  15. Cerebral cartography and connectomics.

    Science.gov (United States)

    Sporns, Olaf

    2015-05-19

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics.

  16. Tuberculoma cerebral

    OpenAIRE

    BARROSO ELIZABETH CLARA; OLIVEIRA TÂNIA REGINA BRÍGIDO DE; AMARAL ANA MARIA DANTAS DO; PINHEIRO VALÉRIA GÓES FERREIRA; SOUSA ANA LÚCIA DE OLIVEIRA

    2002-01-01

    Relata-se o caso de paciente com crises convulsivas de início recente. A tomografia computadorizada cerebral evidenciou imagem sugestiva de lesão expansiva metastática frontoparietal direita. A investigação de tumor primário ou outra doença foi negativa e o exame histopatológico do tecido cerebral diagnosticou tuberculoma. As convulsões foram controladas com a associação de hidantoína 300mg/dia ao esquema específico, utilizado por 18 meses. A tuberculose do sistema nervoso central representa ...

  17. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    International Nuclear Information System (INIS)

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  18. Cortical spreading depression and involvement of the motor cortex, auditory cortex, and cerebellum in eyeblink classical conditioning of the rabbit.

    Science.gov (United States)

    Case, Gilbert R; Lavond, David G; Thompson, Richard F

    2002-09-01

    The interrelationships of cerebellar and cerebral neural circuits in the eyeblink paradigm were explored with the controlled application of cortical spreading depression (CSD) and lidocaine in the New Zealand albino rabbit. The initial research focus was directed toward the involvement of the motor cortex in the conditioned eyeblink response. However, CSD timing and triangulation results indicate that other areas in the cerebral cortex, particularly the auditory cortex (acoustic conditioned stimulus), appear to be critical for the CSD effect on the eyeblink response. In summary: (1) CSD can be elicited, monitored, and timed and its side effects controlled in 97% of awake rabbits in the right and/or left cerebral hemisphere(s) during eyeblink conditioning. (2) The motor cortex appears to play little or no part in classical conditioning of the eyeblink in the rabbit in the delay paradigm. (3) Inactivating the auditory cortex with CSD or lidocaine temporarily impairs the conditioned response during the first 5 to 15 days of training, but has little effect past that point.

  19. Local cerebral glucose utilization during status epilepticus in newborn primates

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, D.G.; Dwyer, B.E.; Lake, R.R.; Wasterlain, C.G.

    1989-06-01

    The effect of bicuculline-induced status epilepticus (SE) on local cerebral metabolic rates for glucose (LCMRglc) was studied in 2-wk-old ketamine-anesthetized marmoset monkeys, using the 2-(/sup 14/C)-deoxy-D-glucose autoradiographical technique. To estimate LCMRglc in cerebral cortex and thalamus during SE, the lumped constant (LC) for 2-deoxy-D-glucose (2-DG) and the rate constants for 2-DG and glucose were calculated for these regions. The control LC was 0.43 in frontoparietal cortex, 0.51 in temporal cortex, and 0.50 in thalamus; it increased to 1.07 in frontoparietal cortex, 1.13 in temporal cortex, and 1.25 in thalamus after 30 min of seizures. With control LC values, LCMRglc in frontoparietal cortex, temporal cortex, and dorsomedial thalamus appeared to increase four to sixfold. With seizure LC values, LCMRglc increased 1.5- to 2-fold and only in cortex. During 45-min seizures, LCMRglc in cortex and thalamus probably increases 4- to 6-fold initially and later falls to the 1.5- to 2-fold level as tissue glucose concentrations decrease. Together with our previous results demonstrating depletion of high-energy phosphates and glucose in these regions, the data suggest that energy demands exceed glucose supply. The long-term effects of these metabolic changes on the developing brain remain to be determined.

  20. Cerebral Arteriosclerosis

    Science.gov (United States)

    ... the brain can cause a hemorrhagic stroke. Both types of stroke can be fatal. Cerebral arteriosclerosis is also related to a condition known as vascular dementia, in which small, symptom-free strokes cause cumulative damage and death to neurons (nerve cells) in the brain. Personality changes in ...

  1. Neuroprotection of 17β-estradiol on neurons and effects on expression of BDNF in cerebral cortex of rat after forebrain ischemia reperfusion%17β-雌二醇对前脑缺血-再灌注大鼠大脑皮层神经元保护作用及BDNF表达的影响

    Institute of Scientific and Technical Information of China (English)

    李正仪; 李志伟; 郭金涛

    2011-01-01

    Objective To observe the neuroprotection of 17β-estradiol on neurons and effects on expression of Brain Derived Neurotrophic Factor in cerebral cortex of rat after forebrain ischemia reperfusion. Methods 40 ovariectomized female SD rats were divided into four groups randomdy: saline + sham; 17β-estradiol + sham; 17β-estradiol + forebrain ischemia; saline + forebrain ischemia. Forebrain ischemia was induced by bilateral occlusion of the common caroid arteries for ten minutes combined with hypotension. The sham only uncovered the common arteries. Rats were treated with 17β-estradiol or saline by subabdnomimal injection for four weeks. 24 hours after forebrain ischemia or sham the rat was killed, brain was removed and paraffin-embedded. Sectioned for HE and BDNF stain, countering the number of necrosis and BDNF immunopositive neurons, T test and two-way classification ANOVA were used to analysis. Results 17β-estradiol could abviously reduce the number of necrosis neurons and increase the number of BDNF immunopositive neurons in cerebal cortex of rat ( not consider the effect of ischemia reperfusion,all p < 0.01 ). Conclusion 17β-estradiol can upregulate the expression of BDNF in cerebral cortex of rat after forebrain ischemia reperfusion, which may be one of the nueroprotection mechanism of 17β-estradiol.%目的 观察17β-雌二醇对前脑缺血-再灌注大鼠大脑皮层神经元保护作用及脑源性神经生长因子(BDNF)表达的影响.方法 双侧卵巢切除的雌性SD大鼠随机分为四组:生理盐水+假手术组;17β-雌二醇+假手术组;17β-雌二醇+短暂性前脑缺血模型组;生理盐水+短暂性前脑缺血模型组.以低血压联合双侧颈总动脉夹闭10min的方法造前脑缺血模型,只暴露双侧颈总动脉为假手术,17β-雌二醇为药物干预,生理盐水为安慰剂,腹腔注射应用4周.在造模术或假手术后24h处死大鼠,用HE染色检测大脑皮层坏死神经元数目,免疫组织化学染色

  2. Cerebral oximetry in cardiac anesthesia

    Science.gov (United States)

    Vretzakis, George; Georgopoulou, Stauroula; Stamoulis, Konstantinos; Stamatiou, Georgia; Tsakiridis, Kosmas; Katsikogianis, Nikolaos; Kougioumtzi, Ioanna; Machairiotis, Nikolaos; Tsiouda, Theodora; Mpakas, Andreas; Beleveslis, Thomas; Koletas, Alexander; Siminelakis, Stavros N.; Zarogoulidis, Konstantinos

    2014-01-01

    Cerebral oximetry based on near-infrared spectroscopy (NIRS) is increasingly used during the perioperative period of cardiovascular operations. It is a noninvasive technology that can monitor the regional oxygen saturation of the frontal cortex. Current literature indicates that it can stratify patients preoperatively according their risk. Intraoperatively, it provides continuous information about brain oxygenation and allows the use of brain as sentinel organ indexing overall organ perfusion and injury. This review focuses on the clinical validity and applicability of this monitor for cardiac surgical patients. PMID:24672700

  3. Electrical Cerebral Stimulation Modifies Inhibitory Systems

    Science.gov (United States)

    Cuéllar-Herrera, M.; Rocha, L.

    2003-09-01

    Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.

  4. 人尿激肽原酶对大鼠脑缺血再灌注后空间学习记忆功能及皮质巢蛋白表达的影响%Effect of human urinary kallidinogenase on spatial learning and memory functions and nestin expression in peri-infarction cortex of rats after focal cerebral ischemia-reperfusion

    Institute of Scientific and Technical Information of China (English)

    范磊; 杨金升; 石向群

    2010-01-01

    Objective To investigate the effects of human urinary kallidinogenase (HUK) on the abilities of spatial learning and memory and the expression of nestin in the peri-infarction cortex of rats after focal cerebral ischemia-reperfusion. Methods Sixty rats were equally randomized into 5 groups:sham-operated group, model group, low dose HUK treatment group (3.5 ×10-3 PNAU/kg), median dose HUK treatment group (8.75×10-3 PNAU/kg) and high dose HUK treatment group (17.5×10-3 PNAU/kg).The focal cerebral ischemia-reperfusion models in the model group and HUK treatment groups were established by introducing an intraluminal filament into the right middle cerebral artery of the rats. HUK was administered intraperitoneally right after the operation and afterward once daily for 2 weeks. The spatial learning and memory functions were studied by Morris water maze test, and the nestin expression in the peri-infarction cortex was measured by immunohistochemistry on the 15th d. Results The model group exhibited seriously spatial learning and memory deficits in both place navigation trail and spatial probe trial. In the place navigation trial, the mean values of escape latency in the median dose and high dose HUK treatment groups were shorter than those in the model group (P<0.05). In the spatial probe trial, significant differences in the percentages of time spending in the former platform quadrant and frequency of crossing the former platform site were noted between the model group and both median dose and high dose HUK treatment groups (P<0.05). Immunohistochemical analysis showed that the nestin expression in the peri-infarction cortex of median dose and high dose HUK treatment groups increased significantly as compared with that in the model group (P<0.05). Conclusion Treatment with HUK improves the spatial learning and memory abilities in rats after focal cerebral ischemia-reperfusion, which may result from the increasing expression ofnestin and the proliferation of

  5. 小鼠脑皮质p-Akt、p53在缺血再灌后处理脑保护机制中的作用%Effect of ischemic post-conditioning on expression of p-Akt and p53 after cerebral ischemic/reperfusion in mice cortex

    Institute of Scientific and Technical Information of China (English)

    冉芳; 崔颖; 高俊玲; 田艳霞; 李冉; 刘媛媛; 崔建忠

    2011-01-01

    目的 观察p-Akt、p53在小鼠局灶性脑缺血再灌注(I/R)及缺血后处理(IPO)后在脑皮质区的表达规律,探讨p-Akt、p53与IPO保护作用的关系.方法 采用线栓法制备大脑中动脉栓塞的局灶性脑缺血模型,将272只小鼠随机分为假手术(Sham)组、缺血再灌(I/R)组、PI-3K/Akt抑制剂LY294002(LY)组和缺血后处理(IPO)组.I/R组、LY组与IPO组均实施缺血90min之后再灌注,IPO组在持续再灌前采取再灌15s、缺血15s、再灌15s的循环,共3个循环.于再灌后30min、1h、3h、6h、24h、48h分别取材,2,3,5-氯化三苯基四氮唑(TTC)染色法测定脑梗死体积;免疫组织化学法观察p-Akt,p53蛋白的表达及分布;免疫印迹法检测皮质区p-Akt和p53蛋白表达量.结果 Sham组、I/R组和IPO组的非缺血脑半球皮质p-Akt有微量表达.与Sham组相比,I/R组再灌后30min缺血区皮质p-Akt增加,1h达高峰,6h逐渐降低,24h降至Sham组水平并持续;p53再灌后6h增加,24h达高峰,48h回落.各相应时间点IPO组较I/R组p-Akt增高(P<0.05),p53降低(P<0.05).LY组p-Akt低于I/R组(P<0.05),p53高于I/R组(P<0.05).顶叶脑组织的免疫印迹分析结果与免疫组织化学结果规律一致.结论缺血后处理对缺血再灌注性脑损伤有保护作用,其机制与降低p53表达及增强p-Akt表达有关.%Objective To investigate the role of apoptotic proteins p-Akt and p53 in cortex after brain ischemia/reperfusion in mice, and the relationship between p-Akt, p53 and brain ischemic post-conditioning. Methods The models of focal cerebral ischemic post-conditioning were made by middle cerebral artery occlusion ( MCAO ) using an intraluminal filament method. Two hundred and seventy-two male mice were randomly divided into 4 groups: Sham group, ischemic/reperfusion ( I/R ) group. LY294002 ( LY, inhibitor of PI-3K ) group. ischemic post-conditioning ( IPO ) group. Sham group received sham surgery only, I/R group received 90 minutes of MCAO, and IPO

  6. Cerebral ischemia in rabbit: a new experimental model with immunohistochemical investigation.

    Science.gov (United States)

    Yamamoto, K; Yoshimine, T; Yanagihara, T

    1985-12-01

    Regional cerebral ischemia was produced in the rabbit by unilateral transorbital occlusion of the middle cerebral artery (procedure I); the middle cerebral and azygos anterior cerebral or anterior communicating artery (procedure II); or the middle cerebral, azygos anterior cerebral or anterior communicating, and internal carotid artery (procedure III). Evolution of ischemic lesions was examined with the immunohistochemical reaction for tubulin. With procedure I, ischemic lesions did not become constantly visible for 6 h in the basal ganglia and for 8 h in the frontoparietal region of the cerebral cortex. With procedure II, it was shortened to 3 h in the basal ganglia and to 6 h in the cerebral cortex. With procedure III, the ischemic lesions were observed in 1 h both in the basal ganglia and in the cerebral cortex as loss of the reaction for tubulin in the neuropil, nerve cell bodies, and dendrites. The evidence of neuronal damage became apparent in the same areas later by staining with hematoxylin-eosin. The experimental model presented here may be suitable for investigation of the mechanism that shifts reversible ischemia to cerebral infarction and for evaluation of the effectiveness of pharmacological intervention. PMID:3932374

  7. The Piriform Cortex and Human Focal Epilepsy

    Directory of Open Access Journals (Sweden)

    David eVaughan

    2014-12-01

    Full Text Available It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic - being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in humans. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability.

  8. Employees with Cerebral Palsy

    Science.gov (United States)

    ... Resources Home | Accommodation and Compliance Series: Employees with Cerebral Palsy (CP) By Eddie Whidden, MA Preface Introduction Information ... SOAR) at http://AskJAN.org/soar. Information about Cerebral Palsy (CP) What is CP? Cerebral palsy is a ...

  9. Effect of Ghrelin on nuclear factor-κB and tumor necrosis factor-α in the cerebral cortex of immature rats with pilocarpine-induced epilepsy%Ghrelin对匹罗卡品诱导癫(癎)大鼠大脑皮层核因子-κB和肿瘤坏死因子-α表达的影响

    Institute of Scientific and Technical Information of China (English)

    张瑞云; 王清义; 李培国; 隋风轩; 王华

    2010-01-01

    目的 探讨Ghrelin治疗匹罗卡品诱导的癫(癎)大鼠大脑皮层核因子(NF)-κB和肿瘤坏死因子(TNF)-α基因和蛋白表达水平的变化.方法 建立匹罗卡品诱导的癫(癎)大鼠模型,将模型分为模型组、生理盐水组和Ghrelin治疗组,同时设正常对照组,比较各组大鼠大脑皮层NF-κB和TNF-α蛋白和基因表达水平.结果 模型组大鼠脑组织NF-κB和TNF-α蛋白和基因表达均增多,正常对照组两者表达较少;Ghrelin治疗组大鼠脑组织NF-κB和TNF-α蛋白和基因表达水平均比模型组和生理盐水组明显降低,差异有显著性(P<0.05).结论 Ghrelin可能通过降低癫(癎)大鼠大脑皮层NF-κB和TNF-α蛋白和基因表达水平,减轻皮层神经细胞的炎症反应,达到对神经细胞的保护作用.%Objective To explore the changes of gene and protein expressions of nuclear factor-κB(NF-κB) and tumor necrosis factor-α (TNF-α) in immature rats with pilocarpine-induced epilepsy treated with ghrelin. Methods The pllocarpine-induced epilepsy model in immatured rats were built, then the rats were divided into three groups: Ghrelin-treated group, saline-treated group and model group, meanwhile the normal control group was set. The NF-κB and TNF-α levels of gene and protein in the cerebral cortex of immature rats were detected. Results The expression levels of gene and protein of NF-κB and TNF-α were increased in model group,but decreased in the normal control group;NF-κB and TNF-α levels in Ghrelin treated group were obviously lower than those of saline-treated group and model group(P < 0. 05). Conclusion The protective mechanism of Ghrelin for nerve cell is cutting down the expressions of NF-κB and TNF-α in the cerebral cortex of immature rats with epilepsy and lessening inflammatory reaction in neurocytes.

  10. Expressions of Drebrins and lcam-5 in mouse cerebral cortex with Fmr-1 gene knockout and their significance in fragile X syndrome%Drebrins和Icam-5在Fmr-1基因敲除鼠大脑皮层的表达和意义

    Institute of Scientific and Technical Information of China (English)

    徐琴; 竺智伟; 赵正言

    2012-01-01

    [Objective]To investigate and compare the changes of Drebrin A,Drebrin E and lcam-5 mRNA levels in the cerebral cortex of Frr-1 gene knockout mouse during brain development periods.[Methods]Fmr-1 gene knockout (KO) male mice and their wild type (WT) counterparts were chosen in our experiment (4≤n≤ 10);the levels of target mRNAs were detected by real time quantitative PCR;check points were set on the 7th,14th,21th and 28rh postnatal d.[Results] The mRNA level of Drebrin A in the KO group was significantly lower than that in the WT group on the 14th postnatal d,while that of Drebrin E was significantly higher than that in the WT group (P<0.05).The mRNA level of lcam-5 in the KO group was significantly higher than that in the WT group on the 14th and 21th postnatal d (P<0.05).[Conclusion] The delayed shift of Drebrin A to Drebrin E and transitional over-expression of lcam-5 in developmental cerebral cortex are the reasons for mental retardation in Fragile X Syndrome.%目的 观察脆性X综合征(FXS)模型小鼠不同发育时期大脑皮层中Drebrin A、Drebrin E及Icam-5 mRNA水平变化情况及意义.方法 应用荧光实时定量PCR(RT-PCR)法检测FmrJ基因敲除KO小鼠及野生健康对照小鼠H出生后第7天、第14天、第21天和第28天大脑皮层Drebrin A、Drebrin E及Icam-5 mRNA的表达(4≤n≤10).结果 KO组小鼠出生后第14天Drebrin A mRNA水平较健康对照组小鼠明显降低,而同时间Drebrin E mRNA水平较健康对照组小鼠明显增高,差异均有统计学意义(P<0.05);KO组小鼠Icam-5 mRNA水平在出生后第14和21天均明显高于健康对照组,差异均有统计学意义(P<0.05).结论 Drebrin A和Drebrin E在大脑皮层发育期的表达交替延迟及Icam-5的一过性过度表达是FXS智力低下的原因之一.

  11. Attention and sentence processing deficits in Parkinson's disease: the role of anterior cingulate cortex.

    Science.gov (United States)

    Grossman, M; Crino, P; Reivich, M; Stern, M B; Hurtig, H I

    1992-01-01

    Parkinson's disease (PD) is a complex neurodegenerative condition involving a motor disorder that is related to reduced dopaminergic input to the striatum. Intellectual deficits are also seen in PD, but the pathophysiology of these difficulties is poorly understood. Regional cerebral blood flow (rCBF) was studied in neurologically intact subjects during the performance of attention-demanding, sentence processing tasks using positron emission tomography (PET). The results demonstrated significantly increased rCBF in a distributed set of cerebral regions during the detection of an adjective or a particular agent in a sentence, including anterior cingulate cortex, left inferior and middle frontal cortex, left inferior temporo-occipital cortex, posterolateral temporal cortex, left caudate, and left thalamus. We identified defects in this cerebral network by studying PD patients with two PET techniques. Resting PET studies revealed a significant correlation between regional cerebral glucose metabolism in anterior cingulate cortex and deficits in attending to subtle grammatical aspects of sentences. Studies of PD patients with the PET activation technique revealed little change in anterior cingulate and left frontal CBF during performance of the adjective detection or agent detection tasks. These data suggest that a defect in anterior cingulate cortex contributes to the cognitive impairments observed in PD.

  12. Recombinant human erythropoietin increases cerebral cortical width index and neurogenesis following ischemic stroke☆

    OpenAIRE

    Wen, Zhongmin; Wang, Peiji

    2012-01-01

    The cerebral cortical expansion index refers to the ratio between left and right cortex width and is recognized as an indicator for cortical hyperplasia. Cerebral ischemia was established in CB-17 mice in the present study, and the mice were subsequently treated with recombinant human erythropoietin via subcutaneous injection. Results demonstrated that cerebral cortical width index significantly increased. Immunofluorescence detection showed that the number of nuclear antigen antibody/5-bromo...

  13. Predictive value of magnetic resonance diffusion tensor imaging in motor function of patients with tumors in the motor areas of cerebral cortex after surgery on the hemiplegic limbs%DTI对脑皮质运动区肿瘤患者偏瘫肢体术后运动功能的预测价值

    Institute of Scientific and Technical Information of China (English)

    赵琳; 王守森; 黄银兴; 周晓平

    2012-01-01

    Objective To discuss the predictive value of magnetic resonance diffusion tensor imaging (MR-DTI) in motor function of patients with tumors in the motor areas of cerebral cortex after surgery on the hemiplegic limbs. Methods Twenty patients with tumors in the motor areas of cerebral cortex,admitted to our hospital from March 2009 to January 2011,were recruited in our study; all these patients underwent MR-DTI and motor function of the hemiplegic limbs was evaluated with Brunnstrom scale before and after the surgery.According to the results of DTI test,the injured corticospinal tract (CST) was divided into 4 grades:type Ⅰ (CST integrity),type Ⅱ (CST integrity with mild compression),type Ⅲ (CST partial disruption) and type Ⅳ (CST mostly/completely disruption).The correlations between the CST damaged level and motor function of the hemiplegic limbs before and after surgery were analyzed. Results FA values ofipsilateral brain parenchyma (0.387±0.012) were statistically lower than those of the contralateral normal brain tissue (0.498±0.015,P<0.05).No significant differences on CST damaged level and motor function of the hemiplegic limbs were noted between before and after surgery (P>0.05).CST damaged level and motor function of the hemiplegic limbs had a negative correlation (P<0.05).Motor function of the hemiplegic limbs and CST damaged level before the surgery and 6 months after the surgery had a significantly negative correlation (before the surgery:r=-0.901,P=0.000; after the surgery:r=-0.912,P=0.000). Conclusion DTI can display damaged level of the tumors in the motor area of cerebral cortex and reflect the motor function of the hemiplegic limbs after the surgery.%目的 探讨磁共振(MRI)弥散张量成像(DTI)对脑皮质运动区肿瘤患者偏瘫肢体术后运动功能的评估价值. 方法 南京军区福州总医院神经外科自2009年3月至2011年1月共收治脑皮质运动区肿瘤患者20例,手术前后均行DTI检查并应

  14. Cerebral palsy

    International Nuclear Information System (INIS)

    This paper reviews cranial MR findings in patients with cerebral palsy (CP) to clarify and categorize this disorder. The MR images of 40 patients with clinical CP were retrospectively reviewed. All patients suffered either varying spastic plegias, hypotonicity, or choreoathetosis. Concomitantly, the patients suffered from static encephalopathy, developmental delay, and/or microcephaly. Twenty-four patients were born at or near term, 10 were premature, and incomplete birth histories were available in six. The MR images revealed mild to severe degrees of white matter damage in 24 patients (12 term, nine premature, three unknown)

  15. Three-dimensional microtomographic imaging of human brain cortex

    CERN Document Server

    Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio

    2016-01-01

    This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.

  16. Cerebral malaria.

    Science.gov (United States)

    Postels, Douglas G; Birbeck, Gretchen L

    2013-01-01

    Malaria, the most significant parasitic disease of man, kills approximately one million people per year. Half of these deaths occur in those with cerebral malaria (CM). The World Health Organization (WHO) defines CM as an otherwise unexplained coma in a patient with malarial parasitemia. Worldwide, CM occurs primarily in African children and Asian adults, with the vast majority (greater than 90%) of cases occurring in children 5 years old or younger in sub-Saharan Africa. The pathophysiology of the disease is complex and involves infected erythrocyte sequestration, cerebral inflammation, and breakdown of the blood-brain barrier. A recently characterized malarial retinopathy is visual evidence of Plasmodium falciparum's pathophysiological processes occurring in the affected patient. Treatment consists of supportive care and antimalarial administration. Thus far, adjuvant therapies have not been shown to improve mortality rates or neurological outcomes in children with CM. For those who survive CM, residual neurological abnormalities are common. Epilepsy, cognitive impairment, behavioral disorders, and gross neurological deficits which include motor, sensory, and language impairments are frequent sequelae. Primary prevention strategies, including bed nets, vaccine development, and chemoprophylaxis, are in varied states of development and implementation. Continuing efforts to find successful primary prevention options and strategies to decrease neurological sequelae are needed. PMID:23829902

  17. Normal cerebral FDG uptake during childhood

    Energy Technology Data Exchange (ETDEWEB)

    London, Kevin [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Discipline of Paediatrics and Child Health, Sydney Medical School, Sydney, NSW (Australia); Howman-Giles, Robert [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Disciplines of Imaging and Paediatrics and Child Health, Sydney Medical School, Sydney, NSW (Australia)

    2014-04-15

    Current understanding of cerebral FDG uptake during childhood originates from a small number of studies in patients with neurological abnormalities. Our aim was to describe cerebral FDG uptake in a dataset of FDG PET scans in children more likely to represent a normal population. We reviewed cerebral FDG PET scans in children up to 16 years of age with suspected/proven extracranial malignancies and the following exclusions: central nervous system metastases, previous malignancies, previous chemotherapy or radiotherapy, development of cerebral metastases during therapy, neurological conditions, taking antiepileptic medication or medications likely to interfere with cerebral metabolism, and general anaesthesia within 24 h. White matter, basal ganglia, thalamus and the cerebellar cortex were analysed using regional SUV{sub max}, and the cerebral cortex, basal ganglia, thalamus and cerebellum were analysed using a regional relative uptake analysis in comparison to maximal cortical uptake. Scans from 30 patients (age range 11 months to 16 years, mean age 10 years 5 months) were included. All regions showed increasing SUV{sub max} with age. The parietal, occipital, lateral temporal and medial temporal lobes showed lower rates of increasing FDG uptake causing changing patterns of regional FDG uptake during childhood. The cortical regions showing the most intense uptake in early childhood were the parietal and occipital lobes. At approximately 7 years of age these regions had relatively less uptake than the frontal lobes and at approximately 10 years of age these regions had relatively less uptake than the thalamus. Relative FDG uptake in the brain has not reached an adult pattern by 1 year of age, but continues to change up to 16 years of age. The changing pattern is due to different regional rates of increasing cortical FDG uptake, which is less rapid in the parietal, occipital and temporal lobes than in the frontal lobes. (orig.)

  18. Normal cerebral FDG uptake during childhood

    International Nuclear Information System (INIS)

    Current understanding of cerebral FDG uptake during childhood originates from a small number of studies in patients with neurological abnormalities. Our aim was to describe cerebral FDG uptake in a dataset of FDG PET scans in children more likely to represent a normal population. We reviewed cerebral FDG PET scans in children up to 16 years of age with suspected/proven extracranial malignancies and the following exclusions: central nervous system metastases, previous malignancies, previous chemotherapy or radiotherapy, development of cerebral metastases during therapy, neurological conditions, taking antiepileptic medication or medications likely to interfere with cerebral metabolism, and general anaesthesia within 24 h. White matter, basal ganglia, thalamus and the cerebellar cortex were analysed using regional SUVmax, and the cerebral cortex, basal ganglia, thalamus and cerebellum were analysed using a regional relative uptake analysis in comparison to maximal cortical uptake. Scans from 30 patients (age range 11 months to 16 years, mean age 10 years 5 months) were included. All regions showed increasing SUVmax with age. The parietal, occipital, lateral temporal and medial temporal lobes showed lower rates of increasing FDG uptake causing changing patterns of regional FDG uptake during childhood. The cortical regions showing the most intense uptake in early childhood were the parietal and occipital lobes. At approximately 7 years of age these regions had relatively less uptake than the frontal lobes and at approximately 10 years of age these regions had relatively less uptake than the thalamus. Relative FDG uptake in the brain has not reached an adult pattern by 1 year of age, but continues to change up to 16 years of age. The changing pattern is due to different regional rates of increasing cortical FDG uptake, which is less rapid in the parietal, occipital and temporal lobes than in the frontal lobes. (orig.)

  19. Wearable wireless cerebral oximeter (Conference Presentation)

    Science.gov (United States)

    Zhang, Xin; Jiang, Tianzi

    2016-03-01

    Cerebral oximeters measure continuous cerebral oxygen saturation using near-infrared spectroscopy (NIRS) technology noninvasively. It has been involved into operating room setting to monitor oxygenation within patient's brain when surgeons are concerned that a patient's levels might drop. Recently, cerebral oxygen saturation has also been related with chronic cerebral vascular insufficiency (CCVI). Patients with CCVI would be benefited if there would be a wearable system to measure their cerebral oxygen saturation in need. However, there has yet to be a wearable wireless cerebral oximeter to measure the saturation in 24 hours. So we proposed to develop the wearable wireless cerebral oximeter. The mechanism of the system follows the NIRS technology. Emitted light at wavelengths of 740nm and 860nm are sent from the light source penetrating the skull and cerebrum, and the light detector(s) receives the light not absorbed during the light pathway through the skull and cerebrum. The amount of oxygen absorbed within the brain is the difference between the amount of light sent out and received by the probe, which can be used to calculate the percentage of oxygen saturation. In the system, it has one source and four detectors. The source, located in the middle of forehead, can emit two near infrared light, 740nm and 860nm. Two detectors are arranged in one side in 2 centimeters and 3 centimeters from the source. Their measurements are used to calculate the saturation in the cerebral cortex. The system has included the rechargeable lithium battery and Bluetooth smart wireless micro-computer unit.

  20. Role of nitric oxide and mechanisms involved in cerebral injury after subarachnoid hemorrhage: is nitric oxide a possible answer to cerebral vasospasm?

    Science.gov (United States)

    Crobeddu, Emanuela; Pilloni, Giulia; Tardivo, Valentina; Fontanella, Marco M; Panciani, Pier P; Spena, Giannantonio; Fornaro, Riccardo; Altieri, Roberto; Agnoletti, Alessandro; Ajello, Marco; Zenga, Francesco; Ducati, Alessandro; Garbossa, Diego

    2016-09-01

    Cerebral vasospasm represents the most critical event that could occur after subarachnoid hemorrhage (SAH). Therapy is only partially effective because cerebral arterial constriction is not fully understood yet. One of the most important biological messenger associated to SAH is nitric oxide (NO), that is considered local regulator of cerebral blood flow. Different nitric oxide synthase (NOS) forms play a role in different biological processes, one of which is to link neuronal activity to blood flow in cerebral cortex. We performed a reassessment of the literature to summarize the role of NO as the main inflammatory pathway activated after SAH to clarify its importance for treatment of vasospasm.

  1. Cerebral cysticercosis

    International Nuclear Information System (INIS)

    Two cases of histologically proven cerebral cysticercosis are presented. In both cases subcutaneous tissue nodules, a rare feature, were present. Several disease patterns are apparent - meningeal, parenchymatous and ventricular, spinal cord lesions and mixed patterns. Epilepsy is by far the major presenting symptom of cysticercosis, which in turn plays a significant role in the causation of adult-onset epilepsy in Blacks. Despite its drawbacks, the haemag-glutination inhibition test remains the most satisfactory serological method at present available for the diagnosis of cysticercosis; it is positive in up to 85% of cases of proven cysticercosis. With the advent of computed tomography many cases of unsuspected cysticercosis (symptomatic or asymptomatic) are being discovered

  2. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Foster, N.L.; Gilman, S.; Berent, S.; Morin, E.M.; Brown, M.B.; Koeppe, R.A.

    1988-09-01

    Progressive supranuclear palsy (PSP) is characterized by supranuclear palsy of gaze, axial dystonia, bradykinesia, rigidity, and a progressive dementia. Pathological changes in this disorder are generally restricted to subcortical structures, yet the type and range of cognitive deficits suggest the involvement of many cerebral regions. We examined the extent of functional impairment to cerebral cortical and subcortical structures as measured by the level of glucose metabolic activity at rest. Fourteen patients with PSP were compared to 21 normal volunteers of similar age using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose metabolism was reduced in the caudate nucleus, putamen, thalamus, pons, and cerebral cortex, but not in the cerebellum in the patients with PSP as compared to the normal subjects. Analysis of individual brain regions revealed significant declines in cerebral glucose utilization in most regions throughout the cerebral cortex, particularly those in the superior half of the frontal lobe. Declines in the most affected regions of cerebral cortex were greater than those in any single subcortical structure. Although using conventional neuropathological techniques the cerebral cortex appears to be unaffected in PSP, significant and pervasive functional impairments in both cortical and subcortical structures are present. These observations help to account for the constellation of cognitive symptoms in individual patients with PSP and the difficulty encountered in identifying a characteristic psychometric profile for this group of patients.

  3. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography

    International Nuclear Information System (INIS)

    Progressive supranuclear palsy (PSP) is characterized by supranuclear palsy of gaze, axial dystonia, bradykinesia, rigidity, and a progressive dementia. Pathological changes in this disorder are generally restricted to subcortical structures, yet the type and range of cognitive deficits suggest the involvement of many cerebral regions. We examined the extent of functional impairment to cerebral cortical and subcortical structures as measured by the level of glucose metabolic activity at rest. Fourteen patients with PSP were compared to 21 normal volunteers of similar age using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose metabolism was reduced in the caudate nucleus, putamen, thalamus, pons, and cerebral cortex, but not in the cerebellum in the patients with PSP as compared to the normal subjects. Analysis of individual brain regions revealed significant declines in cerebral glucose utilization in most regions throughout the cerebral cortex, particularly those in the superior half of the frontal lobe. Declines in the most affected regions of cerebral cortex were greater than those in any single subcortical structure. Although using conventional neuropathological techniques the cerebral cortex appears to be unaffected in PSP, significant and pervasive functional impairments in both cortical and subcortical structures are present. These observations help to account for the constellation of cognitive symptoms in individual patients with PSP and the difficulty encountered in identifying a characteristic psychometric profile for this group of patients

  4. Prefrontal Cortex Motivated Cognitive Architecture for Multiple Robots

    OpenAIRE

    Mishra, Amit Kumar; Kumar, Abhishek; Deb, Dipankar

    2014-01-01

    In this paper, we introduce a cerebral cortex inspired architecture for robots in which we have mapped hierarchical cortical representation of human brain to logic flow and decision making process. Our work focuses on the two major features of human cognitive process, viz. the perception action cycle and its hierarchical organization, and the decision making process. To prove the effectiveness of our proposed method, we incorporated this architecture in our robot which we named as Cognitive I...

  5. Radiologic findings of cerebral septic embolism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jee Young; Kim, Sang Joon; Kim Tae Hoon; Kim, Seung Chul; Kim, Jae Seung; Pai, Hyun Joo [Dankook Univ., Seoul (Korea, Republic of). Coll. of Medicine; Kim, Dong Ik [Yonsei Univ., Seoul (Korea, Republic of). Coll. of Medicine; Chang, Kee Hyun [Seoul National Univ. (Korea, Republic of). Coll. of Medicine; Choi, Woo Suk [Kyung Hee Univ., Seoul (Korea, Republic of). Coll. of Medicine

    1998-01-01

    To determine the MR and CT findings which differentiate cerebral septic embolism from thrombotic infarction. Cerebral septic embolism was confirmed by blood culture in six patients and autopsy in two. The number, size, distribution, contrast enhancement, and hemorrhage of the lesions, as seen on MR and CT, were retrospectively analyzed, and four patients were followed up for between one week and seven months. In a total of eight patients, infective endocarditis (n=5) and sepsis (n=3) caused cerebral septic embolism. The number, of lesions was 3 {approx} 7 in six patients, over 10 in one, and innumerable in one: these varied in size from punctate to 6 cm and were distributed in various areas of the brain. Gyral infarction was noted in five patients: non-enhancing patchy lesions involving the basal ganglia or white matter were found in five, tiny isolated nodular or ring-enhancing small lesions involving the cortex and white matter in three, peripheral rim-enhancing large lesions in one, and numerous enhancing nodules disseminated in the cortex in one. Hemorrhage had occurred in six. follow-up studies in four patients showed that initial lesions had enlarged in two and regressed in two: new lesions had appeared in two. Multiple lesions of different sizes and various patterns which include gyral infarction, patchy or nodular lesion in the cortex, white mater of basal ganglia, and isolated small ring-like or nodular enhancement or frequent hemorrhage are findings which could be helpful in the radiologic diagnosis of cerebral septic embolism. (author). 8 refs., 5 figs.

  6. 头穴百会透曲鬓对缺血再灌注大鼠脑皮质及纹状体内肿瘤坏死因子α表达的影响%Influence of scalp point through point acupuncture with Baihui to Qubin on the expression of tumor necrosis factor-alpha in the cerebral cortex and striate body of rats with cerebral ischemia reperfusion

    Institute of Scientific and Technical Information of China (English)

    郭壮丽; 裴海涛

    2005-01-01

    hairs in parts correspondent to Baihui (GV-20) and Fengfu (GV-16) points in human were cut down and conventionally sterilized, then a filiform needle in 0.35 mmx40 mm was used to point to point acupucture correspondent to Baihui and Qubin in human to the depth of 0.8 cm. Another needle was used to perpendicularly insert at Fengfu (GV-16) point to the depth of 0.5 cm. A pulse electric machine was applied for 30 minutes, with the positive electrode connecting to Baihui (GV-20) and negative electrode to the Fengfu GV-16), the frequensection and in situ hybridization assay of TNF-α: All rats of every group,after treatment of 2 hours ischemia and 12 hours reperfusion, were deeply anesthetized, quickly given 200 mL normal saline through the catheterized ascending aorta, and continually given 300 mL paraformaldehyde of 40 g/L concentration; then they were decapitated for collecting the brain, the brain was fixed for 1 hour with the same solidification solution. The coronal sec-tion about 7 μm was prepared starting from the part of optic chiasm towards the back. The cytoplasm of TNF-α positive cell was stained brownish yellow, and that of TNF-α negative control cell was not stained. VIDAS-21 image analysing system was used to analyse the image, the result was extissue: After conventional staining with hematoxylin-eosin, the pathological changes of focal areas in both acupuncture group and control group were observed under light microscope.ischemic cerebral tissues in acupuncture group and control group.TNF-α in the cortex and striate body of brain in rats with ischemic reperfusion: Compared with sham operation group, the expressions in acupuncture group and control group were significantly increased (0.302±0.04,0.320±0.02; 0.466±0.08, 0.423±0.02; 0.367±0.03, 0.362±0.02; P < 0.05);compared with acupuncture group, the expression in control group was sigbral tissues: In control group the extent of degeneration and necrosis was more serious, the neuron was degenerative

  7. Cocaine-induced reduction of brain neuropeptide Y synthesis dependent on medial prefrontal cortex.

    OpenAIRE

    Wahlestedt, C; Karoum, F; Jaskiw, G; Wyatt, R. J.; Larhammar, D; Ekman, R.; Reis, D J

    1991-01-01

    Repeated administration of cocaine elicits substantial, long-lasting, but reversible reductions in neuropeptide Y (NPY) and NPY mRNA in the rat cerebral cortex and nucleus accumbens. The NPY reduction appears to be mediated through a decrease in NPY biosynthesis, occurring transneuronally, perhaps in response to changes in synaptic dopamine associated with mesolimbic and mesocortical dopamine neurons. The medial prefrontal cortex appears necessary for maintenance of cocaine's action on this n...

  8. Neuroprotective effect of penehyclidine hydrochloride on focal cerebral ischemiareperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Cuicui Yu; Junke Wang

    2013-01-01

    Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochloride in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of Bcl-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect.

  9. Efeitos da exposição pré-natal e pós-natal ao etanol no córtex cerebral de ratos: um estudo do neurópilo Effects of prenatal and postnatal ethanol exposure in the cerebral cortex of rats: a study of neuropil

    Directory of Open Access Journals (Sweden)

    Márcio Sousa Jerônimo

    2008-02-01

    Full Text Available INTRODUÇÃO: Exposição pré-natal ao etanol é freqüentemente associada a microcefalia e atraso na migração celular. O mecanismo pelo qual o etanol induz seus efeitos no desenvolvimento do sistema nervoso não é muito bem entendido. OBJETIVOS: Avaliar o efeito da exposição crônica ao etanol sobre o córtex visual de ratos durante seu desenvolvimento. MATERIAL E MÉTODO: Ratos Wistar provenientes do acasalamento de 30 fêmeas, divididos nos grupos etanol (n = 10 - 3 g/kg/dia - e controle (n = 10, foram utilizados nesse experimento. Os ratos foram perfundidos e o encéfalo, dividido em três partes: anterior, médio e posterior. Os cortes obtidos do fragmento posterior foram expostos à rotina histológica e submetidos a diferentes técnicas de coloração. Na análise estatística foi utilizado o teste t para comparar os pesos encefálicos e corporais. Considerou-se como nível de rejeição de hipótese nula um valor de p BACKGROUND: Prenatal exposure to ethanol is frequently associated with microencephaly and delayed cell migration. The mechanism by which ethanol affects the development of the nervous system is still not fully understood. OBJECTIVE: To evaluate the effect of chronic exposure to ethanol on the visual cortex of rats during their development. MATERIAL AND METHOD: Wistar rats, born from the mating of 30 females, were divided into two groups: those exposed to ethanol (n = 10 - 3 g/kg/day - and a control group (n = 10. The rats were perfused and brain was divided into three parts: anterior, middle and posterior. Slices taken from the posterior fragment were subjected to histological analysis routine and different staining techniques. A statistical analysis was carried out using t test to compare brain and body weight. A value < 0,05 was considered a rejection of null hypothesis. RESULTS: There was a reduction of brain weight in different analyzed periods. There were no fiber deposits. Ectopia and neuronal heterotopia were

  10. Focal Cerebral Ischemia Induces Alzheimer s Disease-like Pathological Change in Rats

    Institute of Scientific and Technical Information of China (English)

    王海均; 赵洪洋; 叶佑范; 熊南翔; 黄俊红; 姚东晓; 沈寅; 赵心同

    2010-01-01

    The changes in the tau protein phosphorylation and expression of bcl-2,and bax in rat parietal cortex neurons after focal cerebral ischemia-reperfusion(I/R)were explored,and the relationship between the tau protein phosphorylation and the expression of bax or apoptosis was clarified in order to elucidate the relationship between cerebral infarction and Alzheimer's disease.The rat focal cerebral I/R model was induced by occlusion of the right middle cerebral artery using the intraluminal suture method.The le...

  11. APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons

    Directory of Open Access Journals (Sweden)

    Steven Moore

    2015-05-01

    Full Text Available Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer’s disease (AD. To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons.

  12. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex

    DEFF Research Database (Denmark)

    Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang;

    2012-01-01

    outcome at 6 months showed significantly higher total and peak numbers of spreading depolarizations and significantly longer total and peak depression periods during the electrocorticographic monitoring than patients with good outcome. In a semi-structured telephone interview 3 years after the initial......, monopolar recordings here provided unequivocal evidence of spreading convulsions in patients. Hence, practically all major pathological cortical network events in animals have now been observed in people. Early spreading depolarizations may indicate a risk for late post-haemorrhagic seizures....

  13. United Cerebral Palsy

    Science.gov (United States)

    ... be sure to follow us on Twitter . United Cerebral Palsy UCP educates, advocates and provides support services to ... Partners Merz Logo Sprint Relay Copyright © 2015 United Cerebral Palsy 1825 K Street NW Suite 600 Washington, DC ...

  14. Cerebral palsy and epilepsy

    OpenAIRE

    Knežević-Pogančev Marija

    2010-01-01

    Introduction. Cerebral palsy is the most common cause of physical disability in early childhood. Epilepsy is known to have a high association with cerebral palsy. All types of epileptic seizures can be seen in patients with cerebral palsy. Complex partial and secondary generalized ones are the most frequent seizure types. In persons with cerebral palsy and mental retardation, the diagnosis of epilepsy presents unique difficulties. Generally they are not able to describe the epileptic ev...

  15. Benzodiazepine receptor imaging with iomazenil SPECT in aphasic patients with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Koshi, Yasuhiko; Kitamura, Shin; Ohyama, Masashi [Nippon Medical School, Tokyo (Japan)] (and others)

    1999-08-01

    To investigate the relationship between prognosis of aphasia and neuronal damage in the cerebral cortex, we evaluated the distribution of central-type benzodiazepine receptor (BZR) binding in post-stroke aphasics with [{sup 123}I]iomazenil and SPECT. We performed iomazenil SPECT in six aphasic patients (aged from 45 to 75 years; all right-handed) with unilateral left cerebral infarction. Three patients showed signs of Broca's aphasia and the other three Wernicke's aphasia. Cerebral blood flow (CBF) imaging was performed with [{sup 123}I]iodoamphetamine (IMP). The regions of interest (ROIs) on both images were set in the cerebral cortex, cerebellar cortex and language relevant area in both hemispheres. Three patients were classified in the mild prognosis group and the other three in the moderate prognosis group. The left language-relevant area was more closely concerned with the difference in aphasic symptoms than the right one in both BZR and CBF distribution, but the ipsilateral to the contralateral ratio (I/C ratio) in the language-relevant areas in the BZR distribution was significantly lower in the moderate prognosis group than in the mild prognosis group, although no difference was seen for these values between the two groups in the CBF distribution. These results suggest that BZR imaging, which makes possible an increase in neuronal cell viability in the cerebral cortex, is useful not only for clarifying the aphasic symptoms but also for evaluating the prognosis of aphasia in patients with cerebral infarction. (author)

  16. Role of hydrogen sulfide in early blood-brain barrier disruption following transient focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Zheng Jiang

    Full Text Available We determined the role of endogenous hydrogen sulfide (H2S in cerebral vasodilation/hyperemia and early BBB disruption following ischemic stroke. A cranial window was prepared over the left frontal, parietal and temporal cortex in mice. Transient focal cerebral Ischemia was induced by directly ligating the middle cerebral artery (MCA for two hours. Regional vascular response and cerebral blood flow (CBF during ischemia and reperfusion were measured in real time. Early BBB disruption was assessed by Evans Blue (EB and sodium fluorescein (Na-F extravasation at 3 hours of reperfusion. Topical treatment with DL-propargylglycine (PAG, an inhibitor for cystathionine γ-lyase (CSE and aspartate (ASP, inhibitor for cysteine aminotransferase/3-mercaptopyruvate sulfurtransferase (CAT/3-MST, but not O-(Carboxymethylhydroxylamine hemihydrochloride (CHH, an inhibitor for cystathionine β-synthase (CBS, abolished postischemic cerebral vasodilation/hyperemia and prevented EB and Na-F extravasation. CSE knockout (CSE-/- reduced postischemic cerebral vasodilation/hyperemia but only inhibited Na-F extravasation. An upregulated CBS was found in cerebral cortex of CSE-/- mice. Topical treatment with CHH didn't further alter postischemic cerebral vasodilation/hyperemia, but prevented EB extravasation in CSE-/- mice. In addition, L-cysteine-induced hydrogen sulfide (H2S production similarly increased in ischemic side cerebral cortex of control and CSE-/- mice. Our findings suggest that endogenous production of H2S by CSE and CAT/3-MST during reperfusion may be involved in postischemic cerebral vasodilation/hyperemia and play an important role in early BBB disruption following transient focal cerebral ischemia.

  17. Mesenchymal stem cells transplantation suppresses inflammatory responses in global cerebral ischemia:contribution of TNF-α-induced protein 6

    Institute of Scientific and Technical Information of China (English)

    Qing-ming LIN; Shen ZHAO; Li-li ZHOU; Xiang-shao FANG; Yue FU; Zi-tong HUANG

    2013-01-01

    Aim:To investigate the effects of mesenchymal stem cells (MSCs) transplantation on rat global cerebral ischemia and the underlying mechanisms.Methods:Adult male SD rats underwent asphxial cardiac arrest to induce global cerebral ischemia,then received intravenous injection of 5x106 cultured MSCs of SD rats at 2 h after resuscitation.In another group of cardiac arrest rats,tumor necrosis factor-α-induced protein 6 (TSG-6,6 μg) was injected into the right lateral ventricle.Functional outcome was assessed at 1,3,and 7 d after resuscitation.Donor MSCs in the brains were detected at 3 d after resuscitation.The level of serum S-1OOB and proinflammatory cytokines in cerebral cortex were assayed using ELISA.The expression of TSG-6 and proinflammatory cytokines in cerebral cortex was assayed using RT-PCR.Western blot was performed to determine the levels of TSG-6 and neutrophil elastase in cerebral cortex.Results:MSCs transplantation significantly reduced serum S-1OOB level,and improved neurological function after global cerebral ischemia compared to the PBS-treated group.The MSCs injected migrated into the ischemic brains,and were observed mainly in the cerebral cortex.Furthermore,MSCs transplantation significantly increased the expression of TSG-6,and reduced the expression of neutrophil elastase and proinflammatory cytokines in the cerebral cortex.Intracerebroventricular injection of TSG-6 reproduced the beneficial effects of MSCs transplantation in rats with global cerebral ischemia.Conclusion:MSCs transplantation improves functional recovery and reduces inflammatory responses in rats with global cerebral ischemia,maybe via upregulation of TSG-6 expression.

  18. Cerebral microangiopathies; Zerebrale Mikroangiopathien

    Energy Technology Data Exchange (ETDEWEB)

    Linn, Jennifer [Klinikum der Universitaet Muenchen (Germany). Abt. fuer Neuroradiologie

    2011-03-15

    Cerebral microangiopathies are a very heterogenous group of diseases characterized by pathological changes of the small cerebral vessels. They account for 20 - 30 % of all ischemic strokes. Degenerative microangiopathy and sporadic cerebral amyloid angiography represent the typical acquired cerebral microangiopathies, which are found in over 90 % of cases. Besides, a wide variety of rare, hereditary microangiopathy exists, as e.g. CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), Fabrys disease and MELAS syndrome (Mitochondrial myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes). (orig.)

  19. MUSCARINIC ACETYLCHOLINE RECEPTOR-EXPRESSION IN ASTROCYTES IN THE CORTEX OF YOUNG AND AGED RATS

    NARCIS (Netherlands)

    VANDERZEE, EA; DEJONG, GI; STROSBERG, AD; LUITEN, PGM

    1993-01-01

    The present report describes the cellular and subcellular distribution pattern of immunoreactivity to M35, a monoclonal antibody raised against purified muscarinic acetylcholine receptor protein, in astrocytes in the cerebral cortex of young and aged rats. Most M35-positive astrocytes were localized

  20. Locations of cerebral infarctions in tuberculous meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, F.Y.; Chia, L.G. (Section of Neurology, Taichung Veterans General Hospital (Taiwan)); Shen, W.C. (Section of Neuroradiology, Taichung Veterans General Hospital (Taiwan))

    1992-06-01

    The locations of cerebral infarctions were studied in 14 patients with tuberculous meningitis (TBM) and 173 patients with noninflammatory ischemic stroke (IS). In patients with TBM, 75% of infarctions occurred in the 'TB zone' supplied by medial striate and thalamoperforating arteries; only 11% occurred in the 'IS zone' supplied by lateral striate, anterior choroidal and thalamogeniculate arteries. In patients with IS, 29% of infarctions occurred in the IS zone, 29% in the subcortical white matter, and 24% in (or involving) the cerebral cortex. Only 11% occurred in the TB zone. Bilaterally symmetrical infarctions of the TB zone were common with TBM (71%) but rare with IS (5%). (orig.).

  1. Cerebral blood flow in asymptomatic individuals

    International Nuclear Information System (INIS)

    We studied the relationship between cortical grey matter flow (CBF) and age, cerebrovascular risk factors and the severity of subcortical hypersignals (HS, hyperintensity score in MRI) in 47 asymptomatic subjects with cerebrovascular risk factors. Multiple regression analysis revealed that HS was most strongly related to CBF, and that hematocrit, age and evidence of ischemic change detected in the electrocardiogram also appeared to be independent determinants of CBF. Both the severity and location of hypersignals were correlated with CBF. The most significant negative correlation observed was that between CBF and HS in the basal ganglia-thalamic region, where the degree of signal abnormality was modest. Decreased CBF in asymptomatic subjects with cerebrovascular risk factors may be related to microcirculatory disturbance associated with elevated hematocrit and an increase in the number of risk factors, and functional suppression of cerebral cortex due to the neuronal disconnection associated with subcortical lesions. In addition, impaired cerebral circulation may be related to MRI signal abnormalities. (author)

  2. A change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex in a patient with intracerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Sang Seok Yeo; Sung Ho Jang

    2012-01-01

    Many studies have attempted to elucidate the motor recovery mechanism of stroke, but the majority of these studies focus on cerebral infarct and relatively little is known about the motor recovery mechanism of intracerebral hemorrhage. In this study, we report on a patient with intracerebral hemorrhage who displayed a change in injured corticospinal tract originating from the premotor cortex to the primary motor cortex on diffusion tensor imaging. An 86-year-old woman presented with complete paralysis of the right extremities following spontaneous intracerebral hemorrhage in the left frontoparietal cortex. The patient showed motor recovery, to the extent of being able to extend affected fingers against gravity and to walk independently on even ground at 5 months after onset. Diffusion tensor imaging showed that the left corticospinal tract originated from the premotor cortex at 1 month after intracerebral hemorrhage and from the left primary motor cortex and premotor cortex at 5 months after intracerebral hemorrhage. The change of injured corticospinal tract originating from the premotor cortex to the primary motor cortex suggests motor recovery of intracerebral hemorrhage.

  3. Asymptomatic cerebral hemorrhage detected by MRI

    International Nuclear Information System (INIS)

    Detection of previous cerebral infarction on CT films of patients with no history of stroke is a common occurrence. The incidence of silent cerebral infarction was reported to be about 10 to 11 percent, but very few reports concerning asymptomatic cerebral hemorrhage available. However, recent clinical application of MRI has resulted in the detection of old asymptomatic hemorrhage in patients with no history known stroke-like episodes. The purpose of this study was to elucidate the incidence, the cause and the character of the asymptomatic cerebral hemorrhage among patients who had undergone MRI examinations. From September 1987 through June 1990, 2757 patients have undergone 3474 MR scans of the brain with 1.0 Tesla Siemens Magneton unit in our hospital. Seventeen patients showed no clinical signs or symptoms suggesting a stroke episode corresponding to the detected hemorrhagic lesion. The 17 patients corresponded to 0.6% of the patients who underwent MRI, 1.5% of the patients with cerebrovascular disease and 9.5% of the patients with intracerebral hemorrhage(ICH), which was rather higher than expected. Among the 17 patients, 12 were diagnosed as primary ICH and 5 as secondary ICH. Most of the primary asymptomatic hemorrhage were hypertensive ones and slit-like curvilinear lesions between the putamen and claustrum or external capsule. The secondary asymptomatic hemorrhage were due to AVM and angiomas in the frontal cortex, thalamus and pons. (author)

  4. Asymptomatic cerebral hemorrhage detected by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yumi; Ohsuga, Hitoshi; Yamamoto, Masahiro; Shinohara, Yukito (Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine)

    1991-03-01

    Detection of previous cerebral infarction on CT films of patients with no history of stroke is a common occurrence. The incidence of silent cerebral infarction was reported to be about 10 to 11 percent, but very few reports concerning asymptomatic cerebral hemorrhage available. However, recent clinical application of MRI has resulted in the detection of old asymptomatic hemorrhage in patients with no history known stroke-like episodes. The purpose of this study was to elucidate the incidence, the cause and the character of the asymptomatic cerebral hemorrhage among patients who had undergone MRI examinations. From September 1987 through June 1990, 2757 patients have undergone 3474 MR scans of the brain with 1.0 Tesla Siemens Magneton unit in our hospital. Seventeen patients showed no clinical signs or symptoms suggesting a stroke episode corresponding to the detected hemorrhagic lesion. The 17 patients corresponded to 0.6% of the patients who underwent MRI, 1.5% of the patients with cerebrovascular disease and 9.5% of the patients with intracerebral hemorrhage(ICH), which was rather higher than expected. Among the 17 patients, 12 were diagnosed as primary ICH and 5 as secondary ICH. Most of the primary asymptomatic hemorrhage were hypertensive ones and slit-like curvilinear lesions between the putamen and claustrum or external capsule. The secondary asymptomatic hemorrhage were due to AVM and angiomas in the frontal cortex, thalamus and pons. (author).

  5. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Xin-juan Li

    2015-01-01

    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  6. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats.

    Science.gov (United States)

    Li, Xin-Juan; Li, Chao-Kun; Wei, Lin-Yu; Lu, Na; Wang, Guo-Hong; Zhao, Hong-Gang; Li, Dong-Liang

    2015-06-01

    The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors.

  7. 3-N-butylphthalide improves neuronal morphology after chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Wanhong Zhao; Chao Luo; Jue Wang; Jian Gong; Bin Li; Yingxia Gong; Jun Wang; Hanqin Wang

    2014-01-01

    3-N-butylphthalide is an effective drug for acute ischemic stroke. However, its effects on chronic cerebral ischemia-induced neuronal injury remain poorly understood. Therefore, this study li-gated bilateral carotid arteries in 15-month-old rats to simulate chronic cerebral ischemia in aged humans. Aged rats were then intragastrically administered 3-n-butylphthalide. 3-N-butylphtha-lide administration improved the neuronal morphology in the cerebral cortex and hippocampus of rats with chronic cerebral ischemia, increased choline acetyltransferase activity, and decreased malondialdehyde and amyloid beta levels, and greatly improved cognitive function. These findings suggest that 3-n-butylphthalide alleviates oxidative stress caused by chronic cerebral ischemia, improves cholinergic function, and inhibits amyloid beta accumulation, thereby im-proving cerebral neuronal injury and cognitive deifcits.

  8. Hydrogen sulifde intervention in focal cerebral ischemia/reperfusion injur y in rats

    Institute of Scientific and Technical Information of China (English)

    Xin-juan Li; Chao-kun Li; Lin-yu Wei; Na Lu; Guo-hong Wang; Hong-gang Zhao; Dong-liang Li

    2015-01-01

    The present study aimed to explore the mechanism underlying the protective effects of hydro-gen sulifde against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulifde donor compound sodium hydrosulifde. Immunolfuorescence revealed that the immu-noreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treat-ment of these rats with hydrogen sulifde signiifcantly lowered mortality, the Longa neurological deifcit scores, and infarct volume. These results indicate that hydrogen sulifde may be protec-tive in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors.

  9. Optical coherence tomography reveals in vivo cortical structures of adult rats in response to cerebral ischemia injury

    Science.gov (United States)

    Ni, Yi-rong; Guo, Zhou-yi; Shu, So-yun; Bao, Xin-min

    2008-12-01

    Optical coherence tomography(OCT) is a high resolution imaging technique which uses light to directly image living tissue. we investigate the potential use of OCT for structural imaging of the ischemia injury mammalian cerebral cortex. And we examine models of middle cerebral artery occlusion (MCAO) in rats in vivo using OCT. In particular, we show that OCT can perform in vivo detection of cortex and differentiate normal and abnormal cortical anatomy. This OCT system in this study provided an axial resolution of 10~15μ m, the transverse resolution of the system is about 25 μm. OCT can provide cross-sectional images of cortical of adult rats in response to cerebral ischemia injury.We conclude that OCT represents an exciting new approach to visualize, in real-time, pathological changes in the cerebral cortex structures and may offer a new tool for Possible neuroscience clinical applications.

  10. Amylin: Localization, Effects on Cerebral Arteries and on Local Cerebral Blood Flow in the Cat

    Directory of Open Access Journals (Sweden)

    Lars Edvinsson

    2001-01-01

    Full Text Available Amylin and adrenomedullin are two peptides structurally related to calcitonin gene-related peptide (CGRP. We studied the occurrence of amylin in trigeminal ganglia and cerebral blood vessels of the cat with immunocytochemistry and evaluated the role of amylin and adrenomedullin in the cerebral circulation by in vitro and in vivo pharmacology. Immunocytochemistry revealed that numerous nerve cell bodies in the trigeminal ganglion contained CGRP immunoreactivity (-ir; some of these also expressed amylin-ir but none adrenomedullin-ir. There were numerous nerve fibres surrounding cerebral blood vessels that contained CGRP-ir. Occasional fibres contained amylin-ir while we observed no adrenomedullin-ir in the vessel walls. With RT-PCR and Real-Time�PCR we revealed the presence of mRNA for calcitonin receptor-like receptor (CLRL and receptor-activity-modifying proteins (RAMPs in cat cerebral arteries. In vitro studies revealed that amylin, adrenomedullin, and CGRP relaxed ring segments of the cat middle cerebral artery. CGRP and amylin caused concentration-dependent relaxations at low concentrations of PGF2a-precontracted segment (with or without endothelium whereas only at high concentration did adrenomedullin cause relaxation. CGRP8-37 blocked the CGRP and amylin induced relaxations in a parallel fashion. In vivo studies of amylin, adrenomedullin, and CGRP showed a brisk reproducible increase in local cerebral blood flow as examined using laser Doppler flowmetry applied to the cerebral cortex of the a-chloralose�anesthetized cat. The responses to amylin and CGRP were blocked by CGRP8-37. The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors.

  11. Cognition without Cortex.

    Science.gov (United States)

    Güntürkün, Onur; Bugnyar, Thomas

    2016-04-01

    Assumptions on the neural basis of cognition usually focus on cortical mechanisms. Birds have no cortex, but recent studies in parrots and corvids show that their cognitive skills are on par with primates. These cognitive findings are accompanied by neurobiological discoveries that reveal avian and mammalian forebrains are homologous, and show similarities in connectivity and function down to the cellular level. But because birds have a large pallium, but no cortex, a specific cortical architecture cannot be a requirement for advanced cognitive skills. During the long parallel evolution of mammals and birds, several neural mechanisms for cognition and complex behaviors may have converged despite an overall forebrain organization that is otherwise vastly different. PMID:26944218

  12. Incomplete brain infarction of reperfused cortex may be quantitated with iomazenil

    DEFF Research Database (Denmark)

    Nakagawara, J; Sperling, B; Lassen, N A

    1997-01-01

    cortex showed significant decrease of Vd (P mild cortical atrophy was observed in two reperfused areas where the asymmetry ratio was moderately reduced (0.64 and 0......BACKGROUND AND PURPOSE: [123I]Iomazenil is a specific radioligand for the central benzodiazepine receptor that may be useful as an indicator of the intactness of cortical neurons after focal cerebral ischemia. We evaluated the binding of this receptor in reperfused cortex among patients...... with ischemic stroke to detect viable neurons in cortex that appeared structurally intact on conventional neuroimaging studies. METHODS: Fourteen patients were selected by (1) angiography within 24 hours of onset showing embolic occlusion of an intracranial artery, (2) cerebral blood flow showing ischemia...

  13. The role of Rho/Rho-kinase pathway and the neuroprotective effects of fasudil in chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Ya-yun Yan; Xiao-ming Wang; Yan Jiang; Han Chen; Jin-ting He; Jing Mang; Yan-kun Shao; Zhong-xin Xu

    2015-01-01

    The Rho/Rho-kinase signaling pathway plays an important role in cerebral ischemia/reperfusion injury. However, very few studies have examined in detail the changes in the Rho/Rho-kinase signaling pathway in chronic cerebral ischemia. In this study, rat models of chronic cerebral ischemia were established by permanent bilateral common carotid artery occlusion and intra-gastrically administered 9 mg/kg fasudil, a powerful ROCK inhibitor, for 9 weeks. Morris water maze results showed that cognitive impairment progressively worsened as the cerebral ischemia proceeded. Immunohistochemistry, semi-quantitative RT-PCR and western blot analysis showed that the expression levels of Rho-kinase, its substrate myosin-binding subunit, and its relat-ed protein alpha smooth muscle actin, significantly increased after chronic cerebral ischemia. TUNEL staining showed that chronic cerebral ischemia could lead to an increase in neuronal apoptosis, as well as the expression level of caspase-3 in the frontal cortex of rats subjected to chronic cerebral ischemia. Fasudil treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, and decreased the expression level of Rho-kinase, myosin-binding subunit and alpha smooth muscle actin. Furthermore, fasudil could regulate cerebral injury by reducing cell apoptosis and decreasing caspase-3 expression in the frontal cortex. These ifndings demonstrate that fasudil can protect against cognitive impairment induced by chronic cerebral ischemiavia the Rho/Rho-kinase signaling pathway and anti-apoptosis mechanism.

  14. 运动锻炼对局灶性脑缺血大鼠脑皮质RGMa表达的影响%Effects of treadmill exercise on the expression of RGMa in infarcted brain cortex of rats after middle cerebral artery occlusion/reperfusion

    Institute of Scientific and Technical Information of China (English)

    郭振委; 秦新月; 孔渝菡

    2011-01-01

    Objective:To observe the expression of RGMa in infarcted brain cortex of rats with middle cerebral artery occlusion ( MCAo ) after experiencing treadmill exercise. Methods: 120 Sprague-Dawley rats were randomly divided into 5 groups:control group, sham-operation group, and 7,14,28 d after ischemia group. Then each group above were randomly divided into four groups:sedentary group, low-intensity,moderate-intensity, high-intensity treadmill exercise group with MCAo. The MCAo/reperfusion model was induced by ligation with nylon monofilament in rats in the study. Results: ①Real-time quantitative PCR ( RT-qPCR ): There are no significant differences between each low-intensity treadmill MCAo group and each sedentary MCAo group for expression of RGMa mRNA ( P>0.05 ). There was down-regulation of it in each moderate-intensity treadmill exercise MCAo group,compared with each sedentary MCAo group ( P<0.05 ). But there was up-regulation in high-intensity treadmill exercise MCAo group ( P<0.05 ) .②The result of immunohistochemistry:There was no significant difference between each sedentary MCAo group and each low-intensity treadmill exercise MCAo group ( P>0.05 ). The expression of R GMa was down-regulated in moderate-intensity treadmill exercise MCAo group,except at 7 d, compared with each sedentary MCAo group ( P<0.05 ). But the opposite result was got in high-intensity treadmill exercise MCAo group ( P<0.05 ). Neurological deficit scores test showed moderate-intensity treadmill exercise improved neurological function in MCAo group ( P<0.05 ).Conclusion: Moderate-intensity treadmill exercise decreased the expression of RGMa in the peri-ischemia cortex after ischemia stroke and the impaired neural function was improved.%目的:探讨运动锻炼对卒中后大鼠缺血侧脑皮质排斥性导向分子A(Repulsive guidance molecule A,RGMa)表达的影响.方法:选用SD大鼠120只,随机分为5组,正常组,假手术组,MCAo模型7、14、28 d组,以上各

  15. Cerebral cortical neurons with activity linked to central neurogenic spontaneous and evoked elevations in cerebral blood flow

    Science.gov (United States)

    Golanov, E. V.; Reis, D. J.

    1996-01-01

    We recorded neurons in rat cerebral cortex with activity relating to the neurogenic elevations in regional cerebral blood flow (rCBF) coupled to stereotyped bursts of EEG activity, burst-cerebrovascular wave complexes, appearing spontaneously or evoked by electrical stimulation of rostral ventrolateral medulla (RVL) or fastigial nucleus (FN). Of 333 spontaneously active neurons only 15 (5%), in layers 5-6, consistently (P neurons in deep cortical laminae whose activity correlates with neurogenic elevations of rCBF. These neurons may function to transduce afferent neuronal signals into vasodilation.

  16. Cerebral angiography in leptomeningitis and cerebritis

    International Nuclear Information System (INIS)

    This is a report of the cerebral angiographic findings in cases of meningitis and cerebritis. Fifty-nine patients, 38 of whom were under 1 year of age, underwent cerebral angiography by means of femoral catheterization. All the patients had signs of increased intracranial pressure, seizures, focal cerebral signs, positive transillumination of the head, and or abnormal brain scan findings. A few patients who did not respond to systemic antibiotics as was expected were also evaluated by means of cerebral angiography. The following characteristic angiographic findings were observed in 18 cases of active meningitis: (1) A hasy appearance around the arteries (halo formation) between the late arterial and capillary phases. (2) Narrowing of the arteries in the basal cistern. This sometimes extended to the peripheral arteries. (3) Irregular caliber following the narrowing of arteries (in few cases). (4) Circulation time so slow that veins could be seen in the late arterial phase. (5) Halo formation around the anterior chroidal artery and the clear appearance of the choroid plexus in the venous phase (when the infectious process reached the choroid plexus). Cerebritis could be identified on the angiograms by two signs: (1) local swelling of the brain (mainly the temporal lobe) and (2) staining around the veins without any abnormal signs in the arterial phase (laminar staining). In conclusion, angiography is a meaningful test by which to determine the phase of meningitis and cerebritis. These two conditions should be treated based on valid information obtained by means of CSF examinations and neuroradiological tests, especially CT scan and cerebral angiography. (author)

  17. Reduction of pain sensitivity after somatosensory therapy in adults with cerebral palsy

    OpenAIRE

    Pedro Montoya

    2013-01-01

    Objective. Pain and deficits in somatosensory processing seem to play a relevant role in cerebral palsy (CP). Rehabilitation techniques based on neuroplasticity mechanisms may induce powerful changes in the organization of the primary somatosensory cortex and have been proved to reduce levels of pain and discomfort in neurological pathologies. However, little is known about the efficacy of such interventions for pain sensitivity in CP individuals. Methods. Adults with cerebral palsy participa...

  18. Inhibitory effect of acupuncture on neuronal apoptosis in rats after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Bangyu Ju; Jing Zhang; Guohua Jiang

    2007-01-01

    ; neuronal apoptosis was observed with TUNEL staining; manifestations of neuronal apoptosis in cerebral cortex and hippocampal CA1 area were observed with electron microscope.MAIN OUTCOME MEASURES: Neuronal injuries in hippocampal CA1 area after cerebral ischemia;neuronal apoptosis in cerebral cortex and hippocampal CA1 area after cerebral ischemia; morphological changes under electron microscope.RESULTS: Among 30 Wistar rats, 24 rats were involved in the final analysis. ① Expression of positive urons in cerebral cortex and hippocampal CA1 area with Nissl body staining: Neuronal defect was obvious in cerebral cortex and hippocampal CA1 area in the cerebral ischemia group as compared with that in the sham operation group (P < 0.05), and neuronal defect was decreased in hippocampal CA1 area in the cerebral ischemia group as compared with that in the acupuncture group (P < 0.05). ② Expression of positive neurons in cerebral cortex and hippocampal CA1 area with TUNEL staining: Positive neurons with TUNEL staining were not observed in the sham operation group, but positive neurons were increased in the cerebral ischemia group as compared with those in the acupuncture group (P <0.05). ③ Observational results of electron microscope: Neuronal apoptosis was not found in the sham operation group; neuronal apoptosis was rarely found in the acupuncture group; neuronal apoptosis was typical in the cerebral ischemia group.CONCLUSION: Delayed neuronal death after total cerebral ischemia may accompany ith apoptosis, but acupuncture may play a certain role in protecting nerve through inhibiting ischemic neuronal apoptosis.

  19. Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex

    OpenAIRE

    Liu, Zhong-Wu; Faraguna, Ugo; Cirelli, Chiara; Tononi, Giulio; Gao, Xiao-Bing

    2010-01-01

    Despite evidence that waking is associated with net synaptic potentiation and sleep with depression, direct proof for changes in synaptic currents is lacking in large brain areas such as the cerebral cortex. By recording miniature excitatory postsynaptic currents (mEPSCs) from frontal cortex slices of mice and rats that had been awake or asleep, we found that the frequency and amplitude of mEPSCs increased after wake and decreased after sleep. Recovery sleep after sleep deprivation also decre...

  20. Stimulus selectivity and response latency in putative inhibitory and excitatory neurons of the primate inferior temporal cortex

    OpenAIRE

    Mruczek, Ryan E. B.; David L Sheinberg

    2012-01-01

    The cerebral cortex is composed of many distinct classes of neurons. Numerous studies have demonstrated corresponding differences in neuronal properties across cell types, but these comparisons have largely been limited to conditions outside of awake, behaving animals. Thus the functional role of the various cell types is not well understood. Here, we investigate differences in the functional properties of two widespread and broad classes of cells in inferior temporal cortex of macaque monkey...

  1. Spontaneous and visually-driven high-frequency oscillations in the occipital cortex: Intracranial recording in epileptic patients

    OpenAIRE

    Nagasawa, Tetsuro; Juhász, Csaba; Rothermel, Robert; Hoechstetter, Karsten; Sood, Sandeep; Asano, Eishi

    2011-01-01

    High-frequency oscillations (HFOs) at ≧80 Hz of nonepileptic nature spontaneously emerge from human cerebral cortex. In 10 patients with extra-occipital lobe epilepsy, we compared the spectral-spatial characteristics of HFOs spontaneously arising from the nonepileptic occipital cortex with those of HFOs driven by a visual task as well as epileptogenic HFOs arising from the extra-occipital seizure focus. We identified spontaneous HFOs at ≧80 Hz with a mean duration of 330 msec intermittently e...

  2. Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex

    OpenAIRE

    Runyan, Caroline A.; Schummers, James; Van Wart, Audra; Kuhlman, Sandra J.; Nathan R. Wilson; Huang, Z. Josh; Sur, Mriganka

    2010-01-01

    Inhibitory interneurons in the cerebral cortex include a vast array of subtypes, varying in their molecular signatures, electrophysiological properties, and connectivity patterns. This diversity suggests that individual inhibitory classes have unique roles in cortical circuits; however, their characterization to date has been limited to broad classifications including many subtypes. We used the Cre/LoxP system, specifically labeling parvalbumin(PV)-expressing interneurons in visual cortex of ...

  3. Statins and cerebral hemodynamics

    Science.gov (United States)

    Giannopoulos, Sotirios; Katsanos, Aristeidis H; Tsivgoulis, Georgios; Marshall, Randolph S

    2012-01-01

    HMG-CoA reductase inhibitors (statins) are associated with improved stroke outcome. This observation has been attributed in part to the palliative effect of statins on cerebral hemodynamics and cerebral autoregulation (CA), which are mediated mainly through the upregulation of endothelium nitric oxide synthase (eNOS). Several animal studies indicate that statin pretreatment enhances cerebral blood flow after ischemic stroke, although this finding is not further supported in clinical settings. Cerebral vasomotor reactivity, however, is significantly improved after long-term statin administration in most patients with severe small vessel disease, aneurysmal subarachnoid hemorrhage, or impaired baseline CA. PMID:22929438

  4. Cerebral blood flow and oxygen metabolism in the Rett syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hideto; Fueki, Noboru; Suzuki, Hisaharu; Sakuragawa, Norio; Iio, Masaaki (National Central Hospital for Mental, Nervous and Muscular Disorders, Tokyo (Japan))

    1992-05-01

    Positron emission tomography (PET) was performed on six patients with the Rett syndrome and the results were compared with the concurrent clinical status of the patients. The cerebral metabolic rate of oxygen (CMRO{sub 2}) was low in five patients, and oxygen extraction fraction (OEF) was low in four patients; both had a tendency to decline with advancing age. Although the cause is unknown, it is suggested that impaired oxidative metabolism exists in the Rett syndrome. An analysis of the distribution among brain regions showed that the ratios of values for the frontal cortex to those for the temporal cortex for both the cerebral blood flow (CBF) and CMRO{sub 2} were lower than those for the controls, which may indicate the loss of of hyperfrontality in the Rett syndrome. Distribution of brain metabolism may be immature in the Rett syndrome. (author).

  5. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  6. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism

    Directory of Open Access Journals (Sweden)

    Semmler Alexander

    2008-09-01

    Full Text Available Abstract Background Septic encephalopathy is a severe brain dysfunction caused by systemic inflammation in the absence of direct brain infection. Changes in cerebral blood flow, release of inflammatory molecules and metabolic alterations contribute to neuronal dysfunction and cell death. Methods To investigate the relation of electrophysiological, metabolic and morphological changes caused by SE, we simultaneously assessed systemic circulation, regional cerebral blood flow and cortical electroencephalography in rats exposed to bacterial lipopolysaccharide. Additionally, cerebral glucose uptake, astro- and microglial activation as well as changes of inflammatory gene transcription were examined by small animal PET using [18F]FDG, immunohistochemistry, and real time PCR. Results While the systemic hemodynamic did not change significantly, regional cerebral blood flow was decreased in the cortex paralleled by a decrease of alpha activity of the electroencephalography. Cerebral glucose uptake was reduced in all analyzed neocortical areas, but preserved in the caudate nucleus, the hippocampus and the thalamus. Sepsis enhanced the transcription of several pro- and anti-inflammatory cytokines and chemokines including tumor necrosis factor alpha, interleukin-1 beta, transforming growth factor beta, and monocot chemoattractant protein 1 in the cerebrum. Regional analysis of different brain regions revealed an increase in ED1-positive microglia in the cortex, while total and neuronal cell counts decreased in the cortex and the hippocampus. Conclusion Together, the present study highlights the complexity of sepsis induced early impairment of neuronal metabolism and activity. Since our model uses techniques that determine parameters relevant to the clinical setting, it might be a useful tool to develop brain specific therapeutic strategies for human septic encephalopathy.

  7. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  8. Functional sex differences in human primary auditory cortex

    International Nuclear Information System (INIS)

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  9. Androgen receptor immunoreactivity in rat occipital cortex after callosotomy

    Directory of Open Access Journals (Sweden)

    G Lepore

    2009-08-01

    Full Text Available Gonadal steroidogenesis can be influenced by direct neural links between the central nervous system and the gonads. It is known that androgen receptor (AR is expressed in many areas of the rat brain involved in neuroendocrine control of reproduction, such as the cerebral cortex. It has been recently shown that the occipital cortex exerts an inhibitory effect on testicular stereoidogenesis by a pituitary-independent neural mechanism. Moreover, the complete transection of the corpus callosum leads to an increase in testosterone (T secretion of hemigonadectomized rats. The present study was undertaken to analyze the possible corticocortical influences regulating male reproductive activities. Adult male Wistar rats were divided into 4 groups: 1 intact animals as control; 2 rats undergoing sham callosotomy; 3 posterior callosotomy; 4 gonadectomy and posterior callosotomy. Western blot analysis showed no remarkable variations in cortical AR expression in any of the groups except in group I where a significant decrease in AR levels was found. Similarly, both immunocytochemical study and cell count estimation showed a lower AR immunoreactivity in occipital cortex of callosotomized rats than in other groups. In addition, there was no difference in serum T and LH concentration between sham-callosotomized and callosotomized rats. In conclusion, our results show that posterior callosotomy led to a reduction in AR in the right occipital cortex suggesting a putative inhibiting effect of the contralateral cortical area.

  10. Cerebral Palsy (CP) Quiz

    Science.gov (United States)

    ... Submit Button Past Emails CDC Features Pop Quiz: Cerebral Palsy Language: English Español (Spanish) Recommend on Facebook Tweet ... Sandy is the parent of a child with cerebral palsy and the Board President of Gio’s Garden , a ...

  11. Study on cerebral microcirculation by Optical Doppler Tomography

    Institute of Scientific and Technical Information of China (English)

    MENG Jie; DING ZhiHua; YANG Yong; GUO ZhouYi

    2008-01-01

    Optical Doppler Tomography (ODT) provides a novel method to measure the blood flow velocity in vessels with the diameter at micrometer scale.Rats with cranial window are used as a model,and the changes in the blood flow velocity of cerebral arterioles in sensory cortex are measured in real time with an established ODT system,under electrical stimulation and drug administration.The results show significant differences in the blood flow velocity between experimental groups and control groups,demonstrating the feasibility of ODT in the cerebral microcircula-tion study.Compared with the conventional Doppler ultrasound,ODT provides much higher spatial resolution,and thus holds a promising future in the application of the cerebral microcirculation study,especially in the observation of the blood flow velocity in micrometer scale vessels.

  12. Study on cerebral microcirculation by Optical Doppler Tomography

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Optical Doppler Tomography (ODT) provides a novel method to measure the blood flow velocity in vessels with the diameter at micrometer scale. Rats with cranial window are used as a model, and the changes in the blood flow velocity of cerebral arterioles in sensory cortex are measured in real time with an established ODT system, under electrical stimulation and drug administration. The results show significant differences in the blood flow velocity between experimental groups and control groups, demonstrating the feasibility of ODT in the cerebral microcircula- tion study. Compared with the conventional Doppler ultrasound, ODT provides much higher spatial resolution, and thus holds a promising future in the application of the cerebral microcirculation study, especially in the observation of the blood flow velocity in micrometer scale vessels.

  13. Effects of transplantation with bone marrow-derived endothelial progenitor cells on learning, memory and neurons in the cortex of the parietal lobe after cerebral ischemia reperfusion injury of atherosclerotic model rats%内皮祖细胞移植对动脉粥样硬化模型大鼠脑缺血再灌注后学习记忆能力与脑顶叶皮质的影响

    Institute of Scientific and Technical Information of China (English)

    朱俊德; 王贵学; 余彦; 余资江; 肖朝伦; 王玉林

    2012-01-01

    目的 探讨内皮祖细胞(EPCs)移植对动脉粥样硬化(AS)模型大鼠脑缺血再灌注损伤(IRI)后学习记忆能力与脑顶叶皮质结构的影响.方法 高脂膳食饲养建立30只动脉粥样硬化大鼠模型,随机分为AS组,IRI组和EPCs移植组.采集骨髓分离EPCs并体外扩增培养,检测其表面标记物的表达;第7天采用线栓法制作局灶性IRI模型,建模成功后1d EPCs移植组经尾静脉移植EPCs,IRI组与AS组给予等量体积的磷酸盐缓冲液.移植后7d检测各组大鼠的行为能力、脑组织血管内皮生长因子(VEGF)含量及其mRNA表达与其结构的病理改变.结果 培养24h后见细胞贴壁生长逐渐变为梭形;第3天细胞明显增殖集落形成;第5天细胞集落逐渐增大呈现克隆样生长;第7天细胞汇合达80%;第10~14天细胞基本铺满瓶底呈铺路石样密集排列.荧光显微镜下,DIL-ac-LDL和FITC-UEA-1双荧光染色的细胞数占贴壁细胞数的75%以上.与IRI组相比,EPCs移植后大鼠的学习记忆能力较IRI组明显改善,VEGF含量及其mRNA表达显著下降(P<0.05).光镜下,EPCs移植组大鼠脑缺血侧顶叶皮质Caspase-3和胶质细胞原纤维酸性蛋白(GFAP)阳性神经元均较IRI组明显下降(P<0.05).结论 EPCs移植能改善AS模型大鼠脑IRI后的学习记忆能力、减轻脑组织的病理损害,这些变化提示EPCs促进了神经的修复.%Objective To study behavior abilities and morphological changes on neurons in the cortex of parietal lobe after cerebral ischemia reperfusion injury (IRI) of atherosclerotic ( AS) model rats and observe the effect of transplantation with bone marrow-derived endothelial progenitor cells (EPCs) on the AS model rat. Methods A total of thirty male adult Wister AS model rats were established by fat-rich diet feeding for six consecutive weeks. EPCs were obtained from the bone marrow and the cells cultured in vitro in M199. On the 7th day, middle cerebral artery occlusion (MCAO) rat models

  14. Cerebral A{sub 1} adenosine receptors (A{sub 1}AR) in liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Boy, Christian [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University Hospital Essen, Department of Nuclear Medicine, Essen (Germany); Meyer, Philipp T. [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Kircheis, Gerald; Haussinger, Dieter [University of Duesseldorf, Clinic for Gastroenterology, Hepatology and Infectiology, Duesseldorf (Germany); Holschbach, Marcus H.; Coenen, Heinz H. [Research Centre Juelich, Institute of Nuclear Chemistry, Juelich (Germany); Herzog, Hans; Elmenhorst, David [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); Kaiser, Hans J. [University Hospital Aachen, Department of Nuclear Medicine, Aachen (Germany); Zilles, Karl [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); C. and O. Vogt Institute of Brain Research, Duesseldorf (Germany); Bauer, Andreas [Research Centre Juelich, Brain Imaging Centre West, Institute of Medicine, Juelich (Germany); University of Duesseldorf, Department of Neurology, Duesseldorf (Germany)

    2008-03-15

    The cerebral mechanisms underlying hepatic encephalopathy (HE) are poorly understood. Adenosine, a neuromodulator that pre- and postsynaptically modulates neuronal excitability and release of classical neurotransmitters via A{sub 1} adenosine receptors (A{sub 1}AR), is likely to be involved. The present study investigates changes of cerebral A{sub 1}AR binding in cirrhotic patients by means of positron emission tomography (PET) and [{sup 18}F]CPFPX, a novel selective A{sub 1}AR antagonist. PET was performed in cirrhotic patients (n = 10) and healthy volunteers (n = 10). Quantification of in vivo receptor density was done by Logan's non-invasive graphical analysis (pons as reference region). The outcome parameter was the apparent binding potential (aBP, proportional to B{sub max}/K{sub D}). Cortical and subcortical regions showed lower A{sub 1}AR binding in cirrhotic patients than in controls. The aBP changes reached statistical significance vs healthy controls (p < 0.05, U test with Bonferroni-Holm adjustment for multiple comparisons) in cingulate cortex (-50.0%), precentral gyrus (-40.9%), postcentral gyrus (-38.6%), insular cortex (-38.6%), thalamus (-32.9%), parietal cortex (-31.7%), frontal cortex (-28.6), lateral temporal cortex (-28.2%), orbitofrontal cortex (-27.9%), occipital cortex (-24.6), putamen (-22.7%) and mesial temporal lobe (-22.4%). Regional cerebral adenosinergic neuromodulation is heterogeneously altered in cirrhotic patients. The decrease of cerebral A{sub 1}AR binding may further aggravate neurotransmitter imbalance at the synaptic cleft in cirrhosis and hepatic encephalopathy. Different pathomechanisms may account for these alterations including decrease of A{sub 1}AR density or affinity, as well as blockade of the A{sub 1}AR by endogenous adenosine or exogenous xanthines. (orig.)

  15. Diffusion-weighted MRI in acute cerebral stroke

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, Hideichi; Kobayashi, Masahito; Suga, Sadao; Kawase, Takeshi; Nagasawa, Masakazu; Sadanaga, Humiko; Okamura, Miyuki; Kanai, Yoshihiro; Mihara, Ban [Mihara Memorial Hospital, Isezaki, Gunma (Japan)

    1999-03-01

    Diffusion-weighted MRI has been demonstrated to be valuable in the assessment of cerebral stroke. Recent advance in MR systems of hardware with larger maximum gradient amplitude and faster imaging strategies, such as EPI, has made it possible to acquire whole brain diffusion-weighted imaging (DWI) in less that one minute. The purposes of this study are to evaluate clinical usefulness of DWI and to clarify pitfalls in the diagnosis of acute cerebral stroke. Seventeen patients with 18 ischemic lesions were studied. DWI were taken with 1.5 Tesla MRI (Magnetom Vision, Siemens, Germany) using EPI sequence. Fifteen lesions out of them (3 in cerebral cortex, 9 in basal ganglia/deep white matter and 3 in cerebellum) were studied serially at various times up to 147 days. Acute cerebral infarction was seen clearly as an area of hyperintensity with DWI and as hypointensity in apparent diffusion coefficient (ADC) maps which are indicative of decreased diffusion. DWI detected areas of hyperintense acute infarcts, as early as 2.5 hours after onset, which were not visualized on T{sub 2}-weighted image (T2WI). The lesion of cerebral infarction became isointense in ADC maps at 14-28 days after onset, whereas with DWI it became isointense at about 2 months. Because ADC changed earlier than DWI, ADC maps were useful for differentiate acute from nonacute lesion in cases of recurrent stroke within a short period. In a patient with transient global amnesia for 7 hours, DWI did not show any lesion at 8 hours. In terms of cerebral hemorrhage, lesions were seen as area of hyperintensity in DWI at 3 days and were not distinguishable from that of infarct. Despite limitations in the diagnosis of transient ischemia and cerebral hemorrhage, DWI is a useful technique for early detection of cerebral infarction, especially within the first 6 hours after stroke onset. (author)

  16. Activation of cerebral sodium-glucose transporter type 1 function mediated by post-ischemic hyperglycemia exacerbates the development of cerebral ischemia.

    Science.gov (United States)

    Yamazaki, Y; Ogihara, S; Harada, S; Tokuyama, S

    2015-12-01

    The regulation of post-ischemic hyperglycemia plays an important role in suppressing neuronal damage in therapeutic strategies for cerebral ischemia. We previously reported that the cerebral sodium-glucose transporter (SGLT) was involved in the post-ischemic hyperglycemia-induced exacerbation of cerebral ischemic neuronal damage. Cortical SGLT-1, one of the cerebral SGLT isoforms, is dramatically increased by focal cerebral ischemia. In this study, we focused on the involvement of cerebral SGLT-1 in the development of cerebral ischemic neuronal damage. It was previously reported that activation of 5'-adenosine monophosphate-activated protein kinase (AMPK) increases SGLT-1 expression. Moreover, ischemic stress-induced activation of AMPK exacerbates cerebral ischemic neuronal damage. Therefore, we directly confirmed the relationship between cerebral SGLT-1 and cerebral AMPK activation using in vitro primary culture of mouse cortical neurons. An in vivo mouse model of focal cerebral ischemia was generated using a middle cerebral artery occlusion (MCAO). The development of infarct volume and behavioral abnormalities on day 3 after MCAO were ameliorated in cerebral SGLT-1 knock down mice. Cortical and striatal SGLT-1 expression levels were significantly increased at 12h after MCAO. Immunofluorescence revealed that SGLT-1 and the neuronal nuclear antigen (NeuN) were co-localized in the cortex and striatum of MCAO mice. In the in vitro study, primary cortical neurons were cultured for five days before each treatment with reagents. Concomitant treatment with hydrogen peroxide and glucose induced the elevation of SGLT-1 and phosphorylated AMPK/AMPK ratio, and this elevation was suppressed by compound C, an AMPK inhibitor in primary cortical neurons. Moreover, compound C suppressed neuronal cell death induced by concomitant hydrogen peroxide/glucose treatment in primary cortical neurons. Therefore, we concluded that enhanced cerebral SGLT-1 function mediated by post

  17. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    Science.gov (United States)

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects.

  18. Unilateral cerebral polymicrogyria with ipsilateral cerebral hemiatrophy

    International Nuclear Information System (INIS)

    We evaluated six children in whom MR imaging showed unilateral cerebral polymicrogyria associated with ipsilateral cerebral atrophy and ipsilateral brain stem atrophy. The aim of this study was to clarify whether this disorder based on neuroimaging constitutes a new homogeneous clinical entity. The subjects were six children whose ages at the time of MR imaging ranged from 8 months to 11 years. Their clinical and MR features were analyzed. All of the children were born between 38 and 42 weeks gestation, without any significant perinatal events. Spastic hemiplegia and epilepsy were observed in all of the patients, and mental retardation was observed in four. The MR findings included unilateral cerebral polymicrogyria associated with ipsilateral cerebral hemiatrophy and ipsilateral brain stem atrophy in all patients. The ipsilateral sylvian fissure was hypoplastic in four patients. These patients showed relatively homogeneous clinical and neuroimaging features. Although the additional clinical features varied according to the site and the extent affected by the polymicrogyria, this disorder could constitute a new relatively homogeneous clinical entity. (orig.)

  19. Unilateral cerebral polymicrogyria with ipsilateral cerebral hemiatrophy

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Katsumi [Department of Radiology, Kyoto City Hospital, 1-2 Higashi-Takada-cho, Mibu, Nakagyo-ku, 604-8845 Kyoto (Japan); Kanda, Toyoko; Yamori, Yuriko [Department of Pediatric Neurology, St. Joseph Hospital for Handicapped Children, 603-8323 Kyoto (Japan)

    2002-10-01

    We evaluated six children in whom MR imaging showed unilateral cerebral polymicrogyria associated with ipsilateral cerebral atrophy and ipsilateral brain stem atrophy. The aim of this study was to clarify whether this disorder based on neuroimaging constitutes a new homogeneous clinical entity. The subjects were six children whose ages at the time of MR imaging ranged from 8 months to 11 years. Their clinical and MR features were analyzed. All of the children were born between 38 and 42 weeks gestation, without any significant perinatal events. Spastic hemiplegia and epilepsy were observed in all of the patients, and mental retardation was observed in four. The MR findings included unilateral cerebral polymicrogyria associated with ipsilateral cerebral hemiatrophy and ipsilateral brain stem atrophy in all patients. The ipsilateral sylvian fissure was hypoplastic in four patients. These patients showed relatively homogeneous clinical and neuroimaging features. Although the additional clinical features varied according to the site and the extent affected by the polymicrogyria, this disorder could constitute a new relatively homogeneous clinical entity. (orig.)

  20. Severe cell reduction in the future brain cortex in human growth-restricted fetuses and infants

    DEFF Research Database (Denmark)

    Samuelsen, Grethe B; Pakkenberg, Bente; Bogdanović, Nenad;

    2007-01-01

    OBJECTIVE: The objective of the study was to test the hypothesis that the total number of cells in the cortical part of the cerebral wall is the same in intrauterine growth-restricted (IUGR) fetuses, compared with normally grown fetuses. STUDY DESIGN: The total cell number in the cerebral wall...... with controls. The daily increase in brain cells in the future cortex was only half of that of the controls. In the 3 other developmental zones, no significant differences in cell numbers could be demonstrated. CONCLUSIONS: IUGR in humans is associated with a severe reduction in cortical growth...

  1. Sacral nerve stimulation increases activation of the primary somatosensory cortex by anal canal stimulation in an experimental model.

    LENUS (Irish Health Repository)

    Griffin, K M

    2011-08-01

    Sacral and posterior tibial nerve stimulation may be used to treat faecal incontinence; however, the mechanism of action is unknown. The aim of this study was to establish whether sensory activation of the cerebral cortex by anal canal stimulation was increased by peripheral neuromodulation.

  2. Temporal Cortex Morphology in Mesial Temporal Lobe Epilepsy Patients and Their Asymptomatic Siblings.

    Science.gov (United States)

    Alhusaini, Saud; Whelan, Christopher D; Doherty, Colin P; Delanty, Norman; Fitzsimons, Mary; Cavalleri, Gianpiero L

    2016-03-01

    Temporal cortex abnormalities are common in patients with mesial temporal lobe epilepsy due to hippocampal sclerosis (MTLE+HS) and believed to be relevant to the underlying mechanisms. In the present study, we set out to determine the familiarity of temporal cortex morphologic alterations in a cohort of MTLE+HS patients and their asymptomatic siblings. A surface-based morphometry (SBM) method was applied to process MRI data acquired from 140 individuals (50 patients with unilateral MTLE+HS, 50 asymptomatic siblings of patients, and 40 healthy controls). Using a region-of-interest approach, alterations in temporal cortex morphology were determined in patients and their asymptomatic siblings by comparing with the controls. Alterations in temporal cortex morphology were identified in MTLE+HS patients ipsilaterally within the anterio-medial regions, including the entorhinal cortex, parahippocampal gyrus, and temporal pole. Subtle but similar pattern of morphology changes with a medium effect size were also noted in the asymptomatic siblings. These localized alterations were related to volume loss that appeared driven by shared contractions in cerebral cortex surface area. These findings indicate that temporal cortex morphologic alterations are common to patients and their asymptomatic siblings and suggest that such localized traits are possibly heritable. PMID:25576532

  3. Cerebral activation studies by PET and fMRT, clinical relevance?

    International Nuclear Information System (INIS)

    Cerebral activation studies by PET and fMRT will gain increasing clinical relevance for functional neuroanatomy (reading, speaking), localisation of largely unknown cortical functions (vestibular cortex), imaging of subjective complaints of functional impairments (pain, smell, memory), and documentation of neurological rehabilitation at neuronal level (regeneration, compensation, substitution, learning). (orig.)

  4. Painful tonic heat stimulation induces GABA accumulation in the prefrontal cortex in man

    DEFF Research Database (Denmark)

    Kupers, Ron; Danielsen, Else R; Kehlet, Henrik;

    2009-01-01

    in pain processing. Using a 3T MR scanner, we acquired spectra from the rostral anterior cingulate cortex (rACC) in 13 healthy right-handed subjects at rest and during painful heat stimulation. The painful stimulus consisted of a suprathreshold painful tonic heat pulse, which was delivered to the right...... that GABA is released in the human cerebral cortex during painful stimulation. The results are in line with animal findings on the role of GABA in pain processing and with studies in humans showing analgesic efficacy of GABA-related drugs in clinical pain conditions....

  5. Homuncular organization of human motor cortex as indicated by neuromagnetic recordings.

    Science.gov (United States)

    Cheyne, D; Kristeva, R; Deecke, L

    1991-01-14

    Sources of neural activity identified using non-invasive measurements of cerebral magnetic fields (magnetoencephalography) were found to confirm the somatotopic organization of primary motor cortex for movements of different parts of the body in normal human subjects. Somatotopic maps produced with this technique showed slight differences to the 'classic' homunculus obtained from studies using direct cortical stimulation. These findings indicate that neuromagnetic recordings are capable of localizing cortical activity associated with voluntarily produced movements without the use of external stimulation and provide a new method for studying the functional organization of human motor cortex and its role in voluntary movement.

  6. Correlations decrease with propagation of spiking activity in the mouse barrel cortex

    Directory of Open Access Journals (Sweden)

    Gayathri Nattar Ranganathan

    2011-05-01

    Full Text Available Propagation of suprathreshold spiking activity through neuronal populations is important for the function of the central nervous system. Neural correlations have an impact on cortical function particularly on the signaling of information and propagation of spiking activity. Therefore we measured the change in correlations as suprathreshold spiking activity propagated between recurrent neuronal networks of the mammalian cerebral cortex. Using optical methods we recorded spiking activity from large samples of neurons from two neural populations simultaneously. The results indicate that correlations decreased as spiking activity propagated from layer 4 to layer 2/3 in the rodent barrel cortex.

  7. 被动运动加氦-氖激光治疗急性脑梗死偏瘫50例%50 cases of acute cerebral infarction treated with passive exercise and Heli-um-neon laser

    Institute of Scientific and Technical Information of China (English)

    赵政凯; 杨东妮

    2003-01-01

    @@ BACKGROUND: Passive exercise can promote plastic de-velopment of cerebral cortex function with afferent stimuli received by receptors and recover lost functions. Utility of Helium-neon laser can protect neurons.

  8. Entorhinal cortex and consolidated memory.

    Science.gov (United States)

    Takehara-Nishiuchi, Kaori

    2014-07-01

    The entorhinal cortex is thought to support rapid encoding of new associations by serving as an interface between the hippocampus and neocortical regions. Although the entorhinal-hippocampal interaction is undoubtedly essential for initial memory acquisition, the entorhinal cortex contributes to memory retrieval even after the hippocampus is no longer necessary. This suggests that during memory consolidation additional synaptic reinforcement may take place within the cortical network, which may change the connectivity of entorhinal cortex with cortical regions other than the hippocampus. Here, I outline behavioral and physiological findings which collectively suggest that memory consolidation involves the gradual strengthening of connection between the entorhinal cortex and the medial prefrontal/anterior cingulate cortex (mPFC/ACC), a region that may permanently store the learned association. This newly formed connection allows for close interaction between the entorhinal cortex and the mPFC/ACC, through which the mPFC/ACC gains access to neocortical regions that store the content of memory. Thus, the entorhinal cortex may serve as a gatekeeper of cortical memory network by selectively interacting either with the hippocampus or mPFC/ACC depending on the age of memory. This model provides a new framework for a modification of cortical memory network during systems consolidation, thereby adding a fresh dimension to future studies on its biological mechanism.

  9. Study of regional cerebral metabolic rate of glucose with positron emission computed tomography in Alzheimer's disease

    International Nuclear Information System (INIS)

    Using positron emission computed tomography with F-18 fluoro-D-deoxyglucose, regional cerebral metabolic rate of glucose (rCMRglc) was measured in 8 patients with Alzheimer's disease and 3 healthy volunteers. A decreased rCMRglc was observed in the widespread cortex and basal ganglia of the cerebrum, but not observed in white matter, thalamus, and cerebellum. There was no bilateral difference. rCMRglc was the lowest in the parietal lobe, followed by the temporal lobe and the curvature of the frontal lobe. A decrease in rCMRglu was relatively mild in the inner part of the frontal lobe, primary sensory and motor area of the cerebral cortex, and cerebral basilar ganglia. Alzheimer's disease proved to be characterized by severe glucose metabolic disorder in the association area of the bilateral cerebral cortices. The degree of metabolic disorder was correlated with the degree of dementia in the outer part of the left frontal lobe and the curvature of the cerebral cortex. (Namekawa, K.)

  10. Cerebral Aneurysms Fact Sheet

    Science.gov (United States)

    ... cerebral aneurysm from forming. People with a diagnosed brain aneurysm should carefully control high blood pressure, stop smoking, and avoid cocaine use or other stimulant drugs. They should also ...

  11. Cerebral amyloid angiopathy

    Science.gov (United States)

    ... Fenichel GM, Jankovic J, Mazziotta JC, eds. Bradley's Neurology in Clinical Practice . 6th ed. Philadelphia, PA: Elsevier ... al. Course of cerebral amyloid angiopathy-related inflammation. Neurology. 2007;68:1411-1416. PMID: 17452586 www.ncbi. ...

  12. Pathophysiology of cerebral circulatory disorders in idiopathic normal pressure hydrocephalus

    International Nuclear Information System (INIS)

    This study was conducted to elucidate the pathologic conditions of cerebral circulatory disorders in idiopathic normal pressure hydrocephalus (iNPH). Among 44 possible iNPH patients, 40 patients underwent shunt surgery based on diagnostic flow charts plotted by the Southern Tohoku method and were evaluated to be shunt-effective at the end of the first post-surgical month. The cerebral blood flow (CBF) was measured by N-isopropyl-(123I)-P-iodo-amphetamine single photon emission computed tomography (mean, mCBF; cortical region, cCBF; thalamus-basal ganglia region, tbCBF on autoradiography [ARG] method) and the perfusion patterns of the cerebral cortex were measured based on three-dimensional stereotactic surface projection (3D-SSP) Z-score images, before and 1 month after the surgery in all 40 subjects. The mCBF rose significantly from 32.1±2.74 ml/100 g/min before surgery to 39.8±3.02 ml/100 g/min after surgery (p<0.03). Investigation of the change of CBF revealed reductions in the cCBF (3 cases), tbCBF (9 cases), and cCBF+tbCBF (28 cases), with the reduced-cCBF group totaling 31 cases and the reduced-tbCBF group totaling 37 cases. Investigation of cerebral cortex hypoperfusion by 3D-SSP Z-score revealed 31 cases with hypoperfusion (frontal lobe type [19 cases], occipitotemporal lobe type [5 cases], mixed type [7 cases]) and nine cases with cortical normoperfusion (N). The pattern of reduction of the cortical blood flow on ARG method was favorably correlated with the pattern of hypoperfusion of the cerebral cortex on 3D-SSP Z-score images before surgery. A reduction of blood flow was found in the thalamus-basal ganglia region of all N type cases. The blood flow improved in 19 of 31 (61.3%) cases of the reduced-cCBF group and in 32 of 37 (86.5%) cases of the reduced-tbCBF group. All of the cases without detectable improvement exhibited increased blood flow in non-reduction areas. Investigation of the hypoperfusion patterns of the cerebral cortex on 3D-SSP Z

  13. Neuronal injury in the motor cortex after chronic stroke and lower limb motor impairment:a voxel-based lesion symptom mapping study

    Institute of Scientific and Technical Information of China (English)

    Alexandria M. Reynolds; Denise M. Peters; Jennifer M. C. Vendemia; Lenwood P. Smith; Raymond C. Sweet; Gordon C. Baylis; Debra Krotish; Stacy L Fritz

    2014-01-01

    Many studies have examined motor impairments using voxel-based lesion symptom mapping, but few are reported regarding the corresponding relationship between cerebral cortex injury and lower limb motor impairment analyzed using this technique. This study correlated neuro-nal injury in the cerebral cortex of 16 patients with chronic stroke based on a voxel-based lesion symptom mapping analysis. Neuronal injury in the corona radiata, caudate nucleus and putamen of patients with chronic stroke could predict walking speed. The behavioral measure scores were consistent with motor deifcits expected after damage to the cortical motor system due to stroke. These ifndings suggest that voxel-based lesion symptom mapping may provide a more accurate prognosis of motor recovery from chronic stroke according to neuronal injury in cerebral motor cortex.

  14. Acute ischemic cerebral attack

    OpenAIRE

    Franco-Garcia Samir; Barreiro-Pinto Belis

    2010-01-01

    The decrease of the cerebral blood flow below the threshold of autoregulation led to changes of cerebral ischemia and necrosis that traduce in signs and symtoms of focal neurologic dysfunction called acute cerebrovascular symdrome (ACS) or stroke. Two big groups according to its etiology are included in this category the hemorragic that constitue a 20% and the ischemic a 80% of cases. Great interest has wom the ischemic ACS because of its high social burden, being the third cause of no violen...

  15. Cerebral Palsy Litigation

    OpenAIRE

    Sartwelle, Thomas P.; Johnston, James C.

    2015-01-01

    The cardinal driver of cerebral palsy litigation is electronic fetal monitoring, which has continued unabated for 40 years. Electronic fetal monitoring, however, is based on 19th-century childbirth myths, a virtually nonexistent scientific foundation, and has a false positive rate exceeding 99%. It has not affected the incidence of cerebral palsy. Electronic fetal monitoring has, however, increased the cesarian section rate, with the expected increase in mortality and morbidity risks to mothe...

  16. Rehabilitation in cerebral palsy.

    OpenAIRE

    Molnar, G. E.

    1991-01-01

    Cerebral palsy is the most frequent physical disability of childhood onset. Over the past four decades, prevalence has remained remarkably constant at 2 to 3 per 1,000 live births in industrialized countries. In this article I concentrate on the rehabilitation and outcome of patients with cerebral palsy. The epidemiologic, pathogenetic, and diagnostic aspects are highlighted briefly as they pertain to the planning and implementation of the rehabilitation process.

  17. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine) (and others)

    1989-11-01

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author).

  18. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author)

  19. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex.

    Science.gov (United States)

    Arnò, Benedetta; Grassivaro, Francesca; Rossi, Chiara; Bergamaschi, Andrea; Castiglioni, Valentina; Furlan, Roberto; Greter, Melanie; Favaro, Rebecca; Comi, Giancarlo; Becher, Burkhard; Martino, Gianvito; Muzio, Luca

    2014-01-01

    Microglia are observed in the early developing forebrain and contribute to the regulation of neurogenesis through still unravelled mechanisms. In the developing cerebral cortex, microglia cluster in the ventricular/subventricular zone (VZ/SVZ), a region containing Cxcl12-expressing basal progenitors (BPs). Here we show that the ablation of BP as well as genetic loss of Cxcl12 affect microglia recruitment into the SVZ. Ectopic Cxcl12 expression or pharmacological blockage of CxcR4 further supports that Cxcl12/CxcR4 signalling is involved in microglial recruitment during cortical development. Furthermore, we found that cell death in the developing forebrain triggers microglial proliferation and that this is mediated by the release of macrophage migration inhibitory factor (MIF). Finally, we show that the depletion of microglia in mice lacking receptor for colony-stimulating factor-1 (Csf-1R) reduces BPs into the cerebral cortex.

  20. Regional hypoplasia of somatosensory cortex in growth-retarded mice (grt/grt).

    Science.gov (United States)

    Sawada, Kazuhiko; Saito, Shigeyoshi; Sugasawa, Akari; Sato, Chika; Aoyama, Junya; Ohara, Naoko; Horiuchi-Hirose, Miwa; Kobayashi, Tetsuya

    2016-07-01

    Growth-retarded mouse (grt/grt) is a spontaneous mutant that is known as an animal model for primary congenital hypothyroidism caused by resistance to TSH signaling. The regional pattern of cerebral cortical hypoplasia was characterized in grt/grt mice. Ex vivo computed tomography (CT)-based volumetry was examined in four regions of the cerebral cortex, i.e., prefrontal, frontal, parietal and occipito-temporal regions, which were demarcated by structural landmarks on coronal CT images. A region-specific reduced volume of the parietal cortical region covering most of the somatosensory cortex was noted in grt/grt mice rather than in both heterozygous (grt/+) and wild-type (+/+) mice. We concluded that the cortical hypoplasia in grt/grt was seen in identical cortical regions corresponding to human congenital hypothyroidism. PMID:26915353

  1. Cerebral palsy and congenital malformations

    DEFF Research Database (Denmark)

    Garne, Ester; Dolk, Helen; Krägeloh-Mann, Inge;

    2007-01-01

    AIM: To determine the proportion of children with cerebral palsy (CP) who have cerebral and non-cerebral congenital malformations. METHODS: Data from 11 CP registries contributing to the European Cerebral Palsy Database (SCPE), for children born in the period 1976-1996. The malformations were...... classified as recognized syndromes, chromosomal anomalies, cerebral malformations or non-cerebral malformations. Prevalence of malformations was compared to published data on livebirths from a European database of congenital malformations (EUROCAT). RESULTS: Overall 547 out of 4584 children (11.9%) with CP...... were reported to have a congenital malformation. The majority (8.6% of all children) were diagnosed with a cerebral malformation. The most frequent types of cerebral malformations were microcephaly and hydrocephaly. Non-cerebral malformations were present in 97 CP children and in further 14 CP children...

  2. Effect of Coriaria Lactone-activated Astrocyte-conditioned Medium on the Cerebral TNF-α of Normal Rats

    Institute of Scientific and Technical Information of China (English)

    LI Zhongyu; LIU Qingying; ZHU Changgeng; WANG Wei

    2006-01-01

    To explore the effect of coriaria lactone (CL)-activated astrocyte-conditioned medium on the cerebral TNF-α of normal rats, the CL-activated astrocyte-conditioned medium (ACM) was injected into the lateral ventricle of SD rats. The rats were observed for behavioral changes, and the changes of the expression of TNF-α in the cerebral cortex and hippocampus were immunohistochemically examined by employing SP method. TNF-α level was assessed by means of radioimmunoassay in homogenate of cerebral cortex and hippocampus as well as cerebrospinal fluid. Seizure episodes were observed in ACM group 30 min after the ACM injection, but they were not observed in the control group.Immunohistochemical detection showed that the immunoreaction of TNF-α in hippocampus and cerebral cortex of rats were stronger than that of the control group 4 h after the ACM injection (P<0.05). In this group, the concentrations of TNF-α in homogenate of cerebral cortex and hippocampus and cerebrospinal fluid were higher than those of the control group (P<0.05). Itis suggested that the ACM activated by CL can enhance the expression of TNF-α in normal rats,and is related to epileptogenesis.

  3. [Comparative evaluation of the neuroprotective activity of phenibut and piracetam under experimental cerebral ischemia conditions in rats].

    Science.gov (United States)

    Tiurenkov, I N; Bagmetov, M N; Epishina, V V; Borodkina, L E; Voronkov, A V

    2006-01-01

    The neuroprotective properties of phenibut and piracetam were studied in rats with cerebral ischemia caused by bilateral irreversible simultaneous occlusion of carotid arteries and gravitational overload in craniocaudal vector. In addition, the effects of both drugs on microcirculation in brain cortex under ischemic injury conditions were studied. Phenibut and (to a lower extent) piracetam reduced a neuralgic deficiency, amnesia, and the degree of cerebral circulation drop, and improved the spontaneous movement and research activity deteriorated by brain ischemia. PMID:16878492

  4. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  5. Functional gradients through the cortex, multisensory integration and scaling laws in brain dynamics

    OpenAIRE

    Gonzalo-Fonrodona, Isabel

    2008-01-01

    In the context of the increasing number of works on multisensory and cross-modal effects in cerebral processing, a review is made on the functional model of human brain proposed by Justo Gonzalo (1910-1986), in relation to what he called central syndrome (caused by unilateral lesion in the parieto-occipital cortex, equidistant from the visual, tactile and auditory projection areas). The syndrome is featured by a bilateral, symmetric and multisensory involvement, and by a functional depression...

  6. In vivo Calcium Imaging of Evoked Calcium Waves in the Embryonic Cortex

    OpenAIRE

    Yuryev, Mikhail; Pellegrino, Christophe; Jokinen, Ville; Andriichuk, Liliia; Khirug, Stanislav; Khiroug, Leonard; Rivera, Claudio

    2016-01-01

    The dynamics of intracellular calcium fluxes are instrumental in the proliferation, differentiation, and migration of neuronal cells. Knowledge thus far of the relationship between these calcium changes and physiological processes in the developing brain has derived principally from ex vivo and in vitro experiments. Here, we present a new method to image intracellular calcium flux in the cerebral cortex of live rodent embryos, whilst attached to the dam through the umbilical cord. Using this ...

  7. Effect of Batroxobin on Neuronal Apoptosis During Focal Cerebral Ischemia and Reperfusion in Rats

    Institute of Scientific and Technical Information of China (English)

    吴卫平; 匡培根; 李振洲

    2001-01-01

    We have found that Batroxobin plays a protactive role in ischemic brain injury, which attracted us to investigate the effect of Batroxobin on apoptosis of neurons during cerebral ischemia and reperfusion. The apoptotic cells in ischemic rat brains at different reperfusion intervals were tested with method of TdT-mediated dUTP-DIG nick end labeling (TUNEL) and the effect of Batroxobin on the apoptosis of neurons was studied in left middle cerebral artery (LMCA) occlusion and reperfusion in rat models (n=18). The results showed that few scattered apoptosis cells were observed in right cerebral hemispheres after LMCA occlusion and reperfusion, and that a lot of apoptosis cells were found in left ischemic cortex and caudoputamen at 12h reperfusion, and they reached peak at 24h~48h reperfusion. However, in the rats pretreated with Batroxobin, the number of apoptosis cells in left cerebral cortex and caudoputamen reduced significantly and the neuronal damage was much milder at 24h reperfusion than that of saline-treated rats. The results indicate that administration of Batroxobin may reduce the apoptosis of neurons induced by cerebral ischemia and reperfusion and afford significant cerebroprotection in the model of focal cerebral ischemia and reperfusion.

  8. Acute hypoxia increases the cerebral metabolic rate - a magnetic resonance imaging study.

    Science.gov (United States)

    Vestergaard, Mark B; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob; Lisbjerg, Kristian; Christensen, Søren Just; Law, Ian; Rasmussen, Peter; Olsen, Niels V; Larsson, Henrik Bw

    2016-06-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. PMID:26661163

  9. Optical topography guided semi-three-dimensional diffuse optical tomography for a multi-layer model of occipital cortex: a pilot methodological study

    Science.gov (United States)

    Ding, Hao; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng

    2016-03-01

    In this paper, an optical topography (OT) guided diffuse optical tomography (DOT) scheme is developed for functional imaging of the occipital cortex. The method extends the previously proposed semi-three-dimensional DOT methodology to reconstruction of two-dimensional extracerebral and cerebral images using a visual cortex oriented five-layered slab geometry, and incorporate the OT localization regularization in the cerebral reconstruction to achieve enhanced quantitative accuracy and spatial resolution. We validate the methodology using simulated data and demonstrate its merits in comparison to the standalone OT and DOT.

  10. Nanomedicine in cerebral palsy

    Directory of Open Access Journals (Sweden)

    Balakrishnan B

    2013-11-01

    Full Text Available Bindu Balakrishnan,1 Elizabeth Nance,1 Michael V Johnston,2 Rangaramanujam Kannan,3 Sujatha Kannan1 1Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University; Baltimore, MD, USA; 2Department of Neurology and Pediatrics, Kennedy Krieger Institute, Baltimore, MD, USA; 3Department of Ophthalmology, Center for Nanomedicine, Johns Hopkins University, Baltimore, MD, USA Abstract: Cerebral palsy is a chronic childhood disorder that can have diverse etiologies. Injury to the developing brain that occurs either in utero or soon after birth can result in the motor, sensory, and cognitive deficits seen in cerebral palsy. Although the etiologies for cerebral palsy are variable, neuroinflammation plays a key role in the pathophysiology of the brain injury irrespective of the etiology. Currently, there is no effective cure for cerebral palsy. Nanomedicine offers a new frontier in the development of therapies for prevention and treatment of brain injury resulting in cerebral palsy. Nanomaterials such as dendrimers provide opportunities for the targeted delivery of multiple drugs that can mitigate several pathways involved in injury and can be delivered specifically to the cells that are responsible for neuroinflammation and injury. These materials also offer the opportunity to deliver agents that would promote repair and regeneration in the brain, resulting not only in attenuation of injury, but also enabling normal growth. In this review, the current advances in nanotechnology for treatment of brain injury are discussed with specific relevance to cerebral palsy. Future directions that would facilitate clinical translation in neonates and children are also addressed. Keywords: dendrimer, cerebral palsy, neuroinflammation, nanoparticle, neonatal brain injury, G4OH-PAMAM

  11. Cerebral glucose metabolic abnormality in patients with congenital scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Seo, G. T.; Lee, J. S.; Kim, S. C.; Kim, I. J.; Kim, Y. K.; Jeon, S. M. [Pusan National University Hospital, Pusan (Korea, Republic of)

    2007-07-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with adolescent idiopathic scoliosis. The mean mini-mental status exam score in the congenital scoliosis group was significantly lower than that in the adolescent idiopathic scoliosis group. Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus. From this study, we could find the metabolic abnormalities of brain in patients with congenital scoliosis and suggest the possible role of voxel-based analysis of brain fluorodeoxyglucose positron emission tomography.

  12. Hemodynamic Responses on Prefrontal Cortex Related to Meditation and Attentional Task

    Directory of Open Access Journals (Sweden)

    Singh eDeepeshwar

    2015-02-01

    Full Text Available Recent neuroimaging studies state that meditation increases regional cerebral blood flow (rCBF in the prefrontal cortex (PFC. The present study employed functional near infrared spectroscopy (fNIRS to evaluate the relative hemodynamic changes in prefrontal cortex during a cognitive task. Twenty-two healthy male volunteers with ages between 18 and 30 years (group mean age ± SD; 22.9 ± 4.6 years performed a color-word stroop task before and after 20 minutes of meditation and random thinking. Repeated measures ANOVA was performed followed by a post-hoc analysis with Bonferroni adjustment for multiple comparisons between the mean values of ‘During’ and ‘Post’ with ‘Pre’ state. During meditation there was an increased in oxy-hemoglobin (∆HbO and total hemoglobin (∆THC concentration with reduced deoxy-hemoglobin (∆HbR concentration over the right prefrontal cortex (rPFC, whereas in random thinking there was increased ∆HbR with reduced total hemoglobin concentration on the rPFC. The mean reaction time was shorter in stroop color word task with reduced ∆THC after meditation, suggestive of improved performance and efficiency in task related to attention. Our findings demonstrated that meditation increased cerebral oxygenation and enhanced performance, which was associated with prefrontal cortex activation.

  13. Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension.

    Science.gov (United States)

    Chan, Siu-Lung; Sweet, Julie G; Cipolla, Marilyn J

    2013-10-01

    We investigated the effect of hypertension on the function and structure of cerebral parenchymal arterioles (PAs), a major target of cerebral small vessel disease (SVD), and determined whether relaxin is a treatment for SVD during hypertension. PAs were isolated from 18-wk-old female normotensive Wistar-Kyoto (WKY) rats, spontaneous hypertensive rats (SHRs), and SHRs treated with human relaxin 2 for 14 d (4 μg/h; n=8/group) and studied using a pressurized arteriograph system. Hypertension reduced PA inner diameter (58±3 vs. 49±3 μm at 60 mmHg in WKY rats, Prelaxin (56±4 μm, PRelaxin also increased PA distensibility in SHRs (34±2 vs. 10±2% in SHRs, PRelaxin was detected in cerebrospinal fluid (110±30 pg/ml) after systemic administration, suggesting that it crosses the blood-brain barrier (BBB). Relaxin receptors (RXFP1/2) were not detected in cerebral vasculature, but relaxin increased vascular endothelial growth factor (VEGF) and matrix metalloproteinase 2 (MMP-2) expression in brain cortex. Inhibition of VEGF receptor tyrosine kinase (axitinib, 4 mg/kg/d, 14 d) had no effect on increased distensibility with relaxin, but caused outward hypertrophic remodeling of PAs from SHRs. These results suggest that relaxin crosses the BBB and activates MMP-2 in brain cortex, which may interact with PAs to increase distensibility. VEGF appears to be involved in remodeling of PAs, but not relaxin-induced increased distensibility. PMID:23783073

  14. Cerebral abscess in children

    International Nuclear Information System (INIS)

    A cerebral abscess (CA) is a focal, infectious process only or multiple, located in the cerebral parenchyma that produces tisular lysis and it behaves like a lesion of space occupative, being a suppurative illness, who origin is a distant infection, or for continuity that studies initially as an area of focal cerebritis and it is developed to a collection surrounded purulent. At the moment they are perfecting technical and protocols diagnoses and therapeutic and measures for allow to control the natural history of the illness, making from the confrontation to this pathology a necessarily interdisciplinary complicated art, stiller in the infantile population, due to their difficulty in the diagnosis and the relevance of the same one. The paper includes epidemiology, etiology, risk factors, localization, pathology, clinic, diagnoses, treatment and diagnostic images

  15. Cerebral hemodynamics in migraine

    DEFF Research Database (Denmark)

    Hachinski, V C; Olesen, Jes; Norris, J W;

    1977-01-01

    Clinical and angiographic findings in migraine are briefly reviewed in relation to cerebral hemodynamic changes shown by regional cerebral blood flow (rCBF) studies. Three cases of migraine studied by the intracarotid xenon 133 method during attacks are reported. In classic migraine, with typical...... prodromal symptoms, a decrease in cerebral blood flow has been demonstrated during the aura. Occasionally, this flow decrease persists during the headache phase. In common migraine, where such prodromata are not seen, a flow decrease has not been demonstrated. During the headache phase of both types...... of migraine, rCBF has usually been found to be normal or in the high range of normal values. The high values may represent postischemic hyperemia, but are probably more frequently secondary to arousal caused by pain. Thus, during the headache phase rCBF may be subnormal, normal or high. These findings do...

  16. Recombinant human erythropoietin increases cerebral cortical width index and neurogenesis following ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Zhongmin Wen; Peiji Wang

    2012-01-01

    The cerebral cortical expansion index refers to the ratio between left and right cortex width and is recognized as an indicator for cortical hyperplasia. Cerebral ischemia was established in CB-17 mice in the present study, and the mice were subsequently treated with recombinant human erythropoietin via subcutaneous injection. Results demonstrated that cerebral cortical width index significantly increased. Immunofluorescence detection showed that the number of nuclear antigen antibody/5-bromodeoxyuridine-positive cells at the infarction edge significantly increased. Correlation analysis revealed a negative correlation between neurological scores and cortical width indices in rats following ischemic stroke. These experimental findings suggested that recombinant human erythropoietin promoted cerebral cortical hyperplasia, increased cortical neurogenesis, and enhanced functional recovery following ischemic stroke.

  17. Propofol inhibits inflammation and lipid peroxidation following cerebral ischemia/ reperfusion in rabbits

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Wei; Xing Wan; Bo Zhao; Jiabao Hou; Min Liu; Bangchang Cheng

    2012-01-01

    The present study established a rabbit model of global cerebral ischemia using the ‘six-vessel' method, which was reperfused after 30 minutes of ischemia. Rabbits received intravenous injection of propofol at 5 mg/kg prior to ischemia and 20 mg/kg per hour after ischemia until samples were prepared. Results revealed that propofol inhibited serum interleukin-8, endothelin-1 and malondialdehyde increases and promoted plasma superoxide dismutase activity after cerebral ischemia/reperfusion. In addition, cerebral cortex edema was attenuated with little neuronal nuclear degeneration and pyknosis with propofol treatment. The cross-sectional area of neuronal nuclei was, however, increased following propofol treatment. These findings suggested that propofol could improve anti-oxidant activity and inhibit synthesis of inflammatory factors to exert a protective effect on cerebral ischemia/reperfusion injury.

  18. Cerebral fat embolism

    International Nuclear Information System (INIS)

    A case of cerebral fat embolism is reported. A 18-year-old patient with multiple bone fractures was in semiconma immediately after an injury. Brain CT showed no brain swelling or intracranial hematoma. Hypoxemia and alcoholemia were noted on admission, which returned to normal without improvement of consciousness level. In addition, respiratory symptoms with positive radiographic changes, tachycardia, pyrexia, sudden drop in hemoglobin level, and sudden thrombocytopenia developed. These symptoms were compatible with Gurd's criteria of systemic fat embolism. Eight days after injury, multiple low density areas appeared on CT and disappeared within the subsequent two weeks, and subdural effusion with cerebral atrophy developed. These CT findings were not considered due to cerebral trauma. Diagnosis of cerebral fat embolism was made. The subdural effusion was drained. Neurologic and pulmonary recoveries took place slowly and one month following the injury the patient became alert and exhibited fully coordinated limb movement. The CT scans of the present case well corresponded with hitherto reported pathological findings. Petechiae in the white matter must have developed on the day of injury, which could not be detected by CT examination. It is suggested that some petechial regions fused to purpuras and then gradually resolved when they were detected as multiple low density areas on CT. CT in the purpuras phase would have shown these lesions as high density areas. These lesions must have healed with formation of tiny scars and blood pigment which were demonstrated as the disappearance of multiple low density areas by CT examination. Cerebral atrophy and subsequent subdural effusion developed as a result of demyelination. The patient took the typical clinical course of cerebral fat embolism and serial CT scans served for its assessment. (author)

  19. Experimental Focal Cerebral Ischemia

    DEFF Research Database (Denmark)

    Christensen, Thomas

    2007-01-01

    Focal cerebral ischemia due to occlusion of a major cerebral artery is the cause of ischemic stroke which is a major reason of mortality, morbidity and disability in the populations of the developed countries. In the seven studies summarized in the thesis focal ischemia in rats induced by occlusion......-PBN on the periinfarct depolarizations and infarct volume was investigated. In study number six, the activity of the mitochondrial electron transport complexes I, II and IV was evaluated histochemically during reperfusion after MCAO in order to assess the possible role of mitochondrial dysfunction in focal ischemic...

  20. Cerebral atrophic and degenerative changes following various cerebral diseases, (1)

    International Nuclear Information System (INIS)

    Patients having cerebral atrophic and degenerative changes following hypoglycemia, cerebral contusion, or cerebral hypoxia including cerebrovascular disorders were reported. Description was made as to cerebral changes visualized on CT images and clinical courses of a patient who revived 10 minutes after heart stoppage during neurosurgery, a newborn with asphyxia, a patient with hypoglycemia, a patient who suffered from asphyxia by an accident 10 years before, a patient with carbon monoxide poisoning at an acute stage, a patient who had carbon monoxide poisoning 10 years before, a patient with diffuse cerebral ischemic changes, a patient with cerebral edema around metastatic tumor, a patient with respiration brain, a patient with neurological sequelae after cerebral contusion, a patient who had an operation to excise right parietal lobe artery malformation, and a patient who was shooted by a machine gun and had a lead in the brain for 34 years. (Tsunoda, M.)

  1. Reduction of mitochondrial electron transport complex activity is restricted to the ischemic focus after transient focal cerebral ischemia in rats

    DEFF Research Database (Denmark)

    Christensen, Thomas; Diemer, Nils Henrik

    2003-01-01

    Using histochemical methods offering high topographical resolution for evaluation of changes in the ischemic focus and the penumbra, the mitochondrial electron transport chain (ETC) complexes I, II, and IV were examined in rats subjected to 2 h of proximal occlusion of the middle cerebral artery...... in the ipsilateral cortex and caudate putamen were measured by densitometric image analysis. Reductions in complex I, II, and IV activity were restricted to areas in the ischemic foci in cortex and caudate putamen, which microscopically displayed signs of early morphological damage. In cortex, the tissue volume...

  2. Cultivating the cortex in German neuroanatomy.

    Science.gov (United States)

    Hagner, M

    2001-12-01

    The cerebral localization of mental functions is one of the centerpieces of modern brain research. Though the localization paradigm in its cultural and social interwovenness has been characterized as successful in the last third of the nineteenth century by a variety of historians of the neurosciences, there is also general agreement that localization came under threat around 1900. Besides the so-called holistic protest against the localization of mental functions, the neuroanatomical approach itself was challenged by experimental psychology, psychiatric nosology, and psychoanalysis. This story underestimates the fact that anatomically-based localization remained powerful in response to these multiple challenges. This meant a neuroanatomical revision of tools, concepts, and practices. But this meant also a shift in the cultivation of the cortex from a more philosophical agenda to rather concrete political claims. More specifically, the idea of the cortext as the noblest part of man was supplemented by suggestions concerning its "Höherzüchtung." I will analyze this re-orientation and radicalization in two steps. First, I briefly discuss the anatomical and philosophical account of Theodor Meynert and then turn to Paul Flechsig who in the late nineteenth century inscribed the ability to create culture and civilization into the cortext. Second, I focus on the neuroanatomists Oskar and Cécile Vogt, who began their careers around 1900 and expanded the cultivation of the cortext. Even before World War I, they proclaimed a "cerebral hygiene." Consequently, the Vogts linked their innovative neuroanatomical researches with the rising field of genetics, racial hygiene, and eugenics. In the early Weimar Republic, the Vogts openly supported socialist ideas and were engaged in establishing an Institute for Brain Research in Soviet Moscow, where Lenin's brain was analyzed. By the end of the Weimar Republic, the rhetoric of the Vogts was bluntly authoritarian. Based on a few

  3. Cultivating the cortex in German neuroanatomy.

    Science.gov (United States)

    Hagner, M

    2001-12-01

    The cerebral localization of mental functions is one of the centerpieces of modern brain research. Though the localization paradigm in its cultural and social interwovenness has been characterized as successful in the last third of the nineteenth century by a variety of historians of the neurosciences, there is also general agreement that localization came under threat around 1900. Besides the so-called holistic protest against the localization of mental functions, the neuroanatomical approach itself was challenged by experimental psychology, psychiatric nosology, and psychoanalysis. This story underestimates the fact that anatomically-based localization remained powerful in response to these multiple challenges. This meant a neuroanatomical revision of tools, concepts, and practices. But this meant also a shift in the cultivation of the cortex from a more philosophical agenda to rather concrete political claims. More specifically, the idea of the cortext as the noblest part of man was supplemented by suggestions concerning its "Höherzüchtung." I will analyze this re-orientation and radicalization in two steps. First, I briefly discuss the anatomical and philosophical account of Theodor Meynert and then turn to Paul Flechsig who in the late nineteenth century inscribed the ability to create culture and civilization into the cortext. Second, I focus on the neuroanatomists Oskar and Cécile Vogt, who began their careers around 1900 and expanded the cultivation of the cortext. Even before World War I, they proclaimed a "cerebral hygiene." Consequently, the Vogts linked their innovative neuroanatomical researches with the rising field of genetics, racial hygiene, and eugenics. In the early Weimar Republic, the Vogts openly supported socialist ideas and were engaged in establishing an Institute for Brain Research in Soviet Moscow, where Lenin's brain was analyzed. By the end of the Weimar Republic, the rhetoric of the Vogts was bluntly authoritarian. Based on a few

  4. [Glio-capillar interaction in rat soffspring cerebral hemisphers under prenatal ethanol intoxication].

    Science.gov (United States)

    2014-09-01

    Brain cortex specimens (hematoxylin-eosin stained) from the new-born rats pups were analysed for glial cells morphological identification. Oligodendrocytes, astrocytes and glial index were tested in 1 and 7 days after birth. Under the prenatal alcoholism in the first 7 days of life in the animals' sensomotoric cortex the proliferation of glial cells, restructurisation of the glio-capillary interaction, dyscirculatory changes affecting the all layers of the cortex, including layer V are prinsipal. It is concluded that the changes (death) of neurocytes are morphological expressions of the glio-capillary interaction pathology - the deficiency of the cerebral cortex blood supply and the disorganization of the blood-brain barrier. PMID:25341253

  5. bcl-xl over-expression in transgenic mice reduces cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Furong Wang; Yongsheng Jiang; Yan Liu; Wenwu Xiao; Suming Zhang

    2008-01-01

    BACKGROUND: Basal cell lymphoma-extra large (bcl-xl) can inhibit neuronal apoptosis by stabilizing the mitochondrial membrane and suppressing cytochrome C release into the cytoplasm. OBJECTIVE: This study aimed to further investigate the cascade reaction pathway of cellular apoptosis. We established an ischemia/dreperfusion model by middle cerebral artery occlusion (MCAO) in transgenic and wild-type mice, and observed changes in the number and distribution of apoptotic neural cells, differences in cerebral infarct volume, in neurological function score, and in cytochrome C expression in the ischemic cerebral cortex, at different time points, DESIGN AND SETTING: The present gene engineering and cell biology experiment was performed at the Laboratory of Biology, Hubei Academy of Agricultural Sciences and at the Laboratory of Immunology, Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Male bcl-xl over-expression Kunming mice aged 8 weeks and age-matched male wild-type mice were used for this study. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) kits were purchased from Boliman, France. Cytochrome C antibody and Bcl-x immunohistochemical kit were purchased from PharMingen, USA and Santa Cruz Biotechnology, USA, respectively. METHODS: Following MCAO and reperfusion, apoptosis in the ischemic cerebral cortex was detected by the TUNEL assay. Prior to MCAO and 3 hours after reperfusion, the Bcl-xl protein level in the ischemic cerebral cortex was measured by immunohistochemistry. At 3, 6, 12 and 24 hours after reperfusion, the level of cytochrome C in the ischemic cerebral cortex was examined by western blot analysis. Subsequent to MCAO, cerebral infarct volume measurement and neurological examination were performed. MAIN OUTCOME MEASURES: Neural cell apoptosis and cytochrome C expression in the ischemic cerebral cortex; cerebral infarct volume and neurological function score. RESULTS: Twenty-four hours after

  6. Emerging roles of Axin in cerebral cortical development

    Directory of Open Access Journals (Sweden)

    Tao eYe

    2015-06-01

    Full Text Available Proper functioning of the cerebral cortex depends on the appropriate production and positioning of neurons, establishment of axon–dendrite polarity, and formation of proper neuronal connectivity. Deficits in any of these processes greatly impair neural functions and are associated with various human neurodevelopmental disorders including microcephaly, cortical heterotopias, and autism. The application of in vivo manipulation techniques such as in utero electroporation has resulted in significant advances in our understanding of the cellular and molecular mechanisms that underlie neural development in vivo. Axin is a scaffold protein that regulates neuronal differentiation and morphogenesis in vitro. Recent studies provide novel insights into the emerging roles of Axin in gene expression and cytoskeletal regulation during neurogenesis, neuronal polarization, and axon formation. This review summarizes current knowledge on Axin as a key molecular controller of cerebral cortical development.

  7. Mapping tissue chromophore changes in cerebral ischemia: a pilot study

    Science.gov (United States)

    Abookasis, David; Mathews, Marlon S.; Lay, Christopher; Cuccia, David J.; Frostig, Ron D.; Linskey, Mark E.; Tromberg, Bruce J.

    2007-02-01

    We describe the projection of spatially modulated light for quantitatively mapping changes in oxyhemoglobin, deoxyhemoglobin, and oxygen saturation in two pilot studies in the rat barrel cortex during both permanent and temporary cerebral ischemia. The approach is based on the projection of spatial modulation of white light onto the brain. The reflected light is captured on a CCD camera, which is then processed to obtain the concentration and distribution of chromophores over a wide field. Preliminary results confirm a measurable and quantifiable increase in tissue molecular concentration of deoxy-hemoglobin and decrease in hemoglobin oxygen concentration in both experimental settings. Our preliminary data from our pilot studies demonstrate that spatial modulation of light can provide quantitative chromophore mapping of the brain and has a potential role in monitoring the course and severity of cerebral ischemia in cerebrovascular disease patients.

  8. Dynamic cerebral autoregulation measured with coherent hemodynamics spectroscopy (CHS)

    Science.gov (United States)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Tgavalekos, Kristen T.; Fantini, Sergio

    2015-03-01

    Coherent Hemodynamics Spectroscopy (CHS) is a novel technique for non-invasive measurements of local microcirculation quantities such as the capillary blood transit times and dynamic autoregulation. The basis of CHS is to measure, for instance with near-infrared spectroscopy (NIRS), peripheral coherent hemodynamic changes that are induced by controlled perturbations in the systemic mean arterial pressure (MAP). In this study, the MAP perturbation was induced by the fast release of two pneumatic cuffs placed around the subject's thighs after they were kept inflated (at 200 mmHg) for two minutes. The resulting transient changes in cerebral oxy- (O) and deoxy- (D) hemoglobin concentrations measured with NIRS on the prefrontal cortex are then described by a novel hemodynamic model, from which quantifiable parameters such as the capillary blood transit time and a cutoff frequency for cerebral autoregulation are obtained. We present results on eleven healthy volunteers in a protocol involving measurements during normal breathing and during hyperventilation, which is known to cause a hypocapnia-induced increase in cerebral autoregulation. The measured capillary transit time was unaffected by hyperventilation (normal breathing: 1.1±0.1 s; hyperventilation: 1.1±0.1 s), whereas the cutoff frequency of autoregulation, which increases for higher autoregulation efficiency, was indeed found to be significantly greater during hyperventilation (normal breathing: 0.017±0.002 Hz; hyperventilation: 0.034±0.005 Hz). These results provide a validation of local cerebral autoregulation measurements with the new technique of CHS.

  9. Recurrent cerebral thrombosis

    International Nuclear Information System (INIS)

    Neuroradiological techniques were used to elucidate pathophysiology of recurrent cerebral thrombosis. Twenty-two patients with cerebral thrombosis who suffered a second attack under stable conditions more than 22 days after the initial stroke were studied. Hypertension, diabetes mellitus, and hypercholesterolemia were also seen in 20, 8, and 12 patients, respectively. The patients were divided into three groups according to their symptoms: (I) symptoms differed between the first and second strokes (n=12); (II) initial symptoms were suddenly deteriorated (n=6); and (III) symptoms occurring in groups I and II were seen (n=4). In group I, contralateral hemiparesis or suprabulbar palsy was often associated with the initial hemiparesis. The time of recurrent stroke varied from 4 months to 9 years. CT and MRI showed not only lacunae in both hemispheres, but also deep white-matter ischemia of the centrum semi-ovale. In group II, hemiparesis or visual field defect was deteriorated early after the initial stroke. In addition, neuroimaging revealed that infarction in the posterior cerebral artery was progressed on the contralateral side, or that white matter lesion in the middle artery was enlarged in spite of small lesion in the left cerebral hemisphere. All patients in group III had deterioration of right hemiparesis associated with aphasia. CT, MRI, SPECT, and angiography indicated deep white-matter ischemia caused by main trunk lesions in the left hemisphere. Group III seemed to be equivalent to group II, except for laterality of the lesion. Neuroradiological assessment of the initial stroke may help to predict the mode of recurrence, although pathophysiology of cerebral thrombosis is complicated and varies from patient to patient. (N.K.)

  10. Suppression of inflammatory response by flurbiprofen following focal cerebral ischemia involves the NF-κB signaling pathway.

    Science.gov (United States)

    Sun, Bao-Zhu; Chen, Lin; Wu, Qi; Wang, Huan-Liang; Wei, Xin-Bing; Xiang, Yan-Xiao; Zhang, Xiu-Mei

    2014-01-01

    Some studies of animal models of middle cerebral artery occlusion indicate that inflammation plays a key role in the pathogenesis of cerebral ischemia and secondary damage. Flurbiprofen has been suggested to alleviate cerebral ischemia/reperfusion injury in both focal and global cerebral ischemia models, but the mechanisms underlying the protective action are still incompletely understood. In this study we want to investigate the protective effect of flurbiprofen after transient middle cerebral artery occlusion (MCAO) in rats and the role of the NF-κB signaling pathway on this neuroprotective effect. Male Wistar rats were subjected to transient middle cerebral artery occlusion for 2 h, followed by 24 h reperfusion. Flurbiprofen was administrated via tail-vein injection at the onset of reperfusion. HE staining and Immunohistochemistry were carried out to detect the morphological changes in ischemic penumbra cortex. The expression of inflammatory cytokines genes (IL-1β, IL-6 and TNF-α) and the levels of p-NF-κB (p65) in ischemic penumbra cortex were measured by RT-PCR and western blot. Administration of flurbiprofen at the doses of 5 mg/kg and 10 mg/kg significantly attenuated cerebral ischemia/reperfusion injury, as shown by a reduction in the morphological changes and inhibition of pro-inflammatory cytokine expression in ischemic penumbra cortex. Moreover, our findings further demonstrated that the inhibition of NF-κB activity was involved in the neuroprotective effect of flurbiprofen on inflammatory responses. Flurbiprofen protects against cerebral injury by reducing expression of inflammatory cytokines genes and this effect may be partly due to the inhibition of NF-κB signaling pathway.

  11. Cerebral cartography--a method for visualizing cortical structures.

    Science.gov (United States)

    Holländer, I

    1995-01-01

    We present a method for visualizing the human cortex on one planar map. The data are taken from a 3D MRI study. Ray tracing with non-parallel rays is used to project the cortical relief onto a non-planar projection surface, which is in turn mapped onto the plane by cartographical projection. Two modifications of the method are proposed: the spherical mapping uses a sphere as the projection surface; the model-based mapping uses an analytically defined model of the scalp to generate the normal vectors. The cerebral cartography can be used for example for producing anatomical reference maps on which EEG measurement data can be superimposed.